
24docs.lib.purdue.edu/jps 2017 | Volume 10

Journal of Problem Solving

The Roles of Internal Representation and Processing
in Problem Solving Involving Insight: A Computational
Complexity Perspective1

Todd Wareham1

1 Memorial University of Newfoundland

In human problem solving, there is a wide variation between individuals in problem solution
time and success rate, regardless of whether or not this problem solving involves insight.
In this paper, we apply computational and parameterized analysis to a plausible formaliza-
tion of extended representation change theory (eRCT), an integration of problem solving by
problem space search and insight as problem restructuring which proposes that this varia-
tion may be explainable by individuals having different problem representations and search
heuristic choices. Our analyses establish not only the intractability of eRCT in general, but
also sets of restrictions under which eRCT-based problem solving can and cannot be done
quickly. As such, our analyses both prove that several conjectures about what makes prob-
lem solving under eRCT possible in practice are incomplete, in the sense that not all factors in
the model whose restriction is responsible for efficient solvability are part of the explanation,
and provide several new explanations that are complete.

Correspondence:
Department of Computer Science,
Memorial University of Newfoundland,
St. John’s, NL, Canada,
via email to harold@mun.ca.

Keywords:
problem solving, insight,
restructuring, computational complexity,
ideal observer models

Acknowledgments:
The author would like to thank Iris van
Rooij for many invaluable discussions
and suggestions throughout the course
and write-up of the research reported
here (as well as the invitation to the 2011
Dagstuhl meeting that inspired this
research in the first place) and the two
anonymous reviewers, whose comments
greatly improved the presentation and
content of this paper. This research was
supported by NSERC Discovery Grants
228104-2010 and 228104-2015.

1. INTRODUCTION

Much of human problem solving can be accounted for
by Newell and Simon’s classic problem space search model
(Newell & Simon, 1972). This model underlies many
subsequent and current models of human problem solv-
ing (Kaplan & Simon, 1990; Knoblich, Ohlsson, Haider, &
Rhenius, 1999; Öllinger, Jones, & Knoblich, 2014; Ormerod,
MacGregor, & Chronicle, 2002). In this model, a representa-
tion of a problem’s givens and goals is chosen based on previ-
ous experience and search is then performed (possibly aided
by heuristics) within the space of problem states associated
with this representation until a state is encountered that
satisfies the problem’s goals, i.e., a goal state. This assumes
that the representation initially chosen for the given problem
is correct, in that it has goal states that can be reached by
search within that representation’s problem-state space. If
this is not so, i.e., an impasse is encountered, restructurings
(also known as insights) are necessary to modify the initial
representation such that search can progress and possibly
succeed (Ohlsson, 1992).

There are many types of problems that typically require
insight to solve them, ranging from simple puzzles to com-
plex word problems (see MacGregor and Cunningham
(2009) and references therein). A basic type of such problems
is the matchstick arithmetic problems (Knoblich et al., 1999),
in which matchsticks are arranged in simple mathematical
formulas stated in terms of Roman numerals. The goal is to
move one or more matchsticks to convert a given incorrect
formula into a correct formula. To solve such problems, pre-
vious experience working with mathematical formulas must
be overridden in various ways, with each such overriding
corresponding to an insight. Several matchstick arithmetic
problems and their solutions are shown in Figure 1.

Experimental research on problem solving is typically
 divided into two camps, depending on whether or not the
problems examined do or do not require insight to solve
them (the so-called move and insight problems, respectively).
There is great variation between individuals in how long it
takes them to solve given problems or even if they can solve
these problems at all (Newell & Simon, 1972; Ohlsson, 2011),
with the most marked variation seen in insight problems

SPECIAL ISSUE

http://dx.doi.org/10.7771/1932-6246.1201

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220143759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

25

(Chu & MacGregor, 2011; Danek, Wiley, & Ollinger, 2016).
Hypothesized causes of this variation in move and insight
problems are many and vary from the problem-specific (e.g.,
Kershaw & Ohlsson. 2004) to the general (Ash & Wiley, 2006;
Batchelder & Alexander, 2011; Kaplan & Simon, 1990; Ohls-
son, 2011; Öllinger & Knoblich, 2009; Ormerod et al., 2002).

An explanation of particular interest in this paper is the
different ways in which individuals represent and/or pro-
cess problems (Öllinger et al., 2014). These different ways
are thought to arise from the differing prior experience of

 individual problem solvers (Batchelder & Alexander, 2011;
Ohlsson, 2011). This explanation, if correct, would have
wide-reaching implications, including the abolition of the
traditional distinction between move and insight problems:

…[T]here is no particular class of insight problems that
necessarily requires a representational change; each
problem can be solved without insight if the initial
problem representation is adequate and the appropriate
heuristics are available. (Ollinger et al., 2014, p. 267)

Untangling the effects of problem representation and
processing on problem solution time and success using
human experiments is notoriously difficult, especially in cases
involv ing insight (Ash, Cushen, & Wiley, 2009; Batchelder &
Alexander, 2011; Ohlsson, 2011). A potential aid in this
 endeavor would be ideal observer models—that is, one or
more algorithms (possibly based on different restrictions
on representations and/or processing) “that can explore the
 entire problem space and determine sequences of moves that
lead from the starting state toward a goal state that minimizes
a cost function such as the number of moves” (Batchelder &
Alexander, 2011, p. 81). Such models would not only provide
optimal-behavior baselines for comparison against human
behavior (Batchelder & Alexander, 2011, p. 81) but would also
illustrate (1) what factors can and cannot interact in individual
human problem solvers to affect problem solution times and
rates of success as well as (2) how such interaction might take
place within a viable model of human problem solving.

In this paper, we will explore the space of possible ideal
observer models for extended representation change theory
(eRCT) (Öllinger et al., 2014), a theory that gives an inte-
grated treatment of problem solving by both problem space
search and insight. We shall do this in two stages—we will
first formalize a plausible computational-level model of
eRCT and then analyze this model using techniques from
both classical (Garey & Johnson, 1979) and parameterized
(Downey & Fellows, 1999) computational complexity to
 establish not only the intractability of this model in gen-
eral but also those sets of restrictions under which efficient
 eRCT-based problem solving is and is not possible (with the
former corresponding to sets of restrictions defining distinct
classes of viable ideal observer models). As such, our analyses
will both prove that several conjectured explanations of what
makes problem solving under eRCT possible in practice are
incomplete, in the sense that all factors in the model whose
restriction are responsible for efficient solvability are not part
of the explanation, and provide several new explanations that
can be formally proven to be complete.

1.1. OVERVIEW

The remainder of this paper is organized as follows.
Section 2 describes a framework for using computational and

a)

b)

c)

d)

Figure 1.
Matchstick arithmetic problems. Parts (a–d) show the
matchstick arithmetic problem types (1–4) given on
p. 1538 of Knoblich et al. (1999). The moved matchstick is
indicated by increased thickness.

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

26

parameterized complexity analysis to evaluate the tractability
and completeness of explanations of the solvability of prob-
lems under eRCT. Section 3 presents a computational-level
model of problem solving under eRCT. Section 4 contains
our computational complexity results, whose implications
are discussed in Section 5. All mathematical definitions and
proofs of results are given in Appendix A; this is to allow
focus in the body of the paper on the model formulations
and the implication of results derived for these models rather
than the formal particulars of same. Finally, in Section 6,
we give our conclusions.

2. A METHODOLOGY FOR VALIDATING EXPLANATIONS
OF TRACTABILITY

Recall that our aim in this paper is to explore the space of
 viable ideal observer models for problem solving under
eRCT, as an aid to both deriving algorithms for eRCT and
assessing the validity (in terms of completeness) of conjec-
tured explanations of the tractability of problem solving
 under eRCT. As answering these questions involves issues of
the existence of particular types of algorithms implement-
ing a cognitive theory, we will focus our analysis on Marr’s
computational level (Marr, 1981). That is, our analyses will
pertain to the input–output mappings postulated in such a
theory to explain the target cognitive processes.

