
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

8-2019

Developing and Securing Software for Small Space Systems Developing and Securing Software for Small Space Systems

Brandon L. Shirley
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Shirley, Brandon L., "Developing and Securing Software for Small Space Systems" (2019). All Graduate
Theses and Dissertations. 7544.
https://digitalcommons.usu.edu/etd/7544

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7544&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F7544&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7544?utm_source=digitalcommons.usu.edu%2Fetd%2F7544&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

DEVELOPING AND SECURING SOFTWARE FOR SMALL SPACE SYSTEMS

by

Brandon L. Shirley

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Computer Science

Approved:

Stephen W. Clyde, Ph.D. David E. Brown, Ph.D.
Major Professor Committee Member

Curtis E. Dyreson, Ph.D. Chad D. Mano, Ph.D.
Committee Member Committee Member

Dan W. Watson, Ph.D. Richard S. Inouye, Ph.D.
Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2019

ii

Copyright © Brandon L. Shirley 2019

All Rights Reserved

iii

ABSTRACT

Developing and Securing Software For Small Space Systems

by

Brandon L. Shirley, Doctor of Philosophy

Utah State University, 2019

Major Professor: Stephen W. Clyde, Ph.D.
Department: Computer Science

This research addresses two problems associated with developing smaller multi-vendor

satellites for Small Space. These two problems interrelate and this research addresses them

together. The Development Problem deals with the development of modular, reusable, and

secure space systems while the Security Problem encompasses securing these space systems.

This research addresses the Development Problem by conducting a series of five surveys,

referred to as Space Industry Software Development Practices and Attitudes (SISDPA), to

asses current attitudes and state of practice among space system developers. This crys-

tallized a need in space system development — modular reusable open networks can help

Small Space realize its potential, but there is still a need to address certain security threats.

This research addresses the Security Problem by creating Secured Space Plug-and-Play

Services Manager (SSSM), a secure modular reusable open-network software development

framework based off of Space Plug-and-Play Services Manager (SSM). SSSM adds security

provisions while minimizing the impact on developers using the framework. An evaluation

of SSSM shows that it preserves the ease-of-use of SSM while adding policy enforcement in

the form of authentication, access control, and encryption provisions.

(284 pages)

iv

PUBLIC ABSTRACT

Developing and Securing Software For Small Space Systems

Brandon L. Shirley

The space systems industry is moving towards smaller multi-vendor satellites, known

as Small Space. This shift is driven by economic and technological factors that necessitate

hardware and software components that are modular, reusable, and secure. This research

addresses two problems associated with the development of modular, reusable, and secure

space systems: developing software for space systems (the Development Problem) and se-

curing space systems (the Security Problem). These two problems are interrelated and this

research addresses them together.

The Development Problem encompasses challenges that space systems developers face

as they try to address the constraints induced by reduced budgets, design and develop-

ment lifecycles, maintenance allowances, multi-vendor component integration and testing

timelines. In order to satisfy these constraints a single small satellite might incorporate

hardware and software components from dozens of organizations with independent work

forces and schedules. The Security Problem deals with growing need to ensure that each

one of these software or hardware components behaves according to policy or system design

as well as the typical cybersecurity concerns that face any information system.

This research addresses the Development Problem by exploring the needs and barriers

of Small Space to find the best path forward for the space systems industry to catch up

with the methodology advancements already being widely used in other software fields. To

do this exploration a series of five surveys, referred to as SISDPA, was conducted to asses

current attitudes and state of practice among space system developers. This crystallized a

need in space system development — modular reusable open networks can help Small Space

realize its potential, but there is still need to address certain security threats.

v

This research addresses the Security Problem by augmenting a modular reusable open-

network software development framework, called SSM, by adding policy enforcement in the

form of authentication, access control, and encryption provisions, to create a new devel-

opment framework, SSSM. This design and implementation adds security provisions while

minimizing the impact on developers using the framework. SSSM is evaluated in terms of

developer and system resource burden and shows that SSSM does not significantly increase

developer burden and preserves the ease-of-use of SSM.

vi

To Allyson, we would not be here without you.

vii

ACKNOWLEDGMENTS

It has been a long road, I would like to acknowledge those who have helped or carried

me along the way.

� The Space Dynamics Laboratory, for the PhD Fellowship and support via internal

research and development funding.

� Allyson, for sharing the burden and prodding me along when I got complacent.

� Dr. Stephen Clyde, for letting me struggle when I needed to struggle and helping

when I really needed help even though he was busy beyond belief.

� Brook Mckenna for her help and patience throughout the PhD Fellowship process.

� The various members of the Utah State University (USU) Computer Science faculty

that I have pestered over the years, for their patience and help.

� Parents, for instilling a resilient stubbornness that helped get me through.

� Katelyn, Hannah, and Nora, for helping me remember what is important.

� Mark Greenman, for letting me vent, and generally giving me good advice.

� David Anderson and Ian Karlinsey, for helping stay on track during all those years

down in Albuquerque.

� Brandon Holdaway, for his help in implemented SSSM.

� All those in Albuquerque and Logan that have put up with my struggle over the years.

� All the others who helped get me here.

Brandon L. Shirley

viii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . vii

LIST OF TABLES . xii

LIST OF FIGURES . xvi

LIST OF SAMPLES . xvii

ACRONYMS .xviii

1 INTRODUCTION . 1

2 RELATED WORK . 5
2.1 Introduction . 5
2.2 Modularity and Reuse in Space Systems . 5
2.3 Security for Space Systems . 9

2.3.1 Policy and Principles . 10
2.3.2 Process and Tools . 13
2.3.3 Implementations . 15

3 SURVEY SERIES DESCRIPTION . 18
3.1 Introduction . 18
3.2 Survey Questions . 18
3.3 Survey Distribution . 22

4 SURVEY SERIES RESULTS AND ANALYSIS . 24
4.1 Introduction . 24
4.2 Survey Series Participation . 25
4.3 Participant Perception of Code Complexity 27

4.3.1 Code Complexity Importance and Benefits 28
4.3.1.1 Core Concepts (CC) Survey, Question 2.1 Analysis, Part 1 28

Test 1 . 29
Test 2 . 30
Test 3 . 33

4.3.1.2 CC Survey, Question 2.2 Analysis, Part 1 35
4.3.1.3 Reuse, Interoperability, Portability, Code Complexity (RIPCC)

Survey, Question 2.13 Analysis 37
4.3.2 Code Complexity Metrics . 42

4.3.2.1 RIPCC Survey, Question 2.15 Analysis 43

ix

4.4 Participant Perception of Reusable Software 45
4.4.1 Reusability Importance and Benefits 46

4.4.1.1 CC Survey, Question 2.1 Analysis, Part 2 47
Test 1 . 47
Test 2 . 48

4.4.1.2 CC Survey, Question 2.2 Analysis, Part 2 51
4.4.1.3 RIPCC Survey, Question 2.10 Analysis 53

4.5 Participant Perception of Modular Open-network System Approaches . . . 59
4.5.1 Networking Benefits . 60

4.5.1.1 Network Survey, Question 2.3 Analysis, Part 1 60
4.5.2 Open Systems Architecture/Approach (OSA) and Modular Open Net-

work Architecture (MONA) Trends 65
4.5.2.1 Open Systems Architecture and Modularity (OSAM) Survey,

Question 2.4 Analysis . 66
Test 1 . 66
Test 2 . 68

4.5.2.2 OSAM Survey, Question 2.5 Analysis 70
4.6 Software Security . 72

4.6.1 Security Experience . 74
4.6.1.1 Security Survey, Question 2.2 Analysis 75

4.6.2 Networking and Security . 78
4.6.2.1 OSAM Survey, Question 2.6 Analysis 78

Test 1 . 79
Test 2 . 82

4.6.2.2 Network Survey, Question 2.3 Analysis, Part 2 83
Test 1 . 83
Test 2 . 85

4.6.3 Security Importance and Difficulty 86
4.6.3.1 CC Survey, Question 2.1 Analysis, Part 3 87

Test 1 . 87
Test 2 . 89

4.6.3.2 Security Survey, Questions 2.6 and 2.7 Analysis 92
Test 1 . 92
Test 2 . 94

4.6.3.3 Security Importance and Difficulty Summary 95
4.6.4 Important Security Provisions . 96

4.6.4.1 Security Survey, Questions 2.8 Analysis 96
4.6.5 Internal Security Benefits . 99

4.6.5.1 Security Survey, Questions 2.1 Analysis 100
4.7 Conclusions of Survey Analysis . 107

5 SSSM DESIGN . 109
5.1 Introduction . 109
5.2 SSM Security Problem . 110
5.3 SSSM Architectural and Protocol Design . 111

5.3.1 Architectural Overview . 113

x

5.3.2 Protocol Overview . 118
5.3.2.1 Authentication . 120
5.3.2.2 Query and Session Request 121
5.3.2.3 Lifetime . 124
5.3.2.4 Secure Notification . 125
5.3.2.5 Secure Request . 127
5.3.2.6 Secure Command . 128

6 SSSM EVALUATION . 129
6.1 Introduction . 129
6.2 Unsecured versus Secured Development . 130

6.2.1 Producer Development . 130
6.2.2 Consumer Development . 136
6.2.3 Policy Development . 137

6.3 Performance Evaluation . 140
6.3.1 Setup . 140
6.3.2 Evaluation Results . 144

6.4 Conclusions of SSSM Evaluation . 151

7 CONCLUSION . 153
7.1 Introduction . 153
7.2 Contribution . 153
7.3 Future Work . 154

REFERENCES . 156

APPENDICES . 162
A SISDPA Survey Series Instruments . 163

A.1 Introduction . 163
A.2 letter of information (LOI) . 164
A.3 Extension Approval Letter . 167
A.4 Survey Recruitment Letter . 168
A.5 CC Survey . 171
A.6 OSAM Survey . 178
A.7 Security Survey . 190
A.8 RIPCC Survey . 203
A.9 Network Survey . 221
A.10 Survey Pro-neutral-con Term Definitions 228

B SISDPA Survey Participant Backgrounds . 230
B.1 Introduction . 230
B.2 CC Survey — Roles and Development Experience 232
B.3 OSAM Survey — Roles and Development Experience 235
B.4 Security Survey — Roles and Development Experience 236
B.5 RIPCC Survey — Roles and Development Experience 238
B.6 Network Survey — Roles and Development Experience 239

C Background . 245
C.1 SSM . 245

xi

C.1.1 The Lookup Service (LS) and Extensible Transducer Elec-
tronic Data Sheet (xTEDS) 246

Notification . 251
Request . 252
Command . 252

C.1.2 Central Address Service (CAS), Subnet Managers, and logical
address (LA)s . 253

C.2 Kerberos . 258

xii

LIST OF TABLES

Table Page

4.1 Color Key for t-value Row Coloring in Question Results Tables 25

4.2 Survey Participant Response and Usability Rates 26

4.3 CC 2.1, Part 1 — Code Complexity Importance Mean, One-sample Test
Statistics, Test Value 3, 5-point Likert Scale 30

4.4 CC 2.1, Part 1 — Code Complexity Importance Mean, One-sample Test
Results, Test Value 3, 5-point Likert Scale 30

4.5 CC 2.1, Part 1 — Code Complexity Importance Mean, Matched-pairs Test
Statistics, 5-point Likert Scale . 31

4.6 CC 2.1, Part 1 — Code Complexity Importance Mean, Matched-pairs Test
Results, 5-point Likert Scale . 32

4.7 CC 2.1 — Code Complexity vs. Reuse vs. Security Importance Mean,
Matched-pairs Test Statistics, 5-point Likert Scale 34

4.8 CC 2.1 — Code Complexity vs. Reuse vs. Security Importance Mean,
Matched-pairs Test Results, 5-point Likert Scale 35

4.9 CC 2.2, Part 1 — Software Characteristic Importance Ranking Means, One-
sample Test Statistics, Test Value 4, 1 to 7 Ranking Scale 36

4.10 CC 2.2, Part 1 — Software Characteristic Importance Ranking Means, One-
sample Test Results, Test Value 4, 1 to 7 Ranking Scale 36

4.11 RIPCC 2.13 — Minimal Code Complexity Benefits on System-aspects Means,
One-sample Test Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale . . 38

4.12 RIPCC 2.13 — Code Complexity Benefits on System-aspects Means, One-
sample Test Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale 39

4.13 RIPCC 2.15 — Code Complexity Importance Means, One-sample Test Statis-
tics, Test Value 3, 5-point Likert Scale . 43

4.14 RIPCC 2.15 — Code Complexity Importance Means, One-sample Test Re-
sults, Test Value 3, 5-point Likert Scale . 45

xiii

4.15 CC 2.1, Part 2 — Reuse Importance Mean, One-sample Test Statistics, Test
Value 3, 5-point Likert Scale . 48

4.16 CC 2.1, Part 2 — Reuse Importance Mean, One-sample Test Results, Test
Value 3, 5-point Likert Scale . 48

4.17 CC 2.1, Part 2 — Reuse Importance Mean, Matched-pairs Test Statistics,
5-point Likert Scale . 49

4.18 CC 2.1, Part 2 — Reuse Importance Mean, Matched-pairs Test Results,
5-point Likert Scale . 51

4.19 CC 2.2, Part 2 — Software Characteristic Importance Ranking Means, One-
sample Test Statistics, Test Value 4, 1 to 7 Ranking Scale 52

4.20 CC 2.2, Part 2 — Software Characteristic Importance Ranking Means, One-
sample Test Results, Test Value 4, 1 to 7 Ranking Scale 53

4.21 RIPCC 2.10 — Reusability Benefits on System-aspects Means, One-sample
Test Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale 54

4.22 RIPCC 2.10 — Reusability Benefits on System-aspects Means, One-sample
Test Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale 57

4.23 Network 2.3 — Network Benefits on System-aspects Means, One-sample Test
Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale 61

4.24 Network 2.3 — Network Benefits on System-aspects Means, One-sample Test
Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale 63

4.25 OSAM 2.4 — Organization-level Proliferation of MONAs and OSAs, One-
sample Test Statistics, Test Value 1.5, 1 to 2 No-Yes Scale 67

4.26 OSAM 2.4 — Organization-level Proliferation of MONAs and OSAs, One-
sample Test Results, Test Value 1.5, 1 to 2 No-Yes Scale 68

4.27 OSAM 2.4 — Organization-level Proliferation of MONAs and OSAs, Matched-
pairs Test Statistics, 1 to 2 No-Yes Scale . 69

4.28 OSAM 2.4 — Organization-level Proliferation of MONAs and OSAs, Matched-
pairs Test Results, 1 to 2 No-Yes Scale . 70

4.29 OSAM 2.5 — System-level Usage of MONA, OSA, and Close Proprietary,
Matched-pairs Test Statistics, Percentage Scale 71

4.30 OSAM 2.5 — System-level Usage of MONA, OSA, and Close Proprietary,
Matched-pairs Test Results, Percentage Scale 72

xiv

4.31 Security 2.2 — Security Experience Mean, One-sample Test Statistics, Test
Value 1.5, 1 to 2 No-Yes Scale . 76

4.32 Security 2.2 — Security Experience Mean, One-sample Test Results, Test
Value 1.5, 1 to 2 No-Yes Scale . 77

4.33 OSAM 2.6 — Prohibitive Effect on Adoption of Open-System Approaches
Mean, One-sample Test Statistics, Test Value 0.5, 0 to 1 No-Yes Scale . . . 79

4.34 OSAM 2.6 — Prohibitive Effect on Adoption of Open-systems Approaches
Mean, One-sample Test Results, Test Value 0.5, 0 to 1 No-Yes Scale 80

4.35 OSAM 2.6 — Prohibitive Effect on Adoption of Open-System Approaches
Mean, Matched-pairs Statistics, 0 to 1 No-Yes Scale 82

4.36 OSAM 2.6 — Prohibitive Effect on Adoption of Open-systems Approaches
Mean, Matched-pairs Test Results, 0 to 1 No-Yes Scale 83

4.37 Network 2.3 — Network Benefits on Security-aspect Mean, One-sample Test
Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale 84

4.38 Network 2.3 — Network Benefits on Security-aspect Mean, One-sample Test
Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale 85

4.39 Network 2.3 — Networking Impact on Security Mean, Matched-pairs Test
Statistics, 1 to 3 Cons-Neutral-Pros Scale 86

4.40 Network 2.3 — Networking Impact on Security Mean, Matched-pairs Test
Results, 1 to 3 Cons-Neutral-Pros Scale . 86

4.41 CC 2.1, Part 3 — Security Importance Mean, One-sample Test Statistics,
Test Value 3, 5-point Likert Scale . 88

4.42 CC 2.1, Part 3 — Security Importance Mean, One-sample Test Results, Test
Value 3, 5-point Likert Scale . 89

4.43 CC 2.1, Part 3 — Security Importance Mean, Matched-pairs Test Statistics,
5-point Likert Scale . 90

4.44 CC 2.1, Part 3 — Security Importance Mean, Matched-pairs Test Results,
5-point Likert Scale . 90

4.45 Security 2.6 and 2.7 — Security Importance and Difficulty Mean, One-sample
Test Statistics, Test Value 2, 3-point Likert Scale 93

4.46 Security 2.6 and 2.7 — Security Importance and Difficulty Mean, One-sample
Test Results, Test Value 2, 3-point Likert Scale 93

xv

4.47 Security 2.6 — Security Importance Mean, Matched-pairs Test Statistics,
3-point Likert Scale . 95

4.48 Security 2.6 — Security Importance Mean, Matched-pairs Test Results, 3-
point Likert Scale . 95

4.49 Security 2.8 — Security Provision Importance Ranking Mean, One-sample
Test Statistics, Test Value 7.5, 1 to 15 Ranking Scale 97

4.50 Security 2.8 — Security Provision Importance Ranking Mean, One-sample
Test Results, Test Value 7.5, 1 to 15 Ranking Scale 98

4.51 Security 2.1 — Internal Security Benefits on System-aspects Means, One-
sample Test Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale 101

4.52 Security 2.1 — Internal Security Benefits on System-aspects Means, One-
sample Test Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale 103

B.1 CC Survey, Question 1.1 — Role Breakdown 232

B.2 OSAM Survey, Question 1.1 — Role Breakdown 235

B.3 Security Survey, Question 1.1 — Role Breakdown 237

B.4 RIPCC Survey, Question 1.1 — Role Breakdown 239

B.5 Network Survey, Question 1.1 — Role Breakdown 240

C.1 Routing Table . 254

C.2 Kerberos Terminology . 260

xvi

LIST OF FIGURES

Figure Page

2.1 Malicious Satellite to Satellite Scenario . 11

5.1 Attack Scenario . 111

5.2 SSSM Example . 114

5.3 SSSM Protocol Diagram . 119

6.1 Unsecured versus Secured Payload Byte Throughput 145

6.2 Unsecured versus Secured Central Processing Unit (CPU) Utilization 146

6.3 Unsecured versus Secured Memory Usage 149

6.4 Unsecured versus Secured Payload Byte Throughput 150

B.1 Survey Experience Means . 231

B.2 CC Survey, Question 1.1 — Aggregate Roles 234

B.3 CC Survey — Non-aggregate Roles vs. Average Experience 235

B.4 OSAM Survey, Question 1.1 — Aggregate Roles 237

B.5 OSAM Survey — Non-aggregate Roles vs. Average Experience 239

B.6 Security Survey, Question 1.1 — Aggregate Roles 240

B.7 Security Survey — Non-aggregate Roles vs. Average Experience 242

B.8 RIPCC Survey, Question 1.1 — Aggregate Roles 242

B.9 RIPCC Survey — Non-aggregate Roles vs. Average Experience 243

B.10 Network Survey, Question 1.1 — Aggregate Roles 243

B.11 Network Survey — Non-aggregate Roles vs. Average Experience 244

C.1 SSM Network Topology Example . 246

C.2 Open Systems Interconnection (OSI) to Space Plug-and-Play Architecture
(SPA) Network Stack Comparison . 247

C.3 SSM Notification Lifecycle Example . 251

C.4 SSM Routing Example . 255

C.5 Simplified Kerberos Authentication Exchange 262

xvii

LIST OF SAMPLES

Sample Page

5.1 Permission Table for Color Producer Configuration 115

5.2 Secured Color Producer xTEDS . 117

6.1 Application Programming Interface (API) Producer xTEDS 131

6.2 Secured API Producer xTEDS . 132

6.3 ApiProducer Declaration . 133

6.4 ApiSecureProducer Declaration . 134

6.5 Api*Producer Definition . 135

6.6 Api*Consumer Definition . 138

6.7 LS Permission Table for ApiSecureProducer and ApiSecureConsumer 139

6.8 Startup Script for ApiSecureProducer . 140

6.9 Measure API Producer xTEDS . 142

6.10 ApiMeasureConsumer and ApiSecureMeasureConsumer appInit Function . 143

6.11 ApiMeasureConsumer and ApiSecureMeasureConsumer onCounterDataRe-
ceived Function . 147

C.1 Notification Query . 248

C.2 Basic xTEDS . 253

xviii

ACRONYMS

AMSAT-NA Radio Amateur Satellite Corporation

ACAS assured compliance assessment solution

ADCS attitude determination and control system

AE aerospace engineer

AES Advanced Encryption Standard

AFB Air Force Base

AFRL Air Force Research Laboratory

AIAA American Institute of Aeronautics and Astronautics

API Application Programming Interface

AS Authentication Server

ASCII American Standard Code for Information Interchange

CAN Controller Area Network

CCSDS Consultative Committee for Space Data Systems

CDH Command and Data Handling

CAS Central Address Service

CFS Core Flight System

COMSEC Communications Security

CC Core Concepts

CI confidence interval

COTS commercial of-the-shelf

CPU Central Processing Unit

DARPA Defense Advanced Research Projects Agency

DMA direct memory access

DoD Department of Defense

DoS denial-of-service

xix

EE electrical engineer

EOL end-of-life

FIPS Federal Information Processing Standards

GB gigabyte

GCM Galois/Counter Mode

GHz gigahertz

GPS Global Position System

HACMS High-Assurance Cyber Military Systems

HACSS High-Assurance Cyber Space Systems

Hz hertz

IA information assurance

ICS industrial control system

IDA Interactive Disassembler

IDS intrusion detection system

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPC Inter-Process Communication

IPS intrusion prevention system

IOT Internet of Things

IRB Internal Review Board

ITU International Telecommunication Union

IV Initialization Vector

I2C Inter-Integrated Circuit

KDC Key Distribution Center

LA logical address

LOI letter of information

LEO low earth orbit

LS Lookup Service

xx

MA malicious application

MB megabyte

MBps megabytes per second

ME mechanical engineer

MIT Massachusetts Institute of Technology

MONA Modular Open Network Architecture

MSV Modular Space Vehicle

MTU maximum transmission unit

NASA National Aeronautics and Space Administration

NICTA National Information and Communications Technology Australia

NISTIR National Institute of Standards and Technology Interagency Report

Nmap Network Mapper

OS operating system

OSA Open Systems Architecture/Approach

OSAL operation system abstraction layer

OSAM Open Systems Architecture and Modularity

OSI Open Systems Interconnection

ORS Operationally Responsive Space

OpenVAS Open Vulnerability Assessment System

PI principal investigator

PM program manager

RAM random access memory

RIPCC Reuse, Interoperability, Portability, Code Complexity

RST Responsive Space Testbed

SBC single board computer

SCADA supervisor control and data acquisition

SDL Space Dynamics Laboratory

SDM Satellite Data Model

xxi

SE software engineer

seL4 security enhanced L4

SFS Space Flight Software

SFSYS Space Flight System

SGS Space Ground Software

SGSYS Space Ground System

SISDPA Space Industry Software Development Practices and Attitudes

SpaWar Space and Naval Warfare Systems Command

SMC Space and Missile Systems Center

SM-1 SPA-1 subnet-manager

SM-E SPA-E subnet-manager

SM-L SPA-L subnet-manager

SM-S SPA-S subnet-manager

SNAP Standard Network Adapter for Payloads

SOIS Spacecraft Onboard Interface Services

SPA Space Plug-and-Play Architecture

SPA-1 SPA I2C

SPA-E SPA ethernet

SPA-L SPA local

SPA-S SPA SpaceWire

SPI Serial Peripheral Interface

SSM Space Plug-and-Play Services Manager

SSSM Secured Space Plug-and-Play Services Manager

STL Standard Template Library

STS space test software

STSYS space test system

SWaP size, weight, and power

SysE systems engineer

xxii

TE thermal engineer

TEDS Transducer Electronic Data Sheet

TGS Ticket Granting Server

TGT Ticket Granting Ticket

TL technical lead

USB Universal Serial Bus

USU Utah State University

UUID Universally Unique Identifier

VM virtual machine

VMware Virtual Machine Ware

XML Extensible Markup Language

xTEDS Extensible Transducer Electronic Data Sheet

XUUID Extensible Transducer Electronic Data Sheet Universally Unique
Identifier

CHAPTER 1

INTRODUCTION

The space systems industry is moving away from large monolithic satellites, known as

Big Space, to smaller multi-vendor satellites, known as Small Space. This shift, driven by

demand for lower costs, shorter schedules, new technology, and the ongoing government

capability space race, requires hardware and software components to be substantially more

modular, reusable, and secure than in the past. For example, a single small satellite might

incorporate hardware and software components from dozens of organizations with indepen-

dent work forces and schedules. To be efficient, not only do these organizations need to

complete their components with minimal coordination, the components need to be decou-

pled as much possible so they are isolated from change in other parts of the system. Also,

if the components, be it hardware or software, are modular with good abstractions and

encapsulation, then they will be more reusable and thereby help reduce development costs

in future space systems. The downside of having multiple independent organizations, with

varying levels of trust, provide components for a space system is that the system’s security

provisions have to ensure that each component behaves according to policy or system de-

sign. This research addresses two problems associated with the development of modular,

reusable, and secure space systems: developing software for space systems (the Develop-

ment Problem) and securing space systems (the Security Problem). These two problems

interrelate and this research addresses them together.

The Development Problem encompasses challenges that space systems developers face

as they try to address the constraints induced by reduced budgets, design and development

lifecycles, maintenance allowances, multi-vendor component integration and testing time-

lines. Big Space vehicles have had long development cycles, low risk postures, and require

high information assurance; this typically results in high cost, difficulty with untrusted

parts and software sourcing, and lag behind other industries [1–3]. Developers often de-

2

velop one-off solutions while leveraging past successes, particularly with respect to achieving

reliability and power efficiency [1]. There will likely always be a place for these types of

systems, but there are a growing number of applications where this approach is no longer

the gold standard, e.g. low earth orbit (LEO) applications, applications with short lifecy-

cles, swarms, constellations, and high-risk applications. The space industry is realizing this

new standard under the banner of Small Space.

The idea of using modularity and reuse to reduce cost in space system development

is not a new concept; it has been tried before. Modularity has been explored in many

aspects of space system design going back to the 1970s [4]. However, the various attempts

do not seem to advance much past their originator or impact external development efforts.

This could be due to the protected nature of space systems, especially when developed by

government agencies, or it could be due to a failure to adopt development practices and

tools that could facilitate this transition. Is it possible that the technology was not available

yet to truly realize the reuse and modularity needed? Can Small Space ideals be coupled

with reuse, modularity, and security to push and sustain this next evolutionary step in

space system development? To explore these and other questions and to fully understand

the development problem as well as the best path-forward for the space systems industry,

this research designed and conducted a series of five surveys, referred to as SISDPA, to asses

current attitudes and state of practice among space system developers. Chapter 3 describes

the five SISDPA surveys and Appendix A shows the actual survey instruments.

To enable space systems development to be more modular, reusable, and secure, it is

first necessary to better understand the current software development practices and per-

ceptions among space system developers. Open networks are well-understood solutions for

integrating systems of systems, as evidenced by the Internet of Things (IOT) and the Inter-

net at large. An open network can enable high degrees of reuse, flexibility, and extensibility,

because it lends itself to good abstraction, modularity, and encapsulation [5]. However, its

openness can lead to additional challenges when it comes to security. The results of the

SISDPA surveys support these assessments of the benefits and barriers for open network

3

adoption in space systems development. See Chapter 4. Understanding the barriers, in

particular, can help the industry eventually overcome these barriers and catch up with the

methodology advancements already being widely used in other fields.

More specifically, Chapters 3 and 4 crystallize a need in space system development

— modular reusable open networks can help Small Space realize its potential, but they

still need to address certain security threats. This is the second problem this dissertation

addresses and is simply referred to here as the Security Problem. It encompasses challenges

that relate to the secure integration of components from different vendors and organizations.

To address the Security Problem, this research augments a modular reusable open-

network software development framework, called SSM. SSM is set of software services that

allow components to communicate over heterogeneous networks without knowledge of the

network protocols or addressing schemes [6, 7]. This research adds policy enforcement to

SSM in the form of authentication, access control, and encryption provisions, to create a

new framework, SSSM. Its design adds security provisions while aiming to minimize the

impact on developers using the framework. See Chapter 5.

Chapter 6 evaluates SSSM in terms of developer and system resource burden, because

an increase in developer burden affects how easy a component is to use and therefore reuse

and an increase in system resource burden reduces the set of applications where a component

can be applied when criteria like size, weight, and power (SWaP) are driving factors. The

evaluation shows that SSSM does not significantly increase developer burden. In other

words, SSSM preserves the ease-of-use of SSM. Chapter 6 also shows that both SSM and

SSSM have upper bounds on their network throughput that are tied to CPU and memory

limitations and not the actual network. SSSM tops out before SSM and generally uses

slightly more resources under nominal operation. The net result is a decrease in reusability

from a system resource perspective. Therefore, an extremely resource-limited system that

might be able to to use SSM might not be able to use SSSM. Chapter 6 identifies some

ways around this problem by tweaking how a developer uses the API.

Finally, Chapter 7 summarizes the contributions of this dissertation relative to both

4

the Development and Security Problems. It argues that the SISDPA surveys provide an in-

depth understanding of the attributes and current practices in space systems development

and that this has led to a better understanding of the benefits and barriers associated with

using open networks in space systems. It also concludes that SSSM effectively addresses

both problems. From a development perspective, SSSM provides an easy-to-use framework

that allows developers to create space systems with better abstraction, modularity, and

encapsulation. From a security perspective, it addresses the security concerns that were

barriers to the adoption of open networks, even when there are multiple vendors involved.

5

CHAPTER 2

RELATED WORK

2.1 Introduction

The Development Problem and the Security Problem can be addressed by a solution

that encompasses reuse, modularity, and security. Modularity enables reuse, and good ab-

straction and encapsulation enable modularity [5]. Developing software with clear bound-

aries helps lead to designs with good abstraction and encapsulation. Network architectures

or development frameworks naturally define boundaries that help with abstraction and

encapsulation enabling modularity. MONAs are a realization of this idea and there are

examples of these in space systems development, [8–10] but MONAs are struggling to see

widespread adoption. Increasing the usage of these architectures and approaches would

help bring more modern software development processes and tools to spaces systems devel-

opment while benefiting from the modularity, abstraction, and encapsulation that enable

reuse.

A literature review of work related to the Development Problem did not uncover any

other research that had undertaken the task of understanding the problem by surveying

space system developers to understand their current practices and attitudes, particularly

in relation to modularity, reuse, and security. Nevertheless, these important software engi-

neering principles are common themes in space system development literature. Section 2.2

provides an overview of modularity and reuse in space systems literature, while Section 2.3

covers concepts that relate to security.

2.2 Modularity and Reuse in Space Systems

The idea of using modularity and reuse to reduce cost in space vehicle development

is not a new concept; it has been tried before. Modularity has been explored in many

6

aspects of space vehicle design going back to the 1970s [4]. The United States National

Aeronautics and Space Administration (NASA) started developing a multi-mission space-

craft standard in 1978 [11] that was used in six space vehicles over a twelve year period

starting in 1980 [12]. However, the various attempts do not seem to advance much past

their originator or proliferate to external development efforts. This could be due to the

protecting nature of space systems especially when developed by government agencies, or

it could be due to a failure to realize the development practices and tools that could really

facilitate this transition. For example, not too long ago the case was that software for space

systems developed in C++ might not be allowed to use dynamic memory allocation or the

Standard Template Library (STL) [7]. And it was not until the success of the Spirit and

Opportunity Mars rovers in 2004, running VxWorks, that operating systems were even used

on space systems [13]. Being able to use an operating system (OS) on a space system is a

major reusability and modularity enabler.

This paradigm is making a resurgence as more and more commercial entities get into

space and development gets more competitive. It is also making a resurgence on the gov-

ernment side as the need to test and produce new capabilities in shorter more cost effective

time-spans is driven by both science and defense needs. The Department of Defense (DoD)

sees open systems architectures as a way to reduce the cost to develop, maintain, and update

systems [14, 15]. The DoD acquisition policy has even required that system providers use

open system architectures where feasible [16], but exceptions, especially in space systems

development, have been common. The DoD goes on to say “Open systems and modular

architectures provide valuable mechanisms for continuing competition and incremental up-

grades, and to facilitate reuse across the joint force.” [17] Open systems architectures are

viewed, by the DoD, as contributing to increased competition, reduced life-cycle cost, en-

hanced interoperability, cheaper and faster maintenance, schedule reduction, and increased

innovation [18]. This relates to efforts like Northrop Grummans Modular Space Vehi-

cle (MSV) Bus, Space and Missile Systems Center (SMC)s Standard Network Adapter for

Payloads (SNAP), NASA’s Core Flight System (CFS) System, and Air Force Research Lab-

7

oratory (AFRL)’s SPA [8–10, 19] which also look to promote and create various pieces of

reusable software.

CFS, the Spacecraft Onboard Interface Services (SOIS) architecture, and the SPA

standards are examples of research and effort that has been put into developing reusable

development frameworks that support open systems development and reuse across applica-

tions by various entities within the United States government. These endeavors have had

various degrees of success within their respective organizations, but have not propagated

much beyond the organizational boundaries.

NASA developed CFS to reduce repetition of effort in systems design and development

that was resulting in soaring costs and extended development schedules [19–21]. CFS is

built around a reusable core flight executive that uses a layered architecture to provide a

standard middleware/bus and an API. This allows for a reusable component library to be

built up that achieves some level of plug-and-play capability [22]. Layered approaches can be

key to reusing software and well defined APIs are also critical. CFS provides a software bus

that applications can use to relay data. Adding a new piece of hardware entails developing

a new device driver. A software application must also be written to communicate with the

new device, but an application can communicate with one or more hardware devices. The

software application acts as the link between the hardware and the software bus and relays

data between the two; the software bus is essentially a channel or pipe that applications

may use to pass messages. The message passing protocol can stay the same even as new

hardware is added. Once the application and driver is created it can, in theory, be reused

with minimal effort from a software development perspective in other space systems that

leverage CFS. CFS has been used in various NASA missions [23].

The SOIS architecture is an effort by an international committee, called Consultative

Committee for Space Data Systems (CCSDS), to standardize interfaces for various functions

and space systems components. This effort was again looking to reduce cost and promote

reuse in space systems development. The CCSDS SOIS committee considering making SOIS

SPA compliant to share development effort and promote reuse [7], but SOIS largely remains

8

an architecture without an implementation due to a lack of a consensus, e.g. should SOIS be

CFS or SPA compliant? The common thread here is that there has been a decent amount

of development within each kingdom, but not much cross-pollination or consensus between

kingdoms; the failure here might simply be tied to the nature of government agencies and

budget infighting or it might stem from the difficulty of developing systems for the harsh

space environment.

There are some issues with space systems development that are not present in terrestrial

systems development and there has been research into the differences between software de-

veloped for space [6,24] but there has not been any significant research into how developer

preference and attitude about development practices differs from space systems develop-

ment to terrestrial systems development. It may be that there are practices that can be

done away with during the transition to lower cost shortened development cycles with high

risk postures. This research furthers the understanding of why reuse has lagged and how

terms like modularity and interoperability are perceived by the space systems development

community to understand what can or should be coupled with Small Space development in

order to realize a more agile and cost effective development process.

Finally, SSM is a development framework that implements the SPA networking stan-

dard [6, 25, 26]. It also adds an API to make is easy to develop with while adhering to

the standard. AFRL developed the SPA standards for reasons very similar to the reasons

NASA endeavored in developing CFS. This effort was nurtured by AFRL to support the

Operationally Responsive Space (ORS) effort. This work was continued through the coming

years [27, 28], and SPA got its first mention by name in the Responsive Space conference

in 2005 [29]. The Responsive Space Testbed (RST) [30] was started at Kirtland Air Force

Base (AFB) as a testbed for plug-and-play technology for space systems. These efforts were

led by Dr. Lyke and Dr. Cannon [26,31] and AFRL continued as a center for plug-and-play

development for the next 7 years.

The idea was to provide a unified set of protocols that provide for the discovery and

exchange of data and commands between modular space system components [7]. SSM made

9

the networking component of SPA a reality and addressed some of its weaknesses via up-

dates to the protocols. Components can now communicate on a heterogeneous open-network

without the need for specialized hardware using standard networking buses and well defined

software interfaces. This is a significant enabler for reuse as it provides for modularity, in-

teroperability, and openness. SSM is starting to see more usage within government entities,

but has seen little use outside the government due to restrictions on availability and limita-

tions in implementation like determinism. Section C.1 of Appendix C covers SSM in more

detail if more context is needed to understand the modifications to SSM that Chapter 5

details.

A sizable amount of work has gone into making space software systems more reusable.

SSM has taken an approach that leverages an open-network topology that lends itself to

building modular components enabled by good abstraction and encapsulation. The ap-

proach also opens the door to leveraging technology, protocols, and methodology for secur-

ing the systems. Adding security, if done right, can actually increase reusability because

it can be reused in more applications, i.e. systems with more stringent information assur-

ance (IA) requirements or concerns. Chapter 4 analysis suggest that this lack of security

in development frameworks like SSM might be one of the factors restricting use. SSM is

well-situated as a open-network development framework to address security concerns be-

cause security mechanisms can be added to software component egress points to protect

and regulate traffic.

2.3 Security for Space Systems

Assessing and surveying the currently available solutions and ongoing research relate

to the space system cybersecurity problem did not yield any research or existing technology

that provides a secure modular reusable open network software development framework for

space systems. Much of the research falls into policy, process, security tools, hardening, and

different types of solutions for space systems and similar systems like the smart grid or IOT

systems. These solutions and research are all solving pieces of the larger problem: how to

secure heterogeneous networks of heterogeneous systems in diverse, sometimes harsh, and

10

inaccessible environments. Everything is interconnected and space is increasingly becoming

part of ground infrastructure from Global Position System (GPS) to satellite Internet to

power grids [32]; compromising a space system has very real consequences on the ground [32–

36].

The related research can be broken down into a few different camps: policy and princi-

ples, process and tools, and actual security provisions. There is a lot of interest in this area

and body of research, this section covers a representative body of work but is not meant

to be comprehensive. First, this section reviews some of the policy and principles research

around cybersecurity for space systems as well as the specific set of security principles that

fed into the design of SSSM and whose importance is validated by results for the survey

analysis. Next comes process and tools research that has and is going into making the

development of space systems more secure by helping to define how space systems software

can be developed more securely and how that security can be tested. Finally, this section

covers security provisions that are being developed or researched for space systems generally

and reusable space system specifically.

2.3.1 Policy and Principles

Cybersecurity for space systems has largely been unregulated, the main international

body that regulates space systems is the International Telecommunication Union (ITU), and

they are concerned mainly with frequency interference. The ITU did put forth an agenda

to begin to address cybersecurity in space systems in 2007, but it has not be updated since

then [32]. This is a huge issue as it means there is not a set of standards for defining and

validating a secure space system. This means that space system are often the weakest link in

any infrastructure or data system. This is complicated further by the difficultly in patching

or upgrading these system and the ballooning number of sources for hardware and software

that might go into a single space system all developed to different security standards, no

security standards at all, or possibly with actual malicious intent.

Figure 2.1 illustrates a compromise via a satellite-to-satellite attack using a malicious

payload with a separate radio. This is one example, the payload does not need its own

11

radio, the compromise could come anywhere along the chain once the satellite is exposed

to terrestrial and space-based networks; also note that core components, like an attitude

determination and control system (ADCS), might be sourced from third parties and provide

the same type of backdoor into a space system. In Figure 2.1, the malicious payload would

have been sourced from a third-party and even then the software and components that make

up the payload might have come from many different sources. This issue is complicated by a

OPERATIONS

Systems

Interconnect Payload

Potentially

Unsecured Network

SATCOM

Satellite

Malicious

Satellite

Operations
SATCOM

Ground Station

Malicious Traffic

Benign Traffic

Hosted

Space Vehicle

COMM

Avionics

(ADCS, CDH, EPS)

Malicious

Payload/

Component

Fig. 2.1. Malicious Satellite to Satellite Scenario. Potential attack scenario illustrating
issues with sourcing components and software from various providers with differing security
standards.

trend, especially in small satellites or CubeSats, towards the integration multiple commercial

of-the-shelf (COTS) parts to reduce cost and schedule [32,33]. NASA even goes as far as to

have a catalog of approved vendors, but cybersecurity at the level of firmware and software

is not always addressed [32]. There is ongoing research going into addressing this lack of

cohesive security standards and component vetting or validation process, some of this falls

under policy and principles and will be covered here, and some of it falls under process and

tools and will be covered in Section 2.3.2.

A good place to start is with a set of security principles that can be used to secure a

space system or set of space systems. A working set of principles for security provides a lens

12

for understanding security for space systems and systems like them. Figure 2.1 illustrates a

few points, but on of the key ones is a lack of access control, if the malicious payload comes

from an untrusted source, but it is required and cannot be further vetted then a space

system should have a way to implement the concept of least privilege where access is only

granted to the level the component or piece of software needs to do its job. If it is a sensor

then it is only allowed to provide a telemetry stream, but cannot issue commands or access

other telemetry streams. This is a form of access control, and the first set of principles

covered are from smart grid cybersecurity and deal with access control. “National Institute

of Standards and Technology Interagency Report (NISTIR) 7628 Guidelines for Smart Grid

Cybersecurity” establish a set of principles for providing security [37]. These principles are

listed below along with brief description of how they relate to access control specifically:

1. Identity Management — Communicating entities need to establish their identities

so that authentication can proceed

2. Mutual Authentication — Once identity is established, the communicating entities

need to authenticate each other’s identity

3. Authorization — Once authenticated permissions and rules can be used to authorize

or deny access based on entity identities

4. Auditing — Tracking pertinent events for troubleshooting system issues and for

detecting unauthorized behavior

5. Confidentiality — Interactions between entities need to be private, otherwise con-

trolling access has little effect

6. Integrity — Interactions between entities need to be free of alteration or other sub-

version, otherwise the resource was not truly accessed

7. Availability — Services or assets need to be available when expected

These principles where developed with power and utility grids in mind, but these

systems face many of the same problems facing space systems as they become more in-

terconnected and accessible [38–42]. Space and the grid previously enjoyed some level of

13

security due to their inaccessibility, and both now need to address security as they become

more accessible and expand their component sourcing.

The design and implementation of SSSM relied on these principles, along with the

following additional principles from Ingols et al. at Massachusetts Institute of Technology

(MIT) for developing secure kernels [42].

1. Fail Slowly — Commands that are dangerous for a space system should take a while

before they execute so there is time to recover before there is irreversible damage.

2. Crypto Beyond Communications Security (COMSEC) — Cryptographically

enforce role-based access control.

3. Root of Recovery — Have a way to reassert control of the vehicle given that physical

access is generally not possible.

4. Ablative Defense — Ensure the defense mechanisms do not jeopardize the space

systems utility in terms of it purpose

5. Reboot and Succeed Quickly — ensure the process to recovery, if it requires

restarting the system, is quick so that normal operations be resume quickly.

There is a body of research that sees the lack of internal regulation and standards for

space systems as a growing area of concern; the assertion of this research is that space

systems need an international regulatory body to drive standards and regulations to bring

the same level of protection and control that is present for terrestrial systems [32–34]. Falco

et al. [32] do an in-depth dive on the special problem area that is space system’s cyberse-

curity. They review the ramifications and difficult problems of space systems and suggest

that a good deal of it can be addressed by bringing space systems regulation up to par with

terrestrial standards and regulations. They put the onus on governments, space asset orga-

nizations, and policy makers to develop these standards and suggest that common ground

practices like having a center for sharing threat information and maintaining documentation

of space system cybersecurity principles and standards.

2.3.2 Process and Tools

14

Even if policies, principles, and standards are put in place, there is a need for pro-

cesses and development tools that lead to secure systems and validation tools that validate

the security of these systems. There are various groups putting effort towards developing

processes and integrating tools that allow for secure space systems development even when

parts and software are sourced from many different vendors or repurposed from different in-

dustries. One such group is Space and Naval Warfare Systems Command (SpaWar) [41,43].

A current goal of this group is to securely address traditional space system cost drivers.

Integrating relatively low cost COTS components while addressing IA is essential to be-

ing able to develop and field systems quickly. To do this they are looking at net-centric

technologies that keep prices down and promote reuse while trying to borrow concepts and

components from supervisor control and data acquisition (SCADA) and industrial control

system (ICS) technology, which have security problems [39, 44]. SpaWar is mapping a cy-

bersecurity overlay to the typical small satellite life-cycle so that security is baked into the

development process as shown below [43]:

� Concept Development and Design — Assess vulnerabilities and plan security

controls

� Payload and Subsystem Development — Incorporate security controls, and gray

box and black box testing of interfaces

� Bus, Payload, and Ground Subsystem Acceptance — static and dynamic anal-

ysis and reverse engineering

� System-level Integration and Testing — dynamic analysis and testing of vulner-

ability to signal interference, inception, and injection

� Launch, On-orbit Operations and Maintenance — monitor and defend network

and components

The idea being to also take a layered approach where hardware, firmware, OS, flight soft-

ware, and network interfaces are assessed. They propose integrating standard vulner-

ability scanners, and static and dynamic analysis tools, like assured compliance assess-

ment solution (ACAS), Open Vulnerability Assessment System (OpenVAS), Network Map-

15

per (Nmap), Metasploit, and Interactive Disassembler (IDA) Pro. They are also looking

into ICS monitoring tools like Sophia to provide continuous monitoring of network flow.

These tools, modeling, and testbeds can help ensure that the aggregate system is secure as

well as test the efficacy of a software development framework like SSSM.

There is a lot similar work with SCADA and ICS in terms of the industrial automation

and smart grids that is looking at modeling, analysis, scanning, and monitoring that looks

at analyzing and testing systems during development as well as actively and passively

monitoring them once they are deployed using various tools [38,39,44].

2.3.3 Implementations

One of the fundamental tenants of cybersecurity for network systems is “CIA”, which

stands for Confidentiality, Integrity, and Availability. However, many small space systems,

reusable systems, modular open systems, IOT systems, and smart grid systems have priori-

tized these terms as “AIC” [41], where the access to the data or connectivity to the asset is

more important than protecting the data or securing the asset. This might not be as critical

when a system is on the ground and it is turning off a light switch, but it becomes very

critical when an attacker is stealing sensitive information, causing a blackout, or redirecting

a satellite into another satellite. Once control is lost on a remote space system it might not

be impossible to to recover, there typically is no way to physically reassert control [42], it

is very important to make sure control is never lost or that there is a robust path to re-

covery or graceful end-of-life (EOL). There is various ongoing research into adding security

layers or mechanisms to space systems; and a specific assertion that space systems need

encryption for use on-board satellites as another layer of protection beyond the COMSEC

boundary [42, 45]. This is the bucket of research that into which SSSM falls. First, other

research in this area is discussed and then SSSM is briefly discussed in terms of the related

technology and research it utilizes, this is of course covered in more detail in Chapter 5.

There is various ongoing research into implementing cybersecurity space systems, there is

also some relevant research into IOT and smart grids.

SpaWar, in conjunction with their procedure and tools efforts, are taking the Defense

16

Advanced Research Projects Agency (DARPA) High-Assurance Cyber Military Systems

(HACMS) program and applying it to their High-Assurance Cyber Space Systems (HACSS)

approach to securing space systems [41]. This starts with a secure kernel that secure software

components can be run against and the goes back to their process and tools for generating

and validating secure software. The idea would be to leverage a secure separation kernel

that would provide separate containers for running the flight components and a virtual

machine for running legacy Linux applications, third-party software and interfacing with

third-party hardware. There would still be an issue when these components need to talk

and certain access needs to be available between the secure and unsecured domains. This

type of secured foundation would be an excellent base for SSSM as SSSM could provide

for a secured interface between the flight software components and COTS hardware and

software on the local subnet, or across heterogeneous space system networks with systems

on other processors.

In a very related vein, Ingols et al. at MIT are also looking at using a secure microker-

nel called security enhanced L4 (seL4) [42]. seL4 was developed by National Information

and Communications Technology Australia (NICTA) and the DARPA HACMS program.

seL4 is piece of the their secure development platform that encompasses Zynq 7000 series

parts, Inter-Integrated Circuit (I2C) and Serial Peripheral Interface (SPI) based devices for

communication, and are actively porting CFS as reusable flight software. CFS provides an

operation system abstraction layer (OSAL) layer for Linux, FreeRTOS, and VxWorks, but

in the case of seL4 they have to and are implementing this layer themselves. OSAL expects

some features that seL4 does not provide, but they were able to work around this for the

support they needed and opt to ignore any networking support. If all this work can come

together then it will provide a reusable development platform. This effort is the closet in

spirit to the SSSM research and starts from the ground up, it however does not support net-

working and is limited to the buses described and its Inter-Process Communication (IPC)

message passing for component communication and appears to be very tied to the set of

hardware they have chosen to support.

17

SSSM is modeled after the security protocols in Kerberos. It was chosen after looking

at various options that would have required invasive modification of SSM that might have

affected ease-of-use or that might have required external management of policy. Kerberos

was initially developed by MIT in conjunction with Project Athena and is still under active

development [46, 46, 47]. The protocols from Kerberos are combined with OpenSSL for

symmetric Advanced Encryption Standard (AES) encryption to round out the solution.

SSSM does not provide for process isolation and makes no claims about the security of the

OS it resides on so software components would need to reside on separate processing nodes

and/or leverage a secure separation kernel or something like seL4 microkernel as previously

described. Section C.2 of Appendix C covers Kerberos in more detail.

18

CHAPTER 3

SURVEY SERIES DESCRIPTION

3.1 Introduction

As mentioned in Chapter 1, space systems development needs to become more modular,

reusable, and secure. To achieve this transition it is first necessary to understand the current

software development practices and perceptions in the space system industry. To this end,

this research includes a series of five surveys, labeled: CC , OSAM , Security, RIPCC , and

Network. Collectively, the surveys include questions that aim to shed light on the following,

for practitioners in the space system industry:

1. Perception of and experience with reuse, portability, interoperability, and security;

along with development area allocation. The CC Survey looks at these areas.

2. Attitudes toward modular open-network software development frameworks as they

impact or relate to interoperability, integration, adaptability, and reusability. The

OSAM Survey covers this area.

3. Experience with and the perceived importance of various security mechanisms and

open source software. The Security Survey addresses these areas.

4. Perception and experience with reuse, interoperability, portability, and code complex-

ity in relation to various aspects of space systems and space systems development.

The RIPCC Survey addresses these topics.

5. Experience with and perception of various network types in space systems and how

these networks affect space system aspects like security, code complexity, adaptability,

fault tolerance, and interoperability. The Network Survey addresses these areas.

3.2 Survey Questions

In the spirit of good modularity and reuse, the surveying itself was broken up into five

19

independent surveys, each with its own instruments, but the instruments relied on common

types of questions:

Likert Scale — These question used either a 3-point or 5-point Likert scale, and typically

asked participants to rate items in terms of importance or difficulty.

Ranking — These questions asked participants rank a set of items, and typically asked

participants to rank items in term of importance or difficulty.

Polar — These questions asked participants to answer a question with a binary choice of

answers, typically a yes-no question.

Percentage — These questions ask participants to give a percentage or share of an area.

Check-all-that-apply — These questions allow participants to provide multiple answers

to a single question.

Pro-neutral-con — These questions gave participants a item and asked them to categorize

its effect on a common set of items related to space system development by qualifying

the items effect as either beneficial or Pro, neutral, negative or Con. The common

set of items is always the same, Appendix A, Section A.10 gives a full listing of items

and definitions that were available to the participants.

Appendix A presents the full instrumentation for each survey as presented to the partic-

ipants. Here is the breakdown and description of the questions used for each of the five

surveys:

CC Survey — Used in questions related to code complexity, reuse, networking, and se-

curity. The full survey instrumentation is covered in Appendix A, Section A.5.

CC 2.1 — Likert Scale. Asks participants to rate the importance of reuse, portabil-

ity, interoperability, minimal code complexity, rapid development, cost of own-

ership, and security on a one-to-five Likert scale in relation to Space Flight

Software (SFS), other software fields, Space Ground Software (SGS), and space

test software (STS).

CC 2.2 — Ranking. Asks participants to rank reuse, portability, interoperability,

minimal code complexity, rapid development, cost of ownership, and security.

20

OSAM Survey — Used in questions related to modular open-network system approaches,

networking, and security. The full survey instrumentation is covered in Appendix A,

Section A.6.

OSAM 2.4 — Polar. Asks participants to indicate yes or no if their organization

has employed, is employing, or will be employing open system architecture or

open network architecture.

OSAM 2.5 — Percentage. Asks participants to indicate the percentage of projec-

t/missions use OSA, MONA, closed proprietary systems, or other.

OSAM 2.6 — Check-all-that-apply. Ask participants to indicate all the factors that

might prohibit their organization from using open systems approaches. The full

listing of factors is shown in Table 4.34 of Chapter 4 as well as the Section A.6

of Appendix A.7.

Security Survey — Used in questions related to networking and security. The full survey

instrumentation is covered in Appendix A, Section A.7.

Security 2.1 — Pro-neutral-con. Asks participants to indicate the effect of internal

security on each of the common items.

Security 2.2 — Polar. Asks participants to indicated if they have direct security ex-

perience with Space Flight System (SFSYS)s, Space Ground System (SGSYS)s,

space test system (STSYS)s, penetration testing, or other.

Security 2.6 — Likert Scale. Asks participants to rate the importance of Iden-

tify Management, Mutual Authentication, Authorization, Auditing, Confiden-

tiality, Integrity, Availability, Well-defined Interfaces, Abstraction layers, Access

Control, Network Segmentation, Compliance, Testing, Recovery, Migration, and

Other in relation to Open-network SFSYSs and Traditional SFSYSs.

