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Abstract
In this paper, we demonstrate a facile far-field approach to quantify the near-field
local density of optical states (LDOS) of a nanorod using CdTe quantum dot
(QD) emitters tethered to the surface of the nanorods as beacons for optical read-
outs. The radiative decay rate was extracted to quantify the LDOS; our analysis
indicates that the LDOS of the nanorod enhances both the radiative and non-
radiative decay of QDs, particularly the radiative decay of QDs at the end of a
nanorod is enhanced by 1.17 times greater than that at the waist, while the
nonradiative decay was enhanced uniformly over the nanorod. To the best of our
knowledge, our effort constitutes the first to map the LDOS of a nanostructure
via the far-field method, to provide clarity on the interaction mechanism between
emitters and the nanostructure, and to be potentially employed in the LDOS
mapping of high-throughput nanostructures.
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Interactions between emitters and the environment, which focus on the modulation of
spontaneous emission and understanding of their optical as well as the electronic scattering and
propagation characteristics, is the heart of nano-optics and photonics [1–5]. The spontaneous
emission [6] is inherently determined by the dipole transition momentum of the emitters, and
externally influenced by the surrounding local density of optical states (LDOS). Theoretically
the LDOS is defined as the imaginary part of Green’s function [7] and generally includes all
possible optical modes, which not only affects the optical properties of the surroundings [8–14],
but also has a significant influence on the chemical reactions that occur in the vicinity [15, 16].
Engineering a spontaneous emission by manipulating the LDOS has significant implications in
the fields of energy, communication, and quantum optics; to effectively manipulate the LDOS
and control the emission of spontaneous emitters metallic surfaces [1–4, 8, 9], photonic crystals
[17–19], nanostructures [9, 13, 14, 20–27], and quite recently hyperbolic metamaterials
[10–12], have been introduced.

Due to the importance of LDOS on the engineering of spontaneous emissions, detection and
quantification of LDOS can promote our understanding of nano-optics. Recently emitters have been
used as probes to report on the LDOS. Random drop-casting emitters were often used to detect the
LDOS [5, 8, 12], but the uncertainty in the position of the emitters cannot guarantee the accuracy of
detection. The break through method to detect the LDOS of a single nanostructure was proposed in
2002 by controlling the probes via nanopositioning [27, 28, 30–33]. It can either directly quantify the
coupled photonic intensity through the nano-sized fiber tip, or extensively record the time-resolved
emission from the well-characterized probes. However, this technique is relatively complex to
implement, iterative probing/scanning increases the risk of scanning reversibility; and more critically,
the introduction of the near-field probe gives rise to a strong external local gradient in the electric
field [7]. Cathodoluminescence (CL), which collects luminescence upon excitation by electron
beams, is an intact technique used to detect the LDOS in the far-field beyond the diffraction limit, but
this approach can only detect the radiative modes of the LDOS, and poses high restrictions on the
environment and operation [29]. To the best of our knowledge, a simple and robust method to detect
and quantify the near-field local photonic density of single nanoscale structures via use of a far-field
technique has not been attempted.

In this paper, we propose a facile platform to map the LDOS of single nanostructures
without the intricacies involved in nanopositioning required in the near-field. Cadmium
Telluride (CdTe) quantum dots (QDs) as spontaneous emitters were conjugated to the surface of
gold nanorods (AuNRs) by chemical modification. The distance between the QDs and the
AuNRs could be controlled by a thin layer of silica at nanometer precision. The LDOS of the
AuNR is deduced by recording and analyzing the spontaneous decay of the QDs, and the
radical LDOS of the AuNRs can be detected by controlling the distance between the QDs and
the AuNRs with a thin layer of silica. The method presented will lead to a fast and convenient
means to detect and quantify the photonic density for use in the design of photonic structures.

