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ABSTRACT 

 

A Structural Equation Modeling Approach Combining Multitrait-Multimethod Designs 

with Moderated Mediation Analysis 

by 

Kaylee Litson 

Utah State University, 2019 

 

Major Professor: Christian Geiser, Ph.D. 
Department: Psychology 

 
Moderated mediation analysis is a statistical approach used to evaluate the 

conditional processes among variables. Researchers in clinical and developmental 

psychology use such methods to determine how and when health behaviors, maladaptive 

coping, and other mechanisms develop. In simple moderated mediation analysis, an 

observed exogenous variable X is regressed on an observed intermediary variable M, and 

these two variables are both regressed on an observed endogenous variable Y. Further, the 

relationships among X, M, and Y may vary as a function of a moderating variable W. 

Generally, moderated mediation analysis is conducted using a single observed variable 

for exogenous, endogenous, moderating, and intermediary variables. However, one best 

practice when gathering data is to gather data from multiple methods, and many variables 

in psychology are measured using multiple methods.  
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A relative increase in applying moderated mediation analysis and the 

recommendation of using multimethod designs warranted the creation of the multimethod 

moderated mediation (M4) model. The performance of the M4 model was examined by 

applying the model to an extant dataset and conducting a Monte Carlo simulation. The 

M4 model was applied to a multimethod dataset that included mother and father reports 

of children’s inattention, hyperactivity, oppositional defiant behaviors, and academic 

impairment. Results showed that the indirect path from hyperactivity to academic 

impairment through oppositional defiant behavior was significant, but inattention did not 

significantly moderate the mediated effect. The M4 model was further evaluated using a 

Monte Carlo simulation design to determine the sample size necessary to have power to 

detect moderated mediation effects commonly found in applied research. The simulation 

was additionally used to determine whether method-specificity and model 

misspecification led to biased moderated mediation results. Results showed that 

moderated and mediated effects, in the presence of a true multimethod assessment, 

required using a multimethod measurement structure to accurately evaluate parameter 

and standard error estimates. When the multimethod structure was not included in the 

model, results were biased. Further, results found that a sample size of at least N = 400 

was necessary to detect effect sizes most commonly found among developmental, 

clinical, and prevention science applications of moderated mediation analysis.  

 (200 pages)  
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PUBLIC ABSTRACT 

 

A Structural Equation Modeling Approach Combining Multitrait-Multimethod Designs 

with Moderated Mediation Analysis 

Kaylee Litson 

 

Researchers who study clinical and developmental psychology are often 

interested in answering questions such as how interventions work, when treatment begins 

to improve health outcomes, or for whom treatment has the greatest impact. Answers to 

these and similar questions impact the general understanding of health and behavior, and 

can be imperative for effectively implementing intervention and prevention programs. To 

evaluate such complex relationships among variables, researchers have turned to               

moderated mediation analysis. Moderated mediation analysis is a statistical tool used to 

identify the conditional processes among observed or latent variables. However, in 

developmental and clinical psychology, variables are regularly measured using multiple 

sources or multiple methods. In fact, best practice recommendations in clinical 

psychology suggest measuring variables with multiple methods (Achenbach, 2006). The 

question arises how to use multimethod assessments in statistical analyses such as 

moderated mediation analysis. The objectives of the present study were to create a 

multimethod moderated mediation model, apply the model to an extant dataset of child 

developmental behaviors, and evaluate conditions under which the model performed well 

using a Monte Carlo simulation study. Results from the application showed that the 

indirect path from hyperactivity to academic impairment through oppositional defiant 
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behavior was significant but not moderated by inattention. Results from the simulation 

study indicated that excluding true method effects from a moderated mediation model 

resulted in unacceptable parameter and standard error bias. These results point to the 

advantages of using the M4 model to evaluate moderated mediation in the presence of 

multimethod data.  
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CHAPTER I 

INTRODUCTION  

 

Researchers in psychology, specifically clinical and developmental psychologists, 

often seek answers to how an intervention works; when treatment begins to improve 

outcomes; and for whom a treatment or prevention program is most effective. To answer 

how a treatment works, researchers must identify mechanisms and predictors of 

outcomes. By identifying the mechanisms through which a predictor influences an 

outcome, researchers and practitioners can develop applicable prevention or intervention 

programs (MacKinnon & Dwyer, 1993) to bring about a desired change.  

To answer for whom or when a treatment is most effective, clinical and 

developmental researchers must identify whether mechanisms and predictors are 

generalizable across populations or specific to a single population. Prevention scientists 

use this knowledge to determine for whom prevention or intervention programs are most 

effective (MacKinnon, Lockhart, Baraldi, & Gelfand, 2013) or to tailor programs to 

individuals based on individual characteristics (Collins, Murphy, & Bierman, 2004). 

Understanding the generalizability of processes will lead to better prevention and 

intervention programs within clinical and developmental psychology. To identify 

mechanisms and determine for whom the mechanism is most effective, researchers use 

statistical tools, such as mediation, moderation, or moderated mediation analysis. 

In the simplest form of mediation analysis, an independent variable, X, affects 

change in the mediating variable, M, which affects changes in the dependent variable, Y 

(Baron & Kenny, 1986; MacKinnon, 2008). An example of mediation was shown by 



 
 

  2 
 
Lúcio et al. (2016) where attention deficit hyperactivity disorder (ADHD) symptoms 

affected change in stimulus discriminability (the ability to discriminate between, for 

example, “p” and “q”), which then affected reading ability. Stimulus discriminability was 

the mechanism through which ADHD symptoms affected reading ability. A primary 

advantage of mediation analysis is the ability to identify and quantify the mechanism, or 

the mediator, through which X influences Y. The indirect relationship where X influences 

M, which then influences Y is commonly called the indirect or mediated effect 

(MacKinnon, 2008).   

Moderation occurs when the relationship between a predictor, X, and outcome, Y, 

varies as a function of another variable, W. Combined, moderation and mediation 

analysis are commonly referred to as conditional process models (Hayes, 2013) because 

the process through which a predictor influences an outcome is conditional on some other 

variable. Alternatively, such an analysis is called moderated mediation analysis (Edwards 

& Lambert, 2007; Preacher, Rucker, & Hayes, 2007). Moderated mediation analysis is 

used to determine whether the magnitude of the mediated effect varies as a function of a 

moderating variable (Edwards & Lambert, 2007; Hayes, 2009; MacKinnon & Fairchild, 

2009; Preacher et al., 2007).  

Moderated mediation analysis can be used to examine at which levels of the 

moderator the indirect (or direct) effect varies in magnitude. For example, Lúcio et al. 

(2016) predicted that the magnitude of the indirect effect from ADHD symptoms to 

reading ability through stimulus discriminability would vary by age. They evaluated this 

prediction using moderated mediation analysis. Age did indeed moderate the indirect 

effect, such that the indirect effect was stronger for younger children than for older 
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children. The researchers explained how these results could be used to implement 

stimulus discrimination practices (an intervention program) among young children with 

higher levels of ADHD symptoms (target population) to increase reading ability. This 

example illustrates how moderated mediation can be used to 1) identify intermediary 

processes, and 2) detect for whom, or under which conditions, the process is strongest.  

Like all statistical methods, moderated mediation analyses have limitations. One 

such limitation stems directly from the measurement of variables in psychological 

sciences. Most, if not all, variables in psychology are measured using imperfect methods, 

sources, or measures, and the method of measurement can impact study results. Consider 

informant reports of children’s levels of social impairment, for example. Mothers who 

report their child’s level of social and academic impairment are likely to differ from 

teachers who report the same child’s level of social and academic impairment. If one 

wishes to evaluate the relationship between social and academic impairment, it is not 

only possible, but likely that the method of measurement impacts or biases results (e.g., 

Podsakoff, MacKenzie, & Podsakoff, 2012; Doty & Glick, 1998). Although mother and 

teacher report are likely to have some shared consistencies, they may also contain method 

discrepancies, which can also be termed method effects.  

Left unattended, method effects impact research results. One problem researchers 

face is how to best detect and manage systematic method effects so as not to report biased 

or inaccurate empirical results. Across various fields, the consensus to account for 

method effects is to measure constructs using multiple methods (Achenbach, 

McConaughy, & Howell, 1987; Achenbach, 2006; Cole, 1987; De Los Reyes & Kazdin, 

2005; Hopwood & Bornstein, 2014; Meyer et al., 2001; Morris, Robinson, & Eisenberg, 
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2006). When first introducing multitrait-multimethod designs, Campbell and Fiske 

(1959) discussed examples of methods as “paper-and-pencil tests” (p. 85), “peer 

judgments by students…, [and] scores on a word-association test” (p. 85), “observational 

methods” (p. 90), “Self Ratings and Inventory scores” (p. 93), “Self and Teammate 

ratings” (p. 95), and ultimately recommended that “several methods used to measure each 

trait should be appropriate to the trait as conceptualized” (p. 103). From a more applied 

perspective, Achenbach and colleagues (1987) described methods as multiple informants, 

and this idea of informants or raters as methods is present in many studies and theoretical 

paradigms (e.g., De Los Reyes & Kazdin, 2005; Podsakoff et al., 2012). In Hopwood and 

Bornstein’s (2014) book, methods include self-attribution tests, performance-based tests, 

constructive tests (e.g., qualitative responses), behavioral tests, and informant-report 

tests. These many methods through which data can be gathered require researchers to 

consider how to use all relevant data in analysis in a way that does not lead to biased 

results due to method effects. 

Despite an emphasis on multimethod measurement in many clinical and 

developmental settings, multimethod measurement models have not yet been combined 

with models commonly applied to examine moderated mediation, a statistical approach 

that is continually gaining traction because of its ability to examine complex relationships 

among constructs. Currently, no such models exist, which is a disservice for researchers 

who gather multimethod data and are interested in examining moderated and mediated 

relationships. By including multiple methods, researchers could determine whether 

different methods varied together, resulting in consistency across methods (convergent 
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validity; Campbell & Fiske, 1959), or if methods were more discrepant, resulting in 

method effects.  

When researchers gather multimethod data and choose to use a moderated 

mediation analysis, there are no guidelines for using all available data from methods. To 

date, there have been no studies examining the effect of method bias on moderated 

mediation results. It is unclear if method effects truly impact estimates obtained from 

moderated mediation analysis. It is further unclear how multiple methods could and 

should be used in conjunction with moderated mediation analysis.  

The present project had three objectives. First, create a new statistical method by 

combining appropriate statistical tools for evaluating multimethod designs with 

appropriate statistical tools for evaluating moderated mediation analysis. Specifically, the 

present project combined the so-called correlated-trait correlated-(method–1) (CT-C[M – 

1]; Eid, 2000; Eid, Lischetzke, Nussbeck, & Trierweiler, 2003) model with a latent 

variable path analysis approach to moderated mediation (Cheung & Lau, 2017; Edwards 

& Lambert, 2007; Preacher, Rucker, & Hayes, 2007). Rationale for choosing the CT-C(M 

– 1) measurement model and the latent variable path analysis approach to moderated 

mediation are discussed in Chapter 2. Second, the present project applied this new 

multimethod moderated mediation (M4) model to an extant dataset to examine its 

applicability to real-world data. And finally, the present project examined the 

performance of the M4 model with a simulation study to determine its usefulness as a 

statistical tool compared to other moderated mediation approaches. 
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Objectives 

 

1. Create a new model for moderated mediation analysis using an appropriate 

multimethod measurement structure. This model is called the multimethod 

moderated mediation (M4) model. 

2. Examine the feasibility of the M4 model using an extant dataset to inform how the 

model works under real data conditions. 

3. Examine the performance of the M4 model across various conditions using a 

Monte Carlo simulation design. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

 

 

 As a statistical tool, moderated mediation analysis is relatively new. Since its 

inception in psychology in 1986 (Baron & Kenny, 1986), moderated mediation analysis 

has become a tool with which researchers can answer complex questions about the 

conditional process of a predictor influencing an outcome. For instance, moderated 

mediation analysis has been used to examine how and under which conditions 

internalizing symptoms lead to disordered eating behavior (Chardon, Janicke, Carmody, 

& Dumont-Driscoll, 2015), parental power assertion leads to child antisocial conduct 

(Kochanska, Barry, Stellern, & O’Bleness, 2009), and sexual minority disparities lead to 

mental health outcomes (Pakula, Carpiano, Ratner, & Shoveller, 2016). 

Applications of this method continue to increase. In 2017 alone, the PsychINFO 

database showed that researchers in psychological sciences published 293 peer-reviewed 

publications on moderated mediation analysis compared to 183 publications in 2015, 34 

in 2010, and only 2 in 2005. Since this method is a statistical tool with the advantage to 

uncover complex and intricate relationships among variables, such interest among 

substantive as well as methodological researchers is expected. 

The sea of literature related to moderation, mediation, moderated mediation, and 

multimethod designs is vast. With the potential to uncover intricate relationships among 

variables, moderated mediation models can become highly complex. Combined with the 

proposed latent variable multimethod measurement structure, moderated mediation 
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models can become overwhelmingly complex. To limit the scope of the project and the 

scope of the literature review, two decisions about the complexity of the approach were 

made. First, only cross-sectional moderated mediation was addressed. Although 

longitudinal moderated mediation is necessary for examining causal processes (Baron & 

Kenny, 1986; MacKinnon, 2008), longitudinal approaches to mediation are statistically 

more complex and nuanced than cross-sectional approaches (e.g., Selig & Preacher, 

2009). Combined with the proposed multimethod moderated mediation approach, a 

longitudinal design was unfeasible for the scope of the project. Cross-sectional 

approaches are still examined to determine the potential for causal and conditional 

pathways in moderated mediation analysis. To further limit the scope of the project, the 

examined moderating variable was a single continuous moderating variable. Categorical 

moderating variables, though simpler with regard to latent variable approaches (Lau & 

Cheung, 2008), were not examined in detail in this project; however, potential extensions 

and approaches to examining categorical moderators in moderated mediation designs are 

discussed in Chapter VI.  

To address each complexity of mediation, moderation, moderated mediation, and 

latent variable extensions of all three types of analyses in enough detail, the review of the 

moderated mediation literature will follow the subsequent structure. First, simple 

mediation analysis is discussed in the context of path analysis, first with manifest 

variables then latent variables (including one approach that used a latent multimethod 

approach, which is relevant for the proposed study). Second, moderation is discussed in 

the context of regression analysis, first with manifest then with latent variables. Third, 

moderated mediation analysis is discussed in the context of manifest then latent variables.  
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Mediation Analysis  

 

In simple mediation analysis with only one mediating variable, an independent 

variable, X, affects changes in a mediating variable, M, which affects changes in a 

dependent variable, Y (see Figure 1.1). Mathematically, a simple mediation model can be 

shown with three equations: 

 

 1 1
 Y YY i cX e= + +  (1) 

 

 2 2
 Y YY i c X bM e+′= + +  (2) 

 

 M MM i aX e= + +  (3) 

 

where i indicates the intercept, a, b, c, and c′  are the regression paths between variables, 

e indicates the residual error, and X, M, and Y indicate the variables. The original 

approach to mediation (Baron & Kenny, 1986) used a regression-based method called the 

causal steps approach to evaluate mediated effects. Using this approach required 

researchers to estimate three equations to determine the total effect c from Equation 1, 

and the mediated effect a  × b  in Equations 2 and 3. The causal steps approach required 

researchers to determine the significance of the a  and b  pathways, and also show that the 
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c′  pathway compared to the c  pathway is closer to zero in order to detect a mediated 

effect.  

 

 

Figure 1.1: Simple mediation model 
 

 

Many researchers have criticized the causal steps approach, showing its lack of 

power in detecting the mediating effect (Fritz & MacKinnon, 2007; MacKinnon, Coxe, & 

Baraldi, 2012), and noting its inability to detect mediation if the sign of the mediated 

effect is opposite of the sign of the direct effect (MacKinnon & Fairchild, 2009). 

Appropriate to this project, advances in mediation analysis have been developed by way 

of path analysis (MacKinnon, 2008); latent variable analysis (Bullock, Green, & Ha, 

2010; Ledgerwood & Shrout, 2011); and latent variable multimethod analysis (Papa, 

Litson, Lockhart, Chassin, & Geiser, 2015).  

 Many advances in mediation analysis have been possible because of the path 

analysis approach to mediation. Path analysis is an extension of regression analysis that 

integrates multiple equations into a single statistical model with multiple possible 

outcome variables. Path analysis allows researchers to specify any reasonable number of 

exogenous, endogenous, and intermediary variables in a model, and it can be 
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implemented in a single, simultaneous analysis (MacKinnon, 2008). Thus, there is no 

reason to run three separate models shown in Equations 1 through 3 to examine 

mediation; only one model need be run. Further, path analysis can easily be depicted 

using path diagrams, which are visual representations of relationships among variables. 

These advances in mediation analysis have led to the creation of structurally complex, yet 

visually interpretable, mediation models.  

 Generally, path analysis approaches to mediation use manifest variables. In social 

sciences, it is uncommon that any observed variable is measured without error, yet one 

assumption of the original Baron and Kenny approach was that “there be no measurement 

error in the mediator” (1986, pp. 1177). When measurement error is present in mediation 

analysis, power to detect the mediated effect is attenuated (Fritz, Kenny, & MacKinnon, 

2016; Hoyle & Kenny, 1999; MacKinnon et al., 2012). In addition, when measurement 

error is both present and error terms are correlated (i.e., systematic error), mediation 

analyses are often biased or inestimable (Pearl, 2012). To correct for measurement error, 

latent variable approaches have been developed and are frequently used (Cole & 

Maxwell, 2003; Ledgerwood & Shrout, 2011; Fritz et al., 2016). Since most measures in 

psychology are not perfectly reliable, and since latent variable approaches correct for 

unreliability, latent variable approaches to mediation are more powerful than approaches 

with only manifest variables such as simple path or regression analysis.  

 Latent variable approaches to mediation analysis are relatively straightforward 

extensions of manifest mediation analysis (MacKinnon, 2008), but rely on an underlying 

measurement structure for each of the latent variables. Latent variables are typically 

specified using multiple manifest indicators (Bollen, 1989). For example, a latent variable 
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called depression might be specified with three indicators: self-reported depression, a 

clinician report of depression, and mother report of depression. Shared variability from 

the different indicators encompass the latent variable, and unshared variability is assumed 

to be measurement error. The latent variable depression can be related to other variables 

in a mediation framework in similar fashion as manifest variables. The advantage of 

using latent variables in mediation analysis is to correct for unreliability, which 

disattenuates estimates of the mediated effect (Fritz et al., 2016). 

 Latent variables are generally measured with multiple indicators, and sometimes 

indicators are different methods found in multimethod designs. In the example above, 

depression is measured by self- clinician- and mother-reports; a multimethod design. The 

most basic measurement structure of latent variables would assume that unshared 

variance among the three methods are measurement error, which may be incorrect in a 

multimethod framework (e.g., De Los Reyes, 2011; Eid, Geiser, & Koch, 2016). It is 

quite likely that a portion of unshared variability is due to systematic method effects 

(Fiske, 1982; Fiske & Campbell, 1992; Podsakoff, MacKenzie, & Podsakoff, 2012). 

Systematic method effects occur when correlations are stronger between the same 

method measuring different constructs than between constructs measured by different 

methods, in accordance with multitrait-multimethod (MTMM) designs (Campbell & 

Fiske, 1959; Fiske & Campbell, 1992). Method effects, if incorrectly managed, can lead 

to bias in relationships among variables across various fields of social science research 

(Doty & Glick, 1998). 

 To address method effects in mediation analysis, one more recent approach 

combined a latent variable path analysis mediation model with a multimethod 
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measurement structure known as the correlated traits-correlated method–1 (CT-C[M – 1]) 

model (Papa et al., 2015). The so-called multimethod mediation model is a structural 

equation modeling approach that allows researchers to account for a multimethod 

measurement structure and random measurement error while examining structural 

relationships among variables. Such a model is a step in the right direction for evaluating 

data using multimethod designs and creating latent variable multimethod statistical tools. 

The proposed M4 model will, in part, build on the multimethod mediation modeling 

approach.  

 

 

Moderation Analysis 

 

Conceptually, moderation is the effect of one variable influencing the relationship 

between two variables. Computationally, a moderated effect is equivalent to an 

interaction effect, where an outcome is regressed on the product term of two or more 

variables. Given one dependent variable Y, one independent variable X, and one 

moderating variable W, the equation for examining simple moderation is: 

 

 1 2 3Y YY i b X b W b W eX= + + + +   (4) 
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where 1b , 2b , and 3b  are the regression paths between variables, e indicates the residual 

error, X, W, and Y indicate the manifest variables, and XW indicates the interaction (or 

product) term. Both a conceptual model and path model are shown in Figure 1.2. 

 

Figure 1.2: Simple moderation model 
 

 

Examining moderating effects for manifest variables is theoretically simple. 

Every participant, p, in the dataset has value of Xp and Wp. Xp can be multiplied by the 

value of Wp for each participant. The newly created product term, XW, is a manifest 

variable that indicates the interaction between X and W for each participant. The XW 

product term can be included in regression models that include main effects of both the X 

and W terms. Moderating effects are examined under modeling approaches that assume 

low collinearity between the product term XW and its first-order predictors, X and W 

(Aiken & West, 1991). To properly estimate interaction effects void of collinearity, mean 
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centering is recommended (Aiken & West, 1991). Mean centering not only reduces 

collinearity, but also aides in interpreting the interaction effect. 

Similar to mediation analysis, results from moderation analysis can be attenuated 

when measurement error is present in the manifest variables (Evans, 1985). It is thus 

suggested that moderated effects be examined using latent moderation analysis. 

Unlike the relatively straightforward extension of mediation analysis to latent 

variable approaches, the extension of moderation analysis to latent variables approaches 

is not simple. The manifest approach to moderation analysis requires creating a product 

of the independent variable with the moderating variable for each participant. However, 

latent variable approaches, by definition, contain values that are not directly observed for 

each participant. Methods to examine latent interaction terms have been developed and 

researched since the mid-1980s, and are complex. 

The earliest approaches to studying latent variable interactions used observed 

variables to create product indicators as the measurement model for the latent interaction 

term (Kenny & Judd, 1984). Two drawbacks in this approach are that 1) product 

indicators were created using unreliable manifest variables, which led to especially 

unreliable latent interaction terms (Moosbrugger, Schermelleh-Engel, & Klein, 1997), 

and 2) the method required imposing complex nonlinear constraints on the model to 

account for the inevitable non-normal distribution of the product indicators. 

In response to the original approach for creating latent interaction effects using 

product indicators, different approaches for examining latent interaction terms emerged. 

Moosbrugger and colleagues (1997) conducted a review of approaches used to estimate 

latent variable interaction effects. They described ten approaches, grouping them into 
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three categories: methods that (incorrectly) assumed normality of the indicator variables 

(three approaches), methods with distribution-free assumptions about the indicator 

variables (six approaches), and methods that (correctly) assumed indicator variables were 

non-normally distributed (one approach). Methods assuming normality of the indicator 

variables led to “underestimation of standard errors and biased chi-square values” (p. 

103), likely because the distribution of an interaction term is not normally distributed 

(Moosbrugger et al., 1997). Four distribution-free methods resulted in asymptotically 

unbiased estimation but required large sample sizes in practical applications. One 

distribution-free method (two-stage least squares [2SLS]) resulted in unbiased estimation 

but had rather low power. The fifth distribution-free method was a Bayesian Analysis of 

Latent Variable Models, and a small simulation study resulted in biased parameter 

estimates and large standard errors. Of the distribution-free methods, the 2SLS method 

was the most promising as an avenue for evaluating latent interaction effects. 

The only method for examining latent interaction effects that correctly assumed a 

non-normal distribution of the indicator variable was the latent moderated structural 

equations (LMS) method. The LMS method provided unbiased interaction terms and 

resulted in no standard error bias (Klein & Moosbrugger, 2000) when evaluated in a 

simulation study. Further, the LMS method outperformed other methods, and was more 

efficient than the 2SLS method, which was its closest competitor (Klein & Moosbrugger, 

2000). 

The LMS approach, unlike other approaches to latent variable interaction effects, 

does not directly estimate product values between indicators. Instead, the LMS approach 

uses an iterative expectation maximization (EM) algorithm to estimate the interaction 
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effect. Klein and Moosbrugger (2000) recommend the LMS method for evaluating latent 

interaction terms. Currently, the LMS method is still used when evaluating latent 

interaction terms, and this method is the standard for evaluating latent interaction effects 

at this time. The LMS approach is readily available in the Mplus software (Muthén & 

Muthén, 1998-2018), which was used throughout the course of this project. The M4 

approach implemented the LMS technique to examine latent moderated effects. 

 

 

Moderated Mediation Analysis  

 

Combining moderation with mediation is a relatively simple process using 

manifest path analysis (Edwards & Lambert, 2007). In the most generalizable form of 

moderated mediation analysis using manifest path analysis, all pathways between X, M, 

and Y may vary across levels of the moderating variable, W (Edwards & Lambert, 2007; 

Hayes, 2013). The complexity of moderating effects in a mediation analysis is that the 

moderating variable can interact with any (or even multiple) predictor variables and 

influence any (or multiple) outcome variables (Edwards & Lambert, 2007; Hayes, 2013; 

Hayes, 2015). Further, any reasonable number of M and W variables can be specified, 

leading to structurally complex models. For the nature of this project, examining a simple 

moderated mediation model with one moderator and one mediator sufficed. Even so, with 

just one moderator and one mediator, seven distinct moderated mediation models could 

have been created (Edwards & Lambert, 2007), with each model referring to the 

moderating effect of all possible combinations of the a, b, and c′  pathways of the 
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mediation model. For the present project, only first-stage moderation, where the 

moderating variable, W, interacts with the X variable and influences only the M variable 

and the a path, were examined (see Figure 1.3). 

