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ABSTRACT 

 

The influence of measurement scale and uncertainty on 

interpretations of river migration 

 

by 

 

Mitchell R. Donovan, Doctorate of Philosophy 

Utah State University, 2019 

 

Major Professor: Dr. Patrick Belmont 

Department: Watershed Sciences 

 

 

Measuring temporal and spatial variation in river migration enables us to better 

understand mechanisms driving one of the most ubiquitous and effective modes of 

reworking Earth’s surface. Studies of river migration span multiple orders of spatial and 

temporal magnitude- from a single meander bend to geologic-scale evolution of rivers. 

Uncertainty is inherent but often overlooked in measuring river channel evolution and 

few consider how spatial and temporal measurement scales bias measurements. Ignoring 

such uncertainties may confound measurements, obscure patterns of river behavior, and 

lead to false conclusions regarding processes of river change. In three studies, we 

describe (1) how to quantify and account for uncertainty in measuring channel 

adjustments, (2) whether temporal measurement scale impact inferences about river 

response to agricultural management, and (3) if spatial measurement scale can bias 

apparent mechanistic relations between meander migration and curvature. We explore 76 

years of geomorphic change along the Root River in response to shifting hydrology and 
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land management, recorded in decadal sets of imagery. The changing conditions and 

extensive imagery provide an excellent natural experiment to explore our objectives. In 

Chapter 2 we developed the first comprehensive framework for quantifying and 

accounting for uncertainty in channel erosion derived measurements from aerial imagery. 

We review and test best practices for quantifying uncertainty, provide context for 

applying each practice, and introduce new methods for handling measurements below the 

threshold of uncertainty. Although this framework is developed for river planform 

adjustments, it is applicable to many moving boundary measurements. Chapter 3 explores 

how migration rate measurements from aerial images may be biased by the time interval 

between measurements. Migration rates measured over longer time intervals 

systematically underestimate ‘true’ rates because reversals in migration direction 

underestimate net migration distance between images. Migration measurements must 

encompass short-term rate variability in order to accurately demonstrate fluvial change 

and estimate long-term sediment remobilization and flux for sediment budgets. These 

results inform our data selection for Chapter 4, wherein we demonstrate how spatial 

measurement scale can influence apparent relations among factors impacting channel 

migration. Using measurement scales that capture longitudinal variability in shear 

stresses helped discern a phase lag between curvature and migration signals. 

 (169 pages) 
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PUBLIC ABSTRACT 

 

The influence of measurement scale and uncertainty on 

 

interpretations of river migration 

 

Mitchell R. Donovan 

 

Environmental scientists increasingly use remotely-sensed images to measure 

how rivers develop over time and respond to upstream changes in environmental drivers 

such as land use, urbanization, deforestation and agricultural practices. These 

measurements are subject to uncertainty that can bias conclusions. The first step towards 

accurate interpretation of river channel change is properly quantifying and accounting for 

uncertainty involved in measuring changes in river morphology. In Chapter 2 we develop 

a comprehensive framework for quantifying uncertainty in measurements of river change 

derived from aerial images. The framework builds upon previous uncertainty research by 

describing best practices and context-specific strategies, comparing each approach and 

outlining how to best handle measurements that fall below the minimum level of 

detection. We use this framework in subsequent chapters to reduce the impact of 

erroneous measurements. Chapter 3 evaluates how the time interval between aerial 

images influences the rates at which river channels appear to laterally migrate across their 

floodplains. Multiple lines of evidence indicate that river migration measurements 

obtained over longer time intervals (20+ years) will underestimate the ‘true’ rate because 

the river channel is more likely to have reversed the direction of migration, which erases 

part of the record of gross erosion as seen from aerial images. If the images don’t capture 

channel reversals and periodic episodes of fast erosion, the river appears to have migrated 

a shorter distance (which corresponds to a slower rate) than reality. Obtaining multiple 
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measurements over shorter time intervals (< 5 years) and limiting direct comparisons to 

similar time intervals can reduce bias when inferring how river migration rates may have 

changed over time. Chapter 4 explores the physical processes governing the relationship 

between river curvature and the rate of river migration along a series of meander bends. 

We used fine-scale empirical measurements and geospatial analyses to confirm theory 

and models indicating that migration and curvature exhibit a monotonic relationship. The 

results will improve models seeking to emulate river meander migration patterns. 
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CHAPTER 1 

INTRODUCTION 

 

River channels are among the most dynamic landforms on Earth’s surface, 

sweeping laterally across valley bottoms- often in subtle and sometimes catastrophic- 

ways over event-, decadal-, and millennial timescales. Measuring temporal and spatial 

variation in river migration enables us to better understand mechanisms driving this 

ubiquitous and impactful feature of Earth’s surface. Remotely-sensed imagery is 

increasingly used to measure changes in river planform in response to changes in 

environmental drivers such as landuse, urbanization, deforestation, dam building or 

removal (Gurnell et al., 1994; Gaeuman et al., 2005; Constantine et al., 2014; Donovan et 

al., 2015, 2016), develop predictive understanding of channel and floodplain evolution 

(Lauer and Parker, 2008; Crosato, 2009; Braudrick et al., 2009; Parker et al., 2011), 

providing constraints for sediment budgets (Trimble, 1983; Reid and Dunne, 2005; 

Belmont et al., 2011; Stout et al., 2014) and improving bank erosion models (Larsen et 

al., 2006; Motta et al., 2012).  River meander migration also provides intriguing 

opportunities to test theories regarding basic principles and properties of physics (Hickin 

and Nanson, 1984; Furbish, 1988; Constantine et al., 2009; Crosato, 2009; Parker et al., 

2011). The complexity inherent in modelling meander migration is reflected in studies 

spanning multiple orders of spatial and temporal magnitude- from individual meander 

bends (Dietrich et al., 1979; Kasvi et al., 2017), to evolution of floodplains and valleys 

(Belmont, 2011; Gran et al., 2013; Schwenk et al., 2015), to development of a 

stratigraphic record spanning eons (Miall, 2006). 

Accurately measuring river channel change from remotely-sensed imagery is also 
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essential for estimating risk to infrastructure (Wente, 2000; Allan, 2004), mapping flood 

risk (Slater et al., 2015; Call et al., 2017), quantifying sediment loading, and improving 

success of stream restoration/reclamation and riparian/watershed management. The 

potential accuracy and precision of meander migration analyses have improved as the 

result of increased availability of historical and contemporary landscape-scale data (e.g., 

aerial photographs and high-resolution topography, HRT) for short (<1 year) and long (> 

50 years) timescales. Availability of such data has supported a new wave of quantitative 

approaches that have advanced our understanding of fluvial patterns, processes and trends 

(Lindsay and Ashmore, 2002; Ghoshal et al., 2010; Donovan et al., 2015; Passalacqua et 

al., 2015), while also illuminating new challenges and gaps in our understanding of river 

morphology (Allan, 2004; Lawler, 1993). While we focus on channel migration measured 

from aerial images, our insights are applicable to changes measured using other 

platforms, such as repeat topographic surveys, lidar, digitized images, and/or 

orthoimages. 

A critical challenge arising in quantifying fluvial change from aerial imagery is 

documenting and accounting for measurement uncertainty (Unwin, 1995; Edwards and 

Lowell, 1996; Kiiveri, 1997). Despite an abundance of remotely-sensed data and new 

capabilities enabled by continually evolving software packages, studies of fluvial change 

based upon remote sensing lack a robust and consistent methodology for quantifying and 

accounting for uncertainty (Kiiveri, 1997; Schook et al., 2017; Werbylo et al., 2017). 

Several studies have provided recent advances to our understanding of uncertainty in 

measurements of channel width and lateral migration from remotely sensed imagery 

(Mount et al., 2003; Mount and Louis, 2005; Hughes et al., 2006; Lea and Legleiter, 
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2016; Werbylo et al., 2017). Methods for measurement of river migration rates lags 

considerably behind other measurements of topographic change for which rigorous, 

repeatable and generalizable uncertainty methods have been developed and are routinely 

applied by researchers (Brasington et al., 2003; Wheaton et al., 2010; Passalacqua et al., 

2015; Schaffrath et al., 2015; Bangen et al., 2016; Vericat et al., 2017; Anderson, 2018).  

The first goal of this dissertation is to provide a comprehensive framework for 

evaluating uncertainty in estimates of river migration and width change by: (1) 

summarizing relevant research and methods for evaluating uncertainty; (2) highlighting 

and testing approaches used to estimate channel migration and uncertainty; (3) 

systematically evaluating how spatial autocorrelations, riparian vegetation, and 

geomorphic conditions influence uncertainty; and (4) evaluating and improving 

techniques for dealing with measurements that fall below the minimum level of detection. 

Beyond planform adjustment of river channels, the guidance and results presented herein 

are applicable to measuring changes in other delineated boundaries, including glacier 

retreat or advance, erosion or deposition along coastlines and lakeshores, changes in 

wetland extent, expansion or contraction of vegetation (e.g., deforestation), cliff retreat, 

and political boundary disputes. Ensuring effective management of the river corridor 

requires that we appropriately quantify and report uncertainty in river migration 

measurements, lest we run the risk of inappropriately prescribing costly channel and 

riparian management strategies, including bank stabilization and invasive restoration or 

rehabilitation practices. 

A second challenge that pervades hydrologic, geomorphic and other 

environmental science research is the issue of temporal and spatial measurement scales.  
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(Blöschl, 1996; Kirchner et al., 2001; Sadler and Jerolmack, 2015; Donovan and 

Belmont, 2019). The rates of many landscape processes are unsteady over time and non-

uniform in space (Ganti et al., 2016). Thus, the time and space scales over which we 

measure change may have an important influence on the outcome and can bias our ability 

to understand and predict change (Schumm and Lichty, 1965; Harvey, 2002).  

Timescale dependence occurs when measurements of process rates are directly 

influenced by the timescale over which they are measured, leading to biased comparisons 

of rates measured over different time intervals. This in turn, confounds our ability to 

untangle the complexity of environmental responses to external variables (Gurnell et al., 

1994; Larsen et al., 2006; Micheli and Larsen, 2011; Gallen et al., 2015; Schook et al., 

2017). Timescale dependence has been demonstrated for a multitude of unsteady 

processes, including sediment accumulation, aggradation, progradation, and degradation 

(Sadler, 1981; Gardner et al., 1987; Lindsay and Ashmore, 2002; Kessler et al., 2013; 

Sadler and Jerolmack, 2015), river incision (Finnegan et al., 2014; Gallen et al., 2015), 

mountain erosion (Kirchner et al., 2001), cliff erosion (Cambers, 1976), and slope 

adjustments (Penning-Rowsell and Townshend, 1978).  

Process hiatuses (e.g., rapid change followed by periods of dormancy) and 

reversals (e.g., incision vs. aggradation) appear to be largely responsible for timescale 

dependence across a variety of unsteady processes (Sadler, 1981; Gardner et al., 1987; 

Finnegan et al., 2014; Sadler and Jerolmack, 2015). In the case of river migration, 

channel reversals may lead to underestimating measured migration rates by erasing part 

of the migration record between sequential aerial images. Despite this intuitive 

connection, the potential for timescale dependence in river migration measurements has 
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not been previously addressed. In Chapter 3, we analyze empirical and synthetic datasets 

to address the following questions: Does timescale dependence exist for river migration 

measurements? If so, how does it affect our ability to accurately measure and compare 

changes in migration rates over time? What mechanisms cause measurement timescale 

dependence, and to what degree? Can timescale dependence and actual changes in 

channel migration be disentangled in order to determine if/when/where real changes in 

migration rates have occurred?  

The second component of measurement scale – space – reflects a third challenge 

that has resurfaced in new ways with the use aerial imagery and software to quantify 

changes in river morphology. While aerial imagery archives and new measurement 

platforms allow us to track detailed changes across Earth’s surface at a variety of scales, 

the scale at which change is documented can will impact the results and may bias our 

interpretation of the driving mechanisms. When measurements of meander migration are 

averaged over the scale of a meander bend, rates of river migration are observed to be 

largest for bends with a moderate degree of curvature (Hickin, 1974; Nanson and Hickin, 

1983; Hickin and Nanson, 1984). However, if change is measured at smaller, sub-bend 

scales, rates of erosion are observed to continuously increased with curvature (Sylvester 

et al., 2019). Additionally, the spatially continuous sub-bend measurements and 

geospatial analyses revealed a spatial lag of about 2 to 5 channel widths between patterns 

of curvature and migration rate. The role of curvature as a driver of bend migration 

informs our assessment of the driving mechanics and appears to depend upon 

measurement scale (Furbish, 1988; Hickin and Nanson, 1984; Howard and Knutson, 

1984; Nanson and Hickin, 1983). The contrast between empirical measurements obtained 
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at bend-averaged and sub-meander scales highlight the need to better understand how 

spatial scale impacts curvature-migration relationships in natural river meanders.    

Chapter 4 explores how spatial scale of measurement can impact curvature-

migration relationships in natural river meanders. We examine the evolution of curvature 

and migration at sub-meander scales using repeated aerial images spanning large 

temporal (76 years) and spatial scales (25 river-km). Fine-scale measurements provide an 

opportunity to reevaluate the contrasting forms of curvature-migration relationships. 

Specifically, we ask: is there empirical evidence that migration rates peak at a critical 

radius of curvature that is 2 to 3 times the channel width (R/W ~2-3), or if they exhibit a 

direct relationship between curvature and migration?  If the latter, what form does the 

relationship take? Is the peaked relationship between migration and curvature an artifact 

of using bend-averaged measurements, which fail to capture sub-meander scale 

variability? We also evaluate whether there is a spatial lag between curvature and 

migration. A clearer relation between bend curvature and migration rate can support a 

better understanding of the underlying mechanisms and an improved basis for predicting 

meander dynamics. 
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CHAPTER 2 

 

ACCOUNTING FOR UNCERTAINTY IN REMOTELY-SENSED 

 

MEASUREMENTS OF RIVER PLATFORM CHANGE 

 

 

1. Introduction 

River channels are among the most dynamic landforms on Earth’s surface, 

sweeping laterally across valley bottoms- often in subtle and sometimes catastrophic- 

ways over event-, decadal-, and millennial timescales.  Remotely-sensed imagery is 

increasingly used to delineate channel boundaries to measure changes in river planform 

such as lateral migration (Hickin and Nanson, 1984; Gurnell et al., 1994; Gaeuman et al., 

2005b; Lauer and Parker, 2008; Constantine et al., 2014; Donovan et al., 2015, 2016; 

Morais et al., 2016), as well as channel width (Winterbottom, 2000; Pavelsky and Smith, 

2008; Swanson et al., 2011; Downs et al., 2013; Lauer et al., 2017). These measurements 

provide a basis for understanding effective management strategies for erosion along the 

riparian corridor (Micheli et al., 2004; Piégay et al., 2005), providing input to sediment 

budgets (Allmendinger et al., 2007; Belmont et al., 2011; Smith et al., 2011), and 

automated characterization of single- versus multi-threaded river planforms (Rowland et 

al., 2016). Such measurements also inform our understanding of important issues 

including erosional hazards caused by migrating streams (Lawler, 1993; Piégay et al., 

1997, 2005; Hughes et al., 2006; Rhoades et al., 2009), understanding the impact of 

anthropogenic modifications to the fluvial system (Shields et al., 2000; Donovan and 

Belmont, 2019), and managing riparian habitat (Ward et al., 2002). Ensuring effective 

management of the river corridor requires that we appropriately quantify and report 

uncertainty in river migration measurements, lest we run the risk of inappropriately 
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prescribing costly channel and riparian management strategies, including bank 

stabilization and invasive restoration or rehabilitation practices. 

Increased availability and resolution of aerial photography, satellite imagery, 

unmanned aerial vehicle (UAV) imagery, and LiDAR or digital elevation/terrain models 

(DEM/DTMs) of Earth’s surface have greatly enhanced the precision, spatial extent and 

temporal frequency with which we can analyze river channel migration (Harpold et al., 

2015). Despite an abundance of remotely sensed data and new capabilities enabled by 

continually evolving software packages, studies of fluvial change based upon remote 

sensing lack a robust and consistent methodology for quantifying and handling 

uncertainty (Kiiveri, 1997; Schook et al., 2017; Werbylo et al., 2017). Several studies 

have provided recent advances to our understanding of uncertainty in measurements of 

channel width and lateral migration from remotely sensed imagery (Mount et al., 2003; 

Mount and Louis, 2005; Hughes et al., 2006; Lea and Legleiter, 2016; Werbylo et al., 

2017), but no comprehensive framework has been developed. In this way, the methods 

for measurement of river migration rates lags considerably behind other measurements of 

topographic change for which rigorous, repeatable and generalizable uncertainty methods 

have been developed (Brasington et al., 2003; Wheaton et al., 2010; Passalacqua et al., 

2015; Schaffrath et al., 2015; Bangen et al., 2016; Vericat et al., 2017; Anderson, 2018).  

The goal of this paper is to provide a comprehensive framework for evaluating 

uncertainty in estimates of river migration and width change by: (1) summarizing 

relevant research and methods for evaluating uncertainty; (2) highlighting and testing 

approaches used to estimate channel migration and uncertainty; and (3) filling in gaps 

regarding how spatial autocorrelations, riparian vegetation, and geomorphic conditions 
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influence uncertainty. This paper does not attempt to address all possible approaches or 

available tools for analyzing channel migration, but rather discusses the primary 

considerations and key components of the uncertainty inherent in such measurements. 

Beyond planform adjustment of river channels, the guidance and results presented herein 

are applicable to measuring changes in delineated boundaries, including glacier retreat or 

advance, erosion or deposition along coastlines and lakeshores, changes in wetland 

extent, expansion or contraction of vegetation (e.g., deforestation), cliff retreat, and 

political boundary disputes. Furthermore, it will help generate and constrain uncertainty 

and error estimates for models utilizing such data. 

 

2. Error and uncertainty in Geographic Information Systems 

 

2.1. Background 

Measurements of planform change over broad spatial and temporal scales are 

often derived from series of remotely-sensed images. Such measurements are often made 

within geographic information systems (GIS) due to their ability to compile and measure 

spatial (e.g., x, y, z), temporal, and thematic components. Respectively, these three 

components describe a measurement’s location and size within space, the time, speed 

and/or duration of the measurement, and any associated descriptions or classifying 

attributes. Measurements of planform change derived from remotely-sensed images 

contain spatial and temporal components that manifest in magnitudes and rates of change. 

Such measurements also contain some amount of error, which can be defined as the 

difference between a measurement of reality, and reality itself (Unwin, 1995; Crosetto & 

Tarantola, 2001). For planform changes, temporal error is generally absent because the 

date of image acquisition is usually known. Thematic/classification errors are also 
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irrelevant, leaving only spatial/locational uncertainty in the horizontal and (sometimes) 

vertical dimensions, to consider. Spatial uncertainty is estimated as the total possible 

error in a given measurement, the components of which are summarized in Table 2-1. 

Estimating the total possible error provides a value with which to quantify a level of 

detection (LoD) threshold. The LoD is a threshold for determining which measurements 

are statistically significant. Measurements that fall below the LoD, called ‘nondetects’, 

occur due to measurement error exceeding the magnitude of measured change. By 

quantifying uncertainty alongside measurements of river planform change, we provide 

transparent and informative data for best management practices along the riparian 

corridor. 

When documenting channel planform and migration change using aerial images, 

total uncertainty should include uncertainty in image georeferencing and 

orthorectification, as well as uncertainty in manual- or algorithm-derived channel 

delineations (Libby et al., 2016). The choice of transformation (e.g., linear, polynomial, 

kriging, spline, etc.) can have the largest impact on orthorectification uncertainty. A 

second-order polynomial transformation is recommended for most applications, because 

it minimizes both image distortion and georeferencing error (Hughes et al., 2006). The 

quantity, quality, and spatial distribution of georeferenced control points (GCPs) are key 

factors influencing georeferencing uncertainty, summarized in Table 2-1 (Lea and 

Legleiter, 2016). Delineation error has received considerably less attention in the 

literature. Gurnell et al. (1994) quantified digitization error for a single-threaded highly 

sinuous channel using average offset of repeated streambank digitizations on 1:10,000 

scale maps. They found an average of ±2 meters offset over 18 river km, but were unable 
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to evaluate how error varied spatially or may be affected by overhanging vegetation or 

shadows, similar to semi- and fully-automated channel delineations (Güneralp, Filippi, & 

Hales, 2013, 2014). Working in a mix of braided and anastomosing morphologies, 

Werbylo et al., 2017 found that while digitizations of multiple users resulted in no 

significant differences on average channel width, at-a-section differences in width varied 

by as much as 37 meters. The authors conclude that digitizations are more consistent for 

imagery obtained at high resolution and that flow conditions are the most significant 

factor impacting error and inconsistency in delineations, with higher flows providing 

more consistent delineations. 

Accurately estimating uncertainty is not only essential for filtering out unreliable 

measurements, but also for retaining reliable measurements. The latter is particularly 

relevant for short-term measurements of smaller changes that are rendered obsolete if 

uncertainty is overestimated (Liro, 2015; Lea & Legleiter, 2016; Donovan & Belmont, 

2019). However, when uncertainty cannot be properly quantified, results should be 

constrained using upper and lower bounds of uncertainty (Kiiveri, 1997; Crosetto & 

Tarantola, 2001; Donovan et al., 2015; Passalacqua et al., 2015; Lauer et al., 2017) or 

simply highlighting locations where the measurement is more or less a reflection of noise 

(i.e., random variability) to provide an estimate of reliability for end users. Using 

probability and fuzzy positional boundaries has been proposed as a generic approach to 

estimate probabilistic positional uncertainty in GIS (Kiiveri, 1997; Wheaton et al., 2010). 

For any application, appropriately evaluating and disclosing uncertainty will improve the 

quality of results and subsequent applications. 
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Table 2-1. 

Factors affecting uncertainty in remotely-sensed images and measurements of planform 

change 

 
 

 

2.2. Techniques and developments in quantifying uncertainty 

2.2.1. Georeferencing uncertainty 

Georeferencing is the process of placing scanned aerial photographs onto a 

coordinate plane using known feature locations, referred to as georeferenced control 

points (GCPs). Optimally, and most often, GCPs are derived from orthorectified images 

to support maximal accuracy. However, large errors still exist in georeferenced images as 

a result of errors in the GCPs, associated images, and geometric distortion from 

cameras/sensors (Fryer & Brown, 1986), scanners, or varying relief. These errors directly 

affect insights derived from research using image-based delineations for change 

detection. An estimate of georeferencing uncertainty (i.e., possible X-Y positional error) 

reflects offset between points on the image and their actual locations. GCPs should 

preferably be ‘hard’ points: easily distinguished immobile feature edges such as 

buildings, houses, earth-bound anthropogenic structures, rather than ‘soft’ points such as 
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vegetation, waterbodies, roads, or signs. A minimum of 5 to 8 hard GCPs is 

recommended (respectively, Mount et al., 2003 and Hughes et al., 2006) in order to 

minimize georeferencing uncertainty, with diminishing returns on uncertainty reduction 

beyond 8-10 GCPs (Hughes et al., 2006; Donovan et al., 2015; Lea & Legleiter, 2016). 

