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Abstract Mineral aerosols (dust) generated in the dryland regions of Australia have the potential to
reach New Zealand through atmospheric transport. Although a large portion of dust in New Zealand
originates in Australia, little is known about how dust deposition has varied over time in New Zealand or
what may have caused this variation.We used geochemical dust proxies to examine the recent history of dust
deposition to two alpine lakes in Kahurangi National Park, South Island, New Zealand. Geochemical
indicators suggest that dust deposition began to increase around 1900, with the greatest deposition rates
occurring from ~1920 to ~1990. In subsequent decades, dust deposition rates to New Zealand lakes appear to
have declined. This rise and fall of dust deposition recorded in New Zealand lakes is consistent with dust
records from the Antarctic Ice Sheet, Eastern Australia, and incidents of low visibility due to dust events
recorded at Australian climate stations. The dust deposition rate over time also follows the temporal pattern
of land use in south and central Australia over the time scale of the twentieth century suggesting a causal
linkage. It is possible, and perhaps likely, that drought cycles also affected both emissions and transport
pathways but over shorter time periods this was difficult to discern at the temporal resolution of these lake
sediment cores. The increase in dust deposition to the high‐elevation regions of New Zealand likely has
implications for the biogeochemistry of alpine lakes in the Tasman Mountains.

1. Introduction

Anthropogenic activities have led to increases in the amount of material transported through the atmo-
sphere, specifically gases, volatile heavy metal oxides, and particulates. This increased atmospheric flux
has wide ranging implications for environmental processes and biogeochemical cycles (Mahowald et al.,
2017). The relative isolation of Australia and New Zealand, combined with the well‐defined arrival of
European settlers in 1788, provides an advantageous setting for evaluating land use effects on long‐range
atmospheric transport and deposition. European settlement of Australia has fundamentally altered the land-
scape through pastoralism, agriculture, industry, and mining operations (McAlpine et al., 2009; Mudd, 2007;
Pearson & Lennon, 2010). These changes have resulted in well documented increases in both anthropogenic
emissions from combustion and dust emissions from erosion (Marx, McGowan, et al., 2014)

Approximately, 1/3 of Australian soils (900,000 km2) are currently affected by wind erosion (Leys &
Eldridge, 1998; Pickup, 1998). Dust emissions from the arid to semiarid landscapes of Australia are well
documented and affected by natural changes over long‐ and short‐term climate cycles (Hesse, 1994; Hesse
& McTainsh, 2003; Petherick et al., 2009; Speer, 2013). However, soil erosion, resulting in dust emissions,
is generally exacerbated by land degradation associated with land use activities, for example, intensive live-
stock pasturing, agriculture, roads, and urban uses (Baddock et al., 2011; McTainsh et al., 1990). More than
half of the natural landscape of Australia has been cleared with southeast Australia being particularly
affected in that less than 10% of native vegetation cover remains (McAlpine et al., 2009). This massive expan-
sion in land use may have led to increased soil erosion and dust generation but information on the link
between historical land use change and dust production at the continental scale is limited.

Land clearing began in the nineteenth century and increased after World War II primarily for livestock and
cultivation and to a lesser extent mining (McAlpine et al., 2009). All three practices are known to destabilize
soil surfaces and produce fugitive dusts with the appropriate climatic conditions (e.g., Silvester et al., 2009).
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Livestock, especially hooved animals, and agricultural practices disrupt the natural biogenic and physical
soil crusts that often form in arid regions (Belnap, 1995). These crusts serve to resist the erosive stress caused
by wind, significantly reducing soil emissions and dust formation (Belnap & Gillette, 1998). Studies on
Australian soils have found that the removal of soil crusts increased dust emissions by up to 700% (Leys &
Eldridge, 1998). Further, in the absence of a soil crust, the threshold wind velocity needed to produce dust
decreased from wind speeds that rarely occur (e.g.,63 km/h) to wind speeds that frequently occur (e.g., 21
to 30 km/h; Leys & Eldridge, 1998).

Dominant westerly winds transport eroded Australian soils, which are then deposited in western and
southern Australia, the South Pacific, and western regions of New Zealand (McGowan & Clark, 2008;
P. D. Neff & Bertler, 2015). Knight et al. (1995) estimated that some 3–7 million tons of dust are transported
to the South Pacific every year. In one 1987 event, Knight et al. (1995) estimate that 1.7 to 3 million tons of
dust traveled as far as New Zealand. However, contemporary changes in the deposition of Australian dusts
in New Zealand associated with land use histories have not been previously evaluated.

In this study, we used alpine lake sediments as archives of exogenous material flux to western New Zealand
through time. Alpine lake catchments in the northwestern region of the South Island of New Zealand are
primarily underlain by granitic bedrock, whereas Australian dust producing regions (the Murray Darling
and Lake Eyre Basin) are composed of lake sediments, alluvium, limestone, and volcanics (Alley, 1998;
Kingham, 1998). Thus, exogenous dusts from Australia should be geochemically distinct from endogenous
bedrock in New Zealand (Marx et al., 2005a; McGowan et al., 2005). In addition, alpine lakes are often excel-
lent recorders of atmospheric deposition because their waters are naturally dilute and have larger airshed to
watershed ratios than lower elevation lakes, and mountain ranges act as natural barriers to atmospheric
transport and enhance both the wet and dry deposition of material through orographic precipitation
(Catalán et al., 2006). Further, alpine catchments are typically steep with weak soil development, allowing
for the efficient transfer of dusts from the catchment to the lake basin and ultimately the sediments
(Brahney et al., 2014).

2. Materials and Methods
2.1. Site Description

Because dust deposited in New Zealand may be Australian or local in origin, we selected sites that would
minimize the influence of local dust sources. Local sources include the many braided glaciofluvial systems
that drain on the eastern (leeward) side of the Southern Alps (McGowan et al., 1996). To avoid sites that
might capture local dusts, we selected lake basins in Kahurangi National Park on the windward side of
the Tasman Mountains located on the northwest tip of the South Island (Figure 1). This region is upwind
of the prominent New Zealand glaciofluvial dust sources and is geographically disposed to receive dusts
and other aerosols from Australia (McGowan & Clark, 2008; Putman, 2017)

Lakes in the region of the Kahurangi National Park are ideal for examining far‐travelled dusts due to two
additional important characteristics. First, the lakes are situated in granitic basins, which is necessary for
the separation of the Australian dust that originate from sedimentary bedrock from the local bedrock as
these rock types are typically geochemically distinct. Moreover, Australian dust sources are geochemically
different from the glaciofluvial sediments of the Southern Alps (Marx et al., 2005a; Marx et al., 2005b;
McGowan et al., 2005), making geochemistry a useful tool in distinguishing local from far‐travelled dust.
Second, high alpine lakes within this watershed are remote and not likely to have been impacted by large‐
scale human perturbations or grazing (McIntyre, 2007; NZ Department of Conservation, 2010).

Two alpine lakes within the Tasman Mountains of the Kahurangi National Park were chosen for analysis;
these are Lake Clara and Adelaide Tarn (Figure 1). Lake Clara is a small, 17.8‐m deep headwater lake situ-
ated on a small rocky shelf at 1,332‐m above sea level (masl) and has a catchment area of 0.35 km2 and a lake
area of 0.05 km2 (CA:LA = 7). There are no inlet streams to Lake Clara. Adelaide Tarn is in an adjacent
drainage at 1,256 masl, with a much larger catchment area of 1.8 km2 and similar lake area of 0.06 km2

(CA:LA = 31) a maximum depth of 7.1 m, and small inlet stream. Excluding precipitation, there is a lack
of long‐term climatemeasurements near the catchments studied. Predictionsmade by Leathwick (2002) esti-
mate mean annual temperature as 5.7 °C for Lake Clara and 6.1 °C for Adelaide Tarn. Annual minimum
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temperatures of about −2 °C suggest that periods of snow and ice accumulation occur but are not extensive.
Average summer precipitation appears to be 30% lower than winter precipitation.