 

Figure 1.3: First-stage moderated mediation model 
 

 

An equation for a path analysis moderated mediation model with first-stage 

moderation is given, first in two equations, one for each outcome variable: 

 

 1 2 3M MM i a X a W a W eX= + + + +   (5) 

 

 Y YY i c X bM e′= + + +  (6) 

 

where i indicates the intercept, 1a , 2a , 3 , a b, and c′  are the regression paths between 

variables, Me  indicates the residual error of the mediator, Ye  indicates the residual error 
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of the final outcome variable, and X, M, W, and Y indicate the variables. Combining 

Equations 5 and 6 allows restructuring the equations to formally denote the moderating 

effect, according to simple slopes (Aiken & West, 1991; Edwards & Lambert, 2007): 
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The simple slopes restructure of simple first-stage moderated mediation analysis shows 

that the indirect effect, 1a b  in simple mediation, is influenced by the moderating variable 

so that now the indirect effect is 1 3( )a a W b+ . This equation was used to quantify the 

structural relationships in the proposed M4 model.  

 The model presented in Equation 7 and Figure 1.3 uses manifest variables. 

Because both mediated and moderated effects are attenuated by measurement error, it is 

important to create a moderated mediation model that models measurement error. Latent 

variable approaches are a solution to addressing measurement error.  

In a recent advancement to moderated mediation analysis, Cheung and Lau (2017) 

developed a latent variable structural equation modeling approach to moderated 

mediation analysis and compared their approach to manifest regression moderated 

mediation analysis. Figure 1.4 depicts a moderated mediation model using latent factors 
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each measured by three manifest variables. Cheung and Lau found that even with 

adequate reliability, estimates of the mediated pathways in the manifest regression 

moderated mediation model were attenuated by 5 to 20% without controlling for 

measurement error. Furthermore, estimates of the moderated pathway were attenuated by 

30% without controlling for measurement error. Additionally, confidence intervals were 

biased in the regression approach when reliabilities were low. Thus, when variables were 

not perfectly reliable, or in other words when variables contained error, estimates from 

moderated mediation analysis were attenuated. These findings mimic results that 

measurement error attenuates both the mediated effect (Hoyle & Kenny, 1999) and the 

moderated effect (Evans, 1985).  

 

 
Figure 1.4: First-stage latent variable moderated mediation model. All factors are 

measured with three manifest indicators. 
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The proposed M4 model will use first-stage moderated mediation. Further, the 

M4 model will build on the latent variable structural equation modeling approach to 

moderated mediation analysis. 

 

 

 

Multimethod Designs 

 

It is widely recommended in psychology research to use multimethod designs 

(Achenbach, 2011; De Los Reyes & Kazdin, 2005; Eid & Diener, 2006). Multimethod 

designs assess constructs using multiple, independent methods of measurement, which 

can offer differing perspectives on the constructs of interest. To what extent do different 

methods agree or disagree on the measurement of a construct? Are method agreement 

and method discrepancies meaningful? These are questions that many multimethod 

researchers, especially researchers using informants as methods, are interested in 

investigating (e.g. Achenbach, 2011; De Los Reyes, 2011; Dirks, De Los Reyes, Briggs-

Gowan, Cella, & Wakschlag, 2012). Multimethod designs allow researchers to examine 

the extent to which different methods show agreement versus discrepancy when 

measuring constructs.  

One of the most common ways to evaluate multimethod data is to use multitrait-

multimethod (MTMM) analysis. MTMM analyses allow social scientists to study 

multiple traits as measured by multiple methods, and are commonly used to evaluate the 

convergent and discriminant validity of many psychological measures (Campbell & 
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Fiske, 1959; Eid, 2000; Eid, Nussbeck, Geiser, Cole, Gollwitzer, & Lischetzke, 2008; 

Jöreskog, 1971; Marsh, 1989; Widaman, 1985). Per the original MTMM approach 

(Campbell & Fiske, 1959), every measured construct contains at least two sources of 

influence: the underlying construct of interest (i.e., trait), and the method by which the 

construct is measured (i.e., method). In this original approach, each measurement of a 

construct is conceptualized as a trait-method unit (TMU). For example, when measuring 

anxiety, a clinician might ask an individual to self-report the occurrence of feeling 

nervous or not being able to sleep. The trait, anxiety, is thus measured using the method, 

self-report. Consequently, the TMU is self-reported anxiety. 

 Early approaches to MTMM analysis commonly focused on examining the 

correlations among TMUs using a single observed variable per TMU (Campbell & Fiske, 

1959). For example, if a researcher was interested in examining anxiety and depression as 

reported by mothers and fathers, they would have one observed variable representing 

each: mothers’ reports of anxiety, fathers’ reports of anxiety, mothers’ reports of 

depression, and fathers’ reports of depression. Researchers could then examine the 

correlations among variables to determine the amount of variance shared across different 

methods measuring the same trait (convergent validity), and the amount of variance 

shared across the same method measuring different traits or different methods measuring 

different traits (discriminant validity). Comparisons of these correlations were thought to 

indicate levels of convergent and discriminant validity, with the ideal being that different 

methods would equally measure the same trait, and different traits would not be too 

highly correlated. Unfortunately, methods have been shown to differ in their 

measurement of traits (Bagozzi, Yi, & Phillips, 1991; Podsakoff, MacKenzie, Lee, & 
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Podsakoff, 2003; Podsakoff, MacKenzie, & Podsakoff, 2012; Schmitt & Stults, 1986). 

Many refer to the impact of methods on the measurement of traits as method effects. 

 To account for method effects, researchers use a combination of MTMM designs 

and sophisticated statistical methods. Presently, one of the most common ways to 

evaluate MTMM data is by using confirmatory factor analysis (CFA; Kenny & Kashy, 

1992; Eid, Lischetzke, & Nussbeck, 2006; Jöreskog, 1971; Widaman, 1985). Although 

other methods, such as multilevel models can be used to examine method effects, their 

utility is limited when the classical MTMM design is employed. Maas, Lensvelt-Mulders, 

and Hox (2009) describe how the multilevel MTMM model is a more restrictive form of 

the CFA-MTMM model. Specifically, the multilevel MTMM models imposes factor 

loadings constraints on all trait and method factors, thus the multilevel MTMM approach 

is less flexible than a CFA-MTMM approach. When data structures are complex, a larger 

number of methods were used to gather data, or the methods cannot be clearly 

distinguished, a multilevel framework may be more ideal. However, the CFA-MTMM 

approach is more useful because of its flexibility. CFA-MTMM (as well as multilevel 

MTMM) models also allow researchers to examine relationships among latent variables 

rather than observed variables, thus controlling for random measurement error. 

 

 Correlated traits-correlated methods model. One of the earliest CFA-MTMM 

models created was the correlated traits-correlated methods (CT-CM) model (Jöreskog, 

1971; Widaman, 1985). The CT-CM model intuitively viewed TMUs as containing three 

distinct sources of influence: trait, method, and random measurement error. 
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Mathematically, every observed TMU mtY  is comprised of a tT  trait factor, an mM  

method factor, and random measurement error mtε : 

 

 mt mt t mt m mtY T Mλ γ ε= + +  (8) 

 

where m indicates the method, t indicates the trait, mtλ  indicates the trait factor loading, 

and mtγ  indicates the method factor loading. Trait factors correlate with one another and 

method factors correlate with one another, but trait factors are not allowed to correlate 

with method factors. Error terms, likewise, are not allowed to correlate with trait nor 

method factors. Error terms are also not allowed to correlate with one another. Figure 1.5 

depicts an example CT-CM model with four observed TMUs, two trait factors tT , two 

method factors mM , and four error variables mtε . 

 
Figure 1.5: Correlated traits-correlated method (CT-CM) measurement model 
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Although intuitively appealing, simulation designs have shown that the CT-CM 

model is not globally identified, often fails to converge, and estimates improper solutions 

(Castro-Schilo, Widaman, & Grimm, 2013; Marsh, 1989). Further, estimates from the 

CT-CM model can be difficult to interpret because the model does not define what the 

different factors truly measure. For example, it is unclear what the method factors 

measure compared to trait factors since there is no point of reference for comparison. 

 

Correlated traits-correlated uniqueness model. To address the estimation 

problems with the CT-CM model, Marsh (1989) recommended using the correlated traits-

correlated uniqueness (CT-CU) model, which does not have the same convergence 

problems. Originally proposed by Kenny (1976), the CT-CU model consists of Tt trait 

factors and mtε  error terms but does not include method factors. Instead, all error terms 

measured by the same method, m, are allowed to correlate. Unfortunately, this model 

lacks parsimony because many error covariances must be estimated for models that 

include many methods per trait. Further, the CT-CU model confounds method effects 

with random measurement error. Method effects are not necessarily measurement error 

(De Los Reyes, 2011; Eid, Geiser, & Koch, 2016), but rather are consistent and reliable 

variance pertaining to the method of measurement. Defining method effects as 

measurement error leads to underestimation of the reliability of TMUs. An example CT-

CU model depicting four observed TMUs, two trait factors tT , and correlated errors mtε  

for TMUs measured with the same method m is shown in Figure 1.6. 
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Figure 1.6: Correlated traits-correlated uniqueness (CT-CU) measurement model  

 

 

Correlated traits-correlated (methods – 1) model. Eid (2000) proposed an 

MTMM model to address the limitations found in the CT-CM and CT-CU model. Known 

as the correlated traits-correlated (methods – 1) (CT-C[M – 1]) model, this model calls on 

classical test theory (Lord & Novick, 1968; Novick, 1966) to define latent trait and 

method variables. In Eid’s framework, TMUs are not inherently separable into trait 

influences and method influences, but rather are defined depending on whether they are 

measured with the reference method or a non-reference method. The trait factors are 

contingent upon the so-called reference method, which is the gold-standard to which all 

convergent validity and method-specificity conclusions are interpreted. The TMUs 

specific to the reference method do not have a method factor. As such, T trait factors and 

M – 1 method factors are defined in this approach. The trait factors ( 1tT ) are defined as 

the trait measured by the reference method while method factors ( mM ) are defined as the 

residual influence of the non-reference methods that is not shared with the reference 

method. A CT-C[M –1]) measurement model with four observed TMUs, two trait factors 
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pertaining to the reference method 1tT , one non-reference method factor mM , and four 

error variables mtε  is shown in Figure 1.7. 

 

 
Figure 1.7: Correlated traits-correlated (method – 1) (CT-C[M –1]) measurement model 

 

 

Mathematically, TMUs not pertaining to the reference factor (m ≠ 1) are 

comprised of a trait factor specific to the reference method ( 1tT ), a method residual factor 

( mM ), and random measurement error ( mtε ). TMUs pertaining to the reference factor (m 

= 1) are comprised of a trait factor specific to the reference method ( 1tT ), and random 

measurement error ( mtε ), but no method residual factor. An equation for this model is 

given as: 

 

 1mt mt t mt m mtY T Mλ γ ε= + + , for m ≠ 1 (9) 

 

 1 1 1 1t t t tY Tλ ε= + , for m = 1 (10) 
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where m indicates the method, t indicates the trait, mtλ  indicates the trait factor loading, 

and mtγ  indicates the method factor loading. 

The advantages of the CT-C(M – 1) model are that it is globally identified, it does 

not have the same convergence problems as the CT-CM model, and it does not define 

method effects as measurement error as in the CT-CU model. However, the original 

version of the CT-C(M – 1) model assumes only one indicator per TMU, which imposes 

the strict assumption that method effects equally influence all traits being measured, an 

unrealistic assumption (Eid et al., 2003).  

 

Multiple indicator CT-C(M – 1) model. A multiple indicator CT-C(M – 1) 

model addresses the limitation that traits are equally influenced by method effects (Eid et 

al., 2003). Unlike the single indicator approach, each TMU is measured using multiple 

indicators i. Mathematically, the multiple-indicator CT-C(M – 1) model is similar to the 

single-indicator model, but includes indicator-specific factor loadings ( imtλ  and imtγ ), 

and trait specific methods ( mtM ). The measurement equations for this model are: 

 

 1imt imt t imt mt imtY T Mλ γ ε= + + , for m ≠ 1 (11) 

 

 1 1 1 1i t i t t i tY Tλ ε= + , for m = 1 (12) 
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where i indicates the indicator, m indicates the method, t indicates the trait, imtλ  indicates 

the trait factor loading, and imtγ  indicates the method factor loading. Because multiple 

indicators are used, the method factor, M, is not only specific to the method (subscript m), 

but also to the trait (subscript t). The multiple indicator CT-C(M – 1) model with eight 

observed TMUs, two trait factors 1tT , one non-reference method factor per trait mtM , and 

eight error variables imtε . 

 
Figure 1.8: Multiple indicator CT-C(M –1) measurement model 

 

Multiple indicator CT-C(M – 1) model with indicator-specific trait factors. 

One complication that can arise in the multiple indicator model is when multiple 

indicators of the same trait do not perfectly measure the same trait factor, resulting in 

poor model fit. Indicators of a single trait may measure slightly different facets of a trait 

due to differences in item wording or response anchors. Indicator heterogeneity can be 

modeled in the CT-C(M – 1) framework by introducing indicator-specific trait factors. 

The multiple-indicator CT-C(M – 1) model with indicator-specific trait factors is nearly 
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identical to the multiple-indicator CT-C(M – 1) model without indicator-specific trait 

factors, but includes indicator specific traits ( 1i tT ). The measurement equations for this 

model are: 

 

 1imt imt i t imt mt imtY T Mλ γ ε= + + , for m ≠ 1 (13) 

 

 1 1 1 1i t i t i t i tY Tλ ε= + , for m = 1 (14) 

 

where i indicates the indicator, m indicates the method, t indicates the trait, imtλ  indicates 

the trait factor loading, and imtγ  indicates the method factor loading. Because multiple 

indicators are used, the trait factor, T, is not only specific to the trait (subscript t), but also 

the indicator (subscript i). Figure 1.9 depicts this multiple indicator CT-C(M – 1) model 

with indicator-specific traits. Similar to Figure 1.8, the model depicts eight observed 

TMUs, one non-reference method factor per trait, and eight error variables imtε . 

However, the model now depicts four indicator-specific trait factors, 1i tT , instead of 

general trait factors. 
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Figure 1.9: Indicator-specific CT-C(M –1) measurement model 

 

 

The multiple indicator CT-C(M – 1) model both with and without indicator-

specific trait factors addresses limitations in prior MTMM models, particularly 1) the 

convergence and interpretability problems in the CT-CM model, 2) the confound between 

method effects and error in the CT-CU model, and 3) the inherent assumption in the CT-

CM and single indicator CT-C(M – 1) models that method effects are consistent across 

traits (i.e., method effects are not trait-specific).  

The M4 model was created for the multiple indicator CT-C(M – 1) model both 

with and without indicator-specific trait factors.  

 

Design oriented approaches. Other MTMM models have been created to address 

specific measurement issues and to examine new questions using MTMM analysis. 

Particularly, researchers have noted that different types of methods require different 

measurement models to properly evaluate method effects (Eid et al., 2008; Eid et al., 
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2016; Nussbeck, Eid, Geiser, Courvoisier, & Lischetzke, 2009) and that choosing the 

incorrect multimethod model can result in non-converged and improper solutions (Geiser, 

Bishop, & Lockhart, 2015). Two different types of methods have been identified: 

interchangeable methods and structurally different methods. Interchangeable methods are 

methods which can be randomly chosen from a set of theoretically equivalent methods 

(e.g., students evaluating their professor). When researchers gather data using 

interchangeable methods, an appropriate CFA-MTMM model is one with an “average” 

trait factor and uncorrelated residual method factors (Nussbeck et al., 2009). Structurally 

different methods are methods that cannot be chosen at random, and each method is 

theoretically distinct from other methods (e.g., mother compared to teacher reports of a 

child’s behavior). When researchers use structurally different methods, an appropriate 

CFA-MTMM model is the CT-C(M – 1) model (Eid et al., 2008; Eid et al., 2016). In 

psychology, it is much more common to find structurally different methods than 

interchangeable methods. The current M4 model was created for structurally different 

methods. Therefore, the multiple indicator CT-C(M – 1) model served as the underlying 

measurement structure of the M4 model.  
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CHAPTER III 

CREATING THE M4 MODEL AND DEFINING EFFECTS 

 

 

 The M4 model combined a CT-C(M – 1) measurement structure with first-stage 

moderated mediation analysis using a latent variable framework. Any number of 

indicators, methods, and traits could be implemented into the model, and any stage of 

moderated mediation could potentially be utilized. For the current project, the M4 model 

included two methods and three indicators per X, M, W, and Y trait factors to match the 

dataset example presented in Chapter IV. Additional indicators and additional methods 

may be implemented into the approach, but using only two methods and three indicators 

simplified the presentation and discussion of the model. The multiple indicator CT-C(M – 

1) models both with and without indicator-specific trait factors were selected as the 

measurement portion for the new M4 model, while the first-stage moderated mediation 

path model was selected as the structural portion of the new M4 model.  

The first step in creating the M4 model was to create a CT-C(M – 1) model with 

four traits, three indicators per trait, and two methods per indicator without and with 

indicator-specific trait factors as shown in Figures 2.1 and 2.2, respectively.  
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Figure 2.1: Multiple indicator CT-C(M –1) model 

 
 

 

 
Figure 2.2: Multiple indicator CT-C(M –1) model with indicator-specific trait factors  

 

 

Equations to identify the multiple indicator CT-C(M – 1) model with and without 

indicator-specific trait factors were presented in Chapter II. To fully define models within 

the context of the M4 approach, an intercept, imtα , was added to the original 
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measurement equations since latent trait means of the M4 model must be constrained to 0 

(or centered) in order to later estimate and interpret the latent interaction term. The 

measurement equations for observed indicators of the CT-C(M – 1) model without 

indicator-specific trait factors (Figure 2.1) are shown below. 

 

 1imt imt imt t imt mt imtY T Mα λ γ ε= + + + , for m ≠ 1 (15) 

 

 1imt imt imt t imtY Tα λ ε= + + , for m = 1 (16) 

 

Equations 15 and 16 show that each observed non-reference method indicator (m ≠ 1) is 

regressed on the intercept parameter, a trait factor, a trait-specific method factor, and an 

error variable while each observed reference method indicator (m = 1) is regressed on the 

intercept parameter, a trait factor and an error variable. For the CT-C(M – 1) model with 

indicator-specific trait factors, each observed non-reference method indicator (m ≠ 1) is 

regressed on an indicator-specific trait factor, a trait-specific method factor, and an error 

variable while each observed reference method indicator (m = 1) is regressed on an 

indicator-specific trait factor and an error variable, as shown in Equations 17 and 18. 

 

 1imt imt imt i t imt mt imtY T Mα λ γ ε= + + + , for m ≠ 1 (17) 

 

 1 1i t imt imt i t imtY Tα λ ε= + + , for m = 1 (18) 
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 The CT-C(M – 1) models serve as the measurement portion of the M4 models. 

There are important outcomes relevant to the M4 approach that can be assessed using 

these measurement models.  

 

 

Using the CT-C(M – 1) Models to Examine Consistency, Method-Specificity, and 

Reliability in the M4 Approach 

 

 The extent to which the measurement of variables is influenced by trait effects, 

method effects, and random measurement error can be empirically studied using the M4 

approach. In the CT-C(M – 1) measurement model, manifest variables are decomposed 

into three possible sources of variance: 1) variance due to the trait factor, 2) variance due 

to the method residual factor, and 3) variance due to neither the trait nor method residual 

factor, but due instead to random measurement error. These various sources of variance 

can be used to compute consistency, method-specificity, and reliability. Equations for 

consistency, method-specificity, and reliability are given for the CT-C(M – 1) model with 

indicator-specific factors and can be generalized to the CT-C(M – 1) model without 

indicator-specific factors.  

Consistency is defined as the proportion of observed variance in a manifest 

variable that is due to the trait factor. Here, it is important to recall that the trait factor is 

specific to the reference method. It is thus appropriate to state that consistency is the 

proportion of observed variance in each manifest variable that is shared with the 

reference method. Consistency can be calculated for all manifest variables. 
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 (19) 

 

Method-specificity is defined as the proportion of observed variance that is due to 

method residual effects. Method residual effects contain variance specific to a given 

method (e.g., father report) that is not shared with the reference method. Method-

specificity is calculated for all non-reference method manifest variables. 
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1
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( ) ( ) ( )
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+ +

, for m ≠ 1 (20) 

 

Reliability is the proportion of observed variance that is due to the sum of trait 

and method residual effects, and not random measurement error. For each trait-method 

unit, consistency plus method-specificity equals reliability. Reliability can be calculated 

for all manifest variables. 
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 (21) 

 

 Consistency and method-specificity are used to determine the extent to which 

measurements share variability with the reference method (i.e., convergent validity), and 

the extent to which measurements contain variability that is not shared with the reference 
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method. Reliability can be used to determine the extent to which measurements are void 

of random measurement error. These outcomes can be used in the M4 approach to 

determine the impact of method effects and measurement error on manifest variables. 

 

 

Combining the CT-C(M – 1) Models with Moderated Mediation Analysis 

 

The creation of the M4 model without indicator-specific trait factors was simple 

and straightforward. Each trait factor was conceptualized as X, M, W, or Y, and 

correlations among trait factors are appropriately changed regression paths among trait 

factors. The M4 model without indicator-specific trait factors is shown in Figure 2.3. 

 

 
Figure 2.3: M4 model with non-indicator-specific general trait factors  
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Creating the M4 model with indicator-specific trait factors was a more complex 

process. Equations 16 and 17 as well as Figure 2.2 suggest the presence of as many 

indicator-specific trait factors as there are indicators, raising the question of how best to 

address all potential moderated mediation effects. Theoretically, it was possible to 

estimate any or all indicator-specific moderated and mediated effects, but doing so would 

result in a highly complex model that may not be identified.  

Indicator-specific factors, theoretically, measure slightly different facets of a 

single construct due to minor measurement differences, item wording, or otherwise. From 

a pragmatic perspective, trying to evaluate relationships among facets of constructs can 

be cumbersome and difficult; it was not only possible but also practical to combine 

indicator-specific factors into a single, homogeneous factor. Fortunately, there was a 

relatively straightforward way to mathematically reconfigure indicator-specific trait 

factors to create a common trait factor using what is called the latent means approach 

(Geiser, Koch, & Eid, 2014). Such an approach did not change the indicator-specific 

nature of the variables, but rather modeled the indicator-specific nature of variables in a 

manner more appropriate for examining relationships among constructs. 

 

 

Latent Means Approach to Create Common X, M, W, and Y Trait Factors 

 

A simple way to reconfigure indicator-specific traits into a common trait with 

indicator-specific “residual” terms was by using the latent means approach (see Geiser, 

Koch, & Eid, 2014; Papa et al., 2015). In the latent means approach, a common trait 
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factor and I – 1 indicator-specific factors are computed for each construct, where I 

indicates the total number of indicators for the given trait. The M4 model contains, at 

minimum, four common trait factors, one each for the X, W, M, and Y constructs. 

Common trait factors 1tCT  are defined as the average of the indicator-specific trait 

factors. 

 

 11
1

I
i ti

t

T
CT

I
== ∑   (22) 

 

Simply computing the common trait factor results in a higher order factor that does not 

appropriately capture all indicator-specific trait variance in the model. The “extra” trait 

variance not captured by the common trait is captured by the indicator-specific factor 

1i tIS . The 1i tIS  factor is defined as the deviation of the trait factor from the common trait. 

 

 1 1 1 i t i t tIS T CT= −  (23) 

 

Because all indicator-specific factors are deviations from a common trait, the sum of all 

1i tIS  values equals zero. 

 

 11
0 I

i ti
IS

=
=∑  (24) 
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This property indicates that each 1i tIS  factor is a function of all other 1i tIS  factors. If, for 

instance, the first 1i tIS  factor is subtracted from each side of the equation, then this factor 

can be defined as a function of all other indicators. 

 

 11 12

I
t i ti

IS IS
=

= −∑  (25) 

 

Only I – 1 1i tIS  factors are necessary to properly compute the latent means 

approach because the first indicator is mathematically defined as a function of all other 

indicators. The indicator-specific trait factors are thus a function of a common trait factor 

and I – 1 1i tIS  factors. 

 

 1 1 12
  I

i t t i ti
T CT IS

=
= +∑  (26) 

 

 11 1 12
  I

t t i ti
T CT IS

=
= −∑  (27) 

 

 The latent means approach was combined with the indicator specific CT-C(M – 1) 

measurement structure. Equations 26 and 27 can be substituted into the Equations 17 and 

18, resulting in the following full measurement model using four equations: 

 

 1 12

I
imt imt imt t i t imt mt imti

Y CT IS Mα λ γ ε
=

 = + + + + ∑ , for i ≠ 1 and m ≠ 1 (28) 
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 1 1 1 1 1 1 12

I
mt mt mt t i t mt mt mti

Y CT IS Mα λ γ ε
=

 = + − + + ∑ , for i = 1 and m ≠ 1 (29) 

 

 1 1 1 1 1 12

I
i t i t i t t i t i ti

Y CT ISα λ ε
=

 = + + + ∑ , for i ≠ 1 and m = 1 (30) 

 

 11 11 11 1 1 112

I
t t t t i t ti

Y CT ISα λ ε
=

 = + − + ∑ , i = 1 and for m = 1 (31) 

 

 The measurement model defined in Equations 28 through 31 for the CT-C(M – 1) 

model with indicator specific trait factors and higher order common trait factors is shown 

in Figure 2.4. The common trait factors were conceptualized as the X, M, W, and Y latent 

factors necessary for implementing the M4 model.  