Security 2.7 — Likert Scale. Asks participants to rate the difficulty of providing for

Identify Management, Mutual Authentication, Authorization, Auditing, Confi-

dentiality, Integrity, Availability, Well-defined Interfaces, Abstraction layers, Ac-

cess Control, Network Segmentation, Compliance, Testing, Recovery, Migration,

21

and Other in relation to Open-network SFSYSs and Traditional SFSYSs.

Security 2.8 — Ranking. Asks participants to rank Identify Management, Mutual

Authentication, Authorization, Auditing, Confidentiality, Integrity, Availability,

Well-defined Interfaces, Abstraction layers, Access Control, Network Segmenta-

tion, Compliance, Testing, Recovery, Migration, and Other in terms of impor-

tance with relation to SFSYSs.

RIPCC Survey — Used questions related to code complexity and reusability. The full

survey instrumentation is covered in Appendix A, Section A.8.

RIPCC 2.10 — Pro-neutral-con. Asks participants to indicate the effect of software

reuse on each of the common items.

RIPCC 2.13 — Pro-neutral-con. Asks participants to indicate the effect of code

complexity on each of the common items.

RIPCC 2.15 — Likert Scale. Asks participants to rate the importance of cyclo-

matic complexity, depth of inheritance, class coupling, methods per class, lock

of cohesion, data complexity, data flow complexity, decisional complexity, lan-

guage complexity, interface complexity, lines of code, and other with regard to

measuring code complexity.

Network Survey — Used a question related to modular open-network system approaches,

networking, and security. The full survey instrumentation is covered in Appendix A,

Section A.9.

Network 2.3 — Pro-neutral-con. Asks participants to indicate the effect of inter-

nally networked space systems on each of the common items.

The CC and RIPCC Survey questions used show that developers perceive minimal

code complexity to be important and beneficial for space systems. These surveys also show

that developers feel that reusability is important and beneficial for space systems. The

Network and OSAM Survey questions used show that developers see open-network systems

to be largely beneficial and increasing in use. The CC , OSAM , Security, and Network

22

Surveys questions used show that developers see open-network space systems as having a

negative impact on security, but an overall positive impact.

Each survey also includes a common set of background questions, these questions used

the same question types as above. Appendix A includes the specific background questions

for each survey, and Appendix B provides an overview of the background question results.

These questions ask participants about the roles they have participated in, years of experi-

ence in various areas, perception of development phase, duration, total mission or project

count, typical concurrent project or mission count, and organization type affiliation.

3.3 Survey Distribution

To reach out to various developers, engineers, and managers within the space systems

development, the participant solicitation targeted multiple distribution lists. The potential

participant pool makeup consisted of about 900 from the American Institute of Aeronautics

and Astronautics (AIAA)/USU Conference on Small Satellites, 785 from the CubeSat Mail-

ing list, 1500 from the Radio Amateur Satellite Corporation (AMSAT-NA) Bulletin Board

Mailing List list, and about 20 – 40 from the Space Dynamics Laboratory (SDL) software

developers mailing list. Outlined below are each of the mailing lists used to distribute the

surveys:

1. AIAA/USU Conference on Small Satellites: The Commerce of Small Satellites 2014

Participation — provides direct access to email addresses from the 2014 conference.

Invitation to participate was sent to the addresses on this list directly via the Qualtrics

email system.

2. Cubesat Mailing List — provides access to educators, developers, and some vendors

that have a specific interest in small satellites, specifically cubesats or U-class space-

craft [48]. Access to this list is available via the cubesat@cubesat.org email address.

3. AMSAT-NA Bulletin Board Mailing List — provides access to a group that is pri-

marily made up of amateur satellite builders and users, with a particular emphasis on

radio. Access to this list is available via the amsat-bb@amsat.org email address and

mailto:cubesat@cubesat.org
mailto:amsat-bb@amsat.org

23

coordination with the maintainers.

4. SDL — provides access to software developers within SDL.

The method of invitation to participate varied based on the distribution list. For

example, the participation in List 1 described above were sent email invitation directly.

Those in Lists 2 and 3 were invited through email messages sent to their respective group

email addresses. Those in List 4 where invited by email message sent by an SDL employee

who had access to all employee email addresses.

Although each survey focuses on a specific set of ideas, each was designed to stand on

its own. Therefore, for the series to gather useful information, it is not necessary for all

participants to complete all surveys.

The main incentive for respondents to participate is helping to increase the body of

knowledge that relates to software development for space systems and helping to direct

future research. Also, taking a survey provides participants with an opportunity to reflect

on their current software development practices and how these practices affect the projects

on which they have worked in the past, are working currently, and will work in the future.

The survey-specific drawings gave two randomly selected participants a $25 gift card. The

overall drawing gave two randomly selected participants from the pool of all participants of

any survey a $200 gift card. At the end of each of the surveys, a participant was redirected

to a web-page that asks for an email address. A participant had to enter a valid email

address to be considered for that surveys drawing or the overall drawing; email addresses

were tracked separately from surveys.

24

CHAPTER 4

SURVEY SERIES RESULTS AND ANALYSIS

4.1 Introduction

This chapter presents the primary findings from a detailed analysis of responses from

the five SISDPA surveys. The findings of this analysis establish the importance of securing

space systems and developing secured modular reusable software development frameworks,

like SSSM, for space systems. This shows that a secured modular reusable software develop-

ment framework is key in addressing the Development and Security Problems. Section 4.2

presents an overview of the participation numbers for each survey, with a more in depth

breakdown of the participant demographic covered in Appendix B. Sections 4.3 through 4.6

analyze results related to code complexity, reusability, modular open-network architectures

or open systems approaches, and security. Each of these sections covers one of these topic

areas, e.g. code complexity, and analyzes the set of survey questions that relate to the area

and had significant results. Typically each section starts with an overview of the findings

in terms of the high-level topic area, e.g. code complexity, and then describes the sub-areas

that are analyzed and make up this high-level topic area. Each subsection covers one of

these sub-topics, e.g. Code Complexity Importance and Benefit, and has sub-subsections

that present the survey question analysis as it relates to the sub-topics and the high-level

topic. Section 4.7 concludes with a summary of the findings and some general insights.

All the results tables use a color coding scheme to help visualize strong-positive, weak,

and strong-nevative t-values. Table 4.1 shows the typical t-value ranges designated for each

color. Very strong negative t-values are shown in red, this is typically below −4. Strong

negative t-values are shown in orange, this is typically from below the negative critical t-

value, usually around −2, down to −4; this will vary based on the degrees of freedom for

the test.

25

Table 4.1. Color Key for t-value Row Coloring in Question Results Tables. The −2 and 2
values vary a bit and are dependent on the degrees of freedom for the given test.

Strengthof t-value Rough t-value

Very strong
negative

t ≤ −4

Strong negative −4 ≤ t ≤ −2

Weak −2 ≤ t ≤ 2

Strong positive 2 ≤ t ≤ 4

Very strong positive t ≥ 4

Larger numbers of participants require a lower t-value to be significant. Neutral t-

values are shown in gray. Strong positive t-values are shown in green, this is typically from

above the positive critical t-value, usually around 2, up to 4. Very strong positive t-values

are shown in blue, this is typically above 4.

4.2 Survey Series Participation

Table 4.2 illustrates that the usable response rate is between 0.9% and 3.1%. The

average usable response rate for the surveys is ∼1.5% with a standard deviation of ∼0.5.

Each survey went through multiple rounds of email solicitations to achieve this response

rate.

The CC survey saw the best yield with a total of 97 usable participants, this is even after

removal of the invalid and partial responses. Table 4.2 shows that the CC Survey started

with a total of 176 survey responses. A total of 64 blank responses left 112 potentially

usable participant responses. The CC survey was the first survey administered and as a

result suffered from the problem where participants only took the background portion of

the survey. Later surveys had the order of the background and the survey specific sections

reversed to mitigate this problem. Segregating out the background-only participation left 97

participants, meaning 15 participants only filled out the background section of this survey;

this is why 97 participants are shown as usable in Table 4.2. This leaves a usable response

rate of 3.1%, which is double the next best response rate.

26

The CC Survey was available online for about 6 months, this was arguably too long a

duration to let the survey run, but this survey did get the most responses. This was not

a sustainable duration to let the remaining surveys run as administering all 6 would have

taken 3 years. Another option would have been to let them overlap, but there was already

confusion about which survey was which and questions from participants about whether or

not they had taken a survey. Survey participation had to be anonymous so participants were

not able to be removed from the distribution list once they participated in a given survey,

also some of the distribution lists were blind lists, so email addresses could not be removed.

USU’s Internal Review Board (IRB) thought it would be too stressful for participants take

the survey series as one long survey. In total 5 recruitment emails were sent out over that

6 month duration with a thank you email at the end. The other surveys were delivered at

a much higher cadence, typically with 4 recruitment emails about a week apart over the

course of a month.

Table 4.2. Survey Participant Response and Usability Rates

Survey Participant
Pool

Respondent
Count

Usable
Responses

Response
Rate

Usable Rate

CC 3173 176 97 5.5% 3.1%

OSAM 3085 115 44 3.7% 1.4%

Security 3060 107 31 3.5% 1.0%

RIPCC 3038 83 29 2.7% 0.9%

Network 3024 93 32 3.1% 1.0%

Table 4.2 shows that the other 4 surveys all had similar respondent counts and usable

rates leaving each of them with about 30 to 40 usable responses. Care was taken during

analysis so that the groupings used to understand participant responses did not over segment

the respondents to the point where only one or two respondents were left in a dominant

category. For example, a question that used an 1-to-5 importance scale might be reduced

to a 1-to-3 importance scale.

Over the course of the survey 149 potential participants opted out of the future sur-

vey participation, this number was only driven by those who could be solicited via direct

27

Qualtrics delivery. There was not a way to opt out participants that belong to the Cubesat

or AMSAT mailing lists. This opt out rate did not have a notable effect on Usable Rate

or Usable Responses, i.e. the 3173 that the pool started with versus the 3024 that the pool

ended with did not really have a significant effect on percentages or Usable Responses. It

is not clear how many participants mentally opted out of the survey mailing lists.

It should be noted that the responses to the Background sections of the survey series

show that software engineer (SE)s had strong representation and the participants have good

development experience mixtures, and that certain management roles tended to be multi-

role. The Background results where explored but not formally analyzed, so the findings

from this exploration are covered in Appendix B.

4.3 Participant Perception of Code Complexity

This section presents findings related to software code complexity. These findings

stem from analyzing response to questions in the CC and RIPCC surveys. These findings

present the participating space systems developers’ perception of the importance and benefit

of minimal code complexity as well as important code complexity measurement methods.

Section 4.3.1 shows a a general consensus among participants that minimal code com-

plexity is important and beneficial to space systems and space systems development. Fur-

ther, the results show that minimal code complexity is the most important for SFS. Sec-

tion 4.3.2 covers participating developers’ perception that some code complexity metrics

are more important for measuring code complexity for space systems software.

Developer perception of the importance of minimal code complexity relates to the

security portion of this research because is shows that developers believe that minimizing

code complexity is important to space systems development. This gives strength to the

idea that adding security to a software development framework, like SSM, with minimal

increase to code complexity is a valuable contribution to the space systems development

community. This analysis also shows that participants believe that the lack of cohesion

and cyclomatic complexity metrics are the most important for measuring code complexity.

This information is generally useful to the space systems development community, but also

28

relates to the code complexity metrics that could be used to measure the delta in code

complexity between SSM and SSSM.

4.3.1 Code Complexity Importance and Benefit

The consensus among the space systems developers that participated in the CC and

RIPCC Surveys is that minimizing code complexity is important and beneficial to software

developed for space systems. This is generally relevant as it suggests at least one way of

quantitatively measure the quality of code.

This section analyzes the responses to CC Survey, Questions 2.1 and 2.2, as they

relate to the importance of code complexity. This section also analyzes the responses to

RIPCC Survey, Question 2.13. Analysis of Question 2.1 shows that participants perceive

minimizing code complexity to be generally important for S*S and other software, and that

they found it to be the most important for SFS. The participants found code complexity

to be generally less important than reusability. Section 4.3.1.1 presents the analysis of

Question 2.1. Analysis of Question 2.2 shows that participants perceive code complexity to

have an average importance ranking mean. Section 4.3.1.2 presents the analysis of Question

2.2. Analysis of Question 2.13 shows that participants perceive minimizing code complexity

to be generally beneficial, and specifically beneficial to aspects that related to usability of

the code, aspects that, in theory, make the software easier to use. Section 4.3.1.3 presents

the analysis of Question 2.13.

4.3.1.1 CC Survey, Question 2.1 Analysis, Part 1

This section shows that the participants perceive code complexity to be important

for SFS, SGS, STS, and other software fields. This section also shows that participants

perceive code complexity to be more important for SFS than for SGS, STS, or other software

fields. This section shows that minimizing code complexity is seen to be generally more

important for space systems software than for other software. Finally, this section shows

code complexity is generally seen as less important than reuse, but equal in importance to

security for space systems related software and other software fields.

29

CC Survey, Question 2.1 is a Pros-neutral-cons rating question, for these questions, a

special caveat was listed for how neutrally impacted aspects would be counted:

“All items should be placed for the answer to be considered complete by the

system. In considering partial or incomplete answers, unplaced items will be

considered neutral.”

This means that aspects that were not placed can be counted as neutral, if no aspects

where placed then the response was dropped. If the participant placed some of the items

then the analysis proceeded with two interpretations, i.e. one where non-placed aspects

were assumed neutral, and one where non-placed aspects were dropped. There was little

statistical difference between the two interpretations so the assumed neutral variant is used

for all Pros-neutral-cons rating questions. This analysis covers three statistical tests. Test

1, a one-sample t-test, looks at code complexity importance for software in general. Test 2,

a matched-pairs t-test, compares code complexity across different software areas. Test 3, a

second matched-pairs t-test, compares code complexity to other software aspects.

Test 1

Summary: Participants see code complexity as being important for SFS, SGS, STS,

and other software fields.

Question: Question 2.1 asks each participant to rate the importance of code com-

plexity for SFS, SGS, STS, and other software fields on a 5-point Likert scale.

Analysis: One-sample t-test with test value of 3, which represents a neutral value.

Hypothesis: Software developers will find code complexity to have a non-neutral

importance.

H0: µCodeComplexityImportance = 3

HA: µCodeComplexityImportance 6= 3

Table 4.3 shows the statistics for this test. Table 4.3 shows that all the means for code

complexity importance are above neutral, including the overall mean.

30

Table 4.3. CC 2.1, Part 1 — Code Complexity Importance Mean One-sample Test Statis-
tics, Test Value 3, 5-point Likert Scale

Area N Mean Std. Deviation Std. Error Mean

SFS 90 3.98 0.960 0.101

SGS 90 3.36 0.975 0.103

STS 89 3.51 1.035 0.110

Other Software 79 3.44 1.010 0.114

Overall 93 3.61 0.746 0.077

Table 4.4 shows that all of the categories, S*S individually and overall, as well as other

software fields, show strong evidence against the hypothesis that participants perceive code

complexity importance to be neutral. This means that code complexity is generally seen as

important for all of the software areas under consideration by the participants.

The general importance of code complexity means that it should be considered and

weighed against the gains provided by reuse and security that a open-network software

development framework might offer.

Table 4.4. CC 2.1, Part 1 — Code Complexity Importance Mean, One-sample Test Results,
Test Value 3, 5-point Likert Scale

95% CI

Area Critical
t-value

(2-tailed)

Sample
t-value

(2-tailed)

df Sig. (2-
tailed)

Mean
Differ-

ence

Lower Upper

SFS 1.9870 9.666 89 0.000 0.978 0.78 1.18

SGS 1.9870 3.459 89 0.001 0.356 0.15 0.56

STS 1.9873 4.609 88 0.000 0.506 0.29 0.72

Other Software 1.9909 3.901 78 0.000 0.443 0.22 0.67

S*S Overall 1.9861 7.853 92 0.000 0.608 0.45 0.76

Test 2

Summary: Participants perceive code complexity to be more important for SFS than

for SGS, STS, or other software fields. The participants perceived code complexity

to be more important for space systems in general than for other software. They also

31

perceive code complexity to be less important than reuse and equivalent to security

for both space systems software and other software fields.

Question: Question 2.1 asks each participant to rate the importance of code com-

plexity for SFS, SGS, STS, and other software fields on a 5-point Likert scale.

Analysis: Matched-pairs t-test to compare means of various combinations of SFS,

SGS, STS, and other software fields.

Hypothesis:

H0: µS*S = µOtherSoftware

HA: µS*S 6= µOtherSoftware

Table 4.5 shows that the mean for SFS is above all the other means. Table 4.5 also shows

that S*S in general is above other software.

Table 4.5. CC 2.1, Part 1 — Code Complexity Importance Mean, Matched-pairs Test
Statistics, 5-point Likert Scale

Area Mean N Std.
Deviation

Std.
Error
Mean

Pair A1 SFS 3.93 76 0.998 0.114

Other Software 3.46 76 1.012 0.116

Pair A2 SGS 3.43 77 0.952 0.108

Other Software 3.44 77 1.019 0.116

Pair A3 STS 3.53 76 1.013 0.116

Other Software 3.45 76 1.012 0.116

Pair A4 SFS 3.98 87 0.964 0.103

STS 3.52 87 1.044 0.112

Pair A5 STS 3.51 87 1.044 0.112

SGS 3.36 87 0.988 0.106

Pair A6 SFS 3.97 88 0.964 0.103

SGS 3.38 88 0.975 0.104

Pair A7 S*S 3.62 78 0.758 0.086

Other Software 3.44 78 1.014 0.115

Table 4.6 shows the results for this test. The low p-values and strong positive t-values

for Pairs A1, A4, A6, and A7 give strong evidence that the group perceives code complexity

32

to be more important for SFS than for any of the other software categories considered by

the survey. Minimizing code complexity helps keep software systems simple and often

more robust; this can help with resiliency, integration and testing, and development speed.

Simpler systems can also translate into reduced resource load for systems that are typically

constrained in terms of SWaP, as well as processing and memory resources. This suggests

that any system the might look to promote reuse, e.g. SSM, or add security, e.g. SSSM,

needs to balance these gains against their effects on code complexity when it comes to SFS.

Pairs A2, A3, and A5 did not show a significant difference in importance averages; this

means that participants attribute a similar amount of importance to code complexity for

STS, SGS, and other software.

Table 4.6. CC 2.1, Part 1 — Code Complexity Importance Mean, Matched-pairs Test
Results, 5-point Likert Scale

95% CI

Security
Area

Mean Std.
Dev.

Std.
Error

Lower Upper Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig.
(2-

tailed)

Pair A1:
SFS vs.
Other
Software

0.474 1.194 0.137 0.201 0.747 1.9921 3.458 75 0.001

Pair A2:
SGS vs.
Other
Software

-0.013 0.851 0.097 -0.206 0.180 1.9917 -0.134 76 0.894

Pair A3:
STS vs.
Other
Software

0.079 0.935 0.107 -0.135 0.293 1.9921 0.736 75 0.464

Pair A4:
SFS vs.
STS

0.460 1.228 0.132 0.198 0.721 1.9879 3.493 86 0.001

Pair A5:
STS vs.
SGS

0.149 0.922 0.099 -0.047 0.346 1.9879 1.512 86 0.134

(continued on next page)

33

Table 4.6. CC 2.1, Part 1 — Code Complexity Importance Mean, Matched-pairs Test
Results, 5-point Likert Scale (continued)

95% CI

Security
Area

Mean Std.
Dev.

Std.
Error

Lower Upper Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig.
(2-

tailed)

Pair A6:
SFS vs.
SGS

0.591 1.238 0.132 0.329 0.853 1.9876 4.479 87 0.000

Pair A7:
S*S vs.
Other
Software

0.184 0.780 0.088 0.008 0.360 1.9913 2.080 77 0.041

Test 3

Summary: The participants perceive code complexity to be less important than

reuse and equivalent to security for both space systems software and other software

fields.

Question: Question 2.1 asks each participant to rate the importance of code com-

plexity, reusability, and security for SFS, SGS, STS, and other software fields on a

5-point Likert scale.

Analysis: Matched-pairs t-test to compare means of various combinations of code

complexity, reusability, and security.

Hypothesis:

H0: µSoftwareAspect = µOtherSoftwareAspect

HA: µSoftwareAspect 6= µOtherSoftwareAspect

Table 4.7 shows that the mean for code complexity is noticeably less important than it is

for reuse in space systems software and other software while roughly equivalent for security

importance.

34

Table 4.7. CC 2.1 — Code Complexity vs. Reuse vs. Security Importance Mean, Matched-
pairs Test Statistics, 5-point Likert Scale

Area Mean N Std.
Deviation

Std.
Error
Mean

Pair D1 S*S Reuse 3.86 93 0.733 0.076

S*S Code Complexity 3.61 93 0.746 0.077

Pair D2 S*S Reuse 3.86 93 0.733 0.076

S*S Security 3.73 93 0.864 0.090

Pair D3 S*S Code Complexity 3.61 93 0.746 0.077

S*S Security 3.73 93 0.864 0.090

Pair D4 Other Software Reuse 3.75 79 0.967 0.109

Other Software Code Complexity 3.44 79 1.010 0.114

Pair D5 Other Software Reuse 3.73 79 0.970 0.109

Other Software Security 3.49 79 1.061 0.119

Pair D6 Other Software Code Complexity 3.44 78 1.014 0.115

Other Software Security 3.50 78 1.066 0.121

Table 4.8 shows, in the case of Pair D1 and Pair D4, that reuse is generally seen as more

important than code complexity for space systems software and for other software. This

suggests that while code complexity needs to be strongly considered for SFS it needs to be

balanced against the overall importance of reuse. This suggests a benefit from open-network

software development frameworks that can promote reuse and security while abstracting or

minimizing code complexity for the end developer. Finally, the D* pairs that relate to

security show very weak evidence against the null meaning that the importance of security

in relation to reuse and complexity is equal with regard to space systems software and other

software.

35

Table 4.8. CC 2.1 — Code Complexity vs. Reuse vs. Security Importance Mean, Matched-
pairs Test Results, 5-point Likert Scale

95% CI

Security
Area

Mean Std.
Dev.

Std.
Error

Lower Upper Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig.
(2-

tailed)

Pair D1 0.256 1.015 0.105 0.047 0.465 1.9861 2.434 92 0.017

Pair D2 0.129 1.027 0.107 -0.083 0.342 1.9861 1.211 92 0.229

Pair D3 -0.127 1.110 0.115 -0.356 0.101 1.9861 -1.106 92 0.271

Pair D4 0.304 1.202 0.135 0.035 0.573 1.9909 2.246 78 0.028

Pair D5 0.241 1.157 0.130 -0.019 0.500 1.9909 1.847 78 0.068

Pair D6 -0.064 1.231 0.139 -0.342 0.213 1.9913 -0.460 77 0.647

4.3.1.2 CC Survey, Question 2.2 Analysis, Part 1

This section shows that participants see code complexity as having an “average” rank-

ing using a one-sample t-test. This test shows that the participants do not perceive minimal

code complexity to be the most important but it is still very relevant.

Summary: Participants perceive code complexity to have a mean that is very close

to 4 or an “average” ranking.

Question: CC Survey, Question 2.2 asks each participant to rank the provided soft-

ware characteristics from 1 to 7, 1 being the highest ranking.

Analysis: One-sample t-test with test value of 4, which represents a middle-of-the-

pack ranking.

Hypothesis: Participants will perceive code complexity to have a non-average rank-

ing when compared against the 7 other characteristics.

H0: µCharacteristicRanking = 4

HA: µCharacteristicRanking 6= 4

Table 4.9 shows that minimal code complexity has a mean very close to 4 or the average

value for the ranking scale; this does not mean that code complexity is unimportant, in fact

participants found complexity to be important as indicated by analysis already presented

36

in this section. Participants just found some of the other aspects to be more important

overall, e.g. the D* pairs from Section 4.3.1.1 indicate that reusability is more important.

Table 4.9. CC 2.2, Part 1 — Software Characteristic Importance Ranking Means, One-
sample Test Statistics, Test Value 4, 1 to 7 Ranking Scale

Aspect N Mean Std. Deviation Std. Error Mean

Reuse 96 2.83 1.560 0.159

Portability 96 4.38 1.564 0.160

Interoperability 96 3.93 1.773 0.181

Minimal Code Complexity 96 3.97 2.250 0.230

Rapid Development 96 4.23 2.034 0.208

Cost of Ownership 96 4.81 1.860 0.190

Security 96 3.85 2.312 0.236

The ranking of code complexity indicates that it should be considered, but that devel-

opment aspects like reusability should be given more weight when developing software for

space systems. This follows the trend towards MONAs and OSAs that promote reuse. This

trend is resulting in a increased need to protect these systems as shown in Section 4.6.3.2.

Section 4.6.3.2 that shows security is more important for open-network space systems. This

indicates there is a benefit from open-network software development frameworks that can

promote reuse and security, frameworks like SSSM.

Table 4.10. CC 2.2, Part 1 — Software Characteristic Importance Ranking Means, One-
sample Test Results, Test Value 4, 1 to 7 Ranking Scale

95% CI

Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Reuse 1.9852 -7.325 95 0.000 -1.167 -1.48 -0.85

Portability 1.9852 2.349 95 0.021 0.375 0.06 0.69

Interoperability 1.9852 -0.403 95 0.688 -0.073 -0.43 0.29

(continued on next page)

37

Table 4.10. CC 2.2, Part 1 — Software Characteristic Importance Ranking Means, One-
sample Test Results, Test Value 4, 1 to 7 Ranking Scale (continued)

95% CI

Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Minimal Code
Complexity

1.9852 -0.136 95 0.892 -0.031 -0.49 0.42

Rapid
Development

1.9852 1.104 95 0.272 0.229 -0.18 0.64

Cost of
Ownership

1.9852 4.280 95 0.000 0.813 0.44 1.19

Security 1.9852 -0.618 95 0.538 -0.146 -0.61 0.32

4.3.1.3 RIPCC Survey, Question 2.13 Analysis

This section shows that participants perceive reducing or minimizing code complexity

to have an overall positive affect on the space systems aspects in question.

Summary: Participants see minimizing code complexity as beneficial overall. There

is very strong evidence against the null for the Overall mean. This is true because

there are a lot of aspects with very strong, strong, or neutral t-values and no aspects

that have a significant negative t-value.

Question: RIPCC Survey, Question 2.13 asks each participant to record the impact

of minimizing code complexity on a range of system aspects in terms of Pros, Neutral,

and Cons. Pros is coded as a 3, Neutral is coded as a 2, and Cons is coded as a 1.

Analysis: One-sample t-test with test value of 2, which represents a neutral value.

Hypothesis: Participants will perceive code complexity to have a non-neutral affect

on space system aspects.

H0: µCodeComplexityImpact = 2

HA: µCodeComplexityImpact 6= 2

Table 4.11 shows that most of the aspects have a mean benefit rating at or above 2.

38

Table 4.11. RIPCC 2.13 — Minimal Code Complexity Benefits on System-aspects Means,
One-sample Test Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale

Aspect N Mean Std. Deviation Std. Error Mean

Regression reduction 21 2.8095 0.51177 0.11168

Code design 21 2.5238 0.81358 0.17754

Development cost 21 2.4286 0.81064 0.17690

Maintenance cost 21 2.6190 0.66904 0.14600

Development productivity 21 2.4286 0.81064 0.17690

Development efficiency 21 2.2381 0.83095 0.18133

Code complexity 21 2.8571 0.47809 0.10433

Maintainability 21 2.6190 0.66904 0.14600

Integration 21 2.4762 0.60159 0.13128

Adaptability 21 2.1429 0.79282 0.17301

Documentation/Examples 21 2.3810 0.58959 0.12866

Encapsulation 21 2.2857 0.56061 0.12234

Bug detection 21 2.8571 0.35857 0.07825

Code quality 21 2.6190 0.66904 0.14600

Code robustness 21 2.5238 0.60159 0.13128

Best practices 21 2.5714 0.50709 0.11066

Schedule 21 2.3333 0.73030 0.15936

Code or algorithm
optimization/efficiency

21 2.0476 0.86465 0.18868

Uniformity of coding style 21 2.2857 0.78376 0.17103

Domain knowledge 21 2.0952 0.53896 0.11761

Code readability 21 2.6667 0.57735 0.12599

Security 21 2.0952 0.62488 0.13636

I/0 efficiency 21 1.9524 0.66904 0.14600

Radiation hardness 21 2.0000 0.44721 0.09759

Fault tolerance 21 1.7619 0.62488 0.13636

Hardware complexity 21 2.1429 0.47809 0.10433

Latency 21 1.9048 0.70034 0.15283

Determinism 21 2.1905 0.60159 0.13128

Interoperability 21 2.0476 0.74001 0.16148

(continued on next page)

39

Table 4.11. RIPCC 2.13 — Minimal Code Complexity Benefits on System-aspects Means,
One-sample Test Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale (continued)

Aspect N Mean Std. Deviation Std. Error Mean

Portability 21 2.0476 0.80475 0.17561

Testing 21 2.5238 0.67964 0.14831

Reusability 21 2.1905 0.74960 0.16358

Software upgradability 21 2.2381 0.70034 0.15283

Hardware
changes/flexibility

21 2.0476 0.66904 0.14600

Adoption rates/software
proliferation

21 2.2857 0.64365 0.14046

Ease of use 21 2.5238 0.60159 0.13128

Mission/Project
requirement changes

21 2.2381 0.76842 0.16768

Information Assurance 21 2.1905 0.51177 0.11168

Mission Assurance 21 2.1905 0.60159 0.13128

Overall 21 2.3175 0.32295 0.07047

Table 4.12 shows that 18 of the 39 aspects are positively affected by minimizing code

complexity Table 4.12 shows 21 aspects that participants did not think code complexity

affected. Finally, Table 4.12 shows that there are no aspects that are negatively affected.

The results also show that the Overall mean affect had a very strong positive t-value,

meaning that overall minimizing code complexity was seen as beneficial.

Table 4.12. RIPCC 2.13 — Code Complexity Benefits on System-aspects Means, One-
sample Test Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale

95% CI

Aspect Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Regression
reduction

2.0860 7.249 20 0.000 0.80952 0.5766 1.0425

Code design 2.0860 2.950 20 0.008 0.52381 0.1535 0.8941

(continued on next page)

40

Table 4.12. RIPCC 2.13 — Code Complexity Benefits on System-aspects Means, One-
sample Test Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale (continued)

95% CI

Aspect Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Development cost 2.0860 2.423 20 0.025 0.42857 0.0596 0.7976

Maintenance cost 2.0860 4.240 20 0.000 0.61905 0.3145 0.9236

Development
productivity

2.0860 2.423 20 0.025 0.42857 0.0596 0.7976

Development
efficiency

2.0860 1.313 20 0.204 0.23810 -0.1401 0.6163

Code complexity 2.0860 8.216 20 0.000 0.85714 0.6395 1.0748

Maintainability 2.0860 4.240 20 0.000 0.61905 0.3145 0.9236

Integration 2.0860 3.627 20 0.002 0.47619 0.2024 0.7500

Adaptability 2.0860 0.826 20 0.419 0.14286 -0.2180 0.5037

Documentation/
Examples

2.0860 2.961 20 0.008 0.38095 0.1126 0.6493

Encapsulation 2.0860 2.335 20 0.030 0.28571 0.0305 0.5409

Bug detection 2.0860 10.954 20 0.000 0.85714 0.6939 1.0204

Code quality 2.0860 4.240 20 0.000 0.61905 0.3145 0.9236

Code robustness 2.0860 3.990 20 0.001 0.52381 0.2500 0.7976

Best practices 2.0860 5.164 20 0.000 0.57143 0.3406 0.8023

Schedule 2.0860 2.092 20 0.049 0.33333 0.0009 0.6658

Code or
algorithm
optimization/
efficiency

2.0860 0.252 20 0.803 0.04762 -0.3460 0.4412

Uniformity of
coding style

2.0860 1.671 20 0.110 0.28571 -0.0711 0.6425

Domain
knowledge

2.0860 0.810 20 0.428 0.09524 -0.1501 0.3406

Code readability 2.0860 5.292 20 0.000 0.66667 0.4039 0.9295

Security 2.0860 0.698 20 0.493 0.09524 -0.1892 0.3797

I/0 efficiency 2.0860 -0.326 20 0.748 -0.04762 -0.3522 0.2569

(continued on next page)

41

Table 4.12. RIPCC 2.13 — Code Complexity Benefits on System-aspects Means, One-
sample Test Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale (continued)

95% CI

Aspect Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Radiation
hardness

2.0860 0.000 20 1.000 0.00000 -0.2036 0.2036

Fault tolerance 2.0860 -1.746 20 0.096 -0.23810 -0.5225 0.0463

Hardware
complexity

2.0860 1.369 20 0.186 0.14286 -0.0748 0.3605

Latency 2.0860 -0.623 20 0.540 -0.09524 -0.4140 0.2236

Determinism 2.0860 1.451 20 0.162 0.19048 -0.0834 0.4643

Interoperability 2.0860 0.295 20 0.771 0.04762 -0.2892 0.3845

Portability 2.0860 0.271 20 0.789 0.04762 -0.3187 0.4139

Testing 2.0860 3.532 20 0.002 0.52381 0.2144 0.8332

Reusability 2.0860 1.164 20 0.258 0.19048 -0.1507 0.5317

Software
upgradability

2.0860 1.558 20 0.135 0.23810 -0.0807 0.5569

Hardware
changes/
flexibility

2.0860 0.326 20 0.748 0.04762 -0.2569 0.3522

Adoption
rates/software
proliferation

2.0860 2.034 20 0.055 0.28571 -0.0073 0.5787

Ease of use 2.0860 3.990 20 0.001 0.52381 0.2500 0.7976

Mission/Project
requirement
changes

2.0860 1.420 20 0.171 0.23810 -0.1117 0.5879

Information
Assurance

2.0860 1.706 20 0.104 0.19048 -0.0425 0.4234

Mission
Assurance

2.0860 1.451 20 0.162 0.19048 -0.0834 0.4643

Overall 2.0860 4.505 20 0.000 0.31747 0.1705 0.4645

Minimizing code complexity was largely seen as beneficial to aspects that related to the

usability of the code, i.e. code readability, ease of use, best practices, code robustness, code

42

quality, bug detection, encapsulation, documentation/examples, integration, maintainabil-

ity, development productivity, and code design. These are all aspects that, in theory, make

the software easier to use. If the software is easier to use then it translates into some of the

other benefits the participants identified, i.e. schedule, regression reduction, development

cost, and testing. It follows that the perceived benefits of code complexity address a lot

of the issue facing software-systems development for space systems, and designers should

consider code complexity during design and implementation of software for space systems.

This does have to be balanced against other aspects that help reduce cost and schedule

like reusability and adaptability that can drive code complexity. Software development

frameworks like SSM that may be internally complex help to limit the complexity for an

end user by abstracting the complexity and allowing reuse and adaptability.

4.3.2 Code Complexity Metrics

There is a consensus among RIPCC Survey participants on the more important ways

to measure code complexity for software developed for space systems. The previous section,

Section 4.3.1, discussed developer perception of the importance and benefit of minimal code

complexity, and it follows that the development community would want to agree on ways

to measure code complexity. The participants did not seem to agree on one particular code

complexity metric as being the most important, but coalesced around two metrics that

would be the most important in determining a piece of software’s code complexity. This by

itself is useful to the space systems software development community because it suggests a

couple of metrics that are more important for measuring code complexity.

Participants in the Security Survey believe that internal security provisions have a

negative impact on code complexity, as detailed in Section 4.6.5. Analysis of code complexity

in SSM versus SSSM will be left for future work and may show SSSM as a way to add internal

security provisions without a significantly increasing code complexity.

The front running code complexity metrics where cyclomatic complexity and lack of

cohesion. They would therefor be the most important metrics to target or measure software

against when attempting to minimize code complexity.

43

4.3.2.1 RIPCC Survey, Question 2.15 Analysis

This section shows that participants perceive cyclomatic complexity and lack of co-

hesion to be the only code complexity metrics with positive non-neutral importance for

measuring code complexity.

Summary: Participants perceive cyclomatic complexity and lack of cohesion to have

above average importance; the participants felt that all of the other metrics have

neutral or average importance.

Question: Question 2.15 asks the participants to rate the importance of each code

complexity metric on a 5-point Likert scale.

Analysis: One-sample t-test with test value of 3, which represents a neutral value.

Hypothesis: Participants will perceive the different code complexity metrics to have

a non-neutral importance.

H0: µCodeComplexityMetricImportance = 3

HA: µCodeComplexityMetricImportance 6= 3

Table 4.13 shows that most of the code complexity metrics have a mean importance rating

at or slightly above 3.

Table 4.13. RIPCC 2.15 — Code Complexity Importance Means, One-sample Test Statis-
tics, Test Value 3, 5-point Likert Scale Scale

Aspect N Mean Std. Deviation Std. Error Mean

Cyclomatic complexity
(McCabe Metric)

27 3.59 1.366 0.263

Depth of inheritance 27 3.15 1.064 0.205

Class coupling 26 3.04 0.958 0.188

Methods per class 27 2.89 0.892 0.172

Lack of cohesion 27 3.67 1.359 0.261

Data complexity (Chapin
Metric)

27 3.33 1.000 0.192

Data flow complexity
(Elshof Metric)

27 3.41 1.047 0.202

(continued on next page)

44

Table 4.13. RIPCC 2.15 — Code Complexity Importance Means, One-sample Test Statis-
tics, Test Value 3, 5-point Likert Scale (continued)

Aspect N Mean Std. Deviation Std. Error Mean

Decisional complexity
(Mcclure Metric)

27 3.44 1.251 0.241

Language complexity
(Haltsead Metric)

27 3.07 1.269 0.244

Interface Complexity
(Henry fan-in/fan-out
Metric)

27 3.33 1.301 0.250

Lines of code 27 3.04 1.224 0.236

Other 13 2.54 1.664 0.462

Overall 27 3.24 0.723 0.139

Table 4.14 shows that 2 of the 12 metrics, including Other, had means on the important

side of the scale. However, only lack of cohesion and cyclomatic complexity have strong

evidence against the null. This means that lack of cohesion and cyclomatic complexity are

the only two metrics that have non-neutral or important means. Lack of cohesion is when a

class represents more than one abstraction and cyclomatic complexity deal with the number

of linearly independent paths through a program.

Table 4.14 shows that the remaining metrics had neutral means. The results also show

that Overall mean importance had a neutral mean.

Other portions of this analysis show that participants believe that minimizing com-

plexity is generally important for space systems software and other software; and that it

is specifically more important for SFS. Putting these points together it follows that the

participants perceive minimizing code complexity to be important and so achieving good

lack of cohesion and cyclomatic complexity scores would be the most important metrics to

manage, particularly in the case of SFS where minimizing code complexity was shown to

be the most important.

45

Table 4.14. RIPCC 2.15 — Code Complexity Importance Means, One-sample Test Results,
Test Value 3, 5-point Likert Scale

95% CI

Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Cyclomatic
complexity
(McCabe Metric)

2.0555 2.254 26 0.033 0.593 0.05 1.13

Depth of
inheritance

2.0555 0.724 26 0.476 0.148 -0.27 0.57

Class coupling 2.0596 0.205 25 0.840 0.038 -0.35 0.43

Methods per class 2.0555 -0.648 26 0.523 -0.111 -0.46 0.24

Lack of cohesion 2.0555 2.550 26 0.017 0.667 0.13 1.20

Data complexity
(Chapin Metric)

2.0555 1.732 26 0.095 0.333 -0.06 0.73

Data flow
complexity
(Elshof Metric)

2.0555 2.021 26 0.054 0.407 -0.01 0.82

Decisional
complexity
(Mcclure Metric)

2.0555 1.847 26 0.076 0.444 -0.05 0.94

Language
complexity
(Haltsead Metric)

2.0555 0.303 26 0.764 0.074 -0.43 0.58

Interface
Complexity
(Henry
fan-in/fan-out
Metric)

2.0555 1.331 26 0.195 0.333 -0.18 0.85

Lines of code 2.0555 0.157 26 0.876 0.037 -0.45 0.52

Other 2.1788 -1.000 12 0.337 -0.462 -1.47 0.54

Overall 2.0555 1.692 26 0.103 -0.235 -0.05 0.52

4.4 Participant Perception of Reusable Software

This section presents the findings related to developing reusable software for space

systems. These findings stem from analysis of answers to questions in the CC and RIPCC

46

surveys. This analysis shows that participants view reuse as important and beneficial for

software developed for space systems.

Developer perception of the importance and benefits of software reuse relates to benefits

and importance of SSM, a software development framework designed to enable and promote

reuse. Other portions of the survey series analysis show that developers perceive that open-

network systems, such as SSM, are beneficial and important and ultimately the direction

space systems development is heading, but that these same systems have a stronger need

for security. This gives strength to the idea that adding security to a software development

framework, like SSM, which promotes reuse and leverages OSA and MONA concepts, in

the from of SSSM, is a valuable contribution to the space systems development community.

4.4.1 Reusability Importance and Benefit

There is a consensus among the space systems developers that participated in the CC

Survey that reusability is generally beneficial to space systems and space systems develop-

ment. This section analyzes the responses to CC Survey, Questions 2.1 and 2.2; as they

relate to the importance of reusability. This section also analyzes the responses to RIPCC

Survey, Question 2.10. Analysis of Question 2.10 shows that participants perceive reusabil-

ity to be generally important for S*S and other software, and that they found it to be the

most important for SGS. The participants found reusability to be generally more impor-

tant than code complexity. Section 4.4.1.1 presents the analysis of Question 2.1. Analysis of

Question 2.2 shows that participants perceive reusability to have an above average impor-

tance ranking, it was the only system-characteristic measure to achieve this. Section 4.4.1.2

presents the analysis of Question 2.2. Analysis of Question 2.10 shows that participants

perceive maximizing reuse to be generally beneficial, especially in terms of aspects typically

thought of as relating to reuse. There are some aspects that the participants perceived to be

unaffected that would normally be thought as having a symbiotic relationship with reuse.

Coupling the perceived benefits of networking with a reusable software development frame-

work allow a system like SSM to address some of the shortfalls. Section 4.4.1.3 presents the

analysis of Question 2.10. These findings show the importance of open-network software

47

development frameworks like SSM that promote reusability with the additional security

provisions in SSSM to secure them.

4.4.1.1 CC Survey, Question 2.1 Analysis, Part 2

This section shows that the participants perceive reuse to be important for SFS, SGS,

STS, and other software fields. This section also shows that participants perceive reuse to

be more important for SGS than for SFS, STS, or other software. The other disciplines did

not have any distinct separation from each other, this includes the difference between space

systems software and other software; this suggests that reuse is generally seen as important.

This analysis covers two statistical tests. Test 1, a one-sample t-test, looks at reusability

importance for software in general. Test 2, a matched-pairs t-test, compares reusability

importance across different software areas.

Test 1

Summary: Participants perceive reuse to be important for SFS, SGS, STS, and other

software fields.

Question: Question 2.1 asks each participant to rate the importance of reusability

for SFS, SGS, STS, and other software fields on a 5-point Likert scale.

Analysis: One-sample t-test with test value of 3, which represents a neutral value.

Hypothesis: Software developers will find reusability to have non-neutral impor-

tance.

H0: µReuseImportance = 3

HA: µReuseImportance 6= 3

Table 4.15 shows that all the importance means are above 3. All of the categories had

very strong t-values and very low p-values. This gives very strong evidence against the null,

meaning reuse is generally seen as important for all of the software areas under consideration

by the participants.

48

Table 4.15. CC 2.1, Part 2 — Reuse Importance Mean, One-sample Test Statistics, Test
Value 3, 5-point Likert Scale

Area N Mean Std. Deviation Std. Error Mean

SFS 92 3.60 1.038 0.108

SGS 92 4.27 0.915 0.095

STS 91 3.64 0.961 0.101

Other Software 80 3.74 0.964 0.108

S*S Overall 93 3.86 0.733 0.076

The general importance of reuse explains the trend towards MONAs and OSAs that

promote reuse and suggests that systems like SSM will increase in terms of relevance and

adoption. This in turn increases the need to protect these systems as evidenced by the find-

ings in Section 4.6.3.2 that say security is more important for open-network space systems.

Table 4.16. CC 2.1, Part 2 — Reuse Importance Mean, One-sample Test Results, Test
Value 3, 5-point Likert Scale

95% CI

Area Critical
t-value

(2-tailed)

Sample
t-value

(2-tailed)

df Sig. (2-
tailed)

Mean
Differ-

ence

Lower Upper

SFS 1.9864 5.522 91 0.000 0.598 0.38 0.81

SGS 1.9864 13.330 91 0.000 1.272 1.08 1.46

STS 1.9867 6.330 90 0.000 0.637 0.44 0.84

Other
Software

1.9904 6.839 79 0.000 0.737 0.52 0.95

S*S Overall 1.9861 11.370 92 0.000 0.864 0.71 1.01

Test 2

Summary: Participants perceive reusability to be more important for SGS than for

SFS, STS, or other software. Participants do not perceive there to be a distinction

between the importance of reuse for space systems in general and other software.

Participants do perceive reuse to be generally more important than code complexity.

Question: Question 2.1 asks each participant to rate the importance of reusability

for SFS, SGS, STS, and other software fields on a 5-point Likert scale.

49

Analysis: Matched-pairs t-test to compare means of various combinations of SFS,

SGS, STS, and other software fields.

Hypothesis:

H0: µS*S = µOtherSoftware

HA: µS*S 6= µOtherSoftware

or

H0: µS*S = µS*S

HA: µS*S 6= µS*S

Table 4.17 shows the various means for SFS, SGS, STS, and other software fields as they

compare to each other. Table 4.17 shows that the mean for SGS is above all the other

means. Table 4.18 shows that Pair B2 and Pair B6 have strong evidence against the null

meaning the group perceives reuse to be more important for SGS than for other software

and STS.

Pair B4 shows a strong negative t-value, but because of the direction of the comparison,

this is actually still showing that reuse is more important for SGS than for SFS. This means

that reuse is perceived by the participants to be more important for SGS, than any other

software category under consideration. This suggests a strong emphasis on reuse for SGS,

but Test 1 shows that it is still important for all the areas, just more important for SGS.

Table 4.17. CC 2.1, Part 2 — Reuse Importance Mean, Matched-pairs Test Statistics,
5-point Likert Scale

Area Mean N Std.
Deviation

Std.
Error
Mean

Pair B1 SFS 3.65 78 1.030 0.117

Other Software 3.74 78 0.973 0.110

Pair B2 SGS 4.33 79 0.858 0.097

Other Software 3.75 79 0.967 0.109

Pair B3 STS 3.70 79 0.965 0.109

Other Software 3.75 79 0.967 0.109

(continued on next page)

50

Table 4.17. CC 2.1, Part 2 — Reuse Importance Mean, Matched-pairs Test Statistics,
5-point Likert Scale (continued)

Area Mean N Std.
Deviation

Std.
Error
Mean

Pair B4 SFS 3.61 90 1.002 0.106

SGS 4.27 90 0.922 0.097

Pair B5 SFS 3.61 90 1.002 0.106

STS 3.63 90 0.965 0.102

Pair B6 SGS 4.62 91 0.917 0.096

STS 3.64 91 0.961 0.101

Pair B7 S*S 3.90 79 0.711 0.080

Other Software 3.75 79 0.967 0.109

The finding that reuse is more important for SGS than SFS is curious because SFS can

have very constrained schedules and financing, as well as an emphasis on flight heritage;

one takeaway from this finding is that the need for heritage in SFS might be waining. This

might be due higher risk postures in terms of mission assurance. Another thought stems

from code complexity, Section 4.3.1.1 shows that participants perceived code complexity to

be the most important for SFS. Both ground and flight are complex space systems and

often reusability can increase code complexity, at least internally and sometimes in terms

of what must be configured. Therefore, something like reusability would be less important

for SFS if code complexity is more important. The other issue is the cost associated with

developing a reusable system and with on-boarding new developers that must learn the

system. If only one mission or satellite is being developed then the complexity and cost is

not worth it, this might be another reason that reusability is less import for SFS: developers

might see SFS as more of one-off software than they do SGS. Keep in mind that reuse for

SFS is still seen as important, but this finding suggests a greater need for reusable SGS and

potentially the ability to handle multiple missions with the same SGS.

51

Table 4.18. CC 2.1, Part 2 — Reuse Importance Mean, Matched-pairs Test Results, 5-point
Likert Scale

95% CI

Area Mean Std.
Dev.

Std.
Error

Lower Upper Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig.
(2-

tailed)

Pair B1:
SFS vs.
Other
Software

-0.090 1.219 0.138 -0.365 0.185 1.9913 -0.650 77 0.517

Pair B2:
SGS vs.
Other
Software

0.582 1.008 0.113 0.357 0.808 1.9909 5.136 78 0.000

Pair B3:
STS vs.
Other
Software

-0.051 0.932 0.105 -0.259 0.158 1.9909 -0.483 78 0.631

Pair B4
— SFS
vs. SGS

-0.656 0.950 0.100 -0.855 -0.457 1.9870 -6.546 89 0.000

Pair B5:
SFS vs.
STS

-0.022 1.199 0.126 -0.273 0.229 1.9870 -0.176 89 0.861

Pair B6:
SGS vs.
STS

0.626 1.132 0.119 0.391 0.862 1.9867 5.279 90 0.000

Pair B7:
S*S vs.
Other
Software

0.148 0.847 0.095 -0.042 0.337 1.9909 1.550 78 0.125

Table 4.18 shows that the rest of the B* pairs to not have significant separation. This

means, for example, that reuse is not perceived to be more important for SFS than it is for

STS or vice versa.

4.4.1.2 CC Survey, Question 2.2 Analysis, Part 2

52

This section shows that participants perceive reuse to have an above average importance

ranking.

Summary: Participants perceive reuse to have an above average ranking mean, reuse

has the strongest negative t-value, indicating a strong distinction between it and the

average ranking of 4.

Question: CC Survey, Question 2.2 asks each participant to rank the provided soft-

ware characteristics from 1 to 7, 1 being the highest ranking.

Analysis: One-sample t-test with test value of 4, which represents a middle-of-the-

pack ranking.

Hypothesis: Participants will perceive reusability to have a non-average ranking

when compared against the 7 other characteristics.

H0: µCharacteristicRanking = 4

HA: µCharacteristicRanking 6= 4

Table 4.19 shows the reusability measurement has a mean below the test value, on the

more important side of the ranking scale. Table 4.20 shows that the reusability measurement

has strong evidence against the null, meaning it has a higher than average ranking. Keep

in mind that 1 is the highest ranking so a strong negative t-value means a “higher” average

ranking. This means that reusability has an above average importance ranking, this coupled

with the D* pairs from Section 4.3.1.1 indicates that reusability is one of the more important

development characteristics of a software development framework.

Table 4.19. CC 2.2, Part 2 — Software Characteristic Importance Ranking Means, One-
sample Test Statistics, Test Value 4, 1 to 7 Ranking Scale

Aspect N Mean Std. Deviation Std. Error Mean

Reuse 96 2.83 1.560 0.159

Portability 96 4.38 1.564 0.160

Interoperability 96 3.93 1.773 0.181

Minimal Code Complexity 96 3.97 2.250 0.230

(continued on next page)

53

Table 4.19. CC 2.2, Part 2 — Software Characteristic Importance Ranking Means, One-
sample Test Statistics, Test Value 4, 1 to 7 Ranking Scale (continued)

Aspect N Mean Std. Deviation Std. Error Mean

Rapid Development 96 4.23 2.034 0.208

Cost of Ownership 96 4.81 1.860 0.190

Security 96 3.85 2.312 0.236

This higher than average importance ranking for reuse is in line with the trend towards

MONAs and OSAs that promote reuse and suggests that systems like SSM will increase in

terms of relevance and adoption. This in turn increases the need to protect these systems

as evidenced by the findings in Section 4.6.3.2 that say security is more important for

open-network space systems. This indicates there is a benefit from open-network software

development frameworks that can promote reuse and security, frameworks like SSSM.

Table 4.20. CC 2.2, Part 2 — Software Characteristic Importance Ranking Means, One-
sample Test Results, Test Value 4, 1 to 7 Ranking Scale

95% CI

Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Reuse 1.9852 -7.325 95 0.000 -1.167 -1.48 -0.85

Portability 1.9852 2.349 95 0.021 0.375 0.06 0.69

Interoperability 1.9852 -0.403 95 0.688 -0.073 -0.43 0.29

Minimal Code
Complexity

1.9852 -0.136 95 0.892 -0.031 -0.49 0.42

Rapid
Development

1.9852 1.104 95 0.272 0.229 -0.18 0.64

Cost of
Ownership

1.9852 4.280 95 0.000 0.813 0.44 1.19

Security 1.9852 -0.618 95 0.538 -0.146 -0.61 0.32

4.4.1.3 RIPCC Survey, Question 2.10 Analysis

54

This section shows that participants feel that maximizing reuse is generally beneficial

in terms of the development process and the developed product.

Summary: Participants perceive maximized reusability in space systems to be gen-

erally beneficial in terms of development process and the developed product. Only

two aspects where seen as being negatively affected, namely latency and code or al-

gorithm optimization/efficiency as shown in Table 4.22 in orange. All other aspects

where either neutrally or positively affected.

Question: RIPCC Survey, Question 2.10 asks each participant to record the impact

of maximizing reuse on a range of system aspects in terms of Pros, Neutral, and Cons.

Pros is coded as a 3, Neutral is coded as a 2, and Cons is coded as a 1.

Analysis: One-sample t-test with test value of 2, which represents a neutral value.

Hypothesis: Participants will perceive maximized reuse to have a non-neutral effect

or impact on system-aspects.

H0: µReuseImpact = 2

HA: µReuseImpact 6= 2

Table 4.22 shows that 24 of the 39 aspects that are seen as benefiting from reusability by the

participants. There are 2 aspects that are seen as being negatively affected by reusability.

Finally, there were 13 aspects that the participants perceive reusability to not affect. The

results also show that the Overall mean effect has a significant positive t-value, meaning

that overall reuse is seen as beneficial.