As discussed above, light emission is determined by the transition dipole momentum of the
emitters and the LDOS. The radiative decay rate,

Rad
γ , of a quantum emitter in a medium can be

described by [7, 19]:
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where 0ω is the excitation frequency, ℏ is Planck’s constant, 0ε is the dielectric constant in a
vacuum, μ is the transition dipole momentum of the emitter, r( , )0ρ ωμ denotes the projected

LDOS, c is the speed of light in a vacuum, nμ denotes the unit vector of μ; { }G r rIm ( , ; )0ω⃡ is

the imaginary part of Green’s function that defines the LDOS. Therefore, we found that by
obtaining

Rad
γ one can deduce the LDOS.

In our experiment, we selectively locate the spontaneous emitters a few nanometers away
from the AuNR. As shown in figure 1, a layer-by-layer coating method was applied by chemical
conjugation, with AuNRs constituting the inner core, silica as the intermediate spacer layer, and
QDs as the outer illumination/detection layer. Briefly, in our experiment we start with the
synthesis of AuNRs that are ∼400 nm long and ∼40 nm wide, fabricated by the three-step
seeding method reported by Murphy and co-workers [34–36]. A thin layer of silica was coated
onto the surface of the AuNRs [37]. Finally, water soluble QDs were conjugated onto the silica
layer to complete the material construction [25].

Spontaneous emissions of QDs are recorded by confocal fluorescence lifetime imaging
microscopy (FLIM), which does not involve nanopositioning control and has the ability to
record the signal in the far-field. The system, as shown in figure 2(a), is developed based on a
commercial platform, Picoquant TimeHarp 200, which is a confocal scanning microscopy with
an integrated time-correlated single photon counting (TCSPC) module. A picosecond pulsed
laser beam at a 467 nm wavelength with a repetition frequency of 10MHz was delivered onto

Figure 1. Biofunctionalization of AuNRs with QDs. (a) Transmission electron
microscopy (TEM) images of AuNRs (top), AuNRs coated with silica (middle), and
silica-coated AuNRs coated with QDs (bottom). (b) Conceptual description of the
biofunctionalization procedure. (Structures are schematic and not to scale).

3

New J. Phys. 16 (2014) 063069 J Liu et al



the sample by a water-immersion objective (OLYMPUS UPLANAPO, 60x/1.2), leading to the
lateral spatial resolution of the system at around 200 nm. The excited fluorescence emission was
collected by the same objective and filtered by a dichroic mirror, a 50 μm pinhole was used to
reject the background noise and the out-of-focus fluorescence, and the signal was filtered again
by a band-pass filter (585–645 nm, Omega) before entering the single photon avalanche
photodiodes (SPAD) (SPCM-AQR-14, PerkinElmer Inc.). Details of the instrument and data
acquisition can be found in [38] and [39].

Before enumerating the spontaneous decay of QDs around the NR, briefly we discuss the
fine energy structure of CdTe QDs [40, 41]. The exciton level of a CdTe QD can be simplified
as a three-level system, consisting of a bright state, dark state, and the ground state (figure 2(b)).
The spontaneous decay of CdTe QDs can step through multiple pathways. The bright state b

can relax to the ground state g via either radiative or nonradiative decay at the rate
Rad
bγ and

nRad
bγ , respectively; meanwhile b could transition to the dark state d with a spin-flip rate

bd
γ .

The radiative transition between the dark state and ground state is forbidden, while the
nonradiative recombination of electrons and holes is possible at the rate

nRad
dγ ; and in addition,

d can also flip to b at the rate of
db

γ , where e
bd

k T
db

/bd Bγ γ= δ [19, 40, 42], bdδ is the splitting

energy between b and d (∼100 μeV) [40, 42], kB is the Boltzmann constant, and T is the
experimental temperature (∼300K). Here we take an approximation

bd db
γ γ≅ since k TB bdδ≫ ;