 

 
Figure 2.4: Latent means approach to create common trait factors 
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Using the Common Trait Factors in First-Stage Moderated Mediation Models 

 

The common traits defined above served to create the latent X, M, W, and Y 

variables in the M4 model with indicator-specific trait factors. Replacing 1tCT  with X, M, 

W, or Y was how each latent factor in the M4 model was defined. For the M4 model 

without indicator-specific trait factors, replacing 1tT  with X, M, W, or Y was how each 

latent factor in the M4 model was defined. As a reminder, the following equation set was 

used to evaluate moderated mediation: 

 

 1 2 3M MM i a X a W a W eX= + + + +  (32) 

 

 Y YY i c X bM e′= + + +  (33) 

 

 ] [2 31[  ( ) ( ) ]Y M M YY i i a W b c a a W b X be e= + + + + + +′ +  (34) 

 

where X indicates the latent independent factor, M indicates the latent mediating factor, 

W indicates the latent moderating factor, XW indicates latent interaction between the X 

and W factors, and Y indicates the latent dependent outcome. All a , b , and 'c  

coefficients indicate the paths between the latent factors, i represents the intercept, and e  

represents the residual error terms of the endogenous M and Y latent factors. Figure 2.5 

shows the M4 with common trait factors. 
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Figure 2.5: M4 model with indicator-specific common trait factors 

 
 

 The last parameter to identify in the M4 approach was the XW interaction term. 

This term is an interaction between two unmeasured constructs. By definition, latent 

variables are not directly observed for each individual, requiring the latent interaction 

term to be identified differently than in manifest moderation analysis. Namely, the latent 

interaction term is unmeasured. Modern approaches recommend using the latent 

moderated structural equations (LMS) approach (Klein & Moosbrugger, 2000) to 

estimate the latent interaction term, resulting in a variable that has no mean nor variance 

and only adds one parameter, the 3a  path, to the model (Muthén & Asparouhov, 2012). 

This approach is readily implemented in Mplus 8.1 (Muthén & Muthén, 1998-2018), the 

software that was used to estimate the M4 models. Following guidelines from the first 
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application of latent variable moderated mediation using continuous moderating variables 

(Cheung & Lau, 2017), the M4 approach used LMS to examine latent interaction effects.  

 

The Latent Interaction Term, XW 

 

Klein and Moosbrugger (2000) developed an approach to empirically examine the 

latent interaction term. In their approach, a generalized latent interaction term can be 

created using a finite mixture approach applied to an elementary latent interaction effect. 

An elementary interaction term (Kenny & Judd, 1984) model containing a single 

interaction is mathematically defined as: 

 
 1 1 2 2 3 1 2η α γ ξ γ ξ γ ξ ξ ζ= + + + +  (35) 

 
This elementary interaction model can be generalized to a model containing multiple 

interaction terms (Klein & Moosbrugger, 2000) by extending the model from scalar form 

to matrix form: 

 
  (36) 

 
“where η is a (1 ×  1) latent endogenous variable, α is an (1 ×1) intercept term, ξ is a (n ×  

1) vector of latent exogenous variables, Γ  is the (1 ×  n) coefficient matrix giving ξ’s 

effect on η, Ω  is the (n ×  n) coefficient matrix giving the impact of the product terms 
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 (i < j) on η, and ζ is the (1 ×  1) disturbance variable with E(ζ) = 0 and Cov( ) = 

0.” (Klein & Moosbrugger, 2000, p. 460). 

Compared to the elementary interaction model, the LMS approach evaluates 

multiple estimates of the latent interaction effect (thus the need for the generalized model 

presented in Equation 36), combining estimates using a joint distribution of the indicator 

variables. Specifically, “the distribution of the joint indicator vector (x, y) [where x is a 

vector of observed indicators for the exogenous variable(s) and y is a vector of observed 

indicators for the endogenous variable(s)] can be represented as a finite mixture of 

multivariate normal distributions”  (Klein & Moosbrugger, 2000, p. 461). The LMS 

approach accounts for the nonnormal distribution of the latent interaction terms using this 

approach. Throughout the estimation of the interaction term, product values between 

indicators are not estimated; rather, the LMS approach requires using an iterative 

expectation maximization (EM) algorithm. The approach stops when the loglikelihood 

value is maximized. Results from the LMS approach can be interpreted in the same 

manner as other latent variable analyses. 

 

 

Using the M4 Model to Examine Moderated Mediation 

 

Moderation, mediation, and moderated mediation (i.e., whether the mediated 

effect varies across levels of the moderator) can be examined by evaluating the statistical 

and practical significance of the appropriate pathway (Hayes, 2015). In this section, it is 
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discussed how to statistically evaluate mediation, moderation, and moderated mediation 

in the M4 model. 

 

Evaluating mediation. The mediated effect is the process from X to Y through M 

and is mathematically reflected in the product 1a b×  in the M4 model. Although mediated 

effects may be examined using traditional hypothesis testing approaches (e.g., Sobel, 

1982; Baron & Kenny, 1986), such approaches are prone to bias. Traditional hypothesis 

testing approaches require underlying assumptions of a normal sampling distribution, 

which is not reflected in the mediated effect. The mediated effect is a product term which 

results in an asymmetric sampling distribution (Bollen & Stine, 1990), and traditional 

hypothesis testing approaches are therefore not typically accurate for testing the 

significance of the mediated effect.  

Presently, the best-practice approach for testing the mediated effect is the bias-

corrected bootstrap (MacKinnon, 2008; Williams & MacKinnon, 2008). Bias-corrected 

bootstrap is a resampling technique in mediation analysis that draws k samples of size n 

with replacement to construct a sampling distribution with k estimates of the indirect 

effect. Endpoints are adjusted to correct for bias from outlying cases. From the k 

estimates, a confidence interval is calculated. Bias-corrected bootstrap is one of the most 

powerful methods for testing mediating effects (Williams & MacKinnon, 2008), and is 

recommended by leading researchers in mediation analysis (MacKinnon, 2008) and 

moderated mediation analysis (Hayes, 2013).  
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Evaluating moderation. The implemented method for examining latent 

interaction effects in Mplus (Muthén & Muthén, 1998-2018) is the LMS approach (Klein 

& Moosbrugger, 2000). Creating a latent interaction using the LMS approach requires an 

iterative expectation maximization (EM) algorithm. Following guidelines by the first 

application of latent variable moderated mediation (Cheung & Lau, 2017) and guidelines 

suggested for latent moderation (Klein & Moosbrugger, 2000; Moosbrugger et al., 1997), 

the M4 model was estimated using LMS approach to examine interaction effects. The 

moderating effect was examined in relation to its influence on the mediation pathways. 

 

Evaluating moderated mediation. To determine the extent to which moderators 

influence mediated pathways, Hayes (2015) developed the index of moderated mediation 

(Index MM). In first-stage moderated mediation, the moderating factor, XW, influences 

the a-pathway, resulting in a new path, 3a  (refer to Figure 2.3). Since the a-path is 

moderated, the overall moderated mediation effect (ω, as denoted in Hayes, 2015) is a 

product of the conditional effect of X on M, 1 3a a W+ , and the effect of M on Y, b: 

 

 1 3( )a a W bω = + ×  (37) 

 

Overall, moderated mediation is a way of representing that the indirect effect (i.e., the 

effect of X to M to Y) is a function of W. The equation above has an equivalent simple 

slopes form: 

 



 
 

  49 
 
 1 3a b a bWω = +  (38) 

 

where 1a b represents the intercept, and 3a b represents the slope. The 3a b  estimate is what 

Hayes (2015) calls the index of moderated mediation (Index MM) in first-stage 

moderated mediation models. Should the indirect effect be unrelated W, then the resulting 

3a b  value will equal zero in the population, but if the indirect effect is related to W, then 

the resulting 3a b  value will not equal zero. 

 The created M4 models were used in both studies in this research. 
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CHAPTER IV 

M4 MODEL APPLICATION 

 

 

The applicability of the M4 model was evaluated using empirical data about child 

developmental psychology among first-grade children from Spain. The M4 model was 

applied to examine the indirect path from hyperactivity/impulsivity to academic 

impairment through oppositional defiant behaviors, where the relationship between 

hyperactivity/impulsivity and oppositional defiant behaviors was moderated by 

inattention. Figure 3.1 shows the conceptual path model for this application.  

 

 

 

Figure 3.1: Conceptual path diagram for M4 model application 
 
 

 

Poor academic achievement (i.e., academic impairment) is one of the most 

prominent outcomes associated with symptoms of attention deficit hyperactivity disorder 

(ADHD; Frazier, Youngstrom, Glutting, & Watkins, 2007; see also e.g., Barry, Lyman, 

& Klinger, 2002; Massetti, Lahey, Pelham, Loney, Ehrhardt, Lee, & Kipp, 2008). 
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However, the process through which symptoms of ADHD impact academic impairment 

is relatively understudied. Some researchers have hypothesized that study skills or 

interpersonal skills mediate this relationship (Volpe, DuPaul, DiPerna, Jitendra, Lutz, 

Tresco, & Junod, 2006). Others have hypothesized that a student’s ability to overcome 

challenges mediates this relationship (Martin, 2014). These studies have been conducted 

in order to understand the relationship between ADHD and academic impairment. By 

understanding the intermediary variables, practitioners can determine ways to mitigate 

negative outcomes. 

One possible intermediary variable between ADHD and academic impairment is 

oppositional defiant behaviors (OD). OD is characterized by argumentative behaviors, 

resentment, irritability, and anger. The hyperactive/impulsive domain of ADHD (HI) has 

been shown to predict symptoms of OD (Burns & Walsh, 2002), suggesting that HI 

influences the development of OD. According to the trait-impulsivity etiological model 

(Burns, de Moura, Beauchaine, & McBurnett, 2014; see also Beauchaine, Hinshaw, & 

Pang, 2010) the neurological paths that result in symptoms of HI are expected to develop 

before the neurological paths that result in symptoms of OD. Furthermore, the 

neurological paths resulting in the inattention domain of ADHD (IN) are expected to 

develop before OD in the trait-impulsivity etiological model.  

The trait-impulsivity etiological model was used to guide the directional 

relationship among HI, IN and OD. Specifically, it was hypothesized that the interactive 
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effect of HI and IN would impact OD. Furthermore, it was hypothesized that OD 

mediated the relationship between HI and AI.1  

Overall, the primary goal of the application was to address how to apply the M4 

model to substantive, real-world data. Although substantive information about the 

relationships among variables was presented above, this illustration was not meant to 

inform the literature about the substantive relationships among HI, IN, OD, and AI. 

Throughout the illustration, relevant pieces of information are presented that should be 

presented in future applications of the M4 model. How to evaluate and interpret model 

output as well as how to report relevant results are discussed. This chapter concludes by 

addressing and answering the research questions based on the application of the M4 

model to the empirical data. 

 

 

Research Questions 

 

1. How does the M4 model work under non-simulated conditions? 

2. How should applied researchers interpret M4 model output? 

3. What are some recommendations or guidelines for applied researchers who wish 

to utilize the M4 model using their own data? 

 

 

                                                 
1 Theoretically IN could have impacted academic impairment, but it was not included as a predictor in 
order to show first-stage (as opposed to first-stage and direct effect) moderated mediation. 
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Dataset for the Illustration 

 

Data used in this illustration was requested from the owners of the original 

dataset.  

 

Sample. Data were gathered from mother and father reports for first-grade 

children across 30 elementary schools across the Balearic Islands, and Madrid, Spain. 

The sample originally contained 1,045 children. Overall, N = 798 children had at least 

partial data relevant to the present project.2 The original collection of data contained 54% 

males, and children with an average age of 7 years at the first assessment. Children were 

not allowed to participate in the original study if they had been diagnosed with a previous 

learning or behavior disorder. For data relevant to the present study, n = 723 mothers and 

n = 603 fathers participated in the study at wave 1, n = 603 mothers and n = 539 fathers 

participated in the study at wave 2, and n = 502 mothers and n = 460 fathers participated 

in the study at wave 3. 

 

Measures. The measures of HI, IN, OD, and AI were evaluated using the Child 

and Adolescent Disruptive Behavior Inventory Parent Version (Burns & Lee, 2011) 

across three waves of assessment; data collection included other variables that were not 

used in the present analysis. Earlier studies on the CADBI had a different number of 

anchors than presented below (e.g., Burns, Boe, Walsh, Sommers-Flanagan, & 

                                                 
2 Different analyses show different sample sizes due to missingness as well as the longitudinal aspect of the 
data. 
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Teegarden, 2001). The most original scale validation study that included the four relevant 

constructs assessed a sample of Thai adolescents across four years (Burns, de Moura, 

Walsh, Desmul, Silpakit, & Sommers-Flanagan, 2008). Reliabilities below are reported 

from this study. 

HI was measured using nine items. One example of an item was “Fidgets with or 

taps hands or feet or squirms in seat.” Items in this subscale were directly related to 

ADHD-HI items presented in the DSM-IV. Items were measured on a 6-point Likert 

scale, where 0 = nearly occurs none of the time (e.g., never or about once per month), 1 

= seldom occurs (e.g., about once per week), 2 = sometimes occurs (e.g., several times 

per week), 3 = often occurs (e.g., about once per day), 4 = very often occurs (e.g., 

several times per day), and 5 = nearly occurs all the time (e.g., many times per day). It 

was emphasized that parents should rate these items independently from “oppositional 

behavior, defiance, anger, hostility or a failure to understand the task or the instructions.” 

Scale reliability was reported as ranging from .88 to .90 across four years of assessment 

(Burns et al., 2008).  

IN was measured using nine items. An example item was “Has difficulty 

organizing tasks and activities.” Items in this subscale were directly related to ADHD-IN 

items presented in the DSM-IV. Items were measured on a 6-point Likert scale, where 0 

= nearly occurs none of the time (e.g., never or about once per month), 1 = seldom 

occurs (e.g., about once per week), 2 = sometimes occurs (e.g., several times per week), 3 

= often occurs (e.g., about once per day), 4 = very often occurs (e.g., several times per 

day), and 5 = nearly occurs all the time (e.g., many times per day). Scale reliability was 

reported as ranging from .89 to .92 across four years of assessment (Burns et al., 2008).  
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OD was measured using 16 items. An example item was “Appears angry or 

resentful toward adults.” Items were measured on a 6-point Likert scale, where 0 = 

almost never (e.g., never or about once per month), 1 = seldom (e.g., about once per 

week), 2 = sometimes (e.g., several times per week), 3 = often (e.g., about once per day), 

4 = very often (e.g., several times per day), and 5 = almost always (e.g., many times per 

day). Scale reliability was reported as ranging from .90 to .91 across four years of 

assessment (Burns et al., 2008).  

AI was measured using 4 items. An example item was “Completion of Homework 

Assignments.” Items were measured on a 7-point Likert scale, where 0 = severe 

difficulty, 1 = moderate difficulty, 2 = slight difficulty, 3 = average performance for 

grade level, 4 = slightly above average, 5 = moderate above average, and 6 = excellent 

performance. Items were reverse scored so that higher scores indicated greater levels of 

academic impairment. Scale reliability from was reported as ranging from .83 to .85 

across four years of assessment (Burns et al., 2008).  

Items for HI, IN, and OD have been previously averaged into three continuous 

parcels (i.e., indicators; Burns, Servera, Bernad, Carillo, & Geiser, 2014; Preszler, Burns, 

Litson, Geiser, & Servera, 2016) using an approach by Little et al. (2013). AI was 

measured by 4 items and two of the items were combined to create 3 indicators. 

Appendix A shows the relevant items and parcels in the dataset. 

 

Procedures. Mothers and fathers independently responded to various questions in 

a survey about their child’s behavior in the home or community setting. Responses were 

collected at three waves of assessment. The first wave of data was collected at the end of 
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the spring semester of first grade, the second wave 10 months later, and the third wave 12 

months later. All measures were collected at all waves of data collection.  

 

 

Considering the Data before Running Analyses 

 

 The M4 model was applied to mother and father reports of HI, IN, OD, and AI. It 

was predicted that OD would mediate the relationship between HI and AI, and that IN 

would moderate the relationship between HI and OD. This model is an example of a first-

stage moderated mediation analysis and was used to examine the M4 approach applied to 

substantive data. 

Before conducting the analyses, many decisions about the data were made. 

Because there were multiple occasions of measurement, it was decided that the 

application analysis would include data from multiple times points. All models in the 

application contain HI and IN as measured at wave 1, OD as measured at wave 2, and AI 

as measured at wave 3.3 This does not constitute a strictly longitudinal approach which 

would require including multiple waves of each construct in the analysis. Due to the 

complexity of the M4 model already, it was not feasible to examine a model that included 

all aspects of the M4 model as well as longitudinal aspects without going above and 

beyond the scope of this project.  

                                                 
3 Longitudinally, these constructs have shown relatively high levels of trait consistency across time (Litson, 
Geiser, Burns, & Servera, 2018 and Preszler, Burns, Litson, Geiser, & Servera, 2017), indicating that a 
longitudinal measurement structure may or may not add value to the proposed approach. 
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Additionally, in the present dataset, data were positively skewed. In many 

applications of this dataset, non-normality was accounted for by using a robust maximum 

likelihood estimator in Mplus. However, due to the LMS and bias-corrected 

bootstrapping procedure used to estimate the M4 models, robust maximum likelihood 

was not supported alongside these complex iterative and resampling procedures in Mplus. 

Fortunately, bootstrap methods account for data non-normality by resampling (e.g., Stine, 

1989), and LMS method is robust to moderate violations in data normality (Klein & 

Moosbrugger, 2000; Cheung & Lau, 2017).  

One final consideration before conducting the M4 analyses was to ensure that the 

means of the latent X and W trait factors were centered at 0 to create an interpretable 

interaction term. Such was obtained by constraining latent factor means to 0 and 

estimating all intercepts of the manifest variables. 

 

 

A Four-Step Modeling Approach 

 

The application of the M4 model required four different steps. In the first step, the 

measurement structure of each construct was empirically evaluated. Single-trait 

multimethod (STMM) models were applied to IN, HI, OD, and AI, separately. These 

analyses were primarily used to determine whether the general CT-C(M – 1) model was 

sufficient, or whether indicator-specific trait factors were necessary to appropriately 

model the multimethod measurement structure for each construct. In the second step, the 

measurement structure for the combination of all four constructs was evaluated in a 
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single analysis using a multitrait-multimethod, CT-C(M – 1) model. Furthermore, this 

step was necessary for creating the common trait factors using the latent means approach. 

This analysis served as the measurement model underlying the M4 model. Consistency, 

method-specificity, and reliability were reported from the model output in this step. In the 

third step, the M4 model without the latent interaction term (i.e., the exclusion of the XW 

term and the 3a  pathway) was evaluated. In the fourth step, the full M4 model shown in 

Figure 4 was evaluated. The model fit indices from Steps 3 and 4 were compared to 

determine the significance of including the moderating effect since the LMS approach 

does not allow estimating global fit statistics. Results were bootstrapped in the final 

model to evaluate the significance of specific paths and outcomes. At each step, there is a 

possibility that the model may not fit the data – particularly in Steps 1 and 2. If the 

measurement portion of the model does not fit the data, researchers should not continue 

with the M4 modeling approach and instead find a measurement model that fits the data 

appropriately. Each step and relevant results are discussed in more detail in the following 

sections.  

 

Step 1. Determining the STMM measurement structures. STMM models were 

first evaluated to determine an appropriate measurement structure for HI, IN, OD, and 

AI, separately. Fitting these simpler models allowed determining the structure of the data 

before proceeding with the final analysis. A general STMM model without indicator-
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specific factors was first evaluated for each construct. Figure 3.14 shows an example of 

this model for HI. Model fit resulted in poor fit for all constructs (see Table 3.1).  

 Because the STMM models without indicator-specific trait factors did not fit the 

data well, STMM models with indicator-specific trait factors were evaluated for each 

construct. Figure 3.3 shows an example of this model for HI. Model fit statistics in Table 

3.1 show that the indicator-specific STMM models showed better fit across all constructs. 

All indicator-specific models showed adequate to excellent fit. Overall, the measurement  

structure with indicator-specific trait factors fit the data better than the measurement 

structure with non-indicator-specific trait factors. Indicator-specific trait factors were thus 

used in all following models. 

 

 

 
Figure 3.2: Single-trait multimethod CT-C(M–1) model for HI 

 

 

 

 

 

                                                 
4 Mplus syntax for all figures in this chapter can be found in Appendix B. 
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Table 3.1. Model fit information for STMM models 

 χ2 df p SF  RMSEA CFI SRMR AIC BIC 
 Hyperactivity 
CT-C(M – 1) 215.01 6 .00 1.73 .22 .91 .02 8210 8307 
IS CT-C(M – 1) 2.49 3 .48 1.63 .00 1.00 .01 7846 7957 
 Inattention 
CT-C(M – 1) 126.58 6 .00 1.54 .16 .96 .02 7255 7352 
IS CT-C(M – 1) 2.406 3 .49 1.35 .00 1.00 .01 7070 7181 
 Oppositional Defiant Behaviors 
CT-C(M – 1) 158.46 6 .00 1.58 .20 .94 .02 3109 3202 
IS CT-C(M – 1) 14.87 3 .00 1.45 .08 1.00 .02 2887 2993 
 Academic Impairment 
CT-C(M – 1) 196.02 6 .00 1.83 .25 .87 .05 7676 7765 
IS CT-C(M – 1) 8.47 3 .04 0.99 .06 1.00 .01 7331 7433 

Note. df = degrees of freedom, SF = scaling factor for robust maximum likelihood 
estimator, RMSEA = root mean square error of approximation, CFI = comparative fit 
index, SRMR = standardized root mean square residual, AIC = Akaike information 
criteria, BIC = Bayesian information criteria, CT-C(M – 1) = correlated traits-correlated 
(methods – 1) model, IS = indicator-specific. 
 
 

 

 
Figure 3.3: Single-trait multimethod CT-C(M – 1) Model with indicator-specific factors 

for HI 
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Step 2. Determining the MTMM model structure. In the second step, the 

measurement structure from the STMM models was evaluated in a single multitrait-

multimethod analysis. A CT-C(M – 1) model with indicator-specific factors was fit to the 

IN, HI, OD, and AI data. This model is shown in Figure 3.4. Fit statistics showed that this 

model fit the data relatively well, 2χ (132, 798)N =  = 192.08, p = .001, RMSEA = .024, 

CFI = .996, SRMR = .013. The CT-C(M – 1) model was the baseline model implemented 

in the M4 approach. 

 

 
Figure 3.4: Indicator-specific MTMM CT-C(M – 1) model for all variables 
 

 

Step 2 results. Consistency, method-specificity, and reliability estimates. 

Estimates of consistency, method-specificity, and reliability across all constructs were 

examined (see Figure 3.5). Across constructs, both mother and father reports were quite 

reliable (range of .81 to .98). Furthermore, fathers showed high shared consistency with 

mothers (range of .46 to .67), but fathers also showed a moderate amount of unique 
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method-specificity (range of .20 to .43). These results suggest that although mother and 

father reports shared a relative amount of consistent variance across all constructs, father 

reports of HI, IN, OD, and AI contained additional method variance that was unshared 

with mother reports, as shown by the light gray lines in the figure. It was also shown that 

method-specificity for father reports was lowest among inattention and academic 

impairment and was highest among oppositional defiant behaviors. Such a result suggests 

that there was more convergent validity for inattention and academic impairment than 

oppositional defiant behaviors. 

 

 Figure 3.5: M4 model consistency, method-specificity, and reliability estimates 
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Step 2a. Creating common trait factors using the latent means approach. As 

part of the second step, it was necessary to fit a model that included common trait factors 

as defined by the latent means approach, which was presented in detail in Chapter 3. The 

indicator-specific latent trait factors were reconstructed into a common trait factor and 

indicator-specific factors, as shown in Figure 3.5. The latent means approach did not add 

additional parameters but was instead a second-order reconstruction of the indicator-

specific trait factors. Therefore, the model implementing the latent means approach 

resulted in equivalent model fit as the indicator-specific CT-C(M – 1) model. Model 

constraints in Mplus that were necessary to equate the two models included constraining 

the first-order trait variances to zero and estimating correlations among the second-order 

common trait and indicator-specific factors. 

 

 
Figure 3.6: Latent means reconstruction of the indicator-specific CT-C(M – 1) model  

 



 
 

  64 
 

Step 3. Estimating the M4 model without the latent interaction term. The CT-

C(M – 1) model with latent means served as a baseline for creating and interpreting the 

M4 model. The M4 model was evaluated in two steps. In the Step 3, the M4 model was 

evaluated without a latent interaction term (see Figure 3.6). Such a model was evaluated 

because the LMS approach cannot estimate conventional global fit statistics, and the final 

model using the LMS approach must be compared to a nested model that does estimate 

global fit indices. The model was initially evaluated without including bias-corrected 

bootstrap in order to determine model fit. Fit statistics showed that the M4 model without 

the latent interaction term fit the data well, 2χ (133, 798)N =  = 221.90, p < .001, RMSEA 

= .029, CFI = .995, SRMR = .049. The loglikelihood (LL) value was also given, LL = -

12,020.74, and is reported here to evaluate the final model fit in the next step. 