We first explain what we understand as a failure of a
 theory to explain the observed speed of some cognitive pro-
cess. A computational-level theory ψ : I → O is said to fail
to explain the speed (minimally, the tractability) of a given
(or any) cognitive (sub)process if there exists no efficient
algorithm for tractably computing the function ψ. For exam-
ple, algorithms whose running times are superpolynomial
in the size of the input representations are generally ineffi-
cient for all but small input sizes. Such algorithms require
an amount of time which cannot be upperbounded by any
polynomial function nc (where n is a measure of the input
size and c is some constant). Examples are exponential-time
algorithms, which require time that can (at best) be upper-
bounded by some exponential function cn. To see that, for
instance, exponential-time algorithms are impractical on
even medium sized inputs, consider that 2n is already more
than the number of seconds in a year for n = 25.

As we will show, the eRCT of problem solving has the
property that all algorithms for computing it have running
times that are superpolynomial (i.e., exponential or worse) in
the input size (for proofs refer to Section A.3 in Appendix A).
Note that in problem solving, input size cannot generally be
assumed to be small, as our knowledge of different problems
can be quite rich and encoding such knowledge may lead to
quite large representations overall. This means that an eRCT-
based computational-level model of problem solving cannot

by itself explain the tractability of the problem solving pro-
cess; in fact, the very formulations of these models seem to
contradict observed instances of efficient human problem
solving.

The above does nonetheless allow that instances of effi-
cient human problem solving under eRCT can be explained
by enriching eRCT with some constraints. To identify such
constraints, we will use techniques to prove fixed-parameter
tractability of a function ψ for one or more parameters of
 inputs in I (see also Downey and Fellows, 1999).

Definition 1. Fixed-parameter (fp) tractability. Let
ψ : I → O be an input–output function with input parameters
k1, k2,…, km. Then ψ is said to be fixed-parameter tractable for
parameter set K = {k1, k2,…, km} if there exists at least one
algorithm that computes ψ for any input of size n in time f(k1,
k2,…, km)nc, where f(.) is an arbitrary computable function and
c is a constant. If no such algorithm exists then ψ is said to be
fixed-parameter intractable for parameter set K.

In other words, a function is fp-tractable for a parameter
set K if all superpolynomial-time complexity inherent in
computing the function can be confined to the parameters
in K. It then follows from the definition of fp tractability that
if an intractable function ψ is fp-tractable for parameter set
K then ψ can be efficiently computed even for large inputs,
provided that function f() in the runtime bound is well-
behaved, e.g., 1.2k

1
+k

2, and all the parameters in K are small.
This means that if ψ is postulated as an explanation of the
functional form of the input–output mapping computed by a
given process, then the speed of that process in certain situa-
tions can be explained by postulating that the parameters in
K are small exactly in those situations.

Given the above, we can explore the space of viable ideal
observer models for eRCT relative to a set of possible con-
straints (each defined relative to a parameter of eRCT) by
establishing the fp status of a computational-level model of
eRCT relative to various combinations of these constraints.
An fp-intractability result relative to a set K implies that
there is no algorithm whose tractability is a function of K.
Conversely, an fp-tractability result relative to K implies that
there is at least one such algorithm. Note that each such K
corresponds to a distinct class of cognitive mechanisms for
efficiently implementing eRCT (namely, those cognitive
mechanisms that can exploit restricted values of the param-
eters in K to lower their runtimes). Moreover, the algorithm
originally used to establish fp tractability relative to K need
not itself be a viable cognitive mechanism (as the algorithm
only establishes fp tractability relative to K and thus need not
be cognitively plausible or have the best possible runtime
relative to K). Hence, in this paper, we focus on fp tracta-
bility relative to parameters, and must leave discussions of
the effects of particular parameter values on runtimes to
subsequent cognitive-algorithm-focused research.

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

27

The above also allows us to distinguish between complete
and incomplete explanations of the tractability of a function
ψ such as a computational-level model of eRCT. This is a
consequence of the following.

Observation 2. There exist functions ψ, and parameter
sets K′, K, such that K′ ⊂ K and ψ is fp-tractable for K but not
for K′.

This observation implies that there are input constraints
(e.g., all parameters in K′ are small) that by themselves cannot
explain the tractability of a cognitive process modelled by a
function ψ but are yet part of such an explanation. In such
cases we would say the assumption that all parameters K′ are
small for the relevant situation is an incomplete explanation
of the tractability of the process, whereas replacing K′ by K
yields a complete explanation. Hence, a conjectured explana-
tion of the tractability of human problem solving under eRCT
that invokes a set of constraints K is complete if and only if
eRCT is fp-tractable relative to the parameters underlying K.2

3. FORMALIZING EXTENDED REPRESENTATION CHANGE
THEORY

3.1. EXTENDED REPRESENTATION CHANGE THEORY

The eRCT of Öllinger et al. (2014) is based on the representa-
tion change theory (RCT) of Knoblich et al. (1999). Thus, in
this subsection, we shall first explain RCT and then describe
how eRCT extends RCT.

RCT builds on and extends the problem-restructuring
 account of insight-based problem solving proposed by
 Ohlsson (1992). In RCT, a problem representation consists of
a structure encoding a problem state, a set of search operators
that can transform the problem state, and a set of one or more
constraints that encode both restrictions on the search process
and the characteristics of those problem states that are goal
states.3 The entities comprising a problem state are grouped
into chunks, where each chunk corresponds to a pattern that
has proven useful in previous instances of problem solving.
Chunks may be nested or intersect, but at any given time,
only one set of chunks (whose members are not nested) is
considered active. Search operators are restricted to manipu-
lating whole active chunks. RCT envisions two representation
 restructuring operations, namely the removal of a particular
constraint on the search process or the form of a goal state
(constraint relaxation) or the replacement of an active chunk
by its immediately-nested chunks (chunk decomposition).

A classic experimental paradigm for testing RCT is match-
stick arithmetic problems. Here, the problem representation
consists of a structure which represents the arrangement of
matchsticks at three levels (individual numbers, functional
terms, and formulas) such that there are chunks for individual
matchsticks and the groupings of matchsticks into Roman

numeral components (I, V, X), Roman numerals proper
(e.g., III, VI, IX), and mathematical operators (+, −, =). In
addition to the constraints defining valid formulas are con-
straints derived from common mathematical knowledge that
restrict the matchstick-movement search process (Knoblich
et al., 1999, p. 1537):

1. Value constraint (VC): A numerical value cannot
be changed except through operations that produce
compensating changes in other values, as when the
same quantity is added to or subtracted from both
sides of an equation.

2. Operator constraint (OC): An arithmetic function
(e.g., addition or subtraction) cannot be arbitrarily
deleted, introduced, or altered, except through opera-
tions that make corresponding changes elsewhere in
the equation. The same is true of the equals sign.

3. Tautology constraint (TC): Arithmetic statements
are supposed to have the general form

X = ()f Y Z,

where f is addition, subtraction, or some other arithme-
tic function, because their purpose is to specify a calcu-
lation to be performed. Tautological statements of the
general form X = X are meaningless. (They have their
uses in more advanced mathematics, e.g., as starting
points for proofs, but not in elementary arithmetic.)

Each search operator can move a matchstick-chunk from
one point in the problem state to another, possibly changing
the orientation of that matchstick in the process. In order
to invoke such an operator, the appropriate constraints must
be relaxed and the appropriate chunks must be decomposed.
The various search and restructuring operators that must be
applied to give solutions to the example problems given in
Figure 1 are shown in Figure 2.

As described above, RCT focuses primarily on the rep-
resentation change associated with insight. The new aspect
added in eRCT is an integration of classical Newell–Simon
problem space search, such that “…problem solving is con-
ceptualized as a dynamic search process that might include
recursive steps, that is, repeated instances of search, impasse,
and representational change” (Danek et al., 2016, p. 2). Note
that in eRCT, as in RCT and its underlying ideas in Ohlsson
(1992), insights may be false—it is only required that insights
make further search possible, not that such search will lead
to a solution.

3.2. A COMPUTATIONAL-LEVEL MODEL OF eRCT

A computational-level model of problem solving under eRCT
is based on and must therefore provide formal descriptions
of the following entities and mechanisms:

1. Problem representations (which encode problem states).
2. Search operators (which alter problem states).

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

28

3. Constraints (which encode both the forms of goal states
and restrictions on the applications of search operators).

4. Restructuring operators (which alter problem
representations).

In this subsection, we will give an informal description of
a plausible (in terms of a basic) formalization of these entities
and mechanisms as well as the input–output mapping based
on these entities and mechanisms that encodes the process of

problem solving under eRCT. Full details of this formaliza-
tion are given in Section A.1 in Appendix A.