2.2. Sediment Core Analyses

Sediment cores were extracted from the deepest area of the pelagic region of each lake using a gravity coring
system. A 22‐cm core was retrieved from Lake Clara and a 39‐cm core fromAdelaide Tarn. Cores were trans-
ported to the GNS Science in Lower Hutt where they were described, sectioned, and analyzed for water con-
tent and density. Sediment cores were dated using both 210Pb and radiocarbon analyses. Lead‐210 analyses
were conducted at MyCore Laboratories in Ontario Canada; sediment interval ages were calculated assum-
ing a constant rate of supply of unsupported 210Pb (Appleby & Oldfield, 1978) after determining that the
Constant Initial Concentration model was inappropriate due to variable within lake sedimentation rates
(Appleby, 2001). Radiocarbon analyses were conducted by accelerator mass spectrometry at GNS Science,
Rafter Radiocarbon Laboratory, Lower Hutt, New Zealand. Fossil plant materials for radiocarbon analyses
were retrieved from four depths in Adelaide Tarn and three depths in Lake Clara (Table 1). Age‐depth mod-
els were constructed from both 210Pb and Radiocarbon ages using BACON, a Bayesian age‐depth modeling
software (Blaauw & Christen, 2011). For Lake Clara, seven 210Pb and three radiocarbon ages were used in
the model, for Lake Adelaide six 210Pb and four radiocarbon ages were used in the model. SHCal13 was used
for radiocarbon calibration within the BACON model (Hogg et al., 2013).

To isolate the immobile mineral trace element fraction in the sediment cores, we used a two‐tiered geochem-
ical leaching method to remove trace elements associated with the organic and oxyhydroxide fractions that
play a role in the sediment mobility of reactive metals. Step one consisted of a tetra‐sodium pyrophosphate
(Na4P2O7) extraction to remove organic‐metal complexes, and step two used sodium‐citrate/dithionite

Figure 1. Kahurangi National Park, South Island, New Zealand. Drainage areas for both Lake Clara and Adelaide Tarn
are delineated in black.
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[(Na3C6H5O7) (Na2S2O4)] as a reducing agent to remove amorphous Fe andMn oxides (Ross &Wang, 1993).
Between treatments, the residual sediments were washed with distilled water and aspirated three times
before the subsequent digestion and final analysis. The remaining residual or immobile fraction
represents an operationally defined mineral composition that is resistant to diagenetic change and
selective weathering once deposited. This fraction can be effectively used to distinguish between sediment
sources (Brahney et al., 2008). Trace element analyses on the residual fraction were conducted using an
inductively coupled plasma atomic emission spectrometer and an inductively couple plasma mass
spectrometer at the Ontario Geological Survey Geosciences Laboratory, Canada, which is an ISO/IEC
17025 accredited laboratory. Samples were digested using a standard multiacid digest and checked against
certified standards (LKSD‐3) and blanks. Blank values for elements used in the study were all below detect
and the percent errors determined from standards were between 0.7% and 2%. Replicates were performed
every five samples and the root‐mean‐square coefficient of variation (Stanley & Lawie, 2007) is provided
at an element‐by‐element basis in the supplementary material. The range of root‐mean‐square coefficient
of variation for the elements used in this analysis are 0.6% to 6.9% in Adelaide Tarn and 0.4 to 3.1% in
Lake Clara, which are 1 to 3 orders of magnitude below the variation observed in the core. All details on
QA/QC can be found in the supporting information.

2.3. Dust Deposition History

Several studies using dusts obtained from glaciers on the western slope of the Southern Alps have shown that
Australian dusts can be separated from the local New Zealand bedrock based on trace element compositions
and Rare Earth Elements (REEs) (Marx et al., 2005a, 2005b; Marx, Lavin, et al., 2014; McGowan et al., 2005).
Similarly, Marx, McGowan, et al. (2014) determined which elements behaved conservatively from entrain-
ment to deposition and post deposition. These included a suite of REEs, alkali, alkaline earth elements, and
other metals that they used in a mixing model to derive dust deposition rates to a peat mire in southeastern
Australia. Here we build on these earlier studies to evaluate dust deposition to our lake sediments using two
complementary methods. Method 1 uses the historical variation in REEs to evaluate historical changes in
the primary mineral composition of the lake sediments. Method 2 capitalizes on the end‐member mixing
approach developed by Christophersen and Hooper (Christophersen et al., 1990; Christophersen &
Hooper, 1992; Hooper, 2003) that uses principal components analyses to assign end‐member contributions
to a given mixture, in this case, a sediment interval. Because the latter method can estimate a proportional
contribution to a sediment interval, the data can be combined with sediment fluxes to estimate historical
deposition rates through time. Taken together, these two methods provide two different approaches to the
determination of the dust proportion in sediment cores.
2.3.1. Method 1 Average z Score of REEs
Sediment interval REE concentrations including Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho Er, Tm, Yb,
and Lu were mean‐normalized and subsequently averaged to provide a historical overview of composi-
tional changes throughout the sediment core. We excluded heavy metals primarily derived from anthro-
pogenic activities including As, Cd, Cu, Hg, Ni, Pb, Sb, Se, Sn, and V. We choose REES to provide a
historical perspective on land use and industrial activities, respectively, upwind on the Australian conti-
nent. Individual and composite profiles from both Lake Clara and Adelaide Tarn are determined based on
the historical variation of REEs. Error for the composite profiles was calculated by the pooled
standard error.

Table 1
Conventional Radiocarbon Ages for Lake Clara and Adelaide Tarn Sediment Cores

Sample ID Lake Depth(cm) Material dated δ13C Radiocarbon age (years BP) Range ± (years)

NZA 40094 Adelaide 15 Plant material −27.9 543 20
NZA 40095 Adelaide 20 Plant material −24.8 446 20
NZA 40096 Adelaide 25 Plant material −30.5 850 20
NZA 40097 Adelaide 30 Plant material −31.9 1078 20
NZA 50576 Clara 11 Plant material −27.7 600 18
NZA 40257 Clara 16 Plant material −30.1 1,359 45
NZA 40093 Clara 20 Plant material −26.9 1,772 20
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2.3.2. Method 2 End‐Member Mixing Analysis (EMMA)
Method 2 uses EMMA and a constrained least squares approach to derive dust proportions within each
sediment interval. This method is adapted from stream chemistry source separation techniques developed
by Christophersen et al., 1990, Christophersen & Hooper, 1992, 2003) as well as sediment source separation
techniques (Brahney et al., 2008; Bryan et al., 1969; Marx, McGowan, et al., 2014). The method uses prin-
cipal components analyses to assign end‐member contributions. Dust end‐member REE composition is
determined from four samples collected off glaciers in the Southern Alps of New Zealand that represent
long‐travelled dust from Australian sources (Marx et al., 2005a, 2005b; McGowan et al., 2005). Bedrock
end‐members are derived from two and three representative rocks samples collected from the alpine catch-
ments of Lake Clara and Adelaide Tarn, respectively. We recognize that bedrock does not likely represent a
true end‐member composition as rock weathering can alter REE concentrations under certain weathering
conditions. However, because these are headwater lakes, we were unable to obtain inlet stream sediment
concentrations as has been done elsewhere (e.g., Brahney et al., 2008), leaving the bedrock composition
as the best available approximation for local source material. Given that the catchments are small and of
a uniform geology, we would not anticipate river derived sediment to have a different mineral REE compo-
sition than bedrock eroded and transported through other means. Moreover, our use of largely immobile
elements as a tool for the determination of provenance should minimize any potential effects that may
occur due to diagenetic reactions and/or differential rates of weathering across particular mineral fractions
in the bedrock.