 

 

Figure 3.7: The M4 model without the latent interaction term 
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Step 4. Estimating the M4 model. In the last step, the full M4 model with the 

inclusion of the interaction term (XW) and the estimated 3a path was evaluated (see 

Figure 3.7). The interaction term was created using the LMS approach described in 

Chapter 3. Creation of the interaction term did not affect the fit of the underlying 

measurement model since the latent interaction term had no mean or variance (Muthén & 

Asparouhov, 2012; see also Maslowsky, Jager, & Hemken, 2015). The estimation of the 

3a path added one additional parameter to the M4 model. The M4 model without the 

latent interaction term was therefore nested in the full M4 model, indicating that these 

two models could be compared with an appropriate test of model fit. Because the LMS 

approach was not used to estimate typical fit indices, the M4 models were compared by 

evaluating the difference in loglikelihood ( diffLL ) values. The statistical significance of 

the moderating effect was evaluated by comparing the resulting 2 diffLL×  value (df = 1) 

to a chi-square distribution. 

 

Step 4a. Bootstrap the final results. The final M4 model from Step 4 was 

evaluated using 1,000 bias-corrected bootstrap resamples to correct for the asymmetrical 

distribution of the mediated effect (Bollen & Stine, 1990). The best-practice approach for 

handling the asymmetric distribution of the indirect effect is to implement bias-corrected 

bootstrap (MacKinnon, 2008). Bias-corrected bootstrap can be applied to determine the 

95% bias-corrected confidence interval (95% BCCI) around the parameter estimate. To 

show that estimates are different from zero, the 95% BCCI should not pass zero in either 



 
 

  66 
 
direction. Implementing bias-corrected bootstrap into the M4 model resulted in the same 

fit as the M4 model without bootstrap, as was anticipated.  

 

 
Figure 3.8: The M4 model with the latent interaction term 

 

 

Step 4 and 4a results. Moderated mediation analysis. The full M4 model 

contained 192 free parameters, which was one more parameter than the M4 model 

without the latent interaction term, thus showing that the only additional parameter 

estimated was the 3a  path. The model fit before bootstrapping showed that LL = -

12,018.79. When evaluating the difference in fit between the two M4 models, results 

showed statistical significance, 2 diffLL× = 3.91, p = .048. This statistically significant 

finding demonstrated that the model including the interaction term, XW, resulted in a 
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model that did not result in worse fit than the model without the interaction term. In a 

typical interpretation, the significant difference in model fit would yield the conclusion 

that IN moderated the indirect effect of HI to AI.  However, specific estimates from 

results were not bootstrapped in this model. Bootstrapping was applied to account for the 

non-normal distribution of the mediating effect and to determine which specific estimates 

were statistically significant. 

Results from the bootstrapped M4 model revealed a non-significant direct effect 

between HI and AI, unstandardized5 c′=.14 [95% BCCI: -.004, .27]. Further, results 

revealed significant effects for each of the following pathways: OD regressed on HI, 1a = 

.23 [95% BCCI: .14, .32]; OD regressed on IN, 2a = .13 [95% BCCI = .04, .22]; and AI 

regressed on OD, b  = .28 [95% BCCI: .05, .51]. Results revealed a non-significant effect 

for the interaction pathway, OD regressed on HI× IN, 3a  = -.04 [95% BCCI: –.11, .02], 

see Figure 3.9. 

 

 
Figure 3.9: M4 model moderated mediation results 

 

                                                 
5 Because of combining LMS and the bias-corrected bootstrap approach, all results are reported as 
unstandardized estimates. To standardize estimates, variables would have needed to be standardized before 
running analyses. 
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In accordance with the typical interpretation of moderation analysis, a non-

significant 3a  pathway, such as the result found, would yield the conclusion that IN does 

not moderate the indirect effect of HI to AI. This conclusion, according to Hayes (2015) 

is actually incorrect since 3a  “does not quantify the relationship between the moderator 

and the indirect effect” (p. 9), but rather only quantifies the relationship between the 

moderator and the a  pathway. A formal evaluation for testing the effect of the moderator 

on the indirect effect is to examine the statistical significance of the 3a b  pathway since 

this is the slope of the relationship between the moderating variable, W, and the indirect 

effect. In Mplus, a new parameter was created to evaluate the Index MM, resulting in an 

estimate of 3a b = –.01 [95% BCCI: –.04, .01]. This result was also not statistically 

significant. Such a result is a good indicator that inattention did not moderate the indirect 

effect of hyperactivity on academic impairment through oppositional defiant behaviors. 

The question arose about how to interpret the results from this application. The 

interaction effect significantly improved model fit, but the 95% bias-corrected bootstrap 

confidence interval of the interaction effect contained zero. According to bootstrapping, 

the interaction effect was “non-significant,” yet according to model fit, the interaction 

effect was “significant.” Although the exact reason for this discrepancy was unknown, it 

is possible that the model fit criteria had greater power to detect an effect while the 

bootstrap method had greater Type II error. Or, perhaps the loglikelihood test had a 

higher rate of Type I error. I chose to interpret bootstrapped results because bootstrapping 

accounted for the non-normal distribution of the indirect effect. Should other researchers 

encounter this issue, I would generally recommend interpreting the bootstrapped results 
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and risk potentially committing a Type II error until future research examines this issue in 

more detail.  

 If the indirect effect is unrelated to W, as in the present case, this is where 

researchers would stop evaluating further results. Because the present application was for 

illustrative purposes, I chose to present the results that would be presented if inattention 

had significantly moderated the indirect effect of hyperactivity on academic impairment 

through oppositional defiant behaviors. 

 The indirect effect of X on Y through M, conditional on W can be given in the 

following equation: 

 

 

1 3

.23(.28) ( .04)(.28)

.06 .01

a b a bW

W

W

ω = +

= + −

= −

 (39) 

 

Substituting relevant values of W into the equation resulted in interpretable findings about 

the conditional indirect effect of X on Y. Cheung and Lau (2017) as well as Hayes (2013) 

suggested substituting five values for W into this equation: the mean, ± 1 standard 

deviation, and ± 2 standard deviations. It was possible to calculate these values in Mplus 

by creating new parameters under the Model Constraint command. Such allowed 

estimating the 95% BCCI of each resulting value. Moderated mediation values at the five 

given levels of the moderator are presented in Table 3.3. These values are the conditional 

indirect effects. The conditional indirect is greater for children with lower levels of 
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inattention than for children with higher levels of inattention. For example, the indirect 

effect is .05 for children with inattention levels at +2 SD above the mean, yet the indirect 

effect is .09 for children with inattention levels at -2 SD below the mean. These results 

are very small and non-significant. Notably, there was very little change in the indirect 

effect across levels of the moderating variable. Further, it was also shown that the indirect 

effect never crossed zero across all levels of the moderator. This indicates a significant 

indirect effect of HI on AI through OD, regardless of the level of IN. 

 

 

Table 3.2. Moderated mediation effect of X on Y through M across five values of W 

Values W Effect SEboot 95% BCCI 
M + 2 SD 1.95 .05 .03 [.01, .11] 
M + 1 SD .98 .06 .03 [.02, .12] 
M + 0 SD 0 .07 .03 [.02, .13] 
M - 1 SD -.98 .08 .03 [.02, .15] 
M - 2 SD -1.95 .09 .04 [.02, .19] 

Note. M = mean of W; SD = standard deviation of W; W = value of the moderator; Effect 
= conditional indirect effect (i.e., moderated mediation effect); SEboot = bootstrap 
standard error; 95% BCCI = 95% bias-corrected bootstrap confidence interval. 
 

 

 When examining the specific moderating results from the M4 model, the a-

pathways must be interpreted as a set of parameters because of the interaction effect. An 

example interpretation is, for every one unit increase in HI (holding IN constant), OD 

increases by .19 (i.e., .23-.04) units. Alternatively, one could state that for every one unit 

increase in IN (holding HI constant), OD increases by .09 (i.e., .13-.04) units. 

Importantly, both of these interpretations make clear that the slope between the 
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independent and dependent variable varies as a function of the level of the moderating 

variable.  

 

Conclusions 

 

 Overall, results from the application suggest that the relationship between 

hyperactivity/impulsivity and academic impairment was mediated by oppositional defiant 

behaviors. Furthermore, the indirect relationship did not vary as a function of inattention. 

These findings partially support the trait-impulsivity etiological model, which suggests 

that symptoms of hyperactivity and inattention develop before oppositional defiant 

behaviors. Although the method used to evaluate data was not strictly longitudinal, 

results show the hypothesized relationships among variables due to the lagged nature of 

the dataset. The findings also suggest that OD is an intermediary variable between 

ADHD symptoms and academic impairment. 

 Furthermore, findings showed that all constructs contained between 20% and 50% 

method-specific variance, with oppositional defiant behaviors containing more method-

specific variance than hyperactivity, inattention, or academic impairment. Many reasons 

could explain this finding. Perhaps mothers and fathers interact differently with children; 

perhaps children behave differently around their fathers as compared to mothers; perhaps 

certain behaviors are more or less acceptable according to different parents. Overall, the 

presence of method effects showed the necessity of modeling the data using a 

multimethod measurement structure. 
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 Although the substantive results were interesting, the objective of this chapter was 

to examine the applicability of the M4 model under non-simulated conditions. The M4 

model performed well in the application. In response to the first research question, how 

does the M4 model work under non-simulated conditions? The M4 model showed proper 

convergence and no improper parameter estimates in the present approach and resulted in 

interpretable findings. One concern about the present modeling approach was the 

contradictory findings about the presence of the moderated effect. A test of model fit 

indicated that a model including the moderated path fit no worse than a model without 

the moderated path. However, results from the 95% BCCI showed that the moderated 

path was nonsignificant. Future research could explore this possibility of discrepant 

findings across model fit and BCCI estimates in more depth. Specifically, future research 

should examine whether a simple loglikelihood test is adequate for detecting the 

moderated effect in the presence of mediation analysis.  

 In response to the second research question, how should applied researchers 

interpret M4 model output? In the application above, basic interpretations were applied to 

important findings to evaluate from the M4 model. Important findings to report include 

trait consistency, method-specificity, and reliability, as well as the indirect effect across 

different levels of the moderating variable.  

In response to the third research question, what are some recommendations or 

guidelines for applied researchers who wish to utilize this model using their own data? It 

was recommended to use a four-step approach to evaluate the M4 model. The application 

began by evaluating simple, single-trait models and became more complex with each 

step. It is possible that the M4 model is not appropriate for specific types of data, and 
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such can be determined by evaluating model fit in accordance with theory at different 

steps. In Step 1, if each of the variables does not have multimethod data structure, then 

the M4 approach should not be attempted.6 In Step 2, if the combined MTMM 

measurement model does not fit the data according to model fit criteria, then the M4 

approach should not be attempted. Estimation and model fit issues should not occur in 

Steps 3 and 4 as long as the models in Steps 1 and 2 fit the data. 

Only the model in the final step was estimated using bootstrapping methods. 

Evaluating all models using bootstrapping methods can be time-consuming and was 

unnecessary for determining the best model fit. One recommendation for successfully 

applying the M4 model to applied data is to avoid using bias-corrected bootstrap until the 

final step of the analysis. The approach could become very complex very fast because 

both measurement and structural portions are included in the M4 model. It is 

recommended to follow each step from this application closely, taking care to find an 

appropriate STMM measurement structure before running the more complex CT-C(M – 

1) and M4 models. Furthermore, because of many default settings in Mplus, there were 

various model constraints necessary for proper model identification which were outlined 

in the provided Appendix B. It is therefore recommended to use the syntax provided in 

Appendix B to facilitate applying M4 models to one’s own data. Each model in this 

appendix corresponds to the figures presented throughout this application. 

One caution about evaluating the M4 model is to remain aware of computing 

time. In the present application, the M4 model with only two methods and three 

                                                 
6 It may be possible to examine the M4 model when multimethod data are not present for each variable. 
However, this has not yet been evaluated and researchers should exercise caution evaluating such models. 
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indicators assessed with bias-corrected bootstrap required 18 hours to converge. Using 

only the LMS approach without bias-corrected bootstrap, the same model took only two 

minutes to converge. While these times may vary across different computers, the 

additional time necessary to use bias-corrected bootstrap was substantial. Since bias-

corrected bootstrap does not affect model fit, it is imperative to determine whether the 

full M4 model fits better than the M4 model without the latent interaction term before 

bootstrapping the results.   



 
 

  75 
 

CHAPTER V 

MONTE CARLO SIMULATION STUDY OF THE M4 MODEL 

 

 

New, complex models, such as the M4 model, must be scrutinized for their 

performance under various conditions to determine under which conditions the model 

performs well versus poorly. Such conditions may include sample size, population 

parameters, and missingness, to name a few. For example, an important question is, 

which sample size is required for the model to return appropriate parameter estimates and 

standard errors. Performance may be evaluated based on whether sample estimates are 

biased, whether the model converges, whether the model gives improper parameter 

estimates (e.g., a correlation exceeding 1.0), or whether specific effects have adequate 

power.  

A common research design in quantitative psychology to evaluate the 

performance of complex models is called a Monte Carlo simulation design. Monte Carlo 

simulations, by design, are random experiments in which researchers set up population 

models, draw random samples from the population, and examine the performance of 

statistical modeling approaches (Muthén & Muthén, 2002). Paxton, Curran, Bollen, 

Kirby, and Chen (2001) proposed guidelines for conducting Monte Carlo simulation 

designs in psychology using a nine step approach: 1) develop a research question using 

theory, 2) create a theoretically driven model, 3) design experimental conditions with 

which to test the model, 4) determine the values of population parameters, 5) choose a 

software package with which to carry out the simulation design, 6) execute the 
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simulation, 7) store files in a safe, protected environment, 8) verify the study results, 9) 

summarize and report results. To plan the Monte Carlo simulation, I followed these nine 

steps.  

The objective of the present simulation study was to examine the M4 model in a 

relatively limited number of circumstances likely to be found in real world situations. 

Namely, four conditions were varied, including sample size, different levels of method-

specificity, correlations among method factors, and fitting a misspecified model to the 

data. To ensure the present simulation study was relevant to current, applied research, 

parameters relevant to the structural portion of the M4 model as well as sample size were 

obtained using a meta-analytic literature review.  

This chapter is therefore organized into two sections. In the first part of this 

chapter, a meta-analytic literature review is discussed and results from the review are 

presented. In the second half of the chapter, findings from the Monte Carlo simulation 

study are presented and discussed.  

 

 

Research Questions 

 

1. Under which and how many simulated conditions does the M4 model: 

a. Have adequate power to detect the mediated and moderated effects? 

b. Produce biased estimates or standard errors of the mediated or moderated 

effects? 
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2. Under which and how many simulated conditions does a misspecified model (i.e., 

the M4 model without method factors, equivalent to a latent variable moderated 

mediation model [LVMM]; Cheung & Lau, 2017): 

a. Have adequate power to detect the mediated and moderated effects? 

b. Produce biased estimates or standard errors of the mediated or moderated 

effects? 

3. Which conditions produce higher instances of: 

a. Non-converged solutions? 

b. Low parameter coverage for the moderated mediation population 

parameters? 

 

 

Meta-Analytic Review to Determine Moderated Mediation Population Parameters 

 

A literature review of studies which use moderated mediation analysis within the 

fields of clinical psychology, developmental psychology, and prevention science was 

conducted to determine the most appropriate population parameter values for the 

mediated and moderated pathways. Multimethod designs within moderated mediation 

analysis were also examined. Peer reviewed articles were originally included in the 

literature review if they 1) reported findings from a moderated mediation analysis, 2) 
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were published after 2013,7 and 3) reported results directly related to the advancement of 

knowledge in one of the three given topic areas.  

One broad search was conducted and articles were included and excluded 

accordingly. A search of the PsychINFO database using the search term ("moderated 

mediation" OR "conditional process analysis") AND ("development" OR "prevention 

science" OR "clinical psychology") resulted in 213 articles. Articles were published 

between 2013 and January of 2018. A brief review of titles and abstracts found that 140 

articles met the basic inclusion criteria. 

This literature review was not intended to be a comprehensive review of all 

literature pertaining to moderated mediation in clinical psychology, developmental 

psychology, or prevention science fields and various exclusion criteria were established 

to remove articles. The first five criteria were established before coding articles. The last 

five criteria were established due to necessity during the coding of articles. Articles were 

excluded if they:  

1. were not written in English (n = 9),  

2. contained only categorical moderating variables (n = 47),  

3. contained moderating variables that did not interact with the a-pathway (n = 

26),  

4. were not related to one of the three areas of research (n = 7) 

5. were duplicates and/or addendums (n = 1) 

                                                 
7 The year 2013 was chosen because this is the year the first-edition of the book, Introduction to Mediation, 
Moderation, and Conditional Process Analysis by Andrew Hayes was published.  
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6. did not actually evaluate moderated mediation; e.g., the authors called the 

analysis moderated mediation but only conducted moderation (n = 7) 

7. did not specify with which path the moderator interacted (n = 1) 

8. contained overly complex models that were not comparable to other articles (n 

= 1) 

9. were theoretical methods articles and did not include an application of 

moderated mediation (n = 1) 

10. failed to report estimates or necessary information to calculate standardized 

estimates for the pathways of interest (n = 9) 

The total number of articles included in the literature review was N = 30 

(references and corresponding ID numbers for these articles can be found in Appendix 

C). On average, each article contained three pathways from X to Y through M moderated 

by W that were included in the coding process. A total of 85 pathways of moderated 

mediation were included in the present review. Each different pathway within each article 

was quantified according to the coding scheme found in Table 4.1. Four areas of 

information were coded: general article information (e.g., the relevant area of research), 

study design (e.g., whether the study was longitudinal), data characteristics (e.g., the 

sample size), and standardized study results (e.g., the standardized b pathway). These 

results were used to inform the population parameters in the simulation design. 
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Table 4.1: Coding Scheme for Literature Review 

 

Variable of Interest Value Value names or representation 
General Article Information  
 Year of publication [input] NUMERICAL VALUE 
 Area of research 1 

2 
3 

Developmental psychology 
Prevention science 
Clinical psychology 

Study Design  
 X variable name [input] TEXT INPUT 
 M variable name [input] TEXT INPUT 
 Y variable name [input] TEXT INPUT 
 W variable name [input] TEXT INPUT 
 Pathway(s) moderator influences 1 

2 
3 

a 
b  
c'  

 Moderated mediation approach [input] TEXT INPUT 
 Longitudinal design 0 

1 
2 

No 
Pseudo 
Yes 

 Method(s) of data collection 1 
2 
3 
4 
5 

Self-report 
Other report 
Clinical interview 
Physical assessment  
Other 

 Multimethod measurement 
 on X, M, W, or Y 

0 
1 

No 
Yes 

Data Characteristics  
 Sample size [input] NUMERICAL VALUE 
 Level of missingness [input] NUMERICAL VALUE 
 How were MM handled? 0 

1 
2 
3 
4 
5 

Not applicable 
Averaged 
Methods switch across X, M, W, and Y  
One model per method  
Other 
Unclear 

 Were latent variables used? 0 
1 

No 
Yes 

Standardized Results  
 1a  , 2a , 3a , b , 'c  [input] NUMERICAL VALUE 

 Significance 1a  , 2a , 3a , b , 'c  0 
1 

No 
Yes 
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Results from the Literature Review  

 

Results showed that articles were represented across all years included in the 

literature review. Three articles were from 2013, one from 2014, 10 from 2015, eight 

from 2016, 7 from 2017, and one published early in 2018. Articles were representative 

across developmental (n = 11), prevention science (n = 17), and clinical (n = 12) 

applications. The sum of these values is greater than the number of articles because some 

articles were deemed representative of more than one field.  

 

X, M, W, and Y variables. Appendix D shows the 85 different X, M, Y, and W 

variable combinations found in included articles. Each variable was post-hoc coded as 

negative (e.g., depression, victimization, belittling), positive (e.g., social support, 

satisfaction, psychological well-being), or neutral (e.g., self-awareness, gender non-

conformity, intervention condition). Results showed that X, M and Y contained more 

negative constructs (n = 51, 51, 43, respectively) than neutral constructs (n = 27, 26, 22, 

respectively), and the fewest positive constructs (n = 7, 8, 20, respectively). Conversely, 

W contained the most positive constructs (n = 42), fewer neutral constructs (n = 24), and 

the least negative constructs (n = 19). No specific constructs or variable combinations 

seemed to be used more often than others, indicating that moderated mediation analysis 

has been used to examine a large variety of relationships among variables. 

 

 Moderated mediation approach. To examine moderated mediation, 17 out of 30 

articles used the SPSS macro, PROCESS (Hayes, 2013; Hayes, 2017) and followed steps 



 
 

  82 
 
outlined in Hayes (2013) book.8 Other approaches to examine moderated mediation 

included using regression methods (n = 4), a path model (n = 3), or Bayesian analysis (n 

= 2). Of the remaining n = 4 articles, one used an autoregressive model, another used a 

multilevel mediation model, another used a latent variable moderated mediation model, 

and one did not clearly specify how moderated mediation was examined. Most articles 

also used bootstrapping methods to handle the asymmetrical distribution of the indirect 

effect (n = 23). Three articles did not specify how they handled the asymmetrical 

distribution of the indirect effect. The remaining four articles used different approaches to 

handle the asymmetrical distribution of the indirect effect, with one using the Satorra-

Bentler correction, another using robust standard errors, one using an extended Johnson-

Neyman approach which is appropriate for moderation but unclear in its application to 

mediation analysis, and another not clearly defining how they examined the moderated-

mediated effect. In sum, most articles used regression or path-based approaches in 

combination with bootstrapping methods to evaluate moderated mediation models. 

Bootstrapping is best-practice for mediation analysis, so finding that researchers used 

bootstrapping methods to evaluate moderated mediation results was a promising finding. 

 

Longitudinal design. Most studies (n = 20) did not use longitudinal methods to 

examine moderated mediation analysis. Only n = 3 studies used longitudinal methods to 

evaluate moderated mediation models. An additional n = 7 studies used cross-sectional 

methods with longitudinal data, meaning they measured variables across time, but did not 

                                                 
8 A new version of this book is in print (Hayes, 2017). 
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account for time in the moderated mediation analysis. The M4 model is currently, by 

design, a cross-sectional model and is therefore already aligned with many researchers’ 

approaches. While longitudinal approaches to moderated mediation models allow making 

conclusions about time precedence, they are not strictly necessary to examine 

relationships among variables as long as results are interpreted in accordance with the 

research design.  

 

 Methods of data collection and multimethod measurement. Self-report was 

used in every study included in the literature review. Many studies used self-report as the 

only method of data collection (n = 20) while some studies used self-report plus at least 

one other method (n = 10). Of all other methods aside from self-report, other report was 

the most common method of data collection (n = 7), followed by “other” (e.g., 

observations that were recorded and coded) (n = 5), and physical assessment (n = 2). Of 

the 10 studies that used multiple methods to gather data, only n = 3 studies used 

multimethod assessment to gather data on a single construct. 

 

Sample size. Overall, sample size was found to be quite variable. The largest 

sample consisted of N = 5,374 individuals while the smallest sample consisted of only N 

= 91 individuals. The average sample size across studies was 854 with a standard 

deviation of 1,166. Due to extreme outliers with very large sample sizes, it was also 

informative to examine the median sample size. The median sample size was 379. Values 

close to the mean and median were included in the Monte Carlo simulation as population 

parameters. Additionally, a smaller sample size of 200 was chosen as well. 
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Missingness. Missingness was not often reported in studies (n = 20). When 

missingness was reported, it ranged from 1% to 34% of the sample. Missingness, when 

reported, was used in the present study to estimate more accurate sample sizes. The ways 

in which individual studies dealt with missing data was not coded. 

 

How were multiple methods handled? Most studies that included multiple 

methods of gathering data used different methods to measure different constructs (n = 7). 

Only n = 3 articles used multimethod assessments within constructs. In one article 

(Baardstu, Karevold, & von Soest, 2017), it was unclear how multiple methods were 

combined or utilized. In a second article (Bunford et al., 2015), parent- and self-report 

methods were averaged for one variable used in analysis. In a third article (Brock et al., 

2015), a moderated mediation path analysis was examined separately for mother report 

and clinician report. 

 

Were latent variables used? Few studies (n = 4) used latent variables to examine 

moderated mediation. Of these four studies, only one used latent variables for all 

constructs. This specific study (Racine & Martin, 2017) followed the latent variable 

moderated mediation approach introduced by Cheung and Lau (2017). Two studies used 

latent variables for the dependent Y factor, and one study used latent variables for the X, 

M, and W factors. 

 

Standardized results. Standardized results were coded for the different pathways 

in the moderated mediation model. In the review, only n = 13 articles (or n = 40 pathways 



 
 

  85 
 
of moderated mediation) reported standardized effects. For the 17 articles that did not 

report standardized effects, a standardized effect (i.e., a standardized regression 

coefficient or partial correlation) was calculated using information obtained from articles. 

 

Standardizing unstandardized pathways. A total of n = 17 articles (or n = 45 

pathways of moderated mediation) in the literature review did not report standardized 

effects in their results. Correlation matrices and standard deviations of the raw variables 

were originally intended to be used as the primary source for calculating standardized 

effects. However, this approach was not possible due to the lack of reporting correlations 

between the interaction term XW and other variables (e.g., M). Instead, unstandardized 

coefficients, standard errors, p-values, and reported t-test statistic values were used in 

various ways to calculate standardized effects. 