Table 4.21. RIPCC 2.10 — Reusability Benefits on System-aspects Means, One-sample
Test Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale

Aspect N Mean Std. Deviation Std. Error Mean

Regression reduction 26 2.5769 0.70274 0.13782

Code design 26 2.7308 0.60383 0.11842

Development cost 26 2.6923 0.67937 0.13323

Maintenance cost 26 2.5769 0.64331 0.12616

(continued on next page)

55

Table 4.21. RIPCC 2.10 — Reusability Benefits on System-aspects Means, One-sample
Test Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale (continued)

Aspect N Mean Std. Deviation Std. Error Mean

Development productivity 26 2.6154 0.49614 0.09730

Development efficiency 26 2.3846 0.75243 0.14756

Code complexity 26 1.8077 0.80096 0.15708

Maintainability 26 2.6154 0.63730 0.12499

Integration 26 2.4615 0.58177 0.11410

Adaptability 26 2.0385 0.72004 0.14121

Documentation/Examples 26 2.5385 0.64689 0.12686

Encapsulation 26 2.4231 0.57779 0.11331

Bug detection 26 2.5000 0.50990 0.10000

Code quality 26 2.3846 0.57110 0.11200

Code robustness 26 2.5385 0.64689 0.12686

Best practices 26 2.6154 0.49614 0.09730

Schedule 26 2.3462 0.79711 0.15633

Code or algorithm
optimization/efficiency

26 1.6154 0.75243 0.14756

Uniformity of coding style 26 2.4231 0.64331 0.12616

Domain knowledge 26 2.1154 0.58835 0.11538

Code readability 26 2.3077 0.54913 0.10769

Security 26 2.1923 0.69393 0.13609

I/0 efficiency 26 1.8077 0.63367 0.12427

Radiation hardness 26 2.0000 0.40000 0.07845

Fault tolerance 26 2.1538 0.67482 0.13234

Hardware complexity 26 1.8846 0.32581 0.06390

Latency 26 1.6538 0.56159 0.11014

Determinism 26 2.1154 0.51590 0.10118

Interoperability 26 2.6538 0.56159 0.11014

Portability 26 2.4615 0.64689 0.12686

Testing 26 2.7692 0.42967 0.08427

Reusability 26 2.8077 0.40192 0.07882

Software upgradability 26 2.1154 0.71144 0.13953

(continued on next page)

56

Table 4.21. RIPCC 2.10 — Reusability Benefits on System-aspects Means, One-sample
Test Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale (continued)

Aspect N Mean Std. Deviation Std. Error Mean

Hardware
changes/flexibility

26 2.1923 0.74936 0.14696

Adoption rates/software
proliferation

26 2.5385 0.64689 0.12686

Ease of use 26 2.2692 0.60383 0.11842

Mission/Project
requirement changes

26 2.0385 0.72004 0.14121

Information Assurance 26 2.1923 0.56704 0.11121

Mission Assurance 26 2.3846 0.63730 0.12499

Overall 26 2.3215 0.22226 0.04359

As one might expect, aspects that are typically thought of as relating to reusability show

a very strong beneficial trend, i.e. aspects that relate to recombining components or using

components as building blocks that can be moved from system to system or application of

the software to application of the software, are positively affected by reusability. These are

aspects like development cost, maintenance cost, maintainability, integration, encapsulation,

interoperability, portability, testing, adoption, and mission assurance. These are aspects

that reusable software development frameworks, like SSM, try to address; it is good that

perception of the reusability benefits matches that effort.

Oddly, adaptability was not perceived to be positively affected. Normally software that

is not adaptable is harder to reuse, as it likely only has one specific use case. Adaptability

is typically thought of as one of the precepts of reusability. It may be that participants felt

that the scope of space systems software was more limited or specialized and so adaptability

suffered even as developers target reuse; this might be especially true for traditional point-

to-point systems where intra-space system communication might be very specific and tied

to hardware. In this case reuse of the software might mean reuse of the hardware.

57

Table 4.22. RIPCC 2.10 — Reusability Benefits on System-aspects Means, One-sample
Test Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale

95% CI

Area Critical
t-value
(2-
tailed)

Sample
t-value
(2-
tailed)

df Sig. (2-
tailed)

Mean
Differ-
ence

Lower Upper

Regression
reduction

2.0596 4.186 25 0.000 0.57692 0.2931 0.8608

Code design 2.0596 6.171 25 0.000 0.73077 0.4869 0.9747

Development cost 2.0596 5.196 25 0.000 0.69231 0.4179 0.9667

Maintenance cost 2.0596 4.573 25 0.000 0.57692 0.3171 0.8368

Development
productivity

2.0596 6.325 25 0.000 0.61538 0.4150 0.8158

Development
efficiency

2.0596 2.606 25 0.015 0.38462 0.0807 0.6885

Code complexity 2.0596 -1.224 25 0.232 -0.19231 -0.5158 0.1312

Maintainability 2.0596 4.924 25 0.000 0.61538 0.3580 0.8728

Integration 2.0596 4.045 25 0.000 0.46154 0.2266 0.6965

Adaptability 2.0596 0.272 25 0.788 0.03846 -0.2524 0.3293

Documentation/
Examples

2.0596 4.244 25 0.000 0.53846 0.2772 0.7997

Encapsulation 2.0596 3.734 25 0.001 0.42308 0.1897 0.6565

Bug detection 2.0596 5.000 25 0.000 0.50000 0.2940 0.7060

Code quality 2.0596 3.434 25 0.002 0.38462 0.1539 0.6153

Code robustness 2.0596 4.244 25 0.000 0.53846 0.2772 0.7997

Best practices 2.0596 6.325 25 0.000 0.61538 0.4150 0.8158

Schedule 2.0596 2.214 25 0.036 0.34615 0.0242 0.6681

Code or
algorithm
optimization/
efficiency

2.0596 -2.606 25 0.015 -0.38462 -0.6885 -0.0807

Uniformity of
coding style

2.0596 3.353 25 0.003 0.42308 0.1632 0.6829

Domain
knowledge

2.0596 1.000 25 0.327 0.11538 -0.1223 0.3530

(continued on next page)

58

Table 4.22. RIPCC 2.10 — Reusability Benefits on System-aspects Means, One-sample
Test Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale (continued)

95% CI

Area Critical
t-value
(2-
tailed)

Sample
t-value
(2-
tailed)

df Sig. (2-
tailed)

Mean
Differ-
ence

Lower Upper

Code readability 2.0596 2.857 25 0.008 0.30769 0.0859 0.5295

Security 2.0596 1.413 25 0.170 0.19231 -0.0880 0.4726

I/0 efficiency 2.0596 -1.547 25 0.134 -0.19231 -0.4483 0.0636

Radiation
hardness

2.0596 0.000 25 1.000 0.00000 -0.1616 0.1616

Fault tolerance 2.0596 1.162 25 0.256 0.15385 -0.1187 0.4264

Hardware
complexity

2.0596 -1.806 25 0.083 -0.11538 -0.2470 0.0162

Latency 2.0596 -3.143 25 0.004 -0.34615 -0.5730 -0.1193

Determinism 2.0596 1.140 25 0.265 0.11538 -0.0930 0.3238

Interoperability 2.0596 5.937 25 0.000 0.65385 0.4270 0.8807

Portability 2.0596 3.638 25 0.001 0.46154 0.2003 0.7228

Testing 2.0596 9.129 25 0.000 0.76923 0.5957 0.9428

Reusability 2.0596 10.247 25 0.000 0.80769 0.6454 0.9700

Software
upgradability

2.0596 0.827 25 0.416 0.11538 -0.1720 0.4027

Hardware
changes/
flexibility

2.0596 1.309 25 0.203 0.19231 -0.1104 0.4950

Adoption
rates/software
proliferation

2.0596 4.244 25 0.000 0.53846 0.2772 0.7997

Ease of use 2.0596 2.273 25 0.032 0.26923 0.0253 0.5131

Mission/Project
requirement
changes

2.0596 0.272 25 0.788 0.03846 -0.2524 0.3293

Information
Assurance

2.0596 1.729 25 0.096 0.19231 -0.0367 0.4213

Mission
Assurance

2.0596 3.077 25 0.005 0.38462 0.1272 0.6420

(continued on next page)

59

Table 4.22. RIPCC 2.10 — Reusability Benefits on System-aspects Means, One-sample
Test Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale (continued)

95% CI

Area Critical
t-value
(2-
tailed)

Sample
t-value
(2-
tailed)

df Sig. (2-
tailed)

Mean
Differ-
ence

Lower Upper

Overall 2.0596 7.376 25 0.000 0.32150 0.2317 0.4113

Section 4.5.1.1 shows that networking is seen as having a very positive affect on adapt-

ability and coupling networking and reusability addresses these developer perceptions. An

open-network software development framework, like SSM, is directly in line with this con-

cept. Progressing open-network software development frameworks that enable or promote

reusability, like SSM, allows more space systems to realize the reusability benefits perceived

by the participants while addressing adaptability; adding security in the from of SSSM

protects the open-network space systems where security it perceived to be more important.

4.5 Participant Perception of Modular Open-network System Approaches

This section presents findings related to modular open-network system approaches.

These findings stem from analysis of the results of questions in the Network and OSAM

surveys. These findings are presented in terms of the perception among participating space

systems developers with regard to the benefit of networking systems and the trend towards

OSAs and MONAs. There is a general consensus among participants that networking is

beneficial to space systems and space systems development as covered in Section 4.5.1.

Section 4.5.2 covers the perception among the participating developers that space systems

design and implementation is trending towards OSAs and MONAs at an organizational

level.

Developer perception of the benefits of networking relates to the benefits of SSM as

a software development framework that leverages networking for interprocess and inter-

component communication. Further, the participating developers perception of a network

and open systems centric implementation relates to SSM for the same reasoning. Other

60

portions of the survey series analysis show that developers perceive security to be more

important and more difficult for open-network systems, such as SSM. This gives strength to

the idea that adding security to a open-network software development framework, like SSM,

which leverages OSA and MONA concepts, in the from of SSSM, is a valuable contribution

to the space systems development community.

4.5.1 Networking Benefits

There is a consensus among the space systems developers that participated in the Net-

work Survey that networking is generally beneficial to space systems and space systems

development. This section analyzes the responses to Network Survey, Questions 2.3. Anal-

ysis of Question 2.3 shows that participants perceive open-network systems to be largely

beneficial. Section 4.5.1.1 presents the analysis of Question 2.3. Additional analysis as it

relates directly to security, as one of the few negatively impacted aspects is covered in Sec-

tion 4.6.2.2. These perceptions of networking’s positive affect on systems-aspects show that

there is a need for open-network software development frameworks that allow developers to

realize all the benefits of networking. This coupled with the findings in Section 4.6.2.2 show

the importance of addressing security for open-network software development frameworks

like SSSM does for SSM.

4.5.1.1 Network Survey, Question 2.3 Analysis, Part 1

This section shows that participants perceive the effects of open-network space systems

to be largely beneficial to the various aspects of that system. Network Survey, Question 2.3

is a Pros-neutral-cons rating question.

Summary: Participants perceive open-network space systems to have a net-positive

impact on the aspects of that system. Only three aspects where seen as being strongly

negatively affected, namely security, latency, and determinism as shown in Table 4.24

in red.

Question: Network Survey, Question 2.3 asks each participant to record the impact

61

that a open-network space system has on a range of system aspects in terms of Pros,

Neutral, and Cons. Pros is coded as a 3, Neutral is coded as a 2, and Cons is coded

as a 1.

Analysis: One-sample t-test with test value of 2, which represents a neutral value.

Hypothesis: Participants will perceive networking to have a non-neutral effect or

impact on system-aspects.

H0: µNetworkImpact = 2

HA: µNetworkImpact 6= 2

Table 4.24 shows that 19 of the 39 are positively affected. Table 4.24 shows that 17 aspects

are neutrally affected, and that only 3 aspects are negatively affected. The results also show

that Overall effect was positive.

Table 4.23. Network 2.3 — Network Benefits on System-aspects Means, One-sample Test
Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale

Aspect N Mean Std. Deviation Std. Error Mean

Regression reduction 29 1.8621 0.63943 0.11874

Code design 29 2.2069 0.81851 0.15199

Development cost 29 2.1724 0.80485 0.14946

Maintenance cost 29 2.4483 0.73612 0.13669

Development productivity 29 2.4483 0.57235 0.10628

Development efficiency 29 2.4138 0.62776 0.11657

Code complexity 29 1.7241 0.79716 0.14803

Maintainability 29 2.2759 0.75103 0.13946

Integration 29 2.5862 0.68229 0.12670

Adaptability 29 2.8621 0.44111 0.08191

Documentation/Examples 29 2.1724 0.53911 0.10011

Encapsulation 29 2.3793 0.56149 0.10427

Bug detection 29 2.0000 0.80178 0.14889

Code quality 29 2.2069 0.49130 0.09123

Code robustness 29 2.2759 0.52757 0.09797

Best practices 29 2.3448 0.48373 0.08983

(continued on next page)

62

Table 4.23. Network 2.3 — Network Benefits on System-aspects Means, One-sample Test
Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale (continued)

Aspect N Mean Std. Deviation Std. Error Mean

Schedule 29 2.0345 0.62580 0.11621

Code or algorithm
optimization/efficiency

29 2.0345 0.73108 0.13576

Uniformity of coding style 29 2.1034 0.48879 0.09077

Domain knowledge 29 2.2759 0.64899 0.12051

Code readability 29 2.1034 0.40925 0.07600

Security 29 1.4828 0.63362 0.11766

I/0 efficiency 29 1.8276 0.80485 0.14946

Radiation hardness 29 2.1034 0.30993 0.05755

Fault tolerance 28 2.2500 0.70053 0.13239

Hardware complexity 29 1.7241 0.75103 0.13946

Latency 29 1.2759 0.52757 0.09797

Determinism 28 1.3929 0.56695 0.10714

Interoperability 29 2.7586 0.51096 0.09488

Portability 29 2.5862 0.68229 0.12670

Testing 29 2.2759 0.88223 0.16383

Reusability 29 2.6897 0.54139 0.10053

Software upgradability 29 2.4483 0.63168 0.11730

Hardware
changes/flexibility

29 2.5862 0.68229 0.12670

Adoption rates/software
proliferation

28 2.2500 0.51819 0.09793

Ease of use 29 2.2759 0.70186 0.13033

Mission/Project
requirement changes

28 2.3929 0.73733 0.13934

Information Assurance 29 1.8621 0.69303 0.12869

Mission Assurance 28 2.2500 0.51819 0.09793

Overall 29 2.1899 0.22063 0.04097

Aspects that relate to reusability show a very strong beneficial trend, i.e. aspects that

relate to recombining components or using components as building blocks are positively

affected by networking. These aspects, largely shown in blue in Table 4.24 all had strong

63

positive t-values above 4, and low p-values. Adaptability was the aspect perceived to benefit

the most from network-approaches to system design and implementation. The ability to

adapt during development as well as between different development efforts allows for more

agile development as well as shared effort between programs or missions. This can help to

reduce cost and reduce schedule.

Table 4.24. Network 2.3 — Network Benefits on System-aspects Means, One-sample Test
Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale

95% CI

Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Regression
reduction

2.0484 -1.162 28 0.255 -0.13793 -0.3812 0.1053

Code design 2.0484 1.361 28 0.184 0.20690 -0.1044 0.5182

Development cost 2.0484 1.154 28 0.258 0.17241 -0.1337 0.4786

Maintenance cost 2.0484 3.279 28 0.003 0.44828 0.1683 0.7283

Development
productivity

2.0484 4.218 28 0.000 0.44828 0.2306 0.6660

Development
efficiency

2.0484 3.550 28 0.001 0.41379 0.1750 0.6526

Code complexity 2.0484 -1.864 28 0.073 -0.27586 -0.5791 0.0274

Maintainability 2.0484 1.978 28 0.058 0.27586 -0.0098 0.5615

Integration 2.0484 4.627 28 0.000 0.58621 0.3267 0.8457

Adaptability 2.0484 10.524 28 0.000 0.86207 0.6943 1.0299

Documentation/
Examples

2.0484 1.722 28 0.096 0.17241 -0.0327 0.3775

Encapsulation 2.0484 3.638 28 0.001 0.37931 0.1657 0.5929

Bug detection 2.0484 0.000 28 1.000 0.00000 -0.3050 0.3050

Code quality 2.0484 2.268 28 0.031 0.20690 0.0200 0.3938

Code robustness 2.0484 2.816 28 0.009 0.27586 0.0752 0.4765

Best practices 2.0484 3.839 28 0.001 0.34483 0.1608 0.5288

Schedule 2.0484 0.297 28 0.769 0.03448 -0.2036 0.2725

(continued on next page)

64

Table 4.24. Network 2.3 — Network Benefits on System-aspects Means, One-sample Test
Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale (continued)

95% CI

Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Code or
algorithm
optimization/effi-
ciency

2.0484 0.254 28 0.801 0.03448 -0.2436 0.3126

Uniformity of
coding style

2.0484 1.140 28 0.264 0.10345 -0.0825 0.2894

Domain
knowledge

2.0484 2.289 28 0.030 0.27586 0.0290 0.5227

Code readability 2.0484 1.361 28 0.184 0.10345 -0.0522 0.2591

Security 2.0484 -4.396 28 0.000 -0.51724 -0.7583 -0.2762

I/0 efficiency 2.0484 -1.154 28 0.258 -0.17241 -0.4786 0.1337

Radiation
hardness

2.0484 1.797 28 0.083 0.10345 -0.0144 0.2213

Fault tolerance 2.0518 1.888 27 0.070 0.25000 -0.0216 0.5216

Hardware
complexity

2.0484 -1.978 28 0.058 -0.27586 -0.5615 0.0098

Latency 2.0484 -7.392 28 0.000 -0.72414 -0.9248 -0.5235

Determinism 2.0518 -5.667 27 0.000 -0.60714 -0.8270 -0.3873

Interoperability 2.0484 7.995 28 0.000 0.75862 0.5643 0.9530

Portability 2.0484 4.627 28 0.000 0.58621 0.3267 0.8457

Testing 2.0484 1.684 28 0.103 0.27586 -0.0597 0.6114

Reusability 2.0484 6.860 28 0.000 0.68966 0.4837 0.8956

Software
upgradability

2.0484 3.822 28 0.001 0.44828 0.2080 0.6886

Hardware
changes/flexibil-
ity

2.0484 4.627 28 0.000 0.58621 0.3267 0.8457

Adoption
rates/software
proliferation

2.0518 2.553 27 0.017 0.25000 0.0491 0.4509

(continued on next page)

65

Table 4.24. Network 2.3 — Network Benefits on System-aspects Means, One-sample Test
Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale (continued)

95% CI

Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Ease of use 2.0484 2.117 28 0.043 0.27586 0.0089 0.5428

Mission/Project
requirement
changes

2.0518 2.819 27 0.009 0.39286 0.1070 0.6788

Information
Assurance

2.0484 -1.072 28 0.293 -0.13793 -0.4015 0.1257

Mission
Assurance

2.0518 2.553 27 0.017 0.25000 0.0491 0.4509

Overall 2.0484 4.635 28 0.000 0.18989 0.1060 0.2768

Most aspects were seen as benefiting or not being impacted by open-network space

systems. This is shown by the strong positive t-value for the Overall mean for all the

aspects together. The participants only saw three aspects as being negatively affected:

security, latency, and determinism. This research looks to address the security aspect so

that this system type, that they generally perceive to beneficial and is specifically suited

to reduce cost can be utilized even when security is a significant concern. Aspects like

latency and determinism also need to be addressed in order for open-network space system

to become a universally applicable solution as there do exist applications where timing is so

critical that latency or determinism can rule out a open-network solution. That being said,

a solution like SSSM addresses one of the major perceived pitfalls of open-network space

system.

4.5.2 OSA and MONA Trends

This section analyzes the responses to OSAM Survey, Questions 2.4 and 2.5. Analysis of

Question 2.4 shows that participants perceive there to be strong organization-level usage of

MONAs and OSAs, and that this usage is increasing. Section 4.5.2.1 presents the analysis

66

of Question 2.4. Analysis of Question 2.5 shows that the participants perceive that a

majority of systems are closed proprietary systems even though Section 4.5.2.1 shows very

strong organization-level use of OSA and MONA. The high organization-level use likely

stems from the perceived benefits of using networking in systems development, Section 4.5.1

describes this. The disparity between system-level and organization-level usage might stem

from missions or programs where security is a strong concern and the perceived negative

impact of networking on security comes into play, Section 4.6.2.2 covers this perception of

the negative impact of networking on security. Ideally organizations would have a more

unified approach that would help them realize the positive effects of networking and reuse,

a secured open-network software development framework, like SSSM, would help realize

that end by alleviating the security concern.

4.5.2.1 OSAM Survey, Question 2.4 Analysis

Test 1 shows that participants perceive OSAs and MONAs to have have strong organization-

level usage in the past, currently, and going into the future. This is different than the

mission/program-level usage that is analyzed in Section 4.5.2.2 where usage was not per-

ceived to be as strong. Test 2 shows that participants perceive OSA and MONA prolifera-

tion stayed pretty steady from past to present, and that they see a rise in organization-level

usage of OSA and MONA going into the future.

Test 1, a one-sample t-test, looks at the organization-level usage of OSAs and MONAs.

Test 2, a matched-pairs t-test, compares the past, present, and future organization-level

usage of OSAs and MONAs.

Test 1

Summary: Participants perceive that more than 50% of organizations have utilized

MONA and OSA in the past, are currently using them, and will continue to use them

in future.

Question: OSAM Survey, Question 2.4 asks each participant to indicate if their

organization has used MONA or OSA in the past, does use them currently, and if the

67

organization will use them in future. The past, current, and future category selections

are not exclusive and MONA and OSA are indicated separately.

Analysis: One-sample t-test with test value of 1.5, which would mean that an equal

number of participants selected “Yes” as selected “No”.

Hypothesis: Organizational usage of OSAs and MONAs will tend to the not used

or the used side of the spectrum.

H0: µOSA/MONAUsage = 1.5

HA: µOSA/MONAUsage 6= 1.5

Table 4.25 shows that the mean for organization-level use of MONAs and OSAs is above

the test value for past, current, and future categories. This puts the mean on the “Yes”

side, or more than 50% organizational use for all categories.

Table 4.25. OSAM 2.4 — Organization-level Proliferation of MONAs and OSAs, One-
sample Test Statistics, Test Value 1.5, 1 to 2 No-Yes Scale

Aspect N Mean Std. Deviation Std. Error Mean

Past OSA 44 1.75 0.438 0.066

Past MONA 44 1.66 0.479 0.072

Current OSA 44 1.77 0.424 0.064

Current MONA 44 1.68 0.471 0.071

Future OSA 44 1.91 0.291 0.044

Future MONA 44 1.86 0.347 0.052

Table 4.26 shows that more than 50% of the participants believe their organizations

have used, are using, and will continue to use MONAs and OSAs; this suggests good

organization-level usage. One of the weaknesses in the question is that it does not address

what the participants think about other organizations. They might see their organization

as the out-lier, however, because the trend is pretty strong it should still carry a good deal

of weight, the exception being if the participants all work for the same organization which

seems unlikely. The averages for past and current seem to be relatively flat while future

use looks to be significantly higher. This trend will be analyzed in Test 2. The strong and

68

consistent perception of MONA and OSA use support the need for a open-network software

development framework with security provisions, like the one this research implements.

Table 4.26. OSAM 2.4 — Organization-level Proliferation of MONAs and OSAs, One-
sample Test Results, Test Value 1.5, 1 to 2 No-Yes Scale

95% CI

Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Past OSA 2.0167 3.786 43 0.000 0.250 0.12 0.38

Past MONA 2.0167 2.201 43 0.033 0.159 0.01 0.30

Current OSA 2.0167 4.268 43 0.000 0.273 0.14 0.40

Current
MONA

2.0167 2.560 43 0.014 0.182 0.04 0.33

Future OSA 2.0167 9.331 43 0.000 0.409 0.32 0.50

Future
MONA

2.0167 6.948 43 0.000 0.364 0.26 0.47

Test 2

Summary: Participants perceive organization-level usage of MONA and OSA to

have have stayed relatively flat from past to current. They perceive an increase in

usage going from past to future.

Question: Same question as Test 1.

Analysis: Matched-pairs t-test to compare mean of current to past, future to current,

and future to past organization-level usage of MONA and OSA.

Analysis: MONA and OSA organization-level usage will not stay the same across

the past, current, and future categories.

H0: µxUsage = µyUsage

HA: µxUsage 6= µyUsage

Table 4.27 shows that the past and current usage is pretty consistent. The table shows that

current to future usage shows a border-line increase for OSA and a significant increase for

69

MONA. Finally, the table shows a significant increase in mean for both going from past to

future use.

Table 4.27. OSAM 2.4 — Organization-level Proliferation of MONAs and OSAs, Matched-
pairs Test Statistics, 1 to 2 No-Yes Scale

Network Area Mean N Std.
Deviation

Std. Error
Mean

Pair 1 Current ORG OSA 1.77 44 0.424 0.064

Past ORG OSA 1.75 44 0.438 0.066

Pair 2 Current ORG MONA 1.68 44 0.471 0.071

Past ORG MONA 1.66 44 0.479 0.072

Pair 3 Future ORG OSA 1.91 44 0.291 0.044

Current ORG OSA 1.77 44 0.424 0.064

Pair 4 Future ORG MONA 1.86 44 0.347 0.052

Current ORG MONA 1.68 44 0.471 0.071

Pair 5 Future ORG OSA 1.91 44 0.291 0.044

Past ORG OSA 1.75 44 0.438 0.066

Pair 6 Future ORG MONA 1.86 44 0.347 0.052

Past ORG MONA 1.66 44 0.479 0.072

Table 4.28 shows that Pair 1, Pair 2, and Pair 3 give weak evidence against the null

hypothesis. This means that the difference in the averages is not significant. Past to current

stayed statistically the same, and that usage stayed statistically the same from current to

future for OSA.

Table 4.28 gives strong evidence against the null for Pair 4, Pair 5, and Pair 6. This all

suggests that developers perceive there to be an steady increase in organization-level usage of

MONAs as the results show significant positive difference between past and current, current

and future, and past and future. There is also evidence of a trend towards increased usage

for OSAs. OSAs did not show a significant difference between the time-adjacent categorizes,

but there is a significant rise from past to future anticipated use.

MONA and OSA organization-level usage is trending upwards, the trend for MONAs

is a bit stronger. This is interesting because a MONA is essentially a OSA that is network-

focused suggesting that while OSAs are generally increasing the main manifestation of OSAs

looks to be MONAs. This enforces an increasing need for secured open-network software

70

development frameworks as the usage of MONAs increase, but this need becomes even

stronger with the negative perception participants have of the effect of open-network space

systems on security. This highlights a growing need for open-network software development

frameworks like the one implemented for this research and described in Chapter 5.

Table 4.28.
acOSAM 2.4 — Organization-level Proliferation of MONAs and OSAs, Matched-pairs Test
Results, 1 to 2 No-Yes Scale

95% CI

Network
Area

Mean Std.
Dev.

Std.
Error

Lower Upper Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig.
(2-

tailed)

Pair 1 0.023 0.263 0.040 -0.057 0.103 2.0167 0.573 43 0.570

Pair 2 0.023 0.340 0.051 -0.081 0.126 2.0167 0.443 43 0.660

Pair 3 0.136 0.462 0.070 -0.004 0.277 2.0167 1.957 43 0.057

Pair 4 0.182 0.446 0.067 0.046 0.317 2.0167 2.705 43 0.010

Pair 5 0.159 0.479 0.072 0.013 0.305 2.0167 2.201 43 0.033

Pair 6 0.205 0.462 0.070 0.064 0.345 2.0167 2.940 43 0.005

4.5.2.2 OSAM Survey, Question 2.5 Analysis

This section shows that participants perceive the current system-level usage of OSAs

and MONAs to lag significantly behind the usage of closed proprietary and that OSAs and

MONAs usage is perceived to be the same.

Summary: Participants perceive closed proprietary systems to far exceed the number

of systems employing MONAs and OSAs. They perceive MONAs and OSAs to have

a equal share of systems.

Question: OSAM Survey, Question 2.5 asks each participant indicated the percent-

age of systems they think use MONA, OSA, and closed proprietary infrastructure.

Analysis: Matched-pairs t-test to compare means of MONA to closed, OSA to closed,

and MONA to OSA system-level usage.

71

Hypothesis: acMONA, OSA, and closed proprietary system-level usage will not be

equal.

H0: µSysTypeX = µSysTypeY

HA: µSysTypeX 6= µSysTypeY

Table 4.29. OSAM 2.5 — System-level Usage of MONA, OSA, and Close Proprietary,
Matched-pairs Test Statistics, Percentage Scale

System Type Mean N Std.
Deviation

Std. Error
Mean

Pair 1 OSA 30.4318 44 25.94663 3.91160

Closed proprietary 64.5909 44 29.63681 4.46792

Pair 2 MONA 25.6136 44 23.46815 3.53796

Closed proprietary 64.5909 44 29.63681 4.46792

Pair 3 MONA 25.6136 44 23.46815 3.53796

OSA 30.4318 44 25.94663 3.91160

Table 4.30 gives very strong evidence against the null for Pair 1 and Pair 2. This means

there was a significant difference between closed and MONA, and closed and OSA. Sug-

gesting that the perception is that many systems still use closed proprietary systems even

though Section 4.5.2.1 shows very strong organization-level use. It is possible that this

discrepancy between organizational-level and system-level usage stems from the point made

in Section 4.5.2.1 about the weakness of the question, but it might also stem from system-

level being a subset of organization-level usage. This organization-level versus system-level

disparity might actually stem from an issue where organizations do not have a unified ap-

proach to their systems engineering and system software. This is understandable given the

differences that might exists between programs or missions, however, not having a unified

approach makes resource sharing and reuse difficult.

72

Table 4.30. OSAM 2.5 — System-level Usage of MONA, OSA, and Close Proprietary,
Matched-pairs Test Results, Percentage Scale

95% CI

Network
Area

Mean Std.
Dev.

Std.
Error

Lower Upper Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig.
(2-

tailed)

Pair 1 -34.159 36.320 5.475 -45.201 -23.116 2.0167 -6.238 43 0.000

Pair 2 -38.977 35.822 5.400 -49.868 -28.086 2.0167 -7.217 43 0.000

Pair 3 -4.818 17.576 2.649 -10.162 0.525 2.0167 -1.818 43 0.076

Section 4.5.1 illustrates that participants believe that open-network systems, like sys-

tems using a MONA, were seen as having an overall beneficial effect on a range of system

aspects, e.g. reuse and development efficiency. Section 4.6.2.2 shows that participants per-

ceive open-network systems to negatively impact security. Coupling those findings with the

ones here suggests that a secure open-network software development framework, like the

one in this research, could help organizations arrive at a more unified approach to systems

development by reducing this negative effect on security and maximizing the benefits like

reuse and development efficiency.

This analysis also shows that MONA and OSA usage was statistically the same, this

suggests that most of the systems employing OSAs are using the MONA variant further

emphasizing the need for a secure open-network software development frameworks.

4.6 Software Security

This section presents the findings relevant cybersecurity in space systems. These find-

ings stem from analysis of answers to questions in the CC , OSAM , Security, and Network

surveys. This section presents these findings in terms of the perception about security

among participating space systems developers with regard to the difficulties, negative as-

pects, overall importance of security, and the importance of specific security provisions.

These findings also cover the lack of perception among participating space systems devel-

opers that internal security is beneficial.

73

Section 4.6.1 shows that most of the Security Survey participants had some type of

space systems cybersecurity experience which gives more context to their responses to ques-

tions on the Security Survey that dealt with security. However, they were just as likely as

not to have experience in SFSYSs and STSYSs, which shows a potential need for tools and

secured open-network software development frameworks for flight, test, and ground space

systems can help to address the experience gap by allowing developers to develop software

with a certain amount of security provisions baked into them.

Section 4.6.2 shows there is a general consensus among survey participants that security

concerns are a significant hurdle to adopting open systems approaches and that networking

has a negative effect on security in space systems and space systems development. SSSM

adds security to an existing software MONA development framework lowering the hurdle

of security in adopting open systems approaches while also addressing the perceived need

for additional security for open-network space systems.

Section 4.6.3 shows that the perception among participating developers is that security

is important to provide for space systems. This finding illustrates the need for a software

development framework for space systems that includes security provisions. Further analysis

shows consensus that security is more important for open-network space systems than it

is for traditional point-to-point space systems. This finding gives importance to SSSM as

an example of a more secure modular open-network software development framework. This

finding also relates to the consensus that there is a trend in space systems development

towards OSAs and MONAs, Section 4.5.2 covers this trend. Analysis shows that there is

consensus that security it more important for SFS and SGS than it is for other software.

Analysis also shows a lack of consensus on the difficulty of providing security provisions

for space systems, suggesting there may be a need to better understand how these security

provisions can be provided for space systems.

Section 4.6.4 shows that there is a consensus among the participating space systems

developers as to the most important security provisions and features to provide for space

systems and space systems development. This section shows provisions provided for by

74

SSSM as being perceived as some of the most important space systems security provisions.

Section 4.6.5 covers a lack of consensus among the participating space systems devel-

opers that internal security is beneficial to space systems development while showing that

certain aspects of space systems were perceived as negatively affected by internal security

provisions. Some of the aspects shown as being most negatively affected by internal security

are code complexity, development costs, maintenance, and code design. Adding security to

a open-network software development framework and demonstrating a minimal increase

in code complexity allows a contribution like SSSM to address developer concerns about

adding security because it will address issues like development cost via reuse and provide

built-in security features.

4.6.1 Security Experience

This section presents findings related to developer security experience. These findings

stem from analysis of results for a question in the Security Survey. These findings are

presented in terms of the percentage of participating space systems developers that had

security experience with SFSYSs, SGSYSs, STSYSs, penetration testing, and other.

Basic analysis also shows that only 16.13% of participants had no security experience,

those that had penetration testing or other experience also had at least one other area of

security experience that related to space systems of some kind. This shows that the majority

of participants in the Security Survey claimed to have some direct experience with security.

This gives strength or weight to their responses to questions on the Security Survey that

dealt with security.

The results indicate that developers were more likely than not to have had security

experience with SGSYSs. They were just as likely as not to have experience in SFSYSs and

STSYSs, and much less likely to have experience with penetration testing or other areas.

This shows a need for growth in security experience and/or development tools that incor-

porate security provisions. Having tools and secured open-network software development

frameworks for flight, test, and ground space systems can help to address the experience

gap by allowing developers to develop software with a certain amount of security provisions

75

baked into them. This is part of the driver behind adding security provisions to SSM as

proposed by this research.

This section analyzes the responses to Security Survey, Questions 2.2; as it relates to

security experience. Analysis of Question 2.2 shows that participants generally had more

security experience with space systems than with penetration testing or other areas, and

that overall they had the most security experience with SGSYSs. Section 4.6.1.1 presents

the analysis of Question 2.2.

4.6.1.1 Security Survey, Question 2.2 Analysis

This section shows that more than 50% of the participants had security experience

with SGSYSs, about 50% had security experience with SFSYSs and STSYSs, and less than

50% had security experience with penetration testing or other.

Summary: More than 50% of the participants had security experience with SGSYSs,

about 50% had security experience with SFSYSs and STSYSs, and less than 50% had

security experience with with penetration testing or other.

Question: Question 2.2 asks each participant to indicate if they have direct experi-

ence with security in each of the areas listed in Table 4.31.

Analysis: One-sample t-test with test value of 1.5, which represents an equal number

of “Yes” and “No” responses.

Hypothesis: The number of developers with security experience in the given area

will be above or below 50%, meaning the average will be significantly above or below

1.5.

H0: µS*SysSecurityExperience = 1.5

HA: µS*SysSecurityExperience 6= 1.5

or

H0: µOtherSoftwareExperience = 1.5

HA: µOtherSoftwareExperience 6= 1.5

76

Table 4.31 shows that the means for SFSYSs and SGSYSs are above the neutral or 50%

mark. The SGSYS area had the only strong evidence that developers are more likely than

not to have security experience with SGSYSs.

SFSYSs and STSYSs showed very weak evidence against the null, and so it should be

concluded in this case. This means that that likelihood of encountering a developer having

security experience in SFSYSs or STSYSs is roughly the equivalent of flipping a coin if

chosen at random. A brief analysis was done that shows little evidence that additional

years of experience had any correlation with this average, but more in depth analysis or

another survey could look at this in more detail to see if there is a correlation or causation.

Table 4.31. Security 2.2 — Security Experience Mean, One-sample Test Statistics, Test
Value 1.5, 1 to 2 No-Yes Scale

Security Experience Area N Mean Std. Deviation Std. Error Mean

SFSYSs 31 1.5806 0.50161 0.09009

SGSYSs 31 1.7742 0.42502 0.07634

STSYSs 31 1.4194 0.50161 0.09009

Penetration testing 31 1.1290 0.34078 0.06121

Other 21 1.1905 0.40237 0.08781

Both penetration testing and other had strong evidence that the developers are more

likely to not have security experience with penetration testing or in other areas. The “area”

might be a bit too open ended, the low experience mark could be driven by a developer’s

general lack of experience outside space systems or could be that their experience outside

space systems did not deal with security; this pushes against the concept that any software

that is not used in total isolation should consider security. While this is a good concept,

security is often not considered for general applications; this does fall in with the developer

perception found in other parts of this analysis that security was more important for space

software than for other fields.

Results show that 50% of the developers or greater were likely to have security expe-

rience in each of the space systems areas. This suggests that while they do tend to have

space related security experience they may not have experience with testing and protecting

77

against actual attacks and may be dealing more with information assurance, encryption,

and static analysis.

The developers and designers of space systems might not have fully accepted or ad-

dressed that networked nature of ground systems or the trend towards open-network soft-

ware development frameworks in space systems. For SFSYSs this might mean that they

have not considered securing systems behind the COMSEC boundary as a truly intercon-

nected system. This suggests a need for security provisions like those in SSSM that control

access within a system in the case where the perimeter is penetrated to help address this

under- or un-accounted for issue.

Table 4.32. Security 2.2 — Security Experience Mean, One-sample Test Results, Test Value
1.5, 1 to 2 No-Yes Scale

95% CI

Experience
Area

Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig.
(2-

tailed)

Mean
Difference

Lower Upper

SFSYSs 2.0423 0.895 30 0.378 0.08065 -0.1033 0.2646

SGSYSs 2.0423 3.592 30 0.001 0.27419 0.1183 0.4301

STSYSs 2.0423 -0.895 30 0.378 -0.08065 -0.2646 0.1033

Penetration
testing

2.0423 -6.061 30 0.000 -0.37097 -0.4960 -0.2460

Other 2.0860 -3.525 20 0.002 -0.30952 -0.4927 -0.1264

Because of the higher rates of security experience with SGSYSs it would seem like

penetration testing should also have a higher experience rate. This lack of correlation

needs more analysis, but it might stem from these systems being closed off from the larger

Internet. However, what happens if an attacker gets in via physical or back-door access?

What happens as more commercial providers are used or as ground segments trend to a

conglomeration of different providers where network connectivity becomes more important

and more unsecured networks are used?

Having tools and secured open-network software development frameworks for flight,

test, and ground space systems can help to address the experience gap by allowing developers

78

to develop software with a certain amount of security provisions baked into them. This is

part of the driver behind adding security provisions to SSM as proposed by this research.

4.6.2 Networking and Security

This section analyzes the responses to OSAM Survey, Question 2.6, and to Network

Survey, Question 2.3. Initial analysis of Question 2.6 shows that participants did not per-

ceive security to be an above average factor in prohibiting the adoption of open-systems

approaches, but additional analysis shows that the security factor was still in line with the

other factors that might limit adoption. Section 4.6.2.1 presents the analysis of OSAM

Survey, Question 2.6. Analysis of Question 2.3 shows that the participants perceive open-

network space systems to have a negative impact on security, but an overall positive impact

on the other aspects when taken as an average. Analysis also shows that these participants

perceive the impact to be more negative when compared to the perceived effect of network-

ing on other system aspects like Adaptability or Reusability. Section 4.6.2.2 presents the

analysis of Network Survey, Question 2.3. There is a consensus among the space systems

developers who participated in the OSAM and Network Surveys that, while security is not

the critical factor it is not an insignificant factor in prohibiting the adoption of open-systems

approaches. There is also consensus that open-network space systems negatively affect se-

curity. These perceptions show the importance of a solution, like SSSM, that aims to add

security to an existing open-system software development framework, addressing security

as prohibitive factor in adopting open-systems approaches by addressing the additional

security needs or risk of open-network systems.

4.6.2.1 OSAM Survey, Question 2.6 Analysis

Test 1 shows that participants do not perceive security to be a critical factor in pro-

hibiting their organization from adopting open-systems approaches. Test 2 shows that

participants do perceive security to be as limiting a factor in prohibiting open-systems

adoption as the other factors when taken as an average of their aggregate.

Test 1, a one-sample t-test, looks at the impact of security on adopting open-systems

79

approaches. Test 2, a matched-pairs t-test, looks at the impact of security in relation to

other factors in adopting open-systems approaches.

Test 1

Summary: Participants do not perceive security to be a determining or prohibitive

factor in their organization adopting open-systems approaches.

Question: OSAM Survey, Question 2.6 asks each participant to select all the factors

that might prohibit the adoption of open-systems approaches by their organization.

There are 32 factors, including security. Other was also an option, but was never

selected, suggesting the list provided was comprehensive. Appendix A gives a full

listing of factors.

Analysis: One-sample t-test with test value of 0.5, which would mean that an equal

number of participants selected it as did not select it, or a neutral value.

Hypothesis: Security will not have a neutral effect on prohibiting the adoption of

open-systems approaches.

H0: µFactorProhibition = 0.5

HA: µFactorProhibition 6= 0.5

Table 4.33 shows that the mean for security is below the test value, slightly on the No side.

Table 4.34 shows that the participants did not reach a consensus on the affect of security

on the adoption of open-systems approaches.

Table 4.33. OSAM 2.6 — Prohibitive Effect on Adoption of Open-System Approaches
Mean, One-sample Test Statistics, Test Value 0.5, 0 to 1 No-Yes Scale

Aspect N Mean Std. Deviation Std. Error Mean

Security 43 0.37 0.489 0.075

Interestingly enough the only factor that did have a strong enough t-value to possibly

be considered a critical or primary factor in preventing adoption was “Management buy-

80

in”. This could stem from a lack of ability by developers to convince management of

the benefits of adopting a open-systems approach, a system that already incorporates this

approach could be a critical linchpin in convincing management. A lot of other factors,

like developer buy in, development cost, maintenance cost, development productivity and

development efficiency, trended heavily in the other direction. This suggest they were of

little consequence, or possibly understood to be benefits of a open-systems approach. This

pattern for some of the other factors actually puts the net neutral effect of security as

more of a determining factor. This reinforces the need for a secured open-network software

development framework, like the one proposed by this research.

Table 4.34. OSAM 2.6 — Prohibitive Effect on Adoption of Open-systems Approaches
Mean, One-sample Test Results, Test Value 0.5, 0 to 1 No-Yes Scale

95% CI

Factor Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Management
buy-in

2.0181 2.789 42 0.008 0.198 0.05 0.34

Legacy software
requirements

2.0181 1.715 42 0.094 0.128 -0.02 0.28

Investment vs.
return in money

2.0181 -2.789 42 0.008 -0.198 -0.34 -0.05

Compatibility
with current
infrastructure

2.0181 1.715 42 0.094 0.128 -0.02 0.28

Ownership of
existing and
future software

2.0181 -2.412 42 0.020 -0.174 -0.32 -0.03

Current
proprietary
systems

2.0181 -0.151 42 0.881 -0.012 -0.17 0.14

Developer buy
in

2.0181 -3.192 42 0.003 -0.221 -0.36 -0.08

(continued on next page)

81

Table 4.34. OSAM 2.6 — Prohibitive Effect on Adoption of Open-systems Approaches
Mean, One-sample Test Results, Test Value 0.5, 0 to 1 No-Yes Scale (continued)

95% CI

Factor Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Development
cost

2.0181 -2.789 42 0.008 -0.198 -0.34 -0.05

Maintenance
cost

2.0181 -4.631 42 0.000 -0.291 -0.42 -0.16

Development
productivity

2.0181 -5.920 42 0.000 -0.337 -0.45 -0.22

Development
efficiency

2.0181 -4.103 42 0.000 -0.267 -0.40 -0.14

Complexity 2.0181 -2.055 42 0.046 -0.151 -0.30 0.00

Maintainability 2.0262 -2.024 37 0.050 -0.158 -0.32 0.00

Bug detection 2.0181 -5.920 42 0.000 -0.337 -0.45 -0.22

Best practices 2.0181 -5.920 42 0.000 -0.337 -0.45 -0.22

Schedule 2.0181 -2.789 42 0.008 -0.198 -0.34 -0.05

Domain
knowledge

2.0181 -5.229 42 0.000 -0.314 -0.44 -0.19

Security 2.0181 -1.715 42 0.094 -0.128 -0.28 0.02

I/0 efficiency 2.0181 -5.229 42 0.000 -0.314 -0.44 -0.19

Fault tolerance 2.0181 -6.742 42 0.000 -0.360 -0.47 -0.25

Latency 2.0181 -6.742 42 0.000 -0.360 -0.47 -0.25

Determinism 2.0181 -5.920 42 0.000 -0.337 -0.45 -0.22

Interoperability 2.0181 -3.627 42 0.001 -0.244 -0.38 -0.11

Portability 2.0181 -7.758 42 0.000 -0.384 -0.48 -0.28

Testing 2.0181 -4.631 42 0.000 -0.291 -0.42 -0.16

Reusability 2.0181 -4.631 42 0.000 -0.291 -0.42 -0.16

Upgradability 2.0181 -4.103 42 0.000 -0.267 -0.40 -0.14

Flexibility 2.0181 -4.103 42 0.000 -0.267 -0.40 -0.14

Ease of use 2.0181 -5.229 42 0.000 -0.314 -0.44 -0.19

(continued on next page)

82

Table 4.34. OSAM 2.6 — Prohibitive Effect on Adoption of Open-systems Approaches
Mean, One-sample Test Results, Test Value 0.5, 0 to 1 No-Yes Scale (continued)

95% CI

Factor Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Information
Assurance

2.0196 -3.467 41 0.001 -0.238 -0.38 -0.10

Test 2

Summary: Participants perceived security to be as much as a driving factor in

prohibiting the adoption of open-systems approaches as they did the other factors.

Question: OSAM Survey, Question 2.6 asks each participant to select all the factors

that might prohibit the adoption of open-systems approaches by their organization.

There are 32 factors, including security.

Analysis: Matched-pairs t-test to compare mean of security prohibition against the

overall prohibition mean; security is excluded from the overall mean.

Hypothesis: Participants will not think security will be as prohibitive in the adoption

of open-systems approaches as the other factors.

H0: µSecurityProhibitRating = µOverallProhitbitRating

HA: µSecurityProhibitRating 6= µOverallProhibitRating

Table 4.35 shows that the security measurements actually has a mean slightly above the

overall mean more towards the “Yes” side.

Table 4.35. OSAM 2.6 — Prohibitive Effect on Adoption of Open-System Approaches
Mean, Matched-pairs Statistics, 0 to 1 No-Yes Scale

Security Area Mean N Std.
Deviation

Std. Error
Mean

Pair 1 Security 0.37 43 0.489 0.075

Overall 0.2814 43 0.20990 0.03201

83

The results in Table 4.36 give very weak or no evidence against the null, this means

that the prohibitive effect of security on the adoption of open-systems approaches is in

line with the average effect of all the factors the participants had to choose from. This

suggesting that security was consequential in the choice to adopt open-systems approaches.

It was not as critical a factor as “Management buy-in”, but it was significantly above other

factors that had very negative t-values as mentioned in Test 1. This reinforces the need

for a secured open-network software development framework, like the one proposed by this

research, to aid in the adoption of open-systems approaches.

Table 4.36. OSAM 2.6 — Prohibitive Effect on Adoption of Open-systems Approaches
Mean, Matched-pairs Test Results, 0 to 1 No-Yes Scale

95% CI

Area Mean Std.
Dev.

Std.
Er-
ror

Lower Upper Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig.
(2-

tailed)

Pair 1 0.09070 0.4738 0.0723 -0.0551 0.2365 2.0181 1.255 42 0.216

4.6.2.2 Network Survey, Question 2.3 Analysis, Part 2

Test 1 shows that participants perceive using a open-network space system will have

a negative impact on the security of that system. Test 2 shows that participants perceive

using a open-network space system will have a more negative effect on security than on the

other aspects of a system that the participants were asked to consider. Network Survey,

Question 2.3 is a Pros-neutral-cons rating question.

Test 1, a one-sample t-test, looks at the impact of using a open-network space system

on the security of that system. Test 2, a matched-pairs t-test, looks at the impact of

using a open-network space system on various aspects of space systems and space systems

development as they relate to each other.

Test 1

Summary: Participants perceive networking to have a negative impact on security.

84

Question: Network Survey, Question 2.3 asks each participant to record the impact

that a open-network space system has on a range of system aspects in terms of Pros,

Neutral, and Cons. Pros is coded as a 3, Neutral is coded as a 2, and Cons is coded

as a 1. The impact rating was solicited for a wide range of aspects including security,

Section 4.5.1.1 gives a full listing.

Analysis: One-sample t-test with test value of 2, which represents a neutral value.

This section focuses on the effect on security.

Hypothesis: There is some consensus among space systems developers that the

impact of open-network space systems will be negative or positive, not neutral.

H0: µSecurityImpactRating = 2

HA: µSecurityImpactRating 6= 2

Table 4.37 shows that the security measurement has a mean below the test value, on the

Cons side.

Table 4.37. Network 2.3 — Network Benefits on Security-aspect Mean, One-sample Test
Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale

Aspect N Mean Std. Deviation Std. Error Mean

Security 29 1.4828 0.63362 0.11766

Overall (Security Included) 29 2.1899 0.22063 0.04097

Table 4.38 shows that the group perceives security to be negatively impacted by the

use of open-network space systems. Table 4.38 also shows that overall the participants

perceived open-network space systems to be beneficial which is in contrast to the perceived

effect on the security aspect of a system.

Test 2 will see if this finding or separation is significant. These results together suggest

that the developers see value in adding security to the fabric of an open-network space sys-

tem, much like the system proposed by this research. This allows space systems developers

to achieve the overall benefits of open-network space systems while addressing their security

concerns.

85

Table 4.38. Network 2.3 — Network Benefits on Security-aspect Mean, One-sample Test
Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale

95% CI

Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Security 2.0484 -4.396 28 0.000 -0.51724 -0.7583 -0.2762

Overall (Security
Included)

2.0484 4.635 28 0.000 0.18989 0.1060 0.2768

Test 2

Summary: Participants perceive networking to have a more negative impact on

security than for other system aspects.

Question: Network Survey, Question 2.3 asks each participant to record the impact

that a open-network space system has on a range of system aspects in terms of Pros,

Neutral, and Cons. Pros is coded as a 3, Neutral is coded as a 2, and Cons is coded

as a 1. The impact rating was solicited for a wide range aspects including security,

Section 4.5.1.1 covers the wider set of aspects.

Analysis: Matched-pairs t-test to compare mean of security against the overall aspect

mean.

Hypothesis: Participants will not think the impact of open-network space systems

is the same for security as it is for the rest of the list of system aspects.

H0: µOverallImpactRating = µSecurityImpactRating

HA: µOverallImpactRating 6= µSecurityImpactRating

Table 4.39 shows that the security mean is below the Overall mean, putting security on the

Cons side of the Overall mean.

86

Table 4.39. Network 2.3 — Networking Impact on Security Mean. Matched-pairs Test
Statistics, 1 to 3 Cons-Neutral-Pros Scale

Security Area Mean N Std.
Deviation

Std. Error
Mean

Pair 1 Security 1.4828 29 0.63362 0.11766

Overall (Security Excluded) 2.2104 29 0.22876 0.04248

Table 4.40 shows that participants did not perceive open-network space systems to

have the same effect on the other aspects of a system as it did on security. They perceived

the effect to much more negative on security than the other systems aspects. This suggests

a need to add additional security provisions to an open-network space system so that this

perceived negative will be less of an issue and the perceived benefits can be realized.

Table 4.40. Network 2.3 — Networking Impact on Security Mean, Matched-pairs Test
Results, 1 to 3 Cons-Neutral-Pros Scale

95% CI

Security
Area

Mean Std.
Dev.

Std.
Er-
ror

Lower Upper Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig.
(2-

tailed)

Pair 1 0.72759 0.610950.11345 0.49520 0.95999 2.0484 6.413 28 0.000

4.6.3 Security Importance and Difficulty

Analysis of CC Survey, Question 2.1 and Security Survey, Question 2.6 shows there is

a consensus among the space systems developers who participated in the CC and Security

Surveys that security is important to provide for space systems. This analysis goes on

to show that there is consensus that security is more important for certain space-related

software categories than others and that security is more important for open-network space

systems than for traditional point-to-point space systems. Section 4.6.3.1 presents the

results from CC Survey, Question 2.1 that related to security importance. These results

show there is consensus among these developers that security is more important for SFS

and SGS software than for other software fields or STS. Section 4.6.3.2 presents the results

87

from Security Survey, Question 2.6, and Security Survey, Question 2.7. The results from

Question 2.6 show there is consensus among these developers that software security is more

important for open-network space systems than for traditional point-to-point space systems.

The results from Question 2.7 show there is a lack consensus among participants that it is

difficult to add the security provisions in the question. These results illustrate the need to

provide security for space systems in general and specifically for open-network space systems.

It follows that adding security to a open-network software development framework for space

systems makes it easier to develop open-network space systems, which the developers that

participated in the CC and Security Surveys perceive as important.

4.6.3.1 CC Survey, Question 2.1 Analysis, Part 3

This section shows that the participants perceive security to be important for SFS,

SGS, and other software fields, but not specifically for STS. This section also shows that

participants perceive security to be more important for SFS and SGS than for Other Soft-

ware fields, to be more important for Other Software fields than for STS, and finally to be

more important for SGS than for SFS. This section shows security to be generally more

important for space systems than for Other Software. The section also shows that security

has an equivalent importance to reuse and code complexity across space systems software

and Other software.

This analysis covers two statistical tests. Test 1, a one-sample t-test, looks at secu-

rity importance for software in general. Test 2, a matched-pairs t-test, compares security

importance across different software areas.

Test 1

Summary: Participants perceive security to be important for SFS, SGS, and Other

software fields, but not for STS. Participants do perceive security to be generally

important for space systems software.

Question: Question 2.1 asks each participant to rate the importance of security for

SFS, SGS, STS, and Other Software fields on a 5-point Likert scale.

88

Analysis: One-sample t-test with test value of 3, which represents a neutral value.

Hypothesis: Software developers will find security to be important. This hypothesis

is driven by the rise to prominence of computer security in recent years, as attacks and

compromises make major headlines, as well as the generally low risk posture assumed

when developing for space systems.

H0: µSecurityImportance ≤ 3

HA: µSecurityImportance > 3

Table 4.41. CC 2.1, Part 1 — Security Importance Mean One-sample Test Statistics, Test
Value 3, 5-point Likert Scale

Area N Mean Std. Deviation Std. Error Mean

SFS 91 3.97 1.178 0.123

SGS 90 4.29 0.939 0.099

STS 89 2.94 1.237 0.131

Other Software 79 3.49 1.061 0.119

Overall 93 3.73 0.864 0.090

Table 4.41 shows that, all the importance means, except STS come out above 3. Table 4.42

shows that all of the software areas have strong evidence against the null except STS. This

means that there is a very strong evidence that the group perceives security to be important

for SFS, SGS, and Other Software fields.

STS shows little difference between the test value of 3, or there is very weak evidence

against null so it must be concluded. This means that the participants see security impor-

tance as neutral for STS. However, when SFS, STS, and SGS are considered together the

t-value is very strong, suggesting security is important for space systems as a whole when

considered as an aggregate.

89

Table 4.42. CC 2.1. Part 3 — Security Importance Mean, One-sample Test Results, Test
Value 3, 5-point Likert Scale

95% CI

Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Sig. (1-
tailed)

Mean
Differ-

ence

Lower Upper

SFS 1.9867 7.831 90 0.000 0.0000 0.967 0.72 1.21

SGS 1.9870 13.020 89 0.000 0.0000 1.289 1.09 1.49

STS 1.9873 -0.428 88 0.669 0.6655 -0.056 -0.32 0.20

Other
Software

1.9909 4.137 78 0.000 0.0000 0.494 0.26 0.73

S*S Overall 1.9861 8.204 92 0.000 0.0000 0.735 0.56 0.91

Test 2

Summary: Participants perceive security to be more important for SFS, SGS than

for Other Software fields. Security was not perceived to more important for STS.

Question: Question 2.1 asks each participant to rate the importance of security for

SFS, SGS, STS, and other software fields on a 5-point Likert scale.

Analysis: Matched-pairs t-test to compare means of SFS, SGS, and STS against

Other Software fields. The means of SFS and SGS were also compared, they will have

the same hypothesis as before except Other Software is replaced with SFS.

Hypothesis:

H0: µS*S = µOtherSoftware

HA: µS*S 6= µOtherSoftware

Table 4.43 shows that the means for SFS and SGS are above the mean for Other Software

fields while the mean for STS is below. Table 4.43 also shows that the mean for SGS is

above the mean for SFS.

90

Table 4.43. CC 2.1, Part 3 — Security Importance Mean, Matched-pairs Test Statistics,
5-point Likert Scale

Area Mean N Std.
Deviation

Std.
Error
Mean

Pair C1 SFS 4.03 77 1.170 0.133

Other Software 3.55 77 1.020 0.116

Pair C2 SGS 4.32 77 0.938 0.107

Other Software 3.49 77 1.047 0.119

Pair C3 STS 3.05 76 1.243 0.143

Other Software 3.54 76 1.051 0.121

Pair C4 SGS 4.28 88 0.946 0.101

SFS 3.97 88 1.198 0.128

Pair C5 S*S 3.80 78 0.847 0.096

Other Software 3.51 78 1.054 0.119

Table 4.44 shows that Pair C3 gives strong evidence against the null, but in the negative

direction. This means the group perceives security to be less important for STS than for

Other Software fields and by extension than for SFS and SGS. STS is not typically thought

of as production software, and is usually isolated from the outside world so that might be

one of the reasons for its perceived lack of importance. It is not unheard of for test software

to transition to production software, in part or in whole, so this is a bit concerning.

Table 4.44. CC 2.1, Part 3 — Security Importance Mean, Matched-pairs Test Results,
5-point Likert Scale

95% CI

Area Mean Std.
Dev.

Std.
Error

Lower Upper Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig.
(2-

tailed)

Pair C1:
SFS vs.
Other
Software

0.481 1.420 0.162 0.158 0.803 1.9917 2.970 76 0.004

(continued on next page)

91

Table 4.44. CC 2.1, Part 3 — Security Importance Mean, Matched-pairs Test Results,
5-point Likert Scale (continued)

95% CI

Area Mean Std.
Dev.

Std.
Error

Lower Upper Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig.
(2-

tailed)

Pair C2:
SGS vs.
Other
Software

0.831 1.152 0.131 0.570 1.093 1.9917 6.333 76 0.000

Pair C3:
STS vs.
Other
Software

-0.487 1.291 0.148 -0.782 -0.192 1.9921 -3.288 75 0.002

Pair C4:
SGS vs.
SFS

0.318 1.089 0.116 0.088 0.549 1.9876 2.742 87 0.007

Pair C5:
S*S vs.
Other
Software

0.278 1.071 0.121 0.036 0.519 1.9913 2.291 77 0.025

Table 4.44 that the results for Pair C1 and Pair C2 give strong evidence that the

group perceives security to be more important for SFS and SGS than for Other Software

fields. This is likely due to generally lower risk postures for space assets and the inherent

difficulties of developing for space applications.

Pair C4 shows that security for SGS is perceived to be more important than for SFS.

This may be due to the physical isolation of objects in space and the ability of an attacker

to go through a ground system to get to a space asset. This is one of the paradigms that is

changing though, and cross-links and commercial satellite options are opening up multiple

pathways in to space flight systems. It is concerning that the community does not see SFS

security to be as important as SGS security, hopefully education and information sharing

will change this perception.

Pair C5 shows that the participants generally perceive security to be more important

for the space-related software in question than for Other Software fields.

92

4.6.3.2 Security Survey, Questions 2.6 and 2.7 Analysis

This section shows that the participants perceive the security provisions in the question

to be important for traditional point-to-point and open-network space systems. This section

also shows a lack of consensus around the difficulty of adding these provisions to traditional

point-to-point or open-network space systems. This section shows that participants perceive

the security provisions to be more important for open-network space systems than for

traditional point-to-point space systems.

Test 1, a one-sample t-test, looks at security importance and difficulty for traditional

and open-network space systems. Test 2, a matched-pairs t-test, compares security impor-

tance and difficulty across traditional and open-network space systems.

Test 1

Summary: Participants perceive the security provisions to be important for both

open-network and traditional point-to-point space systems architectures. Participants

perceive the security provisions to be neither difficult or easy to provide for both open-

network and traditional point-to-point space systems architectures.

Question: Question 2.6 asks each participant to rate the importance of different

security provisions on a 5-point Likert scale. Question 2.7 asks each participant to rate

the difficulty of providing different security provisions on a 5-point Likert scale. The

participants are asked to rate these provisions on both open-network and traditional

point-to-point space systems architectures.

Analysis: One-sample t-tests with test value of 2, which represents a neutral value

on a compressed 3-point Likert scale.

Hypothesis: The µ is considered as the mean importance or difficult for security pro-

visions for open-network space systems and traditional point-to-point systems when

considered separately.

H0: µSecuritySurveyParticipants = 2

HA: µSecuritySurveyParticipants 6= 2

93

Table 4.45 shows that the importance means are above the neutral test value of 2.

Table 4.45 shows that the difficulty means are roughly equal to the neutral value of 2.

Table 4.45. Security 2.6 and 2.7 — Security Importance and Difficulty Mean, One-sample
Test Statistics, Test Value 2, 3-point Likert Scale

Security Area N Mean Std. Deviation Std. Error Mean

Traditional Security
Importance

29 2.3852 0.47539 0.08828

Open-network Security
Importance

28 2.7340 0.35599 0.06728

Traditional Security
Difficulty

26 1.9410 0.55665 0.10917

Open-network Security
Difficulty

26 2.0377 0.55582 0.10900

Table 4.46 shows that the group perceives security to be important for traditional

point-to-point space systems. Table 4.46 also shows that the group perceives security to be

important for open-network space systems.

Table 4.46. Security 2.6 and 2.7 — Security Importance and Difficulty Mean, One-sample
Test Results, Test Value 2, 3-point Likert Scale

95% CI

Security Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Differ-

ence

Lower Upper

Traditional
Security
Importance

2.0484 4.364 28 0.000 0.38521 0.2044 0.5660

Open-network
Security
Importance

2.0518 10.911 27 0.000 0.73401 0.5960 0.8721

Traditional
Security Difficulty

2.0596 -0.540 25 0.594 -0.05897 -0.2838 0.1659

(continued on next page)

94

Table 4.46. Security 2.6 and 2.7 — Security Importance and Difficulty Mean, One-sample
Test Results, Test Value 2, 3-point Likert Scale (continued)

95% CI

Security Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Differ-

ence

Lower Upper

Open-network
Security Difficulty

2.0596 0.346 25 0.732 0.03773 -0.1868 0.2622

The difficulty mean for both traditional point-to-point and open-network space systems

gives no evidence for refuting the null. This suggests that there is no consensus among

developers that providing these security provisions is difficult or not difficult for space

systems.

Test 2

Summary: Participants perceive the security provisions to be more important for

open-network space systems than for for traditional point-to-point space systems.

Question: Question 2.6 asks each participant to rate the importance of different

security provisions on a 5-point Likert scale. The participants are ask to rate these

provisions on both open-network and traditional point-to-point space systems archi-

tectures.

Analysis: Matched-pairs t-test to compare means of security provisions for open-

network space systems than for for traditional point-to-point space systems.

Hypothesis: The µ is considered as the mean importance for security provisions for

open-network space systems and traditional point-to-point systems when considered

separately.

H0: µOpenSpaceSystems = µTradSpaceSystems

HA: µOpenSpaceSystems 6= µTradSpaceSystems

95

Table 4.47. Security 2.6 — Security Importance Mean, Matched-pairs Test Statistics, 3-
point Likert Scale

Security Area N Mean Std. Deviation Std. Error Mean

Traditional Security
Importance

28 2.4014 0.47594 0.08994

Open-network Security
Importance

28 2.7340 0.35599 0.06728

Table 4.48 shows that the group perceives the mean for these security provisions to be

more important for open-network space systems than for traditional point-to-point space

systems. This result coupled with the results from Test 1 show that there is a consensus

among developers that security is important for space systems and that it is generally more

important for open-network space systems.

Table 4.48. Security 2.6 — Security Importance Mean, Matched-pairs Test Results, 3-point
Likert Scale

95% CI

Security
Area

Mean Std.
Dev.

Std.
Error

Lower Upper Citical
t-

value
(2-

tailed)

Sample
t-

value
(2-

tailed)

df Sig.
(2-

tailed)

Open-
network vs.
Traditional

0.3327 0.4859 0.0918 0.1442 0.5211 2.0518 3.622 27 0.001

4.6.3.3 Security Importance and Difficulty Summary

Section 4.6.3 presents results that show that there is a consensus among space systems

developers that software security is more important for production space systems, namely

SFS and SGS systems; and more important for these applications than it is for Other Soft-

ware fields. These results also show that there is consensus that security is more important

for open-network space systems than it is for traditional point-to-point space systems. This

illustrates the need to provide and the importance of providing security for space systems

96

in general and specifically for open-network space systems. It follows that adding security

to a open-network software development framework for space systems, which is the aim

of SSSM, makes it easier to develop secure open-network space systems, which the space

systems development community perceives to be important.

4.6.4 Important Security Provisions

Analysis of Security Survey, Question 2.8 shows there to be a consensus among the space

systems developers who participated in the Security Surveys that authorization, integrity,

identity management, and access control are the most important security provisions for

space systems. The survey also shows that abstraction layers is the least important security

provision and that mitigation and compliance were also ranked below the other provisions.

It should be noted that participants had the option to add their own provisions and rank

them, but none were added; this suggests a good list. This consensus suggests that the space

systems development community see the value in a secured space system that provides for

authorization, integrity, identity management, and access control. SSSM is a secured open-

network software development framework that provides for authorization, integrity, identity

management, and access control.

4.6.4.1 Security Survey, Questions 2.8 Analysis

This section shows that participants perceive authorization, integrity, identity man-

agement, and access control to be the most important security provisions, and abstraction

layers, mitigation, and compliance to be the least important.

Summary: Participants perceive authorization, integrity, identity management, and

access control as the most important security provisions for space systems.

Question: Security Survey, Question 2.8 asks each participant to rank the provided

security provisions from 1 to 15, 1 being the highest ranking. Participants also had

the option to write in up to three “other” provisions and rank them, but no one wrote

anything in, so other is not being consider as part of the ranking.

97

Analysis: One-sample t-test with test value of 7.5, which represents a middle-of-the-

pack ranking.

Hypothesis: Certain security provisions will have a mean ranking below or above

the middle ranking suggesting they are perceived as more or less important than other

provisions that do tend towards the middle ranking of 7.5.

H0: µProvisionRanking = 8

HA: µProvisionRanking 6= 8

Table 4.49 shows that 4 of that security provision importance ranking means are decidedly

below 7.5; namely authorization, integrity, identity management, and access control. In this

case a lower mean indicates a better or “higher” ranking. Three provisions are decidedly

above the test value of 7.5, namely abstraction layers, mitigation, and compliance.

Table 4.49. Security 2.8 — Security Provision Importance Ranking Mean, One-sample Test
Statistics, Test Value 7.5, 1 to 15 Ranking Scale

Security Area N Mean Std. Deviation Std. Error Mean

Identity management 27 5.70 3.950 0.760

Mutual authentication 27 6.44 4.060 0.781

Authorization 27 4.78 3.693 0.711

Auditing 27 7.11 2.651 0.510

Confidentiality 27 7.56 2.722 0.524

Integrity 27 5.37 3.040 0.585

Availability 27 7.07 3.802 0.732

Well-defined interfaces 27 7.78 3.866 0.744

Abstraction layers 27 11.04 2.696 0.519

Access control 27 5.74 3.938 0.758

Compliance 27 9.44 4.032 0.776

Testing 27 8.59 4.822 0.928

Recovery 27 8.89 3.523 0.678

Mitigation 27 9.67 4.368 0.841

Table 4.50 shows that authorization, integrity, identity management, and access control

have strong negative evidence against the null. This means there was a consensus amongst

98

participants that authorization, integrity, identity management, and access control were the

most important, or were consistently ranked higher than the other provisions.

Table 4.50 shows that abstraction layers, mitigation, and compliance have strong posi-

tive evidence against the null. This means these provisions had a “lower” ranking than the

average, or that the participants consistently ranked these provisions lower than the other

provisions.

Table 4.50. Security 2.8 — Security Provision Importance Ranking Mean, One-sample Test
Results, Test Value 7.5, 1 to 15 Ranking Scale

95% CI

Security Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Identity
management

2.0555 -2.363 26 0.026 -1.796 -3.36 -0.23

Mutual
authentication

2.0555 -1.351 26 0.188 -1.056 -2.66 0.55

Authorization 2.0555 -3.830 26 0.001 -2.722 -4.18 -1.26

Auditing 2.0555 -0.762 26 0.453 -0.389 -1.44 0.66

Confidentiality 2.0555 0.106 26 0.916 0.056 -1.02 1.13

Integrity 2.0555 -3.640 26 0.001 -2.130 -3.33 -0.93

Availability 2.0555 -0.582 26 0.566 -0.426 -1.93 1.08

Well-defined
interfaces

2.0555 0.373 26 0.712 0.278 -1.25 1.81

Abstraction layers 2.0555 6.817 26 0.000 3.537 2.47 4.60

Access control 2.0555 -2.321 26 0.028 -1.759 -3.32 -0.20

Compliance 2.0555 2.506 26 0.019 1.944 0.35 3.54

Testing 2.0555 1.177 26 0.250 1.093 -0.81 3.00

Recovery 2.0555 2.049 26 0.051 1.389 0.00 2.78

Mitigation 2.0555 2.578 26 0.016 2.167 0.44 3.89

Table 4.50 also shows that mutual authentication, auditing, confidentiality, availability,

well-defined interfaces, testing, and recovery had weak t-values. This means that these

provisions had an average ranking.

99

The list of security provisions that SSSM was designed to address covers all the impor-

tant provisions from Chapter 2, some of the average provisions, and none of the unimportant

provisions. SSSM focused on identity management, mutual authentication, authorization,

confidentiality, and integrity. Confidentiality and mutual authentication were both only

seen as having average importance, and the cut-off does have to be somewhere. Average

importance still suggest a need as well. The lower ranking for confidentiality and mutual

authentication may be tied to a certain amount of trust developers are giving to the internals

of their space system, going back to the typical COMSEC boundary model were everything

behind the gateway is trusted. This assumption does not address what happens if the

boundary is compromised or the fact that components might come from various untrusted

or less trusted sources that are all now networked together. This is changing as more and

more organizations trend towards the use of MONAs, a trend perceived by participants as

Section 4.5.2 shows. There may be a disconnect or lack of understanding here though, that

may explain the findings presented in Section 4.6.5 were the participant do not come to a

consensus on the benefit of internal network security. SSSM addresses all of the provisions

currently seen as important by participants and looks to address some provisions that will

likely become more important in the future as the reality of fully networked system because

more apparently.

Auditing is also addressed to a lesser extent and availability was left to future work;

both of these provisions are considered to be of average importance by the participants.

Their slightly lower ranking suggests that the priorities of the SSSM design are correct.

4.6.5 Internal Security Benefits

There is a lack of consensus among the space systems developers that participated in the

Security Survey that internal security is beneficial to or even that it negatively impacted

space systems and space systems development. There is consensus that certain aspects

where positively affected and certain ones were negatively affected, but for larger aggregate

set of aspects the perception is that the effect is neutral. Specially 11 aspects show a positive

effect, 17 show a neutral effect, and 11 show a negative effect. This section analyzes the

100

responses to Security Survey, Questions 2.1. Section 4.6.5.1 presents the analysis of Question

2.1. These perceptions of internal security’s affect on system-aspects show that there is a

need for a secured open-network software development framework that allow developers

to address those aspects they deem to be negatively affected, improve on those that are

neutrally affected, and realize the benefits of aspects that are perceived to be positively

affected.

4.6.5.1 Security Survey, Questions 2.1 Analysis

This section shows that the perception of positive effect is the strongest for security,

best practices, code quality, information assurance, and mission assurance; the participants

perceive 11 total aspects to be positively affected. The perception of negative effect is the

strongest for code complexity, latency, and development cost; the participants perceive 11

total aspects to be negatively affected. Security Survey, Question 2.1 is a Pros-neutral-cons

rating question.

Summary: Participants perceive internal space systems security to have an overall

“neutral” affect on the system and system development aspects that they rated.

Question: Security Survey, Question 2.1 asks each participant to record the impact

that internal security in space systems has on a range of system aspects in terms of

Pros, Neutral, and Cons. Pros is coded as a 3, Neutral is coded as a 2, and Cons is

coded as a 1.

Analysis: One-sample t-test with test value of 2, which represents a neutral value.

Hypothesis: Participants will perceive internal security to have a non-neutral effect

or impact on system-aspects.

H0: µInternalSecurityImpact = 2

HA: µInternalSecurityImpact 6= 2

Table 4.52 shows that there are 11 aspects that participants perceive to be positively im-

pacted. There are 17 that are either neutrally affected or on which participants did not

101

reach a consensus. Table 4.52 shows that there are 11 aspects that participants perceive to

be negatively impacted.

Table 4.51. Security 2.1 — Internal Security Benefits on System-aspects Means, One-
sample Test Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale

Aspect N Mean Std. Deviation Std. Error Mean

Regression reduction 29 1.9655 0.77840 0.14455

Code design 29 1.6897 0.80638 0.14974

Development cost 29 1.4138 0.68229 0.12670

Maintenance cost 29 1.5517 0.63168 0.11730

Development productivity 29 1.9655 0.73108 0.13576

Development efficiency 29 1.6207 0.67685 0.12569

Code complexity 29 1.3448 0.61388 0.11399

Maintainability 29 1.9655 0.77840 0.14455

Integration 29 2.1034 0.77205 0.14337

Adaptability 29 1.8276 0.75918 0.14098

Documentation/Examples 29 2.2414 0.57664 0.10708

Encapsulation 29 2.2414 0.51096 0.09488

Bug detection 29 2.3448 0.66953 0.12433

Code quality 29 2.4483 0.50612 0.09398

Code robustness 29 2.3448 0.66953 0.12433

Best practices 29 2.6897 0.47082 0.08743

Schedule 29 1.5517 0.63168 0.11730

Code or algorithm
optimization/efficiency

29 1.6897 0.66027 0.12261

Uniformity of coding style 29 2.2759 0.45486 0.08447

Domain knowledge 29 1.8966 0.67320 0.12501

Code readability 29 2.2759 0.52757 0.09797

Security 29 2.8966 0.30993 0.05755

I/0 efficiency 29 1.7586 0.57664 0.10708

Radiation hardness 29 2.1379 0.44111 0.08191

Fault tolerance 29 2.2414 0.63556 0.11802

Hardware complexity 29 1.7241 0.59140 0.10982

Latency 29 1.4828 0.50855 0.09443

(continued on next page)

102

Table 4.51. Security 2.1 — Internal Security Benefits on System-aspects Means, One-sample
Test Statistics, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale (continued)

Aspect N Mean Std. Deviation Std. Error Mean

Determinism 29 2.1724 0.60172 0.11174

Interoperability 29 1.8966 0.67320 0.12501

Portability 29 1.9310 0.65088 0.12087

Testing 29 2.0000 0.75593 0.14037

Reusability 29 2.1724 0.60172 0.11174

Software upgradability 29 2.0000 0.65465 0.12157

Hardware
changes/flexibility

29 1.6897 0.54139 0.10053

Adoption rates/software
proliferation

29 2.0000 0.65465 0.12157

Ease of use 29 1.8621 0.74278 0.13793

Mission/Project
requirement changes

29 1.8966 0.61788 0.11474

Information assurance 29 2.5517 0.63168 0.11730

Mission assurance 29 2.5517 0.50612 0.09398

Overall 29 2.0106 0.30597 0.05682

A break down of the negatively, positively, and neutrally or inconclusively affected

aspects by development cost, development quality, assurance/risk, and resource efficiency is

shown below. For this categorization development costs are aspects that increase developer

or development resource utilization, aspects that drive up schedule or make it harder to

develop space systems. Development quality refers to the quality of software or hardware

that is produced. Assurance/risk covers systems or development aspects that deal with the

level of surety developers have that the system will handle faults, environmental stressors,

or attacks and still be able to meet mission objectives. Resource efficiency covers how well

a piece of software or hardware is able to do its job; for software that might refer to CPU

utilization, for software and hardware this might refer to maximum data throughput. These

categorization are based on researcher experience and background.

Negatively Affected

103

– Development cost: development cost, maintenance cost, development effi-
ciency, schedule

– Development quality: code design, code complexity
– Assurance/risk:
– Resource efficiency: code or algorithm optimization/efficiency, I/O efficiency,

latency, hardware change flexibility, hardware complexity

Positively Affected

– Development cost: bug detection
– Development quality: encapsulation, code robustness, best practices, unifor-

mity of coding style, code readability, documentation/examples
– Assurance/ris: security, information assurance, mission assurance
– Resource efficiency:

Not Affected or no Consensus

– Development cost: ease of use, mission/project requirement changes, software
upgradability, reusability, portability, interoperability, adaptability, integration,
maintainability, development productivity, regression reduction

– Development quality: adoption rates/software proliferation
– Assurance/risk: testing, fault tolerance, radiation hardness
– Resource efficiency: determinism

Table 4.52. Security 2.1 — Internal Security Benefits on System-aspects Means, One-
sample Test Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale

95% CI

Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Regression
reduction

2.0484 -0.239 28 0.813 -0.0345 -0.3306 0.2616

Code design 2.0484 -2.073 28 0.048 -0.3103 -0.6171 -0.0036

Development cost 2.0484 -4.627 28 0.000 -0.5862 -0.8457 -0.3267

Maintenance cost 2.0484 -3.822 28 0.001 -0.4483 -0.6886 -0.2080

Development
productivity

2.0484 -0.254 28 0.801 -0.0345 -0.3126 0.2436

Development
efficiency

2.0484 -3.018 28 0.005 -0.3793 -0.6368 -0.1218

Code complexity 2.0484 -5.747 28 0.000 -0.6552 -0.8887 -0.4217

(continued on next page)

104

Table 4.52. Security 2.1 — Internal Security Benefits on System-aspects Means, One-sample
Test Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale (continued)

95% CI

Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Maintainability 2.0484 -0.239 28 0.813 -0.0345 -0.3306 0.2616

Integration 2.0484 0.722 28 0.477 0.1035 -0.1902 0.3971

Adaptability 2.0484 -1.223 28 0.232 -0.1724 -0.4612 0.1164

Documentation/
Examples

2.0484 2.254 28 0.032 0.2414 0.0220 0.4607

Encapsulation 2.0484 2.544 28 0.017 0.2414 0.0470 0.4357

Bug detection 2.0484 2.774 28 0.010 0.3448 0.0902 0.5995

Code quality 2.0484 4.770 28 0.000 0.4483 0.2558 0.6408

Code robustness 2.0484 2.774 28 0.010 0.3448 0.0902 0.5995

Best practices 2.0484 7.888 28 0.000 0.6897 0.5106 0.8687

Schedule 2.0484 -3.822 28 0.001 -0.4483 -0.6886 -0.2080

Code or
algorithm
optimization/
efficiency

2.0484 -2.531 28 0.017 -0.3103 -0.5615 -0.0592

Uniformity of
coding style

2.0484 3.266 28 0.003 0.2759 0.1028 0.4489

Domain
knowledge

2.0484 -0.828 28 0.415 -0.1035 -0.3595 0.1526

Code readability 2.0484 2.816 28 0.009 0.2759 0.0752 0.4765

Security 2.0484 15.578 28 0.000 0.8966 0.7787 1.0144

I/0 efficiency 2.0484 -2.254 28 0.032 -0.2414 -0.4607 -0.0220

Radiation
hardness

2.0484 1.684 28 0.103 0.1380 -0.0299 0.3057

Fault tolerance 2.0484 2.045 28 0.050 0.2414 -0.0004 0.4831

Hardware
complexity

2.0484 -2.512 28 0.018 -0.2759 -0.5008 -0.0509

Latency 2.0484 -5.477 28 0.000 -0.5172 -0.7107 -0.3238

Determinism 2.0484 1.543 28 0.134 0.1724 -0.0565 0.4013

(continued on next page)

105

Table 4.52. Security 2.1 — Internal Security Benefits on System-aspects Means, One-sample
Test Results, Test Value 2, 1 to 3 Cons-Neutral-Pros Scale (continued)

95% CI

Area Critical
t-value

(2-
tailed)

Sample
t-value

(2-
tailed)

df Sig. (2-
tailed)

Mean
Difference

Lower Upper

Interoperability 2.0484 -0.828 28 0.415 -0.1035 -0.3595 0.1526

Portability 2.0484 -0.571 28 0.573 -0.0690 -0.3165 0.1786

Testing 2.0484 0.000 28 1.000 0.0000 -0.2875 0.2875

Reusability 2.0484 1.543 28 0.134 0.1724 -0.0565 0.4013

Software
upgradability

2.0484 0.000 28 1.000 0.0000 -0.2490 0.2490

Hardware
changes/
flexibility

2.0484 -3.087 28 0.005 -0.3103 -0.5163 -0.1044

Adoption rates/
software
proliferation

2.0484 0.000 28 1.000 0.0000 -0.2490 0.2490

Ease of use 2.0484 -1.000 28 0.326 -0.1379 -0.4205 0.1446

Mission/Project
requirement
changes

2.0484 -0.902 28 0.375 -0.1035 -0.3385 0.1316

Information
assurance

2.0484 4.704 28 0.000 0.5517 0.3114 0.7920

Mission assurance 2.0484 5.870 28 0.000 0.5517 0.3592 0.7442

Overall 2.0484 0.187 28 0.853 0.0106 -0.1058 0.1270

Participants did not perceive any aspects of assurance/risk aspects to be negatively

affected by adding internal security, and felt that it positively affected overall security and

assurance status of a space system while having a neutral affect on testing, fault tolerance

and radiation hardness. This suggests that adding an addition layer of security is a accept-

able way to increase a systems overall assurance and security. Development quality as a

category also showed a generally positive trend, while development cost showed a more neg-

ative/neutral affect which might mean that while software development might take longer

or cost more it would be of higher quality with internal security as part of the system.

106

The participants did not perceive any resource efficiency aspects to be positively af-

fected by adding internal security. Specifically latency and algorithm optimization/efficiency

were negatively affected, with latency having one of the strongest negative t-values. Sec-

tion 4.4 shows these to be the only aspects affected negatively by reusability. Reusability

had a neutral effect on security and the reverse was also true. There is commonality in what

has to be done to a piece of software or module to make it reusable and to make it secure.

Reusability typically drives the need for an interface at which other pieces of software or

hardware can interact with a software module or unit, as mentioned previously, this level of

encapsulation and decoupling make it easier to reuse the module and make changes to the

module without affecting the rest of the system. Adding internal security to a modular sys-

tem would naturally sit at some of these interaction or interface boundaries allowing these

larger reusable pieces to also be securable units. This is something that the work carried

out for SSSM has done, the modular open-network software development framework of SSM

has interface points where security was added, i.e. the networking component of the IPC.

The idea being that the reusability of modules will be maintained and that the impact on

reusability and security will not be paid for twice.

As mentioned participants perceive development costs to generally be negatively or

neutrally affected. The negatively affected aspects were development cost, maintenance

cost, development efficiency, and schedule. The additional complexity in terms of design

and development time to add security are perceived to negatively impact development life-

cycle as well increase the resource burden on a system. Table 4.24 shows these aspects in red

and orange. SSSM adds internal security to a reusable open-network software development

framework that helps to buy down some of these development and maintenance costs. SSSM

also tries to minimize the impact on code complexity for the end users which should also

help with code design, development costs, and maintenance costs.

Some aspects appear to be at odds, like a neutral rating on maintainability but a

negative effect on maintenance cost. Development quality appears to show a discrepancy

between negative and positive effects, normally one might expect that code design would be

107

tied to code robustness, encapsulation, and best practices. However, developer perception

is that code design is negatively affected while these aspects are positively affected. One

possibility here is that the participants think of this as more of the time taken to do the

design than the quality of the resultant design. It is also possible that the developers have

a different understanding of the interrelationships of the different aspects. These seemingly

contradictory perceptions suggest a need to better understand the development process of

and developed product for space systems. A open-network software development framework

that adds security can be used to better understand the real effect of adding internal security

and may in turn alleviate some developer concern about adding internal security to a space

system.

Many aspects were seen as not being impacted by internal security provisions. This is

shown by the weak t-value of the Overall mean for all the aspects together as well as the large

number of aspects that showed a neutral affect. These low magnitude t-values are shown in

gray, for these the null hypothesis cannot be refuted. The development cost category had

the largest set of aspects, development cost and schedule are often the constraining factors

for a development effort. As space systems development schedules shrink it is important

that overall assurance can increase by adding internal security provision without too much

perceived impact on development cost.

4.7 Conclusions of Survey Analysis

Appendix B contains a more detailed analysis of the survey participants. It shows that

the surveys were taken by a diverse group of space systems developers with good overall

experience in software systems development, management, hardware systems development,

and procurement. Section 4.3 showed that the participants perceive minimal code complex-

ity to be important and beneficial generally and specifically for SFS. The participants felt

that lack of cohesion and cyclomatic complexity metrics were the most important complex-

ity metrics. Section 4.4 demonstrated that the developers believe reuse is important and

beneficial for software developed for space systems. Section 4.5 showed a general consen-

sus among participants that networking is beneficial to space systems and space systems

108

development. This section also showed that space systems design and implementation is

trending towards OSAs and MONAs at an organizational level. Section 4.6 showed that

security concerns are a significant hurdle to adopting open systems approaches and that

networking has a negative effect on security in space systems and space systems develop-

ment. This section also showed that security is important to provide for space systems

and security is more important for open-network space systems than it is for traditional

point-to-point space systems.

The overall consensus among participating space systems developers is that there would

be value in a reusable open-network software development framework that implements

MONA and does not substantially increase code complexity.

109

CHAPTER 5

SSSM DESIGN

5.1 Introduction

The primary goal of the SSSM design is providing security while maintaining the

reusability that is present in SSM. To do this the design keeps as many changes as possible

behind the SSM’s original API. The design and implementation of SSSM demonstrates a

way to address both the Development Problem and Security Problem. Chapter 4 shows that

developers feel that SSM addresses issues that relate to reuse, modular open-network system

approaches, and networking, but there is room for improvement. Chapter 4 also shows that

space systems developers believe there is value in securing a reusable open-network software

development framework that implements MONA while trying to minimize the burden on

the developer.

The security research augments SSM so that the benefits of a reusable, modular open-

network software development framework can be realized while minimizing the negative

impact on security. This research achieves this by adding security provisions to SSM, this

modified version of SSM is called SSSM. This helps to address both the Development

and Security Problems by providing the capability developers need and expect in modern

development environments with additional easy-to-use security provisions. Section 5.2 cov-

ers some of the security problems that SSSM addresses for SSM. Section 5.3 covers the

changes to SSM and protocol definitions used to provide the additional security provisions

for SSM. Chapter 6 will discuss the difference, from the developer-perspective, between

implementing a secured producer-consumer paring and an unsecured producer-consumer

pairing. Chapter 6 will also present a performance evaluation that compares some resource

metrics between a secured producer-consumer paring and a unsecured producer-consumer

pairing.

110

5.2 SSM Security Problem

The design of SSM does not consider security. There are no provisions in place to

restrict the flow of data or protect it while in transit, the same is true for commands. Figure

5.1 shows an example of a space system utilizing SSM for its Command and Data Handling

(CDH) system. Traffic traverses the radio-link from the ground, this could also be space-

to-space radio-link; new communication paradigms and interconnected space systems pose

additional security issues over traditional ground-based communication. Multiple points

of egress to a space system allow for increased access and availability for legitimate space

systems users, but also increase space system exposure to exploitation.

Figure 5.1 shows a Radio Manager that integrates with the radio hardware on one side

to send and receive communication and on the other side it relays this communication to the

CDH stack making use of the open-network interface provided by SSM. Applications that

schedule commands and handle various hardware subsystems make up the CDH stack, e.g. a

file-management service, a ADCS management component, or a GPS receiver management

component. In the event that a malicious ground station is able to interrogate the space

system or a malicious application (MA) is able to infiltrate the system, specifically the

perimeter is compromised, then there are no protections in place. If the payload shown in

Figure 5.1 is a high-value target then numerous entities with considerable resources might

be trying to gain access to it or otherwise compromise its mission. Figure 5.1 shows a MA,

that in conjunction with a malicious ground station, or on its own, can compromise or spoof

payload data by interjecting traffic. Such an application could compromise the functionality

of the underlying SSM infrastructure, CDH systems, and the payload in order to make the

resource unavailable, task the resource, or relay manipulated data.

A secure system should provide a set of key features, including identity management,

mutual authentication, authorization, auditing, confidentiality, integrity, availability, man-

agement, and compliance. Figure 5.1 illustrates that the vanilla version of SSM does not

provide significant coverage for any of these features; SSM was designed to be open in

order to facilitate communication across different subnets and network types without con-

111

sideration for security. SSSM addresses this security concern by providing a security layer

that allows applications and components to confidentially communicate, as well as mutu-

ally authenticate. A modular open networked security solution needs to retain as many

Network

Radio

Inject Malicious
Application

Manipulate
Data

Publish Data

Receive Bad
Data

Is
su

e
C

o
m

m
an

d

Malicious Traffic

Benign Traffic

CDH Component

SSM Infrastructure

Request
Data

D
is

ru
p

t
Sy

st
em

SM-LCAS LS

Compromised Traffic

PayloadPLT

Ground StationAttacker

CDH
Stack

R
ad

io
 M

an
ag

er

MA

Fig. 5.1. Attack Scenario. Potential attack scenarios on a space system utilizing SSM for
communication with a hosted payload and a malicious application.

of the benefits gained by using a modular open-network software development framework,

e.g. the system needs to stay open, modular, ideally networked, and reusable. The design

and implementation of SSSM demonstrates a way to add security to SSM and address the

security problems and principles, that this research has discussed, while allowing developers

to realize all the benefits they see in modular, reusable open-network software development

frameworks. The design discussed in the next section seeks to enable the development of

space systems that are more secure and that can have a level of compartmentalized and

layered security. The design should provide this security while minimizing the impact on

space systems developer and ideally on system resources.

5.3 SSSM Architectural and Protocol Design

The SSSM design protects traffic in transit, identifies components, authenticates com-

ponents, and controls access to components. SSSM accomplishes this by borrowing concepts

from Kerberos, adding a Permission Table, and utilizing AES-Galois/Counter Mode (GCM),

112

as implemented in OpenSSL [49], for encryption and integrity verification. SSSM supports

compilation with or without Federal Information Processing Standards (FIPS) 140–2 com-

pliance [50]. SSM provides a LS which in turn provides a mechanism for applications and

components to discover each other, share data or telemetry, and issue commands. SSSM

augments the capabilities of the LS by adding functionality that allows for the authentication

of applications and components using pre-shared keys. SSSM combines the functionality

of the Kerberos Ticket Granting Server (TGS) and Authentication Server (AS), or theKey

Distribution Center (KDC), into the SSM LS and uses pre-shared keys in place of pass-

words to authenticate each component that needs to participate in secure communication.

Section C.2 of Appendix C explains the protocols Kerberos utilizes in more detail. The LS

provides session keys for components to use to encrypt communication, as well as manage

access between components at the interface-message level. The LS contains a Permission

Table that it loads from a configuration file as depicted in Figure 5.2 and Sample 5.1 that

allow the LS to control which entities can communicate securely on an interface-message

level.

Figure 5.2 illustrates a basic example of SSSM capability and provides insight into the

architecture of SSM and subsequently SSSM. SSSM architecture is explained in more detail

in Section 5.3.1. Figure 5.2 shows three processing nodes running SSSM and communicating

over SPA ethernet (SPA-E) (Ethernet); they could, in theory, be communicating over any

other subnet combinations supported by SSM. The SPA-E subnet-manager (SM-E) compo-

nents are the subnet-managers for Ethernet-based communication. The application level of

the SSSM endpoints do not have any knowledge of the networks that a message traverses to

reach its destination. This example is simple and the Producer would not typically provide

the same data via a secured and unsecured interface, the example is shown this way for

simplicity.

SSSM addresses each of the key security features, from Section 2.3, by adding the

functionality listed below:

113

� Identity management — Identities of components are tied to universally unique

identifiers and pre-shared keys

� Mutual authentication — Kerberos-like protocol using pre-shared keys1

� Authorization — Permission Table, session creation, and management by LS

� Auditing — SSM logging system to log pertinent events, e.g. failed authentication

attempts

� Confidentiality — Industry standard AES-256 encryption

� Integrity — AES-256-GCM provides verification that the data was not tampered

with

� Availability — Not addressed due to issues intrinsic to the current SPA networking

standard and the scope of the problem2

Section 5.3.1 highlights the architectural changes and additions made to SSM. Section 5.3.2

explains the protocol exchanges that facilitate authentication, authorization, and secure

communication between authenticated components.

5.3.1 Architectural Overview

SSSM adds the ability to house pre-shared keys for components, and permissions for

controlling access and setting up sessions for secure communication to the LS. SSM provides

the CAS, the LS, subnet-managers, and the SPA API for developing SPA applications in

C++. SSSM updates these components so that a developer using the SPA API to write their

applications can use the new security provisions with very few changes over non-secured

versions of the same applications. The space systems software developer does not need to

have any special security background when configuring their applications to use the security

provisions. The developer needs to use secured versions of some classes in the API and needs

to provide a permission table file. Sample 5.1 shows an example of a permission table. The

1Pre-shared keys could be changed to, or augmented by, public-key or certificate encryption schemes in
future work.

2Availability is left to future work and requires changes to the underlying protocols of SSM.

114

Processor Node 1

 LS
SM-L

CAS

Processor Node 3Processor Node 2

Router

SM-E

S
M

-E

SM-L

SM-L

 SSSM App
(Consumer)

Permission Table

SA1:
 SK: be87...dc31
 Perm: SA2(1,1)
SA2:

 SK: ab42...54fe

SSSM App
(Producer)

E
0fa6b7e2abcd4ce3

U ENo data encryption and no command authentication Encrypted and authenticated commands and data

Color
Sensor

I2C

(128, 10, 15)
U

U
The sensor read the colors as

red (128) green (10) blue (15)

SM-E

Management

Traffic

Fig. 5.2. SSSM Usage Example. An illustration of a potential network setup that utilizes
features provided by SSSM. SSSM allows secured and unsecured traffic to share the same
network.

rest of the changes are largely transparent to the developer. Chapter 6, Section 6.2 covers

these developer-level deltas in more detail.

The CAS and LS are two of the most important services provided by SSM, these

services do not need to reside on the same processing node or even the same subnet. The

CAS gives logical address blocks out to each of the subnet-managers. The subnet-managers

use these logical address blocks to give addresses to each of the components on their subnet.

Together the LS and subnet-managers facilitate component discovery, data sharing, and

commanding. This gives components the ability to publish their capabilities as shown in

Sample 5.2. The permission table configuration file in Sample 5.1 relates to the example

SSSM setup that Figure 5.2 depicts. Section 5.3.2 explains the protocol for setting up

the secure exchange of information. The Permission Table configuration file houses the

permission rules and pre-shared keys. The LS ingests this file on startup to configure the

permission rules and pre-shared keys. In Sample 5.1, the application with the Universally

Unique Identifier (UUID) ending in aa33 on line 2 has permission to interact with the

interface-message pairing of interface identifier 1 and message identifier 1, denoted as (1,1),

115

provided by the application with the UUID ending in aa44 on line 10. This permission

is shown on lines 5 and 6 where aa44 is referred to as the TargetComponent. Sample 5.2

shows the xTEDS for aa44. The data provided by (1,1) is defined on line 9.

Both applications have a key to communicate with the LS, these symmetric keys are

defined on lines 3 and 11; these lines also indicate that these applications require 32-byte

or 256-bit keys for authentication and communication. These keys are only used during

the authentication phase, another key is generated as part of a ticket to be used to com-

municate with the LS after authentication, and new keys will be generated for each session

with other components or interface-message pairings. The lifetime on line 5 indicates that

sessions with this interface-message pairing last 600 seconds or 10 minutes. Additional com-

ponents and permissions can be defined following the same format. This file centralizes the

configuration, allowing the components to only have knowledge of their own key. The LS

now manages all of this. The LS is modified to handle key creation and management, ticket

1 <PermissionTable>
2 <SubjectComponent uuid='fccccb2a-30dc-604a-d5a8-2fbcccc3aa33'>
3 <LookupServiceSymmetricKey key='be87d78d7f81e81a18aa1818569610874b12fefeb78eab389b73347891fddc31'

preferredKeySize='32' />
4 <TargetPermissionList>
5 <TargetComponent uuid='faaace1a-30dc-604a-d5a8-2fbaaaa3aa44' lifetime='600' >
6 <Permission interfaceId='1' messageId='1' />
7 </TargetComponent>
8 </TargetPermissionList>
9 </SubjectComponent>

10 <SubjectComponent uuid='faaace1a-30dc-604a-d5a8-2fbaaaa3aa44'>
11 <LookupServiceSymmetricKey key='ab425cf198df81b981cbd6babb139847ab789bcdf78ebd78f548a865bcdd54fe'

preferredKeySize='32' />
12 <TargetPermissionList />
13 </SubjectComponent>
14 </PermissionTable>

Sample 5.1. Permission Table for Color Producer Configuration. Permission Table that
configures the LS and allows the component with UUID ending in aa33 to communicate
with aa44 on (1,1).

creation and management, session management, encryption, permission management, and

authentication.

The two SSSM Apps depicted in Figure 5.2 illustrate a producer-consumer relationship

that is very common, specifically in the context of SSM and CDH systems, but also generally.

This is a generic example meant to illustrate a capability, as a color sensor is not generally

116

a sensor in use in a CDH system. A developer builds these applications using the SPA

API that provides a SpaApplication. In order to produce an application that provides

the xTEDS interface depicted in Sample 5.2 the SpaApplication class is coupled with

the xTEDS in question. The SpaApplication sets up and performs all the network side

functionality needed to participate on a SSM network. It registers with its subnet-manager,

registers its xTEDS with the LS, and provides callbacks to respond to registered commands

and requests for notifications. The example xTEDS shows two interfaces: (1,1) and (2,1).

These are both notifications, meaning that data is produced and a consumer may subscribe

to the data. Lines 9 and 16 of Sample 5.2 indicate that data is published periodically and

that the data is a byte array. The (1,1) interface on line 9 is secured and the (2,1) interface

on line 16 is not secured.

In this xTEDS example both interfaces produce the same data, this is purely for il-

lustrative purposes. The xTEDS does not indicate if a given interface is secured or not

secured, the names here are for illustrative purposes, nor does it indicate who is allowed to

use a given interface. The designation of security and permission is made in the Permission

Table configuration file, enforced by the LS, and in the code of the Producer or owner of the

interface. In this case the developer uses the secured SecureNotificationMsg class for

interface (1,1) and the standard NotificationMsg class for (2,1). The secured notification

on (1,1) requires the use of the protocols described in Section 5.3.2 and the notification on

(2,1) works the same as it always has in SSM. Both interfaces require setup. The producer

registers the notification via xTEDS with the LS and the consumer must issue a query for

the notification. After the setup is complete the use of and production of the data is largely

identical for both the secured and unsecured versions. The updated SPA API makes the

authentication and encryption transparent to the user.

SSSM provides encryption functions and wrappers for developers as utilities, but devel-

opers do not need to use them directly. SSSM provides secured versions of various message

classes, e.g. SecureCommandMsg and SecureRequestMsg to securely support commands

without a response and commands that expect a response, respectively. SSM and the SPA

117

API also make use of various communicator classes that have been updated to handle the

secured variants of SSM communication. In short, the SPA API and any associated commu-

nicators have been updated to provide for authentication with the LS and other components,

requesting sessions, handling sessions, and encryption.

1 <?xml version='1.0' encoding='utf-8' ?>
2 <xTEDS xmlns='https://pnpsoftware.sdl.usu.edu/redmine/projects/xtedsschema'
3 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
4 xsi:schemaLocation= 'https://pnpsoftware.sdl.usu.edu/redmine/projects/xtedsschema

https://pnpsoftware.sdl.usu.edu/spa/xteds/current.xsd'
5 name='SecureProducerXteds' version='1.0'>
6 <Application name='SecureProducer' kind='application' programMemoryRequired='1' dataMemoryRequired='1'

componentKey='ProducerComponentKey'/>
7 <Interface name='SecureData' id='1' >
8 <Notification>
9 <DataMsg name='SecureData' id='1' msgArrival='PERIODIC' msgRate='0.2'>

10 <DynamicArray name='secureString' kind='color' dataType='UINT8' maxArrayElements='1000'
units='unitless' description='Some color data' />

11 </DataMsg>
12 </Notification>
13 </Interface>
14 <Interface name='PlaintextData' id='2' >
15 <Notification>
16 <DataMsg name='PlaintextData' id='1' msgArrival='PERIODIC' msgRate='0.2'>
17 <DynamicArray name='plaintextString' kind='color' dataType='UINT8' maxArrayElements='1000'

units='unitless' description='Some color data' />
18 </DataMsg>
19 </Notification>
20 </Interface>
21 </xTEDS>

Sample 5.2. Secured Color Producer xTEDS. An xTEDS with an unsecured and secured
nofication for the same data showing that the xTEDS definition is the same for both.

The subnet-managers, e.g. SM-E and SPA-L subnet-manager (SM-L), facilitate com-

munication on the given subnet and between different subnets. Figure 5.2 shows the SM-E

and SM-L subnet-managers passing both secured and unsecured communication. Updates

have been made to these subnet managers to facilitate secured communication, e.g. handling

of a secure header.

Common secured message classes have been added with SSSM that make use of the

extended header capability of the SSM messaging system. The extended header capability

of SSM allows an arbitrary number of headers to be added to any message, SSSM makes

use of this functionality to designate security functionality. Messages classes for secure

commanding and data sharing have been added as well as message classes for authentication,

permission exchange, and session creation. Other utility classes like a ticket class have been

added to encapsulate that functionality, as well as an encryption class for wrapping access

118

to the OpenSSL libraries. These modifications and additions make it easy for a developer

writing a SPA Application to add the ability to communicate securely on specific interface-

message pairings. Section 5.3.2 details the protocols used for secure communication. From

an architectural standpoint no new services or components were added, but existing services

like the LS were augmented. Existing classes were augmented and new classes were added

to support secure communication. Section 5.3.2 gives an overview of how the secured

components authenticate themselves with the LS and subsequently communicate securely

with other components.

5.3.2 Protocol Overview

SSSM models its authentication process after Kerberos. Kerberos can use symmetric

keys, passwords, or even public-key encryption to establish identity and subsequently grant

tickets that can be used to open sessions with services. SSSM makes use of pre-shared

symmetric keys, these keys are used only during initial communication with the LS or if a

component’s authentication expires and the component needs to re-authenticate; the idea

being to limit the usage of this authenticating and identifying key. This identifying key can

be updated out-of-band, but currently there is no method for an in-band or online method

for changing this key.

Figure 5.3 continues the example used in previous sections and shown in Figure 5.2

where the Consumer, or SSSM App (SA1), wants to subscribe to data from the Producer,

or (SA2). The messages that Figure 5.3 depicts do not include all the SpaMessage specific

header and footer message components that wrap the secured portions of the messages,

certain parts have been left off for brevity and clarity. The diagram starts after the com-

ponents have been discovered on the network, i.e. contacted their subnet-managers and

received a logical address and started the registration process with the LS, but before they

have finished the registration process. This process works the same whether a components

has secured interfaces or not. The Authentication block shows the authentication process

for SA1, but the process is the same for SA2. SA1 authenticates with the LS via a hand-

shake and receives a key that it uses for requesting access to other services or components.

119

SSSM App (SA1)
[Consumer]

SSM LS

SpaXtedsRequest

SpaXtedsReply

SA2
[Producer]

Authentication
Repeated for SA2

Handled by
SSM App API

SpaPermissionsRequest(SecureHeader(IV,TAG),
E{ SecureHeader(Timestamp,LA_SA1,LA_LS),
LA_SA2,LA_SA1,Timestamp }SKLS_SA1)

SpaQueryRequest(SecureData)

SpaQueryReply(SA2)

SpaQueryReply(NULL)

SpaSubscriptionRequest(LA_SA1,LA_SA2,...,DialogId,...,InterfaceID, MessageID,...,SUBSCRIPTION_REQUEST,...)

SecureHeader(IV,TAG), E{ SecureHeader(Timestamp,LA_SA2,LA_SA1), SpaData(payload) }SKSA1_SA2

SpaSubscriptionReply(DialogId,SUBSCRIPTION_REQUEST_GRANTED)

SpaAuthenticationRequest(SecureHeader(IV,TAG),
E{ SecureHeader(Timestamp,LA_SA1,LA_LS),
LA_SA1,Timestamp }KSA1) Perform UUID or Logical Address (LA) to key lookup:

 Do not respond if DNE or if authenticator is bad
 Respond with ticket if lookup is goodSpaAuthenticationReply(SecureHeader(IV,TAG),

E{ SecureHeader(Timestamp,LA_LS,LA_SA1),
LA_LS,Timestamp,Lifetime,SKLS_SA1 }KSA1)

SpaPermissionsReply(SecureHeader(IV,TAG),
E{ SecureHeader(Timestamp,LA_LS,LA_SA1),
SubjectSessionTicket(IV,TAG,Timestamp,
PermissionsList(LA_SA2,UUID_SA2,
Lifetime,Permissions,SKSA1_SA2)) ,
TargetSessionTicket(IV,TAG,E{ Timestamp,
PermissionsList(LA_SA1,UUID_SA1,
Lifetime,Permissions,SKSA1_SA2) }SKLS_SA2) }SKLS_SA1)

SpaSessionRequest(SecureAuthenticator(IV,TAG, E{ LA_SA1,LA_SA2,Timestamp }SKSA1_SA2),
TargetSessionTicket(IV,TAG, E{ Timestamp, PermissionsList(LA_SA1,UUID_SA1,Lifetime,Permissions,SKSA1_SA2) }SKLS_SA2))

SpaSessionReply(SecureHeader(IV,TAG), E{ SecureHeader(Timestamp,LA_SA2,LA_SA1),
SecureAuthenticator(IV,TAG, E{ LA_SA2,LA_SA1,Timestamp+1}SKSA1_SA2) }SKSA1_SA2)

Setup session,
respond if
Ticket is valid

Secure Notification

SecureHeader(IV,TAG), E{ SecureHeader(Timestamp,LA_SA1,LA_SA2), SpaServiceRequest(payload) }SKSA1_SA2

SecureHeader(IV,TAG), E{ SecureHeader(Timestamp,LA_SA1,LA_SA2), SpaServiceReply(payload) }SKSA1_SA2

Secure Request

Secure Command
SecureHeader(IV,TAG), E{ SecureHeader(Timestamp,LA_SA1,LA_SA2), SpaCommand(payload) }SKSA1_SA2

SecureHeader(IV,TAG), E{ SecureHeader(Timestamp,LA_SA2,LA_SA1), SpaData(payload) }SKSA1_SA2

SpaSubscriptionRequest(LA_SA1,LA_SA2,...,DialogId,...,InterfaceId, MessageId,...,SUBSCRIPTION_CANCEL,...)

Lookup session,
execute if
permissions are
valid

Lookup session,
execute and
respond if
permissions are
valid

Setup security

Permission lookup,
generate symetric key
and tickets for session with SA2

Lifetime

App 1's
Lifetime is
about to
expire

SpaPermissionsRequest(SecureHeader(IV,TAG),
E{ SecureHeader(Timestamp,LA_SA1,LA_LS),
LA_SA2,LA_SA1,Timestamp }SKLS_SA1)

SpaPermissionsReply(SecureHeader(IV,TAG),
E{ SecureHeader(Timestamp,LA_LS,LA_SA1),
SubjectSessionTicket(IV,TAG,Timestamp,
PermissionsList(LA_SA2,UUID_SA2,
Lifetime,Permissions,SKSA1_SA2)) ,
TargetSessionTicket(IV,TAG,E{ Timestamp,
PermissionsList(LA_SA1,UUID_SA1,
Lifetime,Permissions,SKSA1_SA2) }SKLS_SA2) }SKLS_SA1)

Permission lookup,
generate symetric key
and tickets for session with SA2

SpaSessionRequest(SecureAuthenticator(IV,TAG, E{ LA_SA1,LA_SA2,Timestamp }SKSA1_SA2),
TargetSessionTicket(IV,TAG, E{ Timestamp, PermissionsList(LA_SA1,UUID_SA1,Lifetime,Permissions,SKSA1_SA2) }SKLS_SA2))

SpaSessionReply(SecureHeader(IV,TAG), E{ SecureHeader(Timestamp,LA_SA2,LA_SA1),
SecureAuthenticator(IV,TAG, E{ LA_SA2,LA_SA1,Timestamp+1 }SKSA1_SA2) }SKSA1_SA2)

Setup session,
respond if
Ticket is valid

Query and
Session Request

SpaSubscriptionReply(DialogId,SUBSCRIPTION_CANCELED)

Lookup session,
deliver
notifications
if permissions
are valid

Fig. 5.3. SSSM Protocol Diagram. An illustration of the protocols employed to allow
components or applications to authenticate with the LS and subsequently establish sessions
to receive tickets and communicate with other components.

120

The next block shows the Query and Session Request protocol, SA1 queries for the data

or command interfaces it wants using the LS, this querying process is already part of SSM.

In this case SA1 wants to communicate with a secure interface on SA2. SA1 asks the LS

for a ticket it can use to communicate with SA2.

The Lifetime block depicts the exchange that occurs when a session is expiring and a

component wishes to get another session to maintain communication. Figure 5.2 only use

a secure notification but the protocol diagram depicts the exchange for secure notifications,

secure requests, and secure commands in the Secure Notification, Secure Request, and Secure

Command blocks of the protocol diagram in Figure 5.3.

5.3.2.1 Authentication

A secure component participates on the SSM by authenticating itself with the LS,

all components already need to register with the LS so this is a natural extension of that

process. If the LA of a component is already known then a malicious component could

try to subvert the process, but they will fail to negotiate a session with the component

without a valid session ticket from the LS. In this example SA1 needs to authenticate

with the LS. Figure 5.3 depicts the process that a component uses to authenticate with

the LS in the Authentication block. SA1 sends a SpaAuthenticationRequest to the

LS, the SpaAuthenticationRequest is an extension of the SpaMessage that is part

of SSM. The SecureHeader employed by SSSM bridges the encryption boundary, the

Initialization Vector (IV) and tag are transmitted in-the-clear while the timestamp, source

address (LA SA1), and destination address (LA LS) are encrypted along with the rest of

the SpaAuthenticationRequest payload. Encrypting the timestamp and addresses re-

duces the feasibility of spoofing and replay attacks as well as facilitates authentication. The

timestamp is carried out to the nanosecond and doubles as a nonce for replay attacks. While

the source and destination addresses make it more difficult for one component to meaning-

fully masquerade as another component. These addresses have to match the addresses in

the regular SpaMessage header that are used for routing.

121

The authenticator portion of the SpaAuthenticationRequest message follows the en-

crypted portion of the SecureHeader borrowing the authenticator concept from Kerberos.

SA1 encrypts the secured portion of the message with the KSA1 key, this is the pre-shared

key that only the LS and SA1. SA1 sends the message to the LS, at that point it is the

job of the LS to use the LA in the SpaMessage header to look up the component and its

pre-shared key, it can fall back to the component UUID if the component has not registered

with a LA yet, but this should have already been matched during the probing process which

is not depicted here. The LS simply does not reply if the lookup fails, this reduces the load

if there is an attack, and makes it harder for a malicious entity to gain any information.

If the LS finds the component in its lookup table, then it uses the KSA1 to de-

crypt the encrypted portion of the SpaAuthenticationRequest, if the message passes

validation then the LS crafts a SpaAuthenticationReply to send back to SA1. The

SpaAuthenticationReply is basically like the SpaAuthenticationRequest except for

the authenticator portion of the message at the end. The LS uses its LA, a new timestamp,

a lifetime for which the new key is good, and a new key. The new key, denoted as KLS SA1,

is generated by the LS. This key is used for the duration of the lifetime specified, at which

point the component has to re-authenticate with the LS and get a new key. This is all

encrypted with KSA1; both parties have to know KSA1 for this exchange to work. Successful

decryption on both sides coupled with the authenticator portion of the messages allows for

mutual authentication, i.e. SA1 can also be sure that it is talking to the real LS. This

completes the authentication phase at which point the LS submits a SpaXtedsRequest to

SA1 asking for its xTEDS, and SA1 sends it using a SpaXtedsReply. Both secured and

unsecured components participate in the xTEDS exchange. The same process is carried out

for SA2. Once a component has authenticated itself with the LS, it can request permissions

for communicating with other secured components.

5.3.2.2 Query and Session Request

In this phase SA1 issues a query for the data it wishes to consume. SA1 queries for

the SecureData interface using a SpaQueryRequest, this process works basically the same

122

as it does in vanilla SSM. Figure 5.3 illustrates a specific case of a query for the SecureData

interface as described in Sample 5.2. Queries work the same for other types of interfaces,

i.e. commanding or requesting. The LS responds with as many SpaQueryReply messages

as there are components that match the query, in this example there is only one. It is up

to the application developer to decide if they want to purely go with the first one or use

other criteria to decide which one to use if multiple providers exist, there is also a query for

all option which allows a developer to source all the providers.

SA1 chooses a producer or service provider, in this case SA2, and then it must re-

quest the set of permissions it has for SA2. SA1 makes this request to the LS using a

SpaPermissionsRequest message. The SpaPermissionsRequest contains a SecureHeader

like before, but instead of including the LA LS in the rest of the SpaPermissionsRequest

it contains LA SA2, the LA of the component to which SA1 wishes to subscribe, also known

as the target. SA1 encrypts this request with SKLS SA1 to protect it in transit and contains

the source address and timestamp to authenticate the sender as SA1.

The LS processes the SpaPermissionsRequest by decrypting it via LA to encryption

key lookup, the LS then uses the addresses in the request and looks up LA SA1 as the

subject and LA SA2 as the target to determine what permissions SA1 has with regard to

SA2. The LS packages up two permissions list in the reply to SA1. One list is for SA1

and this list has all the permissions SA1 has for SA2, this means that SA1 does not have

to issue separate permission requests for each SA2 interface it wishes to use. The other

permission list is for SA2 and tells SA2 what access it should grant to SA1. These list

become part of the session tickets that the LS builds for the SpaPermissionsReply, SA1

and SA2 each get a session ticket.

The LS constructs a SubjectSessionTicket for SA1 and a TargetSessionTicket

for SA2. These tickets are based off of the ticket employed by Kerberos and are signed

by the LS. These tickets allow SA1 to show it has permission to communicate with SA2

on specific interfaces as controlled by the LS. At the same time the tickets allow SA1 to

authenticate itself with SA2 and give SA2 the encryption key they use to communicate

123

over the duration of their session.

The SubjectSessionTicket is for SA1 ; the PermissionList returned is from the

perspective of SA1 and includes information about the permissions that SA1 has with the

SA2. This ticket is not encrypted separately, but is encrypted in transit by SKLS SA1 because

the entire message, sans portions of the SecureHeader, is wrapped in encryption by the

LS. SA1 can decrypt the encrypted portion of the SpaPermissionsRequest message and

retrieve the SubjectSessionTicket. This gives SA1 the permissions it has with SA2,

but the SubjectSessionTicket also provides two other critical pieces of information.

It provides the encryption key that SA1 and SA2 use to communicate as well as the

Lifetime over which the session key is viable. When the lifetime expires SA1 has to make

a new SpaPermissionsRequest and get a new SubjectSessionTicket from the LS and

essentially repeat the session setup again; the Lifetime block of Figure 5.3 shows this process.

The TargetSessionTicket is for SA2 ; the PermissionList returned is from the

perspective of SA2 and lets SA2 know which permissions it should grant to SA1. This

ticket is encrypted with SKLS SA2, but is also wrapped in encryption by the whole mes-

sage encryption, this means that only SA1 can remove the outer layer and then get the

TargetSessionTicket that it needs to send to SA2 as part of the SpaSessionRequest

sent below. Only SA2 can decrypt the TargetSessionTicket because it is encrypted with

SKLS SA2, SA1 cannot decrypt this, but merely relays it when making a session request to

SA2.

The last exchange of the Query and Session Request protocol is the setup of a session

between SA1 and SA2. They use the tickets provided by the LS to setup the session. SA1

sends a SpaSessionRequest to SA2, this request contains a SecureAuthenticator and

the TargetSessionTicket. SpaSessionRequest does not use a SecureHeader because

SA2 does not have a key with which to decrypt it until after the message is decrypted.

The SecureAuthenticator can be used to validate the sender’s identity and ties it to

LA SA1, and it is encrypted with SKSA1 SA2. Using SKSA1 SA2 means that only SA1 or

the LS could have created the SecureAuthenticator. SA2 cannot get SKSA1 SA2 until it

124

successfully uses SKLS SA2 to decrypt the TargetSessionTicket. At this point SA2 can

verify the SecureAuthenticator, i.e. that it decrypts with SKSA1 SA2, that the source and

destination address match, and that the timestamp is within allowance. Once SA2 decrypts

TargetSessionTicket it has the PermissionList for SA1, SKSA1 SA2, and the Lifetime

of the session. SA2 is now able to decrypt the SecureAuthenticator, this allows SA2 to

authenticate SA1 as the sender of the message and tie this identity to LA SA1, it also gives

SA2 the timestamp it uses in its response message so that SA1 can authenticate SA2 and

tie its identity to LA SA2.

SA2 uses the timestamp from the SecureAuthenticator and SKSA1 SA2 to craft

its response in the form of a SpaSessionReply. SA2 takes the timestamp from the

SecureAuthenticator and adds one to it and returns it in its SecureAuthenticator.

The SpaSessionReply message allows SA1 to authenticate SA2 when it receives the

SpaSessionReply and decrypts it using SKSA1 SA2. Now both parties have authenticated

each other and exchanged permissions, SA1 can request data from and issue commands to

SA2. This is a one way session, i.e. SA1 can request secured data from and issue secured

commands to SA2, but it does not allow for communication going the other way. SA2 can-

not request secured data from or issue secured commands to SA1 after this session setup.

SA2 would need to repeat the same Query and Session Request protocol exchange for SA1

in order to establish a session going the other way. Both parties can participate in unsecured

communication, these restrictions only deal with secured messaging. SA1 can proceed with

secured notifications, requests, or commands as shown in the Secure Notification, Secure

Request, and Secure Command blocks of Figure 5.3. This is provided that the permissions

exchanged allow for these types of communication on SA2 interfaces. Figure 5.2 shows that

SA1 is interested in secure notifications from SA2, specifically color data on (1,1) from the

color sensor.

5.3.2.3 Lifetime

The Lifetime block of Figure 5.3 shows the protocol exchange that takes place when a

session between two secure components has expired. It is basically the same as the Query

125

and Session Request block, except that the queries do not have to be issued again. Both

parties have knowledge of when the Lifetime expires because it is delivered in the session

tickets from the LS. This does require a certain level of synchronization in the time used

by the components, but SA2 drops the ticket and SA1 requests a new one.

5.3.2.4 Secure Notification

The Secure Notification block of Figure 5.3 shows the secured notification exchange

that can take place after a successful session establishment. The Query and Session Re-

quest block depicts a query for SecureData, this is the name of the notification interface

depicted on line 7 of Sample 5.2 and used in Figure 5.2. The developer of SA1 makes

the query using a SecureNotificationMsg to be populated upon a successful query re-

sult; the developer of SA2 needs to make use of the SecureNotificationMsg so that the

SpaApplication and supporting objects know to publish the notification securely. Using a

SecureNotificationMsg allows the SpaApplication and supporting objects to track the

subscription and handle the encrypted SpaData messages while the subscription is active.

This sequence diagram shows the subscription being negotiated directly between SA1 and

SA2, but it can also be issued and brokered by way of the LS.

After SA1 completes the Query and Session Request exchange successfully it makes a

request to SA2 to subscribe to data that SA2 provides, assuming SA1 has the necessarily

permissions. To do this SA1 checks for the existence of a valid session, otherwise it re-

quests one, and then sends a regular SpaSubscriptionRequest completely in the clear to

SA2. This message could be encrypted and contain a SecureHeader, but initial analysis

suggested that this would be invasive and difficult given the knowledge that each layer has

along the communication path. The main downside here is that a malicious party could

essentially carry out denial-of-service (DoS) attacks by either creating more subscription

requests than a component can handle, or by canceling other components active subscrip-

tions. Subscribing on behalf of other components is allowed by the SPA Logical Interface

Standard [51] and is used by some subnet-managers; this makes it a difficult problem to

address without changing existing protocol definitions. The current plan is to leave this

126

problem for future work as it may require consensus from the SSM community. The ma-

licious party still cannot decipher that data because the resulting notification in the form

of an encrypted SpaData message still requires the SKSA1 SA2 key for decryption, it would

also be difficult to actually have the resultant message routed to them because the sessions

are tied to a LA, and it also requires that a valid session exists.

Figure 5.3 shows SA2 receiving the SpaSubscriptionRequest directly and handling

it much the same way any subscription request is handled in SSM, i.e. SA2 does not

perform a permission check when determining how to respond to the request from SA1.

In general, the SpaSubscriptionRequest results in a SUBSCRIPTION REQUEST GRANTED

SpaSubscriptionReply, but a negative response could be returned if resources are maxed

out or if SA2 was shutting down; SA1 can also end the subscription at any time for similar

reasons. The SpaSubscriptionRequest contains a dialog identifier that is used in the

SpaSubscriptionReply so that SA1 can track which subscription has been granted. The

SpaSubscriptionRequest contains other information used to setup the subscription, but

does not carry any security specific data. It does carry the subscriber or consumer address,

LA SA1, which is used to perform a permission lookup before data is actually published.

SA2 sends off the SpaSubscriptionReply and starts flowing notifications according to

the notification parameters, e.g. publish frequency and delivery divisor. In the case of a

secured notification this also entails a permissions lookup. If the permission is valid then

the SpaData message has a SecureHeader added and is encrypted using SKSA1 SA2 before

being sent off to SA2 as depicted in the Secure Notification block of Figure 5.3. If the

permission is not valid then no data flows. Figure 5.3 shows a couple of message but this

could continue until the lease expires (SSM construct), the session expires (SSSM construct),

or until either party chooses to terminate the subscription for whatever reason.

The Secure Notification block of Figure 5.3 shows SA1 canceling the subscription at the

end after two SpaData messages have been passed. The process to request a subscription

and to cancel a subscription are largely the same except that the SpaSubscriptionRequest

message is initiated with a SUBSCRIPTION CANCEL flag by SA1 and the SpaSubscriptionReply

127

contains a SUBSCRIPTION CANCELED enumeration to relay that the subscription has been

canceled. No additional authentication or validation is performed before a subscription is

canceled.

5.3.2.5 Secure Request

SA1 issues a query for an interface that provides a SPA request interface, this is in

place of or in addition to the SecureData query made in the Query and Session Request

block of Figure 5.3. The application developer needs to make and register the query using

a SecureRequestMsg as the underlying message type so that the SpaApplication object

and underlying communicators can properly handle the message. In keeping with with the

Figure 5.2 example, the SPA request interface is provided by SA2 ; note that our scenario

only shows a SPA notification interface, but the concept is largely the same.

In a SPA request a command is issued in the form of a SpaServiceRequest and a

response is received in the form of a SpaServiceReply. Both of these messages allow

for the passing of parameters, if specified. SA1 has to setup permissions before a secure

SpaServiceRequest can be successfully issued to SA2.

As mentioned, the developer uses SecureRequestMsg, but this message is converted to

a standard SpaServiceRequest message in transit. The Secure Request block illustrates

a Service Request exchange between SA1 and SA2, and assumes that proper query and

permission setup has already occurred. The protocol makes use of a SecureHeader, this

header caries the IV and tag used by AES-GCM in the clear and the rest of the header

and the SpaServiceRequest payload is encrypted using SKSA1 SA2. It should be noted

that there is a primary SpaMessage header that comes first for all messages, which carries

the source and destination address as well, the source address is used to perform the en-

cryption key lookup and both source and destination addresses must match the ones in the

SecureHeader after decryption.

SA1 sends an encrypted SpaServiceRequest to SA2. SA2 looks up the encryption

key and decrypts the SecureHeader and message. If the header passes validation then

SA2 acts on the message and provides a reply. This reply is in the form of an encrypted

128

SpaServiceReply with a SecureHeader. This protects the reply in transit and allows SA1

to validate and authenticate the reply. However, if the header fails validation then no reply

is issued and SA2 simply drops the SpaServiceRequest. Likewise, if the SecureHeader

fails validation in the SpaServiceReply then SA1 discards the reply.

5.3.2.6 Secure Command

Issuing a secured command works much like issuing a secure request except that a

SecureCommandMsg is used and no reply is provided or expected. In order to initiate

a secured command SA1 creates its query with a SecureCommandMsg to be populated

upon a successful query result as described in the query section of the Query and Session

Request block of Figure 5.3. Using a SecureCommandMsg allows the SpaApplication

object and underlying communicators to correctly handle and encrypt the message before

it is transmitted. The API converts the SecureCommandMsg to a standard SpaCommand

message, adds a SecureHeader, and encrypts the message as shown in Figure 5.3.

The Secure Command block illustrates the command exchange between SA1 and SA2,

and assumes that a proper query and permission setup has occurred. SA1 sends an en-

crypted SpaCommand with SecureHeader to SA2. SA2 looks up the encryption key using

the source in the SpaMessage header and decrypts the SecureHeader and message. If the

header passes validation then SA2 acts on the message. Pass or fail no response is given to

SA2, this is the same for unsecured commands.

129

CHAPTER 6

SSSM EVALUATION

6.1 Introduction

This research evaluates the change in developer and system resource burden when

developing unsecured versus secured versions of the same producer and consumer software

using SSSM. An increase in developer burden reduces the reusability of SSM as it makes

it harder for developers to use the software which in turn increases the cost in terms of

dollars and schedule to develop software; all this makes reuse of the software less attractive.

An increase in system resource utilization reduces the set of hardware, typically thought of

in terms of a single board computer (SBC) or set of processing nodes, that have enough

margin to accommodate the software. This chapter discusses both of these burdens in terms

of SSM versus SSSM or unsecured versus secured to better understand the effects of adding

security to a reusable modular open-network software development framework.

Section 6.2 outlines the differences in developing secured interfaces in SSSM versus

unsecured interfaces in SSM. This comparison shows that the difference is minimal in terms

of actual application development with the main differences being a configuration file that

must be created by developers for the LS and the provisioning of keys for any secured end-

points. Section 6.3 presents the results of the side-by-side performance of SSM and SSSM.

These results show an increase in CPU and memory utilization and decreased payload

byte throughput particularly at higher message throughputs. This means that reusability

may be reduced because performance requirements and system resources need to be more

carefully considered for SSSM than they do for SSM. These results also show that there may

be some ways to address this without changes to the API that might increase developer

burden and/or that future work may need to fully address this divergence. Section 6.4

concludes the chapter by summarizing the findings of this evaluation.

130

6.2 Unsecured versus Secured Development

This section explains the difference, from the perspective of a developer, between de-

veloping an interface that is unsecured and one that is secured in SSSM. This shows the

relatively low impact that adding security to SSM has on the application developer. De-

veloper cost is a significant driver of a space system development budget and minimizing

impact here is critical to maintaining the reusability of SSSM. This section uses an example

to cover three pieces of the development process. They are developing a producer; devel-

oping a consumer; and, in the case of the secured variant, creating the permissions table

that the LS uses to authenticate secured components, lookup permissions, and issue session

tickets.

6.2.1 Producer Development

This comparison uses the xTEDSs defined in Sample 6.1 and Sample 6.2. Sample 6.1

is implemented by the unsecured API producer, named ApiProducer, and Sample 6.2 is

implemented by the secured API producer, named ApiSecureProducer.

The xTEDSs are functionally the same. The only differences between the two are the

names of the application, the interfaces, and the messages. Secure has been prefixed to

each of the interfaces and messages, and inserted into the application name in the secured

version. This example uses these differing names for illustrative purposes, the Secure pre-

fix is not a requirement for using SSSM. There is no functional difference in the xTEDS

definition for unsecured versus secured development. The ApiProducer and ApiSecurePro-

ducer applications will incorporate and implement these xTEDSs. They are included as

part of the binary so the API can be provide them to the LS during registration. The

development framework includes a Python script that takes the xTEDS file as input and

creates a c-string and a Extensible Transducer Electronic Data Sheet Universally Unique

Identifier (XUUID) that can be used in the application. This process works the same for

the secured and unsecured versions.

These xTEDSs both show two interfaces. The command, requests, and notifications do

not have to be separated this way, but in this example the *CounterManagement interface,

131

1 <?xml version='1.0' encoding='utf-8' ?>
2 <xTEDS xmlns='https://pnpsoftware.sdl.usu.edu/redmine/projects/xtedsschema'
3 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
4 xsi:schemaLocation= 'https://pnpsoftware.sdl.usu.edu/redmine/projects/xtedsschema

https://pnpsoftware.sdl.usu.edu/spa/xteds/current.xsd'
5 name='ApiProducerXteds' version='1.0'>
6 <Application name='ApiProducer' kind='application' programMemoryRequired='1' dataMemoryRequired='1'

componentKey='apiProducerComponentKey'/>
7 <Interface name='CounterData' id='1' >
8 <Notification>
9 <DataMsg name='CounterData' id='1' msgArrival='PERIODIC' msgRate='1.0' >

10 <Variable name='counter' kind='count' dataType='FLOAT32' units='count' />
11 <Variable name='currentIncrement' kind='count' dataType='FLOAT32' units='count' />
12 </DataMsg>
13 </Notification>
14 <Request>
15 <CommandMsg name='GetCurrentIncrement' id='2' />
16 <DataReplyMsg name='CurrentIncrementReply' id='3' >
17 <Variable name='curIncrement' kind='count' dataType='FLOAT32' units='count'/>
18 </DataReplyMsg>
19 </Request>
20 </Interface>
21 <Interface name='CounterManagement' id='2' >
22 <Command>
23 <CommandMsg name='changeIncrement' id='1' >
24 <Variable name='newIncrement' kind='count' dataType='FLOAT32' units='count' />
25 </CommandMsg>
26 </Command>
27 </Interface>
28 </xTEDS>

Sample 6.1. API Producer xTEDS. The xTEDS that the ApiProducer will implement
and provide.

interface 2, is for commanding or modifying the behavior of the producer. In this example

the Api*Consumers, described later, can use this interface to change the value of a variable

that the Api*Producer maps to newIncrement. This section describes this process shortly.

The *CounterData interface groups together data a consumer or user might request or to

which they might subscribe. This example is a bit contrived, but this interface lets the

consumer get the current counter value every time it is published, or request the current

value of the increment being used to update the counter before the producers publishes it.

SSSM adds to the SPA API so the process of implementing the SpaApplication class is

basically the same in the unsecured and secured cases. Handling and producing messages

for the SSM network all works the same from the developer’s perspective. The developer

registers callback functions that the API can trigger when a command or request is received

or when a notification is about to go out. Within the function callbacks for commands and

requests the messages have already been decrypted, assuming they pass authentication and

validation, so the developer does not need to handle them any differently. In the case

of notifications the API will encrypt these messages after they leave the callback so the

132

1 <?xml version='1.0' encoding='utf-8' ?>
2 <xTEDS xmlns='https://pnpsoftware.sdl.usu.edu/redmine/projects/xtedsschema'
3 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
4 xsi:schemaLocation= 'https://pnpsoftware.sdl.usu.edu/redmine/projects/xtedsschema

https://pnpsoftware.sdl.usu.edu/spa/xteds/current.xsd'
5 name='ApiSecureProducerXteds' version='1.0'>
6 <Application name='ApiSecureProducer' kind='application' programMemoryRequired='1' dataMemoryRequired='1'

componentKey='apiProducerComponentKey'/>
7 <Interface name='SecureCounterData' id='1' >
8 <Notification>
9 <DataMsg name='SecureCounterData' id='1' msgArrival='PERIODIC' msgRate='1.0' >

10 <Variable name='counter' kind='count' dataType='FLOAT32' units='count' />
11 <Variable name='currentIncrement' kind='count' dataType='FLOAT32' units='count' />
12 </DataMsg>
13 </Notification>
14 <Request>
15 <CommandMsg name='SecureGetCurrentIncrement' id='2' />
16 <DataReplyMsg name='SecureCurrentIncrementReply' id='3' >
17 <Variable name='curIncrement' kind='count' dataType='FLOAT32' units='count'/>
18 </DataReplyMsg>
19 </Request>
20 </Interface>
21 <Interface name='SecureCounterManagement' id='2' >
22 <Command>
23 <CommandMsg name='SecureChangeIncrement' id='1' >
24 <Variable name='newIncrement' kind='count' dataType='FLOAT32' units='count' />
25 </CommandMsg>
26 </Command>
27 </Interface>
28 </xTEDS>

Sample 6.2. Secured API Producer xTEDS. The xTEDS that the ApiSecureProducer will
implement and provide.

developer never has to deal with encryption or access control.

There are more complicated cases than this example, but at basic level the only dif-

ference for the developer between an unsecured and secured producer is in the declaration

of the message. Sample 6.3 shows the header file for the ApiProducer class. Line 25 shows

the declaration for the CommandMsg that the ApiProducer will use to implement the com-

mand on line 22 of the ApiProducer xTEDS in Sample 6.1 This allows the ApiConsumer

programs to change the value of the increment via command. Line 26 of the header file

shows the declaration for the RequestMsg that implements the request on line 14 of the

ApiProducer xTEDS. This allows the ApiConsumer program to retrieve the current incre-

ment via a request message. Finally, line 27 of the header file shows the declaration of the

NotifcationMsg that implements the notification on line 8 of the ApiProducer xTEDS. This

allows the ApiConsumer to subscribe to and receive the current value of the counter every

time it is published by the ApiProducer.

These three lines where m myChangeIncrementCmd, m myCurrentIncrementRequest,

and m myCounterNotification are delcared are the main difference between the ApiProducer

133

1 #ifndef _API_PRODUCER_HPP
2 #define _API_PRODUCER_HPP
3
4 #include "ssm/api/SpaApplication.hpp"
5
6 /**
7 * @class ApiProducer
8 *
9 * @brief A simple producer application which publishes a notification message and

10 * accepts a command which alters the data being published
11 */
12 class ApiProducer : public SpaApplication
13 {
14 public:
15 ApiProducer(void);
16 void appInit(Int32 argc, char** pArgv);
17
18 // Callbacks
19 void preCounterMsgPublish(void);
20 void onChangeCounterIncrementCmd(void);
21 void onCurrentIncrementRequest(void);
22
23 private:
24 // Messages from xTEDS
25 CommandMsg m_myChangeIncrementCmd; //!< Command message to change the increment
26 RequestMsg m_myCurrentIncrementRequest; //!< Request message to get the current increment
27 NotificationMsg m_myCounterNotification; //!< Notification message for the counter
28
29 // Mapped member variables
30 Float32 m_counter; //!< A counter which updates each time data is published
31 Float32 m_curIncrement; //!< Size of each increase
32 Float32 m_newIncrement; //!< Contains the new increment value set through a CommandMsg
33
34 CALLBACK_CONFIG(ApiProducer); // Required in classes deriving from SpaApplication to properly setup

callbacks
35 };
36
37 #endif // _API_PRODUCER_HPP

Sample 6.3. ApiProducer Declaration. The header file for the ApiProducer.

and the ApiSecureProducer. These same three lines in Sample 6.4 show the difference. The

ApiSecureProducer uses SecureCommandMsg instead of CommandMsg, SecureRequestMsg

instead of RequestMsg, and SecureNotifcationMsg instead of NotifcationMsg. Review of

the two header files shows that both are the same except for the declaration of those the

messages, and the name of the class. The producers use the other member variable to track

and modify the counter, and the current increment being used for the counter. This shows

that setting up the xTEDS and the header file for the a SPA API application is very similar

for SSM and SSSM, this is by design.

Next this section looks at the implementation file for the example producers. This is

the source file shown in Sample 6.5 and the implementation is the same for the unsecured

and secured versions, except for the class name, so only one code sample is used to review

the implementation of both the ApiProducer and the ApiSecureProducer. The default

constructor instantiates an instance of the class and sets up each of the messages so they

134

1 #ifndef _API_SECURE_PRODUCER_HPP
2 #define _API_SECURE_PRODUCER_HPP
3
4 #include "ssm/api/SpaApplication.hpp"
5
6 /**
7 * @class ApiSecureProducer
8 *
9 * @brief A simple secure producer application which publishes a

10 * notification message and accepts a command which alters the
11 * data being published
12 */
13 class ApiSecureProducer : public SpaApplication
14 {
15 public:
16 ApiSecureProducer(void);
17 void appInit(Int32 argc, char** pArgv);
18
19 // Callbacks
20 void preCounterMsgPublish(void);
21 void onChangeCounterIncrementCmd(void);
22 void onCurrentIncrementRequest(void);
23
24 private:
25 // Messages from xTEDS
26 SecureCommandMsg m_myChangeIncrementCmd; //!< Command message to change the increment
27 SecureRequestMsg m_myCurrentIncrementRequest; //!< Request message to get the current increment
28 SecureNotificationMsg m_myCounterNotification; //!< Notification message for the counter
29
30 // Mapped member variables
31 Float32 m_counter; //!< A counter which updates each time data is published
32 Float32 m_curIncrement; //!< Size of each increase
33 Float32 m_newIncrement; //!< Contains the new increment value set through a SecureCommandMsg
34
35 CALLBACK_CONFIG(ApiSecureProducer); // Required in classes deriving from SpaApplication to properly

setup callbacks
36 };
37 #endif // _API_SECURE_PRODUCER_HPP

Sample 6.4. ApiSecureProducer Declaration. The header source file for the
ApiSecureProducer.

match the their XTEDS entries. The interface identifiers and message identifiers must

match for LS and API to properly handle messages, and in the secure version they are also

used for permissions and session creation, so they must match the entries in the permission

table configuration file as well. The consumer side does not need to know these identifiers

in advance as LS provides them in the query reply. The appInit function that follows is

called by the API and allows the developer to setup the messages that they need the API to

handle for them; the developers setup callbacks that the API uses to pass off the messages

to developer code when the messages are received or when they are about to be published.

The rest of this section walks though how a developer sets up each of the messages so they

can use them.

The command from the xTEDS is setup using m myChangeIncrementCmd, this is

constructed on line 11 with interface identifier ‘2’ and message identifier ‘1’. This pairing,

(2,1), ties this message to the command in the xTEDS, or at least sets if up so it can be tied

135

1 #include "ApiProducer.hpp"
2 #include "ApiProducerXteds.hpp"
3
4 /**
5 * @brief Constructor which sets the location of the xTEDS, the name of the application, and the xTEDS UUID
6 */
7 ApiProducer::ApiProducer(void)
8 : SpaApplication("ApiSecureProducer", API_PRODUCER_XTEDS, API_PRODUCER_XUUID),
9 m_myCounterNotification(1, 1, true, 1.0), // Set interface id and message id from xTEDS

10 m_myCurrentIncrementRequest(1, 2, 3), // Set interface and message ids for both command and data reply
portions

11 m_myChangeIncrementCmd(2, 1),
12 m_counter(0.0),
13 m_curIncrement(1.1f),
14 m_newIncrement(0)
15 {
16 // empty
17 }
18
19 /**
20 * @brief Function called by API to allow user to issue queries and register messages from their xTEDS
21 *
22 * @param argc Number of command line arguments
23 * @param pArgv Array of character string command line arguments
24 */
25 void ApiProducer::appInit(Int32 argc, char** pArgv)
26 {
27 // Register provided command message
28 m_myChangeIncrementCmd.addVariable(VariableType(FLOAT32_TYPE), &m_newIncrement);
29 m_myChangeIncrementCmd.onCommandReceived = callback(&ApiProducer::onChangeCounterIncrementCmd);
30 registerCommand(m_myChangeIncrementCmd);
31
32 // Register provided request message
33 m_myCurrentIncrementRequest.addDataReplyVariable(VariableType(FLOAT32_TYPE), &m_curIncrement);
34 m_myCurrentIncrementRequest.onRequestReceived = callback(&ApiProducer::onCurrentIncrementRequest);
35 registerRequest(m_myCurrentIncrementRequest);
36
37 // Register provided notification messages
38 m_myCounterNotification.addVariable(VariableType(FLOAT32_TYPE), &m_counter); // Setup message per xTEDS

definition
39 m_myCounterNotification.addVariable(VariableType(FLOAT32_TYPE), &m_curIncrement);
40 m_myCounterNotification.onPublish = callback(&ApiProducer::preCounterMsgPublish);
41 registerNotification(m_myCounterNotification); // Register the notification message with the framework
42 }
43
44 /** @brief Will be called periodically to allow app to perform any needed processing */
45 void ApiProducer::myActiveProcessing(void)
46 {
47 LOG_INFO("Hello from my periodic callback!");
48 // Do any needed processing here
49 }
50
51 /** @brief Called when a change counter increment command is received */
52 void ApiProducer::onChangeCounterIncrementCmd(void)
53 {
54 LOG_INFO("Received change counter increment command, now incrementing by %f", m_newIncrement);
55 m_curIncrement = m_newIncrement;
56 }
57
58 /** @brief Called when a counter increment request message is received */
59 void ApiProducer::onCurrentIncrementRequest(void)
60 {
61 LOG_INFO("Received counter increment request, now replying with %f", m_curIncrement);
62 // Request's DataReply sent after returning from this function with the variable we mapped to it
63 }
64
65 /** @brief Will be called before publishing the counter data message to subscribers */
66 void ApiProducer::preCounterMsgPublish(void)
67 {
68 // Update member variables before publish
69 m_counter = m_counter + m_curIncrement;
70 LOG_INFO("Published current counter value of %f", m_counter);
71 publish(m_myCounterNotification);
72 }

Sample 6.5. Api*Producer Definition. The implemetation source file for the ApiProducer,
the implementation file for the ApiSecureProducer is the same except for the class name.

136

to the command in the xTEDS in the appInit starting on line 28. Line 28 maps the variable

so that marshalling and unmarshalling methods used in the API know what variables are

included in the message. The value in this variable will be updated by the API when this

message received. The next line sets up the callback that the API should call when this

message is received, and last line in that block finishes the registration process. Line 52 of

Sample 6.5 shows the implementation of the onChangeCounterIncrementCmd function. In

this function the developer can simply use m newIncrement because the API updates the

variable when the message is received. This process works the same for the secure version,

the developer does not to deal with encryption or permissions directly, this is all handled by

the API. There is no change in process here from SSM to SSSM and using data is as simple

as mapping the variable and then using them in the message callback. The process is the

same for the request and notification messages. In the case of the variables mapped to the

notification the developer can change the value of m counter in the preCounterMsgPublish

callback before the notification message is sent out.

Creating a producer-type application using the API to create a secured or unsecured

messages is essentially the same, except for the message classes that the developer uses.

6.2.2 Consumer Development

Developing an unsecured versus secured consumer-type application is, again, basically

the same for the application developer. The developer again uses the secured versions of the

command, request, and notification messages, the same messages that are shown in Sample

6.4 are used on the consumer side as well. The header files are very similar to the ones

shown for the producer example so they are not shown. Sample 6.6 shows the source file

for the Api*Consumer examples, the files are the same except for the class name so only

one code sample is used to describe the implementation of both the ApiConsumer and the

ApiSecureConsumer. The constructors for the message classes do not need to pass in the

interface and message identifiers consumer-side, as those will be provided by the LS when

it replies to the queries that are issued by the consumer on lines 27, 33, and 40. These

queries and their associated messages will be in an unsatisfied state until the LS replies to

137

the queries.

The process that the API goes through to handle the xTEDS registration and queries

is different for the unsecured versus secured versions, but at the application developer

level there is no noticeable difference aside from using different message classes. Once

the m newIncrement variable is mapped to m setIncrementCommand, on line 26 its value

can be manipulated in developer-side code and then the command can be sent, the function

starting on line 60 shows an example of this. The API takes care of marshalling the updated

value into the message before it is sent in both the secured and unsecured cases, and the

API takes care of encrypting the variable as part of the message payload before it it sent in

the secured case. This is all achieved by the API and the developer simply calls sendMsg

as shown on line 68.

A similar process is used to map variables for the m getCurIncrementRequest and

m counterNotification messages. Sample 6.6 shows how the different messages can be used

in consumer-side code, but the interaction at the developer-level is the same for SSM and

SSSM. SSSM supports both cases, secured and unsecured versions can be developed against

the SSSM version of the API by using either the unsecured or secured versions of the message

classes.

6.2.3 Policy Development

The basic vehicle for setting up security policies is explained in Section 5.3.1 of Chap-

ter 5 and it entails setting up a policy table for the LS and providing each secured component

with a unique encryption key. Sample 6.7 shows a possible configuration file for the ApiSe-

cureProducer and ApiSecureConsumer. The example permission table has comments to

help explain the relevant lines of Extensible Markup Language (XML). The table provides

the encryption keys, preferred key lengths, and permissions. Sample 6.7 shows that the

ApiSecureProducer has no permissions with regard to ApiSecureConsumer, and in our ex-

ample the ApiSecureConsumer does not provide any interfaces. Typically applications are

not pure consumer or pure producer, but this example was kept this way for simplicity.

138

1 #include "ApiConsumer.hpp"
2
3 /** @brief ApiConsumer constructor */
4 ApiConsumer::ApiConsumer()
5 : SpaApplication("ApiConsumer"),
6 m_setIncrementCommand(),
7 m_getCurIncrementRequest(),
8 m_counterNotification(),
9 m_counter(0),

10 m_increment(0),
11 m_newIncrement(0),
12 m_curIncrement(0),
13 m_recvCount(0)
14 { /* do nothing */ }
15
16 /**
17 * @brief Space provided to issue queries and setup any processing needs
18 * @param argc Number of command line arguments
19 * @param pArgv Array of character string command line arguments
20 */
21 void ApiConsumer::appInit(Int32 argc, char** pArgv)
22 {
23 Query setNewIncrementQuery(Query::COMMAND,

Query::QUERY_CURRENT|Query::QUERY_CANCELLATIONS|Query::QUERY_FUTURE);
24 setNewIncrementQuery.message.addAttribute("name", QueryOperand(EQUAL), "ChangeIncrement", 0);
25 setNewIncrementQuery.interface.addAttribute("name", QueryOperand(EQUAL), "CounterManagement", 0);
26 m_setIncrementCommand.addVariable(VariableType(FLOAT32_TYPE), &m_newIncrement); // Map variable
27 issueQuery(setNewIncrementQuery, &m_setIncrementCommand); // Issue query
28
29 Query getCurIncrementRequestQuery(Query::REQUEST, Query::QUERY_CURRENT | Query::QUERY_CANCELLATIONS |

Query::QUERY_FUTURE);
30 getCurIncrementRequestQuery.message.addAttribute("name", QueryOperand(EQUAL), "GetCurrentIncrement", 0);
31 m_getCurIncrementRequest.addDataReplyVariable(VariableType(FLOAT32_TYPE), &m_curIncrement); // Map variables
32 m_getCurIncrementRequest.onDataReplyReceived = callback(&ApiConsumer::onCurrentIncrementDataReply);
33 issueQuery(getCurIncrementRequestQuery, &m_getCurIncrementRequest); // Issue query
34
35 Query counterQuery(Query::NOTIFICATION, Query::QUERY_CURRENT | Query::QUERY_CANCELLATIONS |

Query::QUERY_FUTURE);
36 counterQuery.message.addAttribute("name", QueryOperand(EQUAL), "CounterData", 0);
37 m_counterNotification.addVariable(VariableType(FLOAT32_TYPE), &m_counter); // Map message variables
38 m_counterNotification.addVariable(VariableType(FLOAT32_TYPE), &m_increment);
39 m_counterNotification.onDataReceived = callback(&ApiConsumer::onCounterDataReceived); // Setup events
40 issueQuery(counterQuery, &m_counterNotification); // Issue query
41
42 // Setup pro-active processing
43 setupPeriodicCallback(callback(&ApiConsumer::activeProcessing), 0.5);
44 }
45
46 /** @brief Called after receiving a CounterData data message and populating mapped member variables */
47 void ApiConsumer::onCounterDataReceived(void)
48 {
49 LOG_INFO("Received data msg - counter: %f curIncrement: %f", m_counter, m_increment);
50 m_recvCount++;
51 }
52
53 /** @brief Called after receiving a CounterData data message and populating mapped member variables */
54 void ApiConsumer::onCurrentIncrementDataReply(void)
55 {
56 LOG_INFO("Received data reply containing current increment: %f", m_curIncrement);
57 }
58
59 /** @brief Called at the rate specified in appInit to do any active processing */
60 void ApiConsumer::activeProcessing(void)
61 {
62 if (m_setIncrementCommand.isSatisfied() && (m_recvCount % 5) == 0 && m_recvCount > 0)
63 {
64 if (m_increment > 1000) m_newIncrement = 1.1f;
65 else m_newIncrement = m_increment * 2;
66
67 LOG_INFO("Sending command to change increment increase increment 2x");
68 sendMsg(&m_setIncrementCommand);
69 }
70
71 if (m_getCurIncrementRequest.isSatisfied() && (m_recvCount % 3) == 0)
72 {
73 LOG_INFO("Sending request for current increment ");
74 sendMsg(&m_getCurIncrementRequest);
75 }
76 }

Sample 6.6. Api*Consumer Definition. The implemetation source file for the
ApiConsumer, the implementation file for the ApiSecureConsumer is the same except
for the class name.

139

Line 14 starts the permissions that the ApiSecureConsumer has with the ApiSecurePro-

ducer target. The LS ingests the file and uses the keys and permissions to authenticate the

producer and consumer, and create a session ticket that allows the producer and consumer

applications to communicate securely on the producers (1,1), (1,2), (1,3), and (2,1) inter-

faces. The session ticket and session management is handled by the LS and API without

affecting application-level code, or burdening the developer.

1 <PermissionTable>
2 <!-- ApiSecureProducer -->
3 <SubjectComponent uuid='fccccb2a-30dc-604a-d5a8-2fbcccc3aa33' preferredKeySize='32'>
4 <!-- ApiSecureProducer to LS Key -->
5 <LookupServiceSymmetricKey key='00112233445566778899aabbccddeeff00112233445566778899aabbccddeeff' />
6 <TargetPermissionList /> <!-- No permissions -->
7 </SubjectComponent>
8 <!-- ApiSecureConsumer -->
9 <SubjectComponent uuid='faaace1a-30dc-604a-d5a8-2fbaaaa3aa44'>

10 <!-- ApiSecureConsumer to LS Key -->
11 <LookupServiceSymmetricKey key='ffeeddccbbaa99887766554433221100ffeeddccbbaa99887766554433221100' />
12 <TargetPermissionList>
13 <!-- ApiSecureConsumer to ApiSecureProducer permissions -->
14 <TargetComponent uuid='fccccb2a-30dc-604a-d5a8-2fbcccc3aa33' >
15 <Permission interfaceId='1' messageId='1' />
16 <Permission interfaceId='1' messageId='2' />
17 <Permission interfaceId='1' messageId='3' />
18 <Permission interfaceId='2' messageId='1' />
19 </TargetComponent>
20 </TargetPermissionList>
21 </SubjectComponent>
22 </PermissionTable>

Sample 6.7. LS Permission Table for ApiSecureProducer and ApiSecureConsumer.
Permission Table that configures the LS and allows the component with UUID ending
in aa33 to communicate with aa44 on (1,1).

There is one more piece to the puzzle that the application developer needs to provide,

and that is a unique key for the secured producer and one for the consumer. These keys must

match the ones in the permission table that the developer uses to configure the LS. The keys

are provided to each application through command-line parameters, and would typically be

included as part of a script or service that manages the startup of the application. The

preferred key size is also passed to the application the same way and also needs to match the

permission table. Sample 6.8 shows how this would be setup for the ApiSecureProducer.

The key is provided as a American Standard Code for Information Interchange (ASCII)

hexadecimal-string to represent its binary value.

Setting up the permissions table and passing the keys to applications with secured

140

1 #!/bin/bash
2
3 # Start the API Producuer
4 $./ApiSecureProducer -k=00112233445566778899aabbccddeeff00112233445566778899aabbccddeeff

--preferred-key-size=32 &

Sample 6.8. Startup Script for ApiSecureProducer. Simple script that starts the
ApiSecureProducer with the specified encryption key and preferred key size for use with
the LS.

interfaces is the primary, and really only, additional developer-effort required to develop

secured message interfaces instead of unsecured interfaces.

6.3 Performance Evaluation

This section discusses the delta in payload byte throughput, CPU utilization, and

memory usage when security is added to a representative reusable modular open-network

software development framework. It is important to evaluate this delta in order to get a

basic understanding of how adding security has affected reusability. For example, lower

byte throughput and higher CPU utilization can reduce the scenarios where SSSM can be

used and therefore affect the reusability of software systems that use it as a core.

To this end this section presents a high-level comparison of unsecured versus secured

while providing the same functionality. This section reviews a series of test that evaluate the

delta from unsecured to secured messaging in terms of resource utilization and message or

byte throughput if a developer creates a simple set of publish/subscribe applications, namely

a secure producer/consumer set of applications versus a unsecured producer/consumer set of

applications. There is a delta from unsecured to secured in term of resource utilization and

payload byte throughput. This section shows that performance requirements and system

resources need to be more carefully considered for SSSM than they do for SSM; reusability

has taken a hit but future performance improvements and careful API usage can help to

address this.

6.3.1 Setup

This evaluation conducts a simple apples to apples comparison of a notification interface

141

that is unsecured to a notification interface that is secured. This requires the creation of

two sets of producer/consumer applications, a unsecured producer/consumer and a secured

producer/consumer pair.

Each producer/consumer pair was exercised on a Linux Virtual Machine Ware (VMware)

virtual machine (VM) instance with 2 gigabyte (GB) of random access memory (RAM).

This VM is hosted on a Windows 10 machine with an i7-4700MQ CPU running at 2.40

gigahertz (GHz), 4 Cores and 8 Logical Processors. The host has 32 GB of RAM. The

host machine and VM are not representative of the resources that a typical small space

system might have and so this is not meant as a representative benchmark of performance

and resource utilization, but as a comparison between the unsecured and secured versions.

This illustrates the difference in resource usage and throughput for the two variants.

Both producer applications make use of the notification shown in Sample 6.9. The

notifications have a few bytes of management variables, i.e. msgNumber, startSeconds, and

startNanoseconds. The rest of the message is a variable size payload, this size can be varied

during execution, but for these tests the size is passed in as a command-line parameter and

fixed during execution. The producer applications will attempt to publish the notifications

at a constant rate for the duration of a test, for these tests a rate of 1000 hertz (Hz) is

always passed into the producer application and the size of the DynamicArray is changed

between runs to change the amount of message data moved per second.

Both consumer applications make use of the appInit function shown in Sample 6.10.

In this function variables are initiated, and mapped to the notification the consumers will

receive. Lines 24 and 25 show where the consumers build the query for the “MeasureData”

notification, this query is then issued on line 32 after the variables are mapped and a

callback function is setup. The variables and callback need to be setup before the query

is issued so the API can appropriately map the variables and callback before a reply to

the query is received from the LS. Lines 27 through 30 in Sample 6.10 correspond with

lines 11 through 14 in the producer xTEDS. The API will populate these variables just

prior to calling onCounterDataReceived, this allows the developer to easily access data in

142

1 <?xml version='1.0' encoding='utf-8' ?>
2 <xTEDS
3 xmlns='https://pnpsoftware.sdl.usu.edu/redmine/projects/xtedsschema'
4 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
5 xsi:schemaLocation='https://pnpsoftware.sdl.usu.edu/redmine/projects/xtedsschema

https://pnpsoftware.sdl.usu.edu/spa/xteds/current.xsd'
6 name='Api*MeasureProducerXteds' version='1.0' >
7 <Application name='Api*MeasureProducer' kind='application' programMemoryRequired='1' dataMemoryRequired='1'

componentKey='apiProducerComponentKey'/>
8 <Interface name='MainInterface' id='1' >
9 <Notification>

10 <DataMsg name='MeasureData' id='1' msgArrival='EVENT' >
11 <Variable name='msgNumber' kind='count' dataType='UINT16' units='count'/>
12 <Variable name='startSeconds' kind='count' dataType='UINT32' units='seconds'/>
13 <Variable name='startNanoseconds' kind='count' dataType='UINT32' units='nanoseconds'/>
14 <DynamicArray name='positionOne' kind='count' dataType='UINT08' units='count'

maxArrayElements='64000'/>
15 </DataMsg>
16 </Notification>
17 </Interface>
18 </xTEDS>

Sample 6.9. Measure API Producer xTEDS. The xTEDS that both the unsecured and
secured producers use for this evaluation.

the message payload without having to index into into the message buffer. The evaluation

that follows shortly covers some of the price that comes with this ease-of-use. Once the LS

returns a the query response the applications can begin exchanging this notification.

As previously mentioned the rate at which the message are sent is held constant, but

the size of the messages is increased for each set of ten test runs. The message sizes used are:

4,000, 8,000, 16,000, 22,000, 26,000, 30,000, 34,000, 38,000, 44,000, 48,000, 54,000, 60,000,

and 64,000 bytes. These rates correspond to 4, 8, 16, 22, 26, 30, 34, 38, 44, 48, 54, 60, and

64 megabytes per second (MBps) if the message rate of 1000 Hz can be maintained; these

rates are the desired rates for each set of tests. Each producer/consumer pair is run 10 times

at each of these message sizes and the average CPU utilization, memory usage, and payload

byte throughput are computed. This average is used to combat other background process

that might compete for system resources during the test runs. The producer and consumer

receive the message rate and size via command-line from a script that runs all the tests.

The consumer multiplies the rate by a fixed test duration to know how many messages it

should receive for the given test run over the test duration if the desired message rate can be

maintained. This duration is a constant in the code base that cannot be changed without

recompiling. The tests were intended to be approximately 30 seconds in duration, but

would run longer when the consumer/producer trailed behind the desired rate or dropped

143

1 void Api__MeasureConsumer::appInit(Int32 argc, char** pArgv)
2 {
3 if (m_pLsKey != NULL)
4 {
5 m_keySize = static_cast<Int32>(m_preferredKeySize);
6 }
7
8 m_pNotificationData = new (g_pPoolController) UInt8[Api__MeasureConsumer::MAX_NOTIFICATION_SIZE];
9 m_pMsgNumberData = new (g_pPoolController) UInt16[m_sampleSize];

10 m_pStartSecondsData = new (g_pPoolController) UInt32[m_sampleSize];
11 m_pStartNanosData = new (g_pPoolController) UInt32[m_sampleSize];
12 m_pEndSecondsData = new (g_pPoolController) UInt32[m_sampleSize];
13 m_pEndNanosData = new (g_pPoolController) UInt32[m_sampleSize];
14 m_pRcvRateData = new (g_pPoolController) UInt16[Api__MeasureConsumer::DURATION_SECONDS];
15
16 memset(m_pNotificationData, 0, Api__MeasureConsumer::MAX_NOTIFICATION_SIZE);
17 memset(m_pMsgNumberData, 0, m_sampleSize * sizeof(UInt16));
18 memset(m_pStartSecondsData, 0, m_sampleSize * sizeof(UInt32));
19 memset(m_pStartNanosData, 0, m_sampleSize * sizeof(UInt32));
20 memset(m_pEndSecondsData, 0, m_sampleSize * sizeof(UInt32));
21 memset(m_pEndNanosData, 0, m_sampleSize * sizeof(UInt32));
22 memset(m_pRcvRateData, 0, Api__MeasureConsumer::DURATION_SECONDS * sizeof(UInt16));
23
24 Query dataNotifQuery(Query::NOTIFICATION, Query::QUERY_CURRENT | Query::QUERY_CANCELLATIONS |

Query::QUERY_FUTURE);
25 dataNotifQuery.message.addAttribute("name", QueryOperand(EQUAL), "MeasureData", 0);
26
27 m_dataNotification.addVariable(VariableType(UINT16_TYPE), &m_msgNumber);
28 m_dataNotification.addVariable(VariableType(UINT32_TYPE), &m_startSeconds);
29 m_dataNotification.addVariable(VariableType(UINT32_TYPE), &m_startNanos);
30 m_dataNotification.addDynamicArray(VariableType(UINT8_TYPE), m_pNotificationData, &m_notificationSize,

Api__MeasureConsumer::MAX_NOTIFICATION_SIZE);
31 m_dataNotification.onDataReceived = callback(&Api__MeasureConsumer::onCounterDataReceived);
32 issueQuery(dataNotifQuery, &m_dataNotification);
33 }

Sample 6.10. ApiMeasureConsumer and ApiSecureMeasureConsumer appInit Function.
The same appInit function is used for the unsecured and secured consumers. This function
shows how the variables are setup for tracking message rates, mapping variables, and
linking the variable size data array to the xTEDS notification used for testing.

messages. The command-line arguments allowed the message rate to be varied, but that

was kept constant for these tests and only the message size was changed. Future work can

evaluate the performance of keeping the message size constant and increasing the message

rate.

In summary, the publish rate of the test notification message was held constant while

the message size is increased. Each test was run ten times at each speed with both the

unsecured and secured variants, this means there are a total of 130 test runs for unsecured

and 130 for secured. The specific concepts are outlined below:

� Publish rate — The publishing rates for the notification is held constant at 1000

Hz.

� Message payload size — Message payload for the notification was increased with

each set of test runs by 4,000 bytes, from 4000 up to 64,000 bytes. A test run consisted

144

of 10 test iterations at the same payload size.

� Network throughput — Throughput only considers the size of the dynamic array.

Throughput is calculated by tracking the number of messages moved per second.

The actual number of bytes moved is higher, but this test is for comparison and not

designed to measure capability so the total number is not as important. The overhead

of the secured heard will in theory reduce the number of payload bytes that can be

moved. These tests were conducted on a local host only network with all processes

running on the same host.

� CPU utilization — CPU utilization was tracked for the producer and consumer ap-

plications during each test run. The process are competing with other SSM processes

as well as other, and user and system processes.

� Memory utilization — Memory utilization was tracked for the producer and con-

sumer applications during each test run.

6.3.2 Evaluation Results

The tests and this review of the test results is not a formal analysis of the unsecured

and secured message handling performance. These test and this evaluation seek to look

at the delta between unsecured and secured message handling. Future work can perform

a in-depth performance analysis and look at ways to optimize the secured, and even the

unsecured variants. This review is an evaluation of the secured variant against the the

unsecured version to quantify at a basic level of some of the performance-related effects

of adding security provisions to SSM. It is important to be aware of this moving forward

as significant deltas from SSM to SSSM negatively impact of the reusability of this open-

network software development framework.

First this evaluation reviews the payload throughput in bytes of the unsecured and

secured producer/consumer pairs. Figure 6.1 shows the desired payload byte throughput

in blue, this is the MBps that would be achieved if the producer/consumer pairs exchange

the messages at 1000 Hz. Figure 6.1 shows that both the unsecured and secured variants

match this desired rate until 32 MBps. They both start to deviate from the desired rate

145

at around 36 MBps and still hold similar rates of around 38 MBps while attempting 40

MBps. After 40 MBps the rates start to diverge, the secured variant tops out at about 38

MBps. Trying to run at higher rates than that actually decreases throughput, this is likely

due to the queues holding messages getting backed up; this will be discussed more shortly

in terms of the memory utilization of the different applications as the test increase the

attempted payload byte throughput. CPU time is being split between queuing incoming

messages and trying to decrypt and reassemble them and empty the queue; beyond this

threshold it appears that the system starts to thrash a bit. The same thing happens for

the unsecured variant, just with a higher ceiling of about 46 MBps. This gives a 17% in

maximum throughput difference between the two, this is not an insignificant difference and

affects the reuse of SSSM in systems where higher rates are needed, or in systems that are

generally more resource limited. Future work will look at ways to optimize how the API

is used or optimizations that can made to SSM and SSSM to increase throughput. Below

36 MBps there is no difference in throughput, this brings up the next point of comparison:

what is the CPU utilization and memory load of these applications during test?

0

10

20

30

40

50

60

70

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

O
b
ta

in
ed

 T
h
ro

u
g
h
p

u
t

(M
B

p
s)

Target Throughput (MBps)

Desired Unsecured Secured

Fig. 6.1. Unsecured versus Secured Payload Byte Throughput. Comparison of attempted
payload byte throughput for unsecured messaging and secured messaging.

146

0

10

20

30

40

50

60

70

80

90

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

C
P

U
 U

ti
li

za
ti

o
n

Target MBps

ApiMeasureProducer ApiMeasureConsumer ApiSecureMeasureProducer ApiSecureMeasureConsumer

Fig. 6.2. Unsecured versus Secured CPU Utilization. Comparison of CPU utilization for
unsecured messaging and secured messaging.

Figure 6.2 shows the CPU profile at the various payload data rates and Figure 6.3

shows the memory usage at these same data rates. All of the applications start off with a

very similar CPU utilization for the 4 MBPS payload throughput. All of the applications

are using between 10% to 16% of the CPU with the ApiMeasureProducer using close to

10% and the ApiSecureMeasureConsumer using close to 16%. The ApiMeasureProducer

and the ApiMeasureConsumer make up the unsecured messaging pair and the ApiSecure-

MeasureProducer and ApiSecureMeasureConsumer make up the secured message pair. The

ApiMeasureProducer and ApiSecureMeasureConsumer generally frame the low and high for

CPU usage for all the tests. The producers in both cases use less CPU, suggesting that

the factor limiting throughput is on the receiving or consumer end of the the message ex-

change. In the case of the unsecured consumer application the API handles the reception

and unmarshalling of the messages from the producer. This works the same for the secured

consumer except the message must be decrypted before this happens. The API also copies

the values from the message into mapped variables, typically setup in the appInit function,

and triggers the callback shown in Sample 6.11.

Sample 6.11 shows the callback triggered every time a new m dataNotification message

147

1 /**
2 * @brief Called after receiving a CounterData data message and populating mapped member variables,
3 * also show how access is provided to received SpaMessage, xTEDS section, and message definition.
4 *
5 * @param pMessage Pointer to actual received SpaMessage object (of subtype SpaData, SpaCommand, or

SpaDataReply)
6 * @param xtedsSection String containing the xTEDS section associated with pMessage
7 * @param msgDef String containing the message definition of pMessage
8 */
9 void Api__MeasureConsumer::onCounterDataReceived(SpaMessage* pMessage, std::string xtedsSection, std::string

msgDef)
10 {
11 getSpaTime(m_endSeconds, m_endNanos);
12
13 if (m_index < m_sampleSize)
14 {
15 m_pMsgNumberData[m_index] = m_msgNumber;
16 m_pStartSecondsData[m_index] = m_startSeconds;
17 m_pStartNanosData[m_index] = m_startNanos;
18 m_pEndSecondsData[m_index] = m_endSeconds;
19 m_pEndNanosData[m_index] = m_endNanos;
20 m_index++;
21 }
22
23 if (m_msgNumber >= m_sampleSize)
24 {
25 unsubscribe(m_dataNotification);
26 handleReport();
27 quit();
28 }
29 }

Sample 6.11. ApiMeasureConsumer and ApiSecureMeasureConsumer
onCounterDataReceived Function. The same onCounterDataReceived function is used
for the unsecured and secured consumers. This function shows the work being done to
track throughput and message transit duration.

is received. It is important not to spend much time in this function because the next

message cannot be dequeued until this function returns; for this reason trackers are quickly

updated on lines 15 through 19 without performing any processing. Post-processing is

performed in the handleReport function once enough messages have been received. Notice

that m pRcvRateData is also not used in the function, but that is was mapped back in

appInit on line 30 of Sample 6.10. The entire array is copied into the m pRcvRateData

every time the notification is received even though it is not used, this takes time, and the

data in the buffer is actually available as part of pMessage passed into the callback, this

mapping to m pRcvRateData just makes it easier for a developer to use. In this consumer

nothing is done with the buffer because the intent is to measure the throughput and simply

receiving, and the secured case decrypting, the message accomplishes this. However, in this

case the mere fact the variable is mapped is causing extra work for the consumer in the

name of making the data easier to work with, at the end of this section throughput that

can be achieved without this mapping will be reviewed; keep in mind that the data is still

148

available, but must be accessed through pMessage.

Coming back to the CPU usage there is a pretty linear increase in utilization for the

producers with the secure producer using more CPU, the difference grows steadily from

about 4% at the slowest speed to about 15% at the fastest speed. At lower speed this

difference is likely acceptable, but at higher speeds the separation becomes significant and

might reduce the choice of platforms that would handle the load. The CPU usage for the

consumers is much more interesting. Figure 6.2 shows jump in usage when throughput goes

from 16 MBps to 20 MBps, both show a similar jump. SSM has a maximum transmission

unit (MTU) which determines how big a message can be before it is segmented, these

applications were compiled with an MTU of 20,000 bytes; this limit includes headers and

footers. When the dynamic array size went from 16,000 bytes to 20,000 bytes to attempt

the throughput of 20 MBps the messages start being segmented. This means the message

must be reassembled on the other end, the jump in CPU appears to correlate with this new

additional work. After this the next point of interest occurs around 40 to 44 MBps, this

roughly corresponds to the payload byte throughputs where the producer/consumer pairs

are maxing out. In this window both the consumers hit their CPU usage ceiling, the secured

version hits the ceiling first and also maxes out on throughput first. The CPU ceiling is

the same for both at around 81%, the difference being that the unsecured version is moving

about 6 – 8 more MBps. It is likely that between the VM overhead, CPU clock speed, host

processes, guest processes, and consumer verse producer contention the maximum CPU has

been reach. Note that ps was used to get these CPU measurements which means consumer

was executing on the CPU 80% of the time over its process life in the maximum throughput

cases. Future work can look at optimizing SSMs handling of messages on the receiving end

as this appears to be the bottleneck for both the unsecured and secured versions.

Next this evaluation considers memory usage. Figure 6.3 shows that memory usage

stays almost constant for all the applications until they hit the throughput ceiling. Both of

the producers still show about constant memory usage after this point, but the consumer

memory usage explodes. The ApiSecureMeasureConsumer starts to balloon first and this

149

0

50

100

150

200

250

300

350

400

450

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

A
v
er

ag
e

M
em

o
ry

 (
M

B
)

Target MBps

ApiMeasureProducer ApiMeasureConsumer ApiSecureMeasureProducer ApiSecureMeasureConsumer

Fig. 6.3. Unsecured versus Secured Memory Usage. Comparison of memory usage for
unsecured messaging and secured messaging.

correlates with the secured throughput ceiling, as the rates increases past this point it

follows that the message queue that is holding the messages received from the producer start

getting backed up. The implementation of the API actually allows the message queue to

grow without bound and the queue of messages hits over 400 megabyte (MB)s for about a 30

second run; this extenuates the importance of benchmarking software on the hardware that

will host it with a representative load as early as possible in order to determine margins and

feasibility. This also suggests that future might consider bounding the amount of memory

these queues are allowed to use so that excess messages are simply dropped in order to avoid

a scenario where all system memory is allocated and new allocations fail as this would result

in an unstable system. This is also a problem for the unsecured variant as it climbs to about

320 MBs in 30 seconds. This shows about an 80 MB difference between their averages at

the maximum rate tested, and this actually down from an maximum difference of about

110 MB. If this test was carried out it is possible that the buffer overrun would converge

between the two as system resources were exhausted, this might even happen if the test

were allowed to run longer than 30 seconds. This level of testing is sufficient to show the

payload byte throughput, CPU utilization, and memory usage are only marginally different

150

at lower throughputs, show strong divergence at higher throughput and start to come back

together once throughput ceilings are reached. This also shows that SSM may need updates

to better handle higher throughputs.

There may be tweaks and optimizations that can be made to increase throughput at

the cost of ease-of-use, this is a balancing act. One example of this is the use of mapped

variables, this increases ease-of-use, but it comes at a cost. Figure 6.4 shows the payload

byte throughput for the same set of tests run with line 30 in Sample 6.10 commented out

so that m pNotificationData is no longer being mapped. The data is still accessible via

pMessage, but it is no longer nicely put into m pNotificationData. This graph shows a

dramatic change in maximum throughput, and actually this set of tests does not appear to

reach a maximum. This is an example of a way to improve throughput without changes

0

10

20

30

40

50

60

70

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

O
b

ta
in

ed
 T

h
ro

u
g
h
p

u
t

(M
B

p
s)

Target Throughput (MBps)

Desired Unsecured Secured

Fig. 6.4. Unsecured versus Secured Payload Byte Throughput. Comparison of attempted
payload byte throughput for unsecured messaging and secured messaging.

to the API, just how a developer uses the API. This might increase the complexity of the

developer’s code as they have to access data more directly and might need to use something

like direct memory access (DMA) to efficiently move the incoming data without slowing

the messages down. This access is usually hardware and/or OS dependent but might be

151

needed in scenarios that require high performance; future updates to SSM could look at

adding this to the SSM portability utilities as a hardware abstraction library. This would

mean that new hardware would require new updates to the library, but could provide this

performance without affecting user-level code.

6.4 Conclusions of SSSM Evaluation

Section 6.2 shows that additional developer hardship is minimal. The developer does

have to provide a configuration file for the LS and encryption keys for any secured end-

points; beyond that they need to use secured versions of the message classes, but the

parameters for these are the same for the unsecured versions and the API handles the rest.

This shows that the change in developer burden is minimal, the developer has not had to

change their approach or add additional code. Keeping this change to a minimum in turn

keeps any negative effects on reuse to a minimum. From this perspective reusing SSSM-

based software should be just as advantageous and easy as reusing SSM-based software.

Section 6.3 shows that there is a performance hit in simply going from unsecured

to secured messaging, it also shows there may be some easy ways around this issue. At

higher rates resource limited system may not be able to handle the demands of the secured

version; this does impact the reusability of SSSM and needs to be considered for future

work. The payload byte throughput is very comparable at lower rates, even up to 36 MBps,

note that is bytes not bits. Section 6.3 also showed that CPU and memory usage were

higher for the secured producer/consumer pair, and had a large separation after the secured

version reached is maximum throughput first and message processing backed up on the

consumer side. This disparity started to converge again once the unsecured variant reaches

its maximum throughput and may fully converge if the high throughput tests were run

longer or higher payload throughput was attempted. This suggests that some optimization

to SSMs message handling would be beneficial and should help the performance of SSSM

as well.

Another set of tests without variable mapping showed that much higher rates could be

achieved for both secured and unsecured variants, this was a sort of side test and was not

152

discussed in terms of memory and CPU. In this scenario both variants had much higher

throughput ceilings, achieving throughput in the 50 and 60 MBps range. The maximum

attempted rate of 64 MBps may not have realize their full maximum rates as they were just

starting to diverge from each other and the attempted rate.

Performance requirements and system resources need to be more carefully considered

for SSSM than they do for SSM; reusability has taken a hit but future performance im-

provements and careful API usage can help to address this.

153

CHAPTER 7

CONCLUSION

7.1 Introduction

This research addresses two interrelated problems for Small Space, namely the De-

velopment Problem and the Security Problem. The crux of the Development Problem is

developing capable resilient space systems that will deploy into harsh, isolated, and con-

tested environments under the constraint of shrinking budgets and schedules. The results

of the SISDPA surveys and the on-going trends in Small Space development show a path-

forward where space systems are comprised of multi-vendor hardware and software systems;

heterogeneous systems of systems. The results of the SISDPA surveys show that develop-

ers see reuse and open-network systems as the best way to wrangle these heterogeneous

systems of systems with good abstraction, modularity, and encapsulation. The results of

SISDPA surveys as well as our daily reliance on space-backed infrastructure highlight the

importance of cybersecurity for space systems generally and that developers are specifically

more concerned when these space systems are networked systems of systems. Pulling these

threads together shows that SSSM as a secure modular reusable open-network software

development framework address both the Development Problem and the Security Problem.

7.2 Contribution

The primary contributions of this research are the crystallization of a viable path

forward for Small Space in the form of a secure modular reusable open-network software

development framework that addresses the Development and Security Problems, and a

working easy-to-use prototype of such a framework.

The SISDPA surveys and their analysis illustrate the need for a secure modular reusable

open-networking software development framework. The surveys did this by showing that

154

developers believe reuse and networking is important and beneficial for software developed

for space systems, and that there was consensus amongst developers that networking has a

negative effect on security and is even a hurdle in the adoption of OSAs and MONAs. These

results show that providing better cybersecurity alleviates this security concern clearing

the path for modular reusable open-network systems that can easily combine multi-vendor

systems to provide capable resilient cost-effective space systems.

The SSSM work shows that a modular reusable open-network software development

framework can have access control, encryption, and basic policy enforcement added to it

with minimal increase in developer hardship thereby maintaining the same level of reusabil-

ity from a developer perspective. There was a non-trivial increase in resource load at higher

data throughput which will be addressed in future work. This sets up SSSM as one of the

building blocks of a secure development platform the could integrate some of the process,

tools, and additional solutions from Chapter 2.

7.3 Future Work

The problem space is always changing and growing; a software development framework,

like SSSM, can be combined with other cybersecurity processes, tools, and solutions to create

a more complete security platform. There are many different avenues for future work, here

the focus will be on a few of them.

The performance of SSM is in need of improvement and so SSSM suffers from the

same bottlenecks and adds additional burden. Performance analysis both in terms of more

directed and controlled testing, and in terms dynamic and static performance profiling will

determine were SSM and SSSM need optimization. More directed and controlled testing

will isolate the SSM core services, producer, and consumer all on separate nodes instead of

sharing resources to better characterize the overall performance of each piece. This work

will also look at holding message size constant and increasing messaging rates to understand

how handling more messages versus larger messages effects performance. Google PerfTools

will be used to better understand performance bottlenecks and potential optimizations that

might benefit SSM and SSSM thereby increasing the reusability of both software devel-

155

opment frameworks. This testing could also target more representative hardware, again

allowing for better characterization, with an eye towards understanding how additional

security is affecting performance and therefor reusability.

The inherent vulnerabilities present in SSM and SSSM will be evaluated using tools like

Fortify, OpenVAS, and Metasploit. SSSM could also be used as a testbed for determining

the feasibility of using Sophia to provide continuous monitoring or using an other intrusion

detection system (IDS) and intrusion prevention system (IPS) solutions. SSSM is a candi-

date for layering on-top of other security provisions, like a secure kernel or hypervisor that

could provide a secure base and separation between process. Process separation is currently

not provided by SSSM if all the software components reside on the same processor. Combi-

nation with other tools like this helps to address the data-at-rest problem that SSSM does

not directly solve when untrusted processes or software share the same processor.

Another avenue of interest is the exploration of the applicability of SSM and SSSM to

other problem domains like a smart hub for IOT, ICSs without deterministic requirements,

and the smart grid. SSSM might be too heavy to run in full on a IOT sensor or endpoint,

but the full stack could be run on a smart-hub, and different end-point versions of the

software could be developed for different hardware against the open-network interface that

SSM and SSSM provide.

SSSM would benefit from user-interface tools that made is easier to manage and val-

idate policy, and look at complex rules, e.g. conditionally allow certain components to

communicate only if the vehicle as in contact mode.

Future work will look at more formal analysis of reusability, using metrics like code

complexity and additional surveys targeted at developer perception reusability. More di-

rected surveys and additional analysis of the existing data set can still be used to better

understand the problem space and keep track of it is changing over time. There are still

some questions that relate to this area in the survey series that can be further analyzed as

well as more detailed work with cross-tabulation.

The viability of space systems using reusable development frameworks should tracked

156

in terms of the schedule costs to design, develop, test, and fly. Additional work can pull

together measurements of cost and schedule for projects using reusable development frame-

works and contrast that with more traditional development approaches. It will be difficult

to normalize this against product requirements and capability as well as development per-

sonal, but would be very valuable in understanding if developer sentiment about reusable

software actually proves to be economically beneficial. The longevity of the space systems

should be tracked so that the effectiveness of this reusable modular open-network path

can be quantified with the goal of understanding if these systems are really cheaper, more

resilient, and more secure.

157

REFERENCES

[1] V. Pisacane, Fundamentals of Space Systems, ser. Applied Physics Laboratory series
in science and engineering / The Johns Hopkins University. Oxford University Press,
2005. [Online]. Available: https://books.google.com/books?id=jf1TAAAAMAAJ

[2] L. R. Messeri and M. G. Richards, Eds., Standards in the space industry: Looking
back, looking forward, ser. Management & organizational history. - Abingdon : Taylor
& Francis, ISSN 1744-9359, ZDB-ID 22120002. - Vol. 4.2009, 3, p. 281-298. Abingdon:
Taylor & Francis, 2009, vol. 4, no. 3.

[3] D. Leone, “NASA: James Webb Telescope Expected To Cost $8.7 Billion,” http:
//spacenews.com/nasa-james-webb-telescope-expected-cost-87-billion/, 2011, [Online;
accessed: 09-May-2016].

[4] M. Hicks, M. Enoch, L. Capots et al., “Hexpak – a flexible, scalable architecture for
responsive spacecraft,” in Proceedings of the 3rd Responsive Space Conference, Paper
No. RS3-2005-3006. Los Angeles, California: AIAA, April 2005.

[5] S. Clyde and J. E. Lascano, “Unifying definitions for modularization, abstraction,
and encpasulation as a step toward foundational multi-paradigm software engineering
principles,” in Proceedings of the Twelfth International Conference on Software
Engineering Advances, IARIA. Athens, Greece: International Academy, Research,
and Industry Association (IARIA), October 2017, pp. 105–113. [Online]. Available:
https://www.thinkmind.org/index.php?view=article&articleid=icsea 2017 5 20 10076

[6] J. H. Christensen, D. B. Anderson, M. E. Greenman, and B. D. Hansen, “Scalable
network approach for the space plug-and-play architecture,” in Aerospace Conference,
2012 IEEE, March 2012, pp. 1–10.

[7] J. H. Christensen, “Space plug-and-play architecture networking: A self-configuring
heterogeneous network architecture,” Ph.D. dissertation, Utah State University,
December 2012. [Online]. Available: http://digitalcommons.usu.edu/etd/1422

[8] J. Cheng, “Northrop’s Modular Space Vehicle gives Air Force faster
satellite capability,” https://defensesystems.com/articles/2014/03/03/
msv-plug-and-play-satellite-northrop.aspx?admgarea=TC DefenseIT, 2014, [On-
line; accessed: 01-June-2016].

[9] G. Ellis, “SNAP: MONA’s Foundation at SMC,” http://gsaw.org/wp-content/
uploads/2014/03/2014s11e ellis.pdf, 2014, [Online; accessed: 03-June-2016].

[10] C. J. Kief, B. Zufelt, S. R. Cannon, J. Lyke, and J. K. Mee, “The Advent of the PnP
Cube Satellite,” in Aerospace Conference, 2012 IEEE, March 2012, pp. 1–5.

[11] R. O. Bartlett, “Nasa standard multimission modular spacecraft for future space explo-
ration,” in 16th American Astronautical Society and Deutsche Gesellschaft fuer Luft-
und Raumfahrt, Goddard Memorial Symposium, Washington, D.C., March 1978.

https://books.google.com/books?id=jf1TAAAAMAAJ
http://spacenews.com/nasa-james-webb-telescope-expected-cost-87-billion/
http://spacenews.com/nasa-james-webb-telescope-expected-cost-87-billion/
https://www.thinkmind.org/index.php?view=article&articleid=icsea_2017_5_20_10076
http://digitalcommons.usu.edu/etd/1422
https://defensesystems.com/articles/2014/03/03/msv-plug-and-play-satellite-northrop.aspx?admgarea=TC_DefenseIT
https://defensesystems.com/articles/2014/03/03/msv-plug-and-play-satellite-northrop.aspx?admgarea=TC_DefenseIT
http://gsaw.org/wp-content/uploads/2014/03/2014s11e_ellis.pdf
http://gsaw.org/wp-content/uploads/2014/03/2014s11e_ellis.pdf

158

[12] E. Falkenhayn, JR, “Multimission modular spacecraft (MMS),” in Space Programs and
Technologies Conference. AIAA, June 1988.

[13] M. Bajracharya, M. W. Maimone, and D. Helmick, “Autonomy for mars rovers: Past,
present, and future,” Computer, vol. 41, no. 12, pp. 44–50, 2008.

[14] Department of Defense Directive 5000.01, The Defense Acquisition System. Depart-
ment of Defense, May 2003.

[15] Office of the Under Secretary of Defense, Acquisition, Technology and Logistics Memo-
randum: Better Buying Power 2.0: Continuing the Pursuit for Greater Efficiency and
Productivity in Defense Spending. Department of Defence, November 2012.

[16] Department of Defense, Open Systems Architecture Contract Guidebook for Program
Managers. Department of Defense, June 2013, vol. 1.1.

[17] Department of Defense Instruction, Operation of the Defense Acquisition System. De-
partment of Defense, January 2015.

[18] U.S. Government Accountability Office, DOD Efforts to Adopt Open Systems for Its
Unmanned Aircraft Systems Have Progressed Slowly. Government Accountability
Office, July 2013, GA0-13-651.

[19] J. Wilmot, “A core plug and play architecture for reusable flight software systems,”
in Proceedings of the Space Mission Challenges for Information Technology, IEEE In-
ternational Conference on, vol. 0. Los Alamitos, CA, USA: IEEE Computer Society,
2006, pp. 443–447.

[20] ——, “A core flight software system,” in Proceedings of the 3rd IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis, ser.
CODES+ISSS ’05. New York, NY, USA: ACM, 2005, pp. 13–14. [Online]. Available:
http://doi.acm.org/10.1145/1084834.1084842

[21] ——, “Implications of responsive space on the flight software architecture, paper no.
rs4-2006-6003,” in Proceedings of the AIAA 4th Responsive Space Conference, NASA
Goddard Space Flight Center. AIAA, Jan 2006.

[22] ——, “A reusable and adaptable software architecture for embedded space flight sys-
tem: The core flight software system (cfs),” in Proceedings of the International Con-
ference on Hardware/Software Codesign and System Synthesis, Jersey City, NJ, Sep
2005, pp. 18–21.

[23] “Driving down mission costs - new flight software package delivered to lunar mis-
sion,” http://gsfctechnology.gsfc.nasa.gov/MissionCost.html, January 2010, [Online;
accessed: 20-July-2017].

[24] D. L. Dvorak, “Nasa study on flight software complexity,” Final Report, March 2009.

[25] SPA Committee, Space Plug-and-Play Architecture Standard: Networking (AIAA S-
133-2-2013). American Institute of Aeronautics and Astronautics, Inc., January 2013.

http://doi.acm.org/10.1145/1084834.1084842
http://gsfctechnology.gsfc.nasa.gov/MissionCost.html

159

[26] J. Lyke, D. Fronterhouse, D. Lanza, and T. Byers, “A plug-and-play concept for space-
craft,” Military and Aerospace Programmable Logic Devices (MAPLD), September
2005.

[27] D. Lanza, J. Lyke, P. Zetocha, D. Fronterhouse, and D. Melanson, “Responsive space
through adaptive avionics,” in Proceedings of the AIAA 2nd Responsive Space Confer-
ence, vol. 6002. Los Angeles, CA: AIAA, April 2004.

[28] T. Morphopoulos, J. Hansen, J. Pollack, J. Lyke, and S. Cannon, “Plug-and-play –
an enabling capability for responsive space missions,” in Proceedings of the AIAA 2nd
Responsive Space Conference, vol. 5002. Los Angeles, CA: AIAA, April 2004.

[29] J. Lyke, D. Fronterhouse, S. Cannon, D. Lanza, and T. Bryers, “Space plug-and-play
avionics,” in Proceedings of the AIAA 3rd Responsive Space Conference, AIAA. Los
Angeles, California: AIAA, April 2005.

[30] J. Summers, “Plug and play testbed to enable responsive space missions,” in 2005
IEEE Aerospace Conference, March 2005, pp. 557–563.

[31] J. Lyke, S. Cannon, D. Fronterhouse, D. Lanza, and T. Byers, “A plug-and-play
system for spacecraft components based on the usb standard,” in 19th Annual
AIAA/USU Conference on Small Satellites. Logan, Utah: AIAA/USU, 2005.
[Online]. Available: http://digitalcommons.usu.edu/smallsat/2005/all2005/9/

[32] G. Falco, Cybersecurity Principles for Space Systems. AIAA, December 2018, vol. 16,
no. 2.

[33] D. Livingstone and P. Lewis, “Space, the final frontier for cybersecurity?” Chatham
House, September, 2016.

[34] D. P. Fidler, “Cybersecurity and the new era of space activities,” Digital and Cyberspace
Policy Program, April 2018, 2018.

[35] U.S.-China Economic and Security Review Commission, 2011 Report to Congress.
U.S. Government Printing Office, 2011, [Online; accessed: 10-June-2016].
[Online]. Available: https://www.uscc.gov/sites/default/files/annual reports/annual
report full 11.pdf

[36] P. K. Martin and I. General, “Nasa cybersecurity: An examination of the agencys
information security,” US House of Representatives, Feb 2012.

[37] National Institute of Standards and Technology, U.S. Department of Commerce, Guide-
lines for Smart Grid Cyber Security. NIST, August 2010, NISTIR 7268.

[38] C.-C. Sun, A. Hahn, and C.-C. Liu, “Cyber security of a power grid: State-of-the-art,”
International Journal of Electrical Power & Energy Systems, vol. 99, pp. 45
– 56, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0142061517328946

http://digitalcommons.usu.edu/smallsat/2005/all2005/9/
https://www.uscc.gov/sites/default/files/annual_reports/annual_report_full_11.pdf
https://www.uscc.gov/sites/default/files/annual_reports/annual_report_full_11.pdf
http://www.sciencedirect.com/science/article/pii/S0142061517328946
http://www.sciencedirect.com/science/article/pii/S0142061517328946

160

[39] L. Coppolino, S. DAntonio, and L. Romano, “Exposing vulnerabilities in electric
power grids: An experimental approach,” International Journal of Critical
Infrastructure Protection, vol. 7, no. 1, pp. 51 – 60, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1874548214000043

[40] B. Shirley, Q. Young, P. Wegner, J. Christensen, and J. Janicik, “Multi-layered
security approaches for a modular open network architecture-based satellite,” in
Proceedings of the AIAA/USU Conference on Small Satellites, Intelligent Software
Systems, SSC14-II-3. Logan, Utah: AIAA/USU, 2014. [Online]. Available:
https://digitalcommons.usu.edu/smallsat/2014/IntellSoftware/3/

[41] D. Lane, E. Leon, D. Solio, D. Cunningham, D. Obukhov, and F. Tacliad,
“High-assurance cyber space systems for small satellite mission integrity,”
in Proceedings of the AIAA/USU Conference on Small Satellites, Ground,
SSC17-V-01. Logan, Utah: AIAA/USU, 2017. [Online]. Available: https:
//digitalcommons.usu.edu/smallsat/2017/all2017/95/

[42] K. Ingols, M. Zhivich, J. Brandon, and E. Koziel, “Cyber in a world
of plenty: Secure high-performance on-orbit processing,” in Proceedings of
the AIAA/USU Conference on Small Satellites, Advanced Technologies 3,
SSC17-XII-08. Logan, Utah: AIAA/USU, 2017. [Online]. Available: https:
//digitalcommons.usu.edu/smallsat/2017/all2017/161/

[43] D. Cunningham, G. P. Jr., and J. Romero-Mariona, “Towards effective
cybersecurity for modular, open architecture satellite systems,” in Proceedings
of the AIAA/USU Conference on Small Satellites, Advanced Technologies 1,
SSC16-IV-6. Logan, Utah: AIAA/USU, 2016. [Online]. Available: https:
//digitalcommons.usu.edu/smallsat/2016/TS4AdvTech1/6/

[44] S. Nazir, S. Patel, and D. Patel, “Assessing and augmenting scada cyber security: A
survey of techniques,” Computers & Security, vol. 70, pp. 436 – 454, 2017. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0167404817301293

[45] S. Jackson, J. Straub, and S. Kerlin, “Exploring a novel cryptographic solution for
securing small satellite communications.” IJ Network Security, vol. 20, no. 5, pp. 988–
997, 2018.

[46] J. T. Kohl, B. C. Neuman, and T. Y. Tso, “The evolution of the kerberos authentication
service,” in Distributed Open Systems. IEEE Computer Society Press, 1994, pp. 78–94.

[47] J. Arfman and P. Roden, “Project athena: Supporting distributed computing at mit,”
IBM Systems Journal, vol. 31, no. 3, pp. 550–563, 1992.

[48] R. Nugent, R. Munakata, A. Chin, R. Coelho, and J. Puig-Suari, “The cubesat: The
picosatellite standard for research and education,” in SPACE Conference Conference
and Exposition. San Diego, California: AIAA, September 2008, pp. 756–766.

[49] J. John Viega, M. Messier, and P. Chandra, Network Security with OpenSSL: Cryp-
tography for Secure Communications. O’Reilly Media, Inc., 2002.

http://www.sciencedirect.com/science/article/pii/S1874548214000043
https://digitalcommons.usu.edu/smallsat/2014/IntellSoftware/3/
https://digitalcommons.usu.edu/smallsat/2017/all2017/95/
https://digitalcommons.usu.edu/smallsat/2017/all2017/95/
https://digitalcommons.usu.edu/smallsat/2017/all2017/161/
https://digitalcommons.usu.edu/smallsat/2017/all2017/161/
https://digitalcommons.usu.edu/smallsat/2016/TS4AdvTech1/6/
https://digitalcommons.usu.edu/smallsat/2016/TS4AdvTech1/6/
http://www.sciencedirect.com/science/article/pii/S0167404817301293

161

[50] National Institute of Standards and Technology, U.S. Department of Commerce, Secu-
rity requirements for cryptographic modules, Federal Information Processing Standards
Publication (FIPS PUB) 140-2. NIST, 2002, NISTIR 7268.

[51] SPA Committee, Space Plug-and-Play Architecture Standard: Logical Interface (AIAA
S-133-3-2013). American Institute of Aeronautics and Astronautics, Inc., January
2013.

[52] A. V. Konstantinou, D. Florissi, and Y. Yemini, “Towards self-configuring networks,”
in DARPA Active Networks Conference and Exposition, 2002. Proceedings. IEEE,
May 2002, pp. 143–156.

[53] IEEE Standards Association, “Ieee standard for heterogeneous interconnect (hic) (low-
cost, low-latency scalable serial interconnect for parallel system construction),” IEEE
Standard 1355-1995, 1996.

[54] B. M. Cook and C. P. H. Walker, “Spacewire and ieee 1355 revisited,” in International
Spacewire Conference, vol. 17, 2007, p. 19.

[55] European Cooperations for Space Standardization, “Spacewire – links, nodes, routers
and networks,” ECSS-E-ST-50-12C, pp. 1–129, 2008.

[56] “ISO/IEC 7498-1:1994(E), Information technology Open Systems Interconnection
Basic Reference Model: The Basic Model. ISO,” http://standards.iso.org/ittf/
PubliclyAvailableStandards/s020269ISOIEC7498-11994(E).zip, 2005, [Online; ac-
cessed: 03-June-2016].

[57] J. Christensen, S. Cannon, B. Hansen, and J. Lyke, “Automatic generation of sdm
application source code from xteds,” in Proceedings of the AIAA/USU Conference on
Small Satellites, Connecting the Dots: Bringing Visionaries, System Implementers &
Mission Sponsors Together, SSC10-X-5. Logan, Utah: AIAA/USU, 2010. [Online].
Available: http://digitalcommons.usu.edu/smallsat/2010/all2010/57

[58] “Xtce vs xteds: A brief comparison,” https://cwe.ccsds.org/sois/docs/SOIS-APP/
Meeting%20Materials/2010/Fall/PnP%20Background/XTCE vs xTEDS V0.2.docx,
January 2010, [Online; accessed: 24-March-2017].

[59] IEEE Standards Association, “Standard for a smart transducer interface for sensors
and actuators-mixed-mode communication protocols and transducer electronic data
sheet (teds) formats,” IEEE Standard 1451.4-2004, pp. 1–430, 2004.

[60] S. A. McDermott and D. J. Goldstein, “The Bitsy� spacecraft kernel: reducing mission
cost with modular architecture and miniature technology,” in Aerospace Conference
Proceedings, 2000 IEEE, vol. 4. IEEE, March 2000, pp. 1–6.

[61] P. Peti, R. Obermaisser, W. Elmenreich, and T. Losert, “An architecture supporting
monitoring and configuration in real-time smart transducer networks,” in Sensors,
2002. Proceedings of IEEE, vol. 2. IEEE, 2002, pp. 1479–1484.

http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269 ISO IEC 7498-1 1994(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269 ISO IEC 7498-1 1994(E).zip
http://digitalcommons.usu.edu/smallsat/2010/all2010/57
https://cwe.ccsds.org/sois/docs/SOIS-APP/Meeting%20Materials/2010/Fall/PnP%20Background/XTCE_vs_xTEDS_V0.2.docx
https://cwe.ccsds.org/sois/docs/SOIS-APP/Meeting%20Materials/2010/Fall/PnP%20Background/XTCE_vs_xTEDS_V0.2.docx

162

APPENDICES

163

APPENDIX A

SISDPA Survey Series Instruments

A.1 Introduction

This appendix contains the material used to obtain approval from the USU’s IRB and

the material used to administer the survey, i.e. the recruitment materials and printouts for

each survey. It also includes definitions for the items used in the Pro-neutral-con questions

that was available to participants while they took the survey.

Section A.2 contains the Letter of Information submitted to USU’s IRB. Section A.3

contains the renewed approval letter from USU’s IRB. Section A.4 contains the language

used in the survey recruitment emails. Sections A.5 through A.9 contains the survey

printouts for each survey. Section A.10 contains the Pro-neutral-con question term defi-

nitions.

Department of Computer Science
4205 Old Main Hill
Logan UT 84322-4205
Telephone: (435) 797-2451

LETTER OF INFORMATION
A Survey of Space Industry Software Development Practices and Attitudes

Page 1 of 3
USU IRB Exemption Granted: 7/28/2015
USU IRB Exemption Expires: 7/27/2016

Amendment #1 Approved: 12/29/2015
Protocol #6484

IRB Password Protected per IRB Director

v7 2/3/2010

Introduction/ Purpose
Dr. Stephen Clyde (PI) & Brandon Shirley (Graduate student researcher) in the Department of Computer
Science at Utah State University are conducting a set of surveys to find out more about software
development practices and attitudes in the space industry, specifically flight, ground, and testing software.
We are asking you to take part in this set of surveys because of your affiliation with or involvement in the
space industry. We are soliciting responses from approximately 3000 professionals, educators, and
students with backgrounds and connections to the space industry. We greatly need your participation and
your responses to the surveys will make a meaningful contribution to this research.

Procedures
Multiple surveys compromise this survey set. Currently there are six surveys (listed below) and each
should take approximately 10 minutes or less to complete. Each survey has a brief introduction section
that explains the overall survey set, i.e. Space Industry Software Development Practices and Attitudes
(SISDPA), and the specific survey you are taking, e.g. Open Systems Architecture and Modularity.

1) SISDPA : Core Concepts
2) SISDPA : Development Preferences
3) SISDPA : Open Systems Architecture and Modularity
4) SISDPA : Security
5) SISDPA : Reuse, Interoperability, Portability, Code Complexity
6) SISDPA : Network

Each survey will also have a common background section, this section is the same across all the surveys
and the hope is that if you take more than one survey you will give identical responses across each survey.
This will allow the researchers to consider your experience with regard to the responses you provide.

If you agree to participate, then you may use the provided email links to access and complete the surveys.
The links provided are anonymous. We plan to distribute the surveys over the space of a few months. We
expect to give you two to three weeks to complete the survey, i.e. from the time you receive the original
distribution email you will have two to three weeks to complete the survey.

You can opt to only take some of them. If you start a survey but do not finish, then your partial result may
be included in the results. You may contact Dr. Stephen Clyde or Brandon Shirley (see contact
information provide in the “Explanation & offer to answer questions” section) if you have any questions
with regard to participation.

At the end of each survey you will be redirected to another webpage where you may provide your email
address if you want to enter the optional drawing. Your email address will not be connected to the survey
responses. See the Payments/Compensation Section for more information on the drawing.

164

A.2 LOI

Department of Computer Science
4205 Old Main Hill
Logan UT 84322-4205
Telephone: (435) 797-2451

LETTER OF INFORMATION
A Survey of Space Industry Software Development Practices and Attitudes

Page 2 of 3
USU IRB Exemption Granted: 7/28/2015
USU IRB Exemption Expires: 7/27/2016

Amendment #1 Approved: 12/29/2015
Protocol #6484

IRB Password Protected per IRB Director

v7 2/3/2010

New Findings
During the course of this research study, you will be informed of any significant changes in the
procedures, risks or benefits resulting from participation in the research, or new alternatives to
participation that might cause you to change your mind about continuing in the study. If necessary, this
Letter of Information may be amended to reflect said changes.

Risks
There is minimal risk involved in participating in any of the surveys in the set. The only potential stress
factor that we foresee is the duration of taking the entire survey set. We spread out the distribution of the
various surveys to minimize this potential stress.

The surveys collect some information about your background and experience so we can better understand
your answers and opinions, but we do not collect or store any other personal identifying information.
There is a virtually no risk of loss of confidentiality relative to the data collective. We ensure this to be the
case by doing the following:
• The anonymous nature of the link used to take the survey automatically disassociates your identity

and contact information from your responses
• We will keep the raw survey data private and properly secured
• We will only publish aggregated data – no individual responses will be made public

Benefits
The main benefit of this study is an increase in the body of knowledge that relates to software
development practices and attitudes in the space industry, and to direct future research. Taking the survey
should provide you with an opportunity to reflect on your current software development practices and
how they affect the projects on which you have and will work.

Once the survey is closed, we will analyze the data, and generate results. We will seek publication of
these results in a conference or journal.

Explanation & offer to answer questions
The above Procedures section explains this research study. If you have other questions or research-related
problems, you may reach Dr. Stephen Clyde at (435) 797- 2307 or Stephen.Clyde@usu.edu, or Brandon
Shirley at (435) 994-9165 or b.l.s@aggiemail.usu.edu.

Voluntary nature of participation and right to withdraw without consequence
Participation in these surveys is voluntary. You may refuse to participate or withdraw at any time without
consequence or loss of benefits. You may opt-out at any time by either not starting any of the surveys or
only taking some of the surveys. The surveys you have started and/or completed will be include in the
results; this is due the anonymous links used to administer the survey. We have no way to identify your
responses and so we cannot remove them. Starting a survey does not obligate you to complete it, nor are
you obligated to complete all the surveys just because you completed one.

165

Department of Computer Science
4205 Old Main Hill
Logan UT 84322-4205
Telephone: (435) 797-2451

LETTER OF INFORMATION
A Survey of Space Industry Software Development Practices and Attitudes

Page 3 of 3
USU IRB Exemption Granted: 7/28/2015
USU IRB Exemption Expires: 7/27/2016

Amendment #1 Approved: 12/29/2015
Protocol #6484

IRB Password Protected per IRB Director

v7 2/3/2010

Payment/Compensation
There will be seven drawings for gift cards: one for each survey and one overall drawing for the survey
set. For each survey-specific drawing, two participants in that survey will be selected at random to receive
a $25 gift card. For the overall drawing, two participants from the pool of all participants of any survey
will be selected to receive a $200 gift card, such that if you have completed all of the surveys, you will
have six entries into that drawing. At the end of each of the surveys, you will be redirected to a webpage
that asks for an email address. A participant must enter a valid email address to be considered for that
survey’s drawing or the overall drawing.

Confidentiality
There is virtually no risk of a privacy or confidentiality breach. The researchers will not be observing or
collecting data on any behavior outside of what would normally occur in the work place. Research records
will be kept confidential, consistent with federal and state regulations. Only the investigator and the
graduate student researcher will have access to the raw data. No identifying information is associated with
the survey, the links provided in the distribution email are anonymous.

IRB Approval Statement
The Institutional Review Board for the protection of human participants at Utah State University has
approved this research study. If you have any questions or concerns about your rights or a research-related
injury and would like to contact someone other than the research team, you may contact the IRB Director
at (435) 797-0567 or email irb@usu.edu to obtain information or to offer input.

Investigator Statement
“I certify that the research study has been explained to the individual, by me or my research staff, and that
the individual understands the nature and purpose, the possible risks and benefits associated with taking
part in this research study. Any questions that have been raised have been answered.”

______________________________ ______________________________
Dr. Stephen Clyde Brandon Shirley
Principal Investigator Student Researcher
(435) 797-2307 (435) 994-9165
Stephen.Clyde@usu.edu b.l.s@aggiemail.usu.edu

166

From: noreply@usu.edu
Subject: Approval letter from USU IRB

Date: August 20, 2018 at 11:02 AM
To: swc@usu.edu, b.l.s@aggiemail.usu.edu

Institutional Review Board
USU Assurance: FWA#00003308

Exemption #4

Certificate of Exemption

FROM:

Melanie Domenech Rodriguez, IRB Chair

Nicole Vouvalis, IRB Administrator

To: Stephen Clyde, Brandon Shirley
Date: August 20, 2018
Protocol #: 9561

Title: Study Of De-Identified Data About The Practices And Attitudes In Software Development In The Space
Industry

The Institutional Review Board has determined that the above-referenced study is exempt from review under federal guidelines
45 CFR Part 46.101(b) category #4:

Research, involving the collection or study of existing data, documents, records, pathological specimens, or
diagnostic specimens, if these sources are publicly available or if the information is recorded by the investigator
in such a manner that subjects cannot be identified, directly or through identifiers linked to the subjects.

This exemption is valid for three years from the date of this correspondence, after which the study will be closed. If the research
will extend beyond three years, it is your responsibility as the Principal Investigator to notify the IRB before the study’s
expiration date and submit a new application to continue the research. Research activities that continue beyond the expiration
date without new certification of exempt status will be in violation of those federal guidelines which permit the exempt status.

As part of the IRB’s quality assurance procedures, this research may be randomly selected for continuing review during the
three year period of exemption. If so, you will receive a request for completion of a Protocol Status Report during the month of
the anniversary date of this certification.

In all cases, it is your responsibility to notify the IRB prior to making any changes to the study by submitting an
Amendment/Modification request. This will document whether or not the study still meets the requirements for exempt status
under federal regulations.

Upon receipt of this memo, you may begin your research. If you have questions, please call the IRB office at (435) 797-1821 or
email to irb@usu.edu.

The IRB wishes you success with your research.

4460 Old Main Hill Logan, UT 84322-4460 PH: (435) 797-
1821

Fax: (435) 797-
3769 WEB: irb.usu.edu EMAIL: irb@usu.edu

167

A.3 Extension Approval Letter

Department of Computer Science
4205 Old Main Hill
Logan UT 84322-4205
Telephone: (435) 797-2451

Dr. Stephen Clyde
Principal Investigator
Stephen.Clyde@usu.edu
(435) 797-2307

Brandon Shirley
Student Researcher
b.l.s@aggiemail.usu.edu
(435) 994-9165

1

Space Industry Software Development
Practices and Attitudes (SISDPA)
Recruitment Letter

1 INTRODUCTION

Dr. Stephen Clyde and Brandon Shirley plan to conduct a set of surveys on Space Industry Software

Development Practices and Attitudes; specifically in the areas of flight, ground, and test software. The

letter below will accompany the link for the appropriate survey. Distribution may occur via letter, email,

or website link.

2 RECRUITMENT CONTENT

The emails will vary slightly based on the distribution method, e.g. for Qualtrics generated and

distributed emails we will have the name of the person to whom we are distributing the email.

2.1 QUALTRICS
From: b.l.s@aggiemail.usu.edu

Dear firstName,

2.2 MAILING LISTS
From: Brandon.Shirley@sdl.usu.edu

To whom it may concern,

2.3 COMMON
Subject: New Distribution of Current Survey or Reminder Email for Current Survey

Dr. Stephen Clyde & Brandon Shirley in the Department of Computer Science at Utah State University

are conducting a set of surveys as part of Brandon’s PhD research to find out more about software

development practices and attitudes in the space industry.

You have received this email because of your interest in or involvement with the space industry. We

greatly need your participation. We are asking that anyone that has insight into in software

development that relates to space industry participate in this survey. The beginning of the survey has

background questions that will give context to your responses.

The survey set is currently made of six surveys, listed below, that will be distributed over the course of a

few months. You have a chance at receiving a gift card for participating in this survey as well as a chance

168

A.4 Survey Recruitment Letter

Department of Computer Science
4205 Old Main Hill
Logan UT 84322-4205
Telephone: (435) 797-2451

Dr. Stephen Clyde
Principal Investigator
Stephen.Clyde@usu.edu
(435) 797-2307

Brandon Shirley
Student Researcher
b.l.s@aggiemail.usu.edu
(435) 994-9165

2

at receiving a gift card for your overall participation in the entire survey set. There will be seven

drawings for gift cards: one drawing for each survey and one overall drawing for the survey set. For each

survey-specific drawing, two participants in that survey will be selected at random to receive a $25 gift

card. For the overall drawing, two participants from the pool of all participants of any survey will be

selected to receive a $200 gift card. At the end of this survey, you will be redirected to a webpage that

asks for an email address. You must enter a valid email address to be considered for this surveys

drawing or the overall survey set drawing.

Each survey stands on its own: opting to not participate in one survey does not exclude you in any way

from participating in any subsequent surveys. Likewise, participating in one survey does not obligate you

to participate in any subsequent surveys. The surveys are as follows and will be distributed in the

following order:

1) SISDPA : Core Concepts

2) SISDPA : Development Preferences

3) SISDPA : Open Systems Architecture and Modularity

4) SISDPA : Security

5) SISDPA : Reuse, Interoperability, Portability, Code Complexity

6) SISDPA : Network

You can you use the link below to access the __________ survey.

We greatly need your participation and your responses to the surveys will make a meaningful

contribution to this research while allowing you an opportunity to reflect on you current software

development practices and how these practices affect the projects on which you have and will work.

This survey set will be used to determine the path of future research, as well as increase the body of

knowledge that relates to software development practices and attitudes in the space industry.

You can access the _______ survey of the Space Industry Software Development Practices and Attitudes

survey set using the following link:

http://usu.qualtrics.link.com.

You can also copy and paste the following URL into your address bar if you prefer not to use the

provided link: http://usu.qualtrics.link.com

We plan to send out one reminder email a week until the survey closes. The duration of the survey will

be two to three weeks. You will receive the reminder email regardless of where or not you have

participated in a survey. The subject of the email will read “Reminder Email…” for these weekly

reminders, and “New Distribution…” at the start of a new survey.

See the http://brandon.bluezone.usu.edu/Files/LOISpaceSoftwareAttitudes_Final.pdf for the Letter of

Intent (LOI) that explains your role as a participant should you choose to participate. If you have

questions please direct them to Brandon Shirley, via email b.l.s@aggiemail.usu.edu, the LOI lists

additional contact information.

Once the survey set is closed, we will analyze the data, and generate results. We will seek publication of

these results in a conference or journal.

169

Department of Computer Science
4205 Old Main Hill
Logan UT 84322-4205
Telephone: (435) 797-2451

Dr. Stephen Clyde
Principal Investigator
Stephen.Clyde@usu.edu
(435) 797-2307

Brandon Shirley
Student Researcher
b.l.s@aggiemail.usu.edu
(435) 994-9165

3

This is a legitimate request for you participation, if you have any questions about the validity of this

email you may refer to the Letter of Intent, contact Brandon Shirley, via email b.l.s@aggiemail.usu.edu,

or Utah State University’s Internal Review Board administrator at (435) 797 – 0567 or email

irb@usu.edu.

2.4 SPECIAL NOTE FOR CORE CONCEPTS SURVEY
Note that the Core Concepts Survey was previously distributed. If you participated in the survey already

then please visit the survey link and you will be given the opportunity to provide your email for entry

into the Core Concepts Survey drawing as well as the overall survey set drawing.

3 THANK YOU CONTENT

We will send out a thank you email to thank everyone, whether they have participated or not, that

thanks them for participating, lets them know the current survey is closed, and notifies them of the

timeframe within which the drawing winners will be notified.

3.1 CONTENT
Subject: Current Survey has ended

Dr. Stephen Clyde & Brandon Shirley in the Department of Computer Science at Utah State University

would like to thank everyone who participated in the ______ survey; the ______ survey has now closed.

We will notify the winners of this survey’s drawing within __ week(s). The winners of the overall survey

set will be notified after the entire survey set closes.

4 CONCLUSION

We may need to distribute some additional emails, but they we will be in line with what we have here

and will be strictly for survey management or clarification. I may also make grammatical corrections if

needed.

170

Page 1 of 7

SISDPA : Core Concepts - Survey

Start of Block: Introduction

Intro – Dr. Stephen Clyde & Brandon Shirley in the Department of Computer Science at Utah

State University are conducting a set of surveys as part of Brandon’s PhD research to find out

more about software development practices and attitudes in the space industry.

You are being asked to take part in this set of surveys because of your affiliation with or

involvement in the space industry. Your participation and your responses to the surveys are

greatly needed and will make a meaningful contribution to this research.

This survey comprises the Core Concepts portion of a survey set that makes up a survey on

Space Industry Software Development Practices and Attitudes (SISDPA). Each question will

ask for your input and explain how you should answer the question.

There are two main benefits for participating in this study. One benefit is an increase in the body

of knowledge that relates to software development practices and attitudes in the space industry

while informing future research. The other benefit is the chance to receive a gift card for

participating in this survey as well as a chance to receive a gift card for your overall participation

in the entire survey set. There will be seven drawings for gift cards: one for each survey and one

overall drawing for the survey set. For each survey-specific drawing, two participants in that

survey will be selected at random to receive a $25 gift card. For the overall drawing, two

participants from the pool of all participants of any survey will be selected at random to receive a

$200 gift card. Taking the survey should provide you with an opportunity to reflect on your

current software development practices and how they affect the projects on which you have and

will work.

At the end of this survey you will be redirected to another webpage where you may provide your

email address if you want to enter the optional drawings. Your email address will not be

171

A.5 CC Survey

Page 2 of 7

connected to the survey responses. You must enter a valid email address to be considered for

this survey’s drawing or the overall drawing.

If you start this survey but do not finish, then your partial result may be included in the results.

Once the survey set is closed, we will analyze the data for inclusion in a conference or journal

paper.

If you have other questions or research-related problems, you may reach Dr. Stephen Clyde at

(435) 797- 2307 or Stephen.Clyde@usu.edu, or Brandon Shirley at (435) 994-9165 or

b.l.s@aggiemail.usu.edu.

Please note that this survey was previously distributed. For those of you who have already

participated and would like the opportunity to win the drawing for this survey or for the overall

survey set you can specify that you have already participated in the next section.

End of Block: Introduction

Start of Block: Block 3

Q15 – Have you already taken this survey?

o Yes

o No

End of Block: Block 3

Start of Block: Background

1.0 – Timing

First Click

Last Click

Page Submit

Click Count

172

Page 3 of 7

1.1 – Please select your role(s) in space systems development. You must select at least one

role.

Software engineer

 Electrical engineer

 Systems engineer

 Mechanical engineer

 Aerospace engineer

 Program Manager

 Technical Lead

 Thermal engineer

 Principle Investigator

 Other (please specify) __

1.2 – Please categorize the entity for which you currently work using the options below. You

must select at least one category.

 Industry

 SETA/UARC/FFRDC

 Government

 Other (please specify) __

173

Page 4 of 7

1.3 – How many years have you spent working in the following areas with regard to space

systems? Please drag the sliders to indicate the number of years of experience you have for

each area. You must click or move each slider even if you want your responses marked as zero,

the slider will turn purple/blue upon input.

Years

0 5 10 15 20 25 30 35 40 45 50

Software Systems Development

Management

Hardware Systems Development

Procurement

Other (please specify)

1.4 – Based on you experience, i.e. the projects on which you have worked, what are the typical

durations for the phases listed below? Please drag the sliders to indicate the number of months

you think are typically spent on each phase. You must click or move each slider even if you

want your responses marked as zero, the slider will turn purple/blue upon input. If you do not

have direct experience, then go off of what you think is typical.

Months

0 10 20 30 40 50 60 70 80 90 100 110 120

Planning

Development

Testing

Operations

Other (please specify)

174

Page 5 of 7

1.5 – About how many missions/projects have you worked on over the course of your career in

the following areas? Please drag the sliders to indicate the number missions/projects on which

you have worked. You must click or move each slider even if you want your responses marked

as zero, the slider will turn purple/blue upon input.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Space Systems

Other fields

1.6 – About how many missions/projects do you typically work on at the same time? Please

drag the sliders to indicate the number of projects that you typically work on at the same

time. You must click or move each slider even if you want your response marked as zero, the

slider will turn purple/blue upon input.

0 1 2 3 4 5 6 7 8 9 10

Projects/Missions

End of Block: Background

175

Page 6 of 7

Start of Block: Core Concepts

2.1 – For each software characteristic listed in a row below, rate its importance in each of the

four domains: Space Flight Software, Space Ground Software, Space Test Software, and Other

Software Fields. 1 means "not important" and 5 means "very important."

Space Flight
Software

Other Software
Fields

Space Ground
Software

Space Test
Software

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Reuse o

Portability o

Interoperability o

Minimal Code
Complexity o

Rapid
Development o

Cost of
Ownership

(e.g.
maintenance,

upgrades)

o o o o o o o o o o o o o o o o o o o o

Security o

2.2 – Please order the following software characteristics according to importance, by dragging

them so that the most important (1) comes first and the least important (7) comes last. You must

move at least one characteristic for the question to be marked as answered, you can move it

back if you feel the initial ordering is correct.

______ Reuse

______ Portability

______ Interoperability

______ Minimal Code Complexity

______ Rapid Development

______ Cost of Ownership (e.g. maintenance, upgrades)

______ Security

176

Page 7 of 7

2.3 – Timing

First Click

Last Click

Page Submit

Click Count

2.4 – What percentage of your time do you spend developing in the following areas? Please

drag the bars so that the total adds up to 100.

 _______ Space Flight Software

 _______ Space Ground Software

 _______ Space Test Software

 _______ Other software fields (please specify)

 _______ Non-software (please specify)

2.5 – Timing

First Click

Last Click

Page Submit

Click Count

End of Block: Core Concepts

177

Page 1 of 12

SISDPA : Open Systems Architecture
and Modularity - Survey

Start of Block: Introduction

Intro – I'm Brandon Shirley, I am conducting these surveys for my PhD research at Utah State

University. I really need your participation. There is a chance to win some gift cards.

You are being asked to take part in this set of surveys because of your affiliation with or

involvement in the space industry. Your participation and your responses to the surveys are

greatly needed and will make a meaningful contribution to this research.

This survey comprises the Open Systems Architecture and Modularity portion of a survey set

that makes up a survey on Space Industry Software Development Practices and Attitudes

(SISDPA). Each question will ask for your input and explain how you should answer the

question.

Answer as many of the questions as you want, partial surveys may still be very helpful. At the

end of this survey, you will be redirected to a webpage that asks for an email address. You must

enter a valid email address to be considered for survey drawings or the overall survey set

drawing.

You have a chance at receiving a gift card for participating in this survey as well as a chance at

receiving a gift card for your overall participation in the entire survey set. There will be 2 winners

of $25 gift cards for each survey and 2 winners of $200 gift cards for the survey set.

At the end of this survey you will be redirected to another webpage where you may

provide your email address if you want to enter the optional drawings. Your email

address will not be connected to the survey responses. You must enter a valid email

address to be considered for this survey’s drawing or the overall drawing.

If you start this survey but do not finish, then your partial result may be included in the results.

Once the survey set is closed, we will analyze the data for inclusion in a conference or journal

paper.

If you have other questions or research-related problems, you may reach Dr. Stephen Clyde at

(435) 797- 2307 or Stephen.Clyde@usu.edu, or Brandon Shirley at (435) 994-9165 or

b.l.s@aggiemail.usu.edu.

End of Block: Introduction

178

A.6 OSAM Survey

Page 2 of 12

Start of Block: Open Systems Architecture and Modularity

2.0 – Timing

First Click

Last Click

Page Submit

Click Count

2.1 – Consider the items on the left in the context of open systems architecture in space flight

systems. In this instance open system architecture means vendor-independent, non-

proprietary, software or device design and implementation based on official and/or popular

standards. Place an item under Pros if positively impacted, under Neutral if not impacted or not

applicable, and under Cons if negatively impacted by utilizing open systems architecture. Think

of this impact in terms of multi-project, multi-mission, or multi-platform use. All items should be

placed for the answer to be considered complete by the system. In considering partial or

incomplete answers, unplaced items will be considered neutral.

Pros Neutral Cons

Regression reduction Regression reduction Regression reduction

Code design Code design Code design

Development cost Development cost Development cost

Maintenance cost Maintenance cost Maintenance cost

Development productivity Development productivity Development productivity

Development efficiency Development efficiency Development efficiency

Code Complexity Code Complexity Code Complexity

Maintainability Maintainability Maintainability

Integration Integration Integration

Adaptability Adaptability Adaptability

Documentation/Examples Documentation/Examples Documentation/Examples

Encapsulation Encapsulation Encapsulation

Bug detection Bug detection Bug detection

Code quality Code quality Code quality

Code robustness Code robustness Code robustness

Best practices Best practices Best practices

Schedule Schedule Schedule

179

Page 3 of 12

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Uniformity of coding style Uniformity of coding style Uniformity of coding style

Domain knowledge Domain knowledge Domain knowledge

Code readability Code readability Code readability

Security Security Security

I/0 efficiency I/0 efficiency I/0 efficiency

Radiation hardness Radiation hardness Radiation hardness

Fault tolerance Fault tolerance Fault tolerance

Hardware complexity Hardware complexity Hardware complexity

Latency Latency Latency

Determinism Determinism Determinism

Interoperability Interoperability Interoperability

Portability Portability Portability

Testing Testing Testing

Reusability Reusability Reusability

Software upgradability Software upgradability Software upgradability

Hardware changes/flexibility Hardware changes/flexibility Hardware changes/flexibility

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Ease of use Ease of use Ease of use

Mission/Project requirement
changes

Mission/Project requirement
changes

Mission/Project requirement
changes

Information Assurance Information Assurance Information Assurance

Mission Assurance Mission Assurance Mission Assurance

180

Page 4 of 12

2.2 – Consider the items on the left in the context of modular open network architecture in

space flight systems. Modular open network architecture implies that the architecture is

designed natively for network-centric data transfer. Place an item under Pros if positively

impacted, under Neutral if not impacted or not applicable, and under Cons if negatively

impacted by utilizing modular open network architecture. Think of this impact in terms of multi-

project, multi-mission, or multi-platform use. All items should be placed for the answer to be

considered complete by the system. In considering partial or incomplete answers,

unplaced items will be considered neutral.

Pros Neutral Cons

Regression reduction Regression reduction Regression reduction

Code design Code design Code design

Development cost Development cost Development cost

Maintenance cost Maintenance cost Maintenance cost

Development productivity Development productivity Development productivity

Development efficiency Development efficiency Development efficiency

Code Complexity Code Complexity Code Complexity

Maintainability Maintainability Maintainability

Integration Integration Integration

Adaptability Adaptability Adaptability

Documentation/Examples Documentation/Examples Documentation/Examples

Encapsulation Encapsulation Encapsulation

Bug detection Bug detection Bug detection

Code quality Code quality Code quality

Code robustness Code robustness Code robustness

Best practices Best practices Best practices

Schedule Schedule Schedule

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Uniformity of coding style Uniformity of coding style Uniformity of coding style

Domain knowledge Domain knowledge Domain knowledge

Code readability Code readability Code readability

Security Security Security

I/0 efficiency I/0 efficiency I/0 efficiency

Radiation hardness Radiation hardness Radiation hardness

181

Page 5 of 12

Fault tolerance Fault tolerance Fault tolerance

Hardware complexity Hardware complexity Hardware complexity

Latency Latency Latency

Determinism Determinism Determinism

Interoperability Interoperability Interoperability

Portability Portability Portability

Testing Testing Testing

Reusability Reusability Reusability

Software upgradability Software upgradability Software upgradability

Hardware changes/flexibility Hardware changes/flexibility Hardware changes/flexibility

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Ease of use Ease of use Ease of use

Mission/Project requirement
changes

Mission/Project requirement
changes

Mission/Project requirement
changes

Information Assurance Information Assurance Information Assurance

Mission Assurance Mission Assurance Mission Assurance

2.3 – Consider the items on the left in the context of software modularity in space flight

systems, specifically the degree to which software is divided into functional modules. Place an

item under Pros if positively impacted, under Neutral if not impacted or not applicable, and

under Cons if negatively impacted. Think of this impact in terms of multi-project, multi-mission,

or multi-platform use. All items should be placed for the answer to be considered complete

by the system. In considering partial or incomplete answers, unplaced items will be

considered neutral.

Pros Neutral Cons

Regression reduction Regression reduction Regression reduction

Code design Code design Code design

Development cost Development cost Development cost

Maintenance cost Maintenance cost Maintenance cost

Development productivity Development productivity Development productivity

Development efficiency Development efficiency Development efficiency

182

Page 6 of 12

Code Complexity Code Complexity Code Complexity

Maintainability Maintainability Maintainability

Integration Integration Integration

Adaptability Adaptability Adaptability

Documentation/Examples Documentation/Examples Documentation/Examples

Encapsulation Encapsulation Encapsulation

Bug detection Bug detection Bug detection

Code quality Code quality Code quality

Code robustness Code robustness Code robustness

Best practices Best practices Best practices

Schedule Schedule Schedule

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Uniformity of coding style Uniformity of coding style Uniformity of coding style

Domain knowledge Domain knowledge Domain knowledge

Code readability Code readability Code readability

Security Security Security

I/0 efficiency I/0 efficiency I/0 efficiency

Radiation hardness Radiation hardness Radiation hardness

Fault tolerance Fault tolerance Fault tolerance

Hardware complexity Hardware complexity Hardware complexity

Latency Latency Latency

Determinism Determinism Determinism

Interoperability Interoperability Interoperability

Portability Portability Portability

Testing Testing Testing

Reusability Reusability Reusability

Software upgradability Software upgradability Software upgradability

Hardware changes/flexibility Hardware changes/flexibility Hardware changes/flexibility

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Ease of use Ease of use Ease of use

183

Page 7 of 12

Mission/Project requirement
changes

Mission/Project requirement
changes

Mission/Project requirement
changes

Information Assurance Information Assurance Information Assurance

Mission Assurance Mission Assurance Mission Assurance

2.4 – Does or has your organization:

Yes No

Employed open systems
architecture in the past o o

Employed modular open
network architecture in the

past
o o

Currently utilize open
systems architecture o o

Currently utilize modular
open network architecture o o

Plan on utilizing open system
architecture in the future o o

Plan on utilizing modular
open network architecture in

the future
o o

2.5 – Based on direct experience, or indirect perception, what percentage of projects/missions

do organizations that develop space system utilize the following: (Please drag the bars to the

appropriate percentage, the percentages do not have to total 100 as these provisions are not

mutually exclusive)

 _______ Open system architecture

 _______ Modular open network architecture

 _______ Closed proprietary systems

 _______ Other

184

Page 8 of 12

2.6 – If your organization is considering, or was to consider, adopting a open systems approach

what factors might prohibit its adoption? (check all that apply)

▢ Management buy in

▢ Legacy software requirements

▢ Investment vs. return in time

▢ Investment vs. return in money

▢ Compatibility with current infrastructure

▢ Ownership of existing and future software

▢ Current proprietary systems

▢ Developer buy in

▢ Development cost

▢ Maintenance cost

▢ Development productivity

▢ Development efficiency

▢ Complexity

▢ Maintainability

▢ Bug detection

▢ Best practices

▢ Schedule

▢ Domain knowledge

▢ Security

▢ I/0 efficiency

▢ Fault tolerance

▢ Latency

▢ Determinism

▢ Interoperability

▢ Portability

▢ Testing

▢ Reusability

▢ Upgradability

▢ Flexibility

▢ Ease of use

185

Page 9 of 12

▢ Information Assurance

▢ Other __

2.7 – Consider the statements below with regard to software reuse from mission to mission.

Please select the statement that is most indicative of your experience with or perception of

software reuse.

o Target some number of missions with a certain level of reuse in mind

o Work mission to mission while reusing if possible

o Work mission to mission with no or minimal reuse

End of Block: Open Systems Architecture and Modularity

Start of Block: Background

1.0 – Timing

First Click

Last Click

Page Submit

Click Count

1.1 – Please select your role(s) in space systems development. You must select at least one

role.

▢ Software engineer

▢ Electrical engineer

▢ Systems engineer

▢ Mechanical engineer

▢ Aerospace engineer

▢ Program Manager

▢ Technical Lead

▢ Thermal engineer

▢ Principle Investigator

▢ Other (please specify) __

186

Page 10 of 12

1.2 – Please categorize the entity for which you currently work using the options below. You

must select at least one category.

▢ Industry

▢ SETA/UARC/FFRDC

▢ Government

▢ Other (please specify) __

1.3 – How many years have you spent working in the following areas with regard to space

systems? Please drag the sliders to indicate the number of years of experience you have for

each area. You must click or move each slider even if you want your responses marked as zero,

the slider will turn purple/blue upon input.

Years

0 5 10 15 20 25 30 35 40 45 50

Software Systems Development

Management

Hardware Systems Development

Procurement

Other (please specify)

187

Page 11 of 12

1.4 – Based on you experience, i.e. the projects on which you have worked, what are the typical

durations for the phases listed below? Please drag the sliders to indicate the number of months

you think are typically spent on each phase. You must click or move each slider even if you

want your responses marked as zero, the slider will turn purple/blue upon input. If you do not

have direct experience, then go off of what you think is typical.

Months

0 10 20 30 40 50 60 70 80 90 100 110 120

Planning

Development

Testing

Operations

Other (please specify)

1.5 – About how many missions/projects have you worked on over the course of your career in

the following areas? Please drag the sliders to indicate the number missions/projects on which

you have worked. You must click or move each slider even if you want your responses marked

as zero, the slider will turn purple/blue upon input.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Space Systems

Other fields

188

Page 12 of 12

1.6 – About how many missions/projects do you typically work on at the same time? Please

drag the sliders to indicate the number of projects that you typically work on at the same

time. You must click or move each slider even if you want your response marked as zero, the

slider will turn purple/blue upon input.

0 1 2 3 4 5 6 7 8 9 10

Projects/Missions

End of Block: Background

189

Page 1 of 13

SISDPA : Security - Survey

Start of Block: Introduction

Intro – I'm Brandon Shirley, I am conducting these surveys for my PhD research at Utah State

University. I really need your participation. There is a chance to win some gift cards.

You are being asked to take part in this set of surveys because of your affiliation with or

involvement in the space industry. Your participation and your responses to the surveys are

greatly needed and will make a meaningful contribution to this research.

This survey comprises the Security portion of a survey set that makes up a survey on Space

Industry Software Development Practices and Attitudes (SISDPA). Each question will ask for

your input and explain how you should answer the question.

Answer as many of the questions as you want or as much of a question as you want, partial

surveys may still be very helpful. At the end of this survey, you will be redirected to a webpage

that asks for an email address. You must enter a valid email address to be considered for

survey drawings or the overall survey set drawing.

You have a chance at receiving a gift card for participating in this survey as well as a chance at

receiving a gift card for your overall participation in the entire survey set. There will be 2 winners

of $25 gift cards for each survey and 2 winners of $200 gift cards for the survey set.

At the end of this survey you will be redirected to another webpage where you may

provide your email address if you want to enter the optional drawings. Your email

address will not be connected to the survey responses. You must enter a valid email

address to be considered for this survey’s drawing or the overall drawing.

If you start this survey but do not finish, then your partial result may be included in the results.

Once the survey set is closed, we will analyze the data for inclusion in a conference or journal

paper.

If you have other questions or research-related problems, you may reach Dr. Stephen Clyde at

(435) 797- 2307 or Stephen.Clyde@usu.edu, or Brandon Shirley at (435) 994-9165 or

b.l.s@aggiemail.usu.edu.

End of Block: Introduction

190

A.7 Security Survey

Page 2 of 13

Start of Block: Security

2.0 – Timing

First Click

Last Click

Page Submit

Click Count

2.1 – Consider the items on the left in the context of internal security in space systems. This

would be security mechanisms in addition to the traditional gateway COMSEC, that add

additional security provisions, e.g. auditing, component authentication, and access control.

Place an item under Pros if positively impacted; under Neutral if not impacted, not applicable,

or if you are not familiar with the term; or under Cons if negatively impacted by using internal

security provisions. Keep in mind that some of these items have overlap with other items. All

items should be placed for the answer to be considered "complete" by the system. In

considering partial or incomplete answers, unplaced items will be considered neutral.

Pros Neutral Cons

Regression reduction Regression reduction Regression reduction

Code design Code design Code design

Development cost Development cost Development cost

Maintenance cost Maintenance cost Maintenance cost

Development productivity Development productivity Development productivity

Development efficiency Development efficiency Development efficiency

Code Complexity Code Complexity Code Complexity

Maintainability Maintainability Maintainability

Integration Integration Integration

Adaptability Adaptability Adaptability

Documentation/Examples Documentation/Examples Documentation/Examples

Encapsulation Encapsulation Encapsulation

Bug detection Bug detection Bug detection

Code quality Code quality Code quality

Code robustness Code robustness Code robustness

Best practices Best practices Best practices

191

Page 3 of 13

Schedule Schedule Schedule

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Uniformity of coding style Uniformity of coding style Uniformity of coding style

Domain knowledge Domain knowledge Domain knowledge

Code readability Code readability Code readability

Security Security Security

I/0 efficiency I/0 efficiency I/0 efficiency

Radiation hardness Radiation hardness Radiation hardness

Fault tolerance Fault tolerance Fault tolerance

Hardware complexity Hardware complexity Hardware complexity

Latency Latency Latency

Determinism Determinism Determinism

Interoperability Interoperability Interoperability

Portability Portability Portability

Testing Testing Testing

Reusability Reusability Reusability

Software upgradability Software upgradability Software upgradability

Hardware
changes/flexibility

Hardware changes/flexibility Hardware changes/flexibility

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Ease of use Ease of use Ease of use

Mission/Project
requirement changes

Mission/Project requirement
changes

Mission/Project requirement
changes

Information Assurance Information Assurance Information Assurance

Mission Assurance Mission Assurance Mission Assurance

192

Page 4 of 13

2.2 – Do you have direct experience with security in the following areas:

Yes No

Space flight systems o o

Space ground systems o o

Space test systems o o

Penetration testing o o

Other (please specify) o o

2.3 – Based on direct experience, or indirect perception, what percentage of space flight

systems do you think use the following security provisions for internal protection, i.e. within

space vehicle systems? Please drag the bars to the appropriate percentage, the percentages

do not have to total 100 as these provisions are not mutually exclusive.

 _______ Identity Management Ability to establish identity of components

 _______ Mutual Authentication Method for components to authenticate each others identities

 _______ Authorization (includes access control) Method for determining permissions of

each component

 _______ Auditing Tracking pertinent system events

 _______ Encryption Ability to protect data in transit and at rest

 _______ Network Segmentation Separating networks physically or virtually

 _______ Recovery Ability to recover from attacks

 _______ Mitigation Ability to prevent attacks

 _______ None No internal provisions

 _______ Other (please specify)

193

Page 5 of 13

2.4 – Based on direct experience, or indirect perception, what percentage of space ground

systems do you think use the following security provisions for internal protection, i.e. within the

ground system? Please drag the bars to the appropriate percentage, the percentages do not

have to total 100 as these provisions are not mutually exclusive.

 _______ Identity Management Ability to establish identity of components

 _______ Mutual Authentication Method for components to authenticate each others identities

 _______ Authorization (includes access control) Method for determining permissions of

each component

 _______ Auditing Tracking pertinent system events

 _______ Encryption Ability to protect data in transit and at rest

 _______ Network Segmentation Separating networks physically or virtually

 _______ Recovery Ability to recover from attacks

 _______ Mitigation Ability to prevent attacks

 _______ None No internal provisions

 _______ Other (please specify)

2.5 – Based on direct experience, or indirect perception, what percentage of space test systems

do you think use the following security provisions for internal protection, i.e. within the test

system? Please drag the bars to the appropriate percentage, the percentages do not have to

total 100 as these provisions are not mutually exclusive.

 _______ Mutual Authentication Method for components to authenticate each others identities

 _______ Identity Management Ability to establish identity of components

 _______ Authorization (includes access control) Method for determining permissions of

each component

 _______ Auditing Tracking pertinent system events

 _______ Encryption Ability to protect data in transit and at rest

 _______ Network Segmentation Separating networks physically or virtually

 _______ Recovery Ability to recover from attacks

 _______ Mitigation Ability to prevent attacks

 _______ None No internal provisions

 _______ Other (please specify)

2.6 – For each security feature listed below, rate its importance in each of the two domains:

Open Networked Space Flight Software Systems and Traditional (Point-to-point) Flight Software

Systems. 1 means "not important" and 5 means "very important." Use the "Other" items to

represent provisions or features that you feel are missing from this list.

Open Networked Space Flight
Software Systems

Traditional Space Flight Software
Systems

1 2 3 4 5 1 2 3 4 5

194

Page 6 of 13

Identity
Management -

Ability to establish
identity of

components

o o o o o o o o o o

Mutual
Authentication -

Method for
components to

authenticate each
others identities

o o o o o o o o o o

Authorization
- Method for
determining

permissions of
each component

o o o o o o o o o o

Auditing - Tracking
pertinent system

events
o o o o o o o o o o

Confidentiality -
Ability to ensure
data is private

o o o o o o o o o o

Integrity - Ability to
ensure data is has
not been tampered

with

o o o o o o o o o o

Availability -
Ensure that

components are
available when

expected

o o o o o o o o o o

Well-defined
interfaces -

Clearly defined
hardware and

software interfaces;
Idea being to limit
potential misuse

o o o o o o o o o o

Abstraction layers
- The separation

of concerns to
facilitate

interoperability and
platform

independence

o o o o o o o o o o

195

Page 7 of 13

Access control -
Ability to ensure
permissions are

enforced

o o o o o o o o o o

Network
Segmentation -

Separating
networks physically

or virtually

o o o o o o o o o o

Compliance -
Ensure protocols

are correctly
implemented

o o o o o o o o o o

Testing - Static
and dynamic

analysis from a
security

perspective

o o o o o o o o o o

Recovery - Ability
to recover from

attacks
o o o o o o o o o o

Mitigation - Ability
to prevent attacks o o o o o o o o o o

Other (please
specify) o o o o o o o o o o

Other (please
specify) o o o o o o o o o o

Other (please
specify) o o o o o o o o o o

2.7 – For each security feature listed below, rate the difficulty of providing for it in each of the

two domains: Open Networked Space Flight Software Systems and Traditional (Point-to-point)

Flight Software Systems. 1 means "not difficult" and 5 means "very difficult." Use the "Other"

items to represent provisions or features that you feel are missing from this list.

Open Networked Space Flight
Software Systems

Traditional Space Flight Software
Systems

1 2 3 4 5 1 2 3 4 5

196

Page 8 of 13

Identity
Management o o o o o o o o o o

Mutual
Authentication o o o o o o o o o o

Authorization o o o o o o o o o o

Auditing o o o o o o o o o o

Confidentiality o o o o o o o o o o

Integrity o o o o o o o o o o

Availability o o o o o o o o o o

Well-defined
interfaces o o o o o o o o o o

Abstraction
layers o o o o o o o o o o

Access
control o o o o o o o o o o

Network
Segmentation o o o o o o o o o o

Compliance o o o o o o o o o o

Testing o o o o o o o o o o

Recovery o o o o o o o o o o

Mitigation o o o o o o o o o o

Other o o o o o o o o o o

Other o o o o o o o o o o

Other o o o o o o o o o o

197

Page 9 of 13

2.8 – Please order the following software security provisions and features, in the context space

flight software systems (C&DH), according to importance. Drag them so that the most important

(1) comes first and the least import (17) comes last. You must move at least one characteristic

for the question to marked as answered, you can move it back if you feel the initial ordering is

correct. Use the "Other" items to represent provisions or features that you feel are missing from

this list, if you do not feel anything is missing then simply leave the text entry boxes empty and

put them last.

______ Identity Management - Ability to establish identity of components

______ Mutual Authentication - Method for components to authenticate each others identity

______ Authorization - Method for determining permissions of each component

______ Auditing - Tracking pertinent system events

______ Confidentiality - Ability to ensure data is private

______ Integrity - Ability to ensure data is has not been tampered with

______ Availability - Ensure that components are available when expected

______ Well-defined interfaces - Clearly defined hardware and software interfaces; idea

being to limit potential misuse

______ Abstraction layers - The separation of concerns to facilitate interoperability and

platform independence

______ Access control - Ability to ensure permissions are enforced

______ Compliance - Ensure protocols are correctly implemented

______ Testing - Static and dynamic analysis from a security perspective

______ Recovery - Ability to recover from attacks

______ Mitigation - Ability to prevent attacks

______ Other (please specify)

______ Other (please specify)

______ Other (please specify)

2.9 – Please designate your opinion of the effect of publicly releasing software of its security.

o Negatively effects security

o No effect on security

o Positively effects security

198

Page 10 of 13

2.10 – Please designate your opinion of the effect of open sourcing software on system security.

o Negatively effects security

o No effect on security

o Positively effects security

End of Block: Security

Start of Block: Background

1.0 – Timing

First Click

Last Click

Page Submit

Click Count

1.1 – Please select your role(s) in space systems development. You must select at least one

role.

▢ Software engineer

▢ Electrical engineer

▢ Systems engineer

▢ Mechanical engineer

▢ Aerospace engineer

▢ Program Manager

▢ Technical Lead

▢ Thermal engineer

▢ Principle Investigator

▢ Other (please specify) __

199

Page 11 of 13

1.2 – Please categorize the entity for which you currently work using the options below. You

must select at least one category.

▢ Industry

▢ SETA/UARC/FFRDC

▢ Government

▢ Other (please specify) __

1.3 – How many years have you spent working in the following areas with regard to space

systems? Please drag the sliders to indicate the number of years of experience you have for

each area. You must click or move each slider even if you want your responses marked as zero,

the slider will turn purple/blue upon input.

Years

0 5 10 15 20 25 30 35 40 45 50

Software Systems Development

Management

Hardware Systems Development

Procurement

Other (please specify)

200

Page 12 of 13

1.4 – Based on you experience, i.e. the projects on which you have worked, what are the typical

durations for the phases listed below? Please drag the sliders to indicate the number of months

you think are typically spent on each phase. You must click or move each slider even if you

want your responses marked as zero, the slider will turn purple/blue upon input. If you do not

have direct experience, then go off of what you think is typical.

Months

0 10 20 30 40 50 60 70 80 90 100 110 120

Planning

Development

Testing

Operations

Other (please specify)

1.5 – About how many missions/projects have you worked on over the course of your career in

the following areas? Please drag the sliders to indicate the number missions/projects on which

you have worked. You must click or move each slider even if you want your responses marked

as zero, the slider will turn purple/blue upon input.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Space Systems

Other fields

201

Page 13 of 13

1.6 – About how many missions/projects do you typically work on at the same time? Please

drag the sliders to indicate the number of projects that you typically work on at the same

time. You must click or move each slider even if you want your response marked as zero, the

slider will turn purple/blue upon input.

0 1 2 3 4 5 6 7 8 9 10

Projects/Missions

End of Block: Background

202

Page 1 of 18

SISDPA : Reuse, Interoperability,
Portability, Code Complexity - Survey

Start of Block: Introduction

Intro – I'm Brandon Shirley, I am conducting these surveys for my PhD research at Utah State

University. I really need your participation. There is a chance to win some gift cards.

You are being asked to take part in this set of surveys because of your affiliation with or

involvement in the space industry. Your participation and your responses to the surveys are

greatly needed and will make a meaningful contribution to this research.

This survey comprises the Reuse, Interoperability, Portability, Code Complexity portion of a

survey set that makes up a survey on Space Industry Software Development Practices and

Attitudes (SISDPA). Each question will ask for your input and explain how you should answer

the question.

Answer as many of the questions as you want and as much of a question as you want, partial

surveys may still be very helpful. At the end of this survey, you will be redirected to a webpage

that asks for an email address. You must enter a valid email address to be considered for

survey drawings or the overall survey set drawing.

You have a chance at receiving a gift card for participating in this survey as well as a chance at

receiving a gift card for your overall participation in the entire survey set. There will be 2 winners

of $25 gift cards for each survey and 2 winners of $200 gift cards for the survey set.

At the end of this survey you will be redirected to another webpage where you may

provide your email address if you want to enter the optional drawings. Your email

address will not be connected to the survey responses. You must enter a valid email

address to be considered for this survey’s drawing or the overall drawing.

If you start this survey but do not finish, then your partial result may be included in the results.

Once the survey set is closed, we will analyze the data for inclusion in a conference or journal

paper. Please see the Letter of Intent for additional information about the surveys.

If you have other questions or research-related problems, you may reach Dr. Stephen Clyde at

(435) 797- 2307 or Stephen.Clyde@usu.edu, or Brandon Shirley at (435) 994-9165 or

b.l.s@aggiemail.usu.edu.

End of Block: Introduction

203

A.8 RIPCC Survey

Page 2 of 18

Start of Block: Reuse, Interoperability, Portability, Code Complexity

2.0 – Timing

First Click

Last Click

Page Submit

Click Count

2.1 – Please select what you think are the current, desirable, and obtainable percentages of

reuse from mission to mission or project to project in relation to space flight software.

0 10 20 30 40 50 60 70 80 90 100

Current

Desirable

Obtainable

2.2 – Please select what you think are the current, desirable, and obtainable percentages of

reuse from mission to mission or project to project in relation to space ground software.

0 10 20 30 40 50 60 70 80 90 100

Current

Desirable

Obtainable

204

Page 3 of 18

2.3 – Please select what you think are the current, desirable, and obtainable percentages of

reuse from mission to mission or project to project in relation to space test software.

0 10 20 30 40 50 60 70 80 90 100

Current

Desirable

Obtainable

2.4 – Please select what you think are the current, desirable, and obtainable percentages of

reuse from mission to mission or project to project in relation to other software fields.

0 10 20 30 40 50 60 70 80 90 100

Current

Desirable

Obtainable

2.5 – Please select what you think are the current, desirable, and obtainable percentages of

reuse from mission to mission or project to project in relation to space flight hardware.

0 10 20 30 40 50 60 70 80 90 100

Current

Desirable

Obtainable

205

Page 4 of 18

2.6 – Please select what you think are the current, desirable, and obtainable percentages of

reuse from mission to mission or project to project in relation to space ground hardware.

0 10 20 30 40 50 60 70 80 90 100

Current

Desirable

Obtainable

2.7 – Please select what you think are the current, desirable, and obtainable percentages of

reuse from mission to mission or project to project in relation to space test hardware.

0 10 20 30 40 50 60 70 80 90 100

Current

Desirable

Obtainable

2.8 – Please select what you think are the current, desirable, and obtainable percentages of

reuse from mission to mission or project to project in relation to space test hardware.

0 10 20 30 40 50 60 70 80 90 100

Current

Desirable

Obtainable

206

Page 5 of 18

2.9 – Please select what you think are the current, desirable, and obtainable percentages of

reuse from mission to mission or project to project in relation to hardware in other fields.

0 10 20 30 40 50 60 70 80 90 100

Current

Desirable

Obtainable

2.10 – Consider the items on the left in the context of software reuse across space systems,

where software reuse means the ability to leverage the code or designs for any module from on

system on another system. Place an item under Pros if positively affected, under Neutral if not

affected or not applicable, or under Cons if negatively affected by attempting

to maximize reuse. Think of this impact in terms of multi-project, multi-mission, or multi-

platform use. Keep in mind that some of these items have overlap with other items. All items

should be placed for the answer to be considered complete by the system. In

considering partial or incomplete answers, unplaced items will be considered neutral.

 See Term definitions for specification of the items. If you are using a mouse then you can also

hover over the items for a definition.

Pros Neutral Cons

Regression reduction Regression reduction Regression reduction

Code design Code design Code design

Development cost Development cost Development cost

Maintenance cost Maintenance cost Maintenance cost

Development productivity Development productivity Development productivity

Development efficiency Development efficiency Development efficiency

Code Complexity Code Complexity Code Complexity

Maintainability Maintainability Maintainability

Integration Integration Integration

Adaptability Adaptability Adaptability

Documentation/Examples Documentation/Examples Documentation/Examples

Encapsulation Encapsulation Encapsulation

Bug detection Bug detection Bug detection

207

Page 6 of 18

Code quality Code quality Code quality

Code robustness Code robustness Code robustness

Best practices Best practices Best practices

Schedule Schedule Schedule

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Uniformity of coding style Uniformity of coding style Uniformity of coding style

Domain knowledge Domain knowledge Domain knowledge

Code readability Code readability Code readability

Security Security Security

I/0 efficiency I/0 efficiency I/0 efficiency

Radiation hardness Radiation hardness Radiation hardness

Fault tolerance Fault tolerance Fault tolerance

Hardware complexity Hardware complexity Hardware complexity

Latency Latency Latency

Determinism Determinism Determinism

Interoperability Interoperability Interoperability

Portability Portability Portability

Testing Testing Testing

Reusability Reusability Reusability

Software upgradability Software upgradability Software upgradability

Hardware
changes/flexibility

Hardware
changes/flexibility

Hardware changes/flexibility

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Adoption rates/software proliferation

Ease of use Ease of use Ease of use

Mission/Project
requirement changes

Mission/Project
requirement changes

Mission/Project requirement changes

Information Assurance Information Assurance Information Assurance

Mission Assurance Mission Assurance Mission Assurance

208

Page 7 of 18

2.11 – Consider the items on the left in the context of interoperability in space systems,

specifically semantic interoperability, i.e. having a common information exchange description

that allows components to communicate in a meaningful way. Place an item under Pros

if positively impacted, under Neutral if not impacted or not applicable, or under Cons if

negatively impacted by attempting to maximize interoperability. Think of this impact in terms of

multi-project, multi-mission, or multi-platform use. Keep in mind that some of these items have

overlap with other items. All items should be placed for the answer to be considered

complete by the system. In considering partial or incomplete answers, unplaced items

will be considered neutral.

 See Term definitions for specification of the items. If you are using a mouse then you can also

hover over the items for a definition.

Pros Neutral Cons

Regression reduction Regression reduction Regression reduction

Code design Code design Code design

Development cost Development cost Development cost

Maintenance cost Maintenance cost Maintenance cost

Development productivity Development productivity Development productivity

Development efficiency Development efficiency Development efficiency

Code Complexity Code Complexity Code Complexity

Maintainability Maintainability Maintainability

Integration Integration Integration

Adaptability Adaptability Adaptability

Documentation/Examples Documentation/Examples Documentation/Examples

Encapsulation Encapsulation Encapsulation

Bug detection Bug detection Bug detection

Code quality Code quality Code quality

Code robustness Code robustness Code robustness

Best practices Best practices Best practices

Schedule Schedule Schedule

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Uniformity of coding style Uniformity of coding style Uniformity of coding style

Domain knowledge Domain knowledge Domain knowledge

Code readability Code readability Code readability

Security Security Security

209

Page 8 of 18

I/0 efficiency I/0 efficiency I/0 efficiency

Radiation hardness Radiation hardness Radiation hardness

Fault tolerance Fault tolerance Fault tolerance

Hardware complexity Hardware complexity Hardware complexity

Latency Latency Latency

Determinism Determinism Determinism

Interoperability Interoperability Interoperability

Portability Portability Portability

Testing Testing Testing

Reusability Reusability Reusability

Software upgradability Software upgradability Software upgradability

Hardware
changes/flexibility

Hardware
changes/flexibility

Hardware changes/flexibility

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Adoption rates/software proliferation

Ease of use Ease of use Ease of use

Mission/Project
requirement changes

Mission/Project
requirement changes

Mission/Project requirement changes

Information Assurance Information Assurance Information Assurance

Mission Assurance Mission Assurance Mission Assurance

210

Page 9 of 18

2.12 – Consider the items on the left in the context of software portability in space systems,

specifically an increase in ability to move software from platform to platform with minimal or no

changes. Place an item under Pros if positively impacted, under Neutral if not impacted or not

applicable, or under Cons if negatively impacted. Think of this impact in terms of multi-project,

multi-mission, or multi-platform use. Keep in mind that some of these items have overlap with

other items. All items should be placed for the answer to be considered complete by the

system. In considering partial or incomplete answers, unplaced items will be considered

neutral.

 See Term definitions for specification of the items. If you are using a mouse then you can also

hover over the items for a definition.

Pros Neutral Cons

Regression reduction Regression reduction Regression reduction

Code design Code design Code design

Development cost Development cost Development cost

Maintenance cost Maintenance cost Maintenance cost

Development productivity Development productivity Development productivity

Development efficiency Development efficiency Development efficiency

Code Complexity Code Complexity Code Complexity

Maintainability Maintainability Maintainability

Integration Integration Integration

Adaptability Adaptability Adaptability

Documentation/Examples Documentation/Examples Documentation/Examples

Encapsulation Encapsulation Encapsulation

Bug detection Bug detection Bug detection

Code quality Code quality Code quality

Code robustness Code robustness Code robustness

Best practices Best practices Best practices

Schedule Schedule Schedule

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Uniformity of coding style Uniformity of coding style Uniformity of coding style

Domain knowledge Domain knowledge Domain knowledge

Code readability Code readability Code readability

Security Security Security

211

 Page 10 of 18

I/0 efficiency I/0 efficiency I/0 efficiency

Radiation hardness Radiation hardness Radiation hardness

Fault tolerance Fault tolerance Fault tolerance

Hardware complexity Hardware complexity Hardware complexity

Latency Latency Latency

Determinism Determinism Determinism

Interoperability Interoperability Interoperability

Portability Portability Portability

Testing Testing Testing

Reusability Reusability Reusability

Software upgradability Software upgradability Software upgradability

Hardware
changes/flexibility

Hardware
changes/flexibility

Hardware changes/flexibility

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Adoption rates/software proliferation

Ease of use Ease of use Ease of use

Mission/Project
requirement changes

Mission/Project
requirement changes

Mission/Project requirement changes

Information Assurance Information Assurance Information Assurance

Mission Assurance Mission Assurance Mission Assurance

212

Page 11 of 18

2.13 – Consider the items on the left in the context of reduced or minimal software code

complexity in space systems. Place an item under Pros if positively impacted, under Neutral if

not impacted or not applicable, or under Cons if negatively impacted by attempting to minimize

code complexity. Keep in mind that some of these items have overlap with other items. All

items should be placed for the answer to be considered complete by the system. In

considering partial or incomplete answers, unplaced items will be considered neutral.

 See Term definitions for specification of the items. If you are using a mouse then you can also

hover over the items for a definition.

Pros Neutral Cons

Regression reduction Regression reduction Regression reduction

Code design Code design Code design

Development cost Development cost Development cost

Maintenance cost Maintenance cost Maintenance cost

Development productivity Development productivity Development productivity

Development efficiency Development efficiency Development efficiency

Code Complexity Code Complexity Code Complexity

Maintainability Maintainability Maintainability

Integration Integration Integration

Adaptability Adaptability Adaptability

Documentation/Examples Documentation/Examples Documentation/Examples

Encapsulation Encapsulation Encapsulation

Bug detection Bug detection Bug detection

Code quality Code quality Code quality

Code robustness Code robustness Code robustness

Best practices Best practices Best practices

Schedule Schedule Schedule

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Uniformity of coding style Uniformity of coding style Uniformity of coding style

Domain knowledge Domain knowledge Domain knowledge

Code readability Code readability Code readability

Security Security Security

I/0 efficiency I/0 efficiency I/0 efficiency

Radiation hardness Radiation hardness Radiation hardness

213

Page 12 of 18

Fault tolerance Fault tolerance Fault tolerance

Hardware complexity Hardware complexity Hardware complexity

Latency Latency Latency

Determinism Determinism Determinism

Interoperability Interoperability Interoperability

Portability Portability Portability

Testing Testing Testing

Reusability Reusability Reusability

Software upgradability Software upgradability Software upgradability

Hardware
changes/flexibility

Hardware changes/flexibility Hardware changes/flexibility

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Ease of use Ease of use Ease of use

Mission/Project
requirement changes

Mission/Project requirement
changes

Mission/Project requirement
changes

Information Assurance Information Assurance Information Assurance

Mission Assurance Mission Assurance Mission Assurance

214

Page 13 of 18

2.14 – Consider the items on the left in the context of plug-and-play components and associated

software in space systems. A terrestrial example of plug-and-play is the Human Interface

Device (HID) protocol and a celestial example is the Space Plug-and-Play Avionics

(SPA) Standard. Place an item under Pros if positively impacted, under Neutral if not impacted

or not applicable, or under Cons if negatively impacted by attempting to minimize code

complexity. Keep in mind that some of these items have overlap with other items. All items

should be placed for the answer to be considered complete by the system. In

considering partial or incomplete answers, unplaced items will be considered neutral.

 See Term definitions for specification of the items. If you are using a mouse then you can also

hover over the items for a definition.

Pros Neutral Cons

Regression reduction Regression reduction Regression reduction

Code design Code design Code design

Development cost Development cost Development cost

Maintenance cost Maintenance cost Maintenance cost

Development productivity Development productivity Development productivity

Development efficiency Development efficiency Development efficiency

Code Complexity Code Complexity Code Complexity

Maintainability Maintainability Maintainability

Integration Integration Integration

Adaptability Adaptability Adaptability

Documentation/Examples Documentation/Examples Documentation/Examples

Encapsulation Encapsulation Encapsulation

Bug detection Bug detection Bug detection

Code quality Code quality Code quality

Code robustness Code robustness Code robustness

Best practices Best practices Best practices

Schedule Schedule Schedule

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Uniformity of coding style Uniformity of coding style Uniformity of coding style

Domain knowledge Domain knowledge Domain knowledge

Code readability Code readability Code readability

Security Security Security

215

Page 14 of 18

I/0 efficiency I/0 efficiency I/0 efficiency

Radiation hardness Radiation hardness Radiation hardness

Fault tolerance Fault tolerance Fault tolerance

Hardware complexity Hardware complexity Hardware complexity

Latency Latency Latency

Determinism Determinism Determinism

Interoperability Interoperability Interoperability

Portability Portability Portability

Testing Testing Testing

Reusability Reusability Reusability

Software upgradability Software upgradability Software upgradability

Hardware
changes/flexibility

Hardware
changes/flexibility

Hardware changes/flexibility

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Adoption rates/software proliferation

Ease of use Ease of use Ease of use

Mission/Project
requirement changes

Mission/Project
requirement changes

Mission/Project requirement changes

Information Assurance Information Assurance Information Assurance

Mission Assurance Mission Assurance Mission Assurance

216

Page 15 of 18

2.15 – For each metric listed in a row below, rate its importance with regard to measuring code

complexity.1 means "not important" and 5 means "very important." Note that some of these only

related to object-oriented programming.

1 2 3 4 5

Cyclomatic
complexity
(McCabe
Metric)

o o o o o

Depth of
inheritance o o o o o

Class
coupling o o o o o

Methods per
class o o o o o

Lack of
cohesion o o o o o

Data
complexity

(Chapin
Metric)

o o o o o

Data flow
complexity

(Elshof
Metric)

o o o o o

Decisional
complexity

(Mcclure
Metric)

o o o o o

Language
complexity
(Haltsead

Metric)

o o o o o

Interface
Complexity
(Henry fan-
in/fan-out

Metric)

o o o o o

Lines of
code o o o o o

Other
(please
specify)

o o o o o

217

Page 16 of 18

End of Block: Reuse, Interoperability, Portability, Code Complexity

Start of Block: Background

1.0 – Timing

First Click

Last Click

Page Submit

Click Count

1.1 – Please select your role(s) in space systems development. You must select at least one

role.

▢ Software engineer

▢ Electrical engineer

▢ Systems engineer

▢ Mechanical engineer

▢ Aerospace engineer

▢ Program Manager

▢ Technical Lead

▢ Thermal engineer

▢ Principle Investigator

▢ Other (please specify) __

1.2 – Please categorize the entity for which you currently work using the options below. You

must select at least one category.

▢ Industry

▢ SETA/UARC/FFRDC

▢ Government

▢ Other (please specify) __

218

Page 17 of 18

1.3 How many years have you spent working in the following areas with regard to space

systems? Please drag the sliders to indicate the number of years of experience you have for

each area. You must click or move each slider even if you want your responses marked as zero,

the slider will turn purple/blue upon input.

Years

0 5 10 15 20 25 30 35 40 45 50

Software Systems Development

Management

Hardware Systems Development

Procurement

Other (please specify)

1.4 – Based on you experience, i.e. the projects on which you have worked, what are the typical

durations for the phases listed below? Please drag the sliders to indicate the number of months

you think are typically spent on each phase. You must click or move each slider even if you

want your responses marked as zero, the slider will turn purple/blue upon input. If you do not

have direct experience, then go off of what you think is typical.

Months

0 10 20 30 40 50 60 70 80 90 100 110 120

Planning

Development

Testing

Operations

Other (please specify)

219

Page 18 of 18

1.5 – About how many missions/projects have you worked on over the course of your career in

the following areas? Please drag the sliders to indicate the number missions/projects on which

you have worked. You must click or move each slider even if you want your responses marked

as zero, the slider will turn purple/blue upon input.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Space Systems

Other fields

1.6 – About how many missions/projects do you typically work on at the same time? Please

drag the sliders to indicate the number of projects that you typically work on at the same

time. You must click or move each slider even if you want your response marked as zero, the

slider will turn purple/blue upon input.

0 1 2 3 4 5 6 7 8 9 10

Projects/Missions

End of Block: Background

220

 Page 1 of 7

SISDPA : Network - Survey

Start of Block: Introduction

Intro – I'm Brandon Shirley, I am conducting these surveys for my PhD research at Utah State

University. I really need your participation. There is a chance to win some gift cards.

You are being asked to take part in this set of surveys because of your affiliation with or

involvement in the space industry. Your participation and your responses to the surveys are

greatly needed and will make a meaningful contribution to this research.

This survey comprises the Network portion of a survey set that makes up a survey on Space

Industry Software Development Practices and Attitudes (SISDPA). Each question will ask for

your input and explain how you should answer the question.

Answer as many of the questions as you want and as much of a question as you want, partial

surveys may still be very helpful. At the end of this survey, you will be redirected to a webpage

that asks for an email address. You must enter a valid email address to be considered for

survey drawings or the overall survey set drawing.

You have a chance at receiving a gift card for participating in this survey as well as a chance at

receiving a gift card for your overall participation in the entire survey set. There will be 2 winners

of $25 gift cards for each survey and 2 winners of $200 gift cards for the survey set.

At the end of this survey you will be redirected to another webpage where you may

provide your email address if you want to enter the optional drawings. Your email

address will not be connected to the survey responses. You must enter a valid email

address to be considered for this survey’s drawing or the overall drawing.

If you start this survey but do not finish, then your partial result may be included in the results.

Once the survey set is closed, we will analyze the data for inclusion in a conference or journal

paper. Please see the Letter of Intent for additional information about the surveys.

If you have other questions or research-related problems, you may reach Dr. Stephen Clyde at

(435) 797- 2307 or Stephen.Clyde@usu.edu, or Brandon Shirley at (435) 994-9165 or

b.l.s@aggiemail.usu.edu.

End of Block: Introduction

221

A.9 Network Survey

Page 2 of 7

Start of Block: Network

2.0 – Timing

First Click

Last Click

Page Submit

Click Count

2.1 – Do you have direct network experience in the following areas? You must select "Yes" or

"No" for each area for the answer to be complete.

Yes No

Purely Point-to-Point (serial,
etc.) o o

Master-slave (includes
networks like I2C where only

one component can
communicate at a time)

o o

Purely open (Spacewire,
Ethernet, etc.) o o

Hybrid Networks
(combination of point-to-point
and open network solutions)

o o

Other o o

2.2 – Based on direct experience, or indirect perception, what percentage of space systems do

you think use the following network types? Please drag the bars so that the total adds up to 100.

 _______ Purely Point-to-Point (serial, etc.)

 _______ Master-slave (includes networks like I2C where only one component can

communicate at a time)

 _______ Purely Open (SpaceWire, Ethernet, etc.)

 _______ Hybrid Networks (combination of point-to-point and open network solutions)

 _______ Other

222

Page 3 of 7

2.3 – Consider the items on the left in the context of networked space systems, meaning a

collection of three or more systems connected on an internal network instead of point-to-point

links. Place an item under Pros if positively impacted, under Neutral if not impacted or not

applicable, and under Cons if negatively impacted by using networked space systems. Think of

this impact in terms of multi-project, multi-mission, or multi-platform use. All items should be

placed for the answer to be considered complete by the system. In considering partial or

incomplete answers, unplaced items will be considered neutral.

See Term definitions for specification of the items. If you are using a mouse then you can also

hover over the items for a definition.

Pros Neutral Cons

Regression reduction Regression reduction Regression reduction

Code design Code design Code design

Development cost Development cost Development cost

Maintenance cost Maintenance cost Maintenance cost

Development productivity Development productivity Development productivity

Development efficiency Development efficiency Development efficiency

Code Complexity Code Complexity Code Complexity

Maintainability Maintainability Maintainability

Integration Integration Integration

Adaptability Adaptability Adaptability

Documentation/Examples Documentation/Examples Documentation/Examples

Encapsulation Encapsulation Encapsulation

Bug detection Bug detection Bug detection

Code quality Code quality Code quality

Code robustness Code robustness Code robustness

Best practices Best practices Best practices

Schedule Schedule Schedule

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Code or algorithm
optimization/efficiency

Uniformity of coding style Uniformity of coding style Uniformity of coding style

Domain knowledge Domain knowledge Domain knowledge

Code readability Code readability Code readability

Security Security Security

I/0 efficiency I/0 efficiency I/0 efficiency

223

Page 4 of 7

Radiation hardness Radiation hardness Radiation hardness

Fault tolerance Fault tolerance Fault tolerance

Hardware complexity Hardware complexity Hardware complexity

Latency Latency Latency

Determinism Determinism Determinism

Interoperability Interoperability Interoperability

Portability Portability Portability

Testing Testing Testing

Reusability Reusability Reusability

Software upgradability Software upgradability Software upgradability

Hardware
changes/flexibility

Hardware
changes/flexibility

Hardware changes/flexibility

Adoption rates/software
proliferation

Adoption rates/software
proliferation

Adoption rates/software proliferation

Ease of use Ease of use Ease of use

Mission/Project
requirement changes

Mission/Project
requirement changes

Mission/Project requirement changes

Information Assurance Information Assurance Information Assurance

Mission Assurance Mission Assurance Mission Assurance

End of Block: Network

Start of Block: Background

1.0 – Timing

First Click

Last Click

Page Submit

Click Count

224

Page 5 of 7

1.1 – Please select your role(s) in space systems development. You must select at least one

role.

▢ Software engineer

▢ Electrical engineer

▢ Systems engineer

▢ Mechanical engineer

▢ Aerospace engineer

▢ Program Manager

▢ Technical Lead

▢ Thermal engineer

▢ Principle Investigator

▢ Other (please specify) __

1.2 – Please categorize the entity for which you currently work using the options below. You

must select at least one category.

▢ Industry

▢ SETA/UARC/FFRDC

▢ Government

▢ Other (please specify) __

225

Page 6 of 7

1.3 – How many years have you spent working in the following areas with regard to space

systems? Please drag the sliders to indicate the number of years of experience you have for

each area. You must click or move each slider even if you want your responses marked as zero,

the slider will turn purple/blue upon input.

Years

0 5 10 15 20 25 30 35 40 45 50

Software Systems Development

Management

Hardware Systems Development

Procurement

Other (please specify)

1.4 – Based on you experience, i.e. the projects on which you have worked, what are the typical

durations for the phases listed below? Please drag the sliders to indicate the number of months

you think are typically spent on each phase. You must click or move each slider even if you

want your responses marked as zero, the slider will turn purple/blue upon input. If you do not

have direct experience, then go off of what you think is typical.

Months

0 10 20 30 40 50 60 70 80 90 100 110 120

Planning

Development

Testing

Operations

Other (please specify)

226

Page 7 of 7

1.5 – About how many missions/projects have you worked on over the course of your career in

the following areas? Please drag the sliders to indicate the number missions/projects on which

you have worked. You must click or move each slider even if you want your responses marked

as zero, the slider will turn purple/blue upon input.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Space Systems

Other fields

1.6 – About how many missions/projects do you typically work on at the same time? Please

drag the sliders to indicate the number of projects that you typically work on at the same

time. You must click or move each slider even if you want your response marked as zero, the

slider will turn purple/blue upon input.

0 1 2 3 4 5 6 7 8 9 10

Projects/Missions

End of Block: Background

227

Term Definitions

A
 Adaptability - Ability of a system to adapt itself efficiently and quickly to changes in

circumstance

 Adoption rates/software proliferation - Likelihood that software will be used and developed by

other parties

B
 Best practices - Adherence to industry best practices standards

 Bug detection - Ease with which bugs and be detected and corrected

C
 Code complexity - Cyclomatic Complexity (structural complexity), Depth of Inheritance, Class

Coupling, Lines of Code (LOC)

 Code design - The difficulty to architect software, e.g. amount of constraints and requirements

placed on a software design

 Code or algorithm optimization/efficiency - Overhead incurred while completing operations

 Code quality - How well software complies with its design based on functional requirements

 Code readability - Ease with which a programmer can understand written code

 Code robustness - Codes ability to handle failure scenarios or misuse

D
 Development cost - Cost in terms of schedule and money to develop a system

 Development efficiency - Overhead incurred in hardware and software development, e.g.

management time, design time

 Determinism - Ability of a system to always produce the same output given the same input

 Development productivity - Ability to produce software and hardware

 Documentation/Examples - Documentation of how a system works or how to use it

 Domain knowledge - Amount of knowledge or background need to use software or hardware

E
 Ease of use - Ease with which a non-developer can use the system, i.e. someone who was not

involved in the implementation of the system

 Encapsulation - Bundling data with functionality (if desired)

F
 Fault tolerance - Ability of a system to remain operational in the event of failures

H
 Hardware changes/flexibility - Ease with which a system, including software, can handle

changes to hardware components

 Hardware complexity - Metrics for hardware complexity are not well-defined, base this more on

your perception

228

A.10 Survey Pro-neutral-con Term Definitions

I
 Information Assurance - Process of getting the right information to the right place at the right

time

 Integration - Ease with which system components can be integrated

 Interoperability - Specifically semantic interoperability (this generally encompasses Syntactic

interoperability)

 I/0 efficiency - Overhead incurred during input and output operations, e.g. network transfer or

write to nonvolatile storage

L
 Latency - Time delay experienced by a system

M
 Maintainability - Tipping point at which it becomes cheaper or less risky to rewrite code than to

change it

 Maintenance cost - Cost in terms of schedule and money to update code with bug fixes and new

features

 Mission Assurance - Ability to achieve success of design, development, testing, deployment, and

operations

 Mission/Project requirement changes - Ease with which new requirements can be addressed

P

 Portability - The ability of software to be used on multiple platforms

R
 Radiation hardness - Resistance to damage or malfunctions caused by ionizing radiation and

high-energy electromagnetic radiation

 Regression reduction - Introduction of new bugs or loss of features as new features are added

or maintenance is performed

 Reusability - Ability to reuse existing assets (hardware or software) in new missions or projects

S
 Schedule - Ability to adhere to a given timeline

 Security - The basics: confidentiality, integrity, and availability

 Software upgradability - The ease with which new versions of software can be deployed to a

system

T
 Testing - How easily the system can be tested

U
 Uniformity of coding style - Adherence to code style guidelines (if present)

229

230

APPENDIX B

SISDPA Survey Participant Backgrounds

B.1 Introduction

This appendix reviews the development roles with which participants identified as well

as the years of experience that they have in different areas of space systems development,

e.g. hardware systems or software systems development. It is important to understand who

took the surveys in order to give context to the consensuses and perceptions that are reached

on the relevant questions in each of the different surveys. These roles are not analyzed to

a level where statistical significance is considered, rather this section presents more of a

snapshot of who took each survey and the experience level mixture for each survey.

This analysis looks at two questions from the background section of each survey. These

questions are the same for all the surveys. The first question is Question 1.1, this question

asks participants to select their development roles. Unfortunately, this question is not

specific enough in terms of current versus past, or duration of time in a role for it to be

counted. Noting this shortcoming, this question still gives a window into the roles with

which the participants identify and participate in at some level.

SE had the best representation in terms specialized and combination roles for all of

the surveys; this may not be the best representation for the entire community on general

issues, but it is a good balance for a set of surveys focused primarily on the software

development aspects of space systems. systems engineer (SysE)s, technical lead (TL)s,

program manager (PM)s, and principal investigator (PI)s all had good representation across

all the surveys when considered as inclusive roles. Each of the sections that follow give an

overview of the role breakdown.

The second question is Question 1.3, this question asks each participant to specify

the years of experience they have in software systems development, management, hardware

231

systems development, procurement, and other.

0

2

4

6

8

10

12

CC OSAM Security RIPCC Network

E
x
p

er
ie

n
ce

 M
ea

n
 (

Y
ea

rs
)

Software systems Management Hardware systems Procurement Other

Fig. B.1. Survey Experience Means. The average years for experience for software systems
development, management, hardware systems development, procurement, and other for
each of the five surveys.

Figure B.1 shows the area experience averages across all the surveys. Figure B.1 shows

that software systems development experience mean is fairly consistent across all of the

surveys at between 8 and 10 years. Management shows greater variance across the surveys,

but still averaged over 5 years for all the surveys. The hardware systems development

experience average ranged between 6 and 10 years. The procurement average was a bit

weaker dipping under 4 for the CC Survey, but generally holding in the 4 to 8 year range.

Finally, other varied the most going as low as a year and as high as almost 8 years. This

shows close to a 5 year plus experience average in all the surveys across all the development

areas excluding other. This suggests that the participants have a good body of knowledge

to draw upon when answering the questions for all of the surveys.

Sections B.2 through B.6 cover the role and experience breakdowns for each of the

surveys. These roles and experience breakdowns show strong SE representation and good

development experience mixtures.

232

B.2 CC Survey — Roles and Development Experience

Table B.1 shows that SEs had the strongest representation with 16 participants that

identified strictly as an SE, or about 17%. These are participants that identified exclusively

as SEs, this is the largest exclusive representation by far. Those that had an aggregate

inclusive of SEs accounted for 47 of the participants or about 48%. This bodes well for a

survey focused on software. It also shows a good representation of electrical engineer (EE)s

and aerospace engineer (AE)s at close to 15% each, when considered as aggregate roles,

showing that technical areas that might deal more with hardware are also represented.

SysEs were the next biggest exclusive group with 7 or about 7%. In considering roles

that were inclusive of SysEs then the total is 40, or about 41%. The next highest aggregate

inclusive groups was made up of TLs with 29 participants, or about 30%, even though TL

exclusive participants only account for 3 of the total. Low exclusive counts for TLs and

SysEs suggest that either these types of roles tend to engage in multiple roles at once or that

they have a lot of experience in different roles before becoming TLs or SysEs, unfortunately

the survey question did not adequately specify how this question should be answered. It

would be ideal or at least better to break this out into at least two questions: one focusing

on concurrent currently active roles and one focusing on cumulative or past roles in order

to better understand this experience versus active roles relationship.

Table B.1. CC Survey, Question 1.1 — Role Breakdown

Role Exclusive
Aggregate Count

Exclusive
Aggregate Share

Inclusive Count Inclusive Share

SE 16 16.49% 47 48.45%

EE 1 1.03% 12 12.37%

SysE 7 7.22% 40 41.24%

ME 2 2.06% 8 8.25%

AE 6 6.19% 14 14.43%

PM 5 5.15% 16 16.49%

TL 2 2.06% 29 29.90%

TE 0 0.00% 4 4.12%

(continued on next page)

233

Table B.1. CC Survey, Question 1.1 — Role Breakdown

Role Exclusive
Aggregate Count

Exclusive
Aggregate Share

Inclusive Count Inclusive Share

PI 3 3.09% 8 8.25%

Other 6 6.19% 9 9.28%

Roles like TLs and SysEs tend to be thought of big pictures roles, meaning that they

encompass larger portions of a program or mission than a more focused role like a TE.

This is evidenced in Table B.1 where both the TL and SysE roles have relatively normal

exclusive aggregate shares of 2.1% and 7.2%, but jump to 29.9% and 41.2% respectively

when their inclusive share is considered. This result shows that participants that identified

with these roles also tended to be involved with multiple other roles, as mentioned before

it is hard to say if this is due to experience or concurrent roles. It is notable that the SEs

had actually had the largest inclusive share, at 48.5%. This is likely driven by at least two

factors. First, SEs where the largest exclusive aggregate by a factor of 2. Second, software

tends to have to touch every segment of a mission in one way or another.

Figure B.2 gives the overall role affiliations of each of the respondents that took the

survey. Figure B.3 shows the experience breakdown for each role for software systems

development, management, hardware systems development, procurement, and other areas.

Note these roles are not exclusive so there is overlap. Some of these groups are not really

large enough to give a good average, but remember this is really just for illustrative purposes

and some understanding of the group that took the survey. The PM and PI showed strong

overall years of experience in all the roles, but also showed 10+ years of experience in

management.

SEs showed the strongest skew towards their “discipline”, but it is not clear if this

relates to the higher number of SEs in general or a real difference in how focused SEs are

with respect to other roles. The higher number of SEs might allow for a more representative

experience ratio.

Once again these sections are more to illustrate the demographic, a lot of effort could

have spent analyzing this area, but that was not the focus of this research and future work

234

Count

16 14 12 10 8 6 4 2

A
ggregate R

oles

SE, EE, SysE, ME,
PM, TL, TE

SE, EE, SysE, ME, TL

SE, EE, SysE, AE, TL,
Other

SE, EE, SysE, TL

SE, EE, SysE

SE, EE

SE, ME, AE, PM, TL,
TE

SE, AE, PI

SE, SysE, AE

SE, SysE, PM

SE, SysE, TL

SE, SysE

SE, AE

SE, PM, TL, PI

SE, PM, TL

SE, PM

SE, TL

SE

EE, SysE, TL, PI

EE, SysE

EE, PM

EE

SysE, ME, PM, TE

SysE, ME

SysE, AE

SysE, PM, TE, PI

SysE, PM

SysE, TL, Othr

SysE, TL

SysE, Othr

SysE

ME

AE, Othr

AE

PM

TL, PI

TL

PI

Othr

16141210864200

ParticipantNon-participant

Page 1

Fig. B.2. CC Survey, Question 1.1 — Aggregate Roles. The aggregate make-up of partici-
pants in terms of their self-identified roles for those that only participated in the background
section (Non-participant) and those that participated in the full survey (Participant).

235

OthrPITETLAE PM
Non-aggregate Roles

MESysEEESE

A
ve

ra
ge

 E
xp

er
ie

nc
e

(y
ea

rs
)

16

14

12

10

8

6

4

2

0

Other
Procurement
Hardware systems
Management
Software systems

Fig. B.3. CC Survey — Non-aggregate Roles vs. Average Experience. The average years
of experience in the different development disciplines for each of the non-exclusive roles.

might look at this either via detailed analysis of these surveys or a more role-experience

targeted survey.

B.3 OSAM Survey — Roles and Development Experience

Table B.2 shows that SEs had the strongest representation with 9 participants that

identified strictly as an SE, or about 20%. Roles inclusive of SEs totaled 17 participants

or about 39% that were SE inclusive. The next closest dedicated role was made up of

PMs, they accounted for 6 of the participants or about 14%. If PM inclusive roles sets are

included then the total goes to 17 or about 39%. SysEs, TLs, and PMs continued their

trend of belonging to multi-role aggregates.

Table B.2. OSAM Survey, Question 1.1 — Role Breakdown

Role Exclusive
Aggregate Count

Exclusive
Aggregate Share

Inclusive Count Inclusive Share

SE 9 20.45% 17 38.64%

EE 1 2.27% 7 15.91%

(continued on next page)

236

Table B.2. OSAM Survey, Question 1.1 — Role Breakdown

Role Exclusive
Aggregate Count

Exclusive
Aggregate Share

Inclusive Count Inclusive Share

SysE 2 4.55% 16 36.36%

ME 0 0.00% 3 6.82%

AE 0 0.00% 8 18.18%

PM 6 13.64% 17 38.64%

TL 0 0.00% 15 34.09%

TE 0 0.00% 3 6.82%

PI 1 2.27% 5 11.36%

Other 1 2.27% 4 9.09%

They can have low exclusive aggregate counts, and still have a high count when inclusive

aggregates are considered; PMs were a bit of an exception because they had a relatively high

exclusive aggregate count this time, but their inclusive coverage was still disproportionately

high when compared to other roles like AEs or EEs. SysEs, TLs, and PMs account for about

36%, 39%, and, 34%, respectively, of the OSAM Survey participants when considered as

inclusive aggregates.

Figure B.4 shows the participant roles for the OSAM Survey. Figure B.5 shows the

experience breakdown for each role that participated in the OSAM Survey. All the roles in

this survey show really good overall experience in all the areas, and generally the averages

are higher in this survey than the are for the first two surveys. This time EEs show the

strongest skew towards their discipline. PM and PIs show very strong overall experience,

this is expected for those types of roles. AEs also show good experience across the board.

B.4 Security Survey — Roles and Development Experience

Table B.3 shows that the strongest pure role was again SEs with 5 participants, or

about 16%. The SE inclusive aggregate totaled out at 13 participants or about 42%. Next

came the SysE dedicated role, they accounted for 4 of the participants or about 13%. The

SysE inclusive aggregate role accounted for 17 participants or about 55%. SysEs, TLs, and

237

Count
1086420

A
ggregate R

oles

SE, EE, SysE, PM, TL, PI

SE, SysE, ME, AE, PM, TL, TE

SE, SysE, AE, TL

SE, SysE, PM, TL

SE, AE, PM, TL

SE, PM, TL

SE, TL

SE

EE, SysE, AE, TL

EE, SysE, PI, Othr

EE, PM

EE, TL

EE

SysE, ME, PM, TE

SysE, ME

SysE, AE

SysE, PM, TL, TE, PI

SysE, PM

SysE, TL, Othr

SysE, TL

SysE, Othr

SysE

AE, PM, TL, PI

AE, TL

AE

PM

PI

Othr

Page 1

Fig. B.4. OSAM Survey, Question 1.1. — Aggregate Roles. The aggregate make-up of
participants in terms of their self-identified roles.

PMs continued their trend of belonging to multi-role aggregates at higher rates then any of

the other roles, aside from SEs, which was the dominant role overall.

Table B.3. Security Survey, Question 1.1 — Role Breakdown

Role Exclusive
Aggregate Count

Exclusive
Aggregate Share

Inclusive Count Inclusive Share

SE 5 16.13% 13 41.94%

EE 0 0.00% 1 3.23%

SysE 4 12.90% 17 54.84%

ME 0 0.00% 1 3.23%

AE 0 0.00% 4 12.90%

PM 0 0.00% 9 29.03%

TL 0 0.00% 10 32.26%

TE 0 0.00% 1 3.23%

PI 0 0.00% 4 12.90%

(continued on next page)

238

Table B.3. Security Survey, Question 1.1 — Role Breakdown

Role Exclusive
Aggregate Count

Exclusive
Aggregate Share

Inclusive Count Inclusive Share

Other 3 9.68% 4 12.90%

To that end TLs and PMs both accounted for 0 of the participants in terms of ex-

clusive roles, but when counted in inclusive aggregate they accounted for 32% and 29% of

the participants respectively. The other roles that had 0 participants when considered in

exclusive aggregate, e.g. EE, AE, and ME, only accounted for between 3% and 12% when

considered in inclusive aggregate and actually averaged around 6%.

Figure B.6 shows the participant roles for the Security Survey. Figure B.7 shows the

experience breakdown for each roles that participated in the Security Survey. The roles

did not have as balanced experience levels for this survey as they did for the previous

surveys. For example, the EEs show a strong skew towards hardware systems and a little

management but no other experience. There is only one EE in this case. SEs again show

the strongest skew towards software systems development experience. As usual PM, TLs,

and PIs show very strong overall experience.

B.5 RIPCC Survey — Roles and Development Experience

Table B.4 shows that the largest pure role was again SEs with 5 participants, or about

17%. The SE inclusive aggregate totaled out at 15 participants or about 56%. No other

role had a significant exclusive share, the next closest being PMs and Other with 2 each or

about 7% each. Even with SysEs, TLs, and PMs not having much in the way of exclusive

share they still have a strong showing when considered in inclusive aggregate. SysEs, TLs,

and PMs continued their trend of belonging to multi-role aggregates at higher rates then

any of the other roles, aside from SEs, coming in at 48%, 35%, and 38%, respectively.

239

OthrPITETLAE PM
Non-aggregate Roles

MESysEEESE

A
ve

ra
ge

 E
xp

er
ie

nc
e

(y
ea

rs
)

20

10

0

Other
Procurement
Hardware systems
Management
Software systems

Fig. B.5. OSAM Survey — Non-aggregate Roles vs. Average Experience. The average
years of experience in the different development disciplines for each of the non-exclusive
roles.

Table B.4. RIPCC Survey, Question 1.1 — Role Breakdown

Role Exclusive
Aggregate Count

Exclusive
Aggregate Share

Inclusive Count Inclusive Share

SE 5 17.24% 15 51.72%

EE 1 3.45% 4 13.79%

SysE 1 3.45% 14 48.28%

ME 0 0.00% 1 3.45%

AE 0 0.00% 6 20.69%

PM 2 6.90% 11 37.93%

TL 1 3.45% 10 34.48%

TE 0 0.00% 1 3.45%

PI 0 0.00% 1 3.45%

Other 2 6.90% 2 6.90%

The other roles ranged from 3% to 21% when considered in inclusive aggregates, giving

an average of about 9%. The high of 21% was driven by the AE role, and this actually

a trend that was consistent across all the surveys, i.e. the AEs consistently came next in

terms of inclusive aggregate after SEs, SysEs, TLs, and PMs.

Figure B.8 shows the participant roles for the RIPCC Survey. Figure B.9 shows the

experience breakdown for each role that participated in the RIPCC Survey. The PI role

had a pretty strong software systems and management experience skew, but also just a lot

of experience. This is being driven by one individual as only one PI participated in this

survey. This survey again benefited from a good mix of experience amongst the roles. The

experience means may look lower, but this is because of the very high means for the PIs

experience that are compressing the scale. The SEs and EEs again show a strong skew

towards their disciplines. As usual PMs, TLs, and PIs show very strong overall experience.

B.6 Network Survey — Roles and Development Experience

Table B.5 shows that the largest pure role was again SEs with 5 participants, or about

16%. The SE inclusive aggregate totaled out at 18 participants or about 56%. No other

role had a significant exclusive share, the next closest roles are PMs and EEs with 2 each or

240

Count
420

A
g

g
reg

a
te R

o
les

SE, SysE, ME, AE, PM, TL, TE

SE, SysE, PM, TL

SE, SysE, TL, PI

SE, SysE, TL

SE, SysE

SE, PM, TL

SE, TL

SE

EE, TL

SysE, AE, TL, PI

SysE, AE

SysE, PM

SysE

PM, TL, PI

PM, Othr

Othr

Page 1

Fig. B.6. Security Survey, Question 1.1 — Aggregate Roles. The aggregate make-up of
participants in terms of their self-identified roles.

about 6%. SysEs, TLs, and PMs continued their trend of belonging to multi-role aggregates

at higher rates then any of the other roles, aside from SEs, coming in at 44%, 31%, and

40%, respectively. The other roles ranged from 3% to 22% when considered in inclusive

aggregates, giving an average of about 11%. This time the EEs were the next highest mark

at 22%, but the AE role was not far behind at 19%. No TEs participated in this survey,

even when inclusive aggregates are considered.

Table B.5. Network Survey, Question 1.1 — Role Breakdown

Role Exclusive
Aggregate Count

Exclusive
Aggregate Share

Inclusive Count Inclusive Share

SE 5 15.63% 18 56.25%

EE 2 6.25% 7 21.88%

SysE 1 3.13% 14 43.75%

ME 0 0.00% 4 12.50%

(continued on next page)

241

Table B.5. Network Survey, Question 1.1 — Role Breakdown

Role Exclusive
Aggregate Count

Exclusive
Aggregate Share

Inclusive Count Inclusive Share

AE 0 0.00% 6 18.75%

PM 2 6.25% 10 31.25%

TL 1 3.13% 13 40.63%

TE 0 0.00% 0 0.00%

PI 1 3.13% 4 12.50%

Other 0 0.00% 1 3.13%

Figure B.10 shows the breakdown of participants by aggregate roles of those who par-

ticipated in the Network survey. Figure B.11 shows the experience breakdown for each roles

that participated in the Network Survey. The experience means here show similar trends

as the other surveys that had good experience mixes. The exception being the Other role

with 20 years of other experience, there is only one participant that identified this way. It is

odd because they also identified as an SE, but do not appear to claim any software systems

development experience. Might have been an error in how they filled out the survey.

242

OthrPITETLAE PM
Non-aggregate Roles

MESysEEESE

A
ve

ra
ge

 E
xp

er
ie

nc
e

(y
ea

rs
)

20

10

0

Other
Procurement
Hardware systems
Management
Software systems

Fig. B.7. Security Survey — Non-aggregate Roles vs. Average Experience. The average
years of experience in the different development disciplines for each of the non-exclusive
roles.

Count
543210

A
g
g
reg

a
te R

o
les

SE, EE, SysE

SE, SysE, ME, AE, PM, TL, TE

SE, SysE, AE

SE, SysE, PM, TL

SE, SysE, PM

SE, SysE, TL

SE, SysE

SE, PM, TL

SE

EE, SysE, TL

EE, TL

EE

SysE, AE, PM

SysE, AE

SysE, PM

SysE

AE, PM, TL, PI

AE, PM

PM

TL

Othr

Page 1

Fig. B.8. RIPCC Survey, Question 1.1 — Aggregate Roles. The aggregate make-up of
participants in terms of their self-identified roles.

243

OthrPITETLAE PM
Non-aggregate Roles

MESysEEESE

A
ve

ra
ge

 E
xp

er
ie

nc
e

(y
ea

rs
)

40

30

20

10

0

Other
Procurement
Hardware systems
Management
Software systems

Fig. B.9. RIPCC Survey — Non-aggregate Roles vs. Average Experience. The average
years of experience in the different development disciplines for each of the non-exclusive
roles.

Count
420

A
g

g
reg

a
te R

o
les

SE, EE, SysE, AE, PM, TL, PI

SE, EE, SysE, TL

SE, EE, ME, AE

SE, SysE, PM, TL

SE, SysE, TL

SE, SysE

SE, AE

SE, PM, TL

SE, TL

SE, Othr

SE

EE, SysE, ME, TL

EE

SysE, ME, PM

SysE, ME

SysE, AE, PM, TL, PI

SysE, AE, TL, PI

SysE, PM

SysE

AE, PM, TL

PM

TL

PI

Page 1

Fig. B.10. Network Survey, Question 1.1 — Aggregate Roles. The aggregate make-up of
participants in terms of their self-identified roles.

244

Non-aggregate Roles

OthrPITLPMAEMESysEEESE

A
ve

ra
ge

 E
xp

er
ie

nc
e

(y
ea

rs
) 20

10

0

Other
Procurement
Hardware systems
Management
Software systems

Fig. B.11. Network Survey — Non-aggregate Roles vs. Average Experience. The average
years of experience in the different development disciplines for each of the non-exclusive
roles.

245

APPENDIX C

Background

This appendix presents a more detailed description of the existing work used by SSSM.

Specifically SSM and Kerberos, this appendix exists to provide context for a reader who

is not familiar with SSM or Kerberos. Both are leveraged heavily to create SSSM and

understand them is helpful in understanding what SSSM brings to the table. If the reader

is already familiar with SSM and Kerberos then this appendix does not cover any new

ground. This appendix is referenced in various other chapters were additional background

might be helpful.

C.1 SSM

SSM is an open networked architecture that allows for communication amongst com-

ponents without distinction between software and hardware entities [6]. SSM is essentially

a self-configuring network geared towards space systems. There are many self configuring

network examples in terrestrial systems, and while an expert may be needed to optimize

them, they can largely configure themselves. SSM attempts to remove the need for exper-

tise by replacing it with well-defined protocols and routing infrastructure [7,52]; the intent

being to make is easier to develop software systems for space applications. SSM supports

Ethernet, I2C, SpaceWire, Controller Area Network (CAN), and local subnets, with plans

to support more, while allowing the communication across various subnets to be transpar-

ent to the communicating endpoints [6]. In the example SSM network depicted in Figure

C.1 there is a heterogeneous network comprised of local subnets: a I2C subnet, a Ethernet

subnet, and a SpaceWire subnet. SpaceWire stems from the Institute of Electrical and

Electronics Engineers (IEEE) 1355–1995 standard for Heterogeneous Interconnect publish

in 1995 [53]. IEEE 1355 was later adapted in 2003 to apply to space systems, specifically

SpaceWire [54,55].

246

Consider a scenario where one of the SPA SpaceWire (SPA-S) Components wants

to subscribe to data from one of the SPA I2C (SPA-1) components. Setting up this relay

requires querying for the data, setting up the subscription, and then receiving the data. The

subscription traffic traverses an I2C subnet, a local subnet, an Ethernet subnet, another local

subnet, and a SpaceWire subnet. This is handled by the SPA Data Link Layer that is part

of SSM and is realized by the SPA Subnet Managers [6]. In this case the subnet managers

that are facilitating this communication are the SM-L, the SPA-1 subnet-manager (SM-1),

the SM-E, and the SPA-S subnet-manager (SM-S).3 SSM provides a set of services, namely

the CAS and the LS that along with the subnet managers help to provision the network

and facilitate communication amongst the various components.

SPA-L SPA-L

CAS LS

SM-L SM-L

SPA-L

Comp

SPA-L

Comp

SPA-L

Comp

SPA-L

Comp

SM-S

SPA-S

Comp

SPA-S

Comp

SPA-S

Comp

Router

Switch

SM-E SM-E

SPA-E

Comp

SPA-E

Comp

SM-1

SPA-1

Comp

SPA-1

Comp

SPA-1

Comp

Fig. C.1. SSM Network Topology Example. An example heterogeneous SSM network
comprised of local, SpaceWire, Ethernet, and I2C subnets.3

C.1.1 The LS and xTEDS

The LS acts as a directory service, systems or applications register with the LS when

they join the network by sending the LS some information about what services, commands,

3Figures and examples are adapted from “Scalable Network Approach for the Space Plug-and-Play
Architecture” [6].

247

or interfaces they provide. Figure C.3 depicts the life-cycle of two components or applica-

tions on an SSM network, the diagram leaves off some detail. This life-cycle and the process

of finding services and negotiating communication exists in the ‘Applications and Devices’

or SPA Application level of the the OSI-like [56] SPA Network Model in Figure C.2. This

OSI Model SPA Model

SPA xTEDS InterfaceTransport
End-to-end Data Connections

Network
Path Determination and Logical

Addressing

SPA Messaging

SPA-X Protocols
SPA-S, SPA-1, SPA-U, SPA-E, SPA-C, etc.

Data Link
Physical Addressing

Physical
Media, Signal, and Binary Transmission

SpaceWire, I2C, USB,

Ethernet, CAN, Sockets

Applications and Devices
SSM API, etc.

Session
Inter-host Communication

Presentation
Data Representation and Encryption

Application
Application-to-Application

Communication

Fig. C.2. OSI to SPA Network Stack Comparison. A comparison between the OSI and SPA
Network layers.3

level or layer is charged with the transactions that occur in the Registration, Query, Sub-

scription, and Data Exchange blocks shown in Figure C.3 and described below; it should

be noted that actual data discovery occurs in the Transport or SPA xTEDS Interface layer

and so there is some overlap between the two layers.

This example follows a Consumer or SSM App (S1) who wishes to subscribe to some

data, at the start of this interaction S1 does not need to know who provides the data,

the subscription can be provider agnostic, or the query can be tailored to restrict or filter

providers. Figure C.3 deals with a subscription which is a Notification in Sample C.2,

Sample C.2 is explained in more detail later in this section, and the other message types

248

are covered.

To begin each component or application on the network registers with the LS, this

is shown in the Registration block of Figure C.3, and happens after probing that involves

the subnet managers. During the registration process each component supplies information

about what services, commands, or interfaces they provide, which the LS uses to build up

a catalog of what is available and from whom. In this example both S1 and S2 register

with the LS by providing an overview of their capabilities using markup as shown in Sample

C.2. Once S1 is registered it queries the LS for some data to which it wants to subscribe.

In Figure C.3 this data is provide by S2, also referred to as a producer. It is typical when

using SSM to describe these data relationships in terms of a producer and a consumer, so

in this example S1 is consuming the data produced by S2 ; this terminology also holds for

commands or requests in SSM terminology.

1 <SpaQuery targetType='Notifcation'>
2 <Interface>
3 <Attribute name='name' operand='eq' value='ExampleInterface'/>
4 <Interface>
5 <Message>
6 <Attribute name='name' operand='eq' value='ExampleData'/>
7 </Message>
8 </SpaQuery>

Sample C.1. Notification Query. An example query that would be issued to the LS in
order to find a provider of a notification with an interface named ‘ExampleInterface’ and
message named ‘ExampleData’.

This query is shown in the Query block of Figure C.3 where S1 sends a SpaQueryRequest

to the LS. The basic syntax of the query is shown in Sample C.1, additional attributes could

be added to make the query more restrictive. The LS check sa table of registered compo-

nents and look for a match to the query from S1. This matches against the ‘registration

information’ provided by S2 shown in Sample C.2 and explained in more detail shortly.

The LS returns a SpaQueryReply with information about S2 to S1 that S1 can then use

to make a subscription request as shown in the ‘Start Subscription’ block, if desired. This

querying process works the same for the three different messaging types that are about to

be explained.

249

This subscription request comes in the form of a SpaSubscriptionRequest message

with some information about the data in which S1 has interest. The message contains

the producer and consumer logical addresses, a dialog identifier, the interface and message

identifiers for the message in question, and a flag indicative of the subscription action or

type. The producer logical address (LA S2), and the interface (InterfaceId) and message

(MessageId) identifiers, are provided by the LS in the SpaQueryReply in the Query block

and uniquely identify a path to the message in question. The identifiers for the message

are coded in the “registration information” provided by S2 during registration, this “regis-

tration information” is explained in more detail shortly. The dialog identifier (DialogId) is

used to correlate messages that relate to the subscription between S1 and S2. The “Start

Subscription” block shows S2 replying with a SpaSubscriptionReply message containing

the correlating DialogId and a flag indicating that the subscription was granted. The

exchange now moves on to the next phase shown in the “Data Exchange” block of Figure

C.3 where S2 starts relaying data to S1 in the form of a SpaData message which con-

tains the corresponding DialogId and data. Now S1 and S2 can share data for some

time as shown in the “Data Exchange” block. Either party can terminate the subscrip-

tion at any time. The “Stop Subscription” block in Figure C.3 shows S1 canceling the

subscription by passing a SpaSubscriptionRequest that is almost identical to the one

in the “Start Subscription” block except the subscription indicates a cancellation via the

SUBSCRIPTION CANCEL flag. Finally, S2 responds with a SpaSubscriptionReply and the

subscription has been terminated. S1 can restart the subscription at any time.

The “registration information,” i.e. information about services provided, that an ap-

plication or component shares with the LS is standardized so that all parties engaged in

communication can understand how messages are formatted and what messages are avail-

able. SSM makes use of an XML Transducer Electronic Data Sheet also referred to as

xTEDS to encapsulate a XML specification of the data products and commands available

from a component [57]. xTEDS is a schema to describe the characteristics of interfaces

provided by each component and the messages used to accept and relay information via

250

those interfaces. The main characteristics encapsulated in an xTEDS are: interface char-

acteristics, messages by interface (data products and command messages), data types used

in messages, message formats, timing constraints, one-dimensional arrays, and some range

specification [58]. When systems register with the SPA Network implemented as SSM they

send a copy of their xTEDS to the LS, these xTEDS can also be cached, and a XUUID

can be used instead. This exchange of xTEDS information is part of data discovery and

connections and so correlates with the Transport or SPA xTEDS Interface layers.

IEEE defined a Transducer Electronic Data Sheet (TEDS) standard as part of the IEEE

1451.4 standard [57,59]. Various work for configuring networks of transducers with relation

to modular space systems started in the early of first decade of the new millennium [60,61].

Around the middle of the 2000’s xTEDS was created by USU as an extension of the TEDS

standard using XML. It was originally developed by Utah State University in conjunction

with Satellite Data Model (SDM) to allow for the configuration of on-board subsystems.

SDM is a predecessor to SSM. xTEDS saw continued updates under work sponsored by the

ORS program office of the United States Air Force at Kirtland and Utah State University.

Sample C.2 depicts a very basic xTEDS example.

Sample C.2 contains one Interface shown on line 7. This Interface contains a

Notification, a Request, and a Command message. An xTEDS may contain multiple

Interfaces and a Interface may contain multiple messages. Each Interface has a

Interface identifier, shown on line 7, that is unique within a given xTEDS. Each Message

has a Message identifier, shown on lines 8, 13, and 20, which are unique within a Interface;

the unique Interface and Message identifier pairings allow a message to be defined uniquely

within an xTEDS while allowing like functionality to be grouped together in an Interface.

These unique Interface and Message identifier pairings also allow the security additions to

SSM to specify permissions at a very granular level, Section 5.3 documents this granularity

and security.

These messages are implemented in SSM as SpaMessage objects, specifically SpaData,

for Notifications; SpaServiceRequest and SpaServiceReply for Requests; and SpaCommand

251

SSM App (S1)
[Consumer]

Lookup
Service

S2
[Producer]

Registration

SpaQueryRequest(" ... 'ExampleInterface' ... 'ExampleData' ... ")

SpaQueryReply(...,LA_S2,InterfaceId,MessageId,...)

SpaQueryReply(NULL)

SpaSubscriptionRequest(LA_S1,LA_S2,...,DialogId,...,InterfaceId, MessageId,...,SUBSCRIPTION_REQUEST,...)

SpaData(...,DialogId,InterfaceId,MessageId,...,someDataMsgVariable)

SpaSubscriptionReply(DialogId,SUBSCRIPTION_REQUEST_GRANTED)

SpaXtedsRequest

SpaXtedsReply(S1 xTEDS)

SpaData(...,DialogId,InterfaceId,MessageId,...,someDataMsgVariable)

SpaSubscriptionRequest(LA_S1,LA_S2,...,DialogId,...,InterfaceId,MessageId,...,SUBSCRIPTION_CANCEL,...)

Query

SpaSubscriptionReply(DialogId,SUBSCRIPTION_CANCELED)

SpaXtedsRequest

SpaXtedsReply(S2 xTEDS)

Start Subscripttion

Data Exchange

Stop Subscription

Fig. C.3. SSM Notification Lifecycle Example. Example of a SSM Application (S1) querying
the LS for and subscribing to data produced by S2 for some duration and then stopping
the subscription.3

for Commands. These messages are also referenced in Figure 5.3 where Section 5.3.2 ex-

plains the additions to SSM that have been made for this research. The purpose and

structure of each message type is explained in more detail below:

Notification

Notifications can be thought of as data that a consumer subscribes to from a producer.

The consumer queries the LS to find the data it wants, shown in Figure C.3, and then

subscribes to said data. In this example S1 is querying for the ‘ExampleData’ message

shown on line 9 in the Notification of the xTEDS example in Sample C.2. This data is

encapsulated in a SpaData message that allows the data to traverse the various subnets

and be understood on the receiving end by the consumer or S1 in Figure C.3. The message

header contains, among other items, the producer address, the interface identifier, and

message identifier; these items allow the consumer to identify which message it is receiving

and handles it appropriately as implemented by the developer. The hand-off of the SpaData

to the developer is handled by the SSM API via callback function. The payload of the

SpaData message contains the actual data described in the xTEDS on line 9 and placed

252

there by the producer. In this example the payload contain a dynamically sized array of

bytes that could contain up to 1000 elements, in this case bytes. The consumer receives

these bytes from the producer and then decide what to do with them. The Notifications can

be event driven or periodically produced at some interval. In this example the ExampleData

notification is produced periodically at a rate of 1 Hz, this is designated on line 9 of the

example xTEDS.

Request

Requests can be thought of as a command followed by a response. In SSM this Re-

quest is implemented as a SpaServiceRequest, or CommandMsg in the xTEDS, and a

SpaServiceReply, or DataReplyMsg in the xTEDS. These are one-off exchanges where

one command gets one response. In the example xTEDS in Sample C.2 the Request is

on line 13. The next line shows a CommandMsg named ExampleRequestCommand that has

no variables or parameters. The DataReplyMsg that follows contains a single variable of

UINT32 type or a 4-byte unsigned integer. This lets both parties understand the relayed

data and how it should be interpreted.

Command

This is simply a message that S1 sends to S2 that S2 handles without providing any

response to S1, or a command without a response. At present anyone on the SSM network

can locate this command and send the command without any type of verification, truly

an open interconnect, being able to control this access, when desired, is when the research

described in Chapter 5 comes into play. In the example xTEDS Sample C.2 the Command is

on line 20. This command is named “ExampleCommand”, this name is something for which

a consumer looking for the command could query from the LS; the consumer could also

query for the variable name on line 22, which is someCommandVariable, or other attributes

that are not present or specially called out in this simple example. In this case the xTEDS

owner is expecting a consumer or command user to send a command with a FLOAT32 in

network byte order as part of the payload of the command. The receiver of this command

253

could pass the handling of the FLOAT32 to a callback so that a developer can perform some

operations or logic determinant on the value of said variable.

1 <?xml version='1.0' encoding='utf-8' ?>
2 <xTEDS xmlns='https://pnpsoftware.sdl.usu.edu/redmine/projects/xtedsschema'
3 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
4 xsi:schemaLocation= 'https://pnpsoftware.sdl.usu.edu/redmine/projects/xtedsschema

https://pnpsoftware.sdl.usu.edu/spa/xteds/current.xsd'
5 name='ExampleXteds' version='1.0'>
6 <Application name='SsmApp2' kind='application' programMemoryRequired='1' dataMemoryRequired='1'/>
7 <Interface name='ExampleInterface' id='1'>
8 <Notification>
9 <DataMsg name='ExampleData' id='1' msgArrival='PERIODIC' msgRate='1.0' >

10 <DynamicArray name='someDataMsgVariable' kind='color' dataType='UINT8' maxArrayElements='1000'
units='unitless' description='Example of dynamic byte array' />

11 </DataMsg>
12 </Notification>
13 <Request>
14 <CommandMsg name='ExampleRequestCommand' id='2'>
15 </CommandMsg>
16 <DataReplyMsg name='ExampleDataReply' id='3'>
17 <Variable name='someDataReplyMsgVariable' kind='count' dataType='UINT32' units='count'/>
18 </DataReplyMsg>
19 </Request>
20 <Command>
21 <CommandMsg name='ExampleCommand' id='4'>
22 <Variable name='someCommandVariable' kind='count' dataType='FLOAT32' units='count'/>
23 </CommandMsg>
24 </Command>
25 </Interface>
26 </xTEDS>

Sample C.2. Basic xTEDS. An example xTEDS showing simple notifcation, request, and
command message all under a single inferface.

C.1.2 CAS, Subnet Managers, and LAs

The previous section explained the LS, xTEDS, and basic messages. The question that

still remains is: how do these messages make it from one component to another? This

traversal requires an addressing and a routing scheme. The SDL implementation of SSM

provides an implementation of the “Applications and Devices” level of the SPA Model, this

maps to the Application, Presentation, and Session levels in the OSI Model. This is the

level that most of the SSSM additions and modifications targeted as well as some changes

at the SPA Messaging level to allow for proper message handling and setup as described in

Chapter 5.

SSM makes use of logical addresses LAs that are translated to physical addresses as

then traverse the various subnets. This requires that some entity be available to disperse

unique logical addresses in addition to the physical addresses tied to each of the subnets.

254

It is important to first understand what an LA is and then what entities are charged with

supplying and translating these LAs within an SSM network.

The LA is a hardware medium independent method for addressing components, this

is what allows all the different subnet types to use a common addressing scheme. The LA

exists at the SPA Messaging or Network Layer shown in Figure C.2. The LA does have to

be mapped to a hardware specific address as messages traverse the actual physical network;

this mapping is done at a lower level and information needed is in routing tables like the one

depicted in Table C.1. This table belongs to one of the Ethernet subnet managers denoted

as SM-E, the SM-E in question, is denoted with a LA of [2,0] in Figure C.4. This subnet

manager is the first step for SpaData messages flowing from S2 to S1 as these messages

traverse the local subnet, an Ethernet subnet, another local subnet, and then a SpaceWire

subnet. The ability to flow in-to, out-of, and within subnets is part of this SPA Messaging

or Network Layer and is explained in more detail shortly. LAs are 4-byte addresses. They

have a 2-byte subnet identifier and a 2-byte component identifier; this allows for 65,536

component address per subnet and 65,536 subnets [6]. The notation for this is [2,0] where

the ‘2’ denotes the subnet identifier and the ‘0’ denotes the component identifier or address.

Table C.1. Routing Table for Subnet Manager: Ethernet (SM-E)3

Logical Address Physical Address Type Physical Address (subnet
route)

[0,1] Local 3333

[1,0] Local 7777

[1,3] Local 2222

[2,0] Self Self

[2,1] Ethernet 12.24.48.96:4444

[2,2] Ethernet 12.24.48.120:5555

[3,0] Local 9999

[4,0] Ethernet 12.24.48.55:3333

[5,0] Logical [4,0]

(continued on next page)

255

Table C.1. Routing Table for Subnet Manager: Ethernet (SM-E) (continued)

Logical Address Physical Address Type Physical Address (subnet
route)

[6,0] Logical [4,0]

[6,1] Logical [4,0]

Figure C.4 shows all the components and subnet managers with example LAs. This

is where the CAS comes into play. The CAS takes a special static known logical address

of [0,1], its subnet identifier is 0 and its component identifier is 1. A known address is

used so that subnet managers can find the CAS. The subnet managers in Figure C.4 are

two SM-Ls, two SM-Es, one SM-1, and one SM-S. Figure C.4 also has various components

within each of the subnets: I2C components (SPA-1), Ethernet components (SPA-E), Local

components (SPA local (SPA-L)), and SpaceWire components (SPA-S). S2 is a SPA-L

node on the same Local subnet that houses the CAS, the LS, amongst other things, and S1

sits on a SpaceWire subnet that is a few hops away.

SPA-L SPA-L
CAS

[0,1]

LS

[1,1]

SM-L

[1,0]

SM-L

[5,0]

SPA-L

Comp

[1,2] SPA-L

Comp

[1,3]

SPA-L

Comp

[5,1]
SPA-L

Comp

[5,2]

SM-S

[6,0]

SPA-S

Comp

[6,2]

SPA-S

Comp

[6,3]

SPA-S

Comp

[6,1]

Router

Switch

SM-E

[2,0]

SM-E

[4,0]

SPA-E

Comp

[2,2]

SPA-E

Comp

[2,1]SM-1

[3,0]

SPA-1

Comp

[3,1]

SPA-1

Comp

[3,2]

SPA-1

Comp

[3,3]

S1

S2

Fig. C.4. SSM Routing Example. Route that a message takes from S2 to S1, e.g. when
S2 is sending Notifications or SpaData messages to S1. SM-E [2,0] uses the routing table
in Table C.1 to identify where the message is routed to next in its trip to the ultimate
destination of [6,1] or S1.3

256

Each subnet requires a certain degree of management to perform discovery on a physical

or network topology level. This management is provided by SPA Subnet Managers and

contained in the SPA Data Link or SPA-X Protocols layer as shown in Figure C.2. Each of

the subnet managers issues and responds to probes so that the network can be mapped out

continuously and so that each subnet manager can locate the CAS and the other subnets

and populate its routing table. Each component or end-point also has a routing table, but

for components that are not on its subnet the entries point to its subnet manager or another

relevant manager if it bridges their subnet.

The CAS tells each subnet manager which subnet identifier or address block it gets,

this gives the subnet manager a block of component identifiers or addresses it can give out

to components on its subnet. For the example routing table in Table C.1 the SM-E received

a subnet identifier of 2, it takes a component identifier of 0, and then it has 65,535 address it

can give out to its subnet; whether this many components can even exist on a given subnet

depends on the subnet type. Once the routing tables are built up the components can find

the LS and register, the querying and other messaging described in Section C.1.1 can now

take place as shown in Figure C.3.

Figure C.4 shows a message as it traverses various subnets on its trip from S2, a SPA-L

component, to S1, a SPA-S Component. This is a path that a SpaData message might take

in the ‘Data Exchange’ block of Figure C.3 after the query has finished and the components

begin communicating. The first hop the SpaData message takes is to the SM-E at LA [2,0].

This assumes that S2 already has an entry for S1 in its routing table, otherwise it might

have to hit its SM-L at [1,0] first. S2 has an entry in its routing table for LA [6,1] with a

LA of [2,0], much like the SM-E at [2,0] has an entry in its routing for LA [6,1] with an LA

of [4,0]. S2 then has to look up [2,0] to see how to get there in terms of a physical address.

Each entry in the table represents the next hop a message should take to reach its final

destination. This means that S2 looks up [6,1] and sees [2,0] and so it forwards its message.

The example routing table in Table C.1 for the SM-E at [2,0] shows that next hop is to

[4,0]. The SM-E at [2,0] then has to look up the [4,0] address to see how to get a message

257

there. The table shows that this LA maps to a physical Ethernet address with with an

Internet Protocol (IP) address of 12.24.48.55 and a port of 3333. The SM-E at [2,0] sends

the message to the SM-E at [4,0] over Ethernet using the physical address it found in its

routing table.

Now the message is at the SM-E at [4,0] which also has a routing table that it uses to

look up the next hop to reach [6,1]. Figure C.4 shows that the SM-E found the next LA

to be [6,0] as indicated by the next hop taken by the SpaData message shown in red. The

SM-E at [4,0] has to first look up [6,1] which returns [6,0], and then send the message to

[6,0]. The [6,0] needs to resolve the LA to a local address in the table or SM-E needs to

probe the SM-L at [5,0] for the path. This is a port number or socket on the local host. This

brings the message to the SM-S at [6,0], now the SM-S at [6,0] resolves the [6,1] address to

a SpaceWire physical address and send it the SPA-S component at LA [6,1] and S1 receives

the SpaData message without understanding of the path of the message. Each component

generally needs to understand the path to the next hop. SSM provides the management

needed at each subnet to convert logical addressing to the appropriate network routing and

properly relay messages to the appropriate endpoint or next subnet managers.3 The part

of the traversal where LAs are translated to physical address and transfer over physical

medium exists in SPA Physical Layer where SpaceWire, I2C, Universal Serial Bus (USB),

Ethernet, CAN, or sockets are used to actually move the bits.

SSM is an example of a totally modular open network architecture. This means that

any component can communicate with any other component; the other thing to note is

that security was not considered in the design. This can be a problem if a malicious entity

somehow gains access to any portion of the network; there is no assurance of availability,

integrity, or confidentiality. Any component can masquerade as another component, issue

any command, subscribe to any data, carry out a DoS or availability type attack, or various

other types of attacks. This can exacerbate problems over a system more typical in a space

system where everything is not interconnected, but SSM, and open networked systems in

general, have a unique ability to address the concerns of availability, integrity, and confi-

258

dentiality. SSM is modeled after a typical network stack with layered functionality, so it

lends itself to security additions used in similar networked systems to add security.

C.2 Kerberos

Kerberos is a longstanding example of a centralized authentication system. Kerberos

can be augmented with other services to provide authorization data or control permis-

sions [46]. The rest of this section explains the basic protocols that are used to perform

authentication of a Subject or client, and optionally the Target or service, and to establish

a secure session between the two entities. This is discussed as a authentication platform

that is intended to make service sharing easier, SSSM leverages these protocol concepts to

bring the same ease of use to securing SSM. These protocols are described here to give

context to the modifications to SSM described in Chapter 5.

Kerberos utilizes a centralized KDC that must be available, it should be noted this

service should be secure and reliable since it poses a single point of failure. This issue can

be minimized using replication, but other security provisions may be necessary to protect

the over-all functionality of the network. One of the benefits of this type of centralized

system is that the identity of who has sessions open with whom is known; this means that

service utilization, and to some extent, failed attempts can be tracked on a per system basis.

The AS and the TGS comprise the KDC as shown in Figure C.5. These two services,

together with secret information stored on the system that wishes to authenticate itself,

allow said system to establish itself as its claimed identity and, with the help of some other

protocols, get access to the services on the network to which it has the proper permis-

sions. The KDC achieves this using symmetric key cryptography, or the secret information

previously mentioned, this could also be thought of as a password. Kerberos now allows

for the use of public key cryptography during certain phases of the authentication process,

but for the purposes of this research, and resource utilization, symmetric keys are utilized.

The clients use the secret or key that they share with the AS in conjunction with special

protocols to authenticate themselves. Figure C.5 diagrams each of the steps outlined below

and Table C.2 provides definitions for the terms that are being used.

259

Step 1 (Subject/AS exchange):

� Subject asks the AS for a Ticket Granting Ticket (TGT) to the TGS by sending

Auth1

� AS looks up the Subject in its database, then generates a session key (SKS TGS)

for use between the Subject and the TGS

� AS encrypts SKS TGS using the Subjects private key and sends to Subject

� AS uses the TGSs secret key (known only to the AS and the TGS) to create and

send the Subject a TGT which also includes SKS TGS

Step 2 (TGS exchange):

� Subject decrypts the message and recovers SKS TGS, then uses it to create an

Auth2

� Subject sends Auth2, along with the TGT, to the TGS, requesting access to the

Target

� TGS decrypts the TGT and recovers SKS TGS which it then uses to decrypt

Auth2

� TGS verifies information in the Auth2 and TGT, if everything matches then the

Subject has authenticated to the TGS and the TGS lets the request proceed

� TGS creates SKS T for the Subject and Target to use and encrypts it using

SKS TGS and sends it to the Subject

� TGS creates TK-TS which includes SKS T along with some identifying informa-

tion that is then encrypted with the Targets key and sends it to the Subject

Step 3 (Subject/Target exchange):

� Subject decrypts the message and gets the SKS T (Subject cannot decrypt TK-

TS)

� Subject creates Auth3, and sends Auth3 and TK-TS to the Target

260

� Target decrypts and checks the TK-TS and then decrypts Auth3 using SKS T

found in TK-TS, and verifies that the information matches and that TK-TS is

still valid

� (Optional) Target returns Auth4, which contains the previous timestamp + 1

from Auth3, encrypted with SKS T proving to the Subject that the Target actu-

ally knew its own secret key and could decrypt TK-TS and then Auth3

Step 4 (Secure communications):

� The Target knows that the Subject is who they claim to be, and the two now

share SKS T for secure communications

Table C.2. Kerberos Terminology4

Term Name Description

Subject Subject The client/consumer/entity that wants to communicate
with the Target

Target Target The server/producer/entity that provides a service
(handles commands or produces data) with which a
Subject wants to communicate

AS Authorization
Service

This service is responsible for authenticating
clients/subjects. It also issues TGTs and creates SKS TGS

TGS Ticket
Granting
Service

This service is responsible for handling a Subjects request
to communicate with a given Target. It does this by
creating TK-TS and SKS T upon request. It needs another
service to decide if a Subject is allowed to communicate
with a given Target before issuing a session ticket.

KDC Key
Distribution
Center

Comprised of the AS and TGS, and so is responsible for
authenticating subjects, creating tickets, and creating keys

Auth1 Subject to
AS Auth

This is the authenticator used to authenticate the Subject
to the AS, E{subjectName, subjectAddress,
timeStamp}KSubject

Auth2 Subject to
TGS Auth

This is the authenticator used to authenticate the Subject
to the TGS, E{subjectName, subjectAddress,
timeStamp}SKS TGS

(continued on next page)

261

Table C.2. Kerberos Terminology (continued)

Term Name Description

Auth3 Subject to
Target Auth

This is the authenticator used to authenticate the Subject
to the Target, E{subjectName, subjectAddress,
timeStamp}SKS T

Auth4 Target to
Subject
Auth

This is the authenticator used to authenticate the Target
to the Subject, E{targetName, targetAddress, timestamp
+ 1}SKS T

TGT Ticket
Granting
Ticket

This is a Ticket issued by the AS that allows the holder of
the ticket to request access to Targets. E{subjectName,
subjectAddress, validity, SKS TGS}KTGS, where validity is
the duration for which the TGT is valid.

SKS TGS Session Key
Subject/TGS

This is the key for communicating between the Subject and
TGS, or Key(Subject, TGS)

SKS T Session Key
Subject/
Target

This is the key for communicating between the Subject and
the Target, or Key(Subject, Target)

TK-TS Session
Ticket

This ticket is used to initiate a session between the subject
and the target. It helps authenticate the Subject to the
Target, E{subjectName, subjectAddress, validity,
SKS T}KTarget.

Using Kerberos imposes some requirements on a system that utilizes it. For example,

the ability to prevent replay attacks is predicated on some level of time synchronization

between clients, services, and the KDC. Another restriction when using symmetric key

encryption is that service and/or client on the network needs its own Kerberos key that is

shares with the KDC.

4It should be noted that Kerberos realms have been dropped from the depiction of Kerberos as only a
single realm is being described or considered.

262

KDCAS TGS

Subject

Target

SKS_T

Requests ticket
to TGS

Creates SKS_TGS,
and TGT

Request ticket to
Target: Target name,
TGT and Authenticator

Creates SKS_T

Issues TK-TS for Target

Request access; sends
session ticket from TGS

Returns message with timestamp+1,
encrypted with SKS_T (authenticates
Target to Subject) (optional)

Target authenticates
Subject

AS authenticates
Subject

TGS
authenticates
Subject

Step 1

Step 2

Step 3

Step 4

Auth1

TGT

SKS_TGS

TK_TS

SKS_T

TK-TS

Auth3

SKS_T

TGT

Auth2

Auth4

SKS_T

Step 1

Step 2

Step 3

Step 4

Fig. C.5. Simplified Kerberos Authentication Exchange. Depiction of the exchange between
a Subject, that wants to use a service provided by the Target, and the KDC to get a session
ticket, and ultimately communicate with the Target.

	Developing and Securing Software for Small Space Systems
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SAMPLES
	ACRONYMS
	INTRODUCTION
	RELATED WORK
	Introduction
	Modularity and Reuse in Space Systems
	Security for Space Systems
	Policy and Principles
	Process and Tools
	Implementations

	SURVEY SERIES DESCRIPTION
	Introduction
	Survey Questions
	Survey Distribution

	SURVEY SERIES RESULTS AND ANALYSIS
	Introduction
	Survey Series Participation
	Participant Perception of Code Complexity
	Code Complexity Importance and Benefits
	CC Survey, Question 2.1 Analysis, Part 1
	Test 1
	Test 2
	Test 3

	CC Survey, Question 2.2 Analysis, Part 1
	RIPCC Survey, Question 2.13 Analysis

	Code Complexity Metrics
	RIPCC Survey, Question 2.15 Analysis

	Participant Perception of Reusable Software
	Reusability Importance and Benefits
	CC Survey, Question 2.1 Analysis, Part 2
	Test 1
	Test 2

	CC Survey, Question 2.2 Analysis, Part 2
	RIPCC Survey, Question 2.10 Analysis

	Participant Perception of Modular Open-network System Approaches
	Networking Benefits
	Network Survey, Question 2.3 Analysis, Part 1

	OSA and MONA Trends
	OSAM Survey, Question 2.4 Analysis
	Test 1
	Test 2

	OSAM Survey, Question 2.5 Analysis

	Software Security
	Security Experience
	Security Survey, Question 2.2 Analysis

	Networking and Security
	OSAM Survey, Question 2.6 Analysis
	Test 1
	Test 2

	Network Survey, Question 2.3 Analysis, Part 2
	Test 1
	Test 2

	Security Importance and Difficulty
	CC Survey, Question 2.1 Analysis, Part 3
	Test 1
	Test 2

	Security Survey, Questions 2.6 and 2.7 Analysis
	Test 1
	Test 2

	Security Importance and Difficulty Summary

	Important Security Provisions
	Security Survey, Questions 2.8 Analysis

	Internal Security Benefits
	Security Survey, Questions 2.1 Analysis

	Conclusions of Survey Analysis

	SSSM DESIGN
	Introduction
	SSM Security Problem
	SSSM Architectural and Protocol Design
	Architectural Overview
	Protocol Overview
	Authentication
	Query and Session Request
	Lifetime
	Secure Notification
	Secure Request
	Secure Command

	SSSM EVALUATION
	Introduction
	Unsecured versus Secured Development
	Producer Development
	Consumer Development
	Policy Development

	Performance Evaluation
	Setup
	Evaluation Results

	Conclusions of SSSM Evaluation

	CONCLUSION
	Introduction
	Contribution
	Future Work

	REFERENCES
	APPENDICES
	A SISDPA Survey Series Instruments
	Introduction
	LOI
	Extension Approval Letter
	Survey Recruitment Letter
	CC Survey
	OSAM Survey
	Security Survey
	RIPCC Survey
	Network Survey
	Survey Pro-neutral-con Term Definitions

	B SISDPA Survey Participant Backgrounds
	Introduction
	CC Survey — Roles and Development Experience
	OSAM Survey — Roles and Development Experience
	Security Survey — Roles and Development Experience
	RIPCC Survey — Roles and Development Experience
	Network Survey — Roles and Development Experience

	C Background
	SSM
	The LS and xTEDS
	Notification
	Request
	Command

	CAS, Subnet Managers, and LAs

	Kerberos