Principal component analyses were performed on mean‐normalized sediment core REE data. We used sev-
eral methods to evaluate the number of PC components, or potential dust and bedrock end‐members, to
retain. First, by definition, the sediment interval samples must be fully bounded by the dust and bedrock
end‐members in question when plotted in PCmixing space. Second, we use the Kaiser criterion, where com-
ponents with eigenvalues greater than 1 are retained and finally the scree plot method where components
are retained up to the “elbow” of a scree plot. Once the number of dimensions or potential sources are deter-
mined, we orthogonally project the potential sources into the sediment PC mixing space using the eigenvec-
tor coefficients. If the sediment intervals are bound by all potential end‐members, the percent contribution
of each end‐member to the sediments can be calculated using a constrained least squares equation (Brahney
et al., 2008). Because each end‐member is based on several observations, we compute a mean and standard
deviation of each end‐member. From this, we calculated 1,000 possible combinations of source end‐member
contributions to each sediment interval and report the mean and standard deviation of the resultant dust
contributions. Finally, we determined dust mass flux by multiplying derived dust concentrations (g of
dust/g of sediment) by the sedimentation accumulation rate (g of sediment cm−2 yr−1) at each interval.
The dust flux mass as presented here is the catchment integrated and density normalized flux of dust to
sediments and is not equivalent to an estimate of actual dust deposition rates to the land surface. As with
Method 1, we further derive a composite dust flux record by averaging dust deposition histories from both
Lake Clara and Adelaide Tarn with the error determined by a pooled standard error.

2.4. Australian Dust Emission Proxies

The historical patterns of land use change in Australia for pastoralism, agriculture, and mining all fol-
lowed similar trends. Sheep rearing in Australia began in 1788 with a small flock of just 70 sheep
(Pearson & Lennon, 2010). Commercial pastoralism grew rapidly and by the early 1800s there were
approximately 100,000 sheep and by midcentury as many as 13 million. Sheep populations rose through
the latter half of the nineteenth century until a drought in the 1860s caused a significant loss of sheep
throughout the continent. The post drought industry again continued to grow exponentially, and at several
points in the last 50 years, there have been upward of 170 million sheep in south and central Australia
(ABS, A. B. of S, 2015). Agriculture followed a similar pattern where droughts in the first half of the
twentieth century suppressed development, however, following the Second World War technological
advances and higher demand allowed for the rapid expansion of Australian farms (ABS, A. B. of S,
1988). Mining in Australia has increased unabated since the late nineteenth century, with significant
increases also occurring post the Second World War (Mudd, 2007). Over‐grazing, agriculture, and settle-
ment in other regions, such as the arid southwestern US, have resulted in increased dust deposition in
the last two centuries above the late‐Holocene average (Neff et al., 2008; Routson et al., 2016).
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Therefore, it is reasonable to hypothesize that an increase in extent and
intensity of livestock grazing, agriculture, and mining in Australia has
resulted in increased dust emissions.

Because data and statistics on annual livestock densities by Australian
province are readily available, as compared to data pertaining to other
potential dust sources such as mining and agriculture, we use total
livestock numbers as an indicator for the timing of human agricultural
activity that may have led to increased dust generation from Australia.
Pastoralism is the dominant land use activity measured by areal extent
and occurs along the same temporal trajectory as other human land use
activities in Australia. Data were obtained from the Australian Bureau
of Statistics's Historical Selected Agricultural Commodities (ABS, A. B.
of S, 2015). Data include sheep, horse, and cattle population statistics
totaled from New South Wales and South Australia to encompass the
southern portion of the Lake Eyre Basin (where pastoralism dominantly
occurs) and the Murray‐Darling Basin. Sheep make up approximately
97 ± 1% of the total livestock numbers.

3. Results
3.1. Dating

The Bayesian age model for Lake Clara is based on three radiocarbon
(Table 1) and six 210Pb dates. No age reversals were found in either

the 210Pb or radiocarbon data for Lake Clara; however, a potential hiatus is suggested between 10‐ and
11‐cm depth, around the midsixteenth century, where sedimentation rates drop significantly (supporting
information Figure S1 and Figure 2). The sediments of this interval contained plant material suggesting
lower lake levels during this period. During this interval, there is an apparent offset of ~350 years. In
the sediment intervals prior, the age‐depth relationships were approximately 19 years per centimeter of
depth in the core. Excluding this interval, sedimentation rates in Lake Clara were relatively stable around

of 1.5 mg cm−2 yr−1 from the start of the record (325 AD) to the
midnineteenth century. Sedimentation rates rapidly increased through
the middle to lake twentieth century peaking at 7.7 mg cm−2 yr−1

(Figure 2).

The Adelaide Tarn Bayesian age model is based on four radiocarbon dates
and five 210Pb dates (Figure 3). No age reversals were found in the 210Pb
CRS age model; however, one age reversal was present in the radiocarbon
ages and as a result, the sample was dropped from the model (supporting
information Figure S2). The Adelaide Tarn datable record extends back in
time to approximately 1000 AD. Sedimentation rates in Adelaide Tarn
indicate two periods of elevated sedimentation from an average
background rate of 6.6 mg cm−2 yr−1. The first peak occurs from
~1470 to 1670 AD where sedimentation rates increase to a mean of
11.1 mg cm−2 yr−1, and the second peak occurs from 1950 to 2002 AD,
at a mean rate of 12.7 mg cm−2 yr−1 (Figure 3).

3.2. Sediment and Dust Geochemistry

The concentrations of REEs within dust samples is considerably greater
than those measured within the catchment bedrock for both Adelaide
Tarn and Lake Clara (supporting information) indicating that it is
possible to use REEs to determine sediment provenance. REE profiles
for both Lake Clara and Adelaide Tarn can be found in the supporting
information Figures S3 and S4.

Figure 2. Lake Clara age model and sedimentation rates based on the
Bayesian age model derived using BACON (Blaauw & Christen, 2011) and
reported as AD. The 95% confidence intervals are shown as shaded grey
areas. Radiocarbon sample points are represented by large black circles and
210Pb points by small black circles.

Figure 3. Adelaide Tarn age‐model and sedimentation rates based on the
Bayesian age model derived using BACON (Blaauw & Christen, 2011) and
reported as AD. The 95% confidence intervals are shown as shaded grey
areas. Radiocarbon sample points are represented by large black circles and
210Pb points by small black circles.
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3.2.1. Method 1 Average z‐Score of REEs
Mean z‐scored REEs for each lake sediment record and their composite record revealed a shift toward
increased REE concentrations beginning in the late nineteenth to the early twentieth century (Figure 4).
Adelaide Tarn also revealed an anomalous peak in some REEs at 16‐ to 7‐cm depth (~1517–1615 AD).

The peak is abrupt and up to 3 times background concentration. It is pos-
sible this peak is associated with a nearby volcanic eruption. Tephras
dated in the Newall Formation near Mount Taranaki on the south end
of the South Island indicated an eruption occurred at some time between
1500 and 1550 (Neall, 1972). The Egmont Volcano, or Mount Taranaki,
has lava compositions that are enriched in the light REE (Price et al.,
1992). Using elemental REE ratios, the Adelaide Tarn sediment anomaly
plots along the mixing line toward the Egmont/Mount Taranaki Lava and
away from dust and bedrock composition (Figure 5). This date corre-
sponds temporally to the observed peak in the sediment record of
Adelaide Tarn as well as the elevated particulate concentrations in the
Siple Station ice core in Antarctica (Figure 4). Lake Clara did not indicate
a similar increase in REEs, potentially due to the hiatus in the sediment
record at this time. Peaks in REE concentrations in both cores occur
around 1940 (±20), 1974 (±11.5), and 1990 (±5.5), numbers in brackets
refer to the modeled standard deviation from BACON of as shown by
shaded areas in supplementary Figures 1 and 2. Following the 1990 peak,
values decline toward background concentrations near the surface of
each core.
3.2.2. Method 2 EMMA
Christophersen and Hooper (1992) determined that the number of end‐
members, or potential sources, that sufficiently explain the mixed

Figure 4. Historical profiles of (a) dust deposition as recorded by Marx, McGowan, et al. (2014) in eastern Australia, mean z score of REEs for (b) Lake Clara and
(c) Adelaide Tarn, (d) the composite profile, (e) livestock densities for South and South‐Eastern Australia presented here as a proxy measurement for the
timeline of human land use intensification, and (f) dust deposition as recorded at the Siple Station in Antarctica (Mosley‐Thompson, 1990).

Figure 5. Rare earth element ratios for sediment, dust, Adelaide Tarn bed-
rock, and Mount Taranaki/Egmont young lavas. The sediment anomaly
represented by filled triangles plots closer to lava end‐member, suggesting
this peak is likely due to ash deposition from an eruption of Mount Taranaki
that occurred during this time.
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sample is equal to the number of Principal Components (PC) retained
plus one. For the Lake Clara sediments, the Kaiser method (supporting
information Table S1) and the scree plot method (supporting information
Figure S5) indicate one principal component should be retained,
explaining 87% of the variation in the data. Examining the data in mixing
space (Figure 6) indicates that the sediment geochemistry is potentially
explained by two sources, and the data is comfortably bounded by the
local bedrock and dust geochemistry end‐members. Therefore, we retain
two end‐members in the subsequent source partitioning equations. The
Kaiser method for Adelaide Tarn suggests retaining the first three
principal components, which explained 71%, 17%, and 7% of the variation
(supporting information Table S1). This suggests that there are up to four
end‐member sources that could explain the data; at least one of these end‐
members is likely related to the anomalous peak in some REEs from 16‐ to
17‐cm depth. The scree plot method, however, suggests retaining only one
component indicating that 71% of the variation is explained in the first PC
(supporting information Figures S6). Because we cannot acquire end‐
member geochemistry for the anomalous peak and because most of the
variation can be explained using two end‐members which together
explain 88% of the variability, we retain only two potential sources in
our partitioning equation. The sediments of Adelaide Tarn are fully
bounded by the bedrock and dust geochemistry end‐members (Figure 7).

The EMMA approach revealed similar historical variation as the z‐score
method (supporting information Figure S7). This result is not altogether

surprising given that the same suite of elements was used. This approach, however, permits combining
the derived end‐member contributions with sedimentation rates to determine shifts in the historical flux
of material to the lake sediments. In Lake Clara, proportional dust concentrations ranged from 0.19 to
0.34 and in Adelaide Tarn from 0.09 to 0.20. Differences in sediment dust concentrations between Lake
Clara and Adelaide Tarn likely reflect differences in catchment properties, including catchment steepness,
vegetation, and the catchment area relative to the lake area (CA:LA). These differences can influence the

degree to which alpine lakes record atmospheric deposition by affecting
the amount of dust retained in the terrestrial environment and transferred
to the lake sediments versus dilution from catchment derived material
(Ballantyne et al., 2010; Brahney, Ballantyne, et al., 2015; Morales‐
Baquero et al., 1999). In comparison to Adelaide Tarn, Lake Clara has a
relatively small CA:LA (Figure 1). These properties, in general, would
allow for greater dust transfer to the lake depositional area with less dilu-
tion from catchment‐derived material. As noted above, it is important to
distinguish the sediment deposition rates described here from true atmo-
spheric dust deposition rates. Sediment deposition rates reflect a
“catchment‐integrated flux” because the flux to the sediment surface will
include both the aerial flux to the lake surface as well as that mobilized
from the catchment. Brahney et al. (2014) found that up to 40% of the dust
material can be transported from the catchment to the lake basin, inflat-
ing the true atmospheric deposition rate. The degree to which dusts are
mobilized from the catchment to the lake surface could, in principle, vary
in time, and between lakes but such variation would have to be extreme to
explain the results observed in this study and others using similar meth-
odologies (Brahney, Ballantyne, et al., 2015; Neff et al., 2008; Routson
et al., 2016).

As with the z‐scored data, EMMA analyses for both cores showed maxi-
mum inferred dust concentrations and deposition between 1920 and
2000 (supporting information Figure S7). The composite deposition

Figure 6. Principal component mixing space for Lake Clara showing sedi-
ments (open diamonds) and potential end‐members, including dusts (filled
square) and local bedrock (filled diamond), with lines representing the
standard error. PC = principal component.

Figure 7. Principal component mixing space for Adelaide Tarn showing
sediments (open diamonds) and potential end‐members, including dusts
(filled square) and local bedrock (filled diamond), with lines representing
the standard error. Note that the error bars for the bedrock endmember are
smaller than the symbol representing the mean. PC = principal component.
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record is shown in Figure 6 alongside other regional historical dust deposition data. The historical concen-
tration of livestock in these areas shows a striking resemblance to the composite dust record from the
Tasman Mountain region (Figure 8). Comparing the composite dust deposition estimate against livestock
numbers, we find the two time series are highly correlated (r2 of 0.78, p < 0.0001).

4. Discussion

Sediment geochemical records from two New Zealand lakes in Kahurangi National Park suggest that the
loading of exogenous dust to this region of New Zealand increased beginning in the early twentieth century.
Based on REEs concentrations in the local bedrock vs the Australian dusts collected from New
Zealandglaciers, the likely source of dust within the lake sediment material is Australian in origin.
Further, Neff and Bertler (2015) suggested that, if 5‐day Hybrid Single Particle Lagrangian Integrated
Trajectory model trajectories are representative of dust transport and deposition in New Zealand, then
Australian sources may dominate over local dust sources, and that significant quantities of dust from other
Southern Hemisphere regions are unlikely to reach New Zealand.

Shifts in sediment REE concentrations may result from differential mineral weathering or changes in the
chemistry of exogenous dust. In these high elevation catchments, a shift in differential weathering and
erosion leading to the observed patterns in cores would require an alteration of existing weathering and
delivery processes in a way that was consistent through the twentieth century and which resulted in a dra-
matic change in REE concentration. One plausible explanation for such a shift is a climate‐induced increase
in the weathering and erosion of a specific bedrock fraction enriched in REEs in both alpine catchments.
Such a shift could perhaps be explained by enhanced weathering due to elevated CO2 (Clow & Mast,
2010); however, REE concentrations decline in the upper (recent) cores suggesting that increased differential
weathering is an unlikely explanation for the patterns observed here. Instead, we suggest that the shift in
REE concentrations reflects an increase in dust deposition derived from Australia. This is the most parsimo-
nious explanation of sediment chemistry for two reasons. First, themeasured REE concentrations from dusts
(Marx et al., 2005a, 2005b; McGowan et al., 2005) are considerably greater than the mean bedrock composi-
tion. Second, these records align with several other proxies of dust mobilization and deposition in the region,
including, the eastern Australian dust record as determined by Marx, McGowan, et al., 2014; Figure 4), dust
records derived from Antarctic ice cores, and atmospheric models of Australian dust, all of which indicate
increases in dust loading between 1930 and 1990 (Mahowald et al., 2010; Mosley‐Thompson,1990). Dust con-
centrations from the Siple Station, Antarctica, that extend as far back as the fifteenth century reveal
increased twentieth century dust concentrations, with post‐1930 concentrations averaging 3.5 ± 0.7 × 103

particles per ml (Figure 4). Peak concentrations occurred from 1950 to 1980 and background concentrations
in the ice core averaged 1.7 × 103 particles per millimeter. Temporal variations in the ice core are similar to
our reconstructed deposition rates (Figure 7).

The modern increase in dust deposition as determined from lake sediments is in accord with the elevated
dust emission histories from the Lake Eyre Basin and other regions in Australia (DustWatch, 2015;
McTainsh et al., 2007; Strong et al., 2011). The Lake Eyre Basin is a large dust source region in Australia
and one of the most active dust producing regions in the world averaging 80 dust entrainment events per
year (Bullard & McTainsh, 2003; Strong et al., 2011; Washington et al., 2003). Back trajectory atmospheric
modeling has shown that during the austral spring, when dust entrainment from Lake Eyre is highest, air
parcels originating over Lake Eyre have the capacity to transport dust as far as New Zealand (McGowan
& Clark, 2008; Neff & Bertler, 2015). The Lake Eyre dust emission data set only begins in 1960; however,
the data set indicates higher than average emission rates from the start of the record through the 1960s
and early 1970s. Dust emission rates from the Lake Eyre basin increase again in the early 2000s during a
particularly strong drought in Australia (DustWatch, 2015; McTainsh et al., 2007; Speer, 2013); however,
meteorological data indicate that dust emissions from the Australian continent were approximately 4.6
times higher during the 1937–1946 drought than the early 2000s drought (O'Loingsigh et al., 2015). This
pattern of high dust emission from the 1930s through the 1970s from various regions of the Australian
continent is consistent with our reconstructed dust records from New Zealand lakes.

Dust emissions in semiarid and arid regions are tied to aridity, wind speeds, and anthropogenic disturbance
(Field et al., 2009). Both short‐ and long‐term variation in Australian dust emissions have been previously
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linked to variations in Pacific climate variability that affect rainfall intensities over the Australian continent
(Marx et al., 2011; Speer, 2013). Dust deposition records presented here indicated a twentieth century
increase in dust deposition relative to nearly 2,000 years of sediment record. This increase occurs despite
considerable climatic variation during the twentieth century and is strongly suggestive of an underlying
shift in continental disturbances. Though several droughts punctuated the twentieth century, including
the Federation Drought (1895–1900), the World War II Drought (1937–1945), and the Millennium
Drought (2000–2010), long‐term climate records do not support drought as the single driver of increased
twentieth century dust emissions. Instead, this time period was wetter as compared to the last 1,000 years
(Denniston et al., 2015), and average rainfall has increased steadily from 1880 to 1990 AD (Plummer
et al., 1999). A distinguishing feature of the twentieth century, however, was the expansion of land area
dedicated to pastoralism, agriculture, and mining in Australia. The twentieth century rise in dust concentra-
tions combined with the similarities between historical livestock numbers and the geochemically inferred
dust record support hypotheses that land use, specifically agriculture and rangelands, are a significant driver
of dust emissions from the semiarid and arid regions in Australia and may exacerbate effects due to natural
variability in climate.

A growing body of research is highlighting the potential for far travelled dusts to influences sensitive
mountain lake ecosystems (Brahney, Mahowald, et al., 2015; Psenner, 1999). In mountain systems elsewhere
in the world, dust particles have been shown to alter water chemistry, nutrient availability, primary produc-
tion, and community structure (Brahney, Ballantyne, 2015; Jiménez et al., 2018; Reche et al., 2009). Because
mountain lake waters are naturally dilute and have limited within catchment capacity to take up deposited
nutrients, relatively small deposition rates can induce significant ecological change. For example, in the

Figure 8. Dust accumulation chronologies as a composite of the two lake records from 1700 AD. Also shown is the num-
ber of livestock on the Australian continent between 1885 and 2011. Data includes sheep, horse, and cattle population
statistics from New South Wales and South Australia.
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Sierra Nevada mountains of Spain dust associated P deposition ranged from 24 to 38 μg P m−2 d−1, a small
contribution, yet this deposition rate had measurable effects on productivity, inferred from chlorophyll‐a,
bacterial abundance, and plankton diversity (Morales‐Baquero et al., 2006; Pulido‐Villena et al., 2008).
Recently dust deposition has been implicated in the widespread increase in P concentrations in remote lakes
and streams across the United States (Stoddard et al., 2016). Both Lake Clara and Adelaide Tarn, and other
lakes in the Tasman Mountains, are likely sensitive to atmospheric deposition as their catchments are steep
and poorly vegetated. Despite recent declines in dust emissions from the Australian continent, population
growth, land use changes, and more frequent and intense droughts (Foley et al., 2005; Hudson, 2011;
Trenberth et al., 2014) may lead to future increases in particulate emissions. In light of our results, additional
studies on the potential for Australian dusts to influence New Zealandmountain lake ecology are warranted.

5. Conclusions

Two alpine lakes in New Zealand were used to evaluate historical exogenous dust contributions to lake sedi-
ments over the last two centuries. Geochemically inferred dust concentration patterns were consistent
between the lakes and similar to Australian dust emission inventories through the latter half of the twentieth
century as well as Antarctic ice core particulate records that have been verified by model simulations of
atmospheric dust transport. These lacustrine records indicate that the twentieth century had unusually high
sediment dust concentrations peaking in the latter half of the century, with subsequent declines. Because
our recorded shifts in lake sediment dust concentrations vary in concert with land use activities in
Australia, we conclude that the most sensible explanation is that twentieth century land use superimposed
upon climate cycles has led to enhanced dust emissions and subsequent deposition in New Zealand.

References
ABS, A. B. of S. (1988). Australian Bureau of Statistics. Retrieved from http://www.abs.gov.au/ausstats/
ABS, A. B. of S. (2015). Australian Bureau of Statistics. Agricultural Commodities, Australia. Historical Selected Agricultural Commodities

by State. Australian Government. Retrieved from http://www.abs.gov.au/ausstats/abs@.nsf/mf/7121.0
Alley, N. F. (1998). Cainozoic stratigraphy, palaeoenvironments and geological evolution of the Lake Eyre Basin. Palaeogeography,

Palaeoclimatology, Palaeoecology, 144(3), 239–263. https://doi.org/https://doi.org/10.1016/S0031‐0182(98)00120‐5
Appleby, P. G. (2001). Chronostratigraphic techniques in recent sediments. In W. M. Last, & J. P. Smol (Eds.), Tracking environmental

change using lake sediments, (Vol. 1: Basin a, pp. 171–204). Dordrecht, The Netherlands: Kluwer Academic.
Appleby, P. G., & Oldfield, F. (1978). The calculation of lead‐210 dates assuming a constant rate of supply of unsupported 210Pb to the

sediment. CATENA, 5(1), 1–8. https://doi.org/10.1016/S0341‐8162(78)80002‐2
Baddock, M. C., Zobeck, T. M., Van Pelt, R. S., & Fredrickson, E. L. (2011). Dust emissions from undisturbed and disturbed, crusted playa

surfaces: Cattle trampling effects. Aeolian Research, 3(1), 31–41. https://doi.org/10.1016/j.aeolia.2011.03.007
Ballantyne, A., Brahney, J., Fernandez, D., Lawrence, C., Saros, J., & Neff, J. (2010). Biogeochemical response of alpine lakes to recent

changes in dust deposition. Biogeosciences, 7, 8723–8761.
Belnap, J. (1995). Surface disturbances: Their role in accelerating desertification. Environmental Monitoring and Assessment, 37(1), 39–57.

https://doi.org/10.1007/BF00546879
Belnap, J., & Gillette, D. A. (1998). Vulnerability of desert biological soil crusts to wind erosion: The influences of crust development, soil

texture, and disturbance. Journal of Arid Environments, 39(2), 133–142. https://doi.org/10.1006/jare.1998.0388
Blaauw, M., & Christen, J. A. (2011). Flexible paleoclimate age‐depth models using an autoregressive gamma process. Bayesian Analysis,

6(3), 457–474.
Brahney, J., Ballantyne, A. P., Kociolek, P., Leavitt, P. R., Farmer, G. L., & Neff, J. C. (2015). Ecological changes in two contrasting lakes

associated with human activity and dust transport in western Wyoming. Limnology and Oceanography, 60(2), 678–695. https://doi.org/
10.1002/lno.10050

Brahney, J., Ballantyne, A. P., Kociolek, P., Spaulding, S., Otu, M., Porwoll, T., & Neff, J. C. (2014). Dust mediated transfer of phosphorus to
alpine lake ecosystems of the Wind River Range, Wyoming, USA. Biogeochemistry, 120(1–3), 259–278. https://doi.org/10.1007/s10533‐
014‐9994‐x

Brahney, J., Clague, J. J., Menounos, B., & Edwards, T. W. D. (2008). Geochemical reconstruction of late Holocene drainage and mixing in
Kluane Lake, Yukon Territory. Journal of Paleolimnology, 40(1), 489–505. https://doi.org/10.1007/s10933‐007‐9177‐z

Brahney, J., Mahowald, N., Ward, D. S., Ballantyne, A. P., & Neff, J. C. (2015). Is atmospheric Phosphorus pollution altering global alpine
Lake stoichiometry?Global Biogeochemical Cycles, 29, 1369–1383. https://doi.org/10.1002/2015GB005137

Bryan, W. B., Finger, L. W., & Chayes, F. (1969). Estimating proportions in petrographic mixing equations by least‐squares approximation.
Science, 163(3870), 926–927. https://doi.org/10.1126/science.163.3870.926

Bullard, J. E., & McTainsh, G. H. (2003). Aeolian‐fluvial interactions in dryland environments: Examples, concepts and Australia case
study. Progress in Physical Geography, 27(4), 471–501. https://doi.org/10.1191/0309133303pp386ra

Catalán, J., Camarero, L., Felip, M., Pla, S., Ventura, M., Buchaca, T., et al. (2006). High mountain lakes: Extreme habitats and witnesses of
environmental changes. Limnetica, 25(1‐2), 551–584. Retrieved from http://hdl.handle.net/10261/44375

Christophersen, N., & Hooper, R. P. (1992). Multivariate‐analysis of stream water chemical data—The use of principal components‐
analysis for the end‐member mixing problem. Water Resources Research, 28(1), 99–107. https://doi.org/10.1029/91wr02518

Christophersen, N., Neal, C., Hooper, R. P., Vogt, R. D., & Andersen, S. (1990). Modeling stream water chemistry as a mixture of soil water
end‐members—A step towards 2nd generation acidification models. Journal of Hydrology, 116(1–4), 307–320. https://doi.org/10.1016/
0022‐1694(90)90130‐p

10.1029/2018JG004627Journal of Geophysical Research: Biogeosciences

BRAHNEY ET AL. 11

Acknowledgments
This project was funded through a
National Geographic Research and
Exploration Grant and co‐supported
through the GNS Science “Global
Change through Time” research
program the Marsden Fund of the
Royal Society of New Zealand
(GNS1001). We thank Ian Walker for
the generous use of his lab facilities.
Raw geochemical data with QA/QC as
well as the BACON age model data can
be accessed in the supporting
information.

https://doi.org/https://doi.org/10.1016/S0031-0182(98)00120-5
https://doi.org/10.1016/S0341-8162(78)80002-2
https://doi.org/10.1016/j.aeolia.2011.03.007
https://doi.org/10.1007/BF00546879
https://doi.org/10.1006/jare.1998.0388
https://doi.org/10.1002/lno.10050
https://doi.org/10.1002/lno.10050
https://doi.org/10.1007/s10533-014-9994-x
https://doi.org/10.1007/s10533-014-9994-x
https://doi.org/10.1007/s10933-007-9177-z
https://doi.org/10.1002/2015GB005137
https://doi.org/10.1126/science.163.3870.926
https://doi.org/10.1191/0309133303pp386ra
https://doi.org/10.1029/91wr02518
https://doi.org/10.1016/0022-1694(90)90130-p
https://doi.org/10.1016/0022-1694(90)90130-p


Clow, D. W., & Mast, M. A. (2010). Mechanisms for chemostatic behavior in catchments: Implications for CO2 consumption by mineral
weathering. Chemical Geology, 269(1–2), 40–51. https://doi.org/10.1016/j.chemgeo.2009.09.014

Denniston, R. F., Villarini, G., Gonzales, A. N., Wyrwoll, K.‐H., Polyak, V. J., Ummenhofer, C. C., et al. (2015). Extreme rainfall activity in
the Australian tropics reflects changes in the El Niño/Southern Oscillation over the last two millennia. Proceedings of the National
Academy of Sciences, 112(15), 4576–4581. https://doi.org/10.1073/pnas.1422270112

DustWatch. (2015). My Dust History: Annual dust event days, and annual rainfall, 1960–2011. Australia: DustWatch Australia. Retrieved
from http://a.tiles.mapbox.com/v3/dustwatch.map‐fzodheri/page.html#5/‐27.897/136.670

Field, J., Belnap, J., Breshears, D. D., Neff, J. C., Okin, G. S., Whicker, J. J., et al. (2009). The ecology of dust. Frontiers in Ecology and the
Environment, 8(8), 423–430.

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005). Global consequences of land use. Science,
309(80), 570–574. https://doi.org/10.1126/science.1111772

Hesse, P. P. (1994). The record of continental dust from Australia in Tasman sea sediments. Quaternary Science Reviews, 13(3), 257–272.
https://doi.org/10.1016/0277‐3791(94)90029‐9

Hesse, P. P., & McTainsh, G. H. (2003). Australian dust deposits: modern processes and the Quaternary record. Quaternary Science Reviews,
22(18), 2007–2035.

Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., et al. (2013). SHCal13 Southern Hemisphere calibration, 0–
50,000 years cal BP. Radiocarbon, 55(04), 1889–1903. https://doi.org/10.2458/azu_js_rc.55.16783

Hooper, R. P. (2003). Diagnostic tools for mixing models of stream water chemistry.Water Resources Research, 39(3), 1055. https://doi.org/
10.1029/2002WR001528

Hudson, M. (2011). Facing the heat. Nature Climate Change, 1, 282–284.
Jiménez, L., Rühland, K. M., Jeziorski, A., Smol, J. P., & Pérez‐Martínez, C. (2018). Climate change and Saharan dust drive recent clado-

ceran and primary production changes in remote alpine lakes of Sierra Nevada, Spain.Global Change Biology, 24, e139–e158. https://doi.
org/10.1111/gcb.13878

Kingham, R. (1998). Geology of the Murray‐Darling Basin. Simplified lithostratigraphic groupings. Australian Geological Survey
Organisation, Department of Primary Industries & Energy.

Knight, A. W., McTainsh, G. H., & Simpson, R. W. (1995). Sediment loads in an Australian dust storm—Implications for present and past
dust processes. Catena, 24(3), 195–213. https://doi.org/10.1016/0341‐8162(95)00026‐O

Leathwick, J. R. (2002). Land environments of New Zealand. David Bateman.
Leys, J. F., & Eldridge, D. J. (1998). Influence of cryptogamic crust disturbance to wind erosion on sand and loam rangeland soils. Earth

Surface Processes and Landforms, 23(11), 963–974. https://doi.org/10.1002/(SICI)1096‐9837(1998110)23:11<963::AID‐ESP914>3.0.CO;2‐X
Mahowald, N. M., Kloster, S., Engelstaedter, S., Moore, J. K., Mukhopadhyay, S., McConnell, J. R., et al. (2010). Observed 20th century

desert dust variability: impact on climate and biogeochemistry. Atmospheric Chemistry and Physics, 10(22), 10,875–10,893. https://doi.
org/10.5194/acp‐10‐10875‐2010

Mahowald, N. M., Scanza, R., Brahney, J., Goodale, C. L., Hess, P. G., Moore, J. K., & Neff, J. (2017). Aerosol deposition impacts on land and
ocean carbon cycles. Current Climate Change Reports, 3(1), 16–31. https://doi.org/10.1007/s40641‐017‐0056‐z

Marx, S. K., Kamber, B. S., & McGowan, H. A. (2005a). Estimates of Australian dust flux into New Zealand: Quantifying the eastern
Australian dust plume pathway using trace element calibrated 210Pb as a monitor. Earth and Planetary Science Letters, 239(3–4),
336–351. https://doi.org/10.1016/j.epsl.2005.09.002

Marx, S. K., Kamber, B. S., & McGowan, H. A. (2005b). Provenance of long‐travelled dust determined with ultra‐trace‐element composi-
tion: A pilot study with samples from New Zealand glaciers. Earth Surface Processes and Landforms, 30(6), 699–716. https://doi.org/
10.1002/esp.1169

Marx, S. K., Kamber, B. S., McGowan, H. A., & Denholm, J. (2011). Holocene dust deposition rates in Australia's Murray‐Darling Basin
record the interplay between aridity and the position of the mid‐latitude westerlies. Quaternary Science Reviews, 30(23–24), 3290–3305.
https://doi.org/10.1016/j.quascirev.2011.07.015

Marx, S. K., Lavin, K. S., Hageman, K. J., Kamber, B. S., O'Loingsigh, T., & McTainsh, G. H. (2014). Trace elements and metal pollution in
aerosols at an alpine site, New Zealand: Sources, concentrations and implications. Atmospheric Environment, 82, 206–217. https://doi.
org/10.1016/j.atmosenv.2013.10.019

Marx, S. K., McGowan, H., Kamber, B., Knight, J., Denholm, J., & Zawadzki, A. (2014). Unprecedented wind erosion and perturbation of
surface geochemistry marks the Anthropocene in Australia. Journal of Geophysical Research: Earth Surface, 119, 45–61. https://doi.org/
10.1002/2013JF002948

McAlpine, C. A., Syktus, J., Ryan, J. G., Deo, R. C., McKeon, G. M., McGowan, H. A., & Phinn, S. R. (2009). A continent under stress:
interactions, feedbacks and risks associated with impact of modified land cover on Australia's climate. Global Change Biology, 15(9),
2206–2223. https://doi.org/10.1111/j.1365‐2486.2009.01939.x

McGowan, H., & Clark, A. (2008). Identification of dust transport pathways from Lake Eyre, Australia using HYSPLIT. Atmospheric
Environment, 42(29), 6915–6925. https://doi.org/10.1016/j.atmosenv.2008.05.053

McGowan, H. A., Kamber, B., McTainsh, G. H., & Marx, S. K. (2005). High resolution provenancing of long travelled dust deposited on the
Southern Alps, New Zealand. Geomorphology, 69(1–4), 208–221. https://doi.org/10.1016/j.geomorph.2005.01.005

McGowan, H. A., Sturman, A. P., & Owens, I. F. (1996). Aeolian dust transport and deposition by foehn winds in an alpine environment,
Lake Tekapo, New Zealand. Geomorphology, 15(2), 135–146. https://doi.org/10.1016/0169‐555X(95)00123‐M

McIntyre, R. (2007). Historic heritage of high‐country pastoralism: South Island up to 1948. Wellington, New Zealand.
McTainsh, G. H., Lynch, A. W., & Burgess, R. C. (1990). Wind erosion in eastern Australia. Soil Research, 28(2), 323–339. https://doi.org/

10.1071/SR9900323
McTainsh, G. H., Tews, K., Leys, J., Bastin, G., & Australia, C. (2007). Spatial and Temporal trends in wind erosion of Australian rangelands

during 1960 to 2005 using the Dust Storm Index (DSI). Australian Collaborative Rangeland Information System (ARCIS). Griffith
University.

Morales‐Baquero, R., Carrillo, R., Reche, I., & Sanchez‐Castillo, P. (1999). Nitrogen‐phosphorus relationship in high mountain lakes:
Effects of the size of catchment basins. Canadian Journal of Fisheries and Aquatic Sciences, 56(10), 1809–1817.

Morales‐Baquero, R., Pulido‐Villena, E., & Reche, I. (2006). Atmospheric inputs of phosphorus and nitrogen to the southwest
Mediterranean region: Biogeochemical responses of high mountain lakes. Limnology and Oceanography, 51(2), 830–837. https://doi.org/
10.4319/lo.2006.51.2.0830

Mosley‐Thompson, E. (1990). Little Ice Age (Neoglacial) paleoenvironmental conditions at Siple Station. Antarctica. Annals of Glaciology,
14, 199–204.

10.1029/2018JG004627Journal of Geophysical Research: Biogeosciences

BRAHNEY ET AL. 12

https://doi.org/10.1016/j.chemgeo.2009.09.014
https://doi.org/10.1073/pnas.1422270112
https://doi.org/10.1126/science.1111772
https://doi.org/10.1016/0277-3791(94)90029-9
https://doi.org/10.2458/azu_js_rc.55.16783
https://doi.org/10.1029/2002WR001528
https://doi.org/10.1029/2002WR001528
https://doi.org/10.1111/gcb.13878
https://doi.org/10.1111/gcb.13878
https://doi.org/10.1016/0341-8162(95)00026-O
https://doi.org/10.1002/(SICI)1096-9837(1998110)23:11%3c963::AID-ESP914%3e3.0.CO;2-X
https://doi.org/10.5194/acp-10-10875-2010
https://doi.org/10.5194/acp-10-10875-2010
https://doi.org/10.1007/s40641-017-0056-z
https://doi.org/10.1016/j.epsl.2005.09.002
https://doi.org/10.1002/esp.1169
https://doi.org/10.1002/esp.1169
https://doi.org/10.1016/j.quascirev.2011.07.015
https://doi.org/10.1016/j.atmosenv.2013.10.019
https://doi.org/10.1016/j.atmosenv.2013.10.019
https://doi.org/10.1002/2013JF002948
https://doi.org/10.1002/2013JF002948
https://doi.org/10.1111/j.1365-2486.2009.01939.x
https://doi.org/10.1016/j.atmosenv.2008.05.053
https://doi.org/10.1016/j.geomorph.2005.01.005
https://doi.org/10.1016/0169-555X(95)00123-M
https://doi.org/10.1071/SR9900323
https://doi.org/10.1071/SR9900323
https://doi.org/10.4319/lo.2006.51.2.0830
https://doi.org/10.4319/lo.2006.51.2.0830


Mudd, G. M. (2007). Gold mining in Australia: linking historical trends and environmental and resource sustainability. Environmental
Science & Policy, 10(7‐8), 629–644. https://doi.org/10.1016/j.envsci.2007.04.006

Neall, V. E. (1972). Tephrochronology and tephrostratigraphy of western Taranaki (N108–109), New Zealand. New Zealand Journal of
Geology and Geophysics, 15(4), 507–557. https://doi.org/10.1080/00288306.1972.10423983

Neff, J. C., Ballantyne, A. P., Farmer, G. L., Mahowald, N. M., Conroy, J. L., Landry, C. C., et al. (2008). Increasing eolian dust deposition in
the western United States linked to human activity. Nature Geoscience, 1(3), 189–195. https://doi.org/10.1038/ngeo133

Neff, P. D., & Bertler, N. A. N. (2015). Trajectory modeling of modern dust transport to the Southern Ocean and Antarctica. Journal of
Geophysical Research: Atmospheres, 120, 9303–9322. https://doi.org/10.1002/2015JD023304

NZ Department of Conservation. (2010). Kahurangi National Park Management Plan. Nelson, New Zealand.
O'Loingsigh, T., McTainsh, G. H., Parsons, K., Strong, C. L., Shinkfield, P., & Tapper, N. J. (2015). Using meteorological observer data to

compare wind erosion during two great droughts in eastern Australia; The World War II Drought (1937–1946) and the Millennium
Drought (2001–2010). Earth Surface Processes and Landforms, 40(1), 123–130. https://doi.org/10.1002/esp.3668

Pearson, M., & Lennon, J. (2010). Pastoral Australia: Fortunes, failures & hard Yakka: A Historical Overview 1788‐1967. CSIRO Publishing.
Petherick, L. M., McGowan, H. A., & Kamber, B. S. (2009). Reconstructing transport pathways for late Quaternary dust from eastern

Australia using the composition of trace elements of long traveled dusts. Geomorphology, 105(1), 67–79.
Pickup, G. (1998). Desertification and climate change—The Australian perspective. Climate Research, 11(1), 51–63. https://doi.org/

10.3354/cr011051
Plummer, N., Salinger, M. J., Nicholls, N., Suppiah, R., Hennessy, K. J., Leighton, R. M., et al. (1999). Changes in climate extremes over the

Australian region and New Zealand during the twentieth century. In T. R. Karl, N. Nicholls, & A. Ghazi (Eds.), Weather and climate
extremes: Changes, variations and a perspective from the insurance industry, (pp. 183–202). Dordrecht: Springer Netherlands. https://doi.
org/10.1007/978‐94‐015‐9265‐9_12

Price, R. C., McCulloch, M. T., Smith, I. E. M., & Stewart, R. B. (1992). Pb‐Nd‐Sr isotopic compositions and trace element characteristics of
young volcanic rocks from Egmont Volcano and comparisons with basalts and andesites from the Taupo Volcanic Zone, New Zealand.
Geochimica et Cosmochimica Acta, 56(3), 941–953.

Psenner, R. (1999). Living in a dusty world: Airborne dust as a key factor for Alpine Lakes. Water, Air, Soil Pollution, 112, 217–227.
Pulido‐Villena, E., Reche, I., & Morales‐Baquero, R. (2008). Evidence of an atmospheric forcing on bacterioplankton and phytoplankton

dynamics in a high mountain lake. Aquatic Sciences, 70(1), 1–9. https://doi.org/10.1007/s00027‐007‐0944‐8
Putman, W. (2017). Portrait of Global Aerosols, NASA/GoddardGEOS‐5 Simulations. National Aeronautics and Space Administration.

Retrieved from https://www.nasa.gov/multimedia/imagegallery/image_feature_2393.html
Reche, I., Ortega‐Retuerta, E., Romera, O., Pulido‐Villena, E., Baquero, R. M., & Casamayor, E. O. (2009). Effect of Saharan dust inputs on

bacterial activity and community composition in Mediterranean lakes and reservoirs. Limnology and Oceanography, 54(3), 869–879.
Ross, G. J., & Wang, C. (1993). Extractable Al. In M. Fe, N. Si, & C. Mr (Eds.), Soil sampling and methods of analysis for Canadian Society of

Soil Science. (pp. 239–246). Boca Raton: Lewis.
Routson, C. C., Overpeck, J. T., Woodhouse, C. A., & Kenney, W. F. (2016). Three millennia of southwestern North American dustiness and

future implications. PloS One, 11(2), e149573.
Silvester, S. A., Lowndes, I. S., & Hargreaves, D. M. (2009). A computational study of particulate emissions from an open pit quarry under

neutral atmospheric conditions. Atmospheric Environment, 43(40), 6415–6424.
Speer, M. S. (2013). Dust storm frequency and impact over Eastern Australia determined by state of Pacific climate system. Weather and

Climate Extremes, 2, 16–21. https://doi.org/10.1016/j.wace.2013.10.004
Stanley, C. R., & Lawie, D. (2007). Average relative error in geochemical determinations: Clarification, calculation, and a plea for consis-

tency. Exploration and Mining Geology, 16(3‐4), 267–275. https://doi.org/10.2113/gsemg.16.3‐4.267
Stoddard, J. L., Van Sickle, J., Herlihy, A. T., Brahney, J., Paulsen, S., Peck, D. V., et al. (2016). Continental‐scale increase in lake and stream

phosphorus: Are oligotrophic systems disappearing in the United States?Environmental Science & Technology, 50(7), 3409–3415.
https://doi.org/10.1021/acs.est.5b05950

Strong, C. L., Parsons, K., McTainsh, G. H., & Sheehan, A. (2011). Dust transporting wind systems in the lower Lake Eyre Basin, Australia:
A preliminary study. Aeolian Research, 2(4), 205–214. https://doi.org/10.1016/j.aeolia.2010.11.001

Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in
drought. Nature Climate Change, 4(1), 17–22. https://doi.org/10.1038/nclimate2067

Washington, R., Todd, M., Middleton, N. J., & Goudie, A. S. (2003). Dust‐storm source areas determined by the total ozone monitoring
spectrometer and surface observations.Annals of the Association of American Geographers, 93(2), 297–313. https://doi.org/10.1111/1467‐
8306.9302003

10.1029/2018JG004627Journal of Geophysical Research: Biogeosciences

BRAHNEY ET AL. 13

https://doi.org/10.1016/j.envsci.2007.04.006
https://doi.org/10.1080/00288306.1972.10423983
https://doi.org/10.1038/ngeo133
https://doi.org/10.1002/2015JD023304
https://doi.org/10.1002/esp.3668
https://doi.org/10.3354/cr011051
https://doi.org/10.3354/cr011051
https://doi.org/10.1007/978-94-015-9265-9_12
https://doi.org/10.1007/978-94-015-9265-9_12
https://doi.org/10.1007/s00027-007-0944-8
https://www.nasa.gov/multimedia/imagegallery/image_feature_2393.html
https://doi.org/10.1016/j.wace.2013.10.004
https://doi.org/10.2113/gsemg.16.3-4.267
https://doi.org/10.1021/acs.est.5b05950
https://doi.org/10.1016/j.aeolia.2010.11.001
https://doi.org/10.1038/nclimate2067
https://doi.org/10.1111/1467-8306.9302003
https://doi.org/10.1111/1467-8306.9302003


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