If a t-test statistic was reported, the approach for calculating the standardized 

regression coefficient was simple. The t-test for a regression coefficient is: 

 2
2 

1
nt r

r
−

=
−

 (40) 

where t = the t-test value, n = the sample size for the analysis, and r = the standardized 

regression coefficient. Equation 40 only uses three estimates: t, r, and n. Solving for r, 

Equation 35 was transformed to: 
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Equation 36 was used to calculate r whenever a t-value was reported. If sample size for 

the specific analysis was not reported, sample size was assumed equal to the N reported 

in the methods section, multiplied by 1 – missingness to control for missing values. 

Some articles did not report t-values in their results. When t was not reported, the 

equation   /t B SE=  was used, where B was the unstandardized effect and SE was the 

standard error of the unstandardized effect. Equation 41 was then used to calculate r. If 

SE was not reported in conjunction with the unstandardized effect, the exact p-value was 

used to estimate the value of t using an inverse function calculated on Microsoft Excel 

(this was done for three estimates in one article, and two estimates in a second article). 

Estimating a t-value from a p-value was preferable to not estimating a t-value.  

When the standardized effect was not reported, the exact p-value was not 

reported, the t-value was not reported, and/or a standard error was not reported alongside 

an unstandardized effect, effects could not be standardized, and the article was removed 

from the review. A total of 9 articles fell under this criterion. These nine articles were not 

part of the 30 articles included in the literature review. It is important to mention that 

these articles did not report other information, such as confidence intervals, that could 

have been used to “estimate” an effect size. 

All 85 effect sizes within each article are presented in Appendix D, alongside 

article ID, sample size, and level of missingness. This table of effects was used to 

determine appropriate population parameters for the 1 2 3, , , , and a a a b c′  pathways for the 

simulation study. 
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Determining population parameters for 1 2 3 ′, , , , and a a a b c . The goal of the 

literature review was to identify appropriate population values for the 1 2 3, , , , and a a a b c′

parameters. Due to the hierarchical nature of the meta-analytic data where effects were 

nested within articles, multilevel models were used to determine appropriate effect size 

estimates for each parameter. A multilevel model can appropriately account for variance 

due to nesting and was ideal for the current study because some articles contained many 

effect sizes per parameter while other articles contained only one effect size per 

parameter. A simple random intercept model was evaluated for each parameter, 

separately. Analyses were conducted in R using the lme4 package (Bates, Mächler, 

Bolker, & Walker, 2015).  

To calculate appropriate values for the 1 2 3, , , , and a a a b c′parameters to be used 

in the Monte Carlo simulation study, each effect size estimate was first recoded as an 

absolute value in order to avoid obtaining zero effects due to positive and negative path 

coefficients. Only statistically significant effects were examined, as recommended by 

Paxton and colleagues (2001). Each multilevel model was fit using maximum likelihood 

estimation.  

Table 4.2 shows results from the multilevel analyses. Presented effects include the 

mean effect size value which was equal to the intercept estimate in the multilevel model, 

the standard error of the effect size value, the number of significant effects for the 

parameter, the number of articles containing significant effects for the parameter, and the 

intraclass correlation. Notably, the average effect size estimate for all paths across articles 

was rather small, ranging from .15 to .28. When compared to the standard effect size 
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estimates commonly used in complex mediation Monte Carlo simulation studies (e.g., 

Thoemmes, MacKinnon, & Reiser, 2010), the effects from the review lie between small 

(.14) and medium (.36) effect sizes. These mean values were used as population values in 

the Monte Carlo simulation study. 

 

 

Table 4.2: Results from the Multilevel Models Estimating Effect Sizes 
 

Parameter Mes SEes neffects narticles ICC 

1a  .275 .030 51 24 .824 

2a  .255 .043 44 16 .869 

3a  .147 .014 37 25 .963 

b  .235 .028 61 25 .899 
c′  .196 .027 34 15 .961 

Note. Mes = the mean effect size estimate; SEes = the standard error of the effect size 
estimate, neffects = number of statistically significant effects per parameter, narticles = 
number of articles containing at least one statistically significant effect, ICC = intraclass 
correlation coefficient 

 

 

 

Monte Carlo Simulation Study 

 

Chapter III presented two M4 models, one with and one without indicator-specific 

trait factors. When simulating data, the use of indicator-specific trait factors added noise 

that unnecessarily complicated the calculation of simulation model parameters. In order 

to simplify the simulation design void of unnecessary noise, indicator-specific trait 
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factors were not included in the simulation design. The model used to generate 

population data was the M4 model with (non-indicator-specific) general trait factors, as 

was shown in Figure 2.4. The model is again shown in Figure 4.1 with the relevant 

population parameter values for the simulation design, which are discussed below. 

 

 
Figure 4.1: M4 model with population parameter values for the Monte Carlo simulation 

 

 

Monte Carlo population parameter values and experimental conditions. A 

total of 36 cells were examined in the Monte Carlo simulation study. Sample size, 

method-specificity, and strength of the correlation among method factors were all varied. 

Each condition was evaluated across two sample models: a correctly specified M4 model 

and an incorrectly specified M4 model. The simulation design was fully crossed. 

Parameters that were not varied had fixed effects across all conditions. The 1a , 2a

, 3a , b , and c′  pathways were assigned population parameter values of .28, .26, .15, .24, 

and .20 from the literature review earlier in this chapter. Population values for variances, 
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relevant covariances, and factor loadings are shown in Figure 4.1. All indicators had a set 

reliability of .80 indicated by setting all error variances to .20 and trait factor loadings for 

the reference method to .89. The correlation between X and W was set to .50. All latent 

trait and method factors were normally distributed with a mean of 0.0 and variance of 1.0, 

not shown in the figure. In order to set all trait factor variances equal to 1.0, the residual 

variances for the dependent latent factors, M and Y, were determined using covariance 

algebra. Appendix E shows the covariance algebra used to solve for the M and Y residual 

variances.  

The sample size in the Monte Carlo simulation had three possible values: 200, 

400, or 850. The value 850 was chosen because it was close to the mean sample size 

found in the literature review discussed earlier in this chapter. The value 400 was chosen 

because it was close to the median sample size found in the literature review. The value 

200 was chosen to examine a smaller sample size that may be more realistic for certain 

applications. 

Method-specificity (i.e., the amount of variance in the observed score due to the 

method factor) had three possible values: low method-specificity ( ) .16imtMspe Y = , 

moderate method-specificity ( ) .40imtMspe Y = , and high method-specificity 

( ) .64imtMspe Y = . These values were chosen because they represented conditions where 

the relative percentage of true score variance due to method effects was 20%, 50%, and 

80%, respectively. To vary the proportion of method-specificity, trait factor loadings, 

imtλ , and method factor loadings, imtγ , were varied. Factor loadings specific to the 

reference method 1i tλ  were not varied which resulted in consistency equaling reliability 
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for the reference method; only non-reference method factor loadings were varied in the 

simulation design. Values for the factor loadings as they corresponded to the proportion 

of method-specificity conditions are given in Table 4.3. The algebra and covariance 

algebra used to determine these values can be found in Appendix F. 

 
 
Table 4.3: Factor Loading Estimates for the Three Method-Specificity Conditions 

Simulation Condition Factor Loadings 
( )imtMspe Y  ( )imtMspe τ  ( )imtCon Y  ( )imtCon τ  

imtλ  imtγ  1i tλ  
.16 .20 .64 .80 .80 .40 .89 
.40 .50 .40 .50 .63 .63 .89 
.64 .80 .16 .20 .40 .80 .89 

 
 

 Strength of the correlation among method factors varied across two conditions: 

low correlation (.2) or moderate correlation (.5). These values were chosen because they 

were similar to the range of correlation values found in the application of the M4 model. 

The value .20 represents weak to moderate correlations among method factors, indicating 

that method factors shared some (but not too much) variance across traits. The value .50 

represented a relatively large correlation among method factors, indicating that method 

factors shared a substantial amount of variance across traits. 

 Two sample models were fit to each of the 18 (3 sample sizes ×  3 levels of 

method-specificity ×  2 correlation among method factor) simulation conditions. The M4 

model was first fit to each of the simulation conditions. Next, a misspecified M4 model 

that purposefully excluded method factors (i.e., a latent variable moderated mediation 

[LVMM] model) was fit to each of the simulation conditions. The rationale for 
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examining the model without method factors was to determine what bias emerged when 

method effects were present but method factors were excluded from the model. 

Parameters that were not evaluated in the literature review nor specified above 

(e.g., the correlation allowed between the trait and method factors not pertaining to the 

trait, intercept values), were given values based on the application from Chapter IV. 

Population values for all fixed parameters can be found in the simulation Mplus syntax in 

Appendix G. 

Although bootstrapping methods were originally intended to be included in the 

study, they were ultimately removed from the simulation study. The bias-corrected 

bootstrap method is computationally intensive, especially combined with other 

approaches that require resampling or iterative processes such as LMS.9 Because the 

present approach required using LMS, it was necessary to reduce the required 

computational time. The rationale behind removing bootstrapping from the study was that 

if LMS could handle non-normal distributions due to the creation of the interaction term, 

it may be suited to handle the non-normal distributions of the indirect effect. Such was 

examined throughout the course of the simulation design.  

The simulation study was conducted using Mplus, primarily versions 8 and 8.1 

(Muthén & Muthén, 1998-2017). The University of Utah Center for High Performance 

Computing (2016) was used as needed to run the simulation analysis. MplusAutomation 

                                                 
9 A test model using only 10 bootstrapped samples with only 100 Monte Carlo replications took nearly 25 
hours to run on the most high-powered computer available to me. Multiplying this by 500 (100 times the 
number of bootstrap samples and 5 times the number of Monte Carlo replications) would have resulted in 
each cell of the simulation taking more than one year to run.  
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(Hallquist & Wiley, 2015), a package in R, was used to read and create a dataset from the 

results of the simulation study. Data were stored in an online, protected cloud account 

(i.e., Box). All files were named following a previously created naming schema to 

maintain organization of the files, and all files from the simulation were saved and will 

continue to be saved for at least one year following the completion of the project.  

Once the final simulation was ready, file size and output were visually examined 

to check that each condition correctly ran, and empirical results were evaluated alongside 

theory. Five-hundred replications (Paxton et al., 2001) were specified within each cell of 

the simulation. Each cell of the simulation took between four and twelve hours to run. 

Results were examined across seven moderation and mediation parameters: the 1a

, 2a , 3a , b , and c′  paths, the Index MM, and the indirect effect. For each of these 

parameters, results were examined for 1) convergence issues, 2) the statistical power to 

detect significant effects, 3) relative bias of both the parameter estimate and the standard 

error estimate, and 4) conditions which resulted in low parameter coverage. Convergence 

issues were examined as the proportion of solutions per condition that did not converge. 

Statistical power was evaluated as the proportion of times that a non-zero effect was 

statistically significant. Parameters that did not meet or surpass power of .80 were 

considered underpowered while results that surpassed power of .80 were deemed 

satisfactory. Relative bias was calculated as the difference between the effect estimate 

and the true population parameter, divided by the true population parameter value. 

Unbiased parameter estimates exhibit relative bias values less than .10 while unbiased 

standard error estimates exhibit relative bias values less than .05. Parameter coverage 
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rates between .91 and .98 were considered satisfactory. These criterion values are the 

same as those proposed by Muthén and Muthén (2002). 

 

 

Simulation Results 

 

Convergence. When the M4 model was correctly specified, models converged 

almost perfectly across conditions. Only one replication in the condition where sample 

size equaled 400, method variance equaled .20, and method correlation equaled .20 did 

not converge; 499 replications in this condition did converge. Even when models were 

misspecified (e.g., when they did not include a method factor), models converged, on 

average, 98.6% of the time. Convergence was not an issue for the M4 model. 

 

Parameter bias. Relative parameter bias of each parameter of interest was 

calculated by subtracting the population estimate from the observed estimate and dividing 

by the population estimate. The recommended maximum value for parameter bias was 

.10 (Muthén & Muthén, 2002). Results for parameter bias were quite clear; using the 

LVMM model when the M4 model was the correct population model resulted in biased 

parameter estimates (see Table 4.4). The most egregious condition that resulted in 

unsatisfactory levels of parameter bias was using the LVMM model when method-

specificity was equal to .5 (i.e., when half of the true score variance is due to true trait 

variance while the other half is due to true method variance). Average parameter bias for 
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1a  (bias = .32), 3a  (bias = -.27), c′  (bias = .45), Index MM (bias = -.22), and the indirect 

effect (bias = .44) was obvious among all cells containing this condition. Parameter bias 

was less pronounced when method-specificity = .2 (bias range: .05 to .26) or when 

method-specificity = .8 (bias range: .04 to .19). For correctly specified conditions (the 

M4 conditions), results across all parameters were unbiased (bias range: -.03 to .04). 

Most interesting, the 3a  parameter and Index MM contained almost no parameter bias. 

The indirect effect was slightly positively biased (range: .03 to .04) but not biased enough 

to be of concern. 

 

Standard error bias. Relative standard error bias of each parameter of interest 

was calculated by subtracting the standard error population estimate from the observed 

estimate and dividing by the population estimate. The recommended maximum value for 

standard error was .05 (Muthén & Muthén, 2002). Standard error estimates were 

similarly biased like the parameter estimates. Like parameter bias, standard error bias was 

worse for the LVMM condition compared to the M4 condition (see Table 4.5). Unlike 

parameter bias, sample sizes of 400 in the M4 condition resulted in standard error bias for 

the c′  pathway and, in one instance, bias for the b pathway. Neither the indirect effect 

nor the Index MM contained biased standard errors when the M4 model was the sample 

model. Such a result may indicate that the LMS approach need not be combined with 

bias-corrected bootstrapping methods in order to obtain adequate standard error estimates 

in latent variable moderated mediation analysis. However, given the relatively few 
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conditions examined in the present simulation, this result should be interpreted with 

caution. 

 
Table 4.4: Parameter Bias across Conditions 

Simulation Conditions Relative Parameter Bias  
Sample 
model 

N ( )imtMspe Y  Method 
Corr 1a  2a  3a  b  c′  

Index 
MM 

IE 

M4 200 0.16 0.2 0.02 -0.01 0.00 0.01 -0.03 0.00 0.04 
M4 200 0.40 0.2 0.02 -0.01 0.00 0.01 -0.03 -0.01 0.04 
M4 200 0.64 0.2 0.02 -0.01 0.00 0.01 -0.03 -0.01 0.04 
M4 200 0.16 0.5 0.02 -0.01 0.00 0.01 -0.03 0.00 0.04 
M4 200 0.40 0.5 0.02 -0.01 0.00 0.01 -0.03 -0.01 0.04 
M4 200 0.64 0.5 0.02 -0.01 0.00 0.01 -0.03 -0.01 0.04 
M4 400 0.16 0.2 0.01 0.00 0.00 0.02 -0.02 0.00 0.04 
M4 400 0.40 0.2 0.01 0.00 0.00 0.02 -0.02 0.00 0.03 
M4 400 0.64 0.2 0.01 -0.01 0.00 0.01 0.00 -0.01 0.03 
M4 400 0.16 0.5 0.01 0.00 0.00 0.02 -0.02 0.00 0.04 
M4 400 0.40 0.5 0.01 0.00 0.00 0.02 -0.02 0.00 0.03 
M4 400 0.64 0.5 0.01 0.00 0.00 0.02 -0.02 0.00 0.03 
M4 850 0.16 0.2 0.01 -0.01 0.00 0.01 0.00 -0.01 0.03 
M4 850 0.40 0.2 0.01 -0.01 0.00 0.01 0.00 -0.01 0.03 
M4 850 0.64 0.2 0.01 -0.01 0.00 0.01 0.00 -0.01 0.03 
M4 850 0.16 0.5 0.01 -0.01 0.00 0.01 0.00 -0.01 0.03 
M4 850 0.40 0.5 0.01 -0.01 0.00 0.01 0.00 -0.01 0.03 
M4 850 0.64 0.5 0.01 -0.01 0.00 0.01 0.00 -0.01 0.03 

LVMM 200 0.16 0.2 0.17 0.02 -0.09 0.03 0.19 -0.07 0.22 
LVMM 200 0.40 0.2 0.24 0.02 -0.19 0.03 0.30 -0.18 0.28 
LVMM 200 0.64 0.2 0.12 0.01 -0.04 0.03 0.09 -0.02 0.17 
LVMM 200 0.16 0.5 0.21 0.04 -0.11 0.07 0.24 -0.05 0.30 
LVMM 200 0.40 0.5 0.39 0.09 -0.32 0.13 0.53 -0.23 0.58 
LVMM 200 0.64 0.5 0.15 0.01 -0.06 0.06 0.12 -0.02 0.22 
LVMM 400 0.16 0.2 0.17 0.03 -0.08 0.03 0.19 -0.06 0.22 
LVMM 400 0.40 0.2 0.24 0.02 -0.20 0.02 0.32 -0.19 0.28 
LVMM 400 0.64 0.2 0.12 0.01 -0.03 0.03 0.12 -0.01 0.17 
LVMM 400 0.16 0.5 0.20 0.05 -0.10 0.07 0.24 -0.05 0.30 
LVMM 400 0.40 0.5 0.40 0.10 -0.33 0.13 0.58 -0.25 0.60 
LVMM 400 0.64 0.5 0.13 0.03 -0.04 0.06 0.11 0.00 0.21 
LVMM 850 0.16 0.2 0.18 0.01 -0.09 0.02 0.21 -0.09 0.21 
LVMM 850 0.40 0.2 0.25 0.01 -0.21 0.01 0.34 -0.21 0.28 
LVMM 850 0.64 0.2 0.12 0.01 -0.03 0.03 0.12 -0.01 0.17 
LVMM 850 0.16 0.5 0.21 0.04 -0.10 0.06 0.26 -0.06 0.30 
LVMM 850 0.40 0.5 0.42 0.09 -0.35 0.12 0.63 -0.28 0.61 
LVMM 850 0.64 0.5 0.14 0.02 -0.04 0.05 0.13 -0.01 0.20 

Note. Conditions with relative parameter bias are presented in boldface. 
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Table 4.5: Standard Error Bias across Conditions 

Simulation Conditions Standard Error Bias 
Sample 
model 

N ( )imtMspe Y  Method 
Corr 1a  2a  3a  b  c′  

Index 
MM 

IE 

M4 200 0.16 0.2 -0.04 -0.02 0.00 0.00 0.00 0.03 0.00 
M4 200 0.40 0.2 -0.04 -0.02 -0.01 0.00 0.00 0.02 -0.01 
M4 200 0.64 0.2 -0.05 -0.02 -0.01 0.00 0.00 0.02 -0.01 
M4 200 0.16 0.5 -0.04 -0.02 -0.01 0.00 0.00 0.02 -0.01 
M4 200 0.40 0.5 -0.04 -0.02 -0.01 0.00 0.00 0.02 -0.01 
M4 200 0.64 0.5 -0.05 -0.01 -0.01 0.00 0.00 0.02 -0.01 
M4 400 0.16 0.2 -0.01 -0.02 0.02 -0.04 -0.06 0.04 -0.04 
M4 400 0.40 0.2 -0.01 -0.02 0.02 -0.05 -0.07 0.03 -0.04 
M4 400 0.64 0.2 -0.02 0.02 0.00 0.04 -0.02 0.00 -0.01 
M4 400 0.16 0.5 -0.01 -0.02 0.02 -0.04 -0.07 0.03 -0.04 
M4 400 0.40 0.5 -0.01 -0.02 0.01 -0.05 -0.07 0.02 -0.04 
M4 400 0.64 0.5 -0.02 -0.02 0.01 -0.05 -0.07 0.02 -0.04 
M4 850 0.16 0.2 -0.02 0.01 -0.01 0.04 -0.02 0.00 -0.01 
M4 850 0.40 0.2 -0.02 0.02 0.00 0.04 -0.02 0.00 -0.01 
M4 850 0.64 0.2 -0.02 0.02 0.00 0.04 -0.02 0.00 -0.01 
M4 850 0.16 0.5 -0.02 0.01 -0.01 0.04 -0.02 -0.01 -0.01 
M4 850 0.40 0.5 -0.02 0.02 -0.01 0.04 -0.02 -0.01 -0.01 
M4 850 0.64 0.5 -0.02 0.02 0.00 0.04 -0.02 0.00 -0.01 

LVMM 200 0.16 0.2 -0.07 -0.07 -0.01 -0.03 0.00 0.01 -0.04 
LVMM 200 0.40 0.2 -0.09 -0.02 -0.04 -0.03 -0.02 -0.03 -0.03 
LVMM 200 0.64 0.2 -0.15 -0.03 -0.03 -0.02 -0.03 0.00 -0.06 
LVMM 200 0.16 0.5 -0.07 -0.07 -0.03 -0.04 -0.01 0.01 -0.04 
LVMM 200 0.40 0.5 -0.14 -0.08 -0.07 -0.08 -0.12 -0.08 -0.07 
LVMM 200 0.64 0.5 -0.09 -0.05 -0.03 -0.06 -0.03 -0.01 -0.03 
LVMM 400 0.16 0.2 -0.01 -0.01 0.03 -0.06 -0.07 0.01 -0.05 
LVMM 400 0.40 0.2 -0.03 -0.14 -0.05 -0.07 -0.11 -0.07 -0.06 
LVMM 400 0.64 0.2 -0.02 0.01 0.00 0.04 -0.03 -0.02 -0.01 
LVMM 400 0.16 0.5 -0.02 -0.01 0.03 -0.06 -0.08 0.01 -0.05 
LVMM 400 0.40 0.5 -0.09 -0.06 0.00 -0.10 -0.19 -0.05 -0.08 
LVMM 400 0.64 0.5 -0.04 -0.04 0.01 -0.06 -0.07 0.01 -0.05 
LVMM 850 0.16 0.2 0.02 -0.25 -0.16 0.03 -0.03 -0.14 0.02 
LVMM 850 0.40 0.2 0.01 -0.01 -0.06 0.01 -0.08 -0.07 0.03 
LVMM 850 0.64 0.2 -0.02 0.01 0.00 0.04 -0.03 -0.02 -0.01 
LVMM 850 0.16 0.5 0.01 0.01 -0.02 0.04 -0.03 -0.02 0.03 
LVMM 850 0.40 0.5 -0.01 -0.07 -0.07 -0.01 -0.12 -0.06 0.04 
LVMM 850 0.64 0.5 -0.03 0.00 -0.02 -0.24 -0.12 -0.06 -0.18 

Note. Conditions with relative standard error bias are presented in boldface. 
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Power. Results showing power estimates for each condition are presented in 

Table 4.6. All conditions with a sample size of 200 were underpowered in detecting 

Index MM, the indirect effect, significance of the 3a  path, and significance of the c′

paths. These four parameters had the smallest effect sizes in the study, likely influencing 

their lack of power in the small sample size condition. The M4 model had sufficient 

power to detect any of the above effects when sample size was 400 or greater. The 

LVMM model still showed lower than adequate power to detect the 3a  and Index MM 

pathways when sample size was 400 and method-specificity was .40. 

 

Coverage. Parameter coverage was defined as the proportion of replications 

where the 95% confidence interval included the true population parameter value. 95% 

parameter coverage was very good for the M4 model. Only one condition resulted in 

lower than satisfactory parameter coverage for a single parameter (see Table 4.7). A 

sample size of N = 200 resulted in lower than satisfactory parameter coverage (.90 to .91) 

for Index MM. No other conditions in the M4 model had unsatisfactory parameter 

coverage. However, parameter coverage was not good for the LVMM model, with at 

least one parameter falling outside of the ideal coverage range across all conditions. 

Parameter coverage was worse in the LVMM sample models when method-specificity 

was equal to .40. Coverage was the worst in the LVMM models when method-specificity 

was equal to .40 and when the correlation among method factors was equal to .50. 

