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The role that the mental, or internal, representation plays when people are solving hard 
computational problems has largely been overlooked to date, despite the reality that this 
internal representation drives problem solving. In this work we investigate how performance 
on versions of two hard computational problems differs based on what internal representa-
tions can be generated. Our findings suggest that problem solving performance depends 
not only on the objective difficulty of the problem, and of course the particular problem 
instance at hand, but also on how feasible it is to encode the goal of the given problem.  
A further implication of these findings is that previous human performance studies using  
NP-hard problems may have, surprisingly, underestimated human performance on instances 
of problems of this class. We suggest ways to meaningfully frame human performance results 
on instances of computationally hard problems in terms of these problems’ computational 
complexity, and present a novel framework for interpreting results on problems of this type. 
The framework takes into account the limitations of the human cognitive system, in particu-
lar as it applies to the generation of internal representations of problems of this class.
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INTRODUCTION

The human cognitive system is capable of dealing with 
complex, including objectively difficult, problems often 
with seemingly little effort. Everyday tasks such as schedul-
ing workers or resources, and packing groceries efficiently 
are closely related to problems that are hard in an objective 
sense. Scheduling tasks to minimize conflicts, for example, 
can be equivalent to the NP-complete vertex cover problem; 
packing the most items in a container is akin to the NP-
complete bin packing problem (Arora & Barak, 2007; Garey 
& Johnson, 1979). The human cognitive system’s ability to 
tackle complex problems like these with what can seem like 
little or no effort is fascinating and deserving of continued 
study.

One of the original motivations of this study was to evalu-
ate human performance on computational problems that, 
unlike the previously studied Euclidean traveling salesper-
son problem, were not Euclidean in nature.

When solving an instance of the Euclidean traveling 
salesperson problem one is presented with a point set in 
the Euclidean plane. The task is to find a shortest tour visit-
ing all points, where the tour length is measured using the 
Euclidean distance. The problem can also be viewed as a 
Euclidean graph problem: a Euclidean graph is one where 
the vertices are points in Euclidean space. The edge length 
is given by the Euclidean length between their end vertices. 

Alternatively,  for graphs that are not Euclidean and there-
fore are not embedded in the Euclidean space, the distance 
between points is not relevant to the problem definition. 
Such a graph that is not embedded in space has infinitely 
many different configurations, which are all equivalent.

There are a number of different explanations given in the 
literature to explain performance on the well-known Euclid-
ean traveling salesperson problem. These explanations can 
be divided into two categories, either perceptual or analyti-
cal (as proposed by van Rooij, Schactman, Kadlec, & Stege, 
2006).

Studying performance on hard computational problems 
that are not Euclidean provides another mechanism to 
 evaluate whether perceptual processes that depend on the 
Euclidean nature of the problem can alone explain perfor-
mance. If similar human performance results are observed 
on these problems, this would support the hypothesis that 
the reported high quality and fast timing results were not 
merely a result of visual problem solving processes. This 
alone does not discount the possibility that the visual system 
is not somehow being leveraged (as proposed by Pizlo et al., 
2006) but rather would serve to discount certain mechanisms 
as the sole source of solution quality as these mechanisms do 
not directly apply to instances of graph problems that are not 
Euclidean.

Another purpose of this study was to evaluate the role 
that the specific goal of a problem plays in influencing 
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performance on hard computational problems by tasking 
participants with hard computational problems that differed 
only in terms of how the goal was described. Here, we use the 
term goal in the formal sense proposed by Newell and Simon 
(1972), where problem solvers navigate a problem space in 
search of the goal. Participants were tasked with instances of 
versions of the vertex cover or independent set problem with 
stated goals in different manners. These two problems, like 
the Euclidean traveling salesperson problem, are graph prob-
lems that (for the formulations used in this work) are known 
to be hard to solve, in general (Garey & Johnson, 1979). Their 
formal definitions are given in Section 1.3.

For NP-hard problems, no algorithms have been found to 
date that would determine solutions to instances of any finite 
size in a polynomial amount of time (here the polynomial 
has as parameter the size of the instance).

PREVIOUS WORK

One approach to investigating how the human cognitive 
system is able to cope with complexity is to study human 
performance on instances of computational problems that 
have been shown to be objectively hard. One such measure 
of objective difficulty is found in the study of computational 
complexity; problems that are NP-hard1 or NP-complete2 

(Garey & Johnson, 1979).
Work to date has found that people are able to find good 

solutions to instances of classically difficult problems quite 
quickly. One such problem is the Euclidean traveling sales-
person problem (E-TSP) which asks for a shortest tour that 
visits every given city (or point in the plane) exactly once, 
starting and finishing at the same location. Studies of human 
performance on instances of the optimization version of 
E-TSP have found that humans typically find solutions that 
are close to optimal (Best & Simon, 2003; Dry, Lee, Vickers, 
& Hughes, 2006; Dry, Preiss, & Wagemans, 2012; Graham, 
Joshi, & Pizlo, 2000; Kong & Schunn, 2007; Ormerod & 
Chronicle, 1999; Saalweachter & Pizlo, 2008), taking close to 
linear time (in terms of the number of points in the input) to 
complete (Dry et al., 2006, 2012; Graham et al., 2000). A study 
of the minimum vertex cover problem (a computationally 
hard problem that is not Euclidean in nature) (Carruthers, 
Masson, & Stege, 2012) focused on properties of instances 
that impact human performance, and what strategies par-
ticipants might adopt when tackling instances. Performance 
on instances of this problem was in line with performance 
results reported on the E-TSP, ranging, depending on the 
factor, from roughly 4% to 10% above optimal.

Many of these findings are seemingly at odds with the 
current understanding of the complexity of this problem: 
problems like E-TSP and minimum vertex cover are hard, 
and therefore no fast algorithm3 likely exists that can solve 
arbitrary instances of them. There are even strict bounds on 

how close approximation algorithms4 can get to the optimal 
path of E-TSP (Karpinski, Lampis, & Schmied, 2013), and 
many approximation algorithms require more than the  linear 
time observed in human performance studies.

Explanations for these findings vary. In the case of E-TSP, 
it has been proposed that Gestalt principles of continua-
tion and good form (Frisby & Stone, 2010) may be, at least 
partially, responsible for the solutions that participants find 
(Tak, Plaisier, & van Rooij, 2008). A hierarchical pyramid 
model that uses clustering produces solutions that closely 
match those found by participants (Graham et al., 2000). 
Whatever the explanation, we observe that all studies to date 
using hard computational problems as instruments to study 
human problem solving performance have been limited to 
their optimization version: problems for which the aim of 
the task is to find a best solution. In the case of E-TSP, for 
example, problem solvers are tasked with finding a shortest 
route that visits all vertices in a graph. One of the aims of this 
work was to investigate human performance on hard com-
putational problems, which would not be as vulnerable to 
Gestalt principles of continuation and good form as E-TSP.

INFORMATION-PROCESSING MODEL OF PROBLEM SOLVING

Let us step back in time to revisit foundational problem-
solving research that, as will be shown, is still highly relevant 
today. The advent of powerful computers in the 1950s led 
to the rise in popularity of computational theories of mind, 
and is a great example of how the emergence of new tools 
can influence the advance of scientific theories (Gigerenzer & 
Goldstein, 1996). It is easy to take for granted the concept of 
thinking about problem solving as a computational task, but 
at the time being able to think about problem solving from a 
computational perspective allowed for a wealth of knowledge 
about problems and problem solving from the field of com-
puter science to be transferred to the study of human problem 
solving. Newell and Simon’s (1972) information-processing 
model of human cognition, and in particular problem solv-
ing, motivated a great number of experimental studies using 
problems of transformation. These problems of transforma-
tion are, importantly, problems that are well defined. A well-
defined problem has start and goal states, and a finite set of 
legal operators (Newell & Simon, 1972). Further, these states 
and operators must be encodable in the problem solver’s 
internal representation. Examples of well-known problems of 
transformation include: towers of Hanoi, water-jug problems, 
and chess. One of the aims of this work is to revisit and, if 
necessary, revise these definitions in the context of hard com-
putational problems. This will be addressed in Section 1.5.

One of the fundamental concepts that came out of the 
information-processing model of problem solving is that 
of a problem space. When a problem solver is tasked with 
a problem, they generate an internal representation, or 
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problem space (Newell & Simon, 1972), that can be thought 
of as a representation of all possible paths from the start state, 
through all reachable states, to all goal states.5

So long as the given legal operators are sufficient to ensure 
that there exists at least one path from the start to the goal, 
then it can be assumed that the problem solver’s problem 
space also contains a path from the start to the goal, and 
therefore the problem is solvable.

At this juncture it is also important to note the role of 
backtracking in finding solutions to problems of this kind. 
Finding a solution to instances of hard problems is rarely 
done by choosing a series of only correct moves, that is, 
moves that are all on a path yielding an optimum solution. 
For non-trivial instances it is natural that problem solvers 
make moves that do not directly lead to the solution, result-
ing in backtracking moves. The practice is largely overlooked 
in the literature. It is implicitly described in Newell and 
Simon’s (1972) description of search space, which includes 
all moves, both correct and incorrect. Backtracking can 
reflect a problem solver exploring the problem space, that is, 
trying moves to gain an understanding the consequences of a 
move. Backtracking can also be an indication of a purposeful 
strategy, or of a problem solver recognizing when they are no 
longer on a path to the goal.

In either case, measuring the number of moves including 
both forwards and backwards moves can provide important 
insight into a problem solver’s strategy. Note that backtrack-
ing is also part of algorithm-design strategies for exact algo-
rithms solving NP-hard problems. One of these approaches 
is the technique of bounded search trees in the area of 
parameterized complexity (Downey & Fellows, 2012).

ALTERNATIVES TO E-TSP: VERTEX COVER AND INDEPENDENT SET 
PROBLEMS

One of the goals of this work was to investigate human perfor-
mance on hard computational problems that would not be as 
vulnerable to Gestalt principles of continuation and good form 
as E-TSP. Two problems that are not Euclidean were selected 
for this study: the vertex cover problem and the independent 
set problem. Both of these problems, like E-TSP, can be visu-
ally presented as graph problems, and are also both hard.

The vertex cover problem asks, given a graph, for a small-
est set of vertices such that every edge in the graph is incident 
to at least one of these vertices. Figure 1 shows an optimal 
vertex cover. More formally, we can define the vertex cover 
problem as follows:

Vertex Cover (optimization version)

Input: A graph G = (E, V), with vertex set V, and an edge 
set E.
Output: A vertex cover for G where the size of the vertex 
cover is minimized. That is, a subset U of V, such that every 

edge in E is incident to at least one vertex in U, where the size 
of U is minimized.

The independent set problem asks for a maximum inde-
pendent set, a biggest set of vertices that are not connected 
by any edges.6

Independent Set (optimization version)

Input: A graph G = (E, V), with vertex set V, and an edge 
set E.
Output: An independent set for G where the size of the inde-
pendent set is maximized. That is, a subset W of V, such that 
no two vertices in W are adjacent, where the size of W is 
maximized.

ALTERNATIVES TO OPTIMIZATION: SEARCH AND DECISION PROBLEMS

One observation is that human performance studies on hard 
computational problems found in the literature have focused 
exclusively on optimization problems. The optimization ver-
sion of a problem asks for a best solution, either minimizing 
or maximizing some measure. For instance, the E-TSP asks 
for a shortest tour. Optimization has long been a topic of 
interest for cognitive scientists, and it has been suggested that 
some types of optimization problems may exceed the limits 
of the human cognitive system (Simon, 1990). An optimi-
zation strategy can require the problem solver to store and 
compare a great number of options in order to determine 
a solution that is definitively optimal. Given problems that 
demand too much of the cognitive system, Simon’s theory 
of bounded rationality suggests that people turn to either 
satisfying heuristics or fast and frugal heuristics (Todd & 
Gigerenzer, 2000). The former, like optimization, works by 
comparing alternatives until one that is satisfactory is found, 
the latter using little information or computation. The for-
mer may apply to hard computational problems like those of 
interest here.

However, before jumping to the conclusion that when 
faced with hard optimization, problem solvers resort to using 
heuristics (van Rooij & Wareham, 2012; van Rooij, Wright, 
& Wareham, 2012), observe that if optimization exceeds the 
limits of the cognitive system, then it may be appropriate to 
study human performance on hard problems that do not 
include optimization as part of the goal. Fortunately, there 
are other formulations of computational problems that offer 
just that possibility. Complexity classes like NP-hard and 
NP-complete, for instance, are based on the decision version 
of problems, not the optimization versions. In this study, 
in addition to the commonly used optimization version of 
the problem, an alternative problem formulation, the search 
version, was also used. The following sections introduce 
two  problem formulations commonly used in the field of 
computer science, the decision and search versions.
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Decision Version

The decision version of a computational problem asks for a 
YES/NO answer to the existence of a solution to the prob-
lem. Consider the vertex cover problem defined earlier, that 
asked for a smallest set of vertices. The decision version of 
the vertex cover problem asks if there exists a valid vertex 
cover with at most a specified number of vertices.

Vertex Cover (decision version)

Input: A graph G = (E, V), with vertex set V, edge set E, and 
a positive integer k.
Output: The YES/NO answer to the question: Does there 
exist a vertex cover of size at most k?

The optimization version of the independent set problem 
asks for a largest set of vertices. The decision version on the 
other hand asks about the existence of an independent set, 
of at least a given size.

Independent Set (decision version)

Input: A graph G = (E, V), with vertex set V, and edge set E. 
A positive integer value k.
Output: The YES/NO answer to: Does there exist an indepen-
dent set for G, of size at least k?

Search Version

In addition to the optimization and decision versions of 
problems, there is a third version of problem commonly 
used in computational complexity: the search version. It asks 
about the existence of a solution given some criteria (like 
the decision version), and if one exists it asks for a solution 

(like the optimization version). The search version is in 
many ways a better problem variant of the decision problem 
because knowing a solution is way more informative than 
just knowing that there is one. The search version of vertex 
cover, for instance, asks for a cover of size at most k, if one 
exists, or the answer NO, if not.

Vertex Cover (search version)

Input: A graph G = (E, V), with vertex set V, edge set E, and 
positive integer value k.
Output: A vertex cover for G of size at most k. Otherwise 
output “no solution exists.”

Independent Set (search version)

Input: A graph G = (E, V), with vertex set V, and edge set E. 
A positive integer value k.
Output: An independent set for G, of size at least k, if one 
exists, otherwise output “no solution exists.”

Complexity of the Optimization and Search Versions of Computational 
Problems

Computational complexity results are typically based on the 
decision version of problems; however it is not uncommon 
to see claims that the optimization versions of E-TSP (and 
variants) are NP-complete or NP-hard. This is not strictly 
true; however, the optimization or search version of many 
problems can be converted (in polynomial time in terms 
of the input size) to the decision version, in which case the 
complexity of the search or optimization versions can be 
thought of as equivalent to that of the decision version. For 
example, if the optimization version of vertex cover is easy, 
then it could be used to solve the decision version of vertex 
cover in polynomial time, which would contradict the result 
that the decision version of vertex cover is NP-complete.

We have now introduced two hard computational prob-
lems that appear less susceptible to visual processes due to 
their not being Euclidean in nature. Computational problems 
like the vertex cover problem and the independent set prob-
lem are free of unknowns and uncertainty and are therefore 
good candidates as instruments to better understand prob-
lem solving, because it is possible to understand the problem 
very well at the computational level. This, of course, depends 
upon the assumption that the computational problem given 
is in fact the problem that is being solved by the problem 
solver. We now identify why this might not be the case for 
the problems that have been the focus of study to date.

CAN HARD OPTIMIZATION PROBLEMS BE WELL DEFINED?

Computational problems, like the vertex cover and indepen-
dent set problems, are well defined at least as far as computer 
scientists are concerned, and this would seem to imply that 
they must also be well defined as far as the human problem 

Figure 1
An optimal vertex cover of size 6 to a graph with 13 verti-
ces and 18 edges. Yellow vertices are in the cover. Yellow 
edges are covered by those vertices.
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solving definition given above is concerned. However, in 
order to be well defined in the latter sense, the goal must be 
verifiable; that is, the problem solver must be able to encode 
the goal state in order to determine if and when it has been 
achieved. This, as will be shown, may not in fact be the case 
for instances of many hard optimization problems.

Consider the optimization version of the vertex cover 
problem. Determining that a given vertex cover for a par-
ticular graph is optimal requires, given a candidate solution7 
of size k, determining with certainty that there does not exist 
a valid solution of smaller size. If even only a small frac-
tion of other candidate covers are considered to answer this 
question, this is well beyond the limits of working memory 
for all but trivial instances of the problem. For non-trivial 
instances, even comparing only a small number of covers 
quickly exceeds the limits of working memory (Baddeley 
& Hitch, 1974). It is possible that there exist other means 
of determining that a candidate cover is optimal for given 
instances, but it is not immediately clear what they may be. 
Again, since participants often fail to find optimal solutions, 
it is unlikely that such an alternative is readily available to 
novice problem solvers. Therefore, it is assumed that in 
general the task of determining the optimality of a candidate 
vertex cover is infeasible, and a goal state for this problem is 
ill-defined. Similarly, determining that a valid independent 
set is optimal amounts to showing that no larger indepen-
dent set exists, a task that is infeasible, as the goal state for 
this problem definition is ill-defined.

It turns out that some aspects of a goal state of hard 
optimization problems are infeasible to evaluate, in general 
 (Carruthers, 2015). This is worth noting as this likely also 
holds for the problem of chess used by Newell and Simon 
(1972). Despite this, problem solvers, when presented with 
an optimization problem, generate an internal representation 
of the problem that allows them to determine when a goal 
state has been reached. It is therefore key to identify what 
goal(s) might be encoded within the internal representation, 
as this defines what problem is being solved. This in turn 
determines a sound base from which algorithmic explana-
tions of human performance can be proposed.

Consider, again, the problem solver’s internal representa-
tion of the problem. It consists of a problem space, defined by 
the start state, legal operators, and goal state of the problem. 
For many of the hard optimization problems studied to date, 
the start state and legal operators are well defined, and there-
fore is it possible that they are consistent with those in the 
internal representation. Identification of a goal state, on the 
other hand, has been shown to be infeasible and cannot be 
encoded as such in the problem space. In studies of human 
performance on hard optimization problems, participants 
identify solutions to most (if not all) instances presented. 
These solutions, often suboptimal, are selected because 

they satisfy some requirement or quality. Some solutions 
may also be the result of the problem solver giving up on 
the task of finding a state that matches a goal state, but this 
does not exclude the existence of a feasibly identifiable goal 
state. Suboptimal performance results on hard optimization 
problems have typically been explained by proposing that 
problem solvers use approximations or heuristics (Dry et al., 
2006, 2012; Graham et al., 2000; MacGregor, Chronicle, & 
Ormerod, 2004, 2008; MacGregor, Ormerod, & Chronicle, 
2000; Pizlo et al., 2006). However, this approach ignores the 
underlying issue of what problem is being solved; it ignores 
how the problem represented internally determines when 
a solution matches the goal. According to the Newell and 
Simons (1972) information processing account, the problem 
solver determines that the instance of the problem is solved 
when a goal state is achieved, which is not possible if it is 
assumed that the original (infeasible-to-evaluate) goal state 
is encoded in the internal representation.

Many different kinds of problem exist that might be suit-
able for the study of human problem solving. Problems of 
transformation, free of uncertainty and unknowns, have 
proven useful for investigating how problem solvers navi-
gate through problem spaces guaranteed to contain a path 
to the goal. In other words, they have made it possible to 
study performance on problems that are subjectively dif-
ficult, but solvable. Work in this area on problems whose 
problem spaces are relatively small has yielded interesting 
insights about factors that contribute to the subjective dif-
ficulty of these problems. It is also important to study how 
people cope with problems that, while still solvable, are 
more complex, problems that are objectively difficult. Hard 
optimization problems seemed to offer such a possibility, 
as they are very closely related to computational problems 
for which no efficient algorithm exists. Rather surprisingly, 
human performance on instances of these objectively dif-
ficult tasks was found to be very good, with problem solvers 
finding near-optimal solutions very quickly, in many cases. 
However, meaningful interpretation of these performance 
results hinges on the assumption that problem solvers are 
indeed solving the problem given. If problem solvers are not 
able to encode part of these hard optimization tasks in their 
internal representation, then these performance results may 
not in fact be indicative of performance on the given task, 
but rather on some other, unknown, task.

A REVISED APPROACH TO STUDYING HUMAN PROBLEM SOLVING OF 
HARD PROBLEMS

Finding a solution to most instances of the optimization 
version of some hard computational problems is likely 
beyond the power of the human cognitive system because 
the ill-defined goal is not encodable. If the given problem 
cannot be encoded then the problem solver cannot be 
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solving the assigned task. While this does not exclude the 
existence of solvable instances of any non-encodable prob-
lem, the computational challenge of identifying the goal state 
renders countless other instances infeasible to solve. The 
seeming contradiction of using non-encodable problems as 
instruments to evaluate human problem solving does not 
preclude the possibility of continuing to use hard computa-
tional problems to gain an understanding of the power of 
the human cognitive system; however, it does imply that it 
may be appropriate to either modify the way these kinds of 
problem are presented or modify how performance results 
are evaluated. Two possible improvements to the existing 
problem-solving study design are identified. The first is to 
continue using hard optimization problems as instruments 
and, based on the observation that these problems are not 
encodable, attempt to identify what problem(s) might be 
encoded before analyzing performance results. The second 
is to identify hard computational problems that are encod-
able by the human cognitive system and use them to evaluate 
human performance on hard computational problems. There 
are benefits to both approaches.

Hard problems, in particular those for which it may not 
be possible for the problem solver to determine if a solution 
is correct, are everyday occurrences of the environment in 
which the human cognitive system has evolved. As a result, 
it would be surprising if the human cognitive system had not 
developed fast and efficient ways to cope with hard problem-
solving situations. Using problems that are not necessarily 
encodable by the human cognitive system can allow for 
the investigation of possible mechanisms that the cognitive 
system can use to render the problems encodable.

On the other hand, hard problems that are theoretically 
encodable by the cognitive system, and are difficult due to 
their computational complexity alone, can be used as tools 
to investigate how problem solvers navigate problem spaces 
in which they are unable to easily determine a path to the 
goal. For even very hard problems, there can exist rules 
or strategies which can be used to reduce the size of the 
problem space of some instances. Encodable hard problems 
could allow us to observe whether or not problem solvers 
are able to identify, learn, and apply these strategies on later 
instances.

Previous work on problems of transformation proposed 
a number of general problem-solving strategies, like hill 
climbing, brute force, and means–ends analysis, as possible 
explanations of human performance on problems of trans-
formation. While identifying such general problem-solving 
strategies is important, a different approach is considered 
here. This is in part due to the fact that it is unlikely that 
a general problem-solving strategy can be sufficient to find 
solutions to instances of problems that are shown to be com-
putationally hard. Instead, people may acquire and apply 

strategies specific to classes of instances, and possibly acquire 
associated schemata.

A Framework for Handling the Ill-Defined Goal of Hard Optimization 
Problems

Human solutions to instances of hard optimization problems 
can be close to optimal and even optimal. It may therefore seem 
valid to assume that participants do find solutions to the given 
task, as participants typically demonstrate understanding of the 
task and do not verbalize that they are trying to solve a problem 
other than the one given. This, however, is likely a reflection 
of the adaptivity of our cognitive system. On the surface, this 
seems to be what Gigerenzer (2001) is referring to with fast 
and frugal heuristics: if a problem cannot be solved exactly then 
heuristics are a natural alternative. However, before assuming 
that heuristics or some other suboptimal strategies are the only 
way to explain performance, it is important to determine what 
problem might be encoded by the problem solver because the 
encoded problem drives performance.

When tasked with instances of hard optimization prob-
lems that are not encodable by the cognitive system, the 
problem solver encodes some problem, as indicated by their 
ability to find a solution. These solutions can be very close 
to optimal, which implies that the encoded problem likely 
shares a great deal with the original unencodable problem. 
Below we propose a way to identify alternative problem 
formulations which are encodable by the human cognitive 
system. Identifying candidate problems that can be encoded 
by the cognitive system makes it possible to propose models 
that might predict performance. This process begins with 
decomposing the given problem’s goal into those aspects that 
are feasibly identifiable and those that are not.

For the minimum vertex cover problem, the goal is to find 
a vertex cover of minimum size. We can decompose this goal 
into two components, one that is feasible to identify, and 
another that, for most instances, is infeasible to evaluate. It is 
feasible to determine whether a given candidate vertex cover 
is valid: one can consider each edge in the graph indepen-
dently, and check whether it is incident to at least one vertex 
in the candidate cover. Each “edge check” in this process is 
an independent one, and the load on working memory for 
its execution is low. Therefore, determining whether a set of 
vertices is a vertex cover is feasible. Determining whether 
a  candidate cover is smallest, however, is in general not 
 feasible, as discussed earlier.

From this decomposition, the aspect of the goal that is 
infeasible to evaluate can be clearly identified and potentially 
modified into one that is feasible to identify. It is important 
to note that most modifications of the goal for a problem will 
result in a different problem. For any problem, there may 
be many possible ways such a modification can take place. 
An idealist approach is to assume that the goal is modified 
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as parsimonious as possible while retaining as much of the 
original goal structure as possible. This is in line with the 
idea that only infeasible-to-evaluate aspects are modified. 
It is possible that goal modifications do not adhere to this 
idealist perspective; however, it is a prudent starting point. 
Regardless of the level of modification, three distinct cat-
egories of goal modification are identified: restructuring 
modifications, general modifications, and specific modifica-
tions. Two problems, vertex cover and independent set,  
are analyzed in terms of these goal modifications.

Goal Modification Types

Restructuring Modifications. It may be possible for goal aspects, 
both feasible and infeasible, to be recombined by the prob-
lem solver in such a way that the goal is rendered feasible to 
identify. Local optimization is an example of such a restruc-
turing mechanism, where the global optimization require-
ment is reduced to a local optimization, by shifting the target 
of optimization. This can be accomplished by recombining 
goal aspects in such a way that it is feasible to evaluate the 
new goal given the constraints of the cognitive system.

General Modification. A general modification is one that replaces 
an aspect of the goal with a general quality that can be feasibly 
evaluated, without including an exact value or measure. In 
this case, the infeasible aspect of the goal is either eliminated 
or replaced with one that can be feasibly evaluated.

Specific Goal Modification. A specific goal modification is one in 
which an unidentifiable aspect of the goal is replaced with 
one or more quantitative measures or values. Such values 
can be refined and/or adjusted depending on whether or not 
a solution that satisfies the (previously) selected goal value 
can be found, resulting in an iterative strategy to solving the 
problem. The problem solver might estimate a value and 
attempt to find a solution that satisfies that value. If success-
ful, the problem may either be deemed solved or a closer-
to-optimal value may be chosen and the process might 
continue. If it fails, then the problem solver may choose a 
further-from-optimal value, and the process can continue. 

This modification results in an internal representation that is 
very close to the original optimization problem, except that 
the problem solver explicitly encodes the process of opti-
mization by iteratively attempting to find solutions that are 
progressively closer to optimal. This would likely manifest in 
a goal searching mechanism that would involve a great deal 
of backtracking as a result of searching for a solution that 
matches the initial (and possibly subsequent) goal.

Goal Modification in Vertex Cover and Independent Set Problems

We now evaluate possible general, restructuring, and specific 
goal modifications, by decomposing the goal requirements 
for both vertex cover and independent set problems; can-
didate modifications are presented based on these decom-
positions; and predictions for performance based on these 
modifications. For an overview of predicted performance for 
each suggested goal modification, see Tables 1 and 2.

Minimum Vertex Cover. As illustrated above, the infeasible aspect 
of the goal in the minimum vertex cover problem is not that 
of finding a vertex cover (a vertex cover can be easily found 
by simply picking one vertex for each edge), but in determin-
ing the optimality of the vertex cover.

Restructuring Modifications. The goal can be restructured such 
that local minimum vertex covers are found in sub-regions 
of the graph, manifesting as a kind of local optimization. If 
the subgraphs are small enough, then exhaustive search for 
a vertex cover becomes feasible, rendering the goal feasible 
to encode. This restructuring, while feasible, is challenging, 
as there may not be clearly identifiable sub-regions (or sub-
graphs) for a given graph. Further, sub-regions may not be 
mathematically well defined by participants. Some instances 
may contain dense clusters (particular sub-regions) that are 
only loosely connected to each other. These may denote, 
visually, clear boundaries of subgraphs. On the other hand, 
graphs with relatively even density of edges may be more dif-
ficult to consistently decompose into sub-regions. As a result, 
in general, it may be difficult to maintain a mental model of 
how an instance is divided into sub-regions. A second conse-
quence is that this division into subgraphs may not be static, 

Table 1
Predicted performance for suggested goal modifications for the minimum vertex cover problem. Predictions for each candidate 
modification are: the solution quality (relative to optimal), the number of optimal solutions found, and the amount of backtracking 
needed to find a solution.

Modification type Modification Solution quality Opt. solutions Backtracking
General Minimal VC Sub-optimal, minimal Few Little to none
General Any VC Sub-opt., poss. non-minimal Few None
Restructuring Local optimization Sub-opt., minimal Few Moderate amount
Specific Guess and check Near-optimal Many Greater amount
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changing during the problem-solving process. Identifying 
whether and when new subgraphs might be selected could 
be difficult. This modification predicts sub-optimal vertex 
covers, as locally optimal choices (in terms of subgraphs) 
may negatively impact the optimality of the overall solution. 
It also predicts some backtracking, as the problem solver 
attempts to find locally optimal covers for each subgraph or 
adjusts a minimum cover in one subgraph due to the impact 
of choices in a different subgraph.

General Modification. A general modification to the infea-
sible aspect of the goal is to find a minimal vertex cover.   
A minimal vertex cover is a valid vertex cover that contains 
no redundancy, that is, no single vertex can be removed 
from the cover without violating the requirements of a ver-
tex cover. All optimal vertex covers are minimal. However, 
not all minimal vertex covers are optimal. For instance, in 
Figure 2, the vertex cover comprising the colored vertices is 
minimal, but not optimal. This property can be evaluated by 
examining each vertex in the cover individually, and deter-
mining whether its removal would render the cover invalid. 

The memory requirements for this evaluation are small, as 
each choice is local and it is dependent only on the vertices 
adjacent to, and edges incident to, that vertex. This modifica-
tion would predict that upon finding a minimal cover, par-
ticipants would not attempt to improve upon this solution, 
having matched this goal. This modification predicts par-
ticipants finding fewer minimum vertex covers than if they 
are working on the given optimization task. It also predicts 
little or no backtracking once a minimal cover is found. To 
see why this is the case, consider the case where the problem 
solver searches for a minimal cover, which can be achieved 
by making local choices, for instance, finding a vertex that is 
not yet included in the cover that covers an uncovered edge. 
This strategy alone is sufficient for finding a minimal cover 
and requires no backtracking. Finding an optimal cover, 
however, may require trying to improve upon a minimal 
cover, which necessitates backtracking and trying different 
options from some earlier choice. An alternative general 
modification scheme involves discarding the optimization 
aspect of the goal entirely and simply searching for any ver-
tex cover. This modification predicts suboptimal solutions, 
with little or no backtracking. However, it is not as desirable 
a modification as the previous one, as it less parsimoniously 
modifies the aspects of the goal by discarding any sense of 
optimization completely.

Specific Goal Modification. Problem solvers may alternatively resort 
to a guess and check method to generate a feasibly measurable 
goal, and as a result they might generate a specific goal modi-
fication. This method seems especially appealing in problems 
with integer value measures, like vertex cover or independent 
set. Given an instance, a specific value k could be chosen by 
the participant, who could then search for a vertex cover no 
larger than k. If one is found, the solution might be deemed 
satisfactory or the value could be modified and another (bet-
ter) solution could be searched for. Similarly if a solution is 
not found, the problem solver could either give up, or choose 
a further-from-optimal value and reiterate the process. This 
modification predicts that the amount of backtracking will 
be related to the optimality of the solutions. That is, more 
backtracking will be required if close-to-optimal specific 
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Figure 2
A minimal, and non-optimal, vertex cover. Vertices colored red 
constitute a valid vertex cover.

Table 2
Predicted performance for suggested goal modifications for maximum independent set problem. Predictions for each candidate 
modification are: the solution quality (relative to optimal), the number of optimal solutions found, and the amount of backtracking 
needed to find a solution.

Modification type Modification Solution quality Opt. solutions Backtracking
General Maximal IS Sub-opt., maximal Few Little to none
General Any IS Sub-opt., poss. non-maximal Few None
Restructuring Local optimization Sub-opt., maximal Few Moderate amount
Specific Guess and check Near-optimal Many Greater amount
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values are chosen, and less backtracking will be required to 
find solutions that are not close to optimal. This modification 
results in a process of iteratively solving the search version of 
the problem for different values of k.

Maximum Independent Set. Like vertex cover, the infeasible aspect 
of the goal in the maximum independent set problem is that 
of optimizing the size of the independent set. Due to the 
similarities these two problems share, the modifications are 
likewise similar.

Restructuring Modifications. The infeasible-to-evaluate goal could 
be restructured, resulting in searching for a maximal indepen-
dent set. A maximal independent set is a valid independent 
set which cannot be made larger by simply adding another 
vertex to the set. This modification predicts that problem 
solvers would terminate search upon finding a maximal 
independent set, with little or no backtracking. An alternative 
general modification scheme is to find any independent set, 
such that the optimization goal aspect is discarded entirely. 
Due to the nature of the independent set problem, an empty 
set is an independent set, and therefore this modification is 
undesirable. It predicts potentially greatly suboptimal and 
even non-maximal solutions, with little or no backtracking.

General Modification. The local optimization maximum inde-
pendent set problem, where maximum independent sets are 
identified in subgraphs of the given instance, is also a viable 
candidate restructuring. It is vulnerable to the same issues as 
the local minimum vertex cover problem described above. 
It  predicts suboptimal solutions, and even non-maximal 
solutions, with some backtracking.

Specific Goal Modification. Like minimum vertex cover, a specific 
goal modification is possible for this problem. Given an 
instance, a specific value k could be chosen and the problem 
solver could then search for an independent set with at least 
k vertices. If one is found, the solution might be deemed 
satisfactory or the value could be modified and another 
 (better) solution could be searched for. If an independent set 
of size k is not found, the problem solver could either give 
up or choose a further-from-optimal value and reiterate the 
process. Predictions for this guess-and-check modification 
are similar to that for vertex cover.

Candidate modifications have been identified for the opti-
mization versions of the vertex cover and independent set 
problems. These proposed modifications, unlike the original 
optimization version of the problems, are encodable by the 
cognitive system. In both cases, the restructuring (minimal/
maximal) and specific modifications are the most appeal-
ing because they maintain more of the original problem 
structure than the general modification, and also predict 
close-to-optimal solutions. Both these modifications pre-
dict close-to-optimal solutions, but differ in the amount of 

backtracking they predict. These predictions provide quan-
tifiable measures for comparison to human performance 
results or computational model results.

METHODOLOGY

This study and the methodology chosen were based in part 
on pilot studies of human performance on the optimization 
version of both the vertex cover problem and the indepen-
dent set problem, as described earlier. Participants were 
presented with instances of the given problems on an iPad 
which made it possible to provide cognitive support to the 
participants not previously provided in the pilot studies.

PARTICIPANTS

Ninety-six undergraduate students participated in the study 
at the University of Victoria for optional extra credit in a psy-
chology course. Ethics approval for this study was obtained 
through the University of Victoria, and all participants gave 
informed consent before participating.

MATERIALS

A set of 25 graphs was presented to all participants. The instru-
ment included 10 small graphs with 10–19 vertices each,  
10 medium graphs with 20–29 vertices, and 5 large graphs 
with 30–45 vertices. Graphs were generated according to 
predetermined properties as described by Carruthers (2015).

PROCEDURE

Participants were randomly assigned to conditions as follows. 
Half of the participants were instructed to solve the vertex 
cover problem and the other half were instructed to solve the 
independent set problem. Within each of these conditions 
half of participants were assigned to the Optimization (OPT) 
condition and half were assigned to the Search (SRC) condi-
tion. See Table 3 for details.

The vertex cover problem was presented as the guard 
problem. Participants were told that the graphs represented 
art galleries where the vertices were guard posts and the edges 
were the hallways containing priceless art. Participants in the 
Optimization group were asked to find the fewest guards 

Table 3
Number of participants randomly assigned to each condition.

Vertex cover Independent 
set

Total

Optimization 
version

24 24 48

Search version 24 24 48
Total 48 48 96
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needed to cover all the hallways. Participants in the Search 
group of the vertex cover problem were asked whether they 
could find a way to cover all the hallways with at most a  
given number of guards. If they deemed the task not pos-
sible they entered “NO” into the “goal-possible” field. For all  
graphs the value given was the size of a minimum vertex 
cover so that participants in both vertex cover conditions 
were tasked instances of problems for which identical solu-
tions were valid.

The independent set problem was presented as the inde-
pendent people problem. Participants were told that the 
graphs represented social networks and that the vertices were 
people and the edges were relationships between people, that 
is, whenever two people are connected by an edge, they know 
each other. Participants in the Optimization group were 
asked to find the largest group of people who did not know 
each other. Participants in the Search group of the indepen-
dent set problem were asked whether they could find a group 
of at least a given number of people who did not know each 
other. If they deemed the task was not possible they were 
instructed to enter “NO” into the “goal possible” field. In all 
instances the value given was the size of a maximum inde-
pendent set so that all participants in both independent set 
problem conditions were tasked with the same goal.

Factors

The analysis presented in this work considers a number of 
factors and their interactions, and a number of measures. 
The factors considered in this paper are:

•	 Problem (independent set versus vertex cover)
•	 Problem Version (Search versus Optimization)
The Problem factor compares performance between two 

different problems given the same graphs. The Problem Ver-
sion factor investigates differences in performance between 
the Search and Optimization versions, as well as proposed 
goal modifications. The interaction between Problem and 
Problem Version factors investigates how differences in 
performance between the Search and Optimization versions 
manifest between these two different problems.

Performance Measures

A number of performance measures are considered, 
including:

•	 Percent Optimal solutions
•	 Percent Above Optimal (PAO)
•	 Percent Maximal/Minimal solutions
•	 Number of Moves
•	 Time per Move
•	 Number of Undos
•	 Number of Toggles
Solution quality was investigated using a number of dif-

ferent measures. In all conditions, the percent of optimal 

solutions was calculated. This value is appropriate for com-
paring performance between all conditions. In the Optimi-
zation condition of both problems, PAO was computed to 
compare the relative performance between problems, and 
also to compare performance on these not-Euclidean prob-
lems to previously studied hard computational problems. 
Calculation of PAO is described below. In addition, the 
percent of maximal (independent set problem) and mini-
mal (vertex cover problem) solutions found was computed. 
While these measures are not necessarily an indication of 
correct or perfect solutions to the problems given, they are a 
relative measure of performance.

It is common to use standardized or normalized measures 
when comparing performance on hard computational mod-
els between conditions (Graham et al., 2000; MacGregor & 
Ormerod, 1996; van Rooij et al., 2006; Vickers, Butavicius, 
Lee, & Medvedev, 2001). In this work PAO is computed for 
the Optimization condition of both problems. For the vertex 
cover problem, the PAO is computed as:

 obs opt
VC

opt

S S
S

S
-

=
 (1)

For the independent set problem the equivalent measure 
is calculated by converting the size of the independent set 
found to the size of its associated vertex cover so that mea-
sures could be compared between the two conditions. From 
this value the associated PAO can be calculated.

PAO is not a valid measure for the Search condition in this 
experiment because a subject may decide that the given goal 
on an instance was not achievable and move on to the next 
instance. As a result, a skipped instance may not have a valid 
solution associated with it and therefore the size of the solu-
tion cannot be assumed to be valid. Instead the frequency 
of optimal solutions found across the 25 instances is used to 
compare performance between conditions.

Another measure of performance is the amount of search 
needed to find a solution. Both the number of moves needed 
as well as the amount of backtracking (or Undos) needed to 
find a solution are presented.

An indirect measure of performance is the amount of 
 cognitive load experienced by participants while problem 
solving. Two measures of cognitive load are considered: the 
Time per Move and the Number of Toggles. The amount of 
time spent making a move selection can be seen as a mea-
sure of the amount of internal effort that is needed to select 
a move.

It was also observed that participants frequently toggled 
vertices on and off while trying to find a solution. While it 
is possible that these moves constituted legal additions or 
removal of vertices from the candidate solution, an alternate 
explanation is that they were making use of the user interface 
to test the impact of a move that was up for consideration. 
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A  move was considered a Toggle if the currently selected 
vertex was selected in the previous move. Toggles could be 
an indication of increased cognitive load.

Analysis Tools and Data Collection

Bayes factors derived from standard analysis of variance 
were used to investigate evidence for or against the above-
stated factors (Nickerson, 2000; Rouder, Morey,  Speckman, 
& Province, 2012) for each of the listed measures. Bayes 
factor analysis was adopted for this analysis instead of 
null hypothesis significance testing (NHST) for a num-
ber of reasons. In scientific study it is typical to have the 
goal to evaluate the probability of a hypothesis given the 
observed outcome. NHST, however, only provides a way to 
evaluate the probability of the observed outcome (the data) 
given the null hypothesis (Nickerson, 2000), which is the 
inverse  of  what is typically desired. Bayes factor analysis, 
on  the other hand, based on Bayes’ theorem shown in 
Equation 2, provides a way to accept or reject either of 
two models, based on the relative posterior probabilities of 
competing models.

 p H D
p D H p H

p D
( | )

( | ) ( )
( )

=
⋅   (2)

Given two competing hypotheses, H1 and H2, the Bayes 
factor is computed to evaluate a change in prior odds based 
on the observed data. The relationship between the Bayes 
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for each hypothesis is shown in Equation 3. Evidence for 
model H1 against H2 is defined according to Raftery (1995, 
p. 139), with a Bayes factor of 1–3 indicating weak evidence, 
3–20 indicating positive evidence, 20–150 indicating strong 
evidence, and >150 indicating very strong evidence.
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To evaluate the impact of each of the factors considered in 
this work, Bayes factors for all models created by removing 
or leaving all main effects or their interactions from the full 
model were computed. JZS priors were used in the calcula-
tions, as suggested by Rouder et al. (2012). All analysis was 
conducted using R (R Project for Statistical Computing), 
and  Bayes factors were computed using anovaBF in the  
R package developed by Morey, Rouder, and Jamil (2014).

RESULTS

In this study, a great number of performance measures were 
considered and analyzed in terms of the described factors 
and their interactions. For clarity, only those results with 

positive or stronger evidence are discussed in detail. Details 
of all measures can be found in Carruthers (2015).

GENERAL PERFORMANCE

Overall, participants found optimal solutions frequently 
with better performance in the Search condition of both 
problems. At the same time, more search was required in 
the Search condition indicating that this difference in per-
formance comes with a cost in terms of the amount of effort 
needed to find a solution.

THE ROLE OF THE GOAL

To investigate how an infeasible-to-evaluate goal impacts per-
formance on these problems, results are compared between 
the Optimization version, with an infeasible-to-evaluate goal, 
and Search version, with a feasible-to-evaluate goal. This com-
parison is done for both problems together  (Problem Version 
factor) as well as with each problem considered separately (the 
interaction between Problem Version and Problem). As seen 
in Table 4, when both problems were considered together or 
separately, performance as measured by % Optimal and % 
Maximal/Minimal was better in the Search condition than in 
the Optimization condition. More search was required in the 
Search condition than in the Optimization condition, as mea-
sured by both the number of Moves, and the number of Undos. 
Bayes factor analysis found very strong evidence for the Problem 
Version factor on both performance measures (% Optimal and 
% Maximal/Minimal) with better performance in the Search 
version when the two problems are considered together. Posi-
tive evidence was found for the interaction between Problem 
and Problem Version as indicated by the % Optimal solutions 
found and very strong evidence was found for this interaction 
on the % Maximal/Minimal solutions found, as seen in Table 
4. Similarly, very strong evidence was found for the Problem 
 Version factor and the interaction between Problem and 
Problem Version factors on the number of moves, and positive 
evidence was found for the interaction between Problem and 
Problem Version on the number of Undos.

If a goal that is infeasible to encode results in goal modifi-
cation, then it is expected that solutions to instances of prob-
lems where the goal is modified will better match solutions to 
a related problem with a goal that is feasible to identify than 
to the original, given, task. A number of goal modifications 
were proposed for the problems used in this study. To evalu-
ate this hypothesis, performance is compared to solutions on 
problems which might be the result of goal modification.

The proposed modifications were predicted to impact 
performance in terms of % Optimal solutions, % Maximal/
Minimal solutions, and the amount of search needed to find 
a solution. The locality of selections is also evaluated as an 
indication of the use of local strategies. Performance in the 
Optimization condition of each problem separately is of main 
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interest because it is unlikely that goal modification would be 
identical on the two different problems. As shown in Table 4, 
participants in the Optimization version of the independent 
set condition found optimal solutions more than half the 
time, found maximal solutions with high frequency, and did 
little search. In contrast, in the Optimization version of the 
vertex cover problem participants in the Optimization condi-
tion found optimal solutions less than half of the time, found 
a moderate number of minimal solutions, and performed 
some search. Subsequent selections were closer as measured 
both by path length and Euclidean distance in the Search 
condition of both problems and in each problem separately. 
Path length or distance is measured as the number of edges 
that must be traversed to travel from vertex u to vertex v. 
The Euclidean distance between two vertices u and v is the 
distance as the crow flies between the vertices, or the length of 
the shortest line that connects them. There is strong evidence 
for the Problem Version factor on path distance and positive 
evidence for this factor on Euclidean distance. There is weak 
evidence for an interaction between the Problem Version and 
Problem factors on path distance and positive evidence for 
this interaction on Euclidean distance, as shown in Table 4.

Cognitive load is measured by the amount of time needed 
to make individual move selections and the amount of 
Toggles performed. In terms of the amount of time needed 
on average to make move selections, slightly more time 
was taken per move in the Optimization condition. In the 
independent set condition more time is taken per move in 
the Optimization condition, and in the vertex cover condi-
tion there is nearly no difference in the time taken per move 
between the Problem Versions. Positive evidence is found  
for the Problem Version factor alone and weak evidence 
is found of an interaction between Problem Version and 
Problem on this measure. Details can be seen in Table 5. Par-
ticipants in the Search condition performed more Toggles 
with very strong evidence for the Problem Version factor on 
this measure and strong evidence for an interaction between 
Problem Version and Problem factors. Details can be found 
in Table 5.

DISCUSSION

Strong evidence was found for differences in performance on 
all major measures between goal well-definedness. This gives 

Table 4
Impact of infeasible-to-evaluate goal on performance. Bayes factor analysis evidence for this model also presented.

Both problems Independent set Vertex cover
Measure Search Opt. PVF Search Opt. Search Opt. PPF
% Optimal 76.89 48.95 *** 83.75 57.23 70.13 40.67 *
PAO NA 10.17 NA NA 10.74 NA 9.60 NA
% Maximal/Minimal 95.40 82.29 *** 95.00 91.00 96.00 74.00 ***
Number of Moves 26.23 18.76 *** 21.23 16.74 31.31 20.83 ***
Adjusted Undos 15.17 7.041 *** 9.72 5.97 20.73 8.15 *
Path length 1.769 1.919 ** 1.99 2.05 1.55 1.79 *
Euclidean distance 174.5 184.3 * 176.17 177.63 172.71 191.05 *

Note. The column labeled PVF indicates the evidence for the Problem Version factor, and the column labeled PPF indicates the evi-
dence for the interaction between Problem and Problem Version factors, with “***” indicating very strong evidence, “**” indicating 
strong evidence, “*” indicating positive evidence, “.” indicating weak or no evidence. No evidence is given for PAO as no comparison 
can be made between Problem Versions.

Table 5
Impact of infeasible-to-evaluate goal on search and cognitive load. Bayes factor analysis evidence for this model also presented.

Both problems Independent set Vertex cover
Measure Search Opt. PF Search Opt. Search Opt. PPF
Time per Move 2.284 2.603 * 2.20 2.86 2.37 2.34 *
Toggles 7.899 3.94 *** 6.11 3.96 9.70 3.93 **

Note. The column labeled PF indicates the evidence for the Problem factor, and the column labeled PPF indicates the evidence 
for the interaction between Problem and Problem Version factors, with *** indicating very strong evidence, ** indicating strong 
evidence, * indicating positive evidence, . indicating weak or no evidence.
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preliminary evidence for the theory that the goals of the 
problem are encoded differently between these conditions. 
Similarly, the results support the theory that there may be 
performance differences, either between minimization and 
maximization problems, or between the vertex cover and 
independent set problems.

GENERAL PERFORMANCE

An original motivation of this work was to compare human 
performance on hard non-Euclidean optimization problems 
to that on other hard optimization problems like E-TSP. 
Results from the Optimization conditions of both the vertex 
cover and independent set conditions are in keeping with 
previously observed performance, with mean PAO close to 
10% for both problems. Interestingly, however, performance 
on the Search versions of these same problems is better than 
the Optimization versions, measured as percent optimal 
solutions found. This raises the possibility that previously 
reported human performance results on E-TSP might be 
improved upon if participants are tasked with the Search 
version of that problem.

These general performance results suggest that visual pro-
cessing alone is likely not responsible for the good quality 
previously noted on other hard optimization problems. The 
Gestalt principles, or the hierarchical pyramid model which 
have been proposed as being potentially partially responsible 
for solution quality, are likely not applicable on the non-
Euclidean problems used in this study, and therefore cannot 
explain performance on the vertex cover and independent 
set problems.

IMPACT OF GOAL WELL-DEFINEDNESS

If participants in the Optimization condition are able to 
encode the goal exactly as given, then there should be no 
significant difference in performance between the Search 
and Optimization conditions of the same problem. This, of 
course, assumes that participants in the Search condition are 
able to encode the goal and are working on the task given. 
This possibility is investigated by considering how often opti-
mal solutions are found in the Search condition. Participants 
are given the exact same instances to solve, with identical 
start states and legal operators, and the instances differ only 
in terms of the specificity of the given goal. If participants in 
the Optimization condition are unable to encode the given 
goal, encode it differently from in the Search condition, or 
encode some other goal, then it is expected that there will 
be a difference in performance between the two versions 
as a result of the difference in what constitutes a goal state 
between the two versions. Performance as measured by 
percent optimal solutions supports the theory that goals 
are encoded differently between these two versions: overall, 
performance by this measure is better on the Search version 

than on the Optimization version. Within each Problem 
condition, performance is also better on the Search version 
than on its associated Optimization version.

Another measure of performance is the amount of back-
tracking needed to find a solution. Differences in the amount 
of backtracking needed to find a vertex cover or indepen-
dent set could be an indication of different goal states being 
encoded and searched for. Other possible explanations exist 
too, of course. The mean number of undos is much higher 
in the Search condition than in the Optimization condition, 
both across both problems, and within each problem. As 
shown in Table 4, this difference is much more pronounced 
in the vertex cover group, where the mean number of undos 
in the Search condition is over twice that in the Optimization 
version. One explanation for this difference is that relative to 
their associated Search versions, the problem being solved 
by participants in the Optimization condition of the vertex 
cover problem is much easier than that being solved in the 
independent set problem.

EVALUATION OF CANDIDATE GOAL MODIFICATION

With these findings in support of the hypothesis that partici-
pants in the Optimization condition are solving a problem 
other than the one given, the next task is to narrow down 
alternative problems that could explain performance. Four 
different goal modifications were identified for the mini-
mum vertex cover and maximum independent set problems, 
which might explain performance, found in Tables 1 and 2 
respectively. For each candidate modification, predicted 
results are compared to:

1. the quality of solutions found in the Optimization 
version,

2. the percent of minimal (VC) or maximal (IS) solu-
tions found,

3. the percent optimal solutions found,
4. how much backtracking takes place.
These results can help narrow down which proposed 

modifications might explain performance on the Optimiza-
tion versions of the problems given.

Minimal/Maximal Modification

One candidate modification is that of finding a minimal 
solution to the vertex cover problem or a maximal solution 
to the independent set problem. Recall that this modification 
predicts suboptimal solutions, many minimal/maximal solu-
tions, few optimal solutions, and little backtracking. The PAO 
found in both problems supports this modification with the 
mean PAO near 10% in both problems. The percent optimal 
solutions found in the Optimization condition is also much 
lower than in the Search version, as predicted. And finally, 
very little backtracking is done in the Optimization condi-
tion which further supports this modification.



docs.lib.purdue.edu/jps  2018 | Volume 11

Carruthers, S., Stege, U., & Masson, M. E. J. The Role of the Goal in Solving Hard Computational Problems

14

The percent of minimal/maximal solutions can be com-
pared to the percent of optimal solutions to test which goal, 
optimization or minimal/maximal, better fits the data. These 
comparisons cannot prove that this restructuring modifica-
tion is taking place; however, it can eliminate a candidate, or 
indicate that it is still a possibility. The percent of minimal 
solutions found in the Optimization version of the ver-
tex cover problem is significantly higher than the percent 
optimal solutions in the same condition, and therefore is a 
better fit. These results strongly support the hypothesis that 
the infeasible-to-encode goal of the Optimization version of 
this problem could be restructured to that of a minimal solu-
tion. Similarly, the percent of maximal solutions found in 
the Optimization version of the independent set problem is 
significantly higher than the percent of optimal solutions in 
the same problem. Alternatively, it cannot be excluded that 
the problem could have been modified to another problem 
whose results coincidentally are also maximal/minimal with 
high likelihood.

Any Valid Cover/Independent Set

The second modification described discarded all sense of 
optimality altogether, and amounts to finding any valid 
vertex cover or independent set. Recall that this modifica-
tion predicts suboptimal solutions, non-minimal/maximal 
solutions, few optimal solutions, and no backtracking. The 
PAO found in the two versions of both problems matches the 
prediction of suboptimal solutions in the Optimization ver-
sion. In the vertex cover condition, the relatively lower mean 
percent minimal solutions may be an indication that this 
modification is taking place. As well, very few optimal solu-
tions are found (fewer than 50%), which could be support 
for this modification. Finally, the number of undos deviates 
from the total lack of undos predicted for this modifica-
tion. In the independent set condition, the high number of 
maximal solutions found in the Optimization condition does 
not match the predicted performance for this modification. 
The mean percent optimal solutions is slightly over 50%, but 
still well below the number found in the associated Search 
condition and also does not match this modification. Finally, 
the number of undos deviates from the total lack of undos 
predicted for this modification. In summary, there is mixed 
support for this modification for the vertex cover condition, 
and very little support for it in the independent set condition.

Local Optimization

Goal modification could also take the form of local opti-
mization. Recall that this modification predicts suboptimal 
solutions, non-minimal/maximal solutions, few optimal 
solutions, and a moderate amount of backtracking. In the 
vertex cover condition, PAO matches the prediction of 
suboptimal solutions in the Optimization version, and the 

low percent optimal vertex covers found in the vertex cover 
condition supports this modification. The number of mini-
mal vertex covers, however, is lower in this condition than in 
the independent set condition, and is weaker support for this 
modification. In the independent set condition PAO matches 
the prediction of suboptimal solutions in the Optimization 
version. In addition the high number of maximal indepen-
dent sets found, and higher (over 50%) percent optimal 
independent sets found, supports this modification. Another 
possible measure that could support this modification is 
how local subsequent moves are. The average path distance 
between moves in all conditions is small, hovering around a 
length of two, which is further support of local optimization 
as a candidate modification. Interestingly, the closeness of 
subsequent moves is even more pronounced in the Search 
version than in the Optimization version, which suggests 
either that local choices drive move selections in these kinds 
of graph problems, independent of local optimization, or 
that local optimization is useful in attempting to solve both 
versions of these problems. In summary, mixed support is 
found for local optimization in both the vertex cover and 
independent set conditions.

Generation of Specific k-Values

The final modification proposed was the guess and check 
modification, which predicted near-optimal solutions, many 
minimal/maximal solutions, many optimal solutions, and an 
amount of backtracking similar to that seen in the Search 
conditions. The PAO in both problem conditions does not 
match the near-optimal solutions predicted by this modifi-
cation. Similarly, the relatively low percent optimal vertex 
covers found in the vertex cover condition and independent 
sets found in the independent set condition does not match 
the optimality predicted. Finally, the low amount of undos in 
the Optimization versions of both problems relative to their 
associated Search versions also does not support this modi-
fication. These results do not support the likelihood that this 
modification takes place with significant frequency.

IMPACT OF GOAL MODIFICATION ON COGNITIVE LOAD

It is predicted that, when tasked with a problem with an aspect 
of the goal that is not encodable, problem solvers modify the 
goal to render it encodable. It was assumed that this modifi-
cation should take place as parsimoniously as possible; that 
is, by modifying the problem as little as possible. It seems 
likely that this modification should also result in a problem 
that is not harder than an encodable version of the task (for 
example the Search version). However, it is important to note 
that this need not be the case. The Optimization version of 
the problem given could feasibly be converted into a problem 
that is at least as hard as the Search version of the respec-
tive problem, and still be encodable. Recall the proposed 
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modification in which increasingly smaller (or in the case of 
the maximization problem, independent set, larger) k values 
are tested until the optimal solution is found. If this modi-
fication took place, however, the number of moves needed 
to find a solution would be expected to be similar in the 
Optimization version to those used in the Search condition 
(which it is not), and for the percent of optimal solutions to 
be closer in the Optimization version to that found in the 
Search condition (which it is not). It is therefore assumed 
henceforth that goal modification results in a problem being 
encoded that is no harder than the one given.

One possible consequence of modifying the problem into 
an easier one is that it would likely take fewer moves to find a 
solution, and indeed this is what was observed in this study. 
In the Optimization version of both problems, the mean 
number of moves to find a solution was lower than that in the 
Search version. These results strongly support the hypothesis 
that participants in the Optimization condition are solving 
an easier problem. Participants in the Optimization condi-
tion consistently use fewer moves to find a solution, which 
could be an indication that the goal, whatever it might be,  
is easier to find than in the Search condition.

Toggles are likely an indication of using the interface to 
gain information about the current and near future states of 
the problem, then reduced cognitive load could manifest as 
fewer Toggles. Indeed, many fewer Toggles were observed 
in the Optimization condition than in the Search condition, 
overall, as well as for each problem considered separately 
(see Table 5). These results strongly support the hypothesis 
that participants in the Optimization condition solve a prob-
lem that is easier than the Search version, and that places less 
cognitive load on the system.

SUMMARY

Performance on the Optimization version of both the vertex 
cover and independent set problem is consistent with previ-
ously reported performance results on other hard optimi-
zation problems, namely E-TSP. This finding supports the 
hypothesis that performance on these non-Euclidean hard 
optimization problems would be similar to that found on 
Euclidean hard optimization problems, and suggests that 
problem-solving performance on this kind of hard opti-
mization problem may not be solely dependent on visual 
processes that are only applicable to Euclidean problems. 
It is possible that problem solving on these non-Euclidean 
problems may still leverage, at some level, powerful visual 
processing mechanisms. But, it is not immediately clear how 
this might manifest itself.

Performance on the Search version of both the vertex cover 
and independent set problems is significantly better than that 
on the associated Optimization version, a finding that sup-
ports the hypothesis that the infeasible-to-evaluate goal of the 

Optimization version of these problems results in a different 
problem being encoded from that given. Cognitive load was 
also found to be higher in the Search condition than in the 
Optimization version, in support of the hypothesis that goal 
modification results in an easier problem being encoded than 
that given. Participants in the Search condition used far more 
search to find their solutions, found optimal solutions with 
higher frequency, and showed signs of greater cognitive load, 
all indications that the problem being encoded in the Search 
condition differed from that being encoded in the Optimiza-
tion condition. This in turn implies that when tasked with the 
Optimization version of a hard computational problem, and 
facing a goal that is not encodable, problem solvers modify 
the problem and encode some other goal. This has important 
implications, not only in this work, but also in the interpreta-
tion of the results of previous studies which used hard opti-
mization problems as instruments. How might performance 
on other hard problems differ if participants were tasked with 
the Search or Decision version? In this work, performance 
was found to be better on the Search version than on the 
Optimization version, and it is interesting to wonder if this 
might also be the case on hard problems like E-TSP.

Another important implication of these results relates 
to persistence and problem solving. In education, life, and 
work, people face many problems. Polya (1945) suggested 
that encouraging engagement with problem-solving tasks is 
important in order to develop good problem-solving skills. 
The significantly greater search observed in the Search con-
dition of this study indicates that participants in this condi-
tion are much more persistent than those in the Optimiza-
tion condition, that they are more engaged with the problem, 
despite working on a harder problem, under heavier cognitive 
load. The careful specification of goals may have educational 
implications, in particular in problem-solving education. In 
addition, while previous work concluded that goal specific-
ity impeded problem solving (Sweller & Levine, 1982), the 
results of this study contradict this claim.

A framework for identifying candidate problem modifica-
tions was proposed, and based on this, four problem modifi-
cations were identified to try to explain what problem solvers 
tasked with the Optimization version of these problems might 
be solving. In the case of the minimum vertex cover problem, 
the greatest support was found for the minimal modification, 
suggesting that the non-encodable aspect, that is the optimal-
ity of the vertex cover, is replaced by the easier to evaluate  goal 
of finding a minimal vertex cover. Similar results were found 
for the maximum independent set problem, with the maximal 
independent set problem best matching the results. This find-
ing supports the hypothesis that an infeasible-to-encode goal 
is modified into a feasible-to-encode goal, although  caution 
must be taken in interpreting these results. Four candidate 
modifications were proposed in this work and evaluated in 
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terms of a number of performance, search, and cognitive 
load measures. While by all accounts the maximal/minimal 
modification is the best fit for the results among those modi-
fications identified, there are possibly many explanations for 
this match. The goal of either or both the given problems 
could have been encoded such that a different modification 
occurred, other than any identified here, for which maximal/
minimal solutions are coincidentally likely.

The implications of this finding, that goal modification 
occurs when problem solvers are tasked with hard optimiza-
tion problems, are non-trivial. What kinds of modifications 
might explain performance on other hard optimization 
problems, and how might that impact the interpretation of 
previous human performance results on hard optimization 
problems?

Modification of a problem with an ill-defined goal was pre-
dicted to result in a problem that is easier, one which results 
in lower cognitive load. The results of this study strongly 
support this prediction. Whatever goal modification(s) are 
taking place result in a problem-solving task which is signifi-
cantly easier than the corresponding Search version.

CONCLUSION AND FUTURE WORK

This research contributes specifically to the study of human 
problem solving in three main ways. It refines our under-
standing of how people are able to cope with complexity, in 
particular when it may not be possible to know when a prob-
lem is solved. Second, it proposes a different approach for 
evaluating how people cope with complexity when they are 
free from being confounded by the challenge of determin-
ing when a solution is correct. Finally, the findings expand 
our understanding of how humans cope with complexity, 
presenting novel performance results for human problem 
solving of hard computational problems.

The main contributions of this work speak to improving 
the design of studies of human performance on hard com-
putation problems and improving how performance results 
are interpreted on past and current studies that use these 
hard computational problems as instruments. Foundational 
to this contribution is the notion of gaining a sound under-
standing of how problem formulation impacts what problem 
can be encoded in the problem solver’s internal representa-
tion, which in turn directly impacts what problem can,  
in fact, be solved.

COPING WITH ILL-DEFINED GOALS

Tasking problem solvers with instances of hard optimiza-
tion problems has the potential to result in problem solv-
ers being unable to encode the goal as given. Because the 
problem encoded in the inner representation defines the 
problem being solved, an inability to encode the given task 

implies that a different problem is being solved. This in turn 
has important ramifications when attempting to interpret 
the results of these studies. For one, the complexity results 
of the original task may no longer be representative of the 
complexity results of the problem being solved. In fact, if 
the results of this study are representative of how this mecha-
nism manifests itself, the encoded problem is likely easier 
than intended. This also has implications when attempting 
to model performance.

A framework is provided for decomposing a problem’s 
goal to identify what aspect of the goal is ill-defined, thereby 
making it possible to find candidate problems that might be 
encoded in place of the given optimization task. This frame-
work was used, to serve as an example, to decompose the 
goal of the optimization version of the two problems used in 
this study. These candidate modifications were evaluated to 
determine what problems best explain performance.

How Does Goal Modification Take Place?

This research made no attempt to identify the mechanisms 
by which goal modification might take place, and instead 
focused on the problem at the computational level. But the 
question of what kinds of mechanisms might explain this 
process is deserving of investigation. It is very likely that 
goal modification as described here will be dependent on the 
nature of the task. For well-structured and otherwise well-
defined problems like the computational problems typically 
found in the field of computational complexity, it may be 
possible, as done here, to decompose the problem’s goals and 
identify candidate modifications. This is particularly true 
when working in a laboratory environment with subjects 
who are naive to the problem at hand. For real-world prob-
lems, however, the task of goal modification becomes more 
challenging, as complex factors like domain-specific knowl-
edge and personal experience will impact how ill-defined 
goals are rendered well-defined ones.

Problem solvers do not appear to be aware of goal modi-
fication taking place, nor do they spend a great deal of time 
re-encoding the problem, suggesting that the underlying 
mechanisms that explain this process are fast and frugal 
(Newell, Weston, & Shanks, 2003). Furthermore, there is no 
reason to assume that goal modification occurs only once for 
a given problem or instance of a problem, or that it manifests 
itself identically between different problem solvers. It is likely 
that problem solvers adjust the encoding of the problem as 
they gain experience with it.

As a result, we find ourselves in a sea of unknowns if 
we wish to continue to use hard optimization problems as 
instruments in the study of human problem solving. Tasked 
with a problem with an ill-defined goal, problem solvers 
encode some problem, and may re-encode it any number of 
times, and experience and domain-specific knowledge will 
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likely impact the types of modifications that can take place. 
All that is known is that given a task with an ill-defined  
goal, the problem solver cannot be solving the given task,  
in general, which has a number of implications.

What Are the Implications of Goal Modification?

If computational complexity is taken into account, then the 
interpretation of human performance results is dependent 
on the problem being solved. This issue was not addressed 
in previous studies of human performance on hard optimi-
zation problems, which opens up a new way of interpreting 
the results of a number of studies. In Carruthers (2015), 
E-TSP and N-Puzzle were decomposed to isolate the com-
ponent of the goal that is ill-defined; however, no candidate 
modifications were proposed. This is a great starting point 
from which to investigate what goal modifications might 
best explain performance on these problems, and to review 
previous attempts to model this performance.

What Are the Implications of These Findings in General?

The modification of ill-defined aspects of a problem has 
implications in other areas of problem-solving research and 
is not limited to the study of hard computational problems. 
For example, this approach is equally applicable in the study 
of decision-making or insight problems, and is closely related 
to explanations of performance in these areas. The difficulty 
of finding a solution to the nine dot problem, for example, 
has been attributed to problem solvers’ inability to determine 
what constitutes a legal operator, rendering the set of legal 
operators ill-defined. Similarly, satisficing theory in decision 
making attempts to explain how people find solutions in a 
task environment rife with unknowns and uncertainties, by 
replacing the concept of optimizing with that of finding a solu-
tion that is satisfactory. Both these approaches try to explain 
performance by suggesting that problem solvers modify an 
aspect of the given problem. The difference in what we are 
presenting here is that in addition to a proposed modification, 
this work recognizes that the modification of any aspect of the 
given problem can, and often does, result in a modification of 
the task. This acknowledgement of the implications of goal 
(or other problem aspect) modification at the computational 
level makes it possible to better understand and evaluate algo-
rithmic explanations for performance. There is potential to 
apply this same technique in other problem-solving research 
areas where ill-defined problem aspects are found.

It is worth noting, at this point, the difference between the 
performance impact of goal specificity, described earlier in 
this work, and the difference in performance based on the 
well-definedness of the goal. In maze tracing experiments, 
better performance was observed when the goal was not 
specified than when it was (Sweller & Levine, 1982). It is 
important to note, however, that the goal in both conditions 

of the maze tracing experiment was well-defined. Problem 
solvers could tell when the goal had been attained. In the 
research done in this work, in contrast, the non-specified goal 
of optimization renders the goal ill-defined, and therefore 
problem solvers are unable to determine if the goal has been 
attained. Therefore, while goal specificity was found previ-
ously to negatively impact problem solving in the context 
of maze tracing, it is not directly related to the performance 
results presented in this work.

COPING WITH COMPLEXITY IN PROBLEMS WITH WELL-DEFINED  
GOALS

A second main contribution of this work is the observation 
that it is possible to evaluate human performance on hard 
computational problems without the confounding factor of 
an ill-defined goal. As shown above, the Search version of 
hard optimization problems can be used to study how people 
navigate large problem spaces of hard problems, but with an 
encodable goal.

What Are the Implications of These Findings in General?

If the results of this study are representative of a general 
pattern in problem solving, then the better performance 
observed on instances of the Search versions of the problems 
used in this research implies that people may in fact be bet-
ter at finding solutions to instances of hard computational 
problems than previously thought. This is a surprising result, 
one which was not expected, and one which warrants further 
investigation. This work does not discount the possibility 
that the surprisingly good performance results might be 
more an artifact of study design than an indication of how 
good people are at coping with complexity. Instance size 
and selection may have unintentionally resulted in an easier 
task than desired. However, performance on instances of the 
Search version problems used in this study is still better than 
that on those same instances of the associated Optimization 
version, raising the possibility that similar results might be 
found on other problems like E-TSP or N-Puzzle.

We note that in our study the instances presented to be 
solved for Search versions were stated such that the answer 
was always affirmative. Furthermore, the value searched for 
was always the best achievable value in the corresponding 
optimization version. We would like to expand this investiga-
tion of human performance of Search versions of intractable 
problems to instances where the given value is further away 
from optimal. It could be of particular interest to investigate 
the impact of selecting instances with values close to the 
optimum score that do not permit a solution.

Another observation is that the great deal of search that 
participants in the Search condition of both problems used 
in this study indicates a deep level of engagement with what 
are objectively complex problem-solving tasks. This has 
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important educational, workplace, and tool-design implica-
tions. As Polya (1945) stated, a key component in teaching 
problem solving is getting learners to engage with hard prob-
lems. If the results of this work are representative of the kind 
of engagement that can be elicited in naive problem solvers on 
these hard computational tasks, then visually presented tasks 
like these might prove to be useful tools in teaching problem 
solving. In the workplace and in the design of tools used for 
solving complex tasks, the use of concrete, encodable goals 
could also serve to encourage engagement with complex 
tasks. While it is known that data representation in general 
impacts problem-solving performance (Carroll, Thomas, & 
Malhotra, 1980; Marfil, Escolano, & Bandera, 2009; Norman, 
2002; Noyes & Garland, 2003), the well-definedness of prob-
lem goals also clearly impacts performance. This knowledge 
can be leveraged to improve workplace patterns, by replac-
ing ill-defined goals with well-defined alternatives to better 
represent complex tasks such that they can be meaningfully 
encoded in order to result in better engagement.

NOTES

1 For NP-hard problems, no algorithms have been found 
to date that would determine solutions to instances of 
any finite size in a polynomial amount of time (here the 
polynomial has as parameter the size of the instance). The 
theory of NP-hardness (and NP-completeness) is devel-
oped for decision problems (problems that seek a YES or 
a NO as answer).

2 A decision problem is NP-complete if any possible YES 
answer for a given instance can be verified in polynomial 
time.

3 In this context, a fast algorithm is one which always yields a 
correct solution in time that is bounded by some polyno-
mial function of the input size.

4 In computational complexity, an approximation algorithm 
is one which produces a solution whose size can be guar-
anteed to be within a specific factor of optimal. Further, 
the time needed to find such a solution is typically fast.

5 This representation may also include goal states that are not 
on direct paths to the goal, as participants need not always 
take direct routes to the goal.

6 A more informal way to present this problem is to state that if 
the graph represents a social network where the vertices are 
people and the edges are relationships between people, then 
the goal is to find a largest group of people who do not know 
each other.

7 When searching for a solution, problem solvers may con-
sider more than one solution before deciding that one 
meets the given goal. These solutions are referred to as 
candidate solutions.
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