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In human problem solving, there is a wide variation between individuals in problem solution 
time and success rate, regardless of whether or not this problem solving involves insight. 
In this paper, we apply computational and parameterized analysis to a plausible formaliza-
tion of extended representation change theory (eRCT), an integration of problem solving by 
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tion may be explainable by individuals having different problem representations and search 
heuristic choices. Our analyses establish not only the intractability of eRCT in general, but 
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quickly. As such, our analyses both prove that several conjectures about what makes prob-
lem solving under eRCT possible in practice are incomplete, in the sense that not all factors in 
the model whose restriction is responsible for efficient solvability are part of the explanation, 
and provide several new explanations that are complete.
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1. INTRODUCTION

Much of human problem solving can be accounted for 
by Newell and Simon’s classic problem space search model 
(Newell & Simon, 1972). This model underlies many 
subsequent and current models of human problem solv-
ing (Kaplan & Simon, 1990; Knoblich, Ohlsson, Haider, & 
Rhenius, 1999; Öllinger, Jones, & Knoblich, 2014; Ormerod, 
MacGregor, & Chronicle, 2002). In this model, a representa-
tion of a problem’s givens and goals is chosen based on previ-
ous experience and search is then performed (possibly aided 
by heuristics) within the space of problem states associated 
with this representation until a state is encountered that 
satisfies the problem’s goals, i.e., a goal state. This assumes 
that the representation initially chosen for the given problem 
is correct, in that it has goal states that can be reached by 
search within that representation’s problem-state space. If 
this is not so, i.e., an impasse is encountered, restructurings 
(also known as insights) are necessary to modify the initial 
representation such that search can progress and possibly 
succeed (Ohlsson, 1992).

There are many types of problems that typically require 
insight to solve them, ranging from simple puzzles to com-
plex word problems (see MacGregor and Cunningham 
(2009) and references therein). A basic type of such problems 
is the matchstick arithmetic problems (Knoblich et al., 1999), 
in which matchsticks are arranged in simple mathematical 
formulas stated in terms of Roman numerals. The goal is to 
move one or more matchsticks to convert a given incorrect 
formula into a correct formula. To solve such problems, pre-
vious experience working with mathematical formulas must 
be overridden in various ways, with each such overriding 
corresponding to an insight. Several matchstick arithmetic 
problems and their solutions are shown in Figure 1.

Experimental research on problem solving is typically 
divided into two camps, depending on whether or not the 
problems examined do or do not require insight to solve 
them (the so-called move and insight problems, respectively). 
There is great variation between individuals in how long it 
takes them to solve given problems or even if they can solve 
these problems at all (Newell & Simon, 1972; Ohlsson, 2011), 
with the most marked variation seen in insight problems 
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(Chu & MacGregor, 2011; Danek, Wiley, & Ollinger, 2016). 
Hypothesized causes of this variation in move and insight 
problems are many and vary from the problem-specific (e.g., 
Kershaw & Ohlsson. 2004) to the general (Ash & Wiley, 2006; 
Batchelder & Alexander, 2011; Kaplan & Simon, 1990; Ohls-
son, 2011; Öllinger & Knoblich, 2009; Ormerod et al., 2002).

An explanation of particular interest in this paper is the 
different ways in which individuals represent and/or pro-
cess problems (Öllinger et al., 2014). These different ways 
are thought to arise from the differing prior experience of 

individual problem solvers (Batchelder & Alexander, 2011; 
Ohlsson, 2011). This explanation, if correct, would have 
wide-reaching implications, including the abolition of the 
traditional distinction between move and insight problems:

…[T]here is no particular class of insight problems that 
necessarily requires a representational change; each 
problem can be solved without insight if the initial 
problem representation is adequate and the appropriate 
heuristics are available. (Ollinger et al., 2014, p. 267)

Untangling the effects of problem representation and 
processing on problem solution time and success using 
human experiments is notoriously difficult, especially in cases 
involving insight (Ash, Cushen, & Wiley, 2009; Batchelder &  
Alexander, 2011; Ohlsson, 2011). A potential aid in this 
endeavor would be ideal observer models—that is, one or 
more algorithms (possibly based on different restrictions 
on representations and/or processing) “that can explore the 
entire problem space and determine sequences of moves that 
lead from the starting state toward a goal state that minimizes 
a cost function such as the number of moves” (Batchelder & 
Alexander, 2011, p. 81). Such models would not only provide 
optimal-behavior baselines for comparison against human 
behavior (Batchelder & Alexander, 2011, p. 81) but would also 
illustrate (1) what factors can and cannot interact in individual 
human problem solvers to affect problem solution times and 
rates of success as well as (2) how such interaction might take 
place within a viable model of human problem solving.

In this paper, we will explore the space of possible ideal 
observer models for extended representation change theory 
(eRCT) (Öllinger et al., 2014), a theory that gives an inte-
grated treatment of problem solving by both problem space 
search and insight. We shall do this in two stages—we will 
first formalize a plausible computational-level model of 
eRCT and then analyze this model using techniques from 
both classical (Garey & Johnson, 1979) and parameterized 
(Downey & Fellows, 1999) computational complexity to 
establish not only the intractability of this model in gen-
eral but also those sets of restrictions under which efficient 
eRCT-based problem solving is and is not possible (with the 
former corresponding to sets of restrictions defining distinct 
classes of viable ideal observer models). As such, our analyses 
will both prove that several conjectured explanations of what 
makes problem solving under eRCT possible in practice are 
incomplete, in the sense that all factors in the model whose 
restriction are responsible for efficient solvability are not part 
of the explanation, and provide several new explanations that 
can be formally proven to be complete.

1.1. OVERVIEW

The remainder of this paper is organized as follows.  
Section 2 describes a framework for using computational and 

a)

b)

c)

d)

Figure 1.
Matchstick arithmetic problems. Parts (a–d) show the 
matchstick arithmetic problem types (1–4) given on 
p. 1538 of Knoblich et al. (1999). The moved matchstick is 
indicated by increased thickness.
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parameterized complexity analysis to evaluate the tractability 
and completeness of explanations of the solvability of prob-
lems under eRCT. Section 3 presents a computational-level 
model of problem solving under eRCT. Section 4 contains 
our computational complexity results, whose implications 
are discussed in Section 5. All mathematical definitions and 
proofs of results are given in Appendix A; this is to allow 
focus in the body of the paper on the model formulations 
and the implication of results derived for these models rather 
than the formal particulars of same. Finally, in Section 6, 
we give our conclusions.

2. A METHODOLOGY FOR VALIDATING EXPLANATIONS 
OF TRACTABILITY

Recall that our aim in this paper is to explore the space of 
viable ideal observer models for problem solving under 
eRCT, as an aid to both deriving algorithms for eRCT and 
assessing the validity (in terms of completeness) of conjec-
tured explanations of the tractability of problem solving 
under eRCT. As answering these questions involves issues of 
the existence of particular types of algorithms implement-
ing a cognitive theory, we will focus our analysis on Marr’s 
computational level (Marr, 1981). That is, our analyses will 
pertain to the input–output mappings postulated in such a 
theory to explain the target cognitive processes.

We first explain what we understand as a failure of a 
theory to explain the observed speed of some cognitive pro-
cess. A computational-level theory ψ : I → O is said to fail 
to explain the speed (minimally, the tractability) of a given 
(or  any) cognitive (sub)process if there exists no efficient 
algorithm for tractably computing the function ψ. For exam-
ple, algorithms whose running times are superpolynomial 
in the size of the input representations are generally ineffi-
cient for all but small input sizes. Such algorithms require 
an amount of time which cannot be upperbounded by any 
polynomial function nc (where n is a measure of the input 
size and c is some constant). Examples are exponential-time 
algorithms, which require time that can (at best) be upper-
bounded by some exponential function cn. To see that, for 
instance, exponential-time algorithms are impractical on 
even medium sized inputs, consider that 2n is already more 
than the number of seconds in a year for n = 25.

As we will show, the eRCT of problem solving has the 
property that all algorithms for computing it have running 
times that are superpolynomial (i.e., exponential or worse) in 
the input size (for proofs refer to Section A.3 in Appendix A). 
Note that in problem solving, input size cannot generally be 
assumed to be small, as our knowledge of different problems 
can be quite rich and encoding such knowledge may lead to 
quite large representations overall. This means that an eRCT-
based computational-level model of problem solving cannot 

by itself explain the tractability of the problem solving pro-
cess; in fact, the very formulations of these models seem to 
contradict observed instances of efficient human problem 
solving.

The above does nonetheless allow that instances of effi-
cient human problem solving under eRCT can be explained 
by enriching eRCT with some constraints. To identify such 
constraints, we will use techniques to prove fixed-parameter 
tractability of a function ψ for one or more parameters of 
inputs in I (see also Downey and Fellows, 1999).

Definition 1. Fixed-parameter (fp) tractability. Let 
ψ : I → O be an input–output function with input parameters 
k1, k2,…, km. Then ψ is said to be fixed-parameter tractable for 
parameter set K = {k1, k2,…, km} if there exists at least one 
algorithm that computes ψ for any input of size n in time f(k1, 
k2,…, km)nc, where f(.) is an arbitrary computable function and 
c is a constant. If no such algorithm exists then ψ is said to be 
fixed-parameter intractable for parameter set K.

In other words, a function is fp-tractable for a parameter 
set K if all superpolynomial-time complexity inherent in 
computing the function can be confined to the parameters 
in K. It then follows from the definition of fp tractability that 
if an intractable function ψ is fp-tractable for parameter set 
K then ψ can be efficiently computed even for large inputs, 
provided that function f() in the runtime bound is well-
behaved, e.g., 1.2k

1
+k

2, and all the parameters in K are small. 
This means that if ψ is postulated as an explanation of the 
functional form of the input–output mapping computed by a 
given process, then the speed of that process in certain situa-
tions can be explained by postulating that the parameters in 
K are small exactly in those situations.

Given the above, we can explore the space of viable ideal 
observer models for eRCT relative to a set of possible con-
straints (each defined relative to a parameter of eRCT) by 
establishing the fp status of a computational-level model of 
eRCT relative to various combinations of these constraints. 
An fp-intractability result relative to a set K implies that 
there is no algorithm whose tractability is a function of K. 
Conversely, an fp-tractability result relative to K implies that 
there is at least one such algorithm. Note that each such K 
corresponds to a distinct class of cognitive mechanisms for 
efficiently implementing eRCT (namely, those cognitive 
mechanisms that can exploit restricted values of the param-
eters in K to lower their runtimes). Moreover, the algorithm 
originally used to establish fp tractability relative to K need 
not itself be a viable cognitive mechanism (as the algorithm 
only establishes fp tractability relative to K and thus need not 
be cognitively plausible or have the best possible runtime 
relative to K). Hence, in this paper, we focus on fp tracta-
bility relative to parameters, and must leave discussions of 
the  effects of particular parameter values on runtimes to 
subsequent cognitive-algorithm-focused research.
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The above also allows us to distinguish between complete 
and incomplete explanations of the tractability of a function 
ψ such as a computational-level model of eRCT. This is a 
consequence of the following.

Observation 2. There exist functions ψ, and parameter 
sets K′, K, such that K′ ⊂ K and ψ is fp-tractable for K but not 
for K′.

This observation implies that there are input constraints 
(e.g., all parameters in K′ are small) that by themselves cannot 
explain the tractability of a cognitive process modelled by a 
function ψ but are yet part of such an explanation. In such 
cases we would say the assumption that all parameters K′ are 
small for the relevant situation is an incomplete explanation 
of the tractability of the process, whereas replacing K′ by K 
yields a complete explanation. Hence, a conjectured explana-
tion of the tractability of human problem solving under eRCT 
that invokes a set of constraints K is complete if and only if 
eRCT is fp-tractable relative to the parameters underlying K.2

3. FORMALIZING EXTENDED REPRESENTATION CHANGE 
THEORY

3.1. EXTENDED REPRESENTATION CHANGE THEORY

The eRCT of Öllinger et al. (2014) is based on the representa-
tion change theory (RCT) of Knoblich et al. (1999). Thus, in 
this subsection, we shall first explain RCT and then describe 
how eRCT extends RCT.

RCT builds on and extends the problem-restructuring 
account of insight-based problem solving proposed by 
Ohlsson (1992). In RCT, a problem representation consists of 
a structure encoding a problem state, a set of search operators 
that can transform the problem state, and a set of one or more 
constraints that encode both restrictions on the search process 
and the characteristics of those problem states that are goal 
states.3 The entities comprising a problem state are grouped 
into chunks, where each chunk corresponds to a pattern that 
has proven useful in previous instances of problem solving. 
Chunks may be nested or intersect, but at any given time, 
only one set of chunks (whose members are not nested) is 
considered active. Search operators are restricted to manipu-
lating whole active chunks. RCT envisions two representation 
restructuring operations, namely the removal of a particular 
constraint on the search process or the form of a goal state 
(constraint relaxation) or the replacement of an active chunk 
by its immediately-nested chunks (chunk decomposition).

A classic experimental paradigm for testing RCT is match-
stick arithmetic problems. Here, the problem representation 
consists of a structure which represents the arrangement of 
matchsticks at three levels (individual numbers, functional 
terms, and formulas) such that there are chunks for individual 
matchsticks and the groupings of matchsticks into Roman 

numeral components (I, V, X), Roman numerals proper  
(e.g., III, VI, IX), and mathematical operators (+, −, =). In 
addition to the constraints defining valid formulas are con-
straints derived from common mathematical knowledge that 
restrict the matchstick-movement search process (Knoblich 
et al., 1999, p. 1537):

1.	 Value constraint (VC): A numerical value cannot 
be changed except through operations that produce 
compensating changes in other values, as when the 
same quantity is added to or subtracted from both 
sides of an equation.

2.	 Operator constraint (OC): An arithmetic function 
(e.g., addition or subtraction) cannot be arbitrarily 
deleted, introduced, or altered, except through opera-
tions that make corresponding changes elsewhere in 
the equation. The same is true of the equals sign.

3.	 Tautology constraint (TC): Arithmetic statements 
are supposed to have the general form

X = ( )f Y Z,

where f is addition, subtraction, or some other arithme-
tic function, because their purpose is to specify a calcu-
lation to be performed. Tautological statements of the 
general form X = X are meaningless. (They have their 
uses in more advanced mathematics, e.g., as starting 
points for proofs, but not in elementary arithmetic.)

Each search operator can move a matchstick-chunk from 
one point in the problem state to another, possibly changing 
the orientation of that matchstick in the process. In order 
to invoke such an operator, the appropriate constraints must 
be relaxed and the appropriate chunks must be decomposed. 
The various search and restructuring operators that must be 
applied to give solutions to the example problems given in 
Figure 1 are shown in Figure 2.

As described above, RCT focuses primarily on the rep-
resentation change associated with insight. The new aspect 
added in eRCT is an integration of classical Newell–Simon 
problem space search, such that “…problem solving is con-
ceptualized as a dynamic search process that might include 
recursive steps, that is, repeated instances of search, impasse, 
and representational change” (Danek et al., 2016, p. 2). Note 
that in eRCT, as in RCT and its underlying ideas in Ohlsson 
(1992), insights may be false—it is only required that insights 
make further search possible, not that such search will lead 
to a solution.

3.2. A COMPUTATIONAL-LEVEL MODEL OF eRCT

A computational-level model of problem solving under eRCT 
is based on and must therefore provide formal descriptions 
of the following entities and mechanisms:

1.	 Problem representations (which encode problem states).
2.	 Search operators (which alter problem states).
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3.	 Constraints (which encode both the forms of goal states 
and restrictions on the applications of search operators).

4.	 Restructuring operators (which alter problem 
representations).

In this subsection, we will give an informal description of 
a plausible (in terms of a basic) formalization of these entities 
and mechanisms as well as the input–output mapping based 
on these entities and mechanisms that encodes the process of 

problem solving under eRCT. Full details of this formaliza-
tion are given in Section A.1 in Appendix A.

Within eRCT, a problem representation consists of a 
collection of entities and their relationships, a collection of 
chunks imposed on this collection, i.e., a chunk-structure, and a 
subset of those chunks comprising the currently active chunks. 
A  basic model of entities and their relationships is a predi-
cate-structure, a popular type of representation in cognitive 

a)

b)

c)

d)

TC, OC

VC, OC

VC

VC

.

Figure 2.
Solving matchstick arithmetic problems within RCT. Parts (a–d) show how 
the matchstick arithmetic problems in Figure 1 are solved under RCT. Chunks  
involved in the solution process are indicated by dashed boxes. To the right 
of each problem are the constraints that were relaxed (VC: value constraint; 
OC: operator constraint; TC: tautology constraint).
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science and artificial intelligence. A predicate-structure is 
composed of objects, e.g., sun, planet, and predicates relat-
ing those objects (as well as other predicates), e.g., Attracts 
(sun, planet), Cause(Gravity(Mass(sun)), Attracts(sun, 
planet)). Predicate-structures are naturally represented as  
vertex-labelled directed acyclic graphs in which objects are  
leaves, predicates are internal vertices, and each predicate 
is linked to its arguments by arcs that are directed from  
the predicate to those arguments (see Figure 3(a)).

Modeling chunk-structures is more difficult, as there are 
no models of chunk-structures in the cognitive science lit-
erature (Knoblich et al., 1999, p. 1536). A satisfactory model 
must have the following properties which are commonly 
imputed to chunks and chunk-structures (Simon, 1974; 
see also Ericsson and Kintsch, 1995):

•	 A chunk is a portion of the problem state which cor-
responds to a unit recognized as useful in previous 
problem solving experience.

SL SR H H SL SR V H V

TL TL TL TL TL TL TL TL TL TL TL

a)

b)
H V H

TL TL

c)

TL TL TL TL

A B C A

TL TL TL TL

C DBV

JOINJOIN ABOVE CROSS

CROSS

CROSS ABOVE

V V V

VH H

H

D

Figure 3.
Representing matchstick arithmetic problems within our formalization of eRCT.  
(a) A predicate-structure problem representation for the matchstick arithmetic 
problem in Figure 1(a). (b) A search operator that converts a plus sign to an equals 
sign. (c) A search operator that converts a plus sign to a minus sign and moves the 
vertical matchstick in the former plus sign to be part of a full numeral. Objects in 
the predicate-structures are represented by filled black circles, and each object cor-
responds to a matchstick. Abbreviated matchstick orientation and adjacency predi-
cate types are HORIZONTAL (H), VERTICAL (V), SLANT-LEFT (SL), SLANT-RIGHT (SR), 
and TO-LEFT-OF (TL). Chunks are represented by dashed boxes and denote joint  
numerals (V, X), full numerals (III, VII), and operation signs (+, −, =); there is also a 
chunk (not shown) around each individual matchstick object.
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•	 Chunks can be of arbitrary size.
•	 Chunks may overlap or be nested.
At any given time, a problem state is decomposed into 

and covered by a collection of possibly overlapping but non-
nested chunks corresponding to the currently active chunks; 
moreover, the number of chunks in such a chunk-structure 
is relatively small, e.g., 7 ± 2.

We will model chunks as sub-predicate-structures, i.e.,  
a subset of the objects in a predicate-structure and all rela-
tionships in that structure that are based on the objects in 
this subset. Such sub-predicate-structures can have arbitrary 
size, overlap, or be nested inside each other.

Moreover, this gives a natural specification of a 
chunk-structure as any non-nested collection of chunks 
that  covers all objects (though not necessarily all predi-
cates) in a predicate-structure. An example of such a prob-
lem representation for the matchstick arithmetic problem 
in Figure 1(d) is given in Figure 3(a). Note that there may 
be more than one instance of the same type of chunk in 
a problem representation, e.g., the individual matchstick  
chunks  in part Figure 3(a); hence, we will distinguish 
between the set T of chunk types available for making 
chunk-structures and the individual chunk-instances mak-
ing up a chunk-structure D relative to a particular problem 
representation.

We will model search operators as substructure replacement 
rules of the form X → Y that operate on predicate-structures. 
An application of such a rule to a predicate-structure p 
replaces one occurrence of predicate-substructure X in p with 
predicate-structure Y. As search operators can only manipu-
late active chunks in the chunk-structure of a predicate-
structure, X and Y are phrased in terms of and hence can only 
move chunks in the chunk-structure of X or add, delete, or 
modify predicates in the structure linking chunks in, but not 
contained in, the chunk-structure of X. Example search opera-
tors that convert a plus sign into an equals sign and move a 
vertical matchstick to change a plus sign to a minus sign are 
given in Figure 3(b,c).

We will model constraints as formulas in a suitably rich 
form of logic which operate over the objects, predicates, 
and chunks in a problem representation. We will also rec-
ognize these constraints as being in two sets CG and CO, 
with CG specifying the form of goal states and CO specifying 
restrictions in the application of search operators to a prob-
lem state. Both of these sets of constraints are effectively  
AND-ed internally, such that a problem state is a solu-
tion if and only if it satisfies all constraints in CG and the 
application of a search operator is valid if and only if this 
application does not violate any constraint, i.e., satisfies all 
constraints, in CO.

Finally, we will model the constraint relaxation opera-
tor as the deletion of one constraint in C = CG ∪ CO and 

the chunk decomposition operator as the replacement  
of a chunk x in the chunk-structure by one or more  
non-overlapping chunks that are nested inside and col-
lectively cover all objects in x. The sequence of chunk 
decomposition and search operators required to solve the 
matchstick arithmetic problem in Figure 1(b) is shown in 
Figure 4.

Given the above, we can now specify the input–output 
mapping that corresponds to the process of problem solv-
ing under eRCT. In human problem solving, this process can 
involve multiple impasses, which in turn require multiple 
rounds of restructuring followed by further search. This is 
specified as follows:

Problem Solving under eRCT (Human-behavior Version)

Input: Chunk-type set T, search-operator set O, problem  
representation p with chunk-structure D, constraint-set  
C = (CG, CO), and integers kC, kD, and kS.
Output: A sequence s consisting of the application of  
≤ kC constraint relaxation and ≤ kD chunk decomposition 
operators and ≤ kS search operators from O in any order that 
transforms p into a goal state consistent with CG, if such an 
s exists, and special symbol ⊥ otherwise.

Note that we explicitly represent kC, kD, and kS in order to 
allow complexity analyses of this input–output mapping to 
assess the effects of these quantities on the runtime of any 
algorithm that computes this mapping. As we are interested 
here in ideal observer models which specify the best pos-
sible solution behaviors under eRCT, we can eliminate all 
search operators before the final sequence of restructuring 
operators (as these served only to illustrate that preced-
ing episodes of restructurings were insufficient to allow a 
solution).4 This  effectively results in a solution-producing 
operator sequence in which there is at most one initial 
sequence of restructuring operator applications followed by 
a sequence of search operator applications. This is specified 
as follows:

Problem Solving under eRCT (Ideal-behavior Version)

Input: Chunk-type set T, search-operator set O, problem 
representation p with chunk-structure D, constraint-set  
C = (CG, CO), and integers kC, kD, and kS.
Output: A sequence s consisting of the application of  
≤ kC constraint relaxation and ≤ kD chunk decomposition  
operators followed by the application of ≤ kS search  
operators from O that transforms p into a goal state con-
sistent with CG, if such an s exists, and special symbol ⊥ 
otherwise.

It is this second version that we will analyze in the remain-
der of the paper.
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Figure 4.
Representing matchstick arithmetic problems within our formalization 
of eRCT (continued). This figure shows the sequence of chunk decom-
position and search operators needed to solve the matchstick arith-
metic problem in Figure 1(b). (d) The initial problem representation.  
(e) A chunk decomposed version of (d). (f ) The problem representa-
tion in (e) after application of the matchstick-move search operator in  
Figure 3(c). Note that the representation in (f ) has been “re-chunked” to 
show the newly created number III and minus operation sign.
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4. COMPLEXITY RESULTS

We start by stating a general intractability result for the 
computational-level model Problem Solving under eRCT 
as defined in Section 3.2:

Result 1. Problem Solving under eRCT is intractable 
even when kC = kD = 0 in the sense that all algorithms comput-
ing this input–output function require super-polynomial time.5

This result establishes that there are no polynomial-time 
algorithms (and hence efficient ideal observer models) 
that can correctly compute this input–output mapping for 
all inputs, regardless of whether or not insight is involved, 
i.e., whether kC + kD > 0 or kC = kD = 0 respectively. Hence, 
restrictions must be assumed to apply to the input domain 
of Problem Solving under eRCT for the theory to be able 
to explain efficient solution of problems (whether or not this 
solving involves insight) by human beings.

In our parameterized complexity analyses, we consider 
the following three classes of restrictions (see Table 1):

1.	 Restrictions on internal problem representation (|p|, 
|D|, |C|, |O|).

2.	 Restrictions on the problem solution process (kC,  
kD, kS).

3.	 Restrictions on interactions between the internal 
problem representation and the problem solution 
process (|OA|, |DA).

Relative to these parameters we obtained the following 
fp-intractability results.6

Result 2. Problem Solving under eRCT is fp-intractable 
for parameter set {|C|, |O|, kC, kD, kS} even when kC = kD = 0.

Result 3. Problem Solving under eRCT is fp-intractable 
for parameter set {|p|, |D|, |C|, kC, kD, kS, |DA|} even when  
kC = kD = 0.

Result 4. Problem Solving under eRCT is fp-intractable 
for parameter set {|C|, |O|, kC, kD, kS, |OA|} even when kC = 0.

These results show that problem solving under eRCT can-
not be done both efficiently and correctly under a number of 
restrictions. These results are much more powerful than they 
first appear, as it is known that an input–output mapping 
that is fp-intractable for a particular parameter set K is also 
fp-intractable relative to any subset of K (see Lemma 7 in 
Section A.2 in Appendix A). Hence, none of the parameters 
considered here can be either individually or in many combi-
nations be restricted to yield efficient solvability of problems 
under eRCT.

Despite this, there are restrictions that do make problem 
solving under eRCT tractable.

Result 5. Problem Solving under eRCT is fp-tractable 
for parameter set {|p|, |D|, |C|, |O|, kS}.

Result 6. Problem Solving under eRCT is fp-tractable 
for parameter set {|C|, kD, kS, |OA|, |DA|}.

Result 7. Problem Solving under eRCT is fp-tractable 
for parameter set {|C|, |O|, kD, kS, |DA|}.

Again, these results are much more powerful than they 
first appear, as it is known that an input–output mapping 
that is fp-tractable for a particular parameter set K is also 
fp-tractable relative to any superset of K (see Lemma 6 in 
Section A.2 in Appendix A). Hence, any set of parameters 
including all of the parameters in any of the parameter 
sets in Results 5–7 above can be restricted to yield efficient  
solvability of problems under eRCT.

5. DISCUSSION

The general intractability of eRCT even when no insights are 
invoked, i.e., when kC = kD = 0 (Result 1), implies that the 
computational difficulty of eRCT is due to the underlying 
computational complexity inherent in problem space search. 
This has long been informally assumed in cognitive science 
(under the term “combinatorial problem space explosion”) 
and was first shown formally in Sajedinia and Wareham 
(2014) (courtesy of the intractability of STRIPS, a planning 
system popular in AI that is based on Newell and Simon’s 
General Problem Solver (Bylander, 1994)). However, it is 
nonetheless sobering that the simpler case of problem space 
search embodied in our computational-level model of eRCT 
is also intractable. This also establishes formally that, con-
trary to the conjectures of some (Öllinger, Jones, & Knoblich, 
2006; Öllinger & Knoblich, 2009), restructuring is not central 
to the intractability of eRCT.

What does, then, allow eRCT to be tractable and hence 
explain observed instances of human problem solving with 

Table 1.
Parameters considered in our analysis of Problem Solving under 
eRCT.

Name Definition
|p| Total number of objects and predicates in p
|D| Number of chunks in D
|C| Total number of constraints in CG and CO

|O| Number of available search operators
|kc| Maximum number of constraint relaxation 

restructurings
|ko| Maximum number of chunk decomposition 

restructurings
|ks| Maximum number of search operator 

applications
|OA| Maximum number of search operator  

application opportunities
|DA| Maximum number of active chunks in a 

chunk-structure
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insight? Our fp-intractability results allow a more detailed 
refutation of the conjectured centrality of restructuring in 
the computational difficulty of eRCT. In particular Result 
3 establishes that restricting the possibilities for constraint 
relaxation and chunk decomposition (by simultaneously 
restricting {kC, |C|} or {kD, |D|}, respectively) cannot help, 
even if all four of these parameters are restricted simulta-
neously. Indeed, as noted in Section 4, our fp-intractability 
results (Results 2–4) imply that none of the parameters 
considered here (see Table 1) can be either individually or 
in many combinations be restricted to yield tractability. This 
renders incomplete additional explanations suggested by 
the results of experiments on human problem solving, e.g., 
that problem solving requiring insight becomes easier when 
either the number of constraint relaxations (kC) (Knoblich 
et al., 1999, p. 1535) or the total number of constraints (C) 
(MacGregor & Cunningham, 2009, p. 133) are restricted.

Complete explanations are nonetheless close at hand. For 
example, though restricting {|D|, |C|, kC, kD} does not help, 
fp tractability and thus a provably complete explanation 
can be achieved if one in addition limits the opportunities 
for problem space search by also restricting {|p|, |O|, kS} 
(Result 5).7 Once one such complete explanation is in hand, 
others can readily be derived by examining the mechanisms 
in the underlying fp algorithm and considering new param-
eters associated with those mechanisms. For example, the 
loose upper bounds in the derivation of the runtime of the 
algorithm underlying Result 5 suggest that restrictions on 
|p| and |D| may be too broad. Results 6 and 7 thus invoke 
alternate sets of parameters involving parameters |DA| and 
|OA| (which were not considered in the initial stages of the 
research reported here) that can be restricted to limit the 
degree of chunk decomposition and opportunities for prob-
lem space search in a tighter fashion. As only active chunks 
can be decomposed, |D| can be replaced with |DA| (which is 
potentially much smaller, e.g., 7 ± 2 (Simon, 1974)); simi-
larly, loose algorithm runtime bounds based on {|p|, |O|} can 
be replaced by tighter bounds based on |OA| (which is again 
potentially much smaller). Hence, as noted in Section 2, the 
parameter sets in Results 5–7 describe distinct but related 
classes of cognitive mechanisms that can potentially explain 
efficient problem solving under eRCT.

It must be stressed that such theoretical analyses are but 
part of the research process. Competing complete explana-
tions should be evaluated against human behavior to see not 
only if the values of parameters in these explanations are in 
fact small in problems solved by human beings but also to 
determine if these parameters interact in the manner proposed 
by these explanations. This will of course involve the careful 
interpretation of the results of performed human experiments  
as well as the design and performance of new experi
ments, all of which will inform further theoretical analysis. 

The required integration of theoretical analyses and experi-
ments in such a research cycle is difficult, and a very important 
direction for future research.

It is tempting to think that the progressively more fine-
grained theoretical analyses illustrated above, and in particu-
lar the introduction of new and more refined parameters, can 
be carried out purely in the realm of algorithms. However, 
such new parameters must always first be evaluated for 
fp-intractability to assess the extent to which they can be 
exploited in fp algorithms and hence participate in complete 
explanations. For example, let |OI| be the maximum size (in 
terms of total number of objects and predicates) of any X 
or Y in any operator X → Y in O and |CL| be the maximum 
number of symbols of any constraint in C (where predicates 
count as single symbols). Both are plausible restrictions, as 
large search operators and/or constraints could conceivably 
be responsible for computational difficulty. However, it is 
easy to show that all of our intractability results hold under 
the following conditions:

•	 |OI | ≤ 3 (with each operator being restricted to 
modifying the type of a single predicate);

•	 |CL| = 1; and
•	 |C| = |CL| = 1.
The last two of these are achieved by admittedly gross 

abuses of formalism (namely, collapsing the computations 
in a constraint and a set of constraints, respectively, into the 
internal computation of a single predicate). Such may not be 
psychologically allowable and should be forbidden in our 
computational-level model. However, note that such absur-
dities (and the complex interactions between model aspects 
underlying these absurdities) only become visible with 
access to detailed algorithmic models, which are best derived 
and examined using complexity-based analyses like the ones 
applied in this paper. This amply demonstrates the utility and 
necessity of these analyses in deriving complete explanations 
of the tractability of computational-level models.

A final and important caveat is appropriate at this time: 
our analyses are geared towards producing ideal observer 
models and associated complete explanations whose opera-
tion is strictly deterministic. This does not allow us to fully 
address issues associated with probabilistic and/or non-
optimal processing in problem solving, such as is introduced 
by problem space search heuristics like means–ends analysis 
or hill climbing (Ohlsson, 2011; Öllinger & Knoblich, 2009). 
However, this does not mean that our results have nothing 
to say about such matters. For example, the following is a 
consequence of Result 1.

Result 8. Problem Solving under eRCT is not solvable by  
a polynomial-time algorithm that operates correctly with  
probability ≥ 2/3.8

Though perhaps too broad in scope, this is to our knowl-
edge the first result to put formally provable limits on the 
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runtimes and achievable success rates of heuristic-based 
problem solving, regardless of whether or not insight is 
involved. It is our hope that, with the guidance of computa-
tionally minded researchers in the problem solving commu-
nity, ongoing work on the computational complexity analysis 
of probabilistic cognitive models (e.g., Blokpoel, Kwisthout, 
van der Weide, Wareham, & van Rooij, 2013) and proba-
bilistic parameterized complexity (e.g., Kwisthout, 2015;  
Montoya & Muller, 2013) can be extended to provide  
additional results that are of more direct relevance.

6. CONCLUSIONS

In this paper, we have illustrated how computational com-
plexity analysis can used to derive ideal observer models 
for theories of problem solving as well as provably complete 
explanations for situations in which such models are compu-
tationally tractable. In particular, we have (1) shown that sev-
eral proposed explanations of what makes problem solving 
possible under eRCT are incomplete and (2) derived several 
new explanations that are complete. It is our hope that the 
techniques shown here will aid problem solving researchers 
in planning and interpreting the results of their experiments 
as well as formulating new and more accurate computation-
ally based models of problem solving.

Notes

1 This paper is a revision and expansion of results originally 
presented without proof by the author in a 2011 talk given 
at Dagstuhl Workshop 11351 (Resource-bounded Prob-
lem Solving) and a poster abstract presented at ICCM 
2012 (Wareham, 2012).

2 An alternative statement of completeness of an explanation 
relative to a set of constraints K as defined here is that a 
complete explanation E of the tractability of some cogni-
tive ability A relative to K implies that (1) an algorithm 
for A whose tractability is explained by restrictions of K 
is possible and (2) this algorithm potentially explains how 
people do A. Conversely, if an explanation E is incomplete 
then no such algorithm is possible and E cannot explain 
how people do A.

	   In this light, our computational complexity analysis 
approach can be seen as being analogous to Newell and 
Simon’s “sufficiency proofs” approach, in which an expla-
nation E of A is implemented as a program (Newell & 
Simon, 1972). If that program runs in a manner consistent 
with human performance, then E is a potential explana-
tion of A; otherwise, it cannot explain how people do A.

3 Constraint mechanisms have also been invoked to explain 
other aspects of problem solving, e.g., how people learn 
from errors during skill practice (Ohlsson, 1996).

4 It could be argued that the eliminated search operators are 
necessary because they establish the need for (and may 
even in some way affect the choice of) the overall set of 
restructurings needed to achieve solution. However, 
until some formalizable manner is proposed by which 
the initial search operators so influence the overall set of 
restructurings, the best possible sequences of search and 
restructuring operators to achieve solution in an ideal 
observer model of eRCT are of the form described here.

5 This claim follows from our NP-hardness proof for Problem 
Solving under eRCT (see Section A.3 in Appendix A) and 
the conjecture, widely believed within computer science 
(Fortnow, 2009; Garey & Johnson, 1979) and cognitive 
science (van Rooij, 2008), that P ≠ NP.

6 These claims follow from our W[1]-hardness proofs for Prob-
lem Solving under eRCT (see Section A.3 in Appendix A) 
and the conjecture, widely believed within computer science 
(Downey & Fellows, 1999) and cognitive science (van Rooij, 
2008), that FPT ≠ W[1].

7 The seven-parameter set in the text and the five-parameter 
set in Result 5 are equivalent, as kC ≤ |C| and kD ≤ |D| and 
any restrictions on |C| and |D| thus also imply that kC and 
kD are restricted.

8 This claim follows the conjecture P ≠ NP, which is widely 
believed within computer science (Downey & Fellows, 
1999) and cognitive science (van Rooij, 2008), and the 
conjecture P = BPP, which is  widely believed within 
computer science (Wigderson, 2007, Section 5.2).
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Appendix A: Proofs of Results

In order to prove tractability and intractability results for 
the model of problem solving given in Section 3, we must 
fully formalize the various entities mentioned in this model. 
Hence, in this appendix, we first give the formal details of 
our computational-level model of eRCT (Section A.1). This 
is followed by a brief summary of techniques for estab
lishing  polynomial-time and fixed-parameter intractability 
(Section A.2) and the proofs of the various intractability and 
tractability results presented in Section 4 (Section A.3).

A.1. Formalization of Representation Change Theory

In this section, we will give the details of our formalizations 
for the various entities described in our computational-level 
model of eRCT given in Section 3. Much of this formaliza-
tion will build on the formalization of predicate-structures 
and analogical matching of these structures given in van 
Rooij, Evans, Muller, Gedge, and Wareham (2008).

A problem representation consists of a collection of enti-
ties and their relationships, a collection of chunks imposed 
on this collection, and a subset of those chunks comprising 
the currently active chunks. We model entity-relationship 
collections as predicate-structures. Following van Rooij et al. 
(2008), predicate-structures are formalized as a restricted 
type of vertex- and edge-labelled directed acyclic graph.

Definition 3. A concept graph is a quadruple (G, λΑ,  
λΒ, λΡ) for a directed acyclic graph G = (V, A) and functions λΑ, 
λΒ, and λΡ called labelings such that:

1.	 λΑ : A → N.
2.	 λΒ is 1:1 and onto and defined on the leaves of G.
3.	 λΡ is defined on the internal vertices of G.
4.	 If v is an internal vertex, then λΑ either enumerates the 

arcs leaving v or is constantly 0 on this set. In the first 
case, v is ordered, and in the second unordered.

5.	 For internal vertices u, v with λΡ(u) ≠ λΡ(v), the follow-
ing hold:
a)	 Either both u and v are ordered or u and v are 

unordered;
b)	 u and v both have the same number of children in 

G; and
c)	 {(v′, λA(v, v′)) | (v, v′) ∊ A} ≠ {(u λA(u, u′)) | (u, u′) 

∊ A}.
A concept graph is ordered if all of its internal vertices 

are ordered; otherwise, if it contains at least one unordered 
predicate, it is unordered. Note that in a concept graph, 
internal vertices correspond to predicates or functions, 
leaves correspond to objects, and the labelings λΡ, λΒ, and λΑ 
assign predicate-types, object-names, and predicate argu-
ment-order labels, respectively. A chunk-type corresponds 
to a predicate-structure, a chunk-instance is the portion 
of a predicate-structure exactly matched by a chunk-type 

under analogy-morphism as formalized in van Rooij et al. 
(2008), and a chunk-structure for a predicate-structure p is a 
set of possibly overlapping but non-nested chunk-instances 
that collectively cover all objects in p. Note that the chunk-
instances in a chunk-structure of a predicate-structure need 
not include all predicates in that predicate-structure.

A search operator is a substructure replacement rule of 
the form X → Y, where X and Y are predicate-structures 
with associated chunk-structures. An application of such 
an operator to a predicate-structure p involves the exact 
matching via analogy morphism of X and its associated 
chunk-structure to a sub-predicate-structure of P and the 
subsequent replacement of X with Y. Changes made by rules 
are restricted such that the transformation from X to Y can 
only move chunks in the chunk-structure of X or add, delete, 
or modify predicates in the structure linking chunks in, but 
not contained in, the chunk-structure of X. In the remainder 
of this appendix, we  further restrict search operators such 
that they cannot move chunks and may only modify the types 
of predicates attached to but not included in chunks; as such, 
they correspond to the predicate-structure re-representation 
rules described in Wareham, Robere, and van Rooij (2012).

A constraint is a formula in first-order logic whose basic 
elements are Boolean predicates defined over the objects, 
predicates, and chunks in a problem representation. Each of 
these predicates is polynomial-time computable and returns 
True if a particular structure exists in a problem representa-
tion and False otherwise. In the remainder of this appendix, 
we restrict a constraint to consist of a single Boolean predicate.

Finally, the application of a constraint relaxation opera-
tor corresponds to the removal of one of the constraints in  
CG ∪ CO and the application of a chunk decomposition 
operator corresponds to the replacement of a chunk x in a 
chunk-structure D by a set of one or more possibly overlap-
ping but non-nested chunks that cover at least those objects 
covered by x that are not covered by the other chunks in D.

A.2. Proving Intractability

Given some criterion of tractability like polynomial-time 
or fixed-parameter solvability, we can define the class T of 
all input–output mappings that are tractable relative to that 
criterion. For example, T could be the class P of decision 
problems (see below) solvable in polynomial-time, or FPT, 
the class of parameterized problems that are fp-tractable. We 
can show that a particular input–output mapping is not in T 
(and thus that this mapping is intractable) by showing that 
this mapping is at least as hard as the hardest input–output 
mapping in any mapping class C that properly includes (or 
is strongly conjectured to properly include) T. For example, 
C could be NP, the class of decision problems whose candi-
date solutions can be verified in polynomial time, or a class 
of parameterized problems in the W-hierarchy = {W[1], 
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W[2],…, W[P],…, XP} (see Garey and Johnson (1979) and 
Downey and Fellows (1999) for details).

We will focus here on reducibilities between pairs of deci-
sion problems, i.e., input–output mappings whose answers 
are either “Yes” or “No”. The two types of reductions used in 
this paper are as follows.

Definition 4. Given a pair Π, Π′ of decision problems, 
Π polynomial-time many-one reduces to Π if there is a 
polynomial-time computable function ƒ mapping instances  
I of Π to instances ƒ(I) of Π′ such that the answer to I is “Yes” 
if and only if the answer to ƒ(I) is “Yes”.

Definition 5. Given a pair Π, Π′ of parameterized decision 
problems, Π fp-reduces to Π if there is a function ƒ mapping 
instances I = (x,p) of Π to instances I′ = (x′,p′) of Π′ such that 
(i) ƒ is computable in g(p)|x|a time for some function g( ) and 
constant a, (ii) p′ = h(p) for some function h( ), and (iii) the 
answer to I is “Yes” if and only if the answer to I′ = ƒ(I) is “Yes”.

A reducibility is appropriate for a tractability class T if 
whenever Π reduces to Π′ and Π′ ∊ T then Π ∊ T. We say 
that a problem Π is C-hard for a class C if every problem in C 
reduces to Π. A C-hard problem is essentially as hard as the 
hardest problem in C.

Reducibilities become particularly useful by following 
three easily provable properties:

1.	 If Π reduces to Π′ and Π is C-hard then Π′ is C-hard.
2.	 If Π is C-hard and T ⊂ C then Π ∉ T, i.e., Π is not 

tractable.
3.	 If Π is C-hard and T ⊆ C then Π ∉ T unless T = C,  

i.e., Π is not tractable unless T = C.
These properties are easily provable for many commonly 

used reducibilities, including those given in Definitions 4 and 
5 above. The first and third of these properties will be used 
to show intractability below relative to tractable T-classes P 
and FPT and enclosing but not provably properly enclosing 
C-classes NP, W[1], and XP. Note that these intractability 
results hold relative to the conjectures P ≠ NP and FPT ≠ 
W[1] which, though not proved, have strong empirical sup-
port and are commonly accepted as true within the computer 
science community (see Fortnow (2009), Garey & Johnson 
(1979), and Downey & Fellows (1999) for details).

In the case of parameterized results, one result may actu-
ally imply many others by the following.

Lemma 6 (Wareham, 1999, Lemma 2.1.30). If problem Π 
is fp-tractable relative to parameter set K then Π is fp-tractable 
for any parameter set K′ such that K ⊂ K′.

Lemma 7 (Wareham, 1999, Lemma 2.1.31). If problem 
Π is fp-intractable relative to parameter set K then Π is  
fp-intractable for any parameter set K′ such that K′ ⊂ K.

These lemmas follow easily from the definition of fp  
tractability and parameterized reducibility.

In the remainder of this appendix, as we will be using 
reducibilities which operate on decision problems, we will 

actually be showing results relative to the decision problem 
associated with the input–output mapping Problem Solv-
ing under eRCT (see Section A.3). This is acceptable for 
such suitably defined decision problems because if such a 
problem is intractable, then so is the associated input–output 
mapping (otherwise, any tractable algorithm computing the 
input–output mapping could be used to construct a tractable 
algorithm for solving the decision problem, which would 
contradict the intractability of the decision problem).

Note also that in subsequent sections, all intractability 
results state specifically whether they hold relative to con-
cept graphs that are ordered or unordered. This is done 
for formal completeness. However, given the fact that any 
result relative to ordered concept graphs implies the same 
result for unordered graphs (namely, add an extra unor-
dered predicate of type not previously used in the instance 
to any concept graph to make the instance unordered), 
the results cited in the main text do not mention concept 
graph order.

A.3. Results

These results are derived relative to the following decision 
problem associated with Problem Solving under eRCT as 
defined in Section 3:

Problem Solving under eRCT

Input: Concept-graph p with chunk-structure D drawn 
from chunk-type set T, search-operator set O, constraint-set  
C = (CG, CO), and integers kC, kD, and kS. Question: Is there 
a sequence s consisting of the application of ≤ kC constraint 
relaxation and ≤ kD chunk decomposition operators fol-
lowed by the application of ≤ kS search operators from O that  
transforms p into a concept graph consistent with CG?

Our intractability results will be derived relative to  
reductions from the following problem:

Clique

Input: A graph G and an integer k.
Question: Does G contain a clique with k vertices, i.e., is there 
a subgraph of G that is isomorphic to Kk, the complete graph 
on k vertices?

These reductions will use the following transformation to 
create concept graphs:

•	 Given an unordered graph G = (V, E) and arbitrary 
orders vi, v2,… , v|V| and e1, e2,…, e|E| on the vertices 
and edges of G, let C′(G) be the ordered concept 
graph consisting of |V| objects with labels l1, l2,…, l|V| 
and |E| ordered binary predicates of type t in which 
each object corresponds to a unique vertex in G and 
each predicate |OA| corresponds to a unique edge  
e = (vi, vj), i < j, in E such that the first and second  
arguments of |OA| are the objects corresponding 
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to the endpoints v and vj, respectively, of e in G. In  
addition, let there be |V| single-argument predicate of 
type t′ such that each object is the argument of one of 
these predicates.

The predicates of type t and t′ will be referred to as edge- 
and vertex-predicates, respectively. Note that C′(G) is an 
extension of the transformation C(G) defined in the Supple-
mentary Materials of van Rooij et al. (2008).

Lemma 8. Clique polynomial-time many-one reduces 
to ordered Problem Solving under eRCT such that in the 
constructed instance of ordered Problem Solving under 
eRCT, kC = kD = 0 and kS, |C|, and |O| are functions of k from 
the given instance of Clique.

Proof: Given an instance I = G V E k    = ( ), ,  of 
Clique, construct the following instance I′ = p T D O C C C k k kG O C D S, , , , , , , ,    = ( )

p T D O C C C k k kG O c D S, , , , , , , ,     = ( )  of ordered Problem Solving 
under eRCT:

•	 p = C′(G);
•	 T is the set consisting of chunk-type c1 which encloses 

individual objects;
•	 D is the chunk-structure consisting of all |V| chunk-

instances of type c1 in C′(G);
•	 O = {o1, o2,…, ok} where Oi, 1 ≤ i ≤ k, is the vertex-

selection search operator that takes a c1-enclosed  
object and its associated vertex-predicate of type t′ 
and changes the type of that vertex-predicate to ti;

•	 CG is the set of k + k(k − 1)/2 predicates {select1(p), 
select2(p),…, selectk(p), isedge(1,2)(p), isedge(1,3)(p),… 
isedge(k−1,k)(p)} where selecti(p), 1 ≤ i ≤ k, returns True 
if and only if there is an object with vertex-predicate 
of type ti in p and isedge(i,j)(p), 1 ≤ i ≤ j < k, returns 
True if and only if the objects with vertex-predicates 
of types t and tj are arguments of an edge-predicate of 
type t;

•	 CO = ∅;
•	 kC = kD = 0; and
•	 kS = k.
Instance I′ can be constructed in time polynomial in 

the size of I; moreover, in I′, kC = kD = 0, kS = k, |C| = k +  
k(k − 1)/2, and |O| = k.

To prove that this construction is a reduction, we must 
show that the answer to the given instance of Clique is 
“Yes” if and only if the answer to the constructed instance of 
Problem Solving under eRCT is “Yes”. We will do this by 
proving both directions of this implication separately:

(⇒) If the answer to the given instance of Clique is “Yes”, 
there is a k-clique in G. Let p′ be the concept graph created by 
applying k of the operators in O to objects in p corresponding 
to the vertices in the k-clique in G such that the resulting 
objects have vertex-predicates of type ti that are in the same 
ascending order as the arbitrary order on V assumed in C′(G). 
Observe that this p′ and D satisfy all constraint-predicates in 

CG, which means that the answer to the constructed instance 
of Problem Solving under eRCT is “Yes”.

(⇐) Conversely, if the answer to the constructed instance 
of Problem Solving under eRCT is “Yes”, each of the k = kS 
search operators in O can be applied to p to create a p′ and D 
such that all of the constraint-predicates in CG are satisfied. 
By the specification of O and CG, this implies that there is 
a k-clique in G, which means that the answer to the given 
instance of Clique is “Yes”.

This completes the proof.
Lemma 9. Clique polynomial-time many-one reduces 

to ordered Problem Solving under eRCT such that in the 
constructed instance of ordered Problem Solving under 
eRCT, kC = 0, kD = k and kS, |C|, |O|, and |OA| are functions of 
k from the given instance of Clique.

Proof: Consider a modified version of the reduction in 
Lemma 8 in which kD = k and the chunk-structure D has an 
additional |V| chunks of type c2, one enclosing each vertex-
object and its associated vertex-predicate. In this reduction, 
vertex-selection in p now requires both the decomposition 
of a chunk of type c2 and the application of the appropriate 
vertex- selection search operator oi. The proof of correctness 
of this reduction is analogous to that for Lemma 8. To com-
plete the proof, note that as at most kD = k objects can be 
decomposed at any time and at most |O| = k operators can 
be applied to each of these decomposed objects, |OA| ≤ k × 
k = k2.

Lemma 10. Clique polynomial-time many-one reduces 
to ordered Problem Solving under eRCT such that in the 
constructed instance of ordered Problem Solving under 
eRCT, kC = kD = 0 and |p|, |D|, |C|, kS, and |DA| are functions 
of k from the given instance of Clique.

Proof: Given an instance I = G V E k    = ( ), ,  of 
Clique, construct the following instance I′ = p T D O C C C k k kG O C D S, , , , , , , ,    = ( )

p T D O C C C k k kG O C D S, , , , , , , ,    = ( )  of ordered Problem Solving 
under eRCT:

•	 p = C′(Kk);
•	 T is the set consisting of chunk-type c1 which encloses 

individual objects;
•	 D is the chunk-structure consisting of all |V| = k 

chunk-instances of type c1 in C′(Kk);
•	 O consists of the following two sets of search operators:

1.	 vertex-selection operators {vs1, vs2,… vs|V|}, where 
vsi takes a c1-enclosed object and its associated 
vertex-predicate of type t′ and changes the type of 
that vertex-predicate to ti; and

2.	 edge-check operators {ec1, ec2,… ec|E|}, where  
eci takes an edge-predicate linking c1-enclosed 
objects whose associated vertex-predicates have 
types corresponding to the endpoints of ei in  
G and changes the type of that edge-predicate  
to t′′;
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•	 CG is the set of k(k − 1)/2 predicates {isValid(1,2)(p), is-
Valid(1,3)(p),… isValid(k–1,k)(p)} where isValid(i,j), 1 ≤ i ≤ 
j < k, returns True if and only if the objects with labels 
li and lj have an edge-predicate of type t′′;

•	 CO = ∅;
•	 kC = kD = 0; and
•	 kS = k + k(k − 1)/2.
Note that no edge-check search operator in O can be 

applied unless the vertex-predicates of the vertex-predicates 
of the objects corresponding to the endpoints of the edge 
encoded in that operator have first been modified by the 
appropriate vertex-selection search operators. Instance I′ can 
be constructed in time polynomial in the size of I; moreover, 
in I′, kC = kD = 0, |p| = kS = k + k(k − 1)/2, |C| = k(k − 1)/2, 
and |D| = |DA| = k.

To prove that this construction is a reduction, we must 
show that the answer to the given instance of Clique is 
“Yes” if and only if the answer to the constructed instance of 
Problem Solving under eRCT is “Yes”. We will do this by 
proving both directions of this implication separately:

(⇒) If the answer to the given instance of Clique is “Yes”, 
there is a k-clique in G with k vertices and k(k − 1)/2 edges. 
Let p′ be the concept graph created by applying first the k 
vertex-selection search operators in O corresponding to the 
vertices in the k-clique in G to the objects in p and then the 
k(k − 1)/2 edge-check search operators in O corresponding 
to the edges in the k-clique in G to the edge-predicates in p. 
Observe that this p′ and D satisfy all constraint-predicates in 
CG, which means that the answer to the constructed instance 
of Problem Solving under eRCT is “Yes”.

(⇐) Conversely, if the answer to the constructed instance 
of Problem Solving under eRCT is “Yes”, there was a 
sequence of k + k(k − 1)/2 search operators from O that 
could be applied to create a p such that all of the constraint-
predicates in CG are satisfied. By the specification of O and 
CG, this implies that there are k vertices and k(k − 1)/2 edges 
that form a k-clique in G, which means that the answer to the 
given instance of Clique is “Yes”.

This completes the proof.
Lemma 11. Ordered Problem Solving under eRCT is  

NP-hard when kC = kD = 0.
Proof: Follows from the NP-hardness of Clique (Garey 

& Johnson, 1979, Problem GT19) and the reduction in  
Lemma 8.

Result 1. Problem Solving under eRCT is polynomial-
time intractable even when kC = kD = 0.

Proof: Follows from Lemma 11.
Result 2. Problem Solving under eRCT is fp-intractable 

for parameter set {|C|, |O|, kC, kD, kS} even when kC = kD = 0.
Proof: Follows from the W[1]-hardness of Clique for 

parameter set {k} (Downey & Fellows, 1999) and the reduc-
tion in Lemma 8.

Result 3. Problem Solving under eRCT is fp-intractable  
for parameter set {|p|, |D|, |C|, kC, kD, kS, |DA|} even when kC =  
kD = 0.

Proof: Follows from the W[1]-hardness of Clique for 
parameter set {k} (Downey & Fellows, 1999) and the reduc-
tion in Lemma 10.

Result 4. Problem Solving under eRCT is fp-intractable 
for parameter set {|C|, |O|, kC, kD, kS, |OA|} even when kC = 0.

Proof: Follows from the W[1]-hardness of Clique for 
parameter set {k} (Downey & Fellows, 1999) and the reduc-
tion in Lemma 9.

Result 5. Problem Solving under eRCT is fp-tractable 
for parameter set {|p|, |D|, |C|, |O|, kS}.

Proof: Consider the following algorithm: there are at 
most |C|kC ≤ |C||C| (as kC ≤ |C|) ways to remove at most kC 
constraints from C to create C′, and at most |D|kD ≤ |D||D| 
(as kD ≤ |D|) possible chunk-structures that can be created 
by applying at most kD chunk decomposition operations to 
D. Hence, there are at most |C||C| × |D||D| combinations of 
p and D′ to which search-operators can be applied relative 
to any C′. As there are at most 2|p| subsets of elements of 
p that can comprise the target of a search operator and at 
most |O| operators that can apply to each target, there are 
at most (2|p||O|)kS ways of applying search operators to each 
such combination. As each opportunity can be recognized, 
each application to an opportunity can be done, and the 
constraint-set CG evaluated in polynomial time, the exhaus-
tive algorithm implicit in the above runs in time that is 
exponential purely in |p|, |D|, |C|, |O|, and kS, completing 
the proof.

Result 6. Problem Solving under eRCT is fp-tractable 
for parameter set {kD, kS, |C|, |OA|, |DA|}.

Proof: Consider the following algorithm: There are at 
most |C|kC ≤ |C||C| (as kC ≤ |C|) ways to remove at most kC 
constraints from C to create C′, and at most |DA|kD possible 
chunk-structures that can be created by applying at most 
kD chunk decomposition operations to D. Hence, there are 
at most |C||C| × |DA|kD combinations of p and D′ to which 
search-operators can be applied relative to any C′. As there 
are at most |OA| opportunities for applying search opera-
tors to any such combination, there are at most |OA|kS ways 
of applying search operators to each such combination. As 
each opportunity can be recognized, each application to an 
opportunity can be done, and the constraint-set CG evaluated 
in polynomial time, the exhaustive algorithm implicit in the 
above runs in time that is exponential purely in kC, kD, kS, |C|, 
|DA|, and |OA|, completing the proof.

Result 7. Problem Solving under eRCT is fp-tractable 
for parameter set {|C|, |O|, kD, kS, |DA|, |O|}.

Proof: Observe that each operator in O applies to some 
set of subsets of the active chunks in p, and it is theoreti-
cally possible for all operators in O to apply to each such 
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chunk-subset. As there are at most  such chunk-subsets, 
|OA| < |O| × |DA||DA|+1, and the result follows by the algorithm 
given in the proof for Result 6.

Result 8. If P = BPP and Problem Solving under eRCT 
is polynomial-time tractable by an algorithm which operates 
correctly with probability ≥ 2/3 then P = NP.

Proof: It is widely believed that P = BPP (Wigderson, 2007, 
Section 5.2) where BPP is considered the most inclusive class 

of problems that can be efficiently solved using probabilistic 
methods (in particular, methods whose probability of cor-
rectness is ≥ 2/3 and can be efficiently boosted to be arbi-
trarily close to probability one). Hence, if Problem Solving 
under eRCT has a polynomial-time algorithm which oper-
ates correctly with probability ≥ 2/3 and hence is in BPP = P, 
then by Result 1 and the definition of NP-hardness we know 
that P = NP.


	tmp.1515441209.pdf.VvC1E