Results indicate that the proportion of replications containing the true parameter value 

was lower under these specific conditions.   
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Table 4.6: Statistical Power across Conditions 
 

 

 

 

Simulation Conditions Statistical Power 
Sample model N ( )imtMspe Y  Method Corr 

1a  2a  3a  
b  c′  Index MM IE 

M4 200 0.16 0.2 0.90 0.86 0.63 0.85 0.65 0.34 0.64 
M4 200 0.40 0.2 0.90 0.85 0.62 0.85 0.65 0.33 0.63 
M4 200 0.64 0.2 0.90 0.86 0.62 0.85 0.65 0.32 0.63 
M4 200 0.16 0.5 0.90 0.85 0.63 0.85 0.65 0.35 0.63 
M4 200 0.40 0.5 0.90 0.85 0.61 0.85 0.65 0.34 0.64 
M4 200 0.64 0.5 0.90 0.85 0.61 0.85 0.65 0.32 0.63 
M4 400 0.16 0.2 1.00 0.99 0.93 0.99 0.90 0.85 0.97 
M4 400 0.40 0.2 1.00 0.99 0.93 0.98 0.90 0.85 0.97 
M4 400 0.64 0.2 1.00 1.00 0.99 1.00 1.00 0.99 1.00 
M4 400 0.16 0.5 1.00 0.99 0.93 0.98 0.90 0.85 0.97 
M4 400 0.40 0.5 1.00 0.99 0.93 0.98 0.90 0.85 0.97 
M4 400 0.64 0.5 1.00 0.99 0.92 0.98 0.91 0.84 0.97 
M4 850 0.16 0.2 1.00 1.00 1.00 1.00 1.00 0.99 1.00 
M4 850 0.40 0.2 1.00 1.00 1.00 1.00 1.00 0.99 1.00 
M4 850 0.64 0.2 1.00 1.00 0.99 1.00 1.00 0.99 1.00 
M4 850 0.16 0.5 1.00 1.00 0.99 1.00 1.00 0.99 1.00 
M4 850 0.40 0.5 1.00 1.00 0.99 1.00 1.00 0.99 1.00 
M4 850 0.64 0.5 1.00 1.00 0.99 1.00 1.00 0.99 1.00 

LVMM 200 0.16 0.2 0.96 0.90 0.59 0.86 0.84 0.32 0.76 
LVMM 200 0.40 0.2 0.98 0.90 0.45 0.86 0.87 0.23 0.75 
LVMM 200 0.64 0.2 0.94 0.86 0.59 0.84 0.75 0.30 0.69 
LVMM 200 0.16 0.5 0.97 0.92 0.59 0.87 0.86 0.33 0.79 
LVMM 200 0.40 0.5 0.98 0.92 0.39 0.87 0.92 0.22 0.82 
LVMM 200 0.64 0.5 0.94 0.86 0.58 0.84 0.76 0.30 0.70 
LVMM 400 0.16 0.2 1.00 1.00 0.90 0.99 0.98 0.82 0.98 
LVMM 400 0.40 0.2 1.00 0.99 0.76 0.98 0.99 0.63 0.98 
LVMM 400 0.64 0.2 1.00 1.00 0.99 1.00 1.00 0.99 1.00 
LVMM 400 0.16 0.5 1.00 1.00 0.89 0.99 0.99 0.83 0.99 
LVMM 400 0.40 0.5 1.00 1.00 0.67 0.99 0.99 0.58 0.99 
LVMM 400 0.64 0.5 1.00 0.99 0.90 0.99 0.95 0.81 0.98 
LVMM 850 0.16 0.2 1.00 1.00 0.99 1.00 1.00 0.99 1.00 
LVMM 850 0.40 0.2 1.00 1.00 0.97 1.00 1.00 0.97 1.00 
LVMM 850 0.64 0.2 1.00 1.00 0.99 1.00 1.00 0.99 1.00 
LVMM 850 0.16 0.5 1.00 1.00 0.99 1.00 1.00 0.99 1.00 
LVMM 850 0.40 0.5 1.00 1.00 0.93 1.00 1.00 0.90 1.00 
LVMM 850 0.64 0.5 1.00 1.00 0.99 1.00 1.00 0.99 1.00 

Note. Conditions with low power are presented in boldface. 
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Table 4.7: Parameter Coverage across Conditions 

Simulation Conditions Parameter Coverage 
Sample 
model 

N ( )imtMspe Y  Method 
Correlation 1a  2a  3a  b  c′  

Index 
MM 

IE 

M4 200 0.16 0.2 0.94 0.94 0.95 0.95 0.94 0.91 0.93 
M4 200 0.40 0.2 0.94 0.94 0.95 0.95 0.94 0.91 0.93 
M4 200 0.64 0.2 0.94 0.94 0.95 0.95 0.94 0.90 0.93 
M4 200 0.16 0.5 0.94 0.94 0.95 0.95 0.94 0.91 0.93 
M4 200 0.40 0.5 0.94 0.94 0.95 0.95 0.93 0.90 0.93 
M4 200 0.64 0.5 0.94 0.94 0.94 0.95 0.93 0.91 0.93 
M4 400 0.16 0.2 0.94 0.95 0.95 0.95 0.93 0.94 0.94 
M4 400 0.40 0.2 0.94 0.95 0.94 0.95 0.93 0.94 0.94 
M4 400 0.64 0.2 0.94 0.95 0.95 0.96 0.95 0.94 0.94 
M4 400 0.16 0.5 0.94 0.95 0.95 0.95 0.93 0.94 0.94 
M4 400 0.40 0.5 0.94 0.95 0.95 0.95 0.93 0.94 0.93 
M4 400 0.64 0.5 0.94 0.95 0.94 0.95 0.93 0.93 0.93 
M4 850 0.16 0.2 0.94 0.95 0.95 0.96 0.95 0.94 0.94 
M4 850 0.40 0.2 0.94 0.95 0.95 0.96 0.95 0.93 0.94 
M4 850 0.64 0.2 0.94 0.95 0.95 0.96 0.95 0.94 0.94 
M4 850 0.16 0.5 0.94 0.96 0.95 0.96 0.95 0.93 0.94 
M4 850 0.40 0.5 0.94 0.95 0.94 0.96 0.95 0.93 0.94 
M4 850 0.64 0.5 0.94 0.95 0.94 0.96 0.95 0.93 0.94 

LVMM 200 0.16 0.2 0.88 0.94 0.94 0.93 0.91 0.89 0.95 
LVMM 200 0.40 0.2 0.82 0.94 0.91 0.93 0.87 0.85 0.95 
LVMM 200 0.64 0.2 0.90 0.95 0.95 0.94 0.92 0.90 0.94 
LVMM 200 0.16 0.5 0.85 0.94 0.94 0.93 0.90 0.90 0.96 
LVMM 200 0.40 0.5 0.66 0.90 0.84 0.90 0.70 0.81 0.87 
LVMM 200 0.64 0.5 0.89 0.95 0.95 0.92 0.91 0.90 0.95 
LVMM 400 0.16 0.2 0.86 0.95 0.95 0.93 0.87 0.91 0.92 
LVMM 400 0.40 0.2 0.74 0.94 0.90 0.94 0.77 0.85 0.91 
LVMM 400 0.64 0.2 0.87 0.95 0.95 0.95 0.90 0.93 0.92 
LVMM 400 0.16 0.5 0.80 0.94 0.94 0.93 0.83 0.92 0.91 
LVMM 400 0.40 0.5 0.46 0.89 0.76 0.88 0.50 0.81 0.74 
LVMM 400 0.64 0.5 0.88 0.94 0.94 0.91 0.91 0.92 0.94 
LVMM 850 0.16 0.2 0.72 0.95 0.93 0.96 0.79 0.90 0.89 
LVMM 850 0.40 0.2 0.53 0.94 0.80 0.96 0.57 0.81 0.85 
LVMM 850 0.64 0.2 0.87 0.95 0.95 0.95 0.90 0.93 0.92 
LVMM 850 0.16 0.5 0.63 0.94 0.92 0.94 0.73 0.92 0.81 
LVMM 850 0.40 0.5 0.14 0.88 0.56 0.88 0.19 0.70 0.42 
LVMM 850 0.64 0.5 0.83 0.95 0.95 0.95 0.88 0.94 0.91 

Note. Conditions with unacceptable parameter coverage are presented in boldface. 
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Discussion and Conclusions 

 

This study was the first simulation study to examine moderated mediation in a 

multimethod framework. Overall, the M4 model performed well in the simulated 

conditions, especially compared to the LVMM. The M4 model did not have convergence 

issues, likely due to the manner in which trait and method factors were constructively 

defined in the CT-C(M – 1) approach. When fitting a sample M4 model to data generated 

from a population M4 model, a sample size of 850 had adequate power, adequate 

parameter coverage, unbiased parameter estimates, and unbiased standard errors across 

all moderated and mediated effects. A sample size of 400 contained satisfactory power, 

but had some issues with standard error bias for the c′  parameter estimate. Sample sizes 

of 200 lacked the power necessary to detect moderated mediation effects and had issues 

with parameter coverage, but did not show parameter bias nor standard error bias. 

A different story emerged when fitting the sample LVMM to data generated from 

a population M4 model. The LVMM model performed poorly across most conditions, 

presumably because the population model contained variance due to a method factor that 

was excluded in the LVMM sample model. One particularly interesting finding was that 

equal amounts of method-specificity and trait consistency (i.e., the condition where 

( ) .40imtMspe Y = ) resulted in greater parameter bias across more parameters and had 

worse parameter coverage across more parameters. More specifically, conditions with 

equal amounts of method and trait variance had a strong effect on parameter bias, upward 

biasing estimates of the 1a , c′ , and the indirect effect, but downward biasing the 
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moderated effects. Such suggests that not appropriately modeling method-specific 

variance can lead to an underestimation of the moderated effect and overestimation of the 

direct and indirect effects. 

Additional examination of other model parameters showed that method-

specificity was being treated as random measurement error when models were 

misspecified. Under conditions with high method-specificity, model misspecification 

affected error variance estimates specific to the non-reference variables. Method effects 

were modeled as measurement error, which led to less (but still unacceptable) bias in the 

moderated mediation effects. Under conditions with equal method-specificity and trait 

consistency, LVMM models showed slightly inflated error variances for both reference 

and non-reference method variables, overestimated factor loadings for non-reference 

methods, and underestimated factor loadings for reference methods. Method effects were 

modeled as both error and trait variance, resulting in unacceptable, larger bias in the 

moderated mediation effects. Under conditions with low method-specificity, LVMM 

models showed similar results to the condition with equal method-specificity and trait 

consistency but to a lesser extent. Overall, when method effects were not appropriately 

captured by a method factor, bias ensued. It is therefore imperative that method effects be 

appropriately modeled to avoid bias in the moderated mediation pathways.  

Power was adequate across conditions with sample sizes of at least 400. One 

related study (Cheung & Lau, 2017) examined power in a general LVMM as compared to 

regression moderated mediation model. Their study was more comprehensive in that they 

examined more effect size estimates for different pathways of interest. They found 

adequate power to detect a moderate moderated effect (.4) with as few as 100 individuals, 
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yet when the moderated effect decreased in magnitude (.2), power to detect the 

moderated effect decreased to .38. Cheung and Lau additionally examined power to 

detect a small interaction effect ( 3a = .20) in a sample size of 200, finding that power was 

rather low at .68. The present study examined a similarly sized interaction effect ( 3a = 

.15) in a sample size of 200. Like Cheung and Lau, the present study revealed that N = 

200 resulted in a lack of power to detect the small moderated effect, power = .61 to .63. 

Although the present study showed there was not enough power to detect effects, it also 

showed that estimates of the underpowered effect were unbiased. These two results 

support the notion that sample sizes of 200 are not adequate for examining moderated 

mediation when the interaction effect is small. Since this small interaction effect was the 

average effect found in current literature within the meta-analytic review, using a sample 

size of 200 is not recommended with the M4 approach. 

 

Strengths of the Monte Carlo simulation study. This was the first study to 

evaluate the applicability of the M4 model across simulated conditions. Although few 

simulation conditions were examined, population values for the most relevant parameters 

were 1) based on effect sizes commonly found in moderated mediation studies and are 

thus relevant to current applied research on moderated mediation analysis, or 2) based on 

the application of the M4 model as presented in Chapter IV. Only levels of method-

specificity were chosen for theoretical reasons. 

The meta-analytic review offered valuable insight into how researchers are 

currently conceptualizing and applying moderated mediation models. Most articles are 
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using multiple variables in a single path model, thus potentially complicating moderated 

mediation results and making analyses such a first-stage moderated mediation less 

relevant than more complex structural path models. Future research should examine how 

best to model these complex relationships among variables while still appropriately 

accounting for the measurement structure of variables. The literature review also showed 

the average moderated mediation effects that have been found in developmental 

psychology, clinical psychology, and prevention science research. 

 

Limitations and future research. One finding from the literature review that was 

not discussed much in the results was that nine (of an original 39) studies were dropped 

from the review because of the way that they reported moderated mediation results. 

Effects such as the indirect effect and the conditional indirect effects were often reported 

in articles, but specific effects, such as the 1a  path, were frequently omitted from reports. 

Indirect and conditional indirect effects are important and can be more meaningfully 

interpreted than some of the specific effects. However, effects aggregated from more than 

one pathway could not be standardized meaningfully in a meta-analytic framework. 

Guidelines for reporting results from moderated mediation analysis are beginning to 

emerge, in part due to the work of Hayes (2013). Future research is needed about 

reporting moderated mediation analysis appropriate for meta-analyzing results. 

The Monte Carlo simulation in the present study included few conditions, which 

was a limitation for generalizing results across different data conditions. Perhaps the M4 

model only works under these very specific conditions. Future research should examine 
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the M4 model under additional conditions, for example different levels of missingness, 

different values of method-specificity and reliability, larger and smaller effects between 

constructs, and skewed or kurtotic data distributions. 

Relatedly, this first presentation of the M4 model used a first-stage moderated 

mediation model. Other moderated mediation models exist (Hayes, 2013; Edwards & 

Lambert, 2007). Future research could examine second-stage M4 models, direct effect 

M4 models, various combinations of different moderated mediation effects in M4 

models. Further, future research could examine the influence of adding more moderators 

or mediators into the model. 

 Another limitation of the Monte Carlo simulation study was that only two 

methods and three indicators per trait-method unit were used in the M4 modeling 

approach. Additional indicators and methods could impact the performance of the M4 

model, and could be examined in future research. Further, indicators were partially 

invariant across methods and traits, which is unlikely to occur in applied contexts. 

Invariance was constrained to more directly calculate the consistency and method-

specificity estimates. Future research should examine the model under conditions which 

do not assume measurement invariance across methods.  

 The simulation study did not examine the use of bias-corrected bootstrap methods 

due to the time that it would have taken for each model to run. With the emergence of 

very high-powered computing systems as well as innovative algorithms, one future line 

of research could examine an estimation approach that adequately accounts for the 

nonnormal distribution of the indirect effect using less computationally intensive 

methods. Although one such method exists (the distribution of the product of coefficients 
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approach; MacKinnon et al., 2002; MacKinnon et al., 2004), it did not work with the 

present study due to the inclusion of more than a single predictor (both X and W) as well 

as the latent interaction term, XW. Future research could examine correction approaches 

that require less computational time and account for a wide variety of mediation or 

moderated mediation models. 

 Finally, the LMS approach, while useful for evaluating moderation, was rather 

computationally intensive, especially when combined with the Monte Carlo simulation 

design. Future research could examine other approaches to estimating latent variable 

interaction effects using less computationally intensive methods that work similarly or 

better than the LMS approach. Cheung and Lau (2017) suggested the two-stage least 

squares (2SLS) approach (Bollen, 1996) as an alternative to LMS. 2SLS has shown 

relatively unbiased latent interaction effects, similar to the LMS approach, and may be a 

practical approach to calculating latent interaction terms. 

 

Conclusions. To conclude, the M4 model is a viable model that was used to 

estimate moderated mediation estimates using a multimethod framework. When method 

effects were present in data, this model appropriately handled them and provided 

unbiased estimates across various conditions. Each research question was directly 

addressed to end this chapter. 

Under which and how many simulated conditions did the M4 model have 

adequate power to detect the mediated and moderated effects? The M4 model was 

adequately powered to detect all moderated and mediated effects in 12 of 18 conditions. 

The model had adequate power as long as N = 400 or 850. 
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 Under which and how many simulated conditions did the M4 model produce 

biased estimates or standard errors of the mediated or moderated effects? When the M4 

model was used to evaluate moderated mediation effects, parameter bias was negligible; 

0 of 18 conditions produced biased estimates. Further, standard errors of the c′  parameter 

(and one instance of bias for the b parameter) were biased when sample size was 400. 

Standard errors were unbiased in the remaining 13 out of 18 conditions.  

 Under which and how many simulated conditions did a misspecified model 

without method factors (i.e., the M4 model without method factors, equivalent to a latent 

variable moderated mediation model [LVMM]; Cheung & Lau, 2017) have adequate 

power to detect the mediated and moderated effects? The LVMM model showed worse 

power than the M4 model. Similar to the M4 model, the LVMM model lacked power to 

detect significant effects with a sample size of N = 200. However, the LVMM model also 

lacked power to detect significant effects when N = 400 and method-specificity was equal 

to 0.5. The model had adequate power across estimates in the remaining 10 out of 18 

conditions. 

Under which and how many simulated conditions did the M4 model without 

method factors produce biased parameter estimates or standard errors of the mediated or 

moderated effects? The LVMM model contained biased parameter estimates for at least 

one parameter estimate across every condition, so 18 of 18 conditions produced biased 

estimates. The LVMM model further contained ample standard error bias across most 

conditions. Fifteen out of 18 conditions contained standard error bias. 

Which conditions produced higher instances of non-converged solutions? 

Although convergence rates were very high across all conditions, the conditions where 
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data was fit to the LVMM model had slightly lower convergence rates than conditions 

where data was fit to the M4 model. 

Which conditions produced low parameter coverage for the moderated mediation 

population parameters? Low parameter coverage was more pronounced in the LVMM 

model than in the M4 model. This was expected since the LVMM model was 

misspecified. Further, parameter coverage was lower in the LVMM conditions when 

method-specificity was moderate and method correlations were large. 

 

 

 

  



 
 

  109 
 

CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

The objective of the present research was to create a multimethod moderated 

mediation (M4) model to more appropriately model data that contained a multimethod 

data structure. This model was applied to a dataset of child developmental behaviors and 

was also examined using a Monte Carlo simulation study. 

The M4 model was the first known model to address appropriate ways to model 

multimethod data in moderated mediation analysis. Although multimethod designs have 

been advanced in psychological and other social sciences (Achenbach, 2006; Cole, 1987; 

De Los Reyes & Kazdin, 2005; Hopwood & Bornstein, 2014; Meyer et al., 2001; Morris 

et al., 2006), few approaches have implemented quantitative multimethod designs such as 

the CT-C(M – 1) model in combination with approaches used to examine relationships 

among variables such as moderated mediation. This is potentially problematic since the 

present research found that excluding the measurement structure from the analysis model 

led to biased results. When data were truly multimethod (i.e., true variance from observed 

variables was attributed to both trait and method factors), excluding a multimethod 

measurement structure in the analysis of data resulted in parameter and standard error 

bias. When the model was misspecified, the simulation study showed that mediated 

effects were overestimated while the moderated effects were underestimated. 

Specifically, mediated parameter estimates were overestimated by anywhere from 12% to 

40% for 1a , 1% to 13% for b, and 17% to 60% for the indirect effect. In contrast, the 
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moderated parameter estimates were underestimated by anywhere from 3% to 33% for 

3a , and 0% to 25% for the Index MM. Thus, moderating effects were more difficult to 

detect while the mediated effects were overestimated if the multimethod measurement 

structure of the variables was not properly modeled. In order to avoid bias, one 

recommendation is to use methods such as the M4 model to appropriately model the 

measurement structure of multimethod data as well as the structural relationships among 

variables.  

Although framed in a multimethod framework, the simulation study examined the 

presence of some non-trait factor (i.e., method factor) that impacted the variance of the 

observed variables. Such a situation may be informative for other measurement 

situations. For example, variance from the method factor could potentially represent 

variance from any systematic effect, including a confounding variable, situational 

fluctuations to behavior, or an environmental factor that was left out of analysis. The 

interpretation I have applied to this variance was method effects, but other systematic 

sources of variance could result in the same general findings.  

Measurement does impact results, and the measurement structure should be 

modeled when evaluating structural relationships among variables. One study evaluating 

the impact of incorrectly modeling the bifactor measurement structure in mediation 

analysis (Gonzalez & MacKinnon, 2018) emphasized the necessity of correctly modeling 

the measurement structure of variables. In their study, not appropriately modeling the 

measurement structure also resulted in biased and underpowered findings. It seems that 

excluding the appropriate measurement structure from analysis has the potential to 
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impact study results across a wide range of measurement practices as well as different 

statistical analyses. Additionally, Gonzalez and MacKinnon (2018) note that 

measurement issues are relatively understudied in statistical mediation analysis. I would 

agree. Researchers typically do not study measurement issues within mediation nor 

moderated mediation analysis with few exceptions (e.g., Fritz et al., 2016; Gonzalez & 

MacKinnon, 2018; Hoyle & Kenny, 1999; Papa et al., 2015).  

When the measurement structure was ignored in the present study (i.e., the 

method factor was not modeled), results for all parameters resulted in some form of bias 

across all conditions. The issue of measurement in moderated mediation analysis is not 

simply about using complex measurement models to evaluate data; it is about accurately 

modeling data to avoid biased results.  

 

 

Implications 

 

 The present study has important implications for applied as well as quantitative 

research. First and foremost, the M4 model did not have enough power to detect 

moderated nor mediated effects when the sample size was 200. This model should not be 

used (but is still preferable to a latent variable moderated mediation model) when the 

sample size is less than 400. Importantly, estimates and standard errors when the sample 

size was 200 were not biased, so although the model may not have shown adequate 

power, estimates were unlikely to be biased given the limited conditions of the simulation 
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study. Applied researchers are urged to use the M4 model when they have data from 

multiple methods with a sample size of at least 400.  

Although the model did not have the power to detect effects at lower sample sizes 

it may be possible to examine the M4 model in a Bayesian framework. Bayesian 

approaches have been shown more ideal for smaller sample sizes in mediation analysis 

(Yuan & MacKinnon, 2009). Perhaps the same is true of moderated mediation analysis. 

Because the effects from the simulation study were not biased, Bayesian M4 models are a 

potential avenue for both applied as well as quantitative research with smaller sample 

sizes.  

One important implication for both quantitative as well as applied research is the 

circumstances required to evaluate the M4 model as presented in this paper. As it 

currently stands, the M4 model has only been evaluated examining one moderator and 

mediator in first-stage moderated mediation using continuous variables measured by 

structurally different methods. Further, only one method for evaluating the latent 

interaction term and one approach to evaluating the conditional indirect effect were 

examined. These limited conditions do not represent all potential avenues for the M4 

model. Various M4 models could be created to evaluate interchangeable methods of 

measurement, multiple mediators or moderators, second-stage moderated mediation, etc. 

The present approach did not consider these alternative models due to the complexity that 

would be required, which was beyond the scope of the project. Not only is this additional 

research needed to examine multimethod moderated mediation, but these extensions are 

also needed in the context of the simpler latent variable moderated mediation. 
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Extensions of the M4 model 

 

The M4 model, while appropriate for single-level, continuous, multimethod data, 

is not an umbrella analysis that should be used for all research designs when researchers 

wish to examine multimethod data using moderated mediation analysis. In fact, I would 

discourage applied researchers from moving too far away from the presented approach, 

mostly because of the complex modeling nature of the M4 approach. Acknowledging that 

the M4 model is limited in its capabilities is important for both the utility and 

advancement of the approach. There are many data structures that the M4 model was not 

specifically designed to handle, including complex data and categorical variables.  

Currently, there are approaches to evaluate moderated mediation using multilevel 

designs (e.g., Bauer, Preacher, & Gil, 2006) and there are also approaches to evaluate 

multitrait multimethod analysis using multilevel designs (Maas et al., 2009). There is a 

potential to combine these approaches to examine multimethod moderated mediation 

analysis using a multilevel framework. Doing so would result in a model that is 

accessible to researchers from different fields who are trained in multilevel modeling but 

not in structural equation modeling. Further, the multilevel configuration of the model 

would be simpler, yet it would be inappropriate for structurally different methods and 

would not have the same flexibility as the current CFA approach (e.g., Eid et al., 2008; 

Maas et al., 2009).  

Categorical approaches to moderated mediation analysis are simpler than 

continuous approaches, yet require using a different framework. When a categorical 
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variable is used as the moderating variable, one can think of moderated mediation 

analysis as a multiple group design, with the group being the moderating variable. For 

example, many applications of moderated mediation analysis may use gender as a 

moderating factor. Gender is often dichotomized to men and women, and researchers are 

interested in whether processes differ between men and women. In the M4 approach, 

categorical moderators such as gender could be treated as the grouping variable, and 

separate models could be run separately for men and women. Essentially, in a categorical 

moderating case, researchers could run a multimethod mediation model (Papa et al., 

2015) separated by group. Future research is needed to determine the power, bias, 

coverage, and error of such a model. 

In addition to these extensions to complex and categorical data, the M4 approach 

was limited in its use of only one CFA-MTMM model. The multimethod data structure 

assumed in the M4 model was the CT-C(M – 1) structure to appropriately model data 

from structurally different methods (e.g., parent report compared to clinical assessment). 

However, this method would not be not appropriate for data that did not measure data 

using multiple methods. In fact, the approach is not even relevant for data gathered from 

interchangeable methods (e.g., peer report). Interchangeable methods require using 

multilevel confirmatory factor analysis models (Eid et al., 2008). The multilevel 

confirmatory factor analysis model is one of many models used to account for different 

measurement structures.  

Other multimethod measurement models have been developed for nested data 

(Koch, Schultze, Burrus, Roberts, & Eid, 2015), Bayesian approaches (Helm, Castro-

Schilo, & Oravecz, 2017), and non-independent methods where raters or sources evaluate 
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more than one individual (Schultze, Koch, & Eid, 2015). These approaches to modeling 

multimethod data all address how best to model the true measurement structures of 

variables under different data conditions. Each of these approaches could potentially be 

used as the measurement structure of the M4 model or other models that examine the 

structural relationships among variables using multimethod data. Future research may 

wish to examine a more generalized approach to examining moderated mediation using 

multimethod designs. 

The M4 model was rather limited in the number of relationships that were 

examined. Specifically, I only examined first-stage moderated mediation (Edwards & 

Lambert, 2007) as the structural portion of the model, which is appropriate when the 

moderator is expected to influence the a-pathway but no other pathway. First-stage 

moderated mediation is only one of seven models that can be used to examine moderated 

mediation with one moderator and one mediator. Including additional mediators or 

moderators would result in far more complex models to evaluate, yet the meta-analytic 

literature review showed that multiple effects were often included in the same moderated 

mediation model. Future research could advance the M4 model by examining more 

moderators, more mediators, more dependent outcomes, or more independent variables. 

 The M4 model, currently, is a cross-sectional model and cannot appropriately 

account for longitudinal effects. In mediation analysis, longitudinal effects are necessary 

to examine how processes develop across time (Bollen & Curran, 2006; Cole & Maxwell, 

2003; Maxwell & Cole, 2007; Selig & Preacher, 2009). Future research is needed to 

examine longitudinal extensions of the M4 model. Specifically, it would be informative 
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to begin by examining the cross-lagged mediation model (Cole & Maxwell, 2003) using 

multimethod data and adding a moderating term to the model. 