Within eRCT, a problem representation consists of a
 collection of entities and their relationships, a collection of
chunks imposed on this collection, i.e., a chunk-structure, and a
subset of those chunks comprising the currently active chunks.
A basic model of entities and their relationships is a predi-
cate-structure, a popular type of representation in cognitive

a)

b)

c)

d)

TC, OC

VC, OC

VC

VC

.

Figure 2.
Solving matchstick arithmetic problems within RCT. Parts (a–d) show how
the matchstick arithmetic problems in Figure 1 are solved under RCT. Chunks
involved in the solution process are indicated by dashed boxes. To the right
of each problem are the constraints that were relaxed (VC: value constraint;
OC: operator constraint; TC: tautology constraint).

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

29

science and artificial intelligence. A predicate-structure is
composed of objects, e.g., sun, planet, and predicates relat-
ing those objects (as well as other predicates), e.g., Attracts
(sun, planet), Cause(Gravity(Mass(sun)), Attracts(sun,
planet)). Predicate-structures are naturally represented as
vertex-labelled directed acyclic graphs in which objects are
leaves, predicates are internal vertices, and each predicate
is linked to its arguments by arcs that are directed from
the predicate to those arguments (see Figure 3(a)).

Modeling chunk-structures is more difficult, as there are
no models of chunk-structures in the cognitive science lit-
erature (Knoblich et al., 1999, p. 1536). A satisfactory model
must have the following properties which are commonly
 imputed to chunks and chunk-structures (Simon, 1974;
see also Ericsson and Kintsch, 1995):

•	 A chunk is a portion of the problem state which cor-
responds to a unit recognized as useful in previous
problem solving experience.

SL SR H H SL SR V H V

TL TL TL TL TL TL TL TL TL TL TL

a)

b)
H V H

TL TL

c)

TL TL TL TL

A B C A

TL TL TL TL

C DBV

JOINJOIN ABOVE CROSS

CROSS

CROSS ABOVE

V V V

VH H

H

D

Figure 3.
Representing matchstick arithmetic problems within our formalization of eRCT.
(a) A predicate-structure problem representation for the matchstick arithmetic
problem in Figure 1(a). (b) A search operator that converts a plus sign to an equals
sign. (c) A search operator that converts a plus sign to a minus sign and moves the
vertical matchstick in the former plus sign to be part of a full numeral. Objects in
the predicate-structures are represented by filled black circles, and each object cor-
responds to a matchstick. Abbreviated matchstick orientation and adjacency predi-
cate types are HORIZONTAL (H), VERTICAL (V), SLANT-LEFT (SL), SLANT-RIGHT (SR),
and TO-LEFT-OF (TL). Chunks are represented by dashed boxes and denote joint
numerals (V, X), full numerals (III, VII), and operation signs (+, −, =); there is also a
chunk (not shown) around each individual matchstick object.

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

30

•	 Chunks can be of arbitrary size.
•	 Chunks may overlap or be nested.
At any given time, a problem state is decomposed into

and covered by a collection of possibly overlapping but non-
nested chunks corresponding to the currently active chunks;
moreover, the number of chunks in such a chunk-structure
is relatively small, e.g., 7 ± 2.

We will model chunks as sub-predicate-structures, i.e.,
a subset of the objects in a predicate-structure and all rela-
tionships in that structure that are based on the objects in
this subset. Such sub-predicate-structures can have arbitrary
size, overlap, or be nested inside each other.

Moreover, this gives a natural specification of a
chunk-structure as any non-nested collection of chunks
that covers all objects (though not necessarily all predi-
cates) in a predicate-structure. An example of such a prob-
lem representation for the matchstick arithmetic problem
in Figure 1(d) is given in Figure 3(a). Note that there may
be more than one instance of the same type of chunk in
a problem representation, e.g., the individual matchstick
chunks in part Figure 3(a); hence, we will distinguish
between the set T of chunk types available for making
chunk-structures and the individual chunk-instances mak-
ing up a chunk-structure D relative to a particular problem
representation.

We will model search operators as substructure replacement
rules of the form X → Y that operate on predicate- structures.
An application of such a rule to a predicate-structure p
replaces one occurrence of predicate-substructure X in p with
predicate-structure Y. As search operators can only manipu-
late active chunks in the chunk-structure of a predicate-
structure, X and Y are phrased in terms of and hence can only
move chunks in the chunk-structure of X or add, delete, or
modify predicates in the structure linking chunks in, but not
contained in, the chunk-structure of X. Example search opera-
tors that convert a plus sign into an equals sign and move a
vertical matchstick to change a plus sign to a minus sign are
given in Figure 3(b,c).

We will model constraints as formulas in a suitably rich
form of logic which operate over the objects, predicates,
and chunks in a problem representation. We will also rec-
ognize these constraints as being in two sets CG and CO,
with CG specifying the form of goal states and CO specifying
restrictions in the application of search operators to a prob-
lem state. Both of these sets of constraints are effectively
AND-ed internally, such that a problem state is a solu-
tion if and only if it satisfies all constraints in CG and the
application of a search operator is valid if and only if this
application does not violate any constraint, i.e., satisfies all
constraints, in CO.

Finally, we will model the constraint relaxation opera-
tor as the deletion of one constraint in C = CG ∪ CO and

the chunk decomposition operator as the replacement
of a chunk x in the chunk-structure by one or more
non-overlapping chunks that are nested inside and col-
lectively cover all objects in x. The sequence of chunk
decomposition and search operators required to solve the
matchstick arithmetic problem in Figure 1(b) is shown in
Figure 4.

Given the above, we can now specify the input–output
mapping that corresponds to the process of problem solv-
ing under eRCT. In human problem solving, this process can
involve multiple impasses, which in turn require multiple
rounds of restructuring followed by further search. This is
specified as follows:

Problem Solving under erCT (Human-beHavior verSion)

Input: Chunk-type set T, search-operator set O, problem
representation p with chunk-structure D, constraint-set
C = (CG, CO), and integers kC, kD, and kS.
Output: A sequence s consisting of the application of
≤ kC constraint relaxation and ≤ kD chunk decomposition
 operators and ≤ kS search operators from O in any order that
transforms p into a goal state consistent with CG, if such an
s exists, and special symbol ⊥ otherwise.

Note that we explicitly represent kC, kD, and kS in order to
allow complexity analyses of this input–output mapping to
assess the effects of these quantities on the runtime of any
algorithm that computes this mapping. As we are interested
here in ideal observer models which specify the best pos-
sible solution behaviors under eRCT, we can eliminate all
search operators before the final sequence of restructuring
operators (as these served only to illustrate that preced-
ing episodes of restructurings were insufficient to allow a
solution).4 This effectively results in a solution-producing
operator sequence in which there is at most one initial
sequence of restructuring operator applications followed by
a sequence of search operator applications. This is specified
as follows:

Problem Solving under erCT (ideal-beHavior verSion)

Input: Chunk-type set T, search-operator set O, problem
representation p with chunk-structure D, constraint-set
C = (CG, CO), and integers kC, kD, and kS.
Output: A sequence s consisting of the application of
≤ kC constraint relaxation and ≤ kD chunk decomposition
operators followed by the application of ≤ kS search
operators from O that transforms p into a goal state con-
sistent with CG, if such an s exists, and special symbol ⊥
otherwise.

It is this second version that we will analyze in the remain-
der of the paper.

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

31

VH HV H V

TL TL TL TL TLTL

H HV V

TL TL TL TL TLTL

H HV

TL TL TL TLTL TL

ABOVE

ABOVE CROSS

CROSSABOVE
V

V

VVV V H

V V H

V

TLTL

V

V

TLTL

V

TL TL

f)

e)

d)

Figure 4.
Representing matchstick arithmetic problems within our formalization
of eRCT (continued). This figure shows the sequence of chunk decom-
position and search operators needed to solve the matchstick arith-
metic problem in Figure 1(b). (d) The initial problem representation.
(e) A chunk decomposed version of (d). (f) The problem representa-
tion in (e) after application of the matchstick-move search operator in
Figure 3(c). Note that the representation in (f) has been “re-chunked” to
show the newly created number III and minus operation sign.

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

32

4. COMPLEXITY RESULTS

We start by stating a general intractability result for the
computational-level model Problem Solving under eRCT
as defined in Section 3.2:

Result 1. Problem Solving under eRCT is intractable
even when kC = kD = 0 in the sense that all algorithms comput-
ing this input–output function require super-polynomial time.5

This result establishes that there are no polynomial-time
algorithms (and hence efficient ideal observer models)
that can correctly compute this input–output mapping for
all inputs, regardless of whether or not insight is involved,
i.e., whether kC + kD > 0 or kC = kD = 0 respectively. Hence,
restrictions must be assumed to apply to the input domain
of Problem Solving under eRCT for the theory to be able
to explain efficient solution of problems (whether or not this
solving involves insight) by human beings.

In our parameterized complexity analyses, we consider
the following three classes of restrictions (see Table 1):

1. Restrictions on internal problem representation (|p|,
|D|, |C|, |O|).

2. Restrictions on the problem solution process (kC,
kD, kS).

3. Restrictions on interactions between the internal
problem representation and the problem solution
process (|OA|, |DA).

Relative to these parameters we obtained the following
fp-intractability results.6

Result 2. Problem Solving under eRCT is fp-intractable
for parameter set {|C|, |O|, kC, kD, kS} even when kC = kD = 0.

Result 3. Problem Solving under eRCT is fp- intractable
for parameter set {|p|, |D|, |C|, kC, kD, kS, |DA|} even when
kC = kD = 0.

Result 4. Problem Solving under eRCT is fp-intractable
for parameter set {|C|, |O|, kC, kD, kS, |OA|} even when kC = 0.

These results show that problem solving under eRCT can-
not be done both efficiently and correctly under a number of
restrictions. These results are much more powerful than they
first appear, as it is known that an input–output mapping
that is fp-intractable for a particular parameter set K is also
fp-intractable relative to any subset of K (see Lemma 7 in
Section A.2 in Appendix A). Hence, none of the parameters
considered here can be either individually or in many combi-
nations be restricted to yield efficient solvability of problems
under eRCT.

Despite this, there are restrictions that do make problem
solving under eRCT tractable.

Result 5. Problem Solving under eRCT is fp-tractable
for parameter set {|p|, |D|, |C|, |O|, kS}.

Result 6. Problem Solving under eRCT is fp-tractable
for parameter set {|C|, kD, kS, |OA|, |DA|}.

Result 7. Problem Solving under eRCT is fp-tractable
for parameter set {|C|, |O|, kD, kS, |DA|}.

Again, these results are much more powerful than they
first appear, as it is known that an input–output mapping
that is fp-tractable for a particular parameter set K is also
fp-tractable relative to any superset of K (see Lemma 6 in
Section A.2 in Appendix A). Hence, any set of parameters
including all of the parameters in any of the parameter
sets in Results 5–7 above can be restricted to yield efficient
solvability of problems under eRCT.

5. DISCUSSION

The general intractability of eRCT even when no insights are
invoked, i.e., when kC = kD = 0 (Result 1), implies that the
computational difficulty of eRCT is due to the underlying
computational complexity inherent in problem space search.
This has long been informally assumed in cognitive science
(under the term “combinatorial problem space explosion”)
and was first shown formally in Sajedinia and Wareham
(2014) (courtesy of the intractability of STRIPS, a planning
system popular in AI that is based on Newell and Simon’s
General Problem Solver (Bylander, 1994)). However, it is
nonetheless sobering that the simpler case of problem space
search embodied in our computational-level model of eRCT
is also intractable. This also establishes formally that, con-
trary to the conjectures of some (Öllinger, Jones, & Knoblich,
2006; Öllinger & Knoblich, 2009), restructuring is not central
to the intractability of eRCT.

What does, then, allow eRCT to be tractable and hence
explain observed instances of human problem solving with

Table 1.
Parameters considered in our analysis of Problem Solving under
erCT.

Name Definition
|p| Total number of objects and predicates in p
|D| Number of chunks in D
|C| Total number of constraints in CG and CO

|O| Number of available search operators
|kc| Maximum number of constraint relaxation

restructurings
|ko| Maximum number of chunk decomposition

restructurings
|ks| Maximum number of search operator

applications
|OA| Maximum number of search operator

application opportunities
|DA| Maximum number of active chunks in a

chunk-structure

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

33

insight? Our fp-intractability results allow a more detailed
refutation of the conjectured centrality of restructuring in
the computational difficulty of eRCT. In particular Result
3 establishes that restricting the possibilities for constraint
relaxation and chunk decomposition (by simultaneously
restricting {kC, |C|} or {kD, |D|}, respectively) cannot help,
even if all four of these parameters are restricted simulta-
neously. Indeed, as noted in Section 4, our fp-intractability
results (Results 2–4) imply that none of the parameters
considered here (see Table 1) can be either individually or
in many combinations be restricted to yield tractability. This
renders incomplete additional explanations suggested by
the results of experiments on human problem solving, e.g.,
that problem solving requiring insight becomes easier when
either the number of constraint relaxations (kC) (Knoblich
et al., 1999, p. 1535) or the total number of constraints (C)
(MacGregor & Cunningham, 2009, p. 133) are restricted.

Complete explanations are nonetheless close at hand. For
example, though restricting {|D|, |C|, kC, kD} does not help,
fp tractability and thus a provably complete explanation
can be achieved if one in addition limits the opportunities
for problem space search by also restricting {|p|, |O|, kS}
 (Result 5).7 Once one such complete explanation is in hand,
others can readily be derived by examining the mechanisms
in the underlying fp algorithm and considering new param-
eters associated with those mechanisms. For example, the
loose upper bounds in the derivation of the runtime of the
algorithm underlying Result 5 suggest that restrictions on
|p| and |D| may be too broad. Results 6 and 7 thus invoke
alternate sets of parameters involving parameters |DA| and
|OA| (which were not considered in the initial stages of the
research reported here) that can be restricted to limit the
degree of chunk decomposition and opportunities for prob-
lem space search in a tighter fashion. As only active chunks
can be decomposed, |D| can be replaced with |DA| (which is
 potentially much smaller, e.g., 7 ± 2 (Simon, 1974)); simi-
larly, loose algorithm runtime bounds based on {|p|, |O|} can
be replaced by tighter bounds based on |OA| (which is again
potentially much smaller). Hence, as noted in Section 2, the
parameter sets in Results 5–7 describe distinct but related
classes of cognitive mechanisms that can potentially explain
efficient problem solving under eRCT.

It must be stressed that such theoretical analyses are but
part of the research process. Competing complete explana-
tions should be evaluated against human behavior to see not
only if the values of parameters in these explanations are in
fact small in problems solved by human beings but also to
determine if these parameters interact in the manner proposed
by these explanations. This will of course involve the careful
interpretation of the results of performed human experiments
as well as the design and performance of new experi-
ments, all of which will inform further theoretical analysis.

The required integration of theoretical analyses and experi-
ments in such a research cycle is difficult, and a very important
direction for future research.

It is tempting to think that the progressively more fine-
grained theoretical analyses illustrated above, and in particu-
lar the introduction of new and more refined parameters, can
be carried out purely in the realm of algorithms. However,
such new parameters must always first be evaluated for
fp-intractability to assess the extent to which they can be
exploited in fp algorithms and hence participate in complete
explanations. For example, let |OI| be the maximum size (in
terms of total number of objects and predicates) of any X
or Y in any operator X → Y in O and |CL| be the maximum
number of symbols of any constraint in C (where predicates
count as single symbols). Both are plausible restrictions, as
large search operators and/or constraints could conceivably
be responsible for computational difficulty. However, it is
easy to show that all of our intractability results hold under
the following conditions:

•	 |OI | ≤ 3 (with each operator being restricted to
 modifying the type of a single predicate);

•	 |CL| = 1; and
•	 |C| = |CL| = 1.
The last two of these are achieved by admittedly gross

abuses of formalism (namely, collapsing the computations
in a constraint and a set of constraints, respectively, into the
internal computation of a single predicate). Such may not be
psychologically allowable and should be forbidden in our
computational-level model. However, note that such absur-
dities (and the complex interactions between model aspects
underlying these absurdities) only become visible with
access to detailed algorithmic models, which are best derived
and examined using complexity-based analyses like the ones
applied in this paper. This amply demonstrates the utility and
necessity of these analyses in deriving complete explanations
of the tractability of computational-level models.

A final and important caveat is appropriate at this time:
our analyses are geared towards producing ideal observer
models and associated complete explanations whose opera-
tion is strictly deterministic. This does not allow us to fully
address issues associated with probabilistic and/or non-
optimal processing in problem solving, such as is introduced
by problem space search heuristics like means–ends analysis
or hill climbing (Ohlsson, 2011; Öllinger & Knoblich, 2009).
However, this does not mean that our results have nothing
to say about such matters. For example, the following is a
consequence of Result 1.

Result 8. Problem Solving under eRCT is not solvable by
a polynomial-time algorithm that operates correctly with
probability ≥ 2/3.8

Though perhaps too broad in scope, this is to our knowl-
edge the first result to put formally provable limits on the

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

34

runtimes and achievable success rates of heuristic-based
problem solving, regardless of whether or not insight is
involved. It is our hope that, with the guidance of computa-
tionally minded researchers in the problem solving commu-
nity, ongoing work on the computational complexity analysis
of probabilistic cognitive models (e.g., Blokpoel, Kwisthout,
van der Weide, Wareham, & van Rooij, 2013) and proba-
bilistic parameterized complexity (e.g., Kwisthout, 2015;
Montoya & Muller, 2013) can be extended to provide
additional results that are of more direct relevance.

6. CONCLUSIONS

In this paper, we have illustrated how computational com-
plexity analysis can used to derive ideal observer models
for theories of problem solving as well as provably complete
 explanations for situations in which such models are compu-
tationally tractable. In particular, we have (1) shown that sev-
eral proposed explanations of what makes problem solving
possible under eRCT are incomplete and (2) derived several
new explanations that are complete. It is our hope that the
techniques shown here will aid problem solving researchers
in planning and interpreting the results of their experiments
as well as formulating new and more accurate computation-
ally based models of problem solving.

NOTES

1 This paper is a revision and expansion of results originally
 presented without proof by the author in a 2011 talk given
at Dagstuhl Workshop 11351 (Resource-bounded Prob-
lem Solving) and a poster abstract presented at ICCM
2012 (Wareham, 2012).

2 An alternative statement of completeness of an explanation
relative to a set of constraints K as defined here is that a
complete explanation E of the tractability of some cogni-
tive ability A relative to K implies that (1) an algorithm
for A whose tractability is explained by restrictions of K
is possible and (2) this algorithm potentially explains how
people do A. Conversely, if an explanation E is incomplete
then no such algorithm is possible and E cannot explain
how people do A.

 In this light, our computational complexity analysis
approach can be seen as being analogous to Newell and
Simon’s “sufficiency proofs” approach, in which an expla-
nation E of A is implemented as a program (Newell &
Simon, 1972). If that program runs in a manner consistent
with human performance, then E is a potential explana-
tion of A; otherwise, it cannot explain how people do A.

3 Constraint mechanisms have also been invoked to explain
other aspects of problem solving, e.g., how people learn
from errors during skill practice (Ohlsson, 1996).

4 It could be argued that the eliminated search operators are
necessary because they establish the need for (and may
even in some way affect the choice of) the overall set of
restructurings needed to achieve solution. However,
until some formalizable manner is proposed by which
the initial search operators so influence the overall set of
restructurings, the best possible sequences of search and
restructuring operators to achieve solution in an ideal
observer model of eRCT are of the form described here.

5 This claim follows from our NP-hardness proof for Problem
Solving under eRCT (see Section A.3 in Appendix A) and
the conjecture, widely believed within computer science
(Fortnow, 2009; Garey & Johnson, 1979) and cognitive
science (van Rooij, 2008), that P ≠ NP.

6 These claims follow from our W[1]-hardness proofs for Prob-
lem Solving under eRCT (see Section A.3 in Appendix A)
and the conjecture, widely believed within computer science
(Downey & Fellows, 1999) and cognitive science (van Rooij,
2008), that FPT ≠ W[1].

7 The seven-parameter set in the text and the five-parameter
set in Result 5 are equivalent, as kC ≤ |C| and kD ≤ |D| and
any restrictions on |C| and |D| thus also imply that kC and
kD are restricted.

8 This claim follows the conjecture P ≠ NP, which is widely
believed within computer science (Downey & Fellows,
1999) and cognitive science (van Rooij, 2008), and the
conjecture P = BPP, which is widely believed within
 computer science (Wigderson, 2007, Section 5.2).

REFERENCES

Ash, I. K., Cushen, P. J., & Wiley, J. (2009). Obstacles in inves-
tigating the role of restructuring in insightful problem
solving. Journal of Problem Solving, 2(2), 6–41.

Ash, I. K., & Wiley, J. (2006). The nature of restructuring in
insight: An individual-differences approach. Psychonomie
Bulletin & Review, 13(1), 66–73.

Batchelder, W. H., & Alexander, G. E. (2011). Insight problem
solving: A critical examination of the possibility of formal
theory. Journal of Problem Solving, 3(2), 51–100.

Blokpoel, M., Kwisthout, J., van der Weide, T. P., Wareham,
T., & van Rooij, I. (2013). A computational-level explana-
tion of the speed of goal inference. Journal of Mathemati-
cal Psychology, 57(3), 117–133.

Bylander, T. (1994). The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence, 89(1–2),
165–204.

Chu, Y., & MacGregor, J. N. (2011). Human performance
on insight problem solving: A review. Journal of Problem
Solving, 3(2), 119–150.

Danek, A. H., Wiley, J., & Öllinger, M. (2016). Solving clas-
sical insight problems without Aha! experience: 9 dot,

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

35

8 coin, and matchstick arithmetic problems. Journal of
Problem Solving, 9(1).

Downey, R., & Fellows, M. (1999). Parameterized complexity.
Berlin: Springer.

Ericsson, K. A., & Kintsch, W. (1995). Long-term working
memory. Psychological Review, 102(2), 211.

Fortnow, L. (2009). The status of the P versus NP problem.
Communications of the ACM, 52(9), 78–86.

Garey, M. R., & Johnson, D. S. (1979). Computers and
intractability: A guide to the theory of NP-completeness.
San Francisco, CA: W. H. Freeman.

Kaplan, C. A., & Simon, H. A. (1990). In search of insight.
Cognitive Psychology, 22, 374–419.

Kershaw, T. C., & Ohlsson, S. (2004). Multiple causes of diffi-
culty in insight: The case of the nine-dot problem. Journal
of Experimental Psychology: Learning, Memory, and
Cognition, 30(1), 3–13.

Knoblich, G., Ohlsson, S., Haider, H., & Rhenius, D. (1999).
Constraint relaxation and chunk decomposition in insight
problem solving. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 25 (6), 1534–1555.

Kwisthout, J. (2015). Tree-width and the computational com-
plexity of MAP approximations in Bayesian networks.
Journal of Artificial Intelligence Research, 53, 699–720.

MacGregor, J. N., & Cunningham, J. B. (2009). The effects
of number and level of restructuring in insight problem
solving. Journal of Problem Solving, 3 (2), 130–141.

Marr, D. (1981). Vision: A computational investigation into
the human representation and processing visual informa-
tion. San Francisco, CA: W. H. Freeman.

Montoya, J. A., & Muller, M. (2013). Parameterized random
complexity. Theory of Computing Systems, 52(2), 221–270.

Newell, A., & Simon, H. A. (1972). Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall.

Ohlsson, S. (1992). Information-processing explanations
of insight and related phenomena. In M. Keane &
K. Gilhooly (Eds.), Advances in the psychology of thinking
(pp. 1–44). London: Harvester-Wheatsheaf.

Ohlsson, S. (1996). Learning from performance errors.
 Psychological Review, 103(2), 241.

Ohlsson, S. (2011). The problems with problem solving:
 Reflections on the rise, current status, and possible future
of a cognitive research paradigm. Journal of Problem
 Solving, 3(2), 101–128.

Öllinger, M., Jones, G., & Knoblich, G. (2006). Heuristics and
representational change in two-move matchstick arithme-
tic tasks. Advances in Cognitive Psychology, 2(4), 239–253.

Öllinger, M., Jones, G., & Knoblich, G. (2014). The dynamics
of search, impasse, and representational change provide a
coherent explanation of difficulty in the nine-dot problem.
Psychological Research, 78(2), 266–275.

Öllinger, M., & Knoblich, G. (2009). Psychological research
on insight problem solving. In H. Atmanspacher &
H. Primas (Eds.), Recasting reality: Wolgang Pauli’s philo-
sophical ideas and contemporary science (pp. 275–300).
Berlin: Springer.

Ormerod, T. C., MacGregor, J. N., & Chronicle, E. P. (2002).
Dynamics and constraints in insight problem solving.
Journal of Experimental Psychology: Learning, Memory,
and Cognition, 28(4), 791–799.

Sajedinia, Z., & Wareham, T. (2014). Assessing the compu-
tational adequacy of the General Problem Solver model
(Poster Abstract). In Proceedings of the 35th Annual
 Conference of the Cognitive Science Society (p. 3403).
 Austin, TX: Cognitive Science Society.

Simon, H. A. (1974). How big is a chunk? Science, 183(4124),
482–488.

van Rooij, I. (2008). The tractable cognition thesis. Cognitive
Science, 32, 939–984.

van Rooij, I., Evans, P., Muller, M., Gedge, J., & Wareham,
T. (2008). Identifying sources of intractability in cogni-
tive models: An illustration using analogical structure
mapping. In Proceedings of the 30th Annual Conference of
the Cognitive Science Society (pp. 915–920). Austin, TX:
Cognitive Science Society.

Wareham, T. (1999). Systematic parameterized complex-
ity analysis in computational phonology (Ph.D. thesis).
Department of Computer Science, University of
Victoria.

Wareham, T. (2012). What can (and can’t) make problem
solving by insight possible? A complexity-theoretic
investigation. In N. Rußwinkel, U. Drewitz, & H. van
Rijn (Eds.), Proceedings of ICCM 2012: 11th International
Conference on Cognitive Modeling (pp. 142–143). TU
Berlin.

Wareham, T., Robere, R., & van Rooij, I. (2012). A Change
for the vetter? Assessing the computational cost of
re-representation. In N. Rußwinkel, U. Drewitz, &
H. van Rijn (Eds.), Proceedings of ICCM 2012: 11th
International Conference on Cognitive Modeling
(pp. 111–116). TU Berlin.

Wigderson, A. (2007). P, NP and mathematics—A computa-
tional complexity perspective. In Proceedings of ICM 2006:
Volume i (pp. 665–712). Zurich: EMS Publishing House.

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

36

APPENDIX A: PROOFS OF RESULTS

In order to prove tractability and intractability results for
the model of problem solving given in Section 3, we must
fully formalize the various entities mentioned in this model.
Hence, in this appendix, we first give the formal details of
our computational-level model of eRCT (Section A.1). This
is followed by a brief summary of techniques for estab-
lishing polynomial-time and fixed-parameter intractability
(Section A.2) and the proofs of the various intractability and
tractability results presented in Section 4 (Section A.3).

A.1. FORMALIZATION OF REPRESENTATION CHANGE THEORY

In this section, we will give the details of our formalizations
for the various entities described in our computational-level
model of eRCT given in Section 3. Much of this formaliza-
tion will build on the formalization of predicate-structures
and analogical matching of these structures given in van
Rooij, Evans, Muller, Gedge, and Wareham (2008).

A problem representation consists of a collection of enti-
ties and their relationships, a collection of chunks imposed
on this collection, and a subset of those chunks comprising
the currently active chunks. We model entity-relationship
collections as predicate-structures. Following van Rooij et al.
(2008), predicate-structures are formalized as a restricted
type of vertex- and edge-labelled directed acyclic graph.

Definition 3. A concept graph is a quadruple (G, λΑ,
λΒ, λΡ) for a directed acyclic graph G = (V, A) and functions λΑ,
λΒ, and λΡ called labelings such that:

1. λΑ : A → N.
2. λΒ is 1:1 and onto and defined on the leaves of G.
3. λΡ is defined on the internal vertices of G.
4. If v is an internal vertex, then λΑ either enumerates the

arcs leaving v or is constantly 0 on this set. In the first
case, v is ordered, and in the second unordered.

5. For internal vertices u, v with λΡ(u) ≠ λΡ(v), the follow-
ing hold:
a) Either both u and v are ordered or u and v are

unordered;
b) u and v both have the same number of children in

G; and
c) {(v′, λA(v, v′)) | (v, v′) ∊ A} ≠ {(u λA(u, u′)) | (u, u′)

∊ A}.
A concept graph is ordered if all of its internal vertices

are ordered; otherwise, if it contains at least one unordered
predicate, it is unordered. Note that in a concept graph,
internal vertices correspond to predicates or functions,
leaves correspond to objects, and the labelings λΡ, λΒ, and λΑ
assign predicate-types, object-names, and predicate argu-
ment-order labels, respectively. A chunk-type corresponds
to a predicate-structure, a chunk-instance is the portion
of a predicate-structure exactly matched by a chunk-type

under analogy-morphism as formalized in van Rooij et al.
(2008), and a chunk-structure for a predicate-structure p is a
set of possibly overlapping but non-nested chunk-instances
that collectively cover all objects in p. Note that the chunk-
instances in a chunk-structure of a predicate-structure need
not include all predicates in that predicate-structure.

A search operator is a substructure replacement rule of
the form X → Y, where X and Y are predicate-structures
with associated chunk-structures. An application of such
an operator to a predicate-structure p involves the exact
 matching via analogy morphism of X and its associated
chunk-structure to a sub-predicate-structure of P and the
subsequent replacement of X with Y. Changes made by rules
are restricted such that the transformation from X to Y can
only move chunks in the chunk-structure of X or add, delete,
or modify predicates in the structure linking chunks in, but
not contained in, the chunk-structure of X. In the remainder
of this appendix, we further restrict search operators such
that they cannot move chunks and may only modify the types
of predicates attached to but not included in chunks; as such,
they correspond to the predicate-structure re-representation
rules described in Wareham, Robere, and van Rooij (2012).

A constraint is a formula in first-order logic whose basic
 elements are Boolean predicates defined over the objects,
predicates, and chunks in a problem representation. Each of
these predicates is polynomial-time computable and returns
True if a particular structure exists in a problem representa-
tion and False otherwise. In the remainder of this appendix,
we restrict a constraint to consist of a single Boolean predicate.

Finally, the application of a constraint relaxation opera-
tor corresponds to the removal of one of the constraints in
CG ∪ CO and the application of a chunk decomposition
operator corresponds to the replacement of a chunk x in a
chunk-structure D by a set of one or more possibly overlap-
ping but non-nested chunks that cover at least those objects
covered by x that are not covered by the other chunks in D.

A.2. PROVING INTRACTABILITY

Given some criterion of tractability like polynomial-time
or fixed-parameter solvability, we can define the class T of
all input–output mappings that are tractable relative to that
criterion. For example, T could be the class P of decision
problems (see below) solvable in polynomial-time, or FPT,
the class of parameterized problems that are fp-tractable. We
can show that a particular input–output mapping is not in T
(and thus that this mapping is intractable) by showing that
this mapping is at least as hard as the hardest input–output
mapping in any mapping class C that properly includes (or
is strongly conjectured to properly include) T. For example,
C could be NP, the class of decision problems whose candi-
date solutions can be verified in polynomial time, or a class
of parameterized problems in the W-hierarchy = {W[1],

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

37

W[2],…, W[P],…, XP} (see Garey and Johnson (1979) and
Downey and Fellows (1999) for details).

We will focus here on reducibilities between pairs of deci-
sion problems, i.e., input–output mappings whose answers
are either “Yes” or “No”. The two types of reductions used in
this paper are as follows.

Definition 4. Given a pair Π, Π′ of decision problems,
Π polynomial-time many-one reduces to Π if there is a
 polynomial-time computable function ƒ mapping instances
I of Π to instances ƒ(I) of Π′ such that the answer to I is “Yes”
if and only if the answer to ƒ(I) is “Yes”.

Definition 5. Given a pair Π, Π′ of parameterized decision
problems, Π fp-reduces to Π if there is a function ƒ mapping
instances I = (x,p) of Π to instances I′ = (x′,p′) of Π′ such that
(i) ƒ is computable in g(p)|x|a time for some function g() and
constant a, (ii) p′ = h(p) for some function h(), and (iii) the
answer to I is “Yes” if and only if the answer to I′ = ƒ(I) is “Yes”.

A reducibility is appropriate for a tractability class T if
whenever Π reduces to Π′ and Π′ ∊ T then Π ∊ T. We say
that a problem Π is C-hard for a class C if every problem in C
reduces to Π. A C-hard problem is essentially as hard as the
hardest problem in C.

Reducibilities become particularly useful by following
three easily provable properties:

1. If Π reduces to Π′ and Π is C-hard then Π′ is C-hard.
2. If Π is C-hard and T ⊂ C then Π ∉ T, i.e., Π is not

tractable.
3. If Π is C-hard and T ⊆ C then Π ∉ T unless T = C,

i.e., Π is not tractable unless T = C.
These properties are easily provable for many commonly

used reducibilities, including those given in Definitions 4 and
5 above. The first and third of these properties will be used
to show intractability below relative to tractable T-classes P
and FPT and enclosing but not provably properly enclosing
C-classes NP, W[1], and XP. Note that these intractability
results hold relative to the conjectures P ≠ NP and FPT ≠
W[1] which, though not proved, have strong empirical sup-
port and are commonly accepted as true within the computer
science community (see Fortnow (2009), Garey & Johnson
(1979), and Downey & Fellows (1999) for details).

In the case of parameterized results, one result may actu-
ally imply many others by the following.

Lemma 6 (Wareham, 1999, Lemma 2.1.30). If problem Π
is fp-tractable relative to parameter set K then Π is fp-tractable
for any parameter set K′ such that K ⊂ K′.

Lemma 7 (Wareham, 1999, Lemma 2.1.31). If problem
Π is fp-intractable relative to parameter set K then Π is
fp-intractable for any parameter set K′ such that K′ ⊂ K.

These lemmas follow easily from the definition of fp
tractability and parameterized reducibility.

In the remainder of this appendix, as we will be using
reducibilities which operate on decision problems, we will

actually be showing results relative to the decision problem
associated with the input–output mapping Problem Solv-
ing under eRCT (see Section A.3). This is acceptable for
such suitably defined decision problems because if such a
problem is intractable, then so is the associated input–output
mapping (otherwise, any tractable algorithm computing the
input–output mapping could be used to construct a tractable
algorithm for solving the decision problem, which would
contradict the intractability of the decision problem).

Note also that in subsequent sections, all intractability
 results state specifically whether they hold relative to con-
cept graphs that are ordered or unordered. This is done
for formal completeness. However, given the fact that any
result relative to ordered concept graphs implies the same
result for unordered graphs (namely, add an extra unor-
dered predicate of type not previously used in the instance
to any concept graph to make the instance unordered),
the results cited in the main text do not mention concept
graph order.

A.3. RESULTS

These results are derived relative to the following decision
problem associated with Problem Solving under eRCT as
defined in Section 3:

Problem Solving under erCT

Input: Concept-graph p with chunk-structure D drawn
from chunk-type set T, search-operator set O, constraint-set
C = (CG, CO), and integers kC, kD, and kS. Question: Is there
a sequence s consisting of the application of ≤ kC constraint
 relaxation and ≤ kD chunk decomposition operators fol-
lowed by the application of ≤ kS search operators from O that
transforms p into a concept graph consistent with CG?

Our intractability results will be derived relative to
reductions from the following problem:

Clique

Input: A graph G and an integer k.
Question: Does G contain a clique with k vertices, i.e., is there
a subgraph of G that is isomorphic to Kk, the complete graph
on k vertices?

These reductions will use the following transformation to
create concept graphs:

•	 Given an unordered graph G = (V, E) and arbitrary
orders vi, v2,… , v|V| and e1, e2,…, e|E| on the vertices
and edges of G, let C′(G) be the ordered concept
graph consisting of |V| objects with labels l1, l2,…, l|V|
and |E| ordered binary predicates of type t in which
each object corresponds to a unique vertex in G and
each predicate |OA| corresponds to a unique edge
e = (vi, vj), i < j, in E such that the first and second
arguments of |OA| are the objects corresponding

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

38

to the endpoints v and vj, respectively, of e in G. In
addition, let there be |V| single-argument predicate of
type t′ such that each object is the argument of one of
these predicates.

The predicates of type t and t′ will be referred to as edge-
and vertex-predicates, respectively. Note that C′(G) is an
 extension of the transformation C(G) defined in the Supple-
mentary Materials of van Rooij et al. (2008).

Lemma 8. Clique polynomial-time many-one reduces
to ordered Problem Solving under eRCT such that in the
constructed instance of ordered Problem Solving under
eRCT, kC = kD = 0 and kS, |C|, and |O| are functions of k from
the given instance of Clique.

Proof: Given an instance I = G V E k = (), , of
Clique, construct the following instance I′ = p T D O C C C k k kG O C D S, , , , , , , , = ()

p T D O C C C k k kG O c D S, , , , , , , , = () of ordered Problem Solving
under eRCT:

•	 p = C′(G);
•	 T is the set consisting of chunk-type c1 which encloses

individual objects;
•	 D is the chunk-structure consisting of all |V| chunk-

instances of type c1 in C′(G);
•	 O = {o1, o2,…, ok} where Oi, 1 ≤ i ≤ k, is the vertex-

selection search operator that takes a c1-enclosed
object and its associated vertex-predicate of type t′
and changes the type of that vertex-predicate to ti;

•	 CG is the set of k + k(k − 1)/2 predicates {select1(p),
select2(p),…, selectk(p), isedge(1,2)(p), isedge(1,3)(p),…
isedge(k−1,k)(p)} where selecti(p), 1 ≤ i ≤ k, returns True
if and only if there is an object with vertex-predicate
of type ti in p and isedge(i,j)(p), 1 ≤ i ≤ j < k, returns
True if and only if the objects with vertex-predicates
of types t and tj are arguments of an edge-predicate of
type t;

•	 CO = ∅;
•	 kC = kD = 0; and
•	 kS = k.
Instance I′ can be constructed in time polynomial in

the size of I; moreover, in I′, kC = kD = 0, kS = k, |C| = k +
k(k − 1)/2, and |O| = k.

To prove that this construction is a reduction, we must
show that the answer to the given instance of Clique is
“Yes” if and only if the answer to the constructed instance of
 Problem Solving under eRCT is “Yes”. We will do this by
proving both directions of this implication separately:

(⇒) If the answer to the given instance of Clique is “Yes”,
there is a k-clique in G. Let p′ be the concept graph created by
applying k of the operators in O to objects in p corresponding
to the vertices in the k-clique in G such that the resulting
 objects have vertex-predicates of type ti that are in the same
ascending order as the arbitrary order on V assumed in C′(G).
Observe that this p′ and D satisfy all constraint-predicates in

CG, which means that the answer to the constructed instance
of Problem Solving under eRCT is “Yes”.

(⇐) Conversely, if the answer to the constructed instance
of Problem Solving under eRCT is “Yes”, each of the k = kS
search operators in O can be applied to p to create a p′ and D
such that all of the constraint-predicates in CG are satisfied.
By the specification of O and CG, this implies that there is
a k-clique in G, which means that the answer to the given
instance of Clique is “Yes”.

This completes the proof.
Lemma 9. Clique polynomial-time many-one reduces

to ordered Problem Solving under eRCT such that in the
constructed instance of ordered Problem Solving under
eRCT, kC = 0, kD = k and kS, |C|, |O|, and |OA| are functions of
k from the given instance of Clique.

Proof: Consider a modified version of the reduction in
Lemma 8 in which kD = k and the chunk-structure D has an
additional |V| chunks of type c2, one enclosing each vertex-
object and its associated vertex-predicate. In this reduction,
vertex-selection in p now requires both the decomposition
of a chunk of type c2 and the application of the appropriate
vertex- selection search operator oi. The proof of correctness
of this reduction is analogous to that for Lemma 8. To com-
plete the proof, note that as at most kD = k objects can be
decomposed at any time and at most |O| = k operators can
be applied to each of these decomposed objects, |OA| ≤ k ×
k = k2.

Lemma 10. Clique polynomial-time many-one reduces
to ordered Problem Solving under eRCT such that in the
constructed instance of ordered Problem Solving under
eRCT, kC = kD = 0 and |p|, |D|, |C|, kS, and |DA| are functions
of k from the given instance of Clique.

Proof: Given an instance I = G V E k = (), , of
Clique, construct the following instance I′ = p T D O C C C k k kG O C D S, , , , , , , , = ()

p T D O C C C k k kG O C D S, , , , , , , , = () of ordered Problem Solving
under eRCT:

•	 p = C′(Kk);
•	 T is the set consisting of chunk-type c1 which encloses

individual objects;
•	 D is the chunk-structure consisting of all |V| = k

chunk-instances of type c1 in C′(Kk);
•	 O consists of the following two sets of search operators:

1. vertex-selection operators {vs1, vs2,… vs|V|}, where
vsi takes a c1-enclosed object and its associated
vertex-predicate of type t′ and changes the type of
that vertex-predicate to ti; and

2. edge-check operators {ec1, ec2,… ec|E|}, where
eci takes an edge-predicate linking c1-enclosed
objects whose associated vertex-predicates have
types corresponding to the endpoints of ei in
G and changes the type of that edge-predicate
to t′′;

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

39

•	 CG is the set of k(k − 1)/2 predicates {isValid(1,2)(p), is-
Valid(1,3)(p),… isValid(k–1,k)(p)} where isValid(i,j), 1 ≤ i ≤
j < k, returns True if and only if the objects with labels
li and lj have an edge-predicate of type t′′;

•	 CO = ∅;
•	 kC = kD = 0; and
•	 kS = k + k(k − 1)/2.
Note that no edge-check search operator in O can be

 applied unless the vertex-predicates of the vertex-predicates
of the objects corresponding to the endpoints of the edge
 encoded in that operator have first been modified by the
 appropriate vertex-selection search operators. Instance I′ can
be constructed in time polynomial in the size of I; moreover,
in I′, kC = kD = 0, |p| = kS = k + k(k − 1)/2, |C| = k(k − 1)/2,
and |D| = |DA| = k.

To prove that this construction is a reduction, we must
show that the answer to the given instance of Clique is
“Yes” if and only if the answer to the constructed instance of
Problem Solving under eRCT is “Yes”. We will do this by
proving both directions of this implication separately:

(⇒) If the answer to the given instance of Clique is “Yes”,
there is a k-clique in G with k vertices and k(k − 1)/2 edges.
Let p′ be the concept graph created by applying first the k
vertex-selection search operators in O corresponding to the
vertices in the k-clique in G to the objects in p and then the
k(k − 1)/2 edge-check search operators in O corresponding
to the edges in the k-clique in G to the edge-predicates in p.
Observe that this p′ and D satisfy all constraint-predicates in
CG, which means that the answer to the constructed instance
of Problem Solving under eRCT is “Yes”.

(⇐) Conversely, if the answer to the constructed instance
of Problem Solving under eRCT is “Yes”, there was a
sequence of k + k(k − 1)/2 search operators from O that
could be applied to create a p such that all of the constraint-
predicates in CG are satisfied. By the specification of O and
CG, this implies that there are k vertices and k(k − 1)/2 edges
that form a k-clique in G, which means that the answer to the
given instance of Clique is “Yes”.

This completes the proof.
Lemma 11. Ordered Problem Solving under eRCT is

NP-hard when kC = kD = 0.
Proof: Follows from the NP-hardness of Clique (Garey

& Johnson, 1979, Problem GT19) and the reduction in
Lemma 8.

Result 1. Problem Solving under eRCT is polynomial-
time intractable even when kC = kD = 0.

Proof: Follows from Lemma 11.
Result 2. Problem Solving under eRCT is fp-intractable

for parameter set {|C|, |O|, kC, kD, kS} even when kC = kD = 0.
Proof: Follows from the W[1]-hardness of Clique for

parameter set {k} (Downey & Fellows, 1999) and the reduc-
tion in Lemma 8.

Result 3. Problem Solving under eRCT is fp-intractable
for parameter set {|p|, |D|, |C|, kC, kD, kS, |DA|} even when kC =
kD = 0.

Proof: Follows from the W[1]-hardness of Clique for
parameter set {k} (Downey & Fellows, 1999) and the reduc-
tion in Lemma 10.

Result 4. Problem Solving under eRCT is fp-intractable
for parameter set {|C|, |O|, kC, kD, kS, |OA|} even when kC = 0.

Proof: Follows from the W[1]-hardness of Clique for
parameter set {k} (Downey & Fellows, 1999) and the reduc-
tion in Lemma 9.

Result 5. Problem Solving under eRCT is fp-tractable
for parameter set {|p|, |D|, |C|, |O|, kS}.

Proof: Consider the following algorithm: there are at
most |C|kC ≤ |C||C| (as kC ≤ |C|) ways to remove at most kC
constraints from C to create C′, and at most |D|kD ≤ |D||D|
(as kD ≤ |D|) possible chunk-structures that can be created
by applying at most kD chunk decomposition operations to
D. Hence, there are at most |C||C| × |D||D| combinations of
p and D′ to which search-operators can be applied relative
to any C′. As there are at most 2|p| subsets of elements of
p that can comprise the target of a search operator and at
most |O| operators that can apply to each target, there are
at most (2|p||O|)kS ways of applying search operators to each
such combination. As each opportunity can be recognized,
each application to an opportunity can be done, and the
constraint-set CG evaluated in polynomial time, the exhaus-
tive algorithm implicit in the above runs in time that is
exponential purely in |p|, |D|, |C|, |O|, and kS, completing
the proof.

Result 6. Problem Solving under eRCT is fp-tractable
for parameter set {kD, kS, |C|, |OA|, |DA|}.

Proof: Consider the following algorithm: There are at
most |C|kC ≤ |C||C| (as kC ≤ |C|) ways to remove at most kC
constraints from C to create C′, and at most |DA|kD possible
chunk-structures that can be created by applying at most
kD chunk decomposition operations to D. Hence, there are
at most |C||C| × |DA|kD combinations of p and D′ to which
search-operators can be applied relative to any C′. As there
are at most |OA| opportunities for applying search opera-
tors to any such combination, there are at most |OA|kS ways
of applying search operators to each such combination. As
each opportunity can be recognized, each application to an
opportunity can be done, and the constraint-set CG evaluated
in polynomial time, the exhaustive algorithm implicit in the
above runs in time that is exponential purely in kC, kD, kS, |C|,
|DA|, and |OA|, completing the proof.

Result 7. Problem Solving under eRCT is fp-tractable
for parameter set {|C|, |O|, kD, kS, |DA|, |O|}.

Proof: Observe that each operator in O applies to some
set of subsets of the active chunks in p, and it is theoreti-
cally possible for all operators in O to apply to each such

docs.lib.purdue.edu/jps 2017 | Volume 10

T. Wareham Processing in Problem Solving Involving Insight

40

chunk-subset. As there are at most such chunk-subsets,
|OA| < |O| × |DA||DA|+1, and the result follows by the algorithm
given in the proof for Result 6.

Result 8. If P = BPP and Problem Solving under eRCT
is polynomial-time tractable by an algorithm which operates
correctly with probability ≥ 2/3 then P = NP.

Proof: It is widely believed that P = BPP (Wigderson, 2007,
Section 5.2) where BPP is considered the most inclusive class

of problems that can be efficiently solved using probabilistic
methods (in particular, methods whose probability of cor-
rectness is ≥ 2/3 and can be efficiently boosted to be arbi-
trarily close to probability one). Hence, if Problem Solving
under eRCT has a polynomial-time algorithm which oper-
ates correctly with probability ≥ 2/3 and hence is in BPP = P,
then by Result 1 and the definition of NP-hardness we know
that P = NP.

	tmp.1515441209.pdf.VvC1E

