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Abstract—This work-in-progress research study examines the 
response patterns of first-generation college students (FGCS) to 
the engineering identity measures compared to non-first- 
generation college students (non-FGCS). This work answers the 
following research question, “Do FGC and non-FGC engineering 
students interpret the engineering identity measurement items in 
a conceptually different manner?” We explore if FGCS respond 
to engineering identity items similarly to non-FGCS and the 
fairness of using these instruments for FGCS to make claims about 
this group. The data for this work are from a survey instrument 
completed by 2,916 first-year engineering college students from 
four U.S. institutions. We hypothesize that quantitative measures 
constructed for the general engineering student population (non-
FGCS) may not function the same for a FGCS subpopulation in 
engineering. Using extensions to the confirmatory factor analysis, 
we tested for measurement invariance of engineering identity 
constructs between FGCS and non-FGCS. Our comparative 
analysis of FGCS and non-FGCS found weak measurement 
invariance within the engineering identity constructs (i.e. interest, 
recognition, and performance/competence) indicating a similar 
factor structure and factor loadings, but different uses of the 
identity item scale. This research raises questions on the use and 
fairness of normative measures in engineering education for 
populations that fall outside the majority engineering student 
population. 

Keywords—first-generation college students; engineering 
identity; confirmatory factor analysis 

I. INTRODUCTION  
The process of how students take on an engineering identity 

has been used to understand important outcomes like learning in 
engineering context as well as students’ pathways and 
persistence in engineering [1]. The act of identifying or 
becoming an engineer is important to students’ navigation of 
their engineering curricula and integration within students’ 
respective engineering programs [1],[2]. Studies have found that 
having a strong engineering identity contributes to retention and 
persistence [3], [4], specifically as it relates to underrepresented 
students [5], [6]. A recent study by Godwin and colleagues [7] 
examined students’ mathematics and physics identities with 
three constructs: interest in the subject, recognition by others, 
and beliefs about one’s ability to do well in a course 

(performance) and understand the course material 
(competence). The study used a large-scale, national dataset to 
conduct factor analysis and structural equation modeling to 
examine the validity of the measures used as well as the 
relationships between the factors in predicting engineering 
career choice. In a later study, the same author provided strong 
validity evidence for similar measures of engineering identity 
[8]. These studies explored the measurement of engineering 
identity, in general, but did not examine if students from diverse 
backgrounds interpreted the questions the same as their majority 
counterparts. This present study is a first-step in examining how 
a diverse group of students, first-generation college students, not 
only differ in terms of lived experiences [9], but also in the way 
they identify as a an engineer.  

 First-generation college students (FGCS) navigate the 
system of higher education without insider knowledge of the 
system from their parents, family members, or even siblings. 
That is, FGCS come from a family where neither parent has 
attended or completed a post-secondary education, while non-
first-generation college students (non-FGCS) report having at 
least one parent complete post-secondary education [10]. We 
chose to focus on FGCS in this study because they are not likely 
to have direct experience with a family member who is an 
engineer, unlike their non-FGCS peers [11]. Because of this lack 
of connection with other engineers prior to college, these 
students may interpret items measuring how they see themselves 
as the kind of people who do engineering differently. Literature 
on engineering identity has focused broadly on the larger student 
body, with few emphases placed on a subpopulation of the 
engineering student body i.e., FGCS. It is important to 
understand how all students identify as engineers and more 
specifically, how diverse group of students’ identification as an 
engineer may be different than their peers. We examine whether 
FGCS respond to engineering identity items similarly to non-
FGCS and the implications on the fairness of using these 
instruments for FGCS to make claims about this group. 

II. THEORETICAL FRAMEWORK 
How students identify with a particular STEM subject has 

been conceptualized through a subject-related role identity 
framework developed by Hazari and colleagues [12] who sought 
to describe students’ identification as a physics person. Within This material is based upon work supported by the National Science 
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their framework were characteristics relating to how students 
identify with a STEM discipline, these characteristics include 
interest in the subject, recognition (i.e., by peers, parents, and 
teachers), and performance/competence (i.e., student’s ability to 
achieve good grades and their ability to understand concepts) 
[7], [8]. The interrelationship between the constructs have been 
articulated in relation to science identity in that “a satisfactory 
science identity hinges not only upon having competence and 
interest in science, but also critically, upon recognition by others 
as someone with talent and potential in science” [13, p. 1197]. 
We apply this understanding of science identity, as it relates with 
the three constructs, to student’s identification with engineering. 
Prior literature has supported the use of these constructs to 
understand how students begin to identify as a science person 
[14], physics person [15] mathematics person [5], and as an 
engineer [8]. In this paper, we focus on understanding FGCS 
responses to engineering identity measures of the constructs of 
interest, recognition and performance/competence.   

III. RESEARCH QUESTION 
By examining the response patterns of first-generation 

college students (FGCS) on the engineering identity measures 
compared to non-first-generation college students (non-FGCS). 
We sought to answer the following research question:  

Do FGC and non-FGC engineering students interpret 
the engineering identity constructs in a conceptually 
different manner? 

We hypothesize that quantitative measures constructed for the 
general engineering student population may not function the 
same for a FGCS subpopulation in engineering.  

IV. METHOD 
The data for this study came from a survey administered in 

Fall 2015 at three land-grant institutions and one Hispanic-
Serving Institution. The population for this study was first-year 
engineering students yielding a sample of N = 2,916. The survey 
was administered via paper-pencil format and was completed 
during the first two weeks of classes. Providing paper-pencil 
format of the survey ensured high response rates [16]; these 
surveys were later digitized for analysis. The survey comprised 
of a set of items measuring students’ attitudinal profiles 
including measures of belongingness in engineering, STEM 
identities (i.e., engineering, physics, and math), other affective 
measures, and demographic information (i.e., parent(s) level of 
education, race/ethnicity, gender) as well as students’ career 
goals and choice of engineering major. In this study, we focus 
on the items measuring students’ engineering identity for 
measurement invariance testing. 

A. Measures 
Students’ response to a question about their parent/guardian 

level of education for either parent/guardian with “bachelor’s 
degree” or “master’s degree or higher,” were coded as 0 = non-
FGCS, whereas students’ responses indicating both 
parent/guardian level of education “less than a high school 
diploma,” “high school diploma/GED,” or “some college or 
associate/trade degree,” were coded as 1 = FGCS. Students who 
did not report parent’s education level were eliminated from the 
study as we could not determine their status. Our definition of 

first-generation students is consistent with the U.S. Department 
of Education’s classification [17]. 

The other items used in this analysis, engineering identity, 
were measured on a seven-point anchored numeric scale (0 = 
“Strongly Disagree” to 6 = “Strongly Agree”). Each construct 
comprised of three subject-related measures (i.e., 
performance/competence, interest, and recognition). The items 
measuring engineering identity have been previously published 
[8].  

V. ANALYTIC APPROACH 
Measurement invariance is concerned with identifying 

whether a construct (e.g., engineering identity) has the same 
factor structure and interpretation for different groups. 
Engineering education researchers often report the results of 
factor analysis to demonstrate construct validity; however, 
factor analysis automatically assumes outcome variables are 
equivalent across groups unless explicitly tested. We tested the 
underlying assumptions for factor analysis at four increasingly 
restrictive levels to determine if FGCS and non-FGCS respond 
equivalently on measures of engineering identity. A multiple 
group confirmatory factor analysis (CFA) is a widely used 
method for explicitly testing measurement 
equivalence/invariance and entails a simultaneous analysis of a 
measurement model for FGCS and non-FGCS [18]. The absence 
of measurement invariance indicates that the results of pairwise 
comparisons of FGCS and non-FGCS on these measures cannot 
be isolated from differences in the group responses to the items. 
Therefore, the items cannot be used to infer differences among 
students as written [15]. In this work-in-progress study we offer 
a brief examination of the following type of measurement 
invariance: (Model 1) configural invariance, (Model 2) metric 
invariance, (Model 3) scalar invariance, and (Model 4) strict 
invariance. These four levels of invariance are tested in a 
stepwise fashion with increasingly rigorous assumptions to 
determine where differences, if any, occur for group response 
patterns to the engineering identity items. Each model and its 
assumptions are explained below. Data were analyzed using the 
R programming language and statistical software [20], and tests 
for measurement invariance was conducted through the lavaan 
package [21]. 

A. Model 1: Configural Invariance 
Measurement invariance testing starts with configural 

invariance. Configural invariance tests whether there is an equal 
factor structure, that is, “the number of factors and pattern of 
indicator-factor loadings are identical across groups” [18, p. 
242-3]. Configural invariance involves specifying a 
Confirmatory Factor Analysis (CFA) that reflects how the 
construct is theoretically operationalized. In our case, this 
process involves specifying which measurement items load onto 
each underlying engineering identity construct. This CFA-
model is fitted separately for each group (i.e., FGCS and non-
FGCS) and is examined to see if the theoretical structure is valid 
in each group. To continue testing for measurement invariance, 
configural invariance must be established [18], [19]. Once it is 
established that the basic structure of the model holds for both 
groups, testing for metric invariance (equivalence of factor 
loadings across groups) can be conducted. 



B. Model 2: Metric Invariance 
A test for quality of factor loadings is referred to as metric 

invariance. Metric invariance is performed after configural 
invariance is supported between the two groups. Metric 
invariance tests whether respondents across groups attribute the 
same meaning to the latent constructs under study (i.e., interest, 
recognition, and performance/competence beliefs). Testing for 
metric invariance uses a chi-square difference test to establish if 
constraining the factor loadings to be equal across the multiple 
groups corresponds with a significant increase in chi-square. A 
significant increase in chi-square results in a significant decrease 
in model fit, while a non-significant chi-square would support 
metric invariance [19]. 

C. Model 3: Scalar Invariance 
Scalar invariance examines equality of intercepts between 

engineering identity scores across groups. Scalar invariance 
suggests that different groups respond to the scale (seven-point 
anchored numeric scale) in the same way. That is, a student 
identified as an FGCS and another student identified as a non-
FGCS with the same level on the factor should obtain the same 
score on the seven-point anchored numeric scale [19]. Rejecting 
scalar invariance would suggest that (1) group differences in 
estimated factor means are biased and (2) group differences 
from the mean (generated from the measurement scale) or the 
estimated factor scores will not be directly related to the factor 
means and will be distorted by differential additive response 
styles [22]. A differential additive response style “occurs when 
one group systematically gives higher or lower responses than 
another group, resulting in a scale displacement” [23, p. 190]. 
Differential additive bias will inevitably make the mean 
differences of the observed variables smaller or larger than their 
true mean difference or will indicate no difference when a 
difference exists [18]. If scalar invariance is established, groups 
can be compared on their scores on the latent variable. 

D. Model 4: Strict Invariance 
Strict invariance assumes there is scalar invariance and tests 

for equality in error variances and covariance across FGCS and 
non-FGCS. This test examines if the residual (uniqueness or 
measurement error) associated with each measurement variable, 
the factor loadings of the latent variables, and the intercepts of 
the measured variables is equal across FGCS and non-FGCS 
[22]. Strict invariance indicates that the variance not explained 
by the model are different between groups and can result in 
unfair mean comparisons. When strict invariance is found, the 
differences between FGCS and non-FGCS item responses are 

solely due to group differences. The absence of strict invariance 
indicates an apparent item bias [22].  

VI. RESULTS 
Of the students who participated in the survey, 72% (n1 = 

2,092) were classified as non-FGCS, 20% (n2 = 596) FGCS, and 
8% (n3 = 228) did not report parental education status. Students 
who did not report parental education status were removed from 
this analysis. The engineering identity items (i.e., interest, 
recognition, and performance/competence) used in this study 
had high internal consistency with Cronbach’s α for all 
measured variables above 0.80.  

A. Model 1: Configural Invariance 
Configural invariance was examined by testing the original 

three-factor structure for engineering identity [8]. In this test, no 
equality constraints were place, that is, all parameters were 
freely estimated for FGCS and non-FGCS separately. To assess 
the adequacy of fit for both FGCS and non-FGCS models, χ2 
tests and goodness-of-fit indexes were used. However, χ2 is 
sensitive to large sample sizes therefore three fit indexes were 
used as additional evidence for model fit. Table I describes the 
three-factor solution fit for FGCS (CFI = .970, RMSEA = .033) 
and non-FGCS (CFI = .981, RMSEA = .071), providing 
verification of configural invariance across both student groups. 
The fit indexes indicated that the factor structure fit well for both 
groups or configural invariance. This result provides 
justification for conducting a multiple group CFA to test for 
model invariance. The three-factor solution for first-generation 
college students and non-first-generation college students is 
depicted in Fig. 1. 

 

TABLE I.  FIT INDEXES FOR THE THREE-FACTOR MODEL OF 
ENGINEERING IDENTITY SCALE ACROSS TWO GROUPS 

Group χ2 df CFI RMSEA SRMR n 

FGCS 123.544*** 36 0.970 0.086 0.033 587 

non-
FGCS 264.302*** 23 0.981 0.071 0.029 2,062 

***p<.001 

 
 
 



 
Fig. 1. Confirmatory factor analysis of engineering identity latent constructs            
                  Notes: +Interest, ++Recognition, +++Performance/Competence 
 

B. Model 2: Metric Invariance 
 Metric Invariance assumes configural invariance. Testing 
for metric invariance constrained the factor loadings to be equal 
across FGCS and non-FGCS response scales. The model fit here 
was found to be acceptable (χ2(52) = 388.37, p < .001; CFI = 
.98; RMSEA = .07; SRMR = .04) and did not significantly differ 
from the baseline configural model (Δχ2(6) = 9.23, p = .16) as 
shown in Table II indicating that the restriction of making the 
groups equal across groups did not significantly affect the fit of 
the model for the data. From this model, we concluded that the 
factor loadings could be estimated simultaneously for each 
group and that weak invariance assumptions (both configural 
and metric invariance) were met. Weak invariance indicates that 
the model has the same structure and same underlying constructs 
of interest, recognition, and performance/competence beliefs for 
FGCS and non-FGCS. 

C. Model 3: Scalar Invariance 
The next model tested Scalar Invariance or that the 

intercepts of the models estimated independently for the two 
groups was no better than the model estimated simultaneously 
for the two groups. The requirements for scalar or strict 
invariance were not met as indicated by chi-square difference 
tests between model with equality constrained factor loadings 
and intercepts and the metric invariance model as shown in 
Table II. In our tests, the chi-square difference tests between 
Model 2 and Model 3 are significantly different with p = .03 
indicating that Model 3 with the constrained intercepts fit the 
data significantly worse than Model 2 and that intercepts should 
be estimated differently among FGCS and non-FGCS. This 
result indicates that the two groups respond to the given scales 
for the engineering identity items differently and that any 
comparisons of the composite scores on the constructs will be 
biased.  

VII. DISCUSSION 
Our comparative analysis of FGCS and non-FGCS found 

weak measurement invariance for the engineering identity 
items. That is, while the overall structure and factor loadings of 
the subject-related identity constructs were consistent across 
groups, the analysis demonstrated a rejection of strong 
invariance indicating differences in students’ use of the 
measurement scale. This variance in intercepts points to 
differences in the way FGCS are interpreting and answering 
identity measures in comparison to non-FGCS. These results 
indicate that using the construct scores for the engineering 
identity items to compare FGCS and non-FGCS would not be a 
fair use of this instrument. Any pairwise test or other 
comparisons of factor means will reflect differences not on true 
mean scores difference but on how students responded 
differently to the given scales. That is, students may have a 
different conceptual understanding of the Likert-scale. One 
example may be FGCS are more inclined to have indicate 
neutral responses (3 = Neither agree nor disagree), while non-
FGCS may tend to respond towards the extreme ends (0 = 
“Strongly Disagree” or 6 = “Strongly Agree”) or vice versa. 
Our future work will explore how FGCS and non-FGCS use the 
seven-point anchored numeric scales to provide 
recommendations to the engineering education community on 
how these items can be used to understand student differences. 

VIII. CONCLUSION 
Our work indicates that weak, but not strong (or strict) 

invariance exists for FGCS and non-FGCS on the engineering 
identity items used in this work. This work illustrates the need 
for group measurement invariance testing in addition to 
construct validity before items can be fairly used to compare 
groups. This work-in-progress raises questions for how 
engineering identity can be measured across diverse groups and 
understood to improve the quality of engineering education for 
all. 

IX. LIMITATIONS & FUTURE WORK 
 This work-in-progress paper is a first step to understanding 
students’ from different groups response patterns to measures of 
engineering identity scale. Missing from this small-scale study 
is an analysis of measurement invariance for different 
demographics (e.g., gender identity, race/ethnicity, institution) 
in both FGCS and non-FGCS groups. Similarly, an analysis of 
measurement invariance for students enrolled in different 
engineering disciplines may be conducted. Future work will 
seek to investigate measurement invariance between gender and 
engineering disciplines. 
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