  

 

Conclusions 

 

 In sum, the M4 model advances an approach to moderated mediation analysis 

appropriate for multimethod research designs. Both the application and Monte Carlo 

simulation studies showed that the model performed well under different conditions. The 

Monte Carlo simulation further reflected the necessity of using the M4 model as 

compared to a more general latent variable moderated mediation model when even 

relatively minimal method effects were present. The project adds to the emerging pool of 

research that examining the measurement structure of variables in mediation and 

moderated mediation analysis. Overall, the current project was intended to advance the 

quantitative knowledge of moderated mediation analysis in the presence of multimethod 

data.    
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Appendix A: Items used in the CADBI (Burns et al., 2010) 

 

Academic impairment (AI) items 

 Please circle 
the answer 
that best 
describes 
your son’s or 
daughter’s 
behavior in 
comparison 
to others the 
same age 

Severe 
Difficulty 

Moderate 
Difficulty 

Slight 
Difficulty 

Average 
Performance 

for Grade 
Level 

Slightly 
Above 

Average 

Moderately 
Above 

Average 

Excellent 
Performance 

1 
Completion 
of Homework 
Assignments 

0 1 2 3 4 5 6 

2 Reading 
Skills 0 1 2 3 4 5 6 

3 Arithmetic 
Skills 0 1 2 3 4 5 6 

4 Writing Skills 0 1 2 3 4 5 6 

  
 

Hyperactivity/impulsivity (HI) items 

The occurrence of these nine behaviors (items 1 to 9) is NOT due to oppositional 

behavior, defiance, anger, hostility or a failure to understand the task or the instructions. 

 
 

Please circle the answer that 
indicates how often the behavior 
has occurred in the last month. 

 
Almost 
Never  
(Never 

or about 
once per 
month)  

Seldom 
(about 

once per 
week) 

Sometimes 
 (several 
times per 

week) 

Often 
(about 
once 
per 

day) 

Very 
Often 
(several 
times 
per 

day) 

Almost 
Always 
(many 
times 

per day) 
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1 Fidgets with or taps hands or 
feet or squirms in seat 0 1 2 3 4 5 

2 

Seems restless during activities 
when others are seated (e.g., 
leaves his or her seat in the 
settings when remaining seated is 
expected) 

0 1 2 3 4 5 

3 

Runs about or climbs on things 
when it is inappropriate to do so 
(e.g., moves excessively when not 
appropriate; adolescents may 
report excessive feelings of 
restlessness) 

0 1 2 3 4 5 

4 Too loud or noisy during 
activities at home 0 1 2 3 4 5 

5 

Acts as if “driven by motor” or 
seems “on the go” during home 
activities (e.g., unable to be still 
or uncomfortable being still for an 
extended time; appears restless; 
difficult to keep up with) 

0 1 2 3 4 5 

6 Talks too much (e.g., talks 
excessively at home) 0 1 2 3 4 5 

7 

Blurts out an answer before the 
question is completed in home 
activities (e.g., completes others’ 
sentences; can’t wait turn in 
conversations) 

0 1 2 3 4 5 

8 
Has difficulty waiting turn in 
home activities (e.g., games; 
waiting in lines; family activities) 

0 1 2 3 4 5 

9 

Interrupts or intrudes on others 
(e.g., butts into others’ games or 
conversations; starts using others 
things without permission; 
intrudes into or takes over what 
others are doing) 

0 1 2 3 4 5 

 
From Burns et al., 2014 on the creation of parcels: 
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“HI Parcel 1 involved the restless (leaves seat), too loud, blurts symptoms; HI 

Parcel 2 moves excessively, talks too much, and awaiting turn symptoms; and HI 

Parcel 3 fidgets/squirms, driven/on the go, and interrupts/intrudes symptoms.” 

 
Oppositional defiant disorder (ODD) items and parcels (from Preszler et al., 2016) 
 

Parcel 1 
 

1.  Spiteful or vindictive toward adults (e.g., says mean things to hurt adults' feelings or 
does mean things to get back at adults) 
2.  Spiteful or vindictive toward siblings/peers (e.g., says mean things to hurt 
siblings/peers' feelings or does mean things to get back at siblings/peers 
3.  Argues with adults 
4.  Argues with siblings/peers 
5.  Actively defies or refuses to obey adults' requests or rules 
6.  Refuses to cooperate with reasonable requests from siblings/peers 
 

Parcel 2 
 

1.  Annoys adults on purpose 
2.  Annoys siblings/peers on purpose 
3.  Becomes annoyed or irritated by the behavior of adults 
4.  Becomes annoyed or irritated by the behavior of siblings/peers 
5.  Appears angry or resentful toward adults 
 

Parcel 3 
 

1.  Loses temper with adults when doesn't get own way  
2.  Loses temper with siblings/peers when doesn't get own way 
3.  Blames adults for his or her own mistakes or misbehavior 
4.  Blames peers for his or her own mistakes or misbehavior 
5.  Appears angry or resentful toward siblings/peer 
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Appendix B: Mplus Syntax for Figures from Chapter IV 

 

Mplus Syntax for Figure 3.1 

Title: Non-indicator-specific STMM Model for HI 
 
Data: 

 
file is T1T3T4 Kaylee moms dads.dat; 
 

Define: ! reverse key the four academic items moms 
rM1_AS1 = 6 - M1_AS1; rM1_AS2 = 6 - M1_AS2; 
rM1_AS3 = 6 - M1_AS3; rM1_AS4 = 6 - M1_AS4; 
rM3_AS1 = 6 - M3_AS1; rM3_AS2 = 6 - M3_AS2; 
rM3_AS3 = 6 - M3_AS3; rM3_AS4 = 6 - M3_AS4; 
rM4_AS1 = 6 - M4_AS1; rM4_AS2 = 6 - M4_AS2; 
rM4_AS3 = 6 - M4_AS3; rM4_AS4 = 6 - M4_AS4; 
 
! create the three indicators for AI moms 
AI1momt1= mean (rM1_AS1 rM1_AS2);  
AI2momt1= (rM1_AS3); AI3momt1= (rM1_AS4); 
AI1momt3= mean (rM3_AS1 rM3_AS2);  
AI2momt3= (rM3_AS3); AI3momt3= (rM3_AS4); 
AI1momt4= mean (rM4_AS1 rM4_AS2);  
AI2momt4= (rM4_AS3); AI3momt4= (rM4_AS4); 
 
! reverse key codes for academic items dads 
rF1_AS1 = 6 - F1_AS1; rF1_AS2 = 6 - F1_AS2; 
rF1_AS3 = 6 - F1_AS3; rF1_AS4 = 6 - F1_AS4; 
rF3_AS1 = 6 - F3_AS1; rF3_AS2 = 6 - F3_AS2; 
rF3_AS3 = 6 - F3_AS3; rF3_AS4 = 6 - F3_AS4; 
rF4_AS1 = 6 - F4_AS1; rF4_AS2 = 6 - F4_AS2; 
rF4_AS3 = 6 - F4_AS3; rF4_AS4 = 6 - F4_AS4; 
 
! create the three indicators for AI dads 
AI1dadt1= mean (rF1_AS1 rF1_AS2);  
AI2dadt1= (rF1_AS3); AI3dadt1= (rF1_AS4); 
AI1dadt3= mean (rF3_AS1 rF3_AS2);  
AI2dadt3= (rF3_AS3); AI3dadt3= (rF3_AS4); 
AI1dadt4= mean (rF4_AS1 rF4_AS2);  
AI2dadt4= (rF4_AS3); AI3dadt4= (rF4_AS4); 
 

Variable: Names are code schools sex classrm M1_AS1 
M1_AS2 M1_AS3 M1_AS4 M1_SC1 M1_SC2 M1_SC3 
M1_SC4 M1_SC5 M1_SC6 M1_SC7 M1_SC8 F1_AS1 
F1_AS2 F1_AS3 F1_AS4 F1_SC1 F1_SC2 F1_SC3 
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F1_SC4 F1_SC5 F1_SC6 F1_SC7 F1_SC8 M3_AS1 
M3_AS2 M3_AS3 M3_AS4 M3_SC1 M3_SC2 M3_SC3 
M3_SC4 M3_SC5 M3_SC6 M3_SC7 M3_SC8 F3_AS1 
F3_AS2 F3_AS3 F3_AS4 F3_SC1 F3_SC2 F3_SC3 
F3_SC4 F3_SC5 F3_SC6 F3_SC7 F3_SC8 F4_SC1 
F4_SC2 F4_SC3 F4_SC4 F4_AS1 F4_AS2 F4_AS3 
F4_AS4 M4_SC1 M4_SC2 M4_SC3 M4_SC4 M4_AS1 
M4_AS2 M4_AS3 M4_AS4 IN1momT1 IN2momT1 IN3momT1 
HI1momT1 HI2momT1 HI3momT1 OD1momT1 OD2momT1 
OD3momT1 IN1dadT1 IN2dadT1 IN3dadT1 HI1dadT1 
HI2dadT1 HI3dadT1 OD1dadT1 OD2dadT1 OD3dadT1 
IN1momT3 IN2momT3 IN3momT3 HI1momT3 HI2momT3 
HI3momT3 OD1momT3 OD2momT3 OD3momT3 IN1dadT3 
IN2dadT3 IN3dadT3 HI1dadT3 HI2dadT3 HI3dadT3 
OD1dadT3 OD2dadT3 OD3dadT3 IN1momT4 IN2momT4 
IN3momT4 HI1momT4 HI2momT4 HI3momT4 OD1momT4 
OD2momT4 OD3momT4 IN1dadT4 IN2dadT4 IN3dadT4 
HI1dadT4 HI2dadT4 HI3dadT4 OD1dadT4 OD2dadT4 
OD3dadT4MT1_CE1 MT1_CE2 MT1_CE3 MT1_CE4 FT1_CE1 
FT1_CE2 FT1_CE3 FT1_CE4 MT3_CE1 MT3_CE2 MT3_CE3 
MT3_CE4 FT3_CE1 FT3_CE2 FT3_CE3 FT3_CE4 FT4_CE1 
FT4_CE2 FT4_CE3 FT4_CE4 MT4_CE1 MT4_CE2 MT4_CE3 
MT4_CE4; 
 
Missing are . ; 
 
Usevariables are HI1momT1 HI1dadT1 HI2momT1 
HI2dadT1 HI3momT1 HI3dadT1; 
 

Analysis: estimator = MLR; 
 

Model: HI1t1 by HI1momT1 HI1dadT1 HI2momT1  
     HI2dadT1 HI3momT1 HI3dadT1; !Trait 
 
HIdadt1 by HI1dadT1 HI2dadT1 HI3dadT1; !Method 
 
HIdadt1 with HI1t1@0; !no corr between T and M 
 

Output: sampstat stdyx; 
 

 

Mplus Syntax for Figure 3.2 

Title: Indicator-specific STMM Model for HI 
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Data: 

 
file is T1T3T4 Kaylee moms dads.dat; 
 

Define: ! reverse key the four academic items moms 
rM1_AS1 = 6 - M1_AS1; rM1_AS2 = 6 - M1_AS2; 
rM1_AS3 = 6 - M1_AS3; rM1_AS4 = 6 - M1_AS4; 
rM3_AS1 = 6 - M3_AS1; rM3_AS2 = 6 - M3_AS2; 
rM3_AS3 = 6 - M3_AS3; rM3_AS4 = 6 - M3_AS4; 
rM4_AS1 = 6 - M4_AS1; rM4_AS2 = 6 - M4_AS2; 
rM4_AS3 = 6 - M4_AS3; rM4_AS4 = 6 - M4_AS4; 
 
! create the three indicators for AI moms 
AI1momt1= mean (rM1_AS1 rM1_AS2);  
AI2momt1= (rM1_AS3); AI3momt1= (rM1_AS4); 
AI1momt3= mean (rM3_AS1 rM3_AS2);  
AI2momt3= (rM3_AS3); AI3momt3= (rM3_AS4); 
AI1momt4= mean (rM4_AS1 rM4_AS2);  
AI2momt4= (rM4_AS3); AI3momt4= (rM4_AS4); 
 
! reverse key codes for academic items dads 
rF1_AS1 = 6 - F1_AS1; rF1_AS2 = 6 - F1_AS2; 
rF1_AS3 = 6 - F1_AS3; rF1_AS4 = 6 - F1_AS4; 
rF3_AS1 = 6 - F3_AS1; rF3_AS2 = 6 - F3_AS2; 
rF3_AS3 = 6 - F3_AS3; rF3_AS4 = 6 - F3_AS4; 
rF4_AS1 = 6 - F4_AS1; rF4_AS2 = 6 - F4_AS2; 
rF4_AS3 = 6 - F4_AS3; rF4_AS4 = 6 - F4_AS4; 
 
! create the three indicators for AI dads 
AI1dadt1= mean (rF1_AS1 rF1_AS2);  
AI2dadt1= (rF1_AS3); AI3dadt1= (rF1_AS4); 
AI1dadt3= mean (rF3_AS1 rF3_AS2);  
AI2dadt3= (rF3_AS3); AI3dadt3= (rF3_AS4); 
AI1dadt4= mean (rF4_AS1 rF4_AS2);  
AI2dadt4= (rF4_AS3); AI3dadt4= (rF4_AS4); 
 

Variable: Names are code schools sex classrm M1_AS1 
M1_AS2 M1_AS3 M1_AS4 M1_SC1 M1_SC2 M1_SC3 
M1_SC4 M1_SC5 M1_SC6 M1_SC7 M1_SC8 F1_AS1 
F1_AS2 F1_AS3 F1_AS4 F1_SC1 F1_SC2 F1_SC3 
F1_SC4 F1_SC5 F1_SC6 F1_SC7 F1_SC8 M3_AS1 
M3_AS2 M3_AS3 M3_AS4 M3_SC1 M3_SC2 M3_SC3 
M3_SC4 M3_SC5 M3_SC6 M3_SC7 M3_SC8 F3_AS1 
F3_AS2 F3_AS3 F3_AS4 F3_SC1 F3_SC2 F3_SC3 
F3_SC4 F3_SC5 F3_SC6 F3_SC7 F3_SC8 F4_SC1 
F4_SC2 F4_SC3 F4_SC4 F4_AS1 F4_AS2 F4_AS3 
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F4_AS4 M4_SC1 M4_SC2 M4_SC3 M4_SC4 M4_AS1 
M4_AS2 M4_AS3 M4_AS4 IN1momT1 IN2momT1 IN3momT1 
HI1momT1 HI2momT1 HI3momT1 OD1momT1 OD2momT1 
OD3momT1 IN1dadT1 IN2dadT1 IN3dadT1 HI1dadT1 
HI2dadT1 HI3dadT1 OD1dadT1 OD2dadT1 OD3dadT1 
IN1momT3 IN2momT3 IN3momT3 HI1momT3 HI2momT3 
HI3momT3 OD1momT3 OD2momT3 OD3momT3 IN1dadT3 
IN2dadT3 IN3dadT3 HI1dadT3 HI2dadT3 HI3dadT3 
OD1dadT3 OD2dadT3 OD3dadT3 IN1momT4 IN2momT4 
IN3momT4 HI1momT4 HI2momT4 HI3momT4 OD1momT4 
OD2momT4 OD3momT4 IN1dadT4 IN2dadT4 IN3dadT4 
HI1dadT4 HI2dadT4 HI3dadT4 OD1dadT4 OD2dadT4 
OD3dadT4MT1_CE1 MT1_CE2 MT1_CE3 MT1_CE4 FT1_CE1 
FT1_CE2 FT1_CE3 FT1_CE4 MT3_CE1 MT3_CE2 MT3_CE3 
MT3_CE4 FT3_CE1 FT3_CE2 FT3_CE3 FT3_CE4 FT4_CE1 
FT4_CE2 FT4_CE3 FT4_CE4 MT4_CE1 MT4_CE2 MT4_CE3 
MT4_CE4; 
 
Missing are . ; 
 
Usevariables are HI1momT1 HI1dadT1 HI2momT1 
HI2dadT1 HI3momT1 HI3dadT1; 
 

Analysis: estimator = MLR; 
 

Model: HI1t1 by HI1momT1 HI1dadT1; 
HI2t1 by HI2momT1 HI2dadT1; 
HI3t1 by HI3momT1 HI3dadT1; !Trait 
 
HIdadt1 by HI1dadT1 HI2dadT1 HI3dadT1; !Method 
 
HIdadt1 with HI1t1@0 HI2t1@0 HI3t1@0; 
 

Output: sampstat stdyx; 
 

 

Mplus Syntax for Figure 3.3 

Title: Indicator-specific CT-C(M-1) Model for HI, IN, 
OD, AI 

 
Data: 

 
file is T1T3T4 Kaylee moms dads.dat; 
 

Define: ! reverse key the four academic items moms 
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rM1_AS1 = 6 - M1_AS1; rM1_AS2 = 6 - M1_AS2; 
rM1_AS3 = 6 - M1_AS3; rM1_AS4 = 6 - M1_AS4; 
rM3_AS1 = 6 - M3_AS1; rM3_AS2 = 6 - M3_AS2; 
rM3_AS3 = 6 - M3_AS3; rM3_AS4 = 6 - M3_AS4; 
rM4_AS1 = 6 - M4_AS1; rM4_AS2 = 6 - M4_AS2; 
rM4_AS3 = 6 - M4_AS3; rM4_AS4 = 6 - M4_AS4; 
 
! create the three indicators for AI moms 
AI1momt1= mean (rM1_AS1 rM1_AS2);  
AI2momt1= (rM1_AS3); AI3momt1= (rM1_AS4); 
AI1momt3= mean (rM3_AS1 rM3_AS2);  
AI2momt3= (rM3_AS3); AI3momt3= (rM3_AS4); 
AI1momt4= mean (rM4_AS1 rM4_AS2);  
AI2momt4= (rM4_AS3); AI3momt4= (rM4_AS4); 
 
! reverse key codes for academic items dads 
rF1_AS1 = 6 - F1_AS1; rF1_AS2 = 6 - F1_AS2; 
rF1_AS3 = 6 - F1_AS3; rF1_AS4 = 6 - F1_AS4; 
rF3_AS1 = 6 - F3_AS1; rF3_AS2 = 6 - F3_AS2; 
rF3_AS3 = 6 - F3_AS3; rF3_AS4 = 6 - F3_AS4; 
rF4_AS1 = 6 - F4_AS1; rF4_AS2 = 6 - F4_AS2; 
rF4_AS3 = 6 - F4_AS3; rF4_AS4 = 6 - F4_AS4; 
 
! create the three indicators for AI dads 
AI1dadt1= mean (rF1_AS1 rF1_AS2);  
AI2dadt1= (rF1_AS3); AI3dadt1= (rF1_AS4); 
AI1dadt3= mean (rF3_AS1 rF3_AS2);  
AI2dadt3= (rF3_AS3); AI3dadt3= (rF3_AS4); 
AI1dadt4= mean (rF4_AS1 rF4_AS2);  
AI2dadt4= (rF4_AS3); AI3dadt4= (rF4_AS4); 
 

Variable: Names are code schools sex classrm M1_AS1 
M1_AS2 M1_AS3 M1_AS4 M1_SC1 M1_SC2 M1_SC3 
M1_SC4 M1_SC5 M1_SC6 M1_SC7 M1_SC8 F1_AS1 
F1_AS2 F1_AS3 F1_AS4 F1_SC1 F1_SC2 F1_SC3 
F1_SC4 F1_SC5 F1_SC6 F1_SC7 F1_SC8 M3_AS1 
M3_AS2 M3_AS3 M3_AS4 M3_SC1 M3_SC2 M3_SC3 
M3_SC4 M3_SC5 M3_SC6 M3_SC7 M3_SC8 F3_AS1 
F3_AS2 F3_AS3 F3_AS4 F3_SC1 F3_SC2 F3_SC3 
F3_SC4 F3_SC5 F3_SC6 F3_SC7 F3_SC8 F4_SC1 
F4_SC2 F4_SC3 F4_SC4 F4_AS1 F4_AS2 F4_AS3 
F4_AS4 M4_SC1 M4_SC2 M4_SC3 M4_SC4 M4_AS1 
M4_AS2 M4_AS3 M4_AS4 IN1momT1 IN2momT1 IN3momT1 
HI1momT1 HI2momT1 HI3momT1 OD1momT1 OD2momT1 
OD3momT1 IN1dadT1 IN2dadT1 IN3dadT1 HI1dadT1 
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HI2dadT1 HI3dadT1 OD1dadT1 OD2dadT1 OD3dadT1 
IN1momT3 IN2momT3 IN3momT3 HI1momT3 HI2momT3 
HI3momT3 OD1momT3 OD2momT3 OD3momT3 IN1dadT3 
IN2dadT3 IN3dadT3 HI1dadT3 HI2dadT3 HI3dadT3 
OD1dadT3 OD2dadT3 OD3dadT3 IN1momT4 IN2momT4 
IN3momT4 HI1momT4 HI2momT4 HI3momT4 OD1momT4 
OD2momT4 OD3momT4 IN1dadT4 IN2dadT4 IN3dadT4 
HI1dadT4 HI2dadT4 HI3dadT4 OD1dadT4 OD2dadT4 
OD3dadT4MT1_CE1 MT1_CE2 MT1_CE3 MT1_CE4 FT1_CE1 
FT1_CE2 FT1_CE3 FT1_CE4 MT3_CE1 MT3_CE2 MT3_CE3 
MT3_CE4 FT3_CE1 FT3_CE2 FT3_CE3 FT3_CE4 FT4_CE1 
FT4_CE2 FT4_CE3 FT4_CE4 MT4_CE1 MT4_CE2 MT4_CE3 
MT4_CE4; 
 
Missing are . ; 
 
Usevariables are HI1momT1 HI1dadT1 HI2momT1 
HI2dadT1 HI3momT1 HI3dadT1 IN1momT1 IN1dadT1 
IN2momT1 IN2dadT1 IN3momT1 IN3dadT1 OD1momT3 
OD1dadT3 OD2momT3 OD2dadT3 OD3momT3 OD3dadT3 
AI1momT4 AI1dadT4 AI2momT4 AI2dadT4 AI3momT4 
AI3dadT4; 
 

Analysis: estimator = ML; 
 

Model: !HI factor structure 
HI1t1 by HI1momT1 HI1dadT1; 
HI2t1 by HI2momT1 HI2dadT1; 
HI3t1 by HI3momT1 HI3dadT1; 
 
HIdadt1 by HI1dadT1 HI2dadT1 HI3dadT1;  
 
HIdadt1 with HI1t1@0 HI2t1@0 HI3t1@0; 
 
!IN factor structure 
IN1t1 by IN1momT1 IN1dadT1; 
IN2t1 by IN2momT1 IN2dadT1; 
IN3t1 by IN3momT1 IN3dadT1; 
 
INdadt1 by IN1dadT1 IN2dadT1 IN3dadT1;  
 
INdadt1 with IN1t1@0 IN2t1@0 IN3t1@0; 
 
!OD factor structure 
OD1t3 by OD1momT3 OD1dadT3; 
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OD2t3 by OD2momT3 OD2dadT3; 
OD3t3 by OD3momT3 OD3dadT3; 
 
ODdadt3 by OD1dadT3 OD2dadT3 OD3dadT3;  
 
ODdadt3 with OD1t3@0 OD2t3@0 OD3t3@0; 
 
!AI factor structure 
AI1t4 by AI1momT4 AI1dadT4; 
AI2t4 by AI2momT4 AI2dadT4; 
AI3t4 by AI3momT4 AI3dadT4; 
 
AIdadt4 by AI1dadT4 AI2dadT4 AI3dadT4;  
 
AIdadt4 with AI1t4@0 AI2t4@0 AI3t4@0; 
 

Output: sampstat stdyx; 
 

 

Mplus Syntax for Figure 3.4 

Title: Latent Means Indicator-specific CT-C(M-1) Model 
for HI, IN, OD, AI 

 
Data: 

 
file is T1T3T4 Kaylee moms dads.dat; 
 

Define: ! reverse key the four academic items moms 
rM1_AS1 = 6 - M1_AS1; rM1_AS2 = 6 - M1_AS2; 
rM1_AS3 = 6 - M1_AS3; rM1_AS4 = 6 - M1_AS4; 
rM3_AS1 = 6 - M3_AS1; rM3_AS2 = 6 - M3_AS2; 
rM3_AS3 = 6 - M3_AS3; rM3_AS4 = 6 - M3_AS4; 
rM4_AS1 = 6 - M4_AS1; rM4_AS2 = 6 - M4_AS2; 
rM4_AS3 = 6 - M4_AS3; rM4_AS4 = 6 - M4_AS4; 
 
! create the three indicators for AI moms 
AI1momt1= mean (rM1_AS1 rM1_AS2);  
AI2momt1= (rM1_AS3); AI3momt1= (rM1_AS4); 
AI1momt3= mean (rM3_AS1 rM3_AS2);  
AI2momt3= (rM3_AS3); AI3momt3= (rM3_AS4); 
AI1momt4= mean (rM4_AS1 rM4_AS2);  
AI2momt4= (rM4_AS3); AI3momt4= (rM4_AS4); 
 
! reverse key codes for academic items dads 
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rF1_AS1 = 6 - F1_AS1; rF1_AS2 = 6 - F1_AS2; 
rF1_AS3 = 6 - F1_AS3; rF1_AS4 = 6 - F1_AS4; 
rF3_AS1 = 6 - F3_AS1; rF3_AS2 = 6 - F3_AS2; 
rF3_AS3 = 6 - F3_AS3; rF3_AS4 = 6 - F3_AS4; 
rF4_AS1 = 6 - F4_AS1; rF4_AS2 = 6 - F4_AS2; 
rF4_AS3 = 6 - F4_AS3; rF4_AS4 = 6 - F4_AS4; 
 