Figure 2. Schematic of the measurement unit and analyses concepts. (a) Experimental
design of the instrument. (b) Exciton levels of the CdTe QDs. (c) Time correlated single
photon counting (TCSPC) decay of the fluorescence signal collected from the QDs
described in (b), ‘QD’ presents the case when a QD is in vacuum; ‘7 nm Silica +QD’
(‘24 nm silica +QD’) presents the case when a QD is coated onto the AuNRs, isolated
by a 7 nm (24 nm) silica layer. (d) The average lifetime of QDs on the surface of the
AuNRs fitted from (c). (e) Analysis of the decay behavior of QDs from (c) calculated
using equations (2) and (3).
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furthermore,
nRad
dγ can be approximated to

nRad
bγ due to the small bdδ compared with the energy

between the excited and ground states (∼2 eV) [43], and this approximation has been
experimentally proven valid by measuring the

nRad
bγ and

nRad
dγ of QDs in a known LDOS [43, 44].

Since the fluorescence emitted from a QD is collected in a steady state, the exciton
population N t( )b of the bright state b can be deduced from the population equation [19, 42]

N t A e A e( ) (2)b
t t

1 2
1 2= +γ γ− −
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Here N (0)b and N (0)d are the initial exciton populations of b and d , respectively; for the
weak pumping, N (0)b and N (0)d can be set as N N(0) (0) 0.5b d= = [19, 42] (assuming that the
overall population of excited states is 1).

The fluorescence signal recorded by the SPAD is then processed in the TCSPC mode by
the SymPhoTime software (Picoquant, Germany), where all the TCSPC curves (figure 2(c))
were fitted via the least-square fitting by

I t a N t( ) ( ) (4)
Rad
b

b0 γ=

and one can obtain values of parameters
1

γ ,
2

γ , A1 and A2 (R2 of all fittings are in the range
[0.995, 1]). The average lifetime of the sample was obtained from

( ) ( )A A A A(1/ ) (1/ ) / (1/ ) (1/ )avg 1 1
2

2 2
2

1 1 2 2
τ γ γ γ γ= + + (the intensity-averaged lifetime); the radia-

tive decay rate
Rad
bγ , nonradiative decay rate

nRad
bγ , and spin-flip rate

bd
γ were calculated using

equations (2) and (3). All results are shown in figures 2(c)–(e). It should be noted that generally
the inverse of the lifetime equals the ‘total’ decay rate which summarizes

Rad
bγ and

nRad
bγ [19],

therefore in our report we extracted
Rad
bγ from the total spontaneous decay and applied it to

calculate the LDOS.
Figure 2(c) shows the experimental measurements and theoretical fitting of time-resolved

spontaneous emissions from QDs coated on the AuNRs with different silica thicknesses, and the
statistics of calculated average lifetimes is presented in figure 2(d). The QDs show different lifetimes as
the distances between the AuNRs and the QDs vary, which was estimated as in [25]. The QDs on the
AuNRs with the thinnest silica layer (7nm) exhibit the least lifetime, ∼2.17ns; while the QDs on the
AuNRs with a thicker silica layer and on a coverslip yield much larger lifetimes, ∼6.11ns for QDs on a
24nm silica layer and ∼11.74ns for QDs on a coverslip (without a silica layer). This is because the
closer the emitter approximates to AuNRs, the more effective coupling between excited emitters and
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Figure 3. Lifetime distribution of QDs on a AuNR surface coated with a 5 nm layer of
silica. (a) Intensity image of QDs on AuNRs; (b) lifetime mapping of QDs on AuNRs;
lifetime (c) and intensity (d) image of QDs with a lifetime smaller than 1.8 ns; separated
lifetime (e) and intensity (f) image of QDs with a lifetime greater than 1.8 ns; (g)
average lifetime of QDs at the waist and ends of the AuNR. Unit in (a), (d) and (f):
‘Kcps’ represents a thousand counts per second.
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LDOS of the AuNRs occurs. Furthermore, by solving equation (3) with the parameters fitted from the
TCSPC decay curves in figure 2(c), the respective radiative decay rate and nonradiative decay rate of
QDs can be obtained, as compared in figure 2(e). First,

Rad
bγ ,

nRad
bγ , and

bd
γ of the QDs on the glass

coverslip are 0.2545±0.018ns−1, 0.0119±0.002ns−1, and 0.1028±0.008ns−1, suggesting the high
quantum yield of QDs on a coverslip and a lifetime of ∼4ns (in agreement with the calculated

amplitude-averaged lifetime, ( ) ( )A A A A(1/ ) (1/ ) /avg
Amp

1 1 2 2 1 2τ γ γ= + + . Note: in this paper, the default

average lifetime is the intensity-averaged lifetime), which indicates the robustness of our calculation. As

a contrast,
Rad
bγ ( )nRad

bγ of QDs on AuNRs with 7 and 24nm gaps is enhanced significantly to

0.8999±0.063ns−1 (0.1788±0.015ns−1) and 0.7684±0.066ns−1 (0.0821±0.009ns−1), respectively. It
is found that

Rad
bγ is enhanced by∼3–3.5 times for QDs on AuNRs than that for QDs on a coverslip, but

the
nRad
bγ is enhanced as much as fifteen times (this enhancement factor was called ‘inhibit factor’ in

[19]. The radiative enhancement generally comes from the coupled localized surface plasmon
resonance of AuNRs, and this enhancement reduces with the increased gap between emitters and
AuNRs, as observed here (

Rad
bγ varies from 0.2545ns−1 (no AuNRs), to 0.8999ns−1 (7nm gap with

AuNRs), and to 0.7684ns−1 (24nm gap with AuNRs)). While for the non-radiative decay rate, the
enhancement comes not only from the coupled localized plasmon resonance, but also from the surface
energy transfer (SET) procedure, which is dominant when the gap between emitter and AuNRs is
smaller than 10nm [45]. The SET-induced enhanced nonradiative decay rate also decreases with the
increased gap between emitters and AuNRs (

nRad
bγ varies from 0.0119ns−1 (no AuNRs), to 0.1788ns−1

(7nm gap with AuNRs), and to 0.0821ns−1 (24nm gap with AuNRs)).
Although figure 2 shows that the LDOS of a metal nanostructure has a strong coupling

with spontaneous emitters that are held in close proximity to the nanomaterial, the results
represent an average lifetime of emitters on multiple AuNRs, typically used in other related
studies [25]. Note that the characterization and quantification of the LDOS of an individual
AuNR have rarely been reported. Our work allows one to map the LDOS of AuNRs by
quantifying the spontaneous decay of the quantum emitters.

QDs were coated onto AuNRs (∼400 nm) and separated by a 5 nm-thick silica layer
(shown in figure 1(a)). Figure 3 shows the fluorescence intensity and lifetime images of QDs on
AuNR on the coverslip. It is clear from the FLIM image (figure 3(b)) that the QDs at the two
ends of the nanorod have smaller lifetimes compared to the QDs at the waist of the nanorod,
while the intensity image (figure 3(a)) does not show the enhancement at the ends or waist. The
difference in lifetime is further clarified in figures 3(c)–(f), where distributions of photons with
different lifetimes are depicted. Figures 3(c) and (d) are the FLIM and intensity distribution
maps of photons with lifetimes in the range between 0–1.8 ns, while (e) and (f) denote images
with lifetimes greater than 1.8 ns. Our analysis indicates that QDs at the ends of the nanorods
have a smaller lifetime, which is about 1.74 ± 0.04 ns, while the average lifetime of QDs at the
waist of the nanorod is about 2.04 ± 0.01 ns. This comparison is shown in figure 3(g).

The results obtained describe the lifetime distribution of spontaneous emitters on a metal
nanostructure, which can be specifically assigned to the coupling of the spontaneous decay of
QDs with the LDOS of the metal nanostructure. By analyzing the time-resolved spontaneous
decay, one can assess the influence of the LDOS on the radiative and nonradiative decay rate of
QDs on a single metallic nanostructure.
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As discussed above, the time resolved fluorescence decay curve contains contributions
from both the radiative and nonradiative decay behavior of emitters, although the previous
reports have just focused on the time-resolved spectroscopy to obtain information on the
average lifetime [27]. It is important to extract each of these decay rates for a comprehensive
map of effects of the LDOS and to clarify the role of the decay behavior with respect to
light–matter interaction. Equations (2), (3) and (4) were applied to calculate

Rad
bγ and

nRad
bγ of

QDs at different positions on the AuNR. As shown in figure 4, the radiative decay rate
Rad
bγ

suggests maximum values at the two ends of the AuNR, a medium value at the waist of the NR,
and a minimum value at the position between the ends and waist. Our results clearly show that,
on a AuNR, the radiative decay of QDs is more pronounced at the ends than at the waist. While
for the nonradiative decay rate, there is less variation in the values obtained at the different
positions, suggesting that the nonradiative decay rate is equally enhanced on the AuNRs.

This is the first experimental quantification of the near-field LDOS of a nanorod using far-
field methods. It is worth noting here that we use a chemical conjugation method to precisely
localize QDs 5 nm apart from the AuNR, and to quantify the LDOS 5 nm from the AuNR.
Considering the uniformity of the distribution of QDs on the AuNR, the emission behavior
exactly reveals the near-field LDOS of a AuNR. By varying the thickness of the silica layer
between QDs and AuNRs, one can obtain a detailed 3D near-field LDOS distribution of the
AuNR. While for the nano-positioning technique, it is difficult to precisely control the nano-
probe to as close as 5 nm from the AuNRs; in addition, the LDOS of the AuNR would be
dramatically changed if a nano-sized probe is approaching it.

The experimental results were validated by simulation of the LDOS using the full-wave
numerical simulation based on the finite-element method with the software COMSOL
(COMSOL Inc.). The structural parameters were extracted from the TEM images shown in
figure 1, and the dielectric constants were obtained from an online tool from nanoHUB.org [46].
From equation (1) we know that the LDOS is proportional to the imaginary part of Green’s
function; in addition, we deduce Green’s function from E r G r r p( , ) ( , , )

0
2

0ω μ ω ω= [32],
where E r( , )ω is the electronic field around the NR, and p is the dipole of the QD. Figure 5

Figure 4. Radiative (black) and nonradiative (blue) decay rate of QD on a AuNR
(coated with a 5 nm layer of silica) with respect to the length of the AuNR. Black:
radiative decay, red: theoretical fitting from figure 5. Blue: Nonradiative decay, green:
theoretical fitting.

8

New J. Phys. 16 (2014) 063069 J Liu et al

http://nanoHUB.org


shows the LDOS maps of a AuNR based on our simulation. The LDOS profiles at the x-y and
x-z plane both qualitatively show that the enhanced LDOS was observed at the two ends of the
nanorods compared to the values at the waist, which is in agreement with the LDOS map shown
in figures 3 and 4. In addition, simulation also suggests that the positions of minimum LDOS
are found in the vicinities of the ends of AuNRs (compare the color bar of the simulation result);
correspondingly at that position the minimum enhancement of the radiative decay rate was
observed (figure 4), although the resolution of figure 4 is limited by the microscopy.

To summarize, we have demonstrated a new platform to detect the LDOS of a nanoscale
metallic structure in the far-field, which can potentially be used for single molecule sensing. QDs
were covalently attached to the surface of AuNRs via chemical conjugation for evaluation and their
interacting distances with the NR were controlled at nanometer resolution. Fluorescence lifetime
imaging of the QDs on the NR indicates that the LDOS at the ends of the nanostructure were greater
than their effect at the waist. Our analytical study also shows the influence of LDOS on the radiative
decay and nonradiative decay of QDs on the NR, and was confirmed by numerical simulation. The
developed methods can be widely applied to evaluate the LDOS of other nano-structures and meta-
materials to promote the design and development of novel photonic and quantum devices.
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