Homogeneous placement of GCPs reduces warping in georectified images, with 

moderate improvements when placing GCPs along the floodplain versus uplands (Lea 

and Legleiter, 2016). Multiple studies confirm that when georectifying images, a second-

order polynomial interpolation minimizes error and reduces warping relative to higher-

order transformations (N.J Mount et al., 2003; Hughes et al., 2006; Lea & Legleiter, 

2016). A summary of factors affecting georeferencing uncertainty is found in Table 2-1. 

 

2.2.2. Approaches to river channel digitization and classification 

Subsequent to quantifying uncertainty associated with georeferencing aerial 

imagery, the images are used to digitize the boundary of the stream via automated or 

manual methods. Regardless of the method used, channel-margin delineations are most 

often defined by the edge of riparian vegetation in order to eliminate variability arising 

from fluctuating water levels (Winterbottom, 2000; D. A. Gaeuman, Schmidt, & 

Wilcock, 2003; Nelson, Erwin, & Schmidt, 2013; Rowland et al., 2016; Werbylo et al., 

2017). The exception to this is when using delineations to estimate discharge or to 

determine if/how channel width has changed for a given flow value, in which case, 

variability as a function of water stage is desired (Bjerklie et al., 2005; Smith and 

Pavelsky, 2008; Lauer et al., 2017). Vegetated channel-margin delineations are more 

prone to error and inconsistency for braided and anastomosing systems, where width-

related metrics are more sensitive to stage (Werbylo et al., 2017). An alternative approach 
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to delineations uses the break in slope at the top of near vertical channel banks, but this 

approach depends on availability of high resolution topographic data and is unsuccessful 

where banks are not well defined (Osterkamp & Hedman, 1982; Nick J. Mount, Tate, 

Sarker, & Thorne, 2013; Donovan et al., 2015). While the edge of riparian vegetation 

provides a rational and typically discernable boundary, individuals must consider their 

data quality and research goals when defining an appropriate channel margin.  

The scope of each project’s questions and goals help inform whether to use 

manual or automated delineations, which can both help answer a wide variety of 

questions, but are each better suited for specific goals. Herein, we describe appropriate 

contexts and questions for each approach. Rowland et al. (2016) provided a detailed 

summary of methods and software using remotely sensed imagery to analyze river 

planform properties and dynamics (Micheli & Kirchner, 2002; Micheli et al., 2004; 

Güneralp & Rhoads, 2008; Legleiter & Kyriakidis, 2007; Aalto, Lauer, & Dietrich, 2008; 

Pavelsky & Smith, 2008; Lauer & Parker, 2008; Peixoto, Nelson, & Wittmann, 2009; 

Baki & Gan, 2012; Fisher, Bookhagen, & Amos, 2013; Hossain, Gan, & Baki, 2013; 

Nick J. Mount et al., 2013).  

While manual delineations are most common (Blundell & Opitz, 2006) and 

accurate, semi- or fully-automated methods save time by eliminating the tedious nature of 

manual delineation (Güneralp et al., 2013; Rowland et al., 2016; Schwenk, Khandelwal, 

Fratkin, Kumar, & Foufoula-Georgiou, 2017). Studies attempting to span broad spatial 

and/or temporal scales may therefore opt for automated delineations/classifications, 

thereby sacrificing accuracy to increase the extent of their analyses and save time. One 

caveat is that such studies must occur along sufficiently wide and active rivers (Peixoto et 
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al., 2009; J. A. Constantine et al., 2014; Schwenk et al., 2017), because manual 

delineations are able to extend the spatial extent of delineations/classifications to lower-

order streams relative to automated approaches. When conducted by an informed user, 

manual methods improve overall delineation/classification accuracy because they 

accommodate interpretation of occasionally complex or anomalous features and thus are 

flexible across varying hydrologic and geomorphic conditions. Because algorithms and 

automated classifications adhere to a set of input criteria, they are more likely to 

misclassify channels or images outside the range of conditions for which they were 

developed.  

Despite the limitations mentioned above, automated approaches such as 

SCREAM (Spatially Continuous Riverbank Erosion and Accretion Measurements; 

Rowland et al., 2016), are increasingly applied to multiple rivers with diverse 

morphologies and a broad range of image resolutions. SCREAM identifies and rasterizes 

channel locations from images to provide a suite of outputs including channel width and 

migration, sinuosity, bank aspect and channel islands (Rowland et al., 2016). In practice, 

automated channel classification algorithms such as RivWidth (Pavelsky & Smith, 2008) 

and SCREAM (Rowland et al., 2016), yield similar estimates of bankfull width for a 

variety of river planform morphologies. However, only SCREAM accounted for exposed 

channel bars and islands, and thus, width estimates had slightly higher discrepancies for 

multi-threaded channels.  

Vectorized streambank delineations are often used to derive a single channel 

centerline. Changes in the location of the centerline over time can be used to estimate 

linear migration rates (Lauer & Parker, 2008; Donovan & Belmont, 2019; Sylvester et al., 
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2019). In other cases, polygons of the channel extent are delineated to measure areal 

change (D. A. Gaeuman et al., 2003; Rhoades et al., 2009; Donovan et al., 2015, 2016). 

Measuring migration as the difference in channel centerline position is a simple and 

efficient method to provide linear migration measurements over user-specified channel 

lengths. Linear migration rates and areal changes from polygons can both be normalized 

as a proportion of the channel width for comparisons across rivers of different size (J. M. 

Hooke, 1980; Donovan et al., 2015; Spiekermann, Betts, Dymond, & Basher, 2017; 

Sylvester et al., 2019). Estimating migration from centerlines conflates migration of each 

bank, and thereby reduces the ability to detect which mechanisms are influencing 

observed meander-bend migration (Miller & Friedman, 2009), as well as expected 

relations with flow (Schook et al., 2017). Thus, measuring migration separately for 

cutbanks on the outside of meander bends and point bars on the inside of bends is better 

suited for questions regarding local-scale mechanisms driving meander migration, at the 

expense of computation time.  

An alternative to measuring linear channel adjustment is to compare polygons or 

rasters of channel position to estimate the area and/or volume of deposition and erosion 

(D. Gaeuman, Schmidt, & Wilcock, 2005; D. Gaeuman, Symanzik, et al., 2005). This 

method is especially useful for braided or anastomosing systems, which may exhibit 

multiple linear adjustments within a single cross-section that should not be conflated. 

Channel polygons (vector or raster) are most often derived using image classification and 

assisted or unassisted machine learning algorithms. Such approaches benefit from the 

relative speed and ease of automation, but are limited by image resolution, shallow or 

transparent river reaches, inconsistent lighting and cloud cover, variable hydrologic or 
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fluvial conditions, and vegetation and shadows overlapping the river boundary. Although 

raster and polygon outputs are generally similar, discrepancies increase between raster 

and vector-based delineations for lower order streams (Melville & Martz, 2004). 

Differencing channel polygons is well-suited for measuring the area of erosion or 

accretion, but estimating volumetric sediment fluxes by combining linear migration rates 

with LiDAR or cross-section information consistently yields results similar to polygon-

based calculations (Donovan et al., 2015; Rowland et al., 2016). Areas and volumes of 

erosion and/or deposition are most accurately and optimally estimated by differencing 

raster DEMs (DEMs of Difference; i.e., DoDs) derived from automated or semi-

automated algorithms (Wheaton et al., 2010; Bangen et al., 2016; Vericat et al., 2017; S. 

Kelly & Belmont, 2018). However, such methods are limited to areas with repeat surveys 

of high-resolution topography (HRT), which are expensive to obtain and process due to 

equipment and software unavailable throughout the majority of history. Best practices 

and considerations for handling uncertainty in HRT DoDs are outside the scope of this 

paper, but can be found in Wheaton et al., (2010), Passalacqua et al., (2015) and 

Anderson, (2018). 

 

2.2.3. Uncertainty in river channel digitization and identification 

A modest body of research has evaluated components of uncertainty for manual 

and automated channel boundary delineations and classifications (Downward, Gurnell, & 

Brookes, 1994; Gurnell et al., 1994; Melville & Martz, 2004; Rhoades et al., 2009; Liro, 

2015). While automated channel delineations and classifications are increasingly 

common, manual delineations remain the most prevalent and accurate, and thus, serve as 

validation for estimating uncertainty of automated results (Rowland et al., 2016). Manual 
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delineation error is greatly reduced by increasing digitization scale (i.e., zooming in), and 

to a minor degree, aerial photo scale (Liro, 2015). Mid-channel and side bars, as well as 

proximity to overhanging trees and shadows, are known to reduce the accuracy of semi-

automated algorithms delineating wetted channel edges (Güneralp et al., 2013; 2014). 

However, the impact of such features and conditions on human delineation error is 

unknown; we attempt to fill this gap herein.  

The magnitude, location, and type of offset due to inconsistent digitization and 

georeferencing distortions have unique implications for estimates of migration and width 

change (Rowland et al., 2016). For example, when bank delineations are biased in such a 

way that they result in a channel that is systematically narrower or wider than reality (Fig. 

2-1a), centerline migration measurements will not be affected because the centerline(s) 

is/are not altered significantly. However, this scenario affects measurements of both 

channel width and width change. If the channel delineation is systematically offset in a 

single direction (Fig. 2-1a), channel width will remain unaffected, while migration will 

be exaggerated or damped. When only one bank is offset from its true location, 

measurements of width change will have an error equal to the magnitude of offset. 

However, the impact is halved for migration because the effect is damped when banklines 

are collapsed to a single centerline. 

In the case of raster-based binary river classification, such as SCREAM, 

RivWidth or RivMap (Pavelsky & Smith, 2008; Rowland et al., 2016; Schwenk et al., 

2017), ‘delineation error’ is equivalent to errors in feature identification and extraction. 

Each automation tool will have unique magnitudes and distributions of error due to  
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Fig. 2-1. Aerial imagery and hypothetical bank delineations illustrating the types of 

offsets (A1, B1), along with how such offsets have unique impacts on channel width and 

migration measurements (A2, B2).  In Fig. A1 and B1, the dashed lines indicate an 

alternative choice of delineation (red) and the centerlines associated with those banklines. 

The lines in Fig. A2 and B2, illustrate- as a longitudinal profile- error in width (solid red 

line) and migration (dashed blue line). 

 

 

unique classification algorithms and river width. For both automated classifications and 

manual delineations, the ability to detect migration will vary with image resolution, river 

size, rate of change, and time interval between photos. We hypothesize that 

georeferencing error will cause local systematic (i.e., directional) errors that impact 

migration measurements, but not necessarily width change measurements. However, over 

sufficiently broad reaches, georeferencing offsets should exhibit non-uniform/directional 

offsets. Due to the nature of changes in river width (i.e., narrowing and widening), width 
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measurements are impacted by digitization inconsistency more than georeferencing 

offsets. We explain our approach to testing these hypotheses in the methods, and 

illustrate the results in subsequent sections.  

 

2.3.4. Level of detection (LoD) threshold 

The LoD is a threshold for determining whether measurements of migration or 

width change are statistically significant. This threshold should account for the total 

uncertainty arising from georeferencing (not orthorectification) and digitization 

uncertainty (or feature identification, in the case of automated classifications) (N. Mount 

& Louis, 2005; N.J Mount et al., 2003). Research estimating migration and width change 

from repeat aerial images maintains a common practice of applying a uniform LoD 

threshold, typically ranging from 2 to 5 meters based off the Root Mean Square Error 

(RMSE) or standard error (SE) of GCPs or delineations (Gurnell et al., 1994; Micheli & 

Kirchner, 2002; N. Mount & Louis, 2005; Rowland et al., 2016). Uniform error has also 

been estimated using photo scale (D. A. Gaeuman et al., 2003; Nelson et al., 2013), 

digitization scale (Downs et al., 2013; Liro, 2015), stated error from the source of the 

imagery (Draut, Logan, McCoy, McHenry, & Warrick, 2008), and qualitative 

descriptions of uncertainty in National Ocean Service T-sheets and U.S. Coastal Geodetic 

Surveys (Anders & Byrnes, 1991). However, uncertainty related to GCPs is inherently 

non-uniform and directional due to unique offsets of the GCPs in both x- and y-planes. 

Three primary problems arise from assuming uniform LoDs, regardless of the 

how the LoD is estimated or what assumptions are made. First, actual at-a-point error is 

directionally skewed in the x- or y-plane (i.e., an ellipse), while uniform error thresholds 

can only be projected with equal error in all directions (i.e., a circle). Thus, uniform 
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thresholds cannot accurately discern whether the error lies in the same or opposite 

direction of the channel migration or width change measurement. Second, RMSE-based 

LoDs increase loss of data/measurements relative to spatially variable LoDs (Liro, 2015; 

Lea & Legleiter, 2016), for reasons demonstrated in subsequent sections. Third, we 

hypothesize that uniform LoDs reduce the quality of retained measurements due to 

excessive loss of measurements of small changes and erroneous retention of large 

changes that may simply reflect georeferencing offset or image warping (Fig. 2-1b). 

These two issues are especially problematic for fluvial processes, which follow heavy-

tailed distributions that are largely composed of small values and may be strongly skewed 

by a few large outliers. Discarding small but valid changes in combination with retaining 

large but erroneous changes causes a systematic overestimation of average migration 

rates. 

Lea and Legleiter (2016) overcome the aforementioned issues by estimating 

spatially-variable (SV) uncertainty from both georeferencing uncertainty and digitization 

error. A raster of SV-uncertainty is used as an LoD to compare with migration 

trajectories from the Planform Statistics Toolbox (Lauer & Parker, 2008) in order to 

distinguish statistically significant measurements. Their approach calculates non-uniform 

LoD ellipses at all points around the river as the sum-of-squares including all sources of 

uncertainty (Eqs. 1 and 2). 

√ε𝑥𝑡1
2 + ε𝑥𝑡2

2 + ε𝑑𝑖𝑔
2  =  𝜀𝑥 ;      Eq. 1 

√ε𝑦𝑡1
2 + ε𝑦𝑡2

2 + ε𝑑𝑖𝑔
2  =  𝜀𝑦 ;      Eq. 2 

√ε𝑥
2 + ε𝑦

2  =  𝜀𝑥𝑦 ;       Eq. 3 
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where εx and εy are georeferencing uncertainty in the x- and y-planes for time 1 (t1) and 

t2, respectively, εdig is digitization uncertainty, and εxy is total uncertainty at a location 

(e.g., the LoD error ellipse, Eq. 3). This approach increased the number of statistically 

significant measurements retained relative to RMSE or 90th percentile uniform error 

thresholds (Lea & Legleiter, 2016).  

Measurements below the LoD can be entirely removed, treated as values of zero 

(i.e., no migration occurred), or modelled based on the expected distribution of measured 

values (Donovan & Belmont, 2019). Replacing measurements below LoD with zero is 

generally preferable to removing them entirely. However, a disproportionate number (> 

50%) of zero-values can compromise comparative statistics (e.g., Paired t Test, 

Kolmogorov-Smirnov, Mann-Whitney Wilcoxon) that count each pair of zeros as a ‘tie’ 

(Martín-Fernández, Barceló-Vidal, & Pawlowsky-Glahn, 2003). In these cases, it may 

seem prudent to discard uncertain measurements, but this not only reduces sample size, 

but also introduces error into estimates of net change and uncertainty (Anderson, 2018). 

Details on imputation and replacement strategies for values falling below the LoD can be 

found in section 2.3.5. 

Areal or volumetric estimates of channel change using polygons contain the same 

sources of error, but must account for error differently because outputs/results are 2-D 

geometric features (i.e., polygons, rather than 1-D lines). Polygonal results are commonly 

beset with small polygon slivers that arise from slight misalignment due to 

georeferencing and digitization error (Chrisman, 1987; Bailey, 1988). Slivers are often 

assumed erroneous, rather than real change. Thus, a common and simple approach to 

address error is to remove polygons smaller than a threshold size (Edwards & Lowell, 
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1996; Donovan et al., 2015). More advanced approaches clip polygons using buffers of 

uncertainty scaled to georeferencing RMSE (Rhoades et al., 2009). Unfortunately, 

because both approaches lack a spatially variable threshold, both also unnecessarily 

remove significant measurements of erosion or deposition simply because they are of low 

magnitude. However, error models have been developed to incorporate heterogeneity of 

error for polygon/areal-based estimates of channel change (D. Gaeuman, Symanzik, et 

al., 2005). Rather than assuming errors are spatially independent of one another, they 

assume error is spatially correlated at the scale of local digitization inconsistencies and 

broadly over the scale of GCP placement, similar to Lea and Legleiter (2016).  

 

2.3.5. Handling values below the LoD (‘nondetects’) 

Earth-science literature increasingly reports uncertainty associated with planform 

change measurements, but there appears to be few discussions and no consensus 

regarding how to handle nondetect measurements that fall below the LoD/uncertainty 

threshold. Common methods include discarding nondetect measurements (Rhoades et al., 

2009), imputing nondetects with values of ‘0’ (Donovan & Belmont, 2019) or 

substituting nondetects with 0, 0.5, 0.7, or  of the LoD threshold (Martín-Fernández 

et al., 2003; Lee & Helsel, 2005; Helsel, 2006), and retaining nondetect measurements in 

order to bracket results with a range of upper and lower bounds based on the degree of 

uncertainty (Fraley, Miller, & Welty, 2009; Dean & Schmidt, 2011; Donovan et al., 

2016). Despite their use in contemporary research, these methods should be avoided 

because they introduce systematic errors and bias the mean and variance increasingly as 

the proportion of nondetects increases relative to the entire sample size (Tauber, 1999; 
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Singh & Nocerino, 2002; Martín-Fernández et al., 2003). When observations or process 

understanding suggest no channel migration has occurred, it may be appropriate to record 

nondetect migration measurements as zeros, which are termed ‘rounded zeros’. 

Researchers must consider, however, that the individual data points can no longer be log-

transformed or used as a denominator in subsequent normalizations.  

When nondetects account for only a small proportion (10-15%) of the data, EPA’s 

Unified Guidance suggests that a simple substitution method is acceptable, based on 

insignificant changes to the mean and variance. However, when dealing with data fraught 

with nondetects, Maximum Likelihood Estimators (MLE), imputation via Regression on 

Order Statistics (ROS), and the Kaplan-Meier (KM) method are three approaches that 

provide more robust representations of summary statistics (i.e., mean, median, variance; 

Helsel, 2005). Each approach is unique, using some combination of detectable (i.e., 

known) data, nondetects (some methods, but not all), and an assumed or known data 

distribution based upon detectable observations. We describe the mechanics of each 

approach in the methods.  

 

3. Methods & Study area 

3.1. Measuring migration and spatial autocorrelation 

We develop guidelines to evaluate uncertainty for channel migration derived from 

manual channel delineations using a set of 13 aerial photographs spanning 76 years and 

120 river-km of the Root River, MN, USA (Fig. 2-2A). With 441 images spanning nearly 

eight decades and an entire river network, we were able to evaluate the relationship 

between uncertainty (Eqs. 1, 2, and 3) and a variety of variables, including image 

resolution, acquisition date, local lighting, vegetation type/cover, and channel planform. 
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Streambank delineations and interpolated centerlines from each georeferenced image 

(Souffront, 2014, M.S. Thesis) were used to calculate migration magnitude and rate at 

10-meter increments using the Planform Statistics Toolbox (Lauer, 2007; Lauer & 

Parker, 2008). The Planform Statistics Toolbox measures total migration as the distance 

between nodes on the initial and terminal channel centerlines, but does not identify 

meander bend cutoffs, which we manually identified and filtered out.  

We initially measured migration along the entire reach at 10-meter increments. 

However, measurements at such close intervals are likely autocorrelated due to the 

natural tendency for rivers to move in coherent spatial units that scale with the size of the 

river (Donovan & Belmont, 2019). Additionally, autocorrelation may arise from 

systematic offsets in digitization at local (100 – 500 m) scales, and at broader scales (102 

– 103 m) due to offsets in image georeferencing and expected similarities in migration 

rates for adjacent stream reaches and meander bends. Autocorrelated measurements are 

not independent and are thus not statistically independent observations; they also 

underestimate standard errors and bias statistical comparisons that assume independent 

measurements. We computed Geary’s C to estimate the length scale over which 

migration rates were influenced by the combined effects of spatial autocorrelation and 

local-scale systematic delineation biases (Geary, 1954). While Moran’s I is more 

commonly used for characterizing global spatial autocorrelations, it fails to capture local 

autocorrelation due to the simple regression structure used. In contrast, Geary’s C is able 

to detect local spatial autocorrelation, which is more relevant for analyzing channel 

planform adjustments, which are autocorrelated over meander-bend scale (local), rather 

than an entire longitudinal profile (global). Geary’s C values typically range from 0 to 2 
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and estimate the level of correlation between all possible data points at specified lag 

distance bins. Values near to 1 indicate weak or absence of positive spatial 

autocorrelation. Values approaching 0 indicate positive autocorrelation, and are common 

at smaller lags. Values close to 2 indicate an increasing negative autocorrelation. To 

improve interpretability of results, we transform Geary’s C values to standard correlation 

coefficients for plotting in correlograms, ranging from -1 to 1 to indicate negative to 

positive autocorrelation. Scripts for calculating Geary’s C are provided in a 

supplementary file, ‘GearyC.R’. 

 

3.2. Georeferencing uncertainty 

We analyze georeferencing uncertainty analyses using 13 sets of GCPs (n = 185 – 

302) spanning 120 km of the Root River (Table 2-2). Rather than using the original 

GCPs, we quantified georeferencing error using an independent set of GCPs found on a 

high-resolution composite image from 2015 (USDA FSA APFO, 2015). Georectification 

transformations use least-squares fitting algorithms to optimize (i.e., minimize) 

georeferencing offset using the original input GCPs, but not necessarily areas in between 

(Ladd, Nagchaudhuri, Earl, Mitra, & Bland, 2006). Thus, using an independent set of 

GCPs ensured that error was not underestimated because it included areas aside from the 

original input GCPs. We primarily selected ‘hard’ GCPs (i.e., immobile or unlikely to 

have moved) that could be found on both historical and 2015 images. We evaluated 

spatial correlation of GCP error over a range of distances in order to determine whether 

or not georeferencing error is spatially correlated, and if so, over what distance (D. 

Gaeuman, Symanzik, et al., 2005). 
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Fig. 2-2. (Topleft) Locations of Minnesota within North America, and the Root River 

within southeastern Minnesota. (A) 120 km of the mainstem Root River (blue) with 13 

overlapping years of aerial photography. Inset black box is (B) the 11 km study reach 

analyzed in detail for this study. Second inset black box is (C) a single channel centerline 

divided into points each 10-m, with colors indicating whether shadows covered both, one, 

or neither streambanks. We categorized the banks in the same way for locations where 

vegetation covered the bank.  

 

 

3.3. Digitization uncertainty 

We chose an 11-km reach of the Root River with multiple morphologic features 

and variable degrees of overhanging vegetation and shadows in order to quantify 

digitization uncertainty and determine whether it varies with fluvial and riparian 

conditions (Fig. 2-2B). The reach also allowed us to evaluate whether point bars reduced 

consistency in manual riverbank delineation, similar to semi-automated algorithms 

(Güneralp et al., 2013, 2014). Similar to (Gurnell et al., 1994), a single user repeatedly 

delineated 11-km of vegetation-streambank boundary four times without the aid of 

previous iterations, yielding 52 streambank delineations across 13 years with imagery (13 
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years × 4 delineations). We did not limit the user to a specific map scale/zoom in order to 

reflect ‘normal’ working conditions, which do not impose such constraints. When 

vegetation covered the bank, we delineated bank location through the crown of the tree, 

unless we observed the bank-vegetation interface elsewhere. Channel centerlines were 

interpolated from each bank delineation, consistent with the prevalent method for 

measuring migration rates. Because centerlines should be identical for users with 100% 

delineation consistency, we calculated centerline offset at 10-meter increments as a 

measure of uncertainty arising from digitization inconsistency. This resulted in 78 

centerline comparisons (13 years × 6 centerline comparisons) spanning 11-km and 13 

years of imagery, for approximately 86,000 measurements to estimate digitization 

uncertainty. We calculated Geary’s C values from these centerline comparisons to 

quantify the length scales over which digitization introduces autocorrelation into 

migration measurements.  

To determine whether image resolution influenced digitization uncertainty, first 

we visually compared the means and distributions of false migration of all 11-km of the 

13 images using Kruskal-Wallis nonparametric analysis of variance (ANOVA) and a 

comparison of image resolution versus false migration. Subsequently, we evaluate 

whether a single user’s digitization inconsistency increases for channel reaches with 

overhanging vegetation or shadows, as has been observed when using semi-automated 

delineation algorithms (Güneralp et al., 2013, 2014). At each 10-m increment, we 

classified the channel centerline as 0, 1, or 2; respectively classifying whether neither 

bank, one bank, or both banks were obscured by shadow (Fig. 2-2C). We repeated this 

approach for vegetation, attributing 0, 1 or 2 to indicate absence or presence of vegetation 
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obscuring one or both banks for each year with photo record. A Kruskal-Wallis test 

revealed whether any group/class exhibited significant differences. In cases where 

differences existed, we followed up with a Kolmogorov-Smirnov test to test for a 

stochastic increase in uncertainty for each class (Massey, 1951; Fay & Proschan, 2010).  

 

3.4. Spatially-variable level of detection 

We generated a spatially-variable level of detection (SV-LoD) raster for each year 

with images that included total uncertainty from georeferencing and digitization (Eqs. 1, 

2 and 3). The sum of squares of positional offset in the x- and y-planes at each GCP and 

mean digitization inconsistency were interpolated using second-order polynomials, which 

yield low mean RMSE and minimize image warping relative to all eight possible 

transformations (Hughes et al., 2006; Lea & Legleiter, 2016).  

We compared the percent and magnitudes of migration measurements retained (n 

= 66 comparisons) to respectively evaluate the relative quantity and quality of retained 

measurements. Comparing the percent of retention between SV- and uniform-LoD 

thresholds confirmed whether SV thresholds improved (i.e., increased) the quantity of 

retained measurements. We evaluated the quality of retained measurements by testing 

whether distributions under SV thresholds shifted left (i.e., reduction) relative to uniform 

LoD thresholds. This assumes that a reduction in the distribution indicates that the quality 

of retained measurements has increased because SV-LoDs are more likely to retain 

measurements of small magnitude that are erroneously discarded by uniform LoDs. We 

visually inspected shifts in addition to performing one-way Kolmogorov-Smirnov tests to 

evaluate whether SV distributions increased the retention of low-magnitude 

measurements relative to uniform LoD thresholds, as indicated by a reduction/leftward-
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shift in the distribution. Lastly, we used linear regressions to estimate percent retention as 

a function of pixel resolution, initial image year, temporal measurement interval, along 

with river-averaged migration and its natural logarithm.  

 

3.5. Handling nondetects 

Common approaches for handling nondetects in geomorphology include: 

removing nondetects or substituting nondetects with 0, 0.5, 0.7, or  of the LoD 

threshold (Martín-Fernández et al., 2003; Lee & Helsel, 2005; Helsel, 2006) and retaining 

nondetect measurements in order to bracket results with a range of upper and lower 

bounds based on the degree of uncertainty (Fraley et al., 2009; Dean & Schmidt, 2011; 

Donovan et al., 2016). However, these methods introduce error into estimates of net 

change and uncertainty (Anderson, 2018) and skew statistical parameters by introducing 

a disproportionate number of arbitrary values (Helsel, 2006), respectively. Thus, we 

propose and test three alternative methods developed by statisticians and discipines 

outside of Earth science: Maximum Likelihood Estimation (MLE), imputation via 

Regression on Order Statistics (ROS), and Kaplan-Meier (KM). Each method is unique in 

its approach to estimating summary statistics for nondetect data and are known to 

outperform one another depending on the underlying data distribution, proportion of 

nondetects, sample size, and the number of detection limits (Helsel, 2005). Among 

research on geomorphic change detection, bracketing results with the sum of 

uncertainties is common; the benefits and drawbacks of this approach are detailed in 

(Anderson, 2018). Our scripts for running MLE, ROS and KM are available in the 

supplementary .R file. 
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 Following its name, the MLE estimates the ‘most likely’ mean and standard 

deviation by fitting both detected observations and nondetects to a distribution chosen by 

a knowledgeable expert. Although MLE assumes a normal distribution, it is commonly 

used with transformed lognormal data. MLE generally underperforms for small datasets 

(n < 50 detectable observations) with large skewness, or when outliers are present, 

relative to ROS or K-M. ROS depends less on assumptions of distribution shape because 

it estimates nondetect data using probability plots of detectable data. Kaplan-Meier is a 

standard in medical, industrial, and water chemistry statistics for estimating the mean and 

standard deviation of data containing censored (i.e., partially known) measurements. K-M 

does not assume a parametric distribution, but requires at least 8-10 measurements, less 

than 50-70% nondetects, and is biased when the highest and/or lowest values are 

nondetects. K-M also requires multiple levels of detection, and thus, is appropriate with 

an SV-LoD, but not a uniform LoD. For a robust description of K-M, see Hosmer et al., 

(2008). Additional guidance and details on MLE, ROS, and K-M are provided online 

(Huston & Juarez-Colunga, 2009; ITRC, 2013).  

We evaluated each approach by quantitatively comparing their predicted mean 

(μ), median, distribution fit, and standard deviation (σ) with known values from modelled 

distributions (n = 400) containing varying proportions of nondetects (8-30%). The ‘best 

estimate’ of mean, median and variance from the MLE, KM, and ROS were those with 

the minimum difference relative to the modelled/raw values. We ranked the distribution 

fits relative to the original modelled distribution using a Pairwise Wilcoxon Rank Sum 

test statistic with an adjusted p-value (based on Benjamini and Hochberg, (1995)) to 

reduce the rate of false-positive results and allow for distribution comparison. With this 
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adjustment, the test is sensitive to differences in distributions, not only central tendencies. 

We plot the empirical cumulative density functions (ECDFs) from each approach to 

visually confirm the quantitative results and further inform a discussion of when each 

approach is most appropriate. We also varied the measurement sample size (n= 100, 

1000, or 10,000) in modelled simulations to evaluate whether sample size influenced 

which approach (i.e., MLE, KM, ROS) best predicted the statistical parameters. This also 

allowed us to explore the implications of different combinations of spatial and temporal 

data extent (spatial coverage x measurement interval), which directly affect sample size.  

Modelled migration rates followed a lognormal distribution with means drawn 

from the range of 13 empirical distributions, each with ~13,000 measurements spanning 

120 km of the Root River. Deviance scaled directly and significantly with the mean 

migration rates, and thus was predicted using Eq. 4, similar to Donovan & Belmont 

(2019).  

     Eq. 4 

 

 

We calculated the probability of significance for each modelled migration rate 

using the relationship (r2 = 0.89) between empirical migration rate and chance of 

statistical significance based on 864,204 empirical migration rates (Fig. 2-3). We did not 

include migration rates beyond 9 m/yr when regressing the data because 100% of those 

rates were significant, and including those reduced the logarithmic regression fit for 

values that may be nondetects. This approach resulted in 10 to 53% of nondetects for 

each model iteration, which had 100, 1,000 or 10,000 sample measurements.  
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Fig. 2-3. Empirical data (black dots) used to generate the probability that a modelled 

migration rate will be significant or nondetect. The probability of significance (Psig) for a 

given migration rate increases logarithmically with the magnitude of the rate, and beyond 

~9 m/yr, 100% of measurements were significant. In order to improve the model fit for 

values with a chance of being nondetects, values with 100% chance of significance were 

not included in the regression.   

 

 

4. Results & Discussion 

4.1 Spatial autocorrelation for measurements of migration and uncertainty 

Correlograms of autocorrelation values illustrate a waning spatial autocorrelation 

of channel migration rates over length-scales that are approximately 1-4 channel widths 

(50-200 meters), at which point autocorrelation was weak or nonexistent (Fig. 2-4). The 

trends in autocorrelation values of migration rates were similar to those for user 

digitization inconsistency. Thus, we were unable to ascertain the length scales over which 

autocorrelation reflects digitization inconsistency as opposed to coherent units of channel 

migration. This suggests similar scales of autocorrelation for both manual channel 

digitization and river migration across a wide range of geomorphic conditions and river  
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Fig. 2-4. Correlograms of spatial autocorrelation for measurements of channel migration. 

Lag distance indicates the length over which autocorrelation was measured. Geary’s C 

values, which typically range from 0-2, were transformed to the typical range of 

correlation values, spanning -1 to 1. 

 

 

widths. Thus, measuring migration over lengths ≥ 6 channel widths (400 meters) for the 

Root River ensured autocorrelation did not confound statistical results and inferences. 

When testing the assumption that GCPs exhibit local spatial correlation (D. 

Gaeuman, Symanzik, et al., 2005), we found strong autocorrelations were rare (values > 

0.7 or < -0.7) (6-28%), whereas weak autocorrelations dominated the data (-0.3 > r < 0.3) 

(62-81%), with the remaining 14-38% of data exhibiting moderate autocorrelations 

(values between 0.3-0.7 or -0.3- -0.7). The few GCPs with strong autocorrelation did not 

dominate any particular spatial scale, suggesting it is invalid to assume that nearby GCPs 

are more or less similar than distant GCPs. The lack of local or global autocorrelation 

reinforces the need for spatially variable LoDs because neither neighboring GCPs nor 

distant GCPs were similar in magnitude or autocorrelated.   

 

4.2. Factors influencing digitization uncertainty 

We analyze an 11-km reach of the Root River to build upon the literature 

quantifying the factors that influence the magnitude, location, and types of offset from 
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digitization. Mean and median digitization uncertainty across all years was 1.4 meters. 

Despite unique approaches to calculating uncertainty, this result is consistent, albeit 

slightly less than Gurnell et al. (1994) (2 meters). Within the 11-km segment, pixel 

resolution ranged from 0.5-5.8 m2
, thereby including nearly the full pixel range (0.3-5.8 

m2) for all 441 images spanning the 120-km mainstem Root River. Despite a variety of 

pixel resolutions, the distributions of digitization offset were not significantly different (p 

= 0.95, Fig. 2-5) based on a Kruskal-Wallis Rank Sum Test and the lack of a systematic 

trend between digitization offset and pixel resolution. Neither image date nor pixel 

resolution appear to have a systematic influence on the degree of digitization 

inconsistency for a single user. The consistency in these results across a variety of image 

resolutions (0.5-5.8 m2) and conditions suggests that average and median digitization 

uncertainty for a single experienced user will lie between 1.5 and 2 meters, and need not 

be calculated for all future studies. It remains plausible that follow-up evaluations may be 

pertinent for studies with resolutions outside this range, or for substantially different 

geomorphic conditions. The framework provided herein for evaluating digitization 

uncertain remains transferrable to other environments to explore potential differences. 

Similar methods were applied to braided and anastomosing planforms by Werbylo et al., 

(2017), who found that measurements of at-a-section channel width derived from 

multiple digitizers differ up to 20% of channel width, while river-averaged widths 

exhibited no significant differences. 

Digitization uncertainty was generally consistent across all years (i.e., high 

precision) in cases where the bank is masked by shadow and/or vegetation cover (Fig. 2-

6). Higher degrees of inconsistency (> 5 meters) occurred along meander bends with  
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Fig. 2-5. Digitization inconsistency for 11.2 km of the Root River for each of the 13 

years with aerial images (~1120 migration transects measured for each photo year). The 

overall magnitudes and distributions were relatively consistent across all photos, 

regardless of pixel resolution. 

 

 

various types of vegetation cover (e.g. thick vegetation, scattered brush, grass) because 

users are inconsistent in their choice of vegetation boundary. Similar inconsistencies have 

been observed for semi-automated algorithms (Güneralp et al., 2013, 2014). Most of the 

remaining offsets in digitization (≤ 1 meter) were minor and were scattered uniformly 

across the 11-km reach. Thus, we demonstrate that users remain consistent in delineating 

the channel-vegetation boundary regardless of shadows and vegetation, but not in cases 

where multiple vegetation boundaries exist. Thus, for such reaches, users should 

determine which vegetation-boundary best reflects the dominant- or channel-forming 

discharge. Optimally, verification would utilize ground-truthing along ambiguous 

reaches. Alternatively, where high-resolution topography is available, local peaks in 

curvature may be used as a characteristic signal of the streambank-floodplain transition 

(Donovan et al., 2015). In areas where riparian vegetation and geomorphic conditions 

differ substantially to obscure delineations, the framework laid out herein should be 

applied to evaluate for consistency of results. 
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Fig. 2-6. Digitization inconsistency binned by the presence of shadows and vegetation on 

either one, both, or neither adjacent streambanks. Numbers adjacent to individual 

boxplots indicate the sample size of each category. 

 

 

4.3 Georeferencing uncertainty 

Georeferencing uncertainty varied widely across the study reach within each 

year’s images (Fig. 2-7) and across all years (Fig. 2-8), and generally decreased towards 

the present, likely a reflection of reduced distortion and warping with improved camera 

lenses and developments in self-calibrating sensors (Clarke & Fryer, 1998). Because 

georeferencing error generally distorts images over scales equal to and greater than GCP 

spacing, river width measurements are unaffected unless warping occurs over scales less 

than a channel width. Thus, we do not explore the impact of georeferencing uncertainty 
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on width calculations. Neither the RMSE of georeferencing error, nor the distributions of 

error, appear to have any significant relationship to the mean pixel resolution of each year 

(Table 2-2) based on graphical assessment, and thus, were not explored statistically. The 

RMSE was approximately the 75th percentile for most years (Fig. 2-8, red points), which 

illustrates how a small number of extreme outliers in georeferencing uncertainty inflate 

the RMSE relative to the median (i.e., the actual central tendency in a long-tailed, non-

normal distribution). We describe implications of using this inflated RMSE value in the 

next section.  

 

 
 

Fig. 2-7. Spatially variable georeferencing uncertainty, in meters, across the x- and y-

coordinate planes (bottom and top, respectively). For total uncertainty, we used Eq. 1 and 

2 as components for calculating a final error ellipse for each pixel. Note that the color 

gradient scales change for each panel, due to different ranges of error in the x- and y-

planes. 
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Fig. 2-8. The distribution of georeferencing uncertainty for each image year (black), 

based on the set of georeferenced control points (GCPs, n = 185-302). The red dots 

indicate the root mean square error (i.e., mean) of each distribution, a common uniform 

uncertainty threshold. However, using the RMSE threshold leads to excessive data loss of 

any measurement below the red dots.  

 

 

4.4 Calculating and evaluating LoD thresholds 

Final LoD thresholds reflect the sum of squares of georeferencing and digitization 

uncertainties. While SV LoDs reflect a different sum of squares for each pixel, RMSE 

LoDs calculate a single, average sum of squares. As explained earlier, however, extreme 

outliers in georeferencing error disproportionately inflate the mean error (i.e., RMSE) 

relative to the majority of values within a lognormal distribution (Fig. 2-8, red dots). 

Thus, using an inflated RMSE value as the LoD inherently removes the majority of 

migration measurements, which are predominately low-magnitude values (Fig. 2-9, black 

distribution). After using a singular RMSE LoD, the majority of low-magnitude 

migration values are thus ‘nondetects’, while the few upper percentiles remain to 

dominate the migration distribution. As a result, the mean migration rate- a widely used  
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Table 2-2. 

Overview of image characteristics, georeferencing control points, and error for each year 

with imagery. We used imagery from 2015 as a reference layer for calculating 

offset/error, and thus does not have error values. This assumes the 2015 imagery is the 

most spatially accurate representation of the study area. 

 
 

 

Summary statistics for each year’s imagery and the associated digitization 

uncertainty are available in Table 2-2. Second-order polynomial interpolation of SV error 

improved the number of retained migration measurements for all years, corroborating 

results from the original implementation of this method (Lea & Legleiter, 2016). 

Furthermore, in all comparisons (n = 67), SV-LoD thresholds retained more migration 

measurements (μ=62%, range=25-81%) than uniform LoD thresholds (μ=35%, 

range=12-52%). Distributions of retained measurements consistently demonstrate that 

SV-LoDs retain additional measurements of smaller magnitude and fewer measurements 

of large magnitude (Fig. 2-9). 

For three different years, we evaluated migration measurements that were retained 

with the SV-LoD, but not the uniform LoD. Visual observations of values retained by 
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Fig. 2-9. A comparison of probability density functions among of all measurements 

(black) and retained (i.e., ‘significant’) measurements for each type of LoD (SVE-red, 

RMSE-blue, and 90th percentile threshold-green). Illustrated distributions are for 

measurements of migration (m) between 1981 and 2011, with similar trends in the 

remaining 65 comparisons. The SV-LoD (red) retained a higher proportion of low-

magnitude measurements, and relatively fewer large-magnitude measurements. This 

suggests that a SV-LoD not only improved the quantity, but also the quality of retained 

measurements. 

 

 

only the SV-LoD suggest that a little over half of these values were real, verifiable 

changes, generally characterized by gradual systematic shifts in the river apparent in 

multiple images and/or visual evidence from the LiDAR hillshade and/or images. 

‘Questionable’ retained measurements were often non-systematic migration along 

reaches that were fully or partially masked by shadows or vegetation, which possibly led 

to inaccurate delineations. Thus, despite consistent delineations (i.e., delineation 

precision) under the same conditions, the interpreted location of the riverbanks (i.e., 

delineation accuracy) still appears to vary significantly when visual conditions change 

along a stable reach (Figs. 2-3 and 2-6).   

Anomalously high-magnitude measurements that result from extreme image 
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warping or georeferencing error that shifted the river boundary (Fig. 2-10) are more 

likely to be retained by the SV-LoD than the uniform LoD. The uniform LoD may retain 

these large measurements simply because they exceeded the RMSE, whereas the SV-LoD 

is likely to discard them by properly accounting for local maxima in uncertainty.  The use 

of a spatially-variable LoD will thus improve results by reducing the likelihood of 

including inaccurate measurements, and is generalizable/applicable to any context. 

We tested for systematic trends in the percent of retained measurements to 

evaluate whether factors such as image year, image resolution, or migration distance, 

exhibited strong relationships with the proportion of retained measurements. Of these  

 

 
Fig. 2-10. An example of image warping near the edge of two images, which intersect at 

the red line. The warping resulted in offset channel centerlines (B) and delineated 

banklines (C). Evidence of warping along the channel in B and C is confirmed by the 

offset roads in the bottom of B. 
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factors, the most significant was the natural logarithm of mean migration distance (Fig. 2-

11, p < 0.001, r2= 0.92). When mean migration falls below the minimum LoD- equivalent 

to mean and median digitization uncertainty (1.4 meters, dashed-blue line, Fig. 2-11)- 

there is a drastic reduction in the proportion of ‘significant’ migration measurements. For 

migration above this threshold, the number of significant measurements increases 

relatively slowly, as some diminishing proportion of measurements still have a total 

uncertainty that exceeds the LoD threshold. 

 

4.5. Treatment of nondetect measurements 

We summarize the model results for each approach- Maximum Likelihood 

Estimator (MLE), Kaplan-Meier (KM), Regression on Order Statistics (ROS), zero  

 

 
Fig. 2-11. Relation between mean migration and the percent of retained measurements. 

Each black point reflects the percent of significant measurements for a given river-

averaged migration (over the 120-km of the Root River) between two sets/dates of 

imagery (n= 864,204). The proportion of significant measurements increases rapidly as 

mean migration passes the average (mean and median) digitization error (blue vertical 

line, 1.4 meters). Beyond this threshold, the number of retained measurements increases 

asymptotically. Green diamonds represent averaged migration measured over portions (1-

37 km) of the Root River, rather than the entire 120-km (black points).  
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thresholding, and removing nondetects- to best approximate the mean, median, standard 

deviation, and overall distribution of modelled data in Table 2-3. We quantified ‘best 

fits’for the mean, median and standard deviation as the method which best approximated 

(i.e, minimum difference) a known, modelled distribution. We ran 400 simulations, each 

with a unique lognormal distribution containing a range of nondetects (47-90%) and 

sample sizes (n = 100, 1,000 or 10,000). Detailed methods for generating and comparing 

the statistical parameters are described in Section 3.5, and can be found in the 

supplementary .R file “Nondetect Method Comparison’. 

Across all sample sizes, the MLE and KM methods provide the best estimate of 

the mean in a similar number of simulations. MLE performed better for model iterations 

handles nondetects in estimating the new mean. KM also performed well in estimating 

 

Table 2-3. 

Results from 400 simulations comparing known/modelled values with estimated 

statistical parameters (i.e., mean, median, standard deviation, distribution) from each 

method. MLE- Maximum likelihood estimator; KM- Kaplan Meier; ROS- Regression on 

Order Statistics; ZRO- nondetects treated as ‘0’; RMV- nondetects removed entirely. 

Bolded values indicate which method performed the best. 
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the median across all sample sizes with the exception of small sample sizes containing a 

high proportion of nondetects, where removing nondetects (RMV) resulted in better 

estimates of the median. In the majority of simulations (86 – 97%), ROS provided the 

best approximation of variance. Finally, the best estimates of the entire distribution 

largely came from the MLE (85 – 92%). Two characteristic sets of ECDFs are plotted 

alongside the raw/modelled data as the gold standard (Fig. 2-12). Below, we illustrate and 

describe the conditions in which each method is most appropriate in a flow chart (Fig. 2-

13). 

 

5. Conclusions, recommendations, and future challenges 

Earth-science literature has become increasingly aware of the importance of 

calculating and disclosing uncertainty inherent in GIS-based measurements. In the early 

1990s, (Anders & Byrnes, 1991) acknowledged the need to address the key sources of  

 

 

 
Fig. 2-12. Empirical cumulative density functions (ECDFs) for the modelled (i.e., ‘raw’) 

migration data, alongside three approaches used to model nondetect measurements. The 

two sets of ECDFs reflect the majority of model iterations (n = 400). While the three 

methods are only meant to estimate summary statistics (mean, median, variance), 

visualizing the distributions help interpret the results in Table 2-2.  
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Fig. 2-13. A flow chart illustrating how to handle nondetect measurements, from start to 

finish. 

 

uncertainty in boundary delineations derived from aerial images. This body of research 

grew throughout the following decade to describe how to estimate uncertainty and levels 

of detection (LoDs) using traditional methods of error propagation (Edwards & Lowell, 

1996; Kiiveri, 1997; Crosetto & Tarantola, 2001). Subsequent research quantified how 

specific variables influence uncertainty (D. A. Gaeuman et al., 2003; Nelson et al., 

2013;Güneralp et al., 2013, 2014; Liro, 2015). Meanwhile, other fields and researchers 

were identifying appropriate methods for handling nondetect measurements below LoD 

thresholds (Shumway, Azari, & Kayhanian, 2002; Martín-Fernández et al., 2003; Helsel, 

2006; Lee & Helsel, 2005). Unfortunately, a disconnect remains between these 
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developments and the application within earth-science research (Lea and Legleiter, 2016; 

Donovan & Belmont, 2019). Herein, we have collected, summarized, and tested 

methodological and applied research relevant to calculations of planform changes derived 

from remotely-sensed imagery. The subsequent paragraphs provide a comprehensive 

framework including both general guidance and specific factors to consider when 

evaluating uncertainty in planform change measurements.  

Our use of 441 images spanning 8 decades and encompassing multiple riparian 

conditions, geomorphic environments, and a wide array of resolutions and image quality 

(e.g., grayscale and color) allow us to provide a general framework for handling 

uncertainty that is broadly applicable to rivers of varying scale, geomorphology, and river 

pattern. Nonetheless, we recognize the need to include considerations and caveats for our 

specific analyses, which stem from a single threaded meandering river (Root River, MN) 

spanning widths of 30-80 meters. Many of these considerations are detailed in the 

background material, but are restated in the context of our results, below. While specific 

unforeseen considerations will vary with each application, the practices, conclusions, and 

recommendations for calculating and evaluating uncertainty are generally applicable to 

many remote sensing applications, including glacier retreat or advance, erosion or 

deposition along coastlines and lakeshores, changes in wetland extent, expansion or 

contraction of vegetation (e.g., deforestation), cliff retreat, and political boundary 

disputes. We encourage readers to consider their specific context, questions, and needs 

when applying our findings.  To reconstruct the analyses conducted herein to explore 

their own datasets, we have made scripts are available as supplementary .R files. For 

example, our approach focuses on measuring change as a linear adjustment, but as 
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explained in the background, anabranching and braided channels exhibit complex 

planforms and adjustments may be better approximated by a volume, mass, or percent of 

erosion/deposition. 

Surprisingly, inconsistencies in streambank delineations were generally not 

significantly greater for images of lower quality (resolution) or channel reaches with 

shadows and/or vegetation cover. Thus, a single, experienced user can be expected to 

have a similar degree of precision (i.e., consistency) regardless of image quality, 

shadows, and/or vegetation, at least for settings with a range of environments similar to 

those encountered along our 120 km stretch of the Root River. Arbitrary inconsistency in 

user-defined delineations dominate delineation uncertainty, but we expect that image 

quality will dominate delineation uncertainty when pixel size exceeds the resolution 

necessary for detecting the riparian-fluvial boundary (0.5 – 3.5 m2 were used herein), 

such as in (Werbylo et al., 2017). Vegetation type, or an absence thereof, will also impact 

whether pixel resolution leads to more or less accurate delineations. Furthermore, pixel 

size may exceed or span the width of small tributaries and/or sufficiently narrow 

channels, which exacerbate the impact of small delineation offsets per channel width.  

In cases where image quality weakens or invalidates delineations, field 

measurements or high-resolution topography should be used to verify or replace image-

based river delineations. Locations along meander bends with various types of vegetation 

cover (e.g. thick vegetation, scattered brush, grass) exhibit the highest uncertainty due to 

ambiguity in which vegetated boundary to use. Future studies should explore how to 

incorporate spatially variable delineation uncertainty. Performing digitizations with a 

single user is optimal because it reduces digitization uncertainty by approximately 0.5 
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meters relative to multiple users, which has been shown to have a central tendency of ±2 

meters (Micheli & Kirchner, 2002) and range up to ±37 meters (Werbylo et al., 2017). 

Specifying a standard for delineation will help reduce errors and biases in long-term 

monitoring of river channels and riparian conditions that rely on multiple users for 

manual delineations. We recommend delineating the vegetated boundary that best 

approximates bankfull width to avoid inconsistency along such reaches, whenever 

possible. Additional considerations may be necessary for delineations of braided or 

gravel-bed rivers that have less clear channel boundaries than typical meandering rivers 

(Winterbottom, 2000). 

Our analyses of georeferencing uncertainty support previous research 

recommending the use of second-order polynomials to optimize the combination of 

retained measurements and reduced image warping. We found significant differences in 

georeferencing uncertainty for images predating the 1990s (Fig. 2-8), likely due to 

reduced image quality and fewer reliable control points to georeference. An absence of 

local and global autocorrelation for GCPs reinforced our other results, identifying the 

need for spatially variable LoDs (SV-LoD) because errors associated with GCPs were 

uncorrelated irrespective of the distance between them. Spatial autocorrelation for both 

delineation bias and measured migration rates were autocorrelated from 1-6 channel 

widths (50- to 400-meters). The scale of autocorrelation arising from coherent reaches of 

similar migration will likely vary with river size and are not directly transferrable to other 

systems. Thus, autocorrelation should be explored in future studies, and additional 

exploration may improve models of river meander migration.  

Our analyses demonstrate how spatially-variable LoDs improve the quality of 
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retained measurements relative to a singular RMSE-based LoD for two reasons. First, 

SV-LoDs are able to detect and eliminate erroneous large-magnitude migration values 

(false-positives) that arise from georeferencing offset or image warping in cases where 

the local spatially variable uncertainty is equally large (Fig. 2-7). In contrast, RMSE-

based LoDs retain such measurements simply due to their large magnitude. Second, SV-

LoDs retain the abundance of small, but legitimate, channel adjustments that often fall 

below the RMSE LoD (Fig. 2-8). Thus, we recommend the use of a SV-LoD in order to 

more accurately quantify uncertainty, as well as improve the quantity and quality of 

retained measurements. Currently, using the Planform Statistics Toolbox (Lauer and 

Parker, 2008) in combination with Lea and Legleiter’s (2016) Matlab script quantifying 

spatially variable error provides an accurate, efficient, and nearly seamless means to 

quantify linear river migration and spatially variable uncertainty. For braided and/or 

anabranching channels, or rivers with many permanent vegetated islands, polygonal 

(area-based) methods of quantifying changes and associated spatially variable estimates 

(D. Gaeuman, Symanzik, et al., 2005) may be more suitable. 

After applying a LoD threshold for parsing significant and nondetect 

measurements, a few approaches may be appropriate for handling nondetects, contingent 

upon expert knowledge and scope/goals of the research (Fig. 2-12). In both linear and 

areal measurements of channel change, observations of ‘zero’ or nearly-zero change are 

generally flagged as ‘nondetects’, despite the possibility that no change actually occurred. 

In such cases, we recommend using expert discretion to discern if these measurements 

qualify as ‘significant’ measurements of zero, or nearly zero, change. Because the 

majority of river channels exhibit negligible adjustments between two photos, this 
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exercise is likely to improve the accuracy of the final data distribution, as it reduces the 

odds of erroneously filtering measurements of real geomorphic change (Anderson, 2018). 

This recommendation is not justification for determining the significance of any/all 

measurements, but merely for evaluating nondetect measurements along known stagnant 

reaches. We evaluated the ability of three new approaches (i.e., Kaplan-Meier, 

Regression on Order Statistics, and Maximum Likelihood Estimation) to estimate 

statistical parameters (mean, median, standard deviation, and distribution fit) for 

modelled distributions with known proportions of nondetects (Table 2-3). MLE and K-M 

consistently perform well for approximating the mean of raw data at small measurement 

sample sizes (n = 100). However, at sample sizes > 1000, MLE will best approximate the 

mean. ROS will perform best for estimating the variance at all sample sizes and exhibits 

improvements in median estimates as sample size increases. KM is consistently the most 

robust in its overall distribution fit. The specific approach chosen for handling nondetects 

remains contingent upon each case, but should be guided and informed by the 

descriptions of each method and their requirements (Section 2.3.5), references to external 

resources, and results of our analyses. 

Herein, we provided a comprehensive summary and evaluation of research on 

uncertainty as applied to studies of river planform change. Decades of research have built 

our understanding of uncertainty in remotely-sensed data, and will undoubtedly continue 

to be refined with improved technologies, software, statistical approaches, and most 

importantly, critical thinking. Future work should aim to improve upon the guidance 

provided herein to improve accuracy and uncertainty in measurements of fluvial change. 

There has been little consensus on applying knowledge gleaned from over two decades of 
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research on identifying and quantifying uncertainty. This likely reflects the complicated 

nature of calculating uncertainty, the variety of tools (and thus, output formats) used to 

evaluate planform change, and in some cases, the absence of uncertainty estimates. Thus, 

we encourage improving the simplicity, generalizability, and open-source opportunities 

of tools and packages used for calculating planform change and associated uncertainty, 

thereby enabling a common platform to measure and compare results. 
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CHAPTER 3 

TIMESCALE DEPENDENCE IN RIVER CHANNEL 

MIGRATION MEASUREMENTS 

 

1. Introduction 

1.1. Fundamental concepts and motivations 

Measuring river meander migration rates from historical aerial images is useful 

for developing a predictive understanding of channel and floodplain evolution (Lauer and 

Parker, 2008; Crosato, 2009; Braudrick et al., 2009; Parker et al., 2011), bedrock incision 

and strath terrace formation (Constantine et al., 2009; Finnegan and Dietrich, 2011; 

Motta et al., 2012; Gran et al., 2013), as well as providing constraints for sediment 

budgets (Trimble, 1983; Reid and Dunne, 2005; Belmont et al., 2011) and bank erosion 

models (Larsen et al., 2006; Motta et al., 2012).  Historical meander migration rates are 

also used to study if, and to what extent, channel migration rates have changed over time. 

Rivers respond to climate and land use changes via nonlinear adjustments to channel, 

width, depth, planform pattern, vertical incision or aggradation, and lateral migration 

(Nanson and Hickin, 1983; Simon, 1989; Gaeuman et al., 2005; Swanson et al., 2011; 

Toone et al., 2014; Larsen et al., 2006; Call et al., 2017). Ultimately, channel adjustments 

shape fluvial and riparian habitats and may pose risks for nearby human infrastructure 

(Wente, 2000; Allan, 2004). Accurate measurements of migration rates are essential for 

advancing our understanding of river adjustment across a range of spatial and temporal 

scales.  

Increased availability of historical and contemporary landscape-scale data (e.g., 

aerial photographs and high-resolution topography, HRT) have improved the accuracy 
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and precision of channel migration measurements over short (<1 year) and long (> 50 

years) timescales, and thus interpretations of fluvial patterns, processes and trends 

(Lindsay and Ashmore, 2002; Ghoshal et al., 2010; Donovan et al., 2015; Passalacqua et 

al., 2015). However, timescale dependence of process rate measurements, often referred 

to as ‘Sadler effects’ (Sadler, 1981), may bias interpretations and hinder attempts to 

untangle the complexity of river responses to changing climate and land use conditions 

(Gurnell et al., 1994; Larsen et al., 2006; Micheli and Larsen, 2011; Schook et al., 2017). 

We use ‘timescale dependence’, rather than ‘Sadler effects’, because channel migration 

and accompanying measurements occur over much shorter timescales than geologic 

phenomena, and are affected by factors other than those discussed by Sadler (1981). 

Timescale dependence has been demonstrated for a multitude of unsteady 

processes, including sediment accumulation, aggradation, progradation, and degradation 

(Sadler, 1981; Gardner et al., 1987; Lindsay and Ashmore, 2002; Kessler et al., 2013; 

Sadler and Jerolmack, 2015), river incision (Finnegan et al., 2014; Gallen et al., 2015), 

mountain erosion (Kirchner et al., 2001), cliff erosion (Cambers, 1976), and slope 

adjustments (Penning-Rowsell and Townshend, 1978). Spatially averaged (mean) erosion 

rates such as sediment yield appear to be independent of measurement timescale because 

they integrate across local extents of erosion and deposition (Sadler and Jerolmack, 2015; 

Ganti et al., 2016). While research has compared short-term erosion pin measurements 

with long-term measurements derived from tree rings or aerial image comparisons 

(Hooke, 1980; Nanson and Hickin, 1983; Thorne, 1981), the potential for timescale to 

disproportionately affect short- and long-term measurements of river migration has not 

been addressed. 
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Process hiatuses (e.g., rapid change followed by periods of dormancy) and 

reversals (e.g., incision vs. aggradation) appear to be largely responsible for timescale 

dependence across a variety of unsteady processes (Sadler, 1981; Gardner et al., 1987; 

Finnegan et al., 2014; Sadler and Jerolmack, 2015). In the case of channel migration, 

both factors likely influence measurement-scale dependence, with reversals defined as 

episodes of left vs. right migration, rather than incision vs. aggradation. Intuitively, 

channel reversals necessarily lead to underestimating the total/gross migration because 

observed/net migration approaches; with apparent rates approaching zero as the channel 

migrates back to the position in the initial photo. Highly confined channels with high 

sediment load may experience higher degrees of channel reversals as they ‘bounce’ off 

nearby valley walls more often than an unconfined channel with a wide meander belt. 

In order to understand timescale dependency in channel migration measurements, 

we analyze empirical and synthetic datasets to address the following questions: Does 

timescale dependence exist for river migration measurements? If so, how does it affect 

our ability to accurately measure and compare changes in migration rates over time? 

What mechanisms cause measurement timescale dependence, and to what degree? Can 

timescale dependence and actual changes in channel migration be disentangled in order to 

determine if/when/where real changes in migration rates have occurred? We explore 

these questions using a statistical model as well as empirical data from the Root River, in 

southeastern Minnesota, USA. While we focus on channel migration measured from 

aerial images, our insights are applicable to process rates measured using other platforms, 

such as repeat topographic surveys, or HRT. 
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2. Study area and Data 

We evaluate timescale dependence empirically using 12 sets of aerial photographs 

spanning 120 km of the Root River, Minnesota, a single-threaded, meandering sand- and 

gravel-bedded river that drains into the Mississippi River (Fig. 3-1). Images span 76 

years (1937, 1947, 1953, 1976, 1981, 1991, 2003, 2006, 2008, 2010, 2011, and 2013). 

We selected the Root River because it exhibits three distinct geomorphic settings (Table 

2-1) that provide an opportunity to explore differences in measurement-scale 

dependencies and channel migration patterns for each setting. These distinct geomorphic 

environments are relics of the Late Pleistocene and Holocene history of glaciation and 

base level changes and are characterized by different degrees of valley confinement, 

slope, and sinuosity (Souffront, 2014; Belmont et al., 2016a). While it is not the goal of 

this study to examine how changes in land use and flow affect migration rates, the  

 

 
Fig. 3-1. The Root River watershed and three distinct geomorphic zones as defined by 

Souffront (2014). Each zone has a unique slope and degree of valley confinement. The 

extent of delineated river spans 120-km of river length, with Zones 3, 2, and 1 having 

lengths of 42, 38, and 32 km, respectively.  
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Table 3-1. Root River zones and morphological characteristics 

 

 

geomorphic setting provides useful context to interpret our results. 

The 120 km study reach is partially within the so-called ‘Driftless Area’ of the 

upper Midwestern United States, which has been unglaciated for the past 500 kyr 

(Syverson and Colgan, 2004), but received glacial melt water and outwash from the 

glaciated western portion of the watershed following the Last Glacial Maximum (LGM). 

Deep valleys within the Driftless Area resulted from incision of the Mississippi River 

prior to the LGM (Baker et al., 1998; Knox, 2006). These alluvial valleys are surrounded 

by rolling uplands that are largely forested in steeper areas (> 10°) of the watershed, with 

corn and soybean farming on gently sloping areas. Row crops occupy approximately 75% 

of the watershed and are dominant throughout the previously glaciated western portion. 

Shallow karst underlies the majority of the Root River watershed, with typically less than 

15 m of alluvial deposits overtop carbonate bedrock. Mainstem valleys and larger 

tributaries run across mantled karst with alluvial deposits exceeding 30 m.  

While improved agricultural management in the 1940s reduced upland erosion 

from agricultural fields, the legacy of historical agricultural erosion still represents a 

significant sediment source in the form of large alluvial terrace and floodplain deposits 

along the modern Root River (Stout and Belmont, 2013; Stout et al., 2014; Belmont et al., 

2016a). Historical milldams and small hydroelectric power dams exist along some 
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tributaries, as well as levees along the mainstem outlet along downstream reaches of 

Zone 3.  

The Root River hydrologic regime has experienced significant increases in both 

low and high flows (80 and 60% increases, respectively) over the past 40 years resulting 

from enhanced artificial drainage of agricultural lands and increasing precipitation 

(Lenhart et al., 2011; Stout et al., 2014; Kelly et al., 2017). Changes in sediment loading 

over time have not been examined, although the land use history bears many similarities 

to the well-studied Coon Creek, directly across the Mississippi River (Trimble, 1999, 

2009). The Root River watershed exhibits some of the steepest relationships between 

discharge (Q) and total suspended solids (TSS) throughout Minnesota (Vaughan et al., 

2017), indicating the presence of considerable near-channel sediment sources that are 

highly vulnerable to erosion, especially under high flow conditions (Stout et al., 2014; 

Belmont et al., 2016a). Combining three distinct geomorphic settings with the spatially 

(120 km) and temporally (76 years) robust set of historical air photos provides an 

exemplary opportunity to explore timescale dependence of migration measurements 

along an alluvial river experiencing increased flow. 

 

3. Methods 

3.1. Measuring and evaluating temporal change 

Approximately 2,880 km of streambanks were digitized from 12 sets of scanned 

georeferenced images (Souffront, 2014; M.S. Thesis) and used to interpolate channel 

centerlines for each year (1937, 1947, 1953, 1976, 1981, 1991, 2003, 2006, 2008, 2010, 

2011, 2013). For every combination of two images (n = 66), curvature-driven cut-bank 

migration magnitude was measured at 10-meter increments along the channel centerlines 
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using the Planform Statistics Toolbox (Lauer, 2007; Lauer and Parker, 2008). We do not 

distinguish between cut-bank migration, down-valley translation, and/or bend 

expansion/contraction in our measurements, because results exhibit < 1% difference 

based on preliminary comparisons. Total migration was measured as distance between a 

node on the initial and terminal channel centerlines (Fig. 3-2). We manually identified 

and filtered out meander bend cutoffs for relevant measurements (i.e., affected image 

pairs) before performing subsequent analyses. Although the length of river filtered out as 

cutoffs increased with the measurement interval, the proportion of length filtered out was 

trivial compared to the entire 120 km study reach. 

Because different geomorphic conditions can lead to unique channel responses 

(Montgomery, 1999), we binned migration rates into three distinct geomorphic zones 

previously classified by (Souffront, 2014) based primarily on slope and valley 

confinement (Fig. 3-1, Table 3-1). Lognormal distributions dominated our migration 

measurements, so we tested for significant increases in the medians, extremes, and 

distributions of each image pair using nonparametric statistics (Mann-Whitney Wilcoxon 

and Kolmogorov-Smirnov tests). We tested the alternative hypothesis that migration rates 

have increased with flow using one-tailed tests with alpha-values of 0.05 to ensure 95% 

confidence of avoiding a Type I error. Because 95% confidence levels can be excessive 

in water resource and environmental risk applications and are not always germane 

(Johnson, 1999; Belmont et al., 2016b), we also evaluated significance at alpha values of 

0.1 and 0.2 (Appendix C, Table A1a & A1b).  

Measurement intervals differed for image pairs between 2003-2013 (Δt ~ 1-3 

years) and those prior to 1991 (Δt ~ 6-23 years), possibly confounding results. Thus, we 
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also compared pre-1991 rates with ensemble rates measured from 2003-2013 (Δt = 10, n 

= 18), providing the second line of evidence for whether migration rates have changed. In 

the case that fewer years exhibited differences after comparing migration measured over 

2003-2013, timescale bias may have confounded or influenced inferences of channel 

response to hydrologic changes.  

 

3.2. Measurement length-scale dependence 

We computed and plotted correlograms of Geary’s C (Geary, 1954) to quantify 

the lengths over which spatial measurement autocorrelation exists in our river migration  

data, which results from autocorrelation inherent in river migration as well as local-scale 

systematic delineation biases. Spatial autocorrelation generally persisted until 50-200 m 

length-scales, beyond which it was extremely weak to none (C-values > 0.8). Thus, we 

averaged migration rates over 400-meter increments to ensure autocorrelation did not 

compromise the validity of the statistical tests implemented. Nevertheless, we used a 

range of length scales above and below 400-meters to confirm that length scale had 

negligible effects on timescale dependency results. The Geary’s C results informed our 

decision to model migration over 400-m increments. Specifically, knowing that migration 

rates are not autocorrelated at length scales longer than 400 m allows us to randomly 

sample the distributions of migration rates, which were derived from empirical data, 

without concern for spatial autocorrelation. 
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Fig. 3-2. Images depicting migration measurements as described in the text. Top left and 

center images show the 1937 and 1947 imagery, respectively, overlain by the channel 

centerlines. The top right image depicts 10-m increments at which the migration distance 

is calculated using the Planform Statistics Toolbox (Lauer, 2007). Bottom image 

illustrates 12 channel centerlines derived from the images spanning 1937–2013, with 

points at 10-m increments. 

 

 

3.3. Quantifying uncertainty from georeferencing and digitization error 

We quantified uncertainty as the sum of squares from spatially variable 

georeferencing uncertainty and uniform user delineation/digitization to estimate the  

minimum level of detection (LoD). Georeferencing uncertainty was calculated for at least 

185 georeferenced control points (GCPs) for each year and interpolated to obtain 

uncertainty for each raster cell (Lea and Legleiter, 2016). Digitization uncertainty was 

estimated by comparing centerlines derived from 4-repeat streambank digitizations of the 



77 
 
same 11-km reach. We assigned values of zero to migration measurements below the 

minimum LoD (see flat portions, Fig. 3-4a – k).  

 

3.4. Distinguishing timescale dependence 

Following established methods for assessing timescale dependence (Gardner et 

al., 1987; Sadler and Jerolmack, 2015; Ganti et al., 2016), the mean channel migration 

(Δx, mean of all 400-m reaches) was plotted against the respective time interval (Δt, 1-76 

years, n = 66) in log-log space (Fig. 3-5). Trends of log(Δx) over log(Δt) for each zone 

were compared to a 1:1 line visually and using an their 98% (3σ) confidence intervals to 

evaluate whether channel migration exhibited systematic bias with longer averaging time 

scales. Research assessing timescale dependence for timescales spanning multiple orders 

of magnitude (Gardner et al., 1987a; Sadler and Jerolmack, 2015; Ganti et al., 2016) 

compare mean adjustment (Δx) against the respective time interval (Δt) in log-log space 

with a 1:1 line. Significant deviations from the 1:1 line indicate a measurement-scale 

dependence, but can also reflect systematic shifts in rates over time. Because our aerial 

images span less than a century (76 years), and to avoid the possibility of confounding 

timescale dependence with systematic changes, we evaluate the process rate (Δx/Δt) over 

the time interval (Δt) on linear axes. We test whether systematic rate changes or sample 

bias are the source of observed timescale dependence by comparing historical and 

contemporary migration rates for a subset seven specific reaches (3-29 km, Appendix C, 

Fig. A3) having similar short measurement intervals (Δt ≤ 6 years). This comparison used 

commensurate timescales and filled in our sample gap (i.e., historical data with short Δt), 

thereby providing an independent and unbiased third line of evidence indicating whether: 

1) migration rates changed systematically over the period of study, and 2) observed 
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timescale dependence actually reflected a dearth of short-Δt measurements for historical 

data, rather than an actual change in migration rates. We further examined how sampling 

bias may affect timescale dependence using a statistical model (described later). 

The overwhelming majority of past literature demonstrate that process reversals 

and hiatuses are mechanisms for causing timescale dependence and/or bias. We expected 

the Root River to have relatively low reversal rates due to its wide valley and meander 

belt. Nonetheless, we manually measured the length of channel that had reversed within 

the period of study to inform and support our statistical model that explores mechanisms 

of measurement bias. The criteria required that reversals be maintained for multiple 

years/images, ensuring exclusion of ‘fake’ reversals in the form of offset for single year 

due to georeferencing of digitization error. For this reason and due to the data structure, 

measuring reversal length by hand was necessary and allowed us to use our expert 

judgement that an automated classification would lack. In our evaluations, we omitted 

data after 1991 because the time intervals were too short to discern reversals from noise.  

3.5. Discerning processes responsible for timescale dependence in channel migration  

To explore the effects of hiatuses (e.g., rapid change followed by periods of 

dormancy) and reversals (migration opposite in direction to previous records) we 

developed a statistical model that simulates river migration and reversals, without 

involving unnecessary details regarding their underlying mechanisms. We developed the 

model to explore whether, and to what degree, migration hiatuses, channel reversals, and 

temporal shifts in migration rates affect migration measurement bias. To do so, we 

synthesized a ‘complete’ dataset representing annual migration measurements. 

Specifically, we generated 100-year synthetic annual migration rates for 100 reaches, 
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each 400-m in length. Rates were randomly selected from the range of lognormal 

distributions found in empirical data from the Root River with Δt ≤ 3 years (nyears = 7, nobs 

= 2247), including 0-values, which comprise 50 to 75% of the values. The model script 

randomly chose mean values from the entire range (0.31-1.42 m/yr) of empirical mean 

migration rates for years with Δt ≤ 3 years and generated variance (σ) using an empirical 

linear relationship (Eq. 2; Appendix B, Fig. A2). For the initial year of the model, all 

migration rate values are positive, representing the rates of migration in either direction 

(i.e., right or left, the initial direction of movement of any given reach is irrelevant for our 

purposes). The model computed standard deviation based on the randomly selected 

average migration rate value using Eq. 2, because empirical data indicate that standard 

deviation varies directly, and significantly, as a function of the mean migration rate (Fig. 

3-2).  

𝜎 = 0.36(𝜇 (
∆𝑥

∆𝑡
)) + 1.25         (2) 

 

 

Due to the high likelihood that the occurrence of channel reversals leads to 

underestimating measured migration rates, we evaluated the effect of reversal frequency 

using four model scenarios. In the absence of literature quantifying the temporal 

frequency or probability of channel reversals, we evaluated a range of plausible reversal 

frequencies (0%, 1%, 2%, 5%, and 10%), supported by observations for the Root River. 

The frequency of reversals explored in our model reflects a reasonable range of what we 

expect to occur in natural systems; reversal frequency varied from 1-6% across the 

definitive geomorphic zones of the Root River. Highest reversal frequency lie in the 

confined upper reaches and decreased downstream, which supports intuition that reversal 
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frequency is inversely related to valley width and our decision to model reversal 

frequencies from 1 to 10%. Reversal frequency was implemented by probabilistically 

reversing simulated migration (i.e., multiplying migration rates for individual reaches by 

-1) until the end of the 100-year model run, or until chance (1%, 2%, 5%, or 10%) 

reversed the 400-m segment back to its original direction (i.e., a positive value). The 

model tracked cumulative migration distance for each 400-m reach, and thus, negative 

values (i.e., reversals) reduced the modeled cumulative migration distance and rate. 

Similar to our analysis of empirical data, we calculated the mean for all 400-m segments 

to represent the ensemble mean annual river migration. We plotted all possible Δt 

combinations of average (mean) migration rate to evaluate how increasing reversal 

frequency affected timescale dependence.  

In addition to hiatuses and reversals, systematic changes in migration rates may 

also cause trends in timescale dependence to diverge from a 1:1 relation, especially if 

recent photos dominate shorter timescales (Δt) and longer timescales are dominated by 

older photos acquired at lower frequencies. We conducted an additional set of model runs 

to explore the effect of older photo sets typically dominating longer timescales, coupled 

with the impacts of systematic changes in migration rates. We generated scenarios 

wherein contemporary migration rates (i.e., years 51-100) were increased and decreased 

by factors of 1.25, 2, 5, and 10 relative to historical rates (i.e., years 1-50, Fig. 3-3). 

These scenarios also had a 10% chance for channel reversals. Outputs from these eight 

scenarios of change allowed us to evaluate whether temporal changes in migration rates 

cause a false-positive timescale dependence, indicated by a shift/translation to the trends 

in Fig. 3-7a.  We implemented a second test to verify or refute these results in which we  
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Fig. 3-3. Numerical simulations of annual migration for 100-years of a single 400-m 

reach. (Top) Red-colored ‘modern’ values are 50% less than the historical values from 

years 1–50. (Bottom) Blue-colored values (years 51-100) are double the historical rates 

rates from years 1-50. 
 
 
compared the entire population of simulated migration measurements (n= 4950) to a 

sample of simulated measurements (n= 120) that reflected typical datasets having 

dominantly short Δt measurements from contemporary photos and long Δt measurements 

from historical photos (SI, Appendix D, Fig. A4). 

 

4. Results and Discussion 

4.1. Does timescale dependence exist for river migration measurements? 

The entire 120 km dataset of migration rates for adjacent time intervals are 

illustrated in Fig. 3-4a-k, where channel cutoffs and measurements below the LoD are 

plotted as zeros. Measurements of mean channel migration exhibit a visual timescale 

dependence for each zone of the Root River (Fig. 3-5a). Loss of a record due to channel 

reversals would be similar to vertical reversals (e.g., sediment aggradation vs. erosion) 



82 
 
that cause bias in other measurements by erasing historical records (Sadler, 1981; 

Gardner et al., 1987b; Sadler and Jerolmack, 2015; Ganti et al., 2016). Reversals in 

migration direction (Fig. 3-6) occurred over 23 km (17%) of the Root River, and thus, 

were a possible mechanism underlying the timescale dependence. The percent and length 

of reversals declined from upstream to downstream reaches (66%, 32%, and 0.5% for 

Zones 3, 2, and 1, respectively), which is consistent with expectations because upstream 

reaches are exhibit higher migration rates and are confined within narrower valleys 

(Table 3-1). Post-hoc correlations and regressions showed a significant (p < 0.001, r2 = 

0.98) indirect relationship between the frequency (length and percent) of reversals and 

valley width (Appendix A, Fig. A1). On the other hand, long-term rates may simply 

appear to have systematically low rates because our longer Δt values are dominated by 

historical air photos during periods when migration rates may simply have been slower. 

However, no systematic shifts were evident when comparing a subset of historical 

reaches (n = 7, 3-29 km, Appendix C, Fig. A3) with short measurement intervals (Δt ≤ 6 

years) to contemporary measurements with similar Δt. We further explore this possibility 

using a statistical model of migration. 

 

4.2. How does timescale dependence vary with degrees of channel dormancy and 

reversals? 

 

Numerical simulations using a statistical model allowed us to explore the role of 

channel dormancy and reversal frequency in migration measurements. When reversals 

were absent in modeled migration measurements, channel dormancy accounted for a very 

slight timescale dependence (~1% underestimate, Fig. 3-7). The degree of timescale 

dependence/bias increased with reversal probability/frequency- illustrated by decaying 
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cumulative migration rate (Δx/Δt) with increasing time interval (Δt). As reversals 

increase from 1% to 10%, migration distance and rate measured over 100 years are 

underestimated from 4% to nearly 30% relative to a channel with no reversals (Fig. 3-7). 

The bias decreases with measurement interval until gross migration is completely 

unbiased by reversals at Δt = 1. This finding suggests that decay in empirical migration 

rates with increasing measurement timescale (Fig. 3-5) may reflect measurements 

 

 
Fig. 3-4a. (A–E) Longitudinal profiles of migration rates for five measurements made 

between 1937 and 1991. 
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Fig. 3-4b. (F–K) Longitudinal profiles of migration rates for six measurements made 

between 1991 and 2013. Vertical black bars indicate demarcations of Zones 3, 2, and 1, 

from left to right. 
 
 
incorporating more reversals and periods of dormancy. Rate convergence and asymptotic 

trends are also evident in the synthetic/modeled migration data (Appendix C, Figs. A4a & 

A4b).
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Fig. 3-5. Each black circle represent mean migration rates for a zone (34–48 km) of each 

aerial photo pair (e.g., 1937 – 1947, Fig. 3-4). Variability in migration dominates the 

signal in short-term rates, whereas rates converge over broader time intervals as broad 

measurement intervals dampen short-term variability. Measured migration rates 

systematically decrease and converge as Δt increases, indicating that migration 

measurements are dominated by channel dormancy and reversals at longer temporal 

scales. 
 
 
4.3. How do actual changes in channel migration influence observed timescale 

dependence? 

 

Additional simulations addressed whether actual temporal changes are 

distinguishable from timescale dependence, and whether the magnitude and direction of 

such changes make a difference. We sought to emulate a range of possible changes in 

migration rates, where each scenario involved a 1.25, 2, 5, or 10-fold change (increase 

and decrease) in migration rates half-way (50 years) through the 100-year simulations. 

All simulations included a 10% probability of reversals to maintain consistency. 

Increasing or decreasing modelled migration merely translated trends relative to the base 

case scenario of 10% reversals (Fig. 3-8). This finding matched the empirical trends of 

Zone 2, which are shifted/translated upward (Fig. 3-5, Zone 2, relative values of trend 

asymptotes) due to faster migration rates relative to Zones 1 and 3 (Fig. 3-9). 
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Fig. 3-6. One example of a reversal for a reach of the Root River. The reach migrated 

approximately 40 m southwest from 1937 to 1991, followed by 85 m of northeasterly 

migration between 1991 and 2013. For this reach, the observed net migration is 45 m (0.6 

m/yr) if no photographs existed between 1937 and 2013, whereas the actual migration is 

125 m (1.6 m/yr). The LiDAR hillshade confirms southwestward migration followed by a 

reversal to its location in 2013 (dark-pink line). 
 
 

Because the slope of modelled trends remained consistent regardless of rate 

changes, we can infer that, systematic changes in river channel migration are not 

sufficient to emulate, nor exaggerate, patterns associated with timescale dependence 

without the inclusion of channel reversals. Subsequent model simulations showed that 

combining a change in rates with biased sampling (i.e., predominance of contemporary 

short-term measurements relative to historical long-term measurements) can exacerbate 

or confound timescale bias. This is the result of artificially increased (or decreased) 



87 
 
measurements for low- to mid-range time intervals (1-30 years), which effectively alters 

the slope of migration when plotted over Δt (Appendix C, Figs. A4a & A4b). Thus, if 

contemporary and historical data respectively dominate short- and long- term 

measurements/records, inferences on temporal change in channel behavior are not 

conclusive without additional, independent evidence. 

 

 

Fig. 3-7. The model results demonstrate how high variability of short-term modeled 

migration rates (Δx/Δt, grey circles) converges towards a long-term average, a trend 

similar to that in empirical migration measurements (Fig. 3-5). Black circles are mean 

rates over each measurement timescale (e.g., Δt = 1, 2, 3, …, 100). Colored circles reflect 

the same, with the addition of reversals to the model simulations. Measurement bias 

increases rapidly as reversal frequency and measurement timescale increase, illustrated 

by incrementally lower values of modelled migration rates (Δx/Δt) relative to the scenario 

with no reversals. 
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Fig. 3-8. Comparing observed migration rates (Δx/Δt) over increasing measurement 

timescale (Δt) for different scenarios of temporal change. Black and green points reflect 

scenarios without and with reversals, but no temporal changes. Red and blue points both 

incorporated reversals, but also had a 2-fold decrease and increase in migration after year 

50, respectively. These scenarios are translated (up or down) versions of the simple 

reversal scenario (green) with no changes. Thus, temporal changes in migration alone are 

not sufficient to emulate, nor exaggerate, timescale dependence without the effect of 

reversals, which would be indicated by a change in the trend slope. 
 
 
4.4. Predicting and adjusting measurements for timescale bias 

Combined, the empirical and model results show us that timescale bias of 

migration measurements occurs, and this bias varies as a function of reversal frequency, 

measurement timescale, and changes in migration rate. While a lack of consistent short-

timescale empirical measurements preclude the ability to eliminate timescale dependence, 

our model demonstrates that we can use estimates of reversal frequency to discern the 

percent of bias/underestimation in a given migration rate measurement for a given  
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Fig. 3-9. Boxplots of migration rates for each geomorphic zone of the Root River. The 

farthest right boxplot shows cumulative migration from 2003 to 2013, which provided a 

comparable measurement interval to those from before 1991 (see text). 
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measurement interval. We tested the fit of four linear models to predicting bias using: 

reversal frequency, time interval, as well as the sum and products of the two using 

Akaike’s Information Criterion (AICc, Burnham and Anderson, 2002). AICc measures 

the relative quality of multiple models using the trade-off between goodness-of-fit and 

model complexity. Models using reversal frequency or measurement timescale alone 

were both significant predictors (p < 0.001, r2 ~ 0.49 & 0.35), but the fit was markedly 

improved by including both predictors in a multiple linear regression model (δAICc > 

500). The final multivariate linear regression model (Eq. 3, r2 = 0.998) enables one to 

adjust, or ‘correct’, for the bias with a known (or estimated) reversal frequency and 

measurement interval: 

𝑈 =  −0.035𝑅 ×  0.021Δ𝑡 +  0;      (3) 

 

 

where U is the percent bias/underestimate, R is the reversal frequency percent (p < 0.001) 

expressed as 0 to 100, and Δt is the measurement timescale (p < 0.001).  While it is rare 

to have precise knowledge of reversal frequency, using evidence in aerial imagery or 

high-resolution topography to estimate a range of possibilities will improve estimates of 

gross sediment remobilization from channel migration by reducing bias inherent in long-

term measurements. 

 

4.5. To what degree, if any, have migration rates along the Root River changed over 

time? 

 

We visually and statistically evaluated empirical migration data to determine 

whether the medians or distributions of migration rates exhibited any systematic changes 

over the period of study (Figs. 3-4a & b, Fig. 3-9). For 90 comparisons of migration rates 

measured before 1991 and those between 1991-2013, the medians and distributions 
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increased significantly in 0% (0/90) and 14% (13/90) of comparisons, respectively (p < 

0.05, Mann-Whitney-Wilcoxon and Kolmogorov-Smirnov tests). When relaxing our 

level of significance to 80% (p < 0.2), the medians and distributions still only exhibit 

significant increases in 1% and 39% of comparisons (Appendix B, Tables A1 and A2). 

However, these results are biased to favor the conclusion that migration rates have 

increased based on our previous empirical and model results (Figs. 3-5 & 3-7), which 

indicated that measurements over longer Δt values (i.e., measurements taken prior to 

1991; Δt = 6–23) are likely biased low relative to those from 2003-2013 (Δt = 1-3). 

Despite the predisposed results, they only suggest a minor increase in Root River 

migration rates over the period for which flows have increased. 

One approach for alleviating timescale bias is to aggregate multiple short Δt 

intervals for contemporary measurements to better match the longer Δt intervals of 

historical measurements preceding 1991 (Δt = 6–23). The MWW and K-S tests indicated 

no increase in the medians or distributions of migration rates (0/18), even when using a 

rather high α = 0.2 (Fig. 3-8, Appendix C, Tables A1a and A1b, bold rows). This 

provided a second line of evidence that migration rates have not systematically changed 

despite significant changes in flow throughout the 76-year study period. Two 

implications thus arise: (1) the Root River is predominately not responding to increased 

flows with increased migration (Figs. 3-9, 3-4a & 3-4b), and (2) comparing disparate 

measurement timescales can introduce sufficient bias to alter results and sway inferences 

of channel adjustment, as corroborated by our model results (Fig. 3-8).  

The previous pair of comparisons assessed the effect of comparing measurements 

with similar versus dissimilar measurement intervals. However, they did not address the 
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commonly encountered situation in which historical measurements are inherently biased 

toward longer Δt values due to lower frequency of air photo acquisition. To examine the 

effects of this sampling bias and investigate a third line of evidence to determine whether 

migration rates have changed, we found seven reaches (3-29 km) with historical image 

pairs obtained at low-Δt intervals (Δt = 1-5, and 11 years) comparable to those from 

2003-2013 measurements (n = 105 comparisons). Results from Mann-Whitney and 

Kolmogorov-Smirnov tests indicated that medians and distributions exhibited increased 

migration in only 14% and 18% of 90 comparisons with α = 0.05 (Appendix B, Tables 

A2a & A2b). Furthermore, all but one of these significant increases occurred for 

comparisons with longer measurement intervals for the historical image pair (1962-

1973). This finding is consistent with both empirical (Fig. 3-5) and model results (Fig. 3-

7) that suggest longer measurement intervals will exhibit systematically lower values 

relative to shorter measurement intervals, potentially causing false positive results. 

Excluding one reach with considerably higher georeferencing uncertainty, these results 

were robust regardless of whether we retained or discarded measurements falling below 

the LoD.  

Our results provided three lines of evidence that channel migration has not 

exhibited significant increases over the 76-year study period in response to increased 

flows. These results appear to contradict the physical explanation for an expected direct 

relation between flow and channel migration rates; increased flows tend to increase shear 

stresses along meanders, (Schook et al., 2017). However, sand and gravel-bed river 

channels adjust their geometry and slope to increase uniformity of sediment transport, 

and thus dampen responses to changing flow conditions (Church and Ferguson, 2015; 
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Phillips and Jerolmack, 2016; Call et al., 2017) so adjustments may be driven more by 

sediment supply and transport capacity, rather than flow (Winterbottom, 2000). Our 

results also affirm that the timescale dependence for Root River channel migration 

measurements is not an artifact of differing rates for historical and contemporary data. 

 

5. Conclusions 

Both empirical and modelled results demonstrate that migration rates are 

dependent upon the measurement interval. Short-term measurements (< 10 years) are 

dominated by high variability reflecting periodic bursts of migration. On the other hand, 

long-term measurements (> 25 years) converge asymptotically as measurements reach a 

‘characteristic timescale’ where all variability has been sampled and subsequent 

measurements are relatively constant, barring significant long-term changes. In addition, 

long-term measurements of gross migration, and thus, sediment flux estimates, are 

underestimated as the result of channel reversals that erase portions of the erosional 

record. Thus, the timescale of channel migration measurements affects which question(s) 

they are suitable to address. Without a sufficient number of short-term measurements, 

extrapolations will necessarily distort long-term sediment remobilization projections, 

sediment budgets, sediment flux estimates, and perceptions of fluvial change. Only 

sufficiently long intervals (> 20-25 years) beyond the ‘characteristic timescale’ are 

capable to answer whether a channel has undergone significant long-term changes (i.e., 

new equilibrium) when compared with similarly long-term measurements. Multiple 

short-term measurements are necessary to sample the episodic nature of channel 

migration, thereby providing a more comprehensive understanding of channels’ short-

term response to changes in flow and sediment flux. These results reinforce our 
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conclusion that authors should use caution and similar measurement intervals when 

interpreting fluvial changes and causal mechanisms from aerial- based measurements of 

channel activity. 

Empirical and modelled data both confirmed that migration rate measurements are 

increasingly underestimated as a function of channel reversal frequency, with 

insignificant effects from channel dormancy. Measurement bias favors the inference that 

contemporary channel migration rates have increased because of mismatched sampling 

intervals in contemporary and historical aerial photograph records. Furthermore, we 

conclude that long-term migration rates underestimate contributions from streambanks 

for sediment budgets or fluxes without accounting for or correcting bias using an 

observed or estimated frequency of reversals (Eq. 3). Before and after accounting for 

measurement bias in our data, we find no empirical evidence that the Root River has 

responded to increased flow with any significant increase or decrease in migration in 

subsequent decades. This reinforces the notion that no simple relationship exists between 

discharge and migration rates, and that a predictive understanding of migration rates may 

require better constraints on other factors such as sediment supply, sediment transport, 

and hydraulic structures in meander bends.  
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CHAPTER 4 

EVALUATING THE RELATIONSHIP BETWEEN MEANDER-BEND CURVATURE, 

SEDIMENT SUPPY, AND MIGRATION RATES 

 

1. Introduction 

 

1.1.Background- River meander migration and curvature 

 

River meander migration is one of the most ubiquitous processes shaping and 

redistributing mass on Earth’s surface. The forms and patterns of river meander 

development have fascinated scientists since the early 20th century (Davis, 1902; Brice, 

1974; Leopold and Wolman, 1960; Schumm, 1965; Wolman and Leopold, 1957), 

perplexing even Albert Einstein, who proposed that river meandering was the result of 

rotational motion from the Coriolis effect (Einstein, 1926). The complexity inherent to 

meander migration is reflected in countless studies spanning multiple orders of spatial 

and temporal magnitude- from individual meander bends (Dietrich et al., 1979; Kasvi et 

al., 2017), to geologic-scale evolution of floodplains and valleys (Sun et al., 1996; 

Howard, 1996; Gran et al., 2013). Such studies improve models predicting where and 

when migration will occur, providing useful information for environmental and 

agricultural management, sediment loads for downstream habitats, stream restoration, and 

riparian/watershed management. Remotely-sensed imagery is commonly used to measure 

changes in river planform in response to changes in land use, urbanization, deforestation, 

and dam building or removal (Hickin and Nanson, 1984; Gurnell et al., 1994; Gaeuman 

et al., 2005; Lauer and Parker, 2008; Constantine et al., 2014; Donovan et al., 2015, 

2016; Morais et al., 2016).  

Using a combination of aerial imagery and USGS topographic maps, Brice (1974) 
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established seven generalized classes of meander development based on predictable and 

persistent patterns over broad scales, all of which reflect localized feedbacks between 

sediment loads and the flow of water (Constantine et al., 2014). Specifically, the helical 

flow patterns around meander bends establish asymmetries in centrifugal forces and shear 

stresses along the outer bank, which in turn drive erosion, transport, and deposition of 

sediment (Leopold and Wolman, 1960; Dietrich et al., 1979). Centrifugal forces and 

shear stresses along a meander bend increase with curvature of the bend, and thus, 

migration rates should vary directly with curvature (Howard and Knutson, 1984; Furbish, 

1988). Curvature (C) is the degree to which a segment/surface deviates from a line/plane 

and is the reciprocal of the radius of curvature (R). Although centrifugal force and bank 

stress increase with bend curvature, empirical measurements indicate that migration rates 

peak at a radius of curvature that is 2 to 3 times the channel width (R/W ~2-3) when 

measurements are averaged over the scale of a meander bend (Fig. 4-1a; Hickin and 

Nanson, 1975, 1984). This relationship has been observed in many subsequent studies 

(Hudson and Kesel, 2000; Hooke, 2003; Güneralp and Rhoads, 2008; Nicoll and Hickin, 

2010).  

Bends with the same average curvature can have different degrees of asymmetry, 

suggesting that a single value of bend-averaged curvature may be associated with 

multiple patterns of shear stress (Furbish, 1988). For example, the two bends in Fig. 4-1b 

have the same bend-averaged curvature, but exhibit large differences in flow asymmetry 

and shear stress due to differing bend lengths. The longer bend experiences larger shear 

stresses along the outer bank, and therefore will have faster migration rates compared to 

the shorter bend. Migration trajectories along a bend depend not only on local curvature, 
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but also cumulative upstream curvature, which will vary with bend length. Thus, 

associating bend-averaged migration rates with bend-averaged curvature will result in a 

single curvature value being associated with a range of migration rates. Despite being 

published nearly 30 years ago, Furbish (1988) and Furbish (1991) have approximately 

20% the citations of Hickin (1974), and 30% that of Hickin & Nanson (1975). Such 

contrasts highlight how widely-held beliefs amongst scientists can persist due to 

popularity, regardless of their rigor. While the results and empirical relationship 

established in Hickin & Nanson (1975) reflect rigorous science and a considerable 

breakthrough in understanding curvature-migration rate dynamics, subsequent research 

largely overlooked concerns outlined in Furbish (1988) in favor of an over-simplified 

approach associating bend-averaged radius of curvature and migration rate.    

Models relating bank erosion to local curvature reproduce the peaked relation 

between local migration and curvature (Begin, 1981; Crosato, 2009). However, others 

note that using local curvature to model meander development results in bend form 

growth lacking the asymmetry (Carson and Lapointe, 1983) and spatial heterogeneity that 

is observed in complex planform adjustments (Güneralp and Rhoads, 2011) common to 

many meandering rivers. Comparing meander migration modelled using (a) local 

curvature, versus (b) local and upstream curvature weighted as a function of distance 

upstream, Howard and Knutson (1984) showed that only the latter successfully simulated 

asymmetrical development, downstream translation, and cutoffs typical of natural 

meandering streams. 
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Fig. 4-1. Competing ideas regarding the relation between curvature and meander-bend 

migration. (Left) Meander-bend averaged migration plotted as a function of meander-

bend averaged radius of curvature normalized by channel width (R/W), as reproduced 

from Hickin and Nanson (1975). The x-axis is the bend-averaged radius of curvature 

normalized by channel width, which is inversely related to curvature (see Eq. 2). (Right) 

Conceptual diagram, adapted from Furbish (1988), illustrating how two meander bends 

can have the same bend-averaged radius of curvature despite distinct differences in shear 

stress along the outer bank. Thus, despite having the same radius of curvature, R2 will 

migrate faster due to higher shear stresses. *R1 and *R2 were transposed from each of the 

curves as evidence that the radii are equal.  

 

 

Measuring migration and curvature at the scale of an entire bend also prevents the 

possibility of capturing sub-meander scale flow dynamics that drive heterogeneity in 

meander migration throughout a bend.  A high velocity flow filament is directed toward 

the outer bank, reaching the outer bank downstream of the bend apex (Dietrich et al., 

1979; Seminara, 2006, Kasvi et al., 2017), and not always within the meander bend 

(Leopold and Wolman, 1960). Shear stress and erosion increase along the outer bank 

where the highest velocities persist due to centrifugal force and acceleration of secondary 

flow currents (Dietrich et al., 1979; Seminara, 2006; Zhou et al., 1993). Meanwhile, inner 

bends have lower velocities, deposition, and point bar formation, which continue to push 

high velocity flow paths towards the outer bank. In this way, point bar development is 

causatively linked to erosion along the outer bank, and is referred to as bar push. The 
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spatial lag between bend apices and peak migration rates ultimately reflects the lag in 

acceleration of secondary flow development, and thus, peak migration should be 

downstream of the bend apex. The downstream length of the lag is influenced by other 

variables such as meander arc length, width:depth aspect ratio, friction or flow resistance, 

flow depth, inner-bank bar angle, and suspended sediment concentration (Furbish, 1991; 

Zhou et al., 1993; Seminara, 2006; Güneralp and Rhoads, 2009; Güneralp and Marston, 

2012; Patnaik et al., 2014).  

By measuring migration rates and channel curvature at sub-meander bend scales, 

Sylvester et al. (2019) provided empirical evidence to support a direct relationship 

between channel curvature and downstream migration rates for seven Amazonian rivers. 

When associating spatially lagged values of channel curvature and migration rates, 

migration rates did not exhibit a peak at intermediate curvature values, but rather, 

continually increased as curvature increased. Deviations from the general trend were 

attributed to reduced bank erodibility. The authors conclude that peaked curvature-

migration relationships (e.g., Hickin and Nanson, 1975) result from associating bend-

averaged, rather than spatially explicit and lagged, values of curvature and migration rate.  

Channel migration not only reflects local patterns of shear stress, but also 

feedbacks between sediment loads and the flow of water (Constantine et al., 2014). When 

sediment supply exceeds a channel’s transport capacity, deposition leads to steeper 

channel slope and point bar growth (Ashworth, 1996; Venditti et al., 2012; Engel & 

Rhoads, 2012; Kelly, 2019). As channel bars grow, the positive feedbacks associated 

with the asymmetry in the channel bed, flow velocities and depths, and shear stresses 

increase the probability of lateral migration via bar push (Eke et al., 2014). In contrast, 
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these dynamics are muted and typically fail to exceed bank resisting forces in reaches 

without sufficient sediment supply to form bars that are large enough to exert a 

substantial influence on the flow field. Rivers within the Amazon River exhibit some of 

the highest sediment transport rates in the world (Milliman and Meade, 1983; Martinelli 

et al., 1989), and are likely to exhibit migration rates driven by bar push feedbacks. It 

remains to be seen if the direct relationship between curvature and migration (Sylvester et 

al., 2019) holds in the absence of high sediment supply to support bar growth. Addressing 

the role of sediment supply and bar geometry in curvature-migration relations would 

provide significant advancements for this area of fluvial geomorphology. Comprehensive 

studies of process-form feedbacks in meander morphodynamics of natural systems are 

among the top research needs to be integrated into theoretical and laboratory experiments 

(Güneralp and Marston, 2012). 

We evaluate the relation between channel curvature, migration rates, and bar 

geometry in the Root and Minnesota rivers, Minnesota, USA, using repeated aerial 

images spanning large temporal (8 and 6 sets of air photos over 76 years) and spatial 

scales (25 and 180 km). We first evaluate the relationship between meander-bend 

averaged curvature and migration and compare these results to analyses of spatially 

explicit and lagged values of curvature and migration rates measured at sub-meander 

scales. In doing so, we are able to assess if measurement lengthscale alters the form of 

relationship between channel curvature and migration rates (i.e., migration rates increase 

as a continuous function of curvature, or peak at intermediate curvature values). 

Specifically, we ask: What is the magnitude and variability in the spatial lag between 

curvature and migration rate? And, are the lag and form of the relationship between 
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curvature and migration rate altered for reaches with high bank erodibility and/or low 

sediment supply? By influencing point bar geometry and growth, sediment supply may 

play an important role in the relationship between curvature and migration. 

 

2. Study Area and Data 

 

We evaluate curvature-migration relations using channel change along centerlines 

derived from aerial photographs spanning approximately 25 km of the Root River, 

Minnesota, a single-threaded, meandering sand- and gravel-bedded river that drains into 

the Mississippi River (Fig. 4-2A). The 25-km reach (Fig. 4-2B) chosen for analysis 

contains the most active meander bends of the mainstem river, which has been studied 

extensively (Stout and Belmont, 2013; Stout et al., 2014; Souffront, 2014; Belmont et al., 

2016). Meander bends in this reach are intermittently laterally confined by either natural 

or anthropogenic impingements (Fig. 4-2C). Channel confinement and variable riparian 

conditions provide sufficient irregularity in erosivity to test whether a simple curvature-

migration model remains robust despite variable conditions. We used eight sets of images 

(1937, 1947, 1953, 1976, 1981, 1991, 2003, and 2013) with sufficiently similar time 

intervals to encompass significant channel adjustment (Donovan and Belmont, 2019). 

We also include 180-km of the Minnesota River between the town of Mankato 

and historical Fort Snelling, near the confluence with the Mississippi River. Six sets of 

images (1937, 1951, 1964, 1980, 1991, and 2013) were available along this portion of the 

river, which has been the focus of multiple comprehensive geomorphic studies (Lenhart 



108 
 

 

Fig. 4-2. Overview of Root River within the North American continent and state of 

Minnesota (top left). (A) The mainstem drains from left to right into the Mississippi 

River. (B) The 25-km segment of the Root River chosen for analysis. (C) An example of 

centerlines derived from delineations for each of the 8 sets of images spanning 1937-

2013. The underlying hillshade in A, B, and C was derived from 3-meter LiDAR 

elevation data. 

 

 

et al., 2013; Libby, 2017; Lauer et al., 2017; Kelly and Belmont, 2018) due to its unique 

short- and long-term geomorphic history. About 13,400 years ago, the outpouring of 

glacial Lake Aggasiz resulted in 70 m of incision of the mainstem Minnesota River 

Valley (Shay, 1967; Clayton and Moran, 1982; Matsch, 1983; Lepper et al., 2007; Gran 

et al., 2013). This incision has resulted in multiple knickpoints and exposure of highly-

erodible glacial sediments (Belmont, 2011; Jennings, 2010). In addition, the river has 

been responding to contemporary land use and precipitation changes over the last 80 

years, which have increased flows by 50-250% (Kelly et al., 2017; Foufoula-Georgiou et 

al., 2015; Novotny and Stefan, 2007; Schottler et al., 2014). The recent increases in flow 
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have amplified rates of lateral channel migration (Belmont et al., 2011; Libby, 2017) and 

notably increased channel width (Schottler et al., 2014; Lauer et al., 2017). Within the 

180-km study reach, the channel experiences abrupt reductions in sediment grain size, 

channel-bar geometry, and slope roughly 100-km downstream near the town of Belle 

Plaine (Fig. 4-2b). We distinguish these reaches as the high- and low-supply reaches, and 

spatially, these are respectively the upper and lower portions of the study reach. Large, 

wide channel bars along upstream reaches promote bar-push feedbacks, while narrow and 

steep downstream point bars lack sediment supply to support growth. The comprehensive 

set of imagery and contrasts in channel-bar geometry along the Minnesota River provide 

an opportunity to study the role of sediment supply in the relationship between channel 

curvature and meander migration rates. 

 

3. Methods 

3.1. Measuring curvature and channel planform 

For each year of imagery, channel banks were delineated as described in Donovan 

et al. (2019). Bank lines were interpolated to channel centerlines (Fig. 4-2c) and 

converted to coordinate points in 10-meter increments. At each increment, channel width 

was calculated using the Planform Statistics Toolbox (Lauer and Parker, 2008). For each 

sequential pair of images (n=7 for Root River, n=5 for the Minnesota River), bank 

migration was measured at each 10-meter increment along the channel using a dynamic 

time warping algorithm (DTW).  

DTW was originally developed to correlate time series (e.g., Lisiecki and 

Lisiecki, 2002) and has been shown to greatly reduce computation time while improving  
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Fig. 4-3. Locator map of the study reach along the Minnesota River, which spans from 

the town of Mankato to Fort Snelling (center). Unique upstream and downstream reaches 

are highlighted in blue and red, respectively. The bed and bars of the reach north 

(downstream, red) of Belle Plaine contain fine sands, silts, and clays, compared to the 

southern (upstream, blue) reach, which consist of coarse sands and gravels.  
 
 

bank migration trajectories compared to typical nearest neighbor algorithms (Sylvester et 

al., 2019). Unlike nearest-neighbor algorithms, DTW uses a cost matrix and ‘cosine 

similarity’ to minimize the sum of trajectories between signals, rather than minimizing 
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the distance of individual trajectories. Cosine similarity not only considers the magnitude 

(distance) between two points on a signal, but also their orientation in space relative to 

nearby points. Thus, the trajectories are not simply minimized Euclidean distances, but 

also account for the form of the local signals. Cosine similarity also helps avoid issues 

associated with measuring trajectories between signals of differing lengths. For example, 

migration inherently changes the length of the second signal relative to the first, by 

increasing sinuosity or reducing it via channel cutoffs. By using cosine similarity, DTW 

avoids bunching and/or large gaps between nodes on the terminal end of trajectories. 

Thus, as distance between two centerlines increases, the performance of DTW 

computations improves relative to nearest neighbor algorithms.  

Subsequent to DTW computations, we manually identified and filtered out 

measurements within meander bend cutoffs before performing subsequent analyses (Fig. 

4-3). Curvature (units, m-1) was calculated using the x and y components of each point’s 

Cartesian coordinates:  

𝐶 =  
𝑥′𝑦′′−𝑦′𝑥′′

(𝑥′2+𝑦′2)3 2⁄ ,      Eq. (1) 

 

 

where x’ and x’’ are the first and second-order derivatives of the x coordinate. Curvature 

is the reciprocal of the radius of curvature, R (Eq. 2): 

 

𝐶 =
1

𝑅
;   ∴  

𝑅

𝑊
=

1

𝐶∙𝑊
 ,     Eq. (2) 

 

 

and thus, is inversely related to width-normalized radius of curvature (R/W) that is 

commonly plotted against migration rates. Curvature and migration rates were smoothed 

using a Savitzky-Golay filter to reduce signal noise (Motta et al., 2012; Sylvester et al., 
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2019). Savitzky-Golay filtering retains local precision without distorting the signal by 

fitting low-degree polynomials to successive subsets of data points (Savitzky and Golay, 

1964). 

 

3.2. Discerning spatial relationships in migration and curvature 

After generating continuous profiles migration and curvature, we employed a 

signal processing algorithm (scipy.signal.find_peaks) in Python to find local maxima and 

minima (both are referred to as ‘peaks’). An individual point would be defined as a peak 

if it was greater than adjacent (upstream or downstream) values within 40-meters (Figs. 

4-3A & 4-3B). By using simple/minimal criteria to detect peaks, we eliminated false-

negatives and then manually removed false-positives, retaining only curvature peaks that 

could be paired with peaks in migration rates. The lag distance between paired peaks in 

migration rates and curvature was the distance between each set of peaks, as measured 

along the channel centerline. Lag distances were normalized by the mean of channel 

widths between the peaks: 

𝐿∗ =  
𝐿𝑜𝑐𝐶𝑝𝑘−𝐿𝑜𝑐𝑀𝑝𝑘

𝑊̅𝐶𝑝𝑘:𝑀𝑝𝑘
     Eq. (3); 

Where L* is dimensionless lag, LocCpk is the location of peak curvature, LocMpk is 

the location of peak migration rate, and 𝑊̅ is the ensemble mean channel width between 

the two peaks. 

We evaluated the magnitude and variability of these lags using summary statistics 

and histograms of the offsets. We computed the derivatives of curvature and migration 

and applied the same process to identify paired inflections in curvature and migration. 
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Inflections reflected where the rate of change in curvature and migration were highest 

along the profile, and were a distinct set of data with which to evaluate spatial lags. As 

before, the distances between paired inflections were normalized to average channel 

width between the paired inflections, thereby providing an independent test to evaluate 

the consistency in magnitude and variability of spatial lags.  

Each peak in meander migration occurred downstream of a point at which 

curvature was zero, representing the initiation of the current meander bend and 

development of asymmetrical flow that increases shear stress along the outer bank 

(Furbish, 1988). While flow is not perfectly symmetrical at the location of zero curvature, 

it is a reasonable approximation of where the high-flow velocity path transitions from one 

bank to the other. We calculated cumulative upstream curvature as the sum of curvatures 

between the location of zero curvature (yellow points, Fig. 4-3B) and the peak in 

migration (e.g., green-line segment, Fig. 4-3B).  

Similar to previous studies (Ikeda et al., 1981; Howard and Knutson 1984), we 

used an exponential decay function to weight curvature values based on distance 

upstream from the meander migration rate peak. We then summed these weighted values, 

calculating cumulative upstream curvature as: 

𝐶𝐶𝑢𝑠 =  ∑ 𝐶𝑖 ∙
1

𝑒−𝜆𝑑𝑖
 ,      Eq. (4) 

where Ci is the curvature at point i, di is the upstream distance of point i, and  is a 

weighting coefficient. The weighting coefficient, , was set to ensure that a weight of 

0.01 was reached at a point 300 meters upstream (~6 channel widths) or at the location of 

zero curvature, whichever was reached first. Beyond which, there is no reason to expect 

nonlocal/upstream influences to continue.  
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We manually categorized bank erosivity at each 10-meter increment along the 

Root River as ‘constricted’, ‘resistance’, or ‘freely meandering’ (2, 1, and 0, respectively) 

based on the outer, resisting bank. Segments classified as ‘constricted’ were confined by 

a valley constriction, colluvium, or a human embankment/structure (e.g., bridge crossing) 

along the outer bank. Reaches with resistance were bounded by vegetation dense enough 

to mask the underlying ground or streambanks, and were presumed to be less erosive than 

‘freely meandering’ reaches that lacked banks strengthened by root systems (Abeernethy 

and Rutherfurd, 2000; Micheli and Kirchner, 2002; Peixoto et al., 2009). With ranked 

values of resistance, we test whether reaches with higher cumulative resistance had 

greater lag distances. 

We also cross-correlated series of moving windows containing a subset of the 

curvature and migration profiles (‘scipy.signal.correlate’) to evaluate the spatially-lagged 

relationship between migration and curvature signals, rather than analyzing only 

individual points (i.e., peaks and inflections). For each window, the two series were 

continually displaced relative to one another and cross-correlated at each degree of 

displacement. The displacement with highest signal cross-correlation was interpreted as 

the optimal lag/offset between curvature and migration rate signals. The lag distance 

(meters) was normalized to the mean channel width within the moving window. We 

tested window sizes spanning 2 to 20 channel widths (100-1000 meters) to encompass 

distances within a ‘geomorphically reasonable’ range. 
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Fig. 4-4. An example of curvature and migration profiles plotted alongside their local 

maxima and minima (blue triangles = curvature peaks, red Xs = migration peaks). 

Locations of zero curvature are plotted as green points. Lag distances between peaks 

were calculated as the longitudinal difference, divided by the local average river width. 

We highlight one example (thick-golden line) to illustrate the length over which 

cumulative curvature was calculated as the weighted sum of curvature. Summed 

curvature calculations start at the nearest upstream location of zero curvature, and end at 

the peak meander migration rate. Channel cutoffs were manually filtered and discarded 

prior to the analyses.  

 

3.3. Distinguishing the form of curvature-migration relationships 

Prior literature has debated whether curvature-migration relationships are 

monotonic (i.e., migration continuously increases with increasing curvature), or peaked 

(i.e., exhibiting a maximum at low to moderate curvature values; R/W of 2-3, or W/R 

~0.3-0.4). In order to frame results in the context of previous studies, we first plot bend-

averaged values of R/W and migration (e.g., Hickin and Nanson, 1975; Nanson and 

Hickin 1983; Hudson and Kesel, 2000; Hooke, 2003; Güneralp and Rhoads, 2008; Nicoll 

and Hickin, 2010). Subsequently, we directly evaluate the relationship between migration 

and dimensionless curvature (W/R) to consider the form of the relationship between 

curvature and migration. We account for the phase lags in curvature and migration 

signals by plotting lagged local values (peaks and inflections) of curvature and migration. 
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In doing so, we can (1) more clearly evaluate the relationship between curvature and 

migration, rather than the radius of curvature (R), and (2) account for spatial lags/offsets 

between curvature and migration (Furbish; 1989, 1991). If plots from both approaches 

illustrate a peak in migration at R/W ~2-3 (equivalent to 0.3-0.4 W/R), it suggests that 

neither measurement scale, nor accounting for spatial lags, alter the peaked relationship 

found by Hickin and Nanson (1975). Conversely, if plotting the local-scale lagged values 

of curvature and migration illustrates a monotonic, direct trend, while the bend-averaged 

approach exhibits a peaked envelope curve, it provides empirical support that (1) spatial 

measurement scale directly influences interpretations regarding the form of the curvature-

migration relationship (Furbish, 1988; Howard and Knutson, 1984; Sylvester et al., 2019) 

and (2) migration rates continuously increase with curvature.  

 

4. Results 

4.1. Basic data attributes and descriptions 

For both the Root and Minnesota Rivers, dimensionless curvature values are 

normally distributed around 0, with a total range of approximately -1 to 1 (Fig. 4-4A). 

Migration rates follow a long-tailed right-skewed distribution (i.e., many small rates and 

decreasing numbers of higher rates) with median values on the order of 0.5-1.5 m/yr and 

maximum rates reaching approximately 15 m/y for both rivers. For the 25-km Root River 

study reach, mean channel width varies from 47-55 meters from year to year, with the 

narrowest and broadest cross-sections being 19 and 125 meters, respectively. The mean 

width of the Minnesota River increased from 70 meters to 102 meters throughout the 

period of study (1937-2013). 
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Fig. 4-5. (left) Distribution of dimensionless curvature along the Root River, derived 

from imagery obtained in 1981. (right) Distribution of Root River migration rates 

measured between 1981 and 1991. 

 

 

Our final set of analyses consisted of 371 paired peaks in migration and curvature 

for the Root River, and 873 for the Minnesota River. These numbers are the total count 

after removing cutoffs and values below the level of detection. There are an additional 

585 paired inflections for the Root River, and 873 along the Minnesota River, used to 

analyze offset between migration and curvature. Because cross-correlation analyses do 

not rely solely on peaks or inflections, every measurement (excluding cutoffs and 

measurements below the level of detection) along the study reaches is used, totaling 

approximately 7,200 and 86,000 for the Root and Minnesota River study reaches.  

 

4.2. Optimizing search radius of cross-correlation analyses 

For the Root River, the optimal window size for cross-correlation analysis is 600 

meters (approximately 12× mean channel width), at which point, subsequent increases in 

window size do not change results. Narrower windows were not sufficiently wide to 

capture the optimized lag distance, which is evidenced by a constant lag distance  
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Fig. 4-6. A range of window sizes were tested as input for the cross-correlation analysis. 

The optimal window size was chosen as the beginning of the sill, which started at 600-

meter and 800-meter search windows for the Root and Minnesota Rivers, respectively. 

This ensured that the window was wide enough to find the optimal lag, but was not 

excessively large to search beyond relevant signals. 

 

beginning at 600 meters (Fig. 4-5a). For the Minnesota river, the optimized lag distance 

is 800 meters, approximately 9-12 channel widths (Fig. 4-5b). Thus, windows for the 

cross-correlation analysis are 600 and 800 meters, which reduces computation time 

(compared with larger windows) while ensuring the optimal lag distance is found. The 

windows are consistent with our observations of lag distances between the curvature and 

migration signals, made while manually matching peaks and inflections (Fig. 4-3). 

 

4.3. Magnitude and variability of lags between signals of curvature and migration 

The results of cross-correlations indicate that shifting curvature signals 

downstream by 2.3 (± 1.2) channel widths optimizes cross-correlation coefficients for the 

Root River (Figs. 4-6a, 4-6b), which was nearly identical to signal offset of 2.2 (± 1.3) 

for the Minnesota River (Figs. 4-6c, 4-6d). All cross-correlation coefficients with sub-

optimal cross-correlation coefficients (r<0.25) were removed from the analysis prior to 

calculating the mean. Such values skew the mean value and were irrelevant for discerning 

an optimal phase lag, which should be based on strong correlation coefficients. For the 
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Minnesota River, we distinguish cross-correlation data from the downstream reach with 

low-sediment supply as red points (Fig. 4-6c). Partitioning the data in this way revealed 

that 94% of cross-correlations along the reach with low bedload sediment supply 

(downstream of Belle Plaine) had low signal matching (<0.25), compared to reaches with 

high bedload sediment supply along the upper Minnesota River study reach (70%). In the 

Root River, only 50% of the cross-correlations exhibited low signal matching. The 

reduction of signal correlation in the downstream reach (low bedload sediment supply) of 

the Minnesota River suggests that without significant sediment supply for point bar 

growth, signal similarity is greatly diminished. In other words, the relationship between 

migration rates and channel curvature, using bend-averaged or spatially explicit and 

lagged measurements, is greatly diminished in reaches where bedload sediment supply is 

low relative to transport capacity and therefore the channel does not establish marked 

asymmetry in bed morphology and flow dynamics. 

The magnitude and variability for lag distances in peaks (2.6 ± 1.4) and 

inflections (2.8 ± 1.6) along the Root River were remarkably similar to each other (Figs. 

4-7a, 4-7b), and to the phase lags in cross-correlations (2.3 ± 1.2). The results were also 

consistent with the lag distances for peaks (2.5 ± 1.4) and inflections (2.3 ± 1.2) along 

both reaches of the Minnesota River (Figs. 4-7c, 4-7d). The consistency in lag distances 

suggests that peak stress along the outer bank is roughly 2.5 to 3 channel widths 

downstream of the apex of a meander bend. Of the 873 paired peaks found along the 

Minnesota River, 80% (693) of the peaks were obtained along the high bedload sediment 

transport (upstream) reaches. The lack of paired peaks is supported by a loss in signal 

similarity between migration rates and channel curvature for reaches without significant  
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Fig. 4-7. Scatterplot and histogram showing the distribution of lag distances between 

curvature and migration signals for the Root (A & B) and Minnesota (C & D) River. 

Similar mean and median lags of -2.2 to -2.3 channel widths for both rivers indicate that 

the signal of migration is typically a distance of 2.3 channel widths downstream of a 

correlated signal in curvature (Fig. 4-3). We filtered cross-correlations below 0.25 

(transparent blue points) that skewed the central tendency and reflected reaches with 

weak signal matching due to local conditions. The vast majority (94%) of cross-

correlations in the Minnesota River reach with low sediment transport (red-points, plot C) 

had very low signal matching, indicated by coefficients below 0.25. 

 

bedload sediment supply (Fig. 4-8). In reaches with excess sediment supply (top plot, 

Fig. 4-8), the profile of migration rates are very nearly a translated form of the channel 

curvature trends. However, profiles of channel curvature and migration rates exhibit no 

similarity in the absence of ample bedload sediment supply (bottom plot, Fig. 4-8). 

 

4.4. Variables affecting spatial lag in the curvature-migration relation 

We hypothesized that variations in the lag between channel curvature and 

migration rates would be a function of local curvature, upstream cumulative curvature, or  
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Fig. 4-8. Histograms of lag distances between peaks (A/C) and inflections (B/D) in 

curvature and migration for the Root (top) and Minnesota (bottom) Rivers. Lag distances 

(meters) were scaled to channel width for simpler interpretation and comparability with 

other systems. Similar to results of cross-correlations, lag distances between curvature 

and migration were typically 2.6x (peaks) to 2.8x (inflections) channel width. 
 
 
bank erosivity. Neither curvature nor upstream cumulative curvature had any significant 

grass, bush/shrub, tree), bank material (e.g., floodplain, terrace, colluvium), and 

explanatory power in the variance of the measured lag distances. We expect that 

variability in lag distances is influenced in part, by differences in vegetation type (e.g., 

channel constrictions (valley impingements, concrete embankments). While available 

data did not allow for quantitative constraints on bank erosivity, the manual categorical 

classifications along the Root River did not suggest that erosivity increased lag distance. 

Observations of partially confined reaches suggest that migration trajectories are shifted 

farther downstream for constricted bends (Inset 1, Fig. 4-9) compared to freely 

meandering bends (Inset 2). 
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Fig. 4-9. Longitudinal profiles of migration rate (grey-dashed lines) and curvature (solid 

black lines) for two distinct 10-km reaches of the 180-km Minnesota River study area. 

The top profile is from the upstream portion of our study reach with steeper slopes and 

high sediment supply of coarse-grained sediments (sand and gravel). The lower profile is 

from the downstream reach with lower slopes and sediment supply of fine sand, silt, and 

clay. (Top) Curvature and migration signals show strong spatially lagged signals and 

have many paired peaks (red and blue points). (Bottom) Despite similar curvature values 

and variability as the top reach, the migration rates are nearly zero, and lack any 

resemblance of a lagged signal. 

  
 

 

Fig. 4-10. Planform view of channel changes from 1937-2013 (black to maroon 

sequence). Inset areas illustrating: (1) a valley wall constriction is inhibiting river 

migration trajectories directly downstream of the bend apex, resulting in migration pulses 

downstream; (2) typical trajectory of peak migration shifted downstream of the apex in 

curvature, resulting in a downward shift in migration; (3) example of a channel cutoff 

that occurred between 1937 (black) and 1947 (blue). 
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4.3. The structure of the curvature-migration relation 

It remains to be determined whether measurements of local-curvature and 

migration rates versus bend-averaged curvature and migration rates yield different 

relationship forms. On one hand, we expect migration rates should continually increase 

with curvature (Ikeda et al., 1981; Howard and Knutson, 1984; Furbish, 1988; Sylvester 

et al., 2019), while many empirical studies suggest and illustrate an envelope of migration 

rates that generally decrease at the highest bend-averaged curvatures (Hickin and Nanson 

1975, 1984; Hudson and Kesel, 2000; Hooke, 2003; Güneralp and Rhoads, 2008; Nicoll 

and Hickin, 2010). We set out to answer whether the peaked curvature-migration curve 

reflects measurement scales that smooth over sub-meander bend variability and fail to 

consider the spatial lag between peak curvature and migration values.  

We begin by plotting bend-averaged, normalized, radius of curvature (R/W) and 

normalized migration rates (M/W) (Figs. 4-10a, 4-10b) As in previous empirical studies 

(Hickin and Nanson, 1984; Hooke, 2003; Hudson and Kesel, 2000; Nicoll and Hickin, 

2010), this measurement approach results in an envelope of values that are generally 

scattered, with some values peaking near R/W of 2-3 (Figs. 4-10a and 4-10b). Next, we 

consider the trends that arise when we plot spatially lagged dimensionless curvature and 

normalized migration rates (Fig. 4-11), similar to Sylvester et al., (2019). For both the 

Root and Minnesota rivers, the relationship between channel curvature and migration 

rates are generally direct monotonic trends, fit reasonably well with linear regressions. 

Thus, differences in measurement scale and spatially explicit comparisons are enough to 

alter the apparent relationship between channel curvature and migration rate. 

Within each study site, the relationships exhibit similar positive slopes with 
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intercepts at or near zero. For the Root River, regression slopes ranged from 0.1-0.2, 

while the Minnesota River was much lower, on the order of 0.03-0.08. Differences in 

sediment supply and bar size between the upper and lower study reaches of the 

Minnesota (blue vs. red points; Fig. 4-11b) did not explain deviations from the typical 

trend (e.g., most notable in the first plot of Fig. 4-11), but may reflect reaches with high 

bank resistance (Sylvester et al., 2019). 

 

5. Discussion 

The empirical results herein support multiple studies indicating that migration 

rates peak downstream of bend apices (Furbish, 1988; Howard and Knutson, 1984; 

Seminara, 2006; Sylvester et al., 2019). For the Root and Minnesota rivers, the lag 

distance between signals of curvature and migration exhibit a relatively narrow range, 

between 2.3-2.8 channel widths. These results fall within the range of 2.1-4.7 channel 

widths found for Amazonian Rivers (Sylvester et al., 2019). Importantly, our results also 

match experimental flume results indicating peak shear stress along the outer bank 

occurred 2.5 channel widths downstream of the bend apex (Fig. 4-11; Hooke, 1975). The 

similarity in lag distances for both study sites and previous literature suggests that the 

spatially lagged relationship not only holds up for meander bends, but also the entire 

longitudinal signals of curvature and migration. The exception to these results was along 

the downstream portion of the Minnesota River, which has nearly negligible bedload 

sediment supply relative to the upstream study reach. The lack of strong signal 

correlations and rare occurrence of paired peaks along this reach both suggests that 

curvature-migration relationships are greatly diminished without excess bedload sediment 

supply to support bar growth (Fig. 4-8). 
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Fig. 4-11a. Bend-averaged migration and curvature plotted in accordance with Hickin 

and Nanson (1975) for the Root River. Few of the data peak at values near or larger than 

the range of R/W values (2 to 3) expected by Hickin and Nanson’s envelope curve, while 

others are void of any strong trend. However, this approach conflates fine-scale changes 

in curvature by averaging over the entire bend and fails to account for lags between 

migration and curvature. 
 
 

 

Fig. 4-11b. Bend-averaged migration and curvature plotted in accordance with Hickin 

and Nanson (1975) for the Minnesota River. The same description from Fig. 4-9a applies. 
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Fig. 4-12a. Relationships between dimensionless curvature (W/R) and normalized 

migration rates (M/W) for the Root River. All years exhibit linear trends, with similar 

slopes (0.1-0.2) and intercepts at or nearly 0. 
 
 

 

Fig. 4-12b. Relationships between dimensionless curvature (W/R) and normalized 

migration rates (M/W) for the Minnesota River. Most years follow linear trends, with the 

exception of the first plot. Red data points are for the downstream portion of the study 

reach where sediment transport rates were significantly lower than upstream reaches. 

Regressions include upstream and downstream reaches. 
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In this study, the use of sub-meander measurement scales shed light on the 

spatially lagged relation between curvature and migration. Many previous studies suggest 

that migration rates peak at intermediate values of meander-bend curvature (Hickin and 

Nanson, 1975; Nanson and Hickin 1983; Hudson and Kesel, 2000; Hooke, 2003; 

Güneralp and Rhoads, 2008; Nicoll and Hickin, 2010). However, these results reflect the 

use of bend-averaged values of curvature and migration, which smooth over variability 

occurring at sub-meander bend scales. Our work supports both empirical and theoretical 

work illustrating a direct linear relationship between curvature and migration (Furbish, 

1988; Howard and Knutson, 1984; Sylvester et al., 2019) with similar slopes (0.1-0.2, 

Root River; and 0.03-0.08 Minnesota River) and intercepts of zero within each site. We 

expect that residuals in the relationship between curvature and migration rates stem from 

differences in bank resistance, channel bed morphology, local and upstream width-to-

depth ratios, and bedload sediment supply relative to transport capacity. As channel 

curvature increases, the rate of increase in migration rates for the Root River are 2- to 4-

fold higher than that of the Minnesota River based on the trend slopes (Figs. 4-10 and 4-

11). Previous research has demonstrated the importance of migration and widening as a 

dominant source of sediment for the Root River (Belmont et al., 2016), which is known 

to have some of the steepest relationships between Q and TSS (discharge-total suspended 

sediment) relationships.   

Lastly, this research highlights the importance of using appropriate measurement 

lengthscales to address questions in earth-science research. In studies of relations 

between channel curvature and migration rates, measurements averaged over the scale of 

a reach or single meander bend provide useful insights when driving mechanisms don’t 
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vary significantly over such scales. However, issues arise when spatial averaging 

obscures the spatial heterogeneity occurring at finer scales, which diminishes the 

opportunity to make accurate inferences of mechanisms driving migration rates. Plots 

comparing bend-averaged radius of curvature with migration rates contain two common 

features: (1) multiple migration rates can be associated with a single curvature value, and 

(2) migration rates fall at low radius of curvature values (e.g., Hickin and Nanson, 1984; 

Hooke, 1987; Hudson and Kelsel, 2000). The former arises because bend-averaged 

curvature smooths over variability in shear stress throughout a meander bend (Furbish, 

1988, 1991). The latter reflects comparing local channel curvature and migration rate 

measurements, and is the result of the downstream shift of maximum migration rate 

relative to the bend apex (Sylvester et al., 2019). Understanding the relationship between 

channel curvature and migration rate will benefit from using measurement lengthscales 

that capture the variability in shear stress along meander bends. Analyses should compare 

channel curvature values with migration rates approximately 2 to 3 channel widths 

downstream.  

The knowledge gleaned herein from studying feedbacks between channel 

curvature, bar geometry and sediment supply demonstrate how each plays an important 

role in meander migration. Our results suggest that sediment supply and bar geometry are 

crucial agents influencing the relationship between channel curvature and migration rates. 

Future work should continue to use widely-available aerial imagery and bathymetry of 

natural river systems to explore how the relationship between curvature and migration 

rates is influenced by bedload sediment supply, transport and deposition, and related 

factors of bar geometry and flow field dynamics. While aerial imagery has been sufficient 
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to highlight the differences between reaches with and without ample sediment supply, 

including 3-dimensional bed topography and bed-sediment sampling. In order to make 

mechanistic inferences and associations between these variables, measurement scales in 

ongoing work must be sufficiently fine to capture sub-meander scale variability in 

underlying physical mechanisms such as shear stress (Hooke, 1975; Dietrich et al., 1979; 

and Seminara, 2006).  
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CHAPTER 5 

 

CONCLUSIONS 

 

 

This research has advanced our understanding of river meander migration by 

evaluating the how spatiotemporal measurement scales impact river migration patterns 

and processes, and by laying out a framework for addressing uncertainty in 

measurements of river planform change. In reviewing and testing best approaches to 

handling uncertainty (Chapter 2), we demonstrate how spatially variable levels of 

detection not only retain more measurements than RMSE-based levels of detection, but 

also improve the quality of those measurements that are retained. Investigating the 

impacts of temporal (Chapter 3) and spatial (Chapter 4) scales results in two main 

advances, amongst others. First, channel migration rate measurements depend on the 

timescale over which they are measured as a result of reversals in channel migration 

direction. Second, the widely accepted peaked-relationship between curvature and 

migration is an artifact of averaging rates over the length of meander bends, not 

considering the spatial lag in curvature and migration signals, and failing to account for 

cumulative upstream curvature.  

The framework established for handling uncertainty in Chapter 2 includes (1) a 

review and evaluation of present best practices, (2) tests of new approaches to quantify 

and handle uncertainty, and (3) recommendations for future work using remotely-sensed 

measurements of river migration and width changes. While our research focuses on river 

systems, the principles and approaches are applicable to research delineating boundaries 

or using boundaries to measure other changes, including: glacier retreat or advance, 

erosion or deposition along coastlines and lakeshores, changes in wetland extent, 
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expansion or contraction of vegetation (e.g., deforestation), cliff retreat, sea level rise due 

to climate change, change in aeolian depositional systems, and anthropogenic/political 

boundary disputes. From our results, we draw the following conclusions and 

recommendations:  

1. Planform change measurements should span spatial intervals larger than 

coherent units of adjustment to avoid spatial autocorrelation.  

2. Uncertainty in manual riverbank delineations is dominated by arbitrary user 

inconsistency rather than poor image quality (i.e., resolution, color versus grayscale, year 

of acquisition) or environmental conditions (i.e., shadows and vegetation cover).  

3. Channel delineations should follow the vegetated boundary that best 

approximates bankfull width, whenever possible, to avoid inconsistency along ambiguous 

reaches.  

4. Using a spatially variable level of error detection (LoD) threshold improves the 

quantity and quality of retained measurements relative to a uniform LoD.  

5. After applying a LoD threshold, we recommend first using expert discretion to 

manually classify any ‘nondetect’ measurements that qualify as ‘significant’ 

measurements of zero (i.e., no change actually occurred).  

6. Subsequently, three methods may be used for handling the remaining 

nondetects; Kaplan-Meier (KM) and Maximum Likelihood Estimators (MLE). The 

specific approach chosen for handling nondetects is contingent upon each case, but can 

be guided and informed by descriptions and assumptions of each method, references to 

external resources, and results of our river-focused analyses.  

7. Finally, we encourage a focus on improving the simplicity, generalizability, 
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and open-source opportunities of tools and packages used for calculating river planform 

change and spatially variable uncertainty, thereby enabling a common platform to 

measure and compare results. 

In Chapter 3, we explore how temporal measurement scales impact measured, 

compared to actual, rates of migration. Migration rates measured from aerial photographs 

spanning 1 to 76 years of change are used to develop a statistical model simulating 

channel migration and reversals. The model allows us to explore mechanisms that may 

cause measurement timescale to bias comparisons of migration rates measured over 

different intervals. Empirical and modelled data both confirm that migration rate 

measurements are increasingly underestimated as a function of channel reversal 

frequency, with insignificant effects from channel dormancy. The reversals necessarily 

cause an underestimation of the actual migration distance between the photos because 

migration is only measured as the distance captured at the fixed times of photo 

acquisition. Measurement bias favors the inference that contemporary channel migration 

rates have increased because of differences in historical versus contemporary sampling 

intervals. Historical aerial photographs are much less common, and thus, have broader 

time intervals than contemporary imagery, which is often acquired at annual timesteps. 

This reinforces our conclusion that authors should use caution and similar measurement 

intervals when interpreting fluvial changes and causal mechanisms from aerial- based 

measurements of channel activity. Before and after accounting for measurement bias in 

our data, we find no empirical evidence that the Root River has responded to increased 

flow with any significant change in migration rates in subsequent decades. This 

reinforces the notion that without an understanding of sediment supply, no simple 
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relationship exists between discharge and migration rates alone. Knowing that river 

migration measurements are timescale dependent will improve our ability to discern how 

river morphology responds, and is responding, to changes in flow and sediment supply. 

Empirical and modelled results also demonstrate that short-term migration rate 

measurements (< 10 years) are dominated by high variability reflecting periodic bursts of 

migration, while long-term measurements (> 25 years) converge asymptotically as 

measurements reach a ‘characteristic timescale’ over which all variability is sampled and 

subsequent measurements are relatively constant, barring significant long-term changes. 

Thus, we conclude that the timescale of channel migration measurements can influence 

which question(s) are suitable to address. For example, without a sufficient number of 

short-term measurements, extrapolations will necessarily distort long-term sediment 

remobilization projections, sediment budgets, sediment flux estimates, and perceptions of 

fluvial change. Sufficiently long intervals (> 20-25 years) beyond the ‘characteristic 

timescale’ are needed to answer whether a channel has undergone significant long-term 

changes (i.e., new equilibrium) when compared with similarly long-term measurements. 

Multiple short-term measurements are necessary to sample the episodic nature of channel 

migration, thereby providing a more comprehensive understanding of channels’ short-

term response to changes in flow and sediment flux.  

Chapter 4 evaluates the empirical relationships between curvature, sediment 

supply to channel bars, and migration rates using a fine-scale measurement strategy 

derived from remotely-sensed imagery for the Root and Minnesota Rivers. We focus on 

evaluating the phase lag between channel curvature and migration rate, and whether the 

correlation between these two holds without sufficient sediment supply to support bar 
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growth. For both the Root and Minnesota Rivers, the lag distance between signals of 

curvature and migration, as well as peaks and inflections, exhibits a relatively narrow 

range, between 2.3-2.8 channel widths. These results match experimental flume results 

indicating that peak shear stress along the outer bank occurs 2.5 channel widths 

downstream of the bend apex (Fig. 4-11; Hooke, 1975). These results also fall within the 

range of 2.1-4.7 channel widths, found for Amazonian Rivers (Sylvester et al., 2019). 

The similarity in results from cross-correlation analyses suggest not only a persistent lag 

distance, but a consistent correlation between the entire longitudinal signals of curvature 

and migration. However, this similarity does not hold for those portions of the Minnesota 

River with lower slopes and nominal supply of coarse bed-material sediment. The lack of 

strong signal correlations and rare occurrence of paired peaks along the low-supply reach 

both support the conclusion that curvature-migration relationships break down without 

sufficient sediment supply to foster point bar growth and bar-push feedbacks.  

Before accounting for the phase lag between curvature and migration, plots of 

bend-averaged radius of curvature (R/W) against bend-averaged migration rates (M/W) 

exhibited a peaked relationship similar to that in previous research (Hickin and Nanson, 

1975; Nanson and Hickin 1983; Hudson and Kesel, 2000; Hooke, 2003; Güneralp and 

Rhoads, 2008; Nicoll and Hickin, 2010). However, after accounting for lag distances, our 

work supports both empirical and theoretical work illustrating a direct linear relationship 

between curvature and migration (Furbish, 1988; Howard and Knutson, 1984; Sylvester 

et al., 2019).  

Future work should continue to focus on evaluating the role of sediment supply 

and channel-bar growth in the relationship between channel curvature and migration rates 
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using natural river systems. Research should explore the effects of varying aspect ratios 

and bank resistance on the lag between curvature and migration. Sediment transport plays 

a key role in aspect ratios, flow dynamics, and meander bend evolution, and is thus 

underlying the aforementioned variables influencing lag distances. In order to make 

mechanistic inferences and associations between these variables and meander migration, 

measurement scales must be sufficiently fine to capture variability in these physical 

mechanisms (i.e., shear stress). Work by Hooke, (1975), Dietrich et al., (1979), and 

Seminara (2006) all demonstrate sub-meander scale variability in shear stresses that drive 

bank erosion. Averaging measurements over the scale of a meander bend obscures the 

spatial heterogeneity, thus diminishing the opportunity to make accurate inferences of 

mechanisms driving migration rate variability. The knowledge gleaned herein from 

studying feedbacks between channel curvature and sediment supply to channel bars 

demonstrate how each plays an important role in meander migration. 
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Appendix A. Timescale dependence in channel migration rates 

 
Fig. A1. A significant indirect relationship between mean valley width and the reversal 

frequency, expressed as both a length and percent. From left to right, each 

data point reflects the mean width of Zones 1, 2, and 3 (see main text, Fig. 3-

1, Table 3-1). 

 

 
Fig. A2. Empirical relationship between the mean (μ) and variance (σ) of migration rate 

measurements along the Root River with ∆t ≤ 3. The reduced complexity 

model used the relation to predict variance associated with a mean value 

randomly selected from the range of observed means. 
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Fig. A3. Aerial view of seven reaches having historical image pairs obtained at relatively 

high temporal frequencies (Δt ≤ 5 years and 11 years). We compared 

migration for these reaches with contemporary migration along the same 

reaches as an additional, independent line of evidence confirming whether 

migration had increased with time (Supporting Information Tables A3 and 

A4).  

 

 

 
Fig. A4. Model scenarios with increased (A) and decreased (B) were subjected to biased 

sampling that mimicked the majority of datasets with low Δt intervals 

dominated by contemporary rates, while historical measurements dominate 

longer Δt intervals. The biased samples exhibit systematic shifts above and 

below (values within black boxes) the unbiased trend (black points) that 

reflects the mean of all Δx – Δt measurement combinations (gray points). 
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Table A1. Results of Mann–Whitney–Wilcoxon signed rank test. Red cells indicate 

significant (p < 0.05) increase in median migration rates during contemporary image 

pairs (rows) relative to historical image pairs (columns). Orange and yellow indicate the 

same, for α-values of 0.1 and 0.2, respectively.  
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Table A2. Kolmogorov–Smirnov test results. Red cells indicate that the distribution of 

migration rates for historical image pairs (columns) are not significantly less than (p < 

0.05) migration distributions of contemporary image pairs (rows). Orange and yellow 

indicate the same, for α-values of 0.1 and 0.2, respectively. Row ‘2003–2013’ (bold 

typeface) demonstrates that once we compare similar rates from similar measurement 

intervals, there are no instances of increased migration. 
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Table A3. Results of Mann–Whitney–Wilcoxon signed rank test for seven reach-specific 

comparisons between contemporary and historical rates. The seven reaches were chosen 

based on availability of historical image pairs with relatively short measurement intervals 

(Δt). Red cells indicate significant (p < 0.05) increase in median migration rates during 

contemporary image pairs (rows) relative to historical image pairs (columns). Orange and 

yellow indicate the same, for α-values of 0.1 and 0.2, respectively.  
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Table A4. Kolmogorov–Smirnov test results. Red cells indicate that the distribution of 

migration rates for historical image pairs (columns) are not significantly less than (p < 

0.05) migration distributions of contemporary image pairs (rows). Orange and yellow 

indicate the same, for α-values of 0.1 and 0.2, respectively. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



149 
 

CURRICULUM VITAE 

 

EDUCATION: 
+ Utah State University (Logan, UT) June 2015 – Present 

Ph.D. Candidate, Natural Resources- Watershed Sciences 

Committee: Drs. Patrick Belmont, Peter Wilcock, Sarah Null, Joel Pederson, Dave Tarboton 

 

+ University of Turku (Turku, FI) August, 2014 – June, 2015 

Fulbright Exchange Researcher, Geography and Landscape Change 

Collaborators: Dr. Petteri Alho, Dr. Jukka Käyhkö 

 

+ University of Maryland- Baltimore County [UMBC] (Baltimore, MD) – 3.80 GPA 

M.S., Geography and Environmental Systems, Graduated - May 2014 

Thesis: Assessing the contribution of legacy sediment and mill dam storage to sediment 

budgets in the Piedmont of Maryland 

Committee Members: Dr. Andy Miller (Chair), Dr. Allen Gellis, and Dr. Matthew Baker. 

Field: Geomorphology, GIS, Fluvial Morphology, Hydrology 

Top 30 Graduating Class of 2014 

 

+ UMBC (Baltimore, MD) – 3.56 GPA 

B.S., Geography and Environmental Science, Graduated - May 2011 

Certificate in Geographic Information Systems 

Cum Laude and Top 30 Graduating Class of 2011 

 

PUBLICATIONS: 

Donovan, M., Belmont, P., Notebaert, B., Coombs, T., Souffront, M., Larsen, P., (Accepted). 

Accounting for uncertainty in measurements derived from remotely sensed aerial photographs. 

Earth-Science Reviews. 

Donovan, M., Belmont, P., In Press. Timescale Dependence in River Channel Migration 

Measurements. Earth Surface Processes and Landforms.  

Belmont, P., Donovan, M., Brahney, J., Capito, L., Burgert, Z. (2018). Sediment Dynamics in 

the Bear River-Mud Lake-Bear Lake System. Sedimentology Commons. 

Donovan, M., Miller, A., Baker, M., 2016. Reassessing the role of milldams in Piedmont 

floodplain development and remobilization. Geomorphology 268, 133–145. 

doi:10.1016/j.geomorph.2016.06.007 

Donovan, M., Miller, A., Baker, M., Gellis, A., 2015. Sediment contributions from floodplains 

and legacy sediments to Piedmont streams of Baltimore County, Maryland. Geomorphology 

235, 88–105. doi:10.1016/j.geomorph.2015.01.025 

Harpold, A. A., Marshall, J. A., Lyon, S. W., Barnhart, T. B., Fisher, B. A., Donovan, M., 

Brubaker, K. M., Crosby, C. J., Glenn, N. F., Glennie, C. L., Kirchner, P. B., Lam, N., 

Mankoff, K. D., McCreight, J. L., Molotch, N. P., Musselman, K. N., Pelletier, J., Russo, T., 

Sangireddy, H., Sjöberg, Y., Swetnam, T., and West, N. (2015): Laser vision: lidar as a 

transformative tool to advance critical zone science. Hydrol. Earth Syst. Sci., 19, 2881-2897. 

doi:10.5194/hess-19-2881-2015 

https://ecology.usu.edu/people/faculty/belmont_patrick
https://qcnr.usu.edu/wats/people/faculty/wilcock_peter
https://ges.umbc.edu/miller/
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2037&context=wats_facpub
https://www.researchgate.net/publication/303914954_Reassessing_the_role_of_milldams_in_Piedmont_floodplain_development_and_remobilization?_iepl%5BviewId%5D=auzsXj0dYuBbYGoJf8MQH0bS&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/publication/271850516_Sediment_contributions_from_floodplains_and_legacy_sediments_to_Piedmont_streams_of_Baltimore_County_Maryland?_iepl%5BviewId%5D=OGYMxYA6sRQtHHr1100a037i&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BinteractionType%5D=publicationTitle
http://dx.doi.org/doi:10.5194/hess-19-2881-2015


150 
 
RESEARCH EXPERIENCE: 

Utah State University, Logan, Utah 

Ph.D. Candidate 07/2015 – Present 

We evaluate the roles of human intervention, land-use, and hydrologic change as drivers of 

change along the Root River, a single threaded meandering sand- and gravel-bedded river in 

southeastern Minnesota, USA. We use spatial data (i.e., lidar, aerial imagery) in order to 

document planform change across 120 river-km and 76 years of drastic land use change and 

altered flow. We developed a statistical model based on empirical measurements to further test 

factors influencing measurement bias. 

 

Universidade Fedural Rural do Semi-árido, Mossoró, Brazil 

Team Research 04/2017 – Present 

Working with a team of researchers from São Paulo, Brazil, to understand how the 

establishment of Furna Feia National Park has impacted land use and cultural perceptions in 

the region. My role of the project was to use machine learning algorithms (e.g., supervised 

classification using maximum likelihood estimators) within GIS to calculate the area of 

multiple land uses for images obtained before and after park establishment (2001, 2002, 2014, 

2017). Using the differences in semi-automated landuse area surveys, I projected landuse 

scenarios and their impacts on local residents. These quantified changes were used in 

conjunction with local interviews, conducted by the Brazilian researchers, in order to evaluate 

actual versus perceived changes. 

 

University of Turku, Turku, Finland 

Fulbright Research 08/2014- 06/2015 

- Quantifying Geomorphic Change Along the Pulmanki River, Northern Finland 

Used 3 sets of high-resolution remote sensed aerial images, obtained from airplanes and UAVs, 

to quantify spatial and temporal patterns of river width change for the Pulmanki River. Because 

the Pulmanki River lies in the remote Northern Finland (Lapland), and thus lacks significant 

impacts from human land use, we were able to survey the watersheds response to climate 

change. 

 

UMBC, Baltimore, MD 

M.Sc. Thesis Research, 08/2011 – 05/2014 

Thesis research uses aerial images, contemporary lidar, and historical topographic survey maps 

to quantify streambank erosion and riverine response to agricultural land use, deforestation, 

and the widespread use of mill dams throughout European colonization. I used multiple 

geospatial data types and software (ArcGIS, R, and Matlab) to measure linear rates, area of 

change, and volume of bank erosion over multi-decadal timescales. Data included aerial 

imagery spanning multiple decades, high-resolution (1:2400 scale) historic topographic maps, 

and a 1-meter LiDAR dataset. Used ArcMap software on a daily basis for multiple hours to 

develop my own tools and methods of measuring stream response to landuse change. 

 

U.S. Geological Survey, Baltimore, MD, 07/2011 – 08/2014 

Job-related research- varied based on working group. Included geomorphic, water quality, 

hydrologic, and landuse research (overviewed in ‘Professional Experience’). 
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PRESENTATIONS: 

 

Summer Institute of Earth Surface Dynamics, “Coupled hydro-eco-geomorphologic 

processes in human dominated landscapes: cascade of changes and the use of modeling for 

management and decision making”, 2016. Minneapolis, MN. 

- Poster; Temporal trends and timescale bias in measuring migration rates 

- Oral; Distinguishing landuse impacts on critical flows driving morphologic change within the 

Le Sueur Basin 

American Geophysical Union (AGU) Fall Meetings 2016 & 2013. San Francisco, CA 

- Assessing the contribution of legacy sediment and mill dam storage to sediment budgets in 

the Piedmont of MD – The influence of measurement scale on temporal changes in channel 

migration 

European Geophysical Union (EGU) Spring Meeting 2015. Vienna, Austria 

- Oral; Patterns and contributions of floodplain and legacy sediments remobilized from 

Piedmont streams of the mid-Atlantic U.S. 

Community Surface Dynamics Modeling System (CSDMS) Annual Meeting 2016, 2017 
- Temporal changes in channel migration and the influence of temporal measurement scale 

Maantiede (Geography) Seminar Series 2014. Turku, Finland 

- The role of streambank erosion, legacy sediments and mill dam storage in Piedmont streams 

of Maryland.  

USGS MD-DE-DC Water Science Seminar Series; June 2014. 

Title: Assessing the contribution of legacy sediment and mill dam storage to sediment budgets 

of the Maryland Piedmont 

Chesapeake Bay Program Scientific and Technical Advisory Committee, 2014. Maryland 

- **Invited Speaker: Stream bank erosion as a sediment source from the Piedmont region. 

Critical Zone Exploration Network (CZEN) NSF LiDAR Workshop; 2014, Colorado 

- Oral; Quantifying long-term streambank erosion using a single Lidar DEM 

International NSF EarthCube Fluvial Sedimentology Conference; 2013, Colorado 

- Oral; Processes governing storage and remobilization of historical ‘legacy’ sediments 

AMTRAK Club, 2013- Baltimore, MD; 2015- Philadelphia, PA 

- Poster; Quantifying remobilization rates of legacy sediment from MD Piedmont Floodplains  

- **Invited Speaker; Assessing the contribution of legacy sediment and mill dam storage to 

sediment budgets in the Piedmont of Maryland. 

American Voices Seminar 11/2014. Turku, Finland. 

 - Oral Presentation; American Culture; Childhood lessons through television 

 

 

GRANTS AND SCHOLARSHIPS: 

 

- Fulbright CIMO Research Scholarship, 2014-2015 ($18,000) 

- Utah State University 4-year Quinney Fellowship 
- Blue Goes Green Grant; 2017 $1,500 

- Maryland Sea Grant, MD Water Resources Research Center ($30,000) 2012 – 2013 

- CSDMS-Sediment Experimentalist Network Grant; (Twice) Fully funded conference 

travel and lodging (2016 & 2017) 

- CZEN/NSF Travel Grant, Awarded a grant from NSF to participate in the CZR LiDAR 

Workshop- “The Next Generation of LiDAR Analysis for Critical Zone Research” 05/2014. 

- NSF EarthCube Travel Grant, 04/2013, Awarded travel and lodging expenses by an NSF-

funded organization to travel to Colorado and attend a Biogeochemistry and Fluvial 

https://app.box.com/s/chmsqxz1tlcdr8oevfsn
https://app.box.com/s/chmsqxz1tlcdr8oevfsn
http://www.chesapeake.org/stac/workshop.php?activity_id=230
http://www.fulbright.fi/en/fulbright-us-student-program/fulbright-cimo-grants
http://cnr.usu.edu/files/uploads/Students/Scholarships/USU_College_of_Natural_Resources_Fellowship_Announcement_2013.pdf
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Sedimentology Workshop. 

- GSA 2015 Northeastern Travel Grant 

- Travel grants (3), UMBC Graduate Student Association, 2012 – 2013 

Top 30 Graduating Class of 2014, President’s Selection, 2014 

Top 30 Graduating Class of 2011, President’s Selection, 2011 

Undergraduate Dean’s Scholar 

Undergraduate Athletic Scholarship 

 

CONFERENCES: 

 

Patterns and contributions of floodplain and legacy sediments remobilized from Piedmont 

streams of the mid-Atlantic U.S. European Geophysical Union (EGU). Vienna, Austria 

05/2015 

Quantifying geomorphic change along the Pulmanki River, Northern Finland. Fulbright 

Research Forum. Session chair**: Monitoring Biological Communities and Physical 

Environments of Finland. Jyvaskyla, Finland 03/2015.  

Assessing the contribution of legacy sediment and mill dam storage to sediment budgets in the 

Piedmont of Maryland, **Invited Speaker; AMTRAK Club, 2015. Philadelphia, PA 

 

The role of streambank erosion, legacy sediments and mill dam storage in Piedmont streams of 

Maryland. Maantiede Seminar Series. Turku, Finland 09/2014 

American Culture; Childhood lessons through television. Oral Presentation; American Voices 

Seminar. Turku, Finland 11/2014  

Quantifying long-term stream bank erosion using a single LiDAR DEM. Oral presentation; 

Workshop- LiDAR Analysis for Critical Zone Research. 05/2014. 

Stream bank erosion as a sediment source from the Piedmont region. **Invited speaker; 

Chesapeake Bay Program Workshop- Scientific and Technical Advisory Committee. 

04/2014. 

Assessing the contribution of legacy sediment and mill dam storage to sediment budgets in the 

Piedmont of Maryland. Poster presentation; American Geophysical Union Meeting. Fall 2013. 

Quantifying remobilization rates of legacy storage across Piedmont streams of Baltimore 

County. Poster and oral presentations, Amtrak Club- Soil to Sea Geomorphology Conference. 

Johns Hopkins University.  05/2013. 

Processes governing storage and remobilization of historic ‘legacy’ sediments. Oral 

presentation- Earth Cube Biogeochemistry and Fluvial Sedimentology Workshop. 04/2013. 

Processes governing storage and remobilization of historic ‘legacy’ sediments. Oral 

presentation- Graduate Research Conference, UMBC. 02/2013. 

 

FIELD EXPERIENCE: 

Finland: 08/2014 – 06/2015; Fulbright Research Scholarship at the University of Turku 

- Terrestrial lidar surveys, boat-based lidar surveys, streambed sediment sampling using 

Russian streambed sampler technique, meander bar sediment core survey, drone-based aerial 

image acquisition, remote-controlled ADCP bathymetric surveys 

Minnesota: - 07/2014, 06/2015; 07/2016 Root River and Minnesota River field work 

http://www.umbc.edu/classof2014
http://www.umbc.edu/classof2011/bios.html#donovan
https://app.box.com/s/8dr1hm36rx4w8kfr428b
http://www.chesapeake.org/stac/workshop.php?activity_id=230
https://app.box.com/s/chmsqxz1tlcdr8oevfsn
https://app.box.com/s/chmsqxz1tlcdr8oevfsn
https://app.box.com/s/jao132vm0d2hflwep6ed
https://app.box.com/s/jao132vm0d2hflwep6ed
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- Boat-based ADCP bathymetric surveys, Structure from Motion camera maintenance 

New Zealand: 06/2010 – 07/2010; Leadership Course and Team Development 

(Multiple sites) U.S. Geological Survey Monitoring: 05/2009 – 07/2015 Patuxent R., 

Potomac, Patapsco R., Susquehanna R., Choptank R., Mattawoman Cr., Rock Cr., and Sligo 

Cr. sampling for River Input Management (RIM) and NAWQA Water Quality Programs 

Baltimore: 10/2012 – 09/2013 (thesis field research),  

- **Piedmont Legacy Sediment Field Trip Coordinator and Leader; Led a team of leading 

USGS and University geomorphologists and geologists through field sites used in M.S. 

research. 

Virginia: 07/2012 U.S. Geological Survey field measurements. Surveyed channel cross 

sections and established sites suited for measuring bank erosion using bank pins and floodplain 

deposition using cemented clay tiles. 

Baisman Run: 05/2013, Field trip through Department of Geology and Environmental 

Engineering, Johns Hopkins University 

 

TEACHING AND VOLUNTEER EXPERIENCE 

- Invited Lecturer: Remote Sensing of the Land Surface, Department of Plant, Soils, and 

Climate Graduate Course 6003. Presentation: “A birds-eye view: Evaluating river responses to 

landcover change and landuse intensification”.  

- Class lecture: Tectonic Geomorphology - GEOL6120, 

 Topic: ‘Using LiDAR and DEMs in Geomorphologic Analyses’ (Spring 2017) 

- Teaching Assistant & Laboratory Proctor: Small Watershed Hydrology WATS6490, 

(Academic Year, 2016) 

- Undergraduate Mentor; Instructed multiple undergraduates seeking research experience and 

advanced degrees. Panel speaker on skills needed for graduate school, application materials, 

and balancing research with classwork and life. 

- Utah State University Sustainability Programs; Food Recovery Network 

Volunteer Board Member, Grant Writer, and Collector (October, 2015 – Present) 

Spend 4-5 hours per week recovering food from cafes to be distributed to students in need. 

Also wrote grants to improve infrastructure and planned future directions. Worked with a team 

of volunteers and USU employees to expand partnerships with community food pantries, 

restaurants, and farmers. Attended regional meetings to teach and learn from other food 

recovery networks across the state of Utah. 

- Scientific writing/revision teacher; (2015-Present), 4 hr/week 

See: http://emarde.wixsite.com/revise 

- Provide revision and editing services for researchers and graduate students, largely for those 

who do not have English as their first/primary language. Beyond revisions, I explain how 

writers can improve their personal and scientific writing.  

- Field Course Instructor; Research Methods in Geography (MAAN 7141) 

University of Turku; Finland 

Instructed B.S. and M.S. students on appropriate techniques and sampling locations for field 

measurements of water quality, discharge, and floodplain and streambed sediments. 

- Guest Lecturer, Geomorphology – GES611. UMBC, Baltimore, MD 

Lectured on the evolution of floodplains in the Piedmont of the U.S. and incorporated my 

thesis research as it relates to fundamental fluvial processes. 

- Teaching Assistant & Instructor, Physical Geography, 08/2013 – 01/2014 

Developed course material, digital-visual learning material; lead lectures and discussions, and 

evaluate the performance of 160+ students in Physical Geography.   

- Research Supervisor, (Baltimore, MD) 11/2012 - 07/2013 

Through funding, I organized a team of paid and volunteer undergraduate students seeking to 

http://emarde.wixsite.com/revise
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gain field experience, GIS skills, and an understanding of laboratory equipment/procedures. I 

trained and educated students on how to conduct research, along with specific tasks oriented 

towards their future academic and career goals.  

- Assistant Field Coordinator, Difficult Run Sedimentation Assessment, 07/2012 

U.S. Geological Survey, Fairfax, Virginia 

Helped instruct students and co-workers to establish sites along Difficult Run suitable for 

measuring deposition and erosion for a multi-year mass balance study.   
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