! create the three indicators for AI dads 
AI1dadt1= mean (rF1_AS1 rF1_AS2);  
AI2dadt1= (rF1_AS3); AI3dadt1= (rF1_AS4); 
AI1dadt3= mean (rF3_AS1 rF3_AS2);  
AI2dadt3= (rF3_AS3); AI3dadt3= (rF3_AS4); 
AI1dadt4= mean (rF4_AS1 rF4_AS2);  
AI2dadt4= (rF4_AS3); AI3dadt4= (rF4_AS4); 
 

Variable: Names are code schools sex classrm M1_AS1 
M1_AS2 M1_AS3 M1_AS4 M1_SC1 M1_SC2 M1_SC3 
M1_SC4 M1_SC5 M1_SC6 M1_SC7 M1_SC8 F1_AS1 
F1_AS2 F1_AS3 F1_AS4 F1_SC1 F1_SC2 F1_SC3 
F1_SC4 F1_SC5 F1_SC6 F1_SC7 F1_SC8 M3_AS1 
M3_AS2 M3_AS3 M3_AS4 M3_SC1 M3_SC2 M3_SC3 
M3_SC4 M3_SC5 M3_SC6 M3_SC7 M3_SC8 F3_AS1 
F3_AS2 F3_AS3 F3_AS4 F3_SC1 F3_SC2 F3_SC3 
F3_SC4 F3_SC5 F3_SC6 F3_SC7 F3_SC8 F4_SC1 
F4_SC2 F4_SC3 F4_SC4 F4_AS1 F4_AS2 F4_AS3 
F4_AS4 M4_SC1 M4_SC2 M4_SC3 M4_SC4 M4_AS1 
M4_AS2 M4_AS3 M4_AS4 IN1momT1 IN2momT1 IN3momT1 
HI1momT1 HI2momT1 HI3momT1 OD1momT1 OD2momT1 
OD3momT1 IN1dadT1 IN2dadT1 IN3dadT1 HI1dadT1 
HI2dadT1 HI3dadT1 OD1dadT1 OD2dadT1 OD3dadT1 
IN1momT3 IN2momT3 IN3momT3 HI1momT3 HI2momT3 
HI3momT3 OD1momT3 OD2momT3 OD3momT3 IN1dadT3 
IN2dadT3 IN3dadT3 HI1dadT3 HI2dadT3 HI3dadT3 
OD1dadT3 OD2dadT3 OD3dadT3 IN1momT4 IN2momT4 
IN3momT4 HI1momT4 HI2momT4 HI3momT4 OD1momT4 
OD2momT4 OD3momT4 IN1dadT4 IN2dadT4 IN3dadT4 
HI1dadT4 HI2dadT4 HI3dadT4 OD1dadT4 OD2dadT4 
OD3dadT4MT1_CE1 MT1_CE2 MT1_CE3 MT1_CE4 FT1_CE1 
FT1_CE2 FT1_CE3 FT1_CE4 MT3_CE1 MT3_CE2 MT3_CE3 
MT3_CE4 FT3_CE1 FT3_CE2 FT3_CE3 FT3_CE4 FT4_CE1 
FT4_CE2 FT4_CE3 FT4_CE4 MT4_CE1 MT4_CE2 MT4_CE3 
MT4_CE4; 
 
Missing are . ; 
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Usevariables are HI1momT1 HI1dadT1 HI2momT1 
HI2dadT1 HI3momT1 HI3dadT1 IN1momT1 IN1dadT1 
IN2momT1 IN2dadT1 IN3momT1 IN3dadT1 OD1momT3 
OD1dadT3 OD2momT3 OD2dadT3 OD3momT3 OD3dadT3 
AI1momT4 AI1dadT4 AI2momT4 AI2dadT4 AI3momT4 
AI3dadT4; 
 

Analysis: estimator = ML; 
 

Model: !HI factor structure 
HI1t1 by HI1momT1 HI1dadT1; 
HI2t1 by HI2momT1 HI2dadT1; 
HI3t1 by HI3momT1 HI3dadT1; 
 !latent means approach 
HIt1 by HI1t1@1 HI2t1@1 HI3t1@1; 
MHI2 by HI1t1@-1 HI2t1@1; 
MHI3 by HI1t1@-1 HI3t1@1; 
 !no first-order residual variance allowed 
HI1t1@0 HI2t1@0 HI3t1@0;  
 
HIdadt1 by HI1dadT1 HI2dadT1 HI3dadT1;  
 
HIdadt1 with HI1t1@0 HI2t1@0 HI3t1@0; 
 
!IN factor structure 
IN1t1 by IN1momT1 IN1dadT1; 
IN2t1 by IN2momT1 IN2dadT1; 
IN3t1 by IN3momT1 IN3dadT1; 
 !latent means approach 
INt1 by IN1t1@1 IN2t1@1 IN3t1@1; 
MIN2 by IN1t1@-1 IN2t1@1; 
MIN3 by IN1t1@-1 IN3t1@1; 
 !no first-order residual variance allowed 
IN1t1@0 IN2t1@0 IN3t1@0; 
 
INdadt1 by IN1dadT1 IN2dadT1 IN3dadT1;  
 
INdadt1 with IN1t1@0 IN2t1@0 IN3t1@0; 
 
!OD factor structure  
OD1t3 by OD1momT3 OD1dadT3; 
OD2t3 by OD2momT3 OD2dadT3; 
OD3t3 by OD3momT3 OD3dadT3; 
 !latent means approach 
ODt3 by OD1T3@1 OD2T3@1 OD3T3@1; 
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MOD2 by OD1T3@-1 OD2T3@1; 
MOD3 by OD1T3@-1 OD3T3@1; 
 !no first-order residual variance allowed 
OD1t3@0 OD2t3@0 OD3t3@0; 
 
ODdadt3 by OD1dadT3 OD2dadT3 OD3dadT3;  
 
ODdadt3 with OD1t3@0 OD2t3@0 OD3t3@0; 
 
!AI factor structure 
AI1t4 by AI1momT4 AI1dadT4; 
AI2t4 by AI2momT4 AI2dadT4; 
AI3t4 by AI3momT4 AI3dadT4; 
 !latent means approach 
AIt4 by AI1T4@1 AI2T4@1 AI3T4@1; 
MAI2 by AI1T4@-1 AI2T4@1; 
MAI3 by AI1T4@-1 AI3T4@1; 
 !no first-order residual variance allowed 
AI1t4@0 AI2t4@0 AI3t4@0; 
 
AIdadt4 by AI1dadT4 AI2dadT4 AI3dadT4;  
 
AIdadt4 with AI1t4@0 AI2t4@0 AI3t4@0; 
 
!Unrestricting correlations 
HIt1 INt1 ODt3 AIt4 with MHI2 MHI3 MIN2 MIN3 
MOD2 MOD3 MAI2 MAI3; 
HIt1 with INdadt1 ODdadt3 AIdadt4; 
INt1 with HIdadt1 ODdadt3 AIdadt4; 
ODt3 with HIdadt1 INdadt1 AIdadt4; 
AIt4 with HIdadt1 INdadt1 ODdadt3; 
 
!Restricting correlations 
HIdadt1 with HIt1@0 MHI2@0 MHI3@0; 
INdadt1 with INt1@0 MIN2@0 MIN3@0; 
ODdadt3 with ODt3@0 MOD2@0 MOD3@0; 
AIdadt4 with AIt4@0 MAI2@0 MAI3@0; 
 

Output: sampstat stdyx; 
 

 

Mplus Syntax for Figure 3.5 
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Title: M4 Model without the latent interaction term 

for HI, IN, OD, AI 
 
Data: 

 
file is T1T3T4 Kaylee moms dads.dat; 
 

Define: ! reverse key the four academic items moms 
rM1_AS1 = 6 - M1_AS1; rM1_AS2 = 6 - M1_AS2; 
rM1_AS3 = 6 - M1_AS3; rM1_AS4 = 6 - M1_AS4; 
rM3_AS1 = 6 - M3_AS1; rM3_AS2 = 6 - M3_AS2; 
rM3_AS3 = 6 - M3_AS3; rM3_AS4 = 6 - M3_AS4; 
rM4_AS1 = 6 - M4_AS1; rM4_AS2 = 6 - M4_AS2; 
rM4_AS3 = 6 - M4_AS3; rM4_AS4 = 6 - M4_AS4; 
 
! create the three indicators for AI moms 
AI1momt1= mean (rM1_AS1 rM1_AS2);  
AI2momt1= (rM1_AS3); AI3momt1= (rM1_AS4); 
AI1momt3= mean (rM3_AS1 rM3_AS2);  
AI2momt3= (rM3_AS3); AI3momt3= (rM3_AS4); 
AI1momt4= mean (rM4_AS1 rM4_AS2);  
AI2momt4= (rM4_AS3); AI3momt4= (rM4_AS4); 
 
! reverse key codes for academic items dads 
rF1_AS1 = 6 - F1_AS1; rF1_AS2 = 6 - F1_AS2; 
rF1_AS3 = 6 - F1_AS3; rF1_AS4 = 6 - F1_AS4; 
rF3_AS1 = 6 - F3_AS1; rF3_AS2 = 6 - F3_AS2; 
rF3_AS3 = 6 - F3_AS3; rF3_AS4 = 6 - F3_AS4; 
rF4_AS1 = 6 - F4_AS1; rF4_AS2 = 6 - F4_AS2; 
rF4_AS3 = 6 - F4_AS3; rF4_AS4 = 6 - F4_AS4; 
 
! create the three indicators for AI dads 
AI1dadt1= mean (rF1_AS1 rF1_AS2);  
AI2dadt1= (rF1_AS3); AI3dadt1= (rF1_AS4); 
AI1dadt3= mean (rF3_AS1 rF3_AS2);  
AI2dadt3= (rF3_AS3); AI3dadt3= (rF3_AS4); 
AI1dadt4= mean (rF4_AS1 rF4_AS2);  
AI2dadt4= (rF4_AS3); AI3dadt4= (rF4_AS4); 
 

Variable: Names are code schools sex classrm M1_AS1 
M1_AS2 M1_AS3 M1_AS4 M1_SC1 M1_SC2 M1_SC3 
M1_SC4 M1_SC5 M1_SC6 M1_SC7 M1_SC8 F1_AS1 
F1_AS2 F1_AS3 F1_AS4 F1_SC1 F1_SC2 F1_SC3 
F1_SC4 F1_SC5 F1_SC6 F1_SC7 F1_SC8 M3_AS1 
M3_AS2 M3_AS3 M3_AS4 M3_SC1 M3_SC2 M3_SC3 
M3_SC4 M3_SC5 M3_SC6 M3_SC7 M3_SC8 F3_AS1 
F3_AS2 F3_AS3 F3_AS4 F3_SC1 F3_SC2 F3_SC3 
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F3_SC4 F3_SC5 F3_SC6 F3_SC7 F3_SC8 F4_SC1 
F4_SC2 F4_SC3 F4_SC4 F4_AS1 F4_AS2 F4_AS3 
F4_AS4 M4_SC1 M4_SC2 M4_SC3 M4_SC4 M4_AS1 
M4_AS2 M4_AS3 M4_AS4 IN1momT1 IN2momT1 IN3momT1 
HI1momT1 HI2momT1 HI3momT1 OD1momT1 OD2momT1 
OD3momT1 IN1dadT1 IN2dadT1 IN3dadT1 HI1dadT1 
HI2dadT1 HI3dadT1 OD1dadT1 OD2dadT1 OD3dadT1 
IN1momT3 IN2momT3 IN3momT3 HI1momT3 HI2momT3 
HI3momT3 OD1momT3 OD2momT3 OD3momT3 IN1dadT3 
IN2dadT3 IN3dadT3 HI1dadT3 HI2dadT3 HI3dadT3 
OD1dadT3 OD2dadT3 OD3dadT3 IN1momT4 IN2momT4 
IN3momT4 HI1momT4 HI2momT4 HI3momT4 OD1momT4 
OD2momT4 OD3momT4 IN1dadT4 IN2dadT4 IN3dadT4 
HI1dadT4 HI2dadT4 HI3dadT4 OD1dadT4 OD2dadT4 
OD3dadT4MT1_CE1 MT1_CE2 MT1_CE3 MT1_CE4 FT1_CE1 
FT1_CE2 FT1_CE3 FT1_CE4 MT3_CE1 MT3_CE2 MT3_CE3 
MT3_CE4 FT3_CE1 FT3_CE2 FT3_CE3 FT3_CE4 FT4_CE1 
FT4_CE2 FT4_CE3 FT4_CE4 MT4_CE1 MT4_CE2 MT4_CE3 
MT4_CE4; 
 
Missing are . ; 
 
Usevariables are HI1momT1 HI1dadT1 HI2momT1 
HI2dadT1 HI3momT1 HI3dadT1 IN1momT1 IN1dadT1 
IN2momT1 IN2dadT1 IN3momT1 IN3dadT1 OD1momT3 
OD1dadT3 OD2momT3 OD2dadT3 OD3momT3 OD3dadT3 
AI1momT4 AI1dadT4 AI2momT4 AI2dadT4 AI3momT4 
AI3dadT4; 
 

Analysis: estimator = ML; 
 

Model: !HI factor structure 
HI1t1 by HI1momT1 HI1dadT1; 
HI2t1 by HI2momT1 HI2dadT1; 
HI3t1 by HI3momT1 HI3dadT1; 
 !latent means approach 
HIt1 by HI1t1@1 HI2t1@1 HI3t1@1; 
MHI2 by HI1t1@-1 HI2t1@1; 
MHI3 by HI1t1@-1 HI3t1@1; 
 !no first-order residual variance allowed 
HI1t1@0 HI2t1@0 HI3t1@0;  
 
HIdadt1 by HI1dadT1 HI2dadT1 HI3dadT1;  
 
HIdadt1 with HI1t1@0 HI2t1@0 HI3t1@0; 
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!IN factor structure 
IN1t1 by IN1momT1 IN1dadT1; 
IN2t1 by IN2momT1 IN2dadT1; 
IN3t1 by IN3momT1 IN3dadT1; 
 !latent means approach 
INt1 by IN1t1@1 IN2t1@1 IN3t1@1; 
MIN2 by IN1t1@-1 IN2t1@1; 
MIN3 by IN1t1@-1 IN3t1@1; 
 !no first-order residual variance allowed 
IN1t1@0 IN2t1@0 IN3t1@0; 
 
INdadt1 by IN1dadT1 IN2dadT1 IN3dadT1;  
 
INdadt1 with IN1t1@0 IN2t1@0 IN3t1@0; 
 
!OD factor structure  
OD1t3 by OD1momT3 OD1dadT3; 
OD2t3 by OD2momT3 OD2dadT3; 
OD3t3 by OD3momT3 OD3dadT3; 
 !latent means approach 
ODt3 by OD1T3@1 OD2T3@1 OD3T3@1; 
MOD2 by OD1T3@-1 OD2T3@1; 
MOD3 by OD1T3@-1 OD3T3@1; 
 !no first-order residual variance allowed 
OD1t3@0 OD2t3@0 OD3t3@0; 
 
ODdadt3 by OD1dadT3 OD2dadT3 OD3dadT3;  
 
ODdadt3 with OD1t3@0 OD2t3@0 OD3t3@0; 
 
!AI factor structure 
AI1t4 by AI1momT4 AI1dadT4; 
AI2t4 by AI2momT4 AI2dadT4; 
AI3t4 by AI3momT4 AI3dadT4; 
 !latent means approach 
AIt4 by AI1T4@1 AI2T4@1 AI3T4@1; 
MAI2 by AI1T4@-1 AI2T4@1; 
MAI3 by AI1T4@-1 AI3T4@1; 
 !no first-order residual variance allowed 
AI1t4@0 AI2t4@0 AI3t4@0; 
 
AIdadt4 by AI1dadT4 AI2dadT4 AI3dadT4;  
 
AIdadt4 with AI1t4@0 AI2t4@0 AI3t4@0; 
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!Unrestricting correlations 
HIt1 INt1 ODt3 AIt4 with MHI2 MHI3 MIN2 MIN3 
MOD2 MOD3 MAI2 MAI3; 
HIt1 with INdadt1 ODdadt3 AIdadt4; 
INt1 with HIdadt1 ODdadt3 AIdadt4; 
ODt3 with HIdadt1 INdadt1 AIdadt4; 
AIt4 with HIdadt1 INdadt1 ODdadt3; 
 
!Restricting correlations 
HIdadt1 with HIt1@0 MHI2@0 MHI3@0; 
INdadt1 with INt1@0 MIN2@0 MIN3@0; 
ODdadt3 with ODt3@0 MOD2@0 MOD3@0; 
AIdadt4 with AIt4@0 MAI2@0 MAI3@0; 
 
!M4 Analysis 
INt1 (e); 
AIt4 on HIt1 (c); 
AIt4 on ODt3 (b); 
ODt3 on HIt1 (a1); 
ODt3 on INt1 (a2); 
 

Output: sampstat stdyx; 
 

 

Mplus Syntax for Figure 3.6 

Title: M4 Model with bias-corrected bootstrap for HI, 
IN, OD, AI 

 
Data: 

 
file is T1T3T4 Kaylee moms dads.dat; 
 

Define: ! reverse key the four academic items moms 
rM1_AS1 = 6 - M1_AS1; rM1_AS2 = 6 - M1_AS2; 
rM1_AS3 = 6 - M1_AS3; rM1_AS4 = 6 - M1_AS4; 
rM3_AS1 = 6 - M3_AS1; rM3_AS2 = 6 - M3_AS2; 
rM3_AS3 = 6 - M3_AS3; rM3_AS4 = 6 - M3_AS4; 
rM4_AS1 = 6 - M4_AS1; rM4_AS2 = 6 - M4_AS2; 
rM4_AS3 = 6 - M4_AS3; rM4_AS4 = 6 - M4_AS4; 
 
! create the three indicators for AI moms 
AI1momt1= mean (rM1_AS1 rM1_AS2);  
AI2momt1= (rM1_AS3); AI3momt1= (rM1_AS4); 
AI1momt3= mean (rM3_AS1 rM3_AS2);  
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AI2momt3= (rM3_AS3); AI3momt3= (rM3_AS4); 
AI1momt4= mean (rM4_AS1 rM4_AS2);  
AI2momt4= (rM4_AS3); AI3momt4= (rM4_AS4); 
 
! reverse key codes for academic items dads 
rF1_AS1 = 6 - F1_AS1; rF1_AS2 = 6 - F1_AS2; 
rF1_AS3 = 6 - F1_AS3; rF1_AS4 = 6 - F1_AS4; 
rF3_AS1 = 6 - F3_AS1; rF3_AS2 = 6 - F3_AS2; 
rF3_AS3 = 6 - F3_AS3; rF3_AS4 = 6 - F3_AS4; 
rF4_AS1 = 6 - F4_AS1; rF4_AS2 = 6 - F4_AS2; 
rF4_AS3 = 6 - F4_AS3; rF4_AS4 = 6 - F4_AS4; 
 
! create the three indicators for AI dads 
AI1dadt1= mean (rF1_AS1 rF1_AS2);  
AI2dadt1= (rF1_AS3); AI3dadt1= (rF1_AS4); 
AI1dadt3= mean (rF3_AS1 rF3_AS2);  
AI2dadt3= (rF3_AS3); AI3dadt3= (rF3_AS4); 
AI1dadt4= mean (rF4_AS1 rF4_AS2);  
AI2dadt4= (rF4_AS3); AI3dadt4= (rF4_AS4); 
 

Variable: Names are code schools sex classrm M1_AS1 
M1_AS2 M1_AS3 M1_AS4 M1_SC1 M1_SC2 M1_SC3 
M1_SC4 M1_SC5 M1_SC6 M1_SC7 M1_SC8 F1_AS1 
F1_AS2 F1_AS3 F1_AS4 F1_SC1 F1_SC2 F1_SC3 
F1_SC4 F1_SC5 F1_SC6 F1_SC7 F1_SC8 M3_AS1 
M3_AS2 M3_AS3 M3_AS4 M3_SC1 M3_SC2 M3_SC3 
M3_SC4 M3_SC5 M3_SC6 M3_SC7 M3_SC8 F3_AS1 
F3_AS2 F3_AS3 F3_AS4 F3_SC1 F3_SC2 F3_SC3 
F3_SC4 F3_SC5 F3_SC6 F3_SC7 F3_SC8 F4_SC1 
F4_SC2 F4_SC3 F4_SC4 F4_AS1 F4_AS2 F4_AS3 
F4_AS4 M4_SC1 M4_SC2 M4_SC3 M4_SC4 M4_AS1 
M4_AS2 M4_AS3 M4_AS4 IN1momT1 IN2momT1 IN3momT1 
HI1momT1 HI2momT1 HI3momT1 OD1momT1 OD2momT1 
OD3momT1 IN1dadT1 IN2dadT1 IN3dadT1 HI1dadT1 
HI2dadT1 HI3dadT1 OD1dadT1 OD2dadT1 OD3dadT1 
IN1momT3 IN2momT3 IN3momT3 HI1momT3 HI2momT3 
HI3momT3 OD1momT3 OD2momT3 OD3momT3 IN1dadT3 
IN2dadT3 IN3dadT3 HI1dadT3 HI2dadT3 HI3dadT3 
OD1dadT3 OD2dadT3 OD3dadT3 IN1momT4 IN2momT4 
IN3momT4 HI1momT4 HI2momT4 HI3momT4 OD1momT4 
OD2momT4 OD3momT4 IN1dadT4 IN2dadT4 IN3dadT4 
HI1dadT4 HI2dadT4 HI3dadT4 OD1dadT4 OD2dadT4 
OD3dadT4MT1_CE1 MT1_CE2 MT1_CE3 MT1_CE4 FT1_CE1 
FT1_CE2 FT1_CE3 FT1_CE4 MT3_CE1 MT3_CE2 MT3_CE3 
MT3_CE4 FT3_CE1 FT3_CE2 FT3_CE3 FT3_CE4 FT4_CE1 
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FT4_CE2 FT4_CE3 FT4_CE4 MT4_CE1 MT4_CE2 MT4_CE3 
MT4_CE4; 
 
Missing are . ; 
 
Usevariables are HI1momT1 HI1dadT1 HI2momT1 
HI2dadT1 HI3momT1 HI3dadT1 IN1momT1 IN1dadT1 
IN2momT1 IN2dadT1 IN3momT1 IN3dadT1 OD1momT3 
OD1dadT3 OD2momT3 OD2dadT3 OD3momT3 OD3dadT3 
AI1momT4 AI1dadT4 AI2momT4 AI2dadT4 AI3momT4 
AI3dadT4; 
 

Analysis: type = RANDOM; 
algorithm = INTEGRATION; 
estimator = ML; 
 

Model: !HI factor structure 
HI1t1 by HI1momT1 HI1dadT1; 
HI2t1 by HI2momT1 HI2dadT1; 
HI3t1 by HI3momT1 HI3dadT1; 
 !latent means approach 
HIt1 by HI1t1@1 HI2t1@1 HI3t1@1; 
MHI2 by HI1t1@-1 HI2t1@1; 
MHI3 by HI1t1@-1 HI3t1@1; 
 !no first-order residual variance allowed 
HI1t1@0 HI2t1@0 HI3t1@0;  
 
HIdadt1 by HI1dadT1 HI2dadT1 HI3dadT1;  
 
HIdadt1 with HI1t1@0 HI2t1@0 HI3t1@0; 
 
!IN factor structure 
IN1t1 by IN1momT1 IN1dadT1; 
IN2t1 by IN2momT1 IN2dadT1; 
IN3t1 by IN3momT1 IN3dadT1; 
 !latent means approach 
INt1 by IN1t1@1 IN2t1@1 IN3t1@1; 
MIN2 by IN1t1@-1 IN2t1@1; 
MIN3 by IN1t1@-1 IN3t1@1; 
 !no first-order residual variance allowed 
IN1t1@0 IN2t1@0 IN3t1@0; 
 
INdadt1 by IN1dadT1 IN2dadT1 IN3dadT1;  
 
INdadt1 with IN1t1@0 IN2t1@0 IN3t1@0; 
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!OD factor structure  
OD1t3 by OD1momT3 OD1dadT3; 
OD2t3 by OD2momT3 OD2dadT3; 
OD3t3 by OD3momT3 OD3dadT3; 
 !latent means approach 
ODt3 by OD1T3@1 OD2T3@1 OD3T3@1; 
MOD2 by OD1T3@-1 OD2T3@1; 
MOD3 by OD1T3@-1 OD3T3@1; 
 !no first-order residual variance allowed 
OD1t3@0 OD2t3@0 OD3t3@0; 
 
ODdadt3 by OD1dadT3 OD2dadT3 OD3dadT3;  
 
ODdadt3 with OD1t3@0 OD2t3@0 OD3t3@0; 
 
!AI factor structure 
AI1t4 by AI1momT4 AI1dadT4; 
AI2t4 by AI2momT4 AI2dadT4; 
AI3t4 by AI3momT4 AI3dadT4; 
 !latent means approach 
AIt4 by AI1T4@1 AI2T4@1 AI3T4@1; 
MAI2 by AI1T4@-1 AI2T4@1; 
MAI3 by AI1T4@-1 AI3T4@1; 
 !no first-order residual variance allowed 
AI1t4@0 AI2t4@0 AI3t4@0; 
 
AