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We present a metal-free tunable anisotropic metamaterial where the iso-frequency surface is tuned

from elliptical to hyperbolic dispersion by exploiting the metal-insulator phase transition in the

correlated material vanadium dioxide (VO2). Using VO2-TiO2 heterostructures, we demonstrate the

transition in the effective dielectric constant parallel to the layers to undergo a sign change from

positive to negative as the VO2 undergoes the phase transition. The possibility to tune the

iso-frequency surface in real time using external perturbations such as temperature, voltage, or optical

pulses creates new avenues for controlling light-matter interaction. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4869297]

Metamaterials are engineered nanocomposites com-

posed of building blocks of length scales much smaller than

the wavelength of electromagnetic waves they interact with.

They have attracted much attention over the last decade

owing to their potential applications ranging from super- and

hyper-lenses, optical cloaking, stealth elements to frequency

selective surfaces, and others. However, most such applica-

tions in optics require systems with negative permittivity and

permeability which are difficult to implement. A simpler

non-magnetic system that exploits only the negative permit-

tivity along one direction was recently shown to result in an

extreme anisotropic metamaterial with hyperbolic dispersion

that supports unique electromagnetic states.1,2 The hyper-

bolic dispersion causes a divergence in the photonic density

of states and unique light propagation characteristics. In fact,

these properties of the extreme anisotropic metamaterials

were exploited to achieve sub-wavelength resolution imag-

ing, control of spontaneous emission of quantum emitters,

appearance of optical topological transition, and broadband

absorption enhancement.3–8 The spectral range in which

hyperbolic dispersion is exhibited depends upon the materi-

als composing the system as well as their relative fill-

fractions. Usually, hyperbolic metamaterials are realized

using metal-dielectric composites where the dielectric con-

stants of the metal and the insulating phase as well as their

respective fill fractions determine the spectral range of

hyperbolic dispersion. In almost all the demonstrations to

date, this range has been fixed due to the difficulty in tuning

the dielectric constants or the fill fraction after fabrication of

the structure. Here, we demonstrate a tunable hyperbolic

metamaterial which exploits the metal-insulator phase transi-

tion that occurs in transition metal oxides to tune the effec-

tive dielectric constant in a heterostructure.

Correlated oxides that show metal-insulator transition

are of great interest in condensed matter physics, oxide elec-

tronics, and photonics as their physical properties can be

altered considerably by applying a perturbation in the form

of heat, electric field, or optical pulses.9 At room tempera-

ture, vanadium dioxide (VO2) is an insulator with a mono-

clinic structure. Upon heating beyond a critical temperature,

its structure changes to tetragonal rutile form accompanied

by a drop in electrical resistance by several orders of magni-

tude. Applying electric field or optical pulses can also trigger

a similar effect.

Tunable metamaterials and plasmonic switches have

been realized in the past using the phase transition in VO2 by

integrating the VO2 layer with metallic nanostructures.10–16

The change in refractive index of the VO2 upon undergoing

phase transition shifted the resonance of the metamaterial/

plasmonic structure, which in turn was used as a probe to

study the phase transition. In this work, we exploit the insu-

lator to metal phase transition in VO2 to tune the dispersion

of the metal-free anisotropic metamaterial from elliptical to

hyperbolic.

One of the most common geometries used to realize

hyperbolic metamaterials is the one-dimensional layered

structure.5–7 In such metamaterials, the dielectric tensor is

uniaxial: e
$
~rð Þ ¼ diag ðexx; eyy; ezzÞ, where exx ¼ eyy ¼ ek and

ezz ¼ e?. The optical iso-frequency surface for the TM-

polarized waves propagating in such a metamaterial is

given by

k2
x þ k2

y

e?
þ k2

z

ek
¼ x2

c2
: (1)

Here, ek and e? are the effective dielectric constants of the

structure in mutually orthogonal directions. When eke? > 0,

the optical isofrequency surface is an ellipsoid. On the other

hand, when eke? < 0, the optical iso-frequency curve takes

a)Author to whom correspondence should be addressed. Electronic mail:

vmenon@qc.cuny.edu
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the form of a hyperboloid and the metamaterial is said to ex-

hibit strong anisotropy. Because of the unbound nature of the

optical iso-frequency curve, such a material can support

electromagnetic states with large wave-vectors. This forms

the basis of applications of hyperbolic metamaterials in

enhancing photon density of states and diffraction-free opti-

cal imaging.

The metamaterial studied in this work consists of alter-

nating layers of VO2 and titanium dioxide (TiO2) as shown

schematically in Fig. 1(a). The layered geometry in addition

to being the simplest to realize hyperbolic dispersion using a

heterostructure also allows us to tune the degree of anisot-

ropy by controlling the fill fraction of the constituent layers.

The TiO2 and VO2 layers were deposited by magnetron sput-

tering in a pure Ar atmosphere onto c-plane sapphire from

TiO2 and V2O5 targets, respectively. The substrate tempera-

ture and growth pressure were kept constant at 550 �C and 5

mTorr during the deposition. The growth rate of TiO2 and

VO2 were calibrated by x-ray reflectivity and ellipsometry

measurements.

The in-plane electrical properties of VO2 were measured

using a Keitheley 2635A instrument with samples placed on a

temperature-controlled stage. The resistance values were cal-

culated by linear fitting of the voltage-current curves. Fig.

1(b) shows the normalized in-plane resistance versus tempera-

ture curves of VO2 films on c-plane sapphire and on a

TiO2/VO2/sapphire structure, respectively. The VO2 thin films

on sapphire exhibit a metal-insulator transition with more

than three orders of magnitude change in its resistivity at a

transition temperature of �72 �C as determined by the

Gaussian fit of the d lnR/dT curve. VO2 thin film deposited on

a TiO2/VO2 1-period structure on sapphire also shows similar

electrical properties. X-ray diffraction data were acquired

with Cu Ka radiation by 2h-x coupled scan using a triple-axis

Bruker D-8 high resolution XRD diffractometer. Fig. 1(c)

shows the 2h-x coupled scan of the 1 period TiO2/VO2 struc-

ture on sapphire. VO2 is found to be single phase epitaxial on

sapphire with its (010) plane parallel to the c-plane of sap-

phire substrates. The two diffraction peaks from TiO2 indicate

coexistence of (001) anatase and (100) rutile phases.

Although rutile TiO2 is thermodynamically more favorable

than anatase, the anatase phase is kinetically stabilized at

550 �C, consistent with previous studies of epitaxial TiO2

growth on c-plane sapphire at similar temperature.17 This

indicates that the epitaxial VO2 layer on sapphire can serve as

a buffer layer for the growth of TiO2. X-ray diffractions from

multi-period samples show similar diffraction pattern and

peak positions, indicating that the epitaxial relation is main-

tained in multi-period samples. However, the growth of a

TiO2 layer on VO2 weakens the metal insulator transition

possibly due to diffusion of Ti into VO2 at higher growth

temperatures. This is discussed in greater detail in the last

FIG. 1. (a) Schematic of the metamaterial; (b) Normalized electrical resistance of VO2 grown directly on c-plane sapphire and grown on TiO2/VO2 structure

on sapphire spanning the phase transition. (c) 2h-x coupled x-ray diffraction scan from VO2/TiO2/c-sapphire. The four peaks (from left to right) correspond to

(1) TiO2 Anatase (004), (2) TiO2 Rutile (200), (3) VO2 (020), and (4) Al2O3 (000 12) and (d) AFM image of the surface of a two-period TiO2/VO2 on sapphire

sample. Sharp interface between VO2 and TiO2 is desired to achieve anisotropy and hyperbolic dispersion in the metallic phase of VO2. The surface roughness

of the structure is 2.2 nm, while the total thickness of the structure is �70 nm.

121101-2 Krishnamoorthy et al. Appl. Phys. Lett. 104, 121101 (2014)
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paragraph. In order for the metamaterial to have hyperbolic

dispersion with large anisotropy, smooth surface and interfa-

ces between VO2 and TiO2 are desired. The epitaxial growth

of VO2 is characterized by nucleation, island formation, and

grain growth during sputtering. Therefore, the surface rough-

ness of VO2 is determined by the size of grains and small

grain size is desired for the present study. This was achieved

by carefully tuning the growth conditions such as deposition

temperatures (relatively low temperature) and oxygen partial

pressure (no oxygen flow) over the course of several experi-

ments to achieve phase purity in the respective layers. The

surface morphology of a 2-period TiO2/VO2 on sapphire sam-

ple measured using an Asylum atomic force microscopy

(AFM) is shown in Fig. 1(d). The RMS roughness is 2.2 nm

with lateral grain size of about 100 nm while the total thick-

ness of the structure is about 70 nm. AFM measurements on a

1-period TiO2/VO2 sample show similar relative roughness.

The individual VO2 and TiO2 thin films were character-

ized optically by Variable Angle Spectroscopic Ellipsometry

(VASE) measurements using a Woollam M2000 ellipsome-

ter. To obtain the optical properties of VO2 film as a function

of temperature, the sample was placed in a heat cell (HTC

100) during ellipsometric measurements. A Drude-Lorentz

model18 was used to model the optical properties of VO2 as

a function of frequency

e xð Þ ¼ e1 þ
X1

n¼0

Anxn

x2
n � x2 � iBrnx

þ �AdBrd

x2 þ iBrdx
: (2)

The first term is purely real and is the contribution from

high-frequency electronic transitions. The second term is the

sum of multiple Lorentz oscillators with amplitude An and

broadening Brn centered at energy xn. The third term is the

Drude term that accounts for contribution from free electrons

when VO2 becomes metallic. Here, the parameter Ad is

related to the plasma frequency. The first two terms are used

to model the ellipsometry data below the transition tempera-

ture. All three terms are required to model the dielectric

function of VO2 above the transition temperature. The

dielectric constants of VO2 at room temperature and at

130 �C retrieved from ellipsometry measurements are shown

in Fig. 2(a). The dielectric constant of TiO2 as a function of

wavelength is obtained by performing VASE measurements

on a single layer deposited on a sapphire substrate.

Once the single layers were characterized, the metama-

terial structure was fabricated by depositing alternating

layers of VO2 and TiO2 on a sapphire substrate (Fig. 1(a)).

The thicknesses of the individual VO2 and TiO2 layers esti-

mated from X-Ray Reflectometry (XRR) measurements

were found to be 23 6 2 nm and 12 6 1 nm, respectively.

Ellipsometric measurements were then carried out on the

multilayered sample as a function of temperature to obtain

the dielectric constant of VO2. While fitting the ellipsometry

data, the individual VO2 and TiO2 layers were assumed to be

coupled to each other. The fit parameters were the amplitude

and broadening of the Lorentz oscillators comprising the

dielectric function of VO2. Dielectric constant of TiO2

obtained from measurements on a single layer was used in

modeling the multilayered structure. Ellipsometry data from

the multilayered sample are then fitted to retrieve the

FIG. 2. (a) Dielectric constants (real and imaginary) of identical VO2 samples determined using ellipsometric measurements in the insulator and metallic

phases. The effective dielectric constants of the multilayered structure determined using ellipsometry and effective medium theory at (b) room temperature

where both ek and e? are positive throughout the spectrum resulting in an ellipsoidal iso-frequency surface and (c) at 130 �C where the VO2 has undergone

phase transition to metallic phase causing the ek to become negative beyond 1560 nm and resulting in hyperbolic dispersion.

FIG. 3. Optical and electrical properties of the structure across the VO2

phase transition. Left vertical axis corresponds to effective in-plane dielec-

tric constant at 1650 nm. ell undergoes a sharp decrease and becomes nega-

tive beyond 95 �C. Right vertical axis corresponds to normalized resistance

of VO2 on a 1-period structure as a function of temperature. Inset shows ek
at 1000 nm as a function of temperature where no transition into the hyper-

bolic regime is observed.

121101-3 Krishnamoorthy et al. Appl. Phys. Lett. 104, 121101 (2014)
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dielectric constant of VO2 as a function of wavelength, at

different temperatures. From the dielectric constants of VO2

and TiO2 as well as the thicknesses of the layers, effective

dielectric constants of the structure are then determined

using effective medium theory.

Fig. 2(b) shows the plot of the effective dielectric con-

stants as a function of wavelength when the multilayered

structure is at room temperature. Since both VO2 and TiO2

are non-metallic, both ek and e? are positive throughout the

spectrum and the optical iso-frequency curve takes the shape

of an ellipsoid due to the slight anisotropy in the dielectric

constants. However, when the metamaterial is heated to a

temperature of 130 �C, due to the insulator-metal transition in

VO2, ek < 0 for wavelengths beyond 1566 nm while e? > 0

in the entire spectrum, as shown in Fig. 2(c). Consequently,

the optical iso-frequency surface transitions into a hyperbol-

oid at wavelengths beyond 1566 nm.

In Fig. 3, we plot the effective in-plane dielectric con-

stant as a function of temperature at 1650 nm to demonstrate

the tunability of the dispersion. Here, ek, which is positive at

lower temperatures, decreases sharply as the temperature

increases and becomes negative for temperatures beyond

95 �C, with the largest change happening around 70 �C. This

temperature dependence is identical to the decrease of elec-

trical resistance of VO2 (gray squares—Fig. 3). This similar-

ity in the optical and electrical characteristics is due to the

change in free carrier concentration as the sample is heated

and transitions from a Lorentz regime to a Lorentz-Drude re-

gime. Beyond 120 �C the free carrier concentration saturates

and hence the optical and electrical properties show minimal

change. On the contrary, at 1000 nm (inset—Fig. 3), which

lies in the elliptical dispersion regime, even at higher temper-

atures there is hardly any change in ek. This is because, at

1000 nm, VO2 does not exhibit metallic properties even at

high temperatures.

We observed that the optical properties of VO2 in the

multilayered structures were different from that of a single

layer. As the number of the TiO2/VO2 periods increase in the

multilayered structure, VO2 shows weaker plasmonic behav-

ior. To understand this, we studied how the properties of

VO2 are affected when multiple layers are deposited on top.

Fig. 4(a) shows the dielectric constants of VO2 measured by

ellipsometry, on a 1-period structure and a 3-period struc-

ture. It is observed that on the 3-period structure, VO2 tends

to be less plasmonic. Fig. 4(b) compares the electrical prop-

erties of VO2 films in different structures. As discussed

before, the VO2 thin films grown on top of TiO2/VO2 layers

exhibit similar properties with the ones directly grown on

c-plane sapphire, which is manifested by the similar peak

shape and positions in the d lnR/dT curves. The transition

temperature of both films is around 72 �C with a width of

�15 �C. However, the transition is slightly weaker on the

VO2/TiO2/VO2 film. This is likely due to the coexistence of

anatase and rutile phase of TiO2, anatase phase of TiO2 is

less ideal for the growth of VO2 than rutile TiO2 that is

isostructural to metallic VO2. In addition, the growth of

TiO2 may also influence the electrical properties of the

underlying VO2 layer. To probe this effect, the top TiO2

layer was etched away from a TiO2/VO2/c-sapphire structure

in an Ar/CF4/O2 gas mixture using reactive ion etching. The

d ln R/dT curve of the VO2 layer after etching away TiO2

has a smaller peak magnitude and broader transition as

shown in Fig. 4(b). Such suppression of the metal-insulator

transition in VO2 could be related to subtle inter-diffusion of

Ti into VO2 during TiO2 deposition. The change in

metal-insulator transition characteristics of VO2 underneath

TiO2 explains the weaker metallic behavior of VO2 in the

three-period structure. Additionally, the interface roughness

increases as more periods of TiO2/VO2 layers are added onto

the structure. Consequently, in a structure with more than

three periods, the hyperbolic dispersion disappeared in the

studied spectral range although the top VO2 layer did show a

weak insulator to metal transition.

In conclusion, we have shown that the topology of the

optical iso-frequency surface in a VO2 based metamaterial

can be tuned by exploiting the metal-insulator transition. At

room temperature, both the in-plane and out-of-plane dielec-

tric constant of the layered VO2/TiO2 anisotropic metamate-

rial are positive. However, as the metamaterial is heated

across the phase transition temperature of VO2, the in-plane

FIG. 4. (a) Dielectric constant (real and imaginary) of VO2 on a 1-period structure and a 3-period structure, at 130 �C. VO2 behaves as a weaker metal on the

3-period structure. (b) d lnR/dT curve as a function of temperature to compare the metal-insulator transition of VO2 films in different environments. Compared

to a single VO2 film, the transition is weaker on a VO2/TiO2/VO2 structure. VO2 film on a heterostructure after etching away the top TiO2 layer shows a much

weaker transition. This could be due to interdiffusion of Ti into VO2 at high temperatures during growth as well as damage of VO2 during etching.
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dielectric constant shows a sharp transition from positive to

negative values resulting in a change in the topology of the

optical iso-frequency curve from closed ellipsoid to open

hyperboloid (Eq. (1)). This transition results in modification

of physical parameters such as dynamics of propagating

waves supported by the system and the photon density of

states as was noted previously.7 The possibility to dynami-

cally tune the iso-frequency surface using external perturba-

tions as shown here points to interesting research directions

in contemporary efforts to control light-matter interaction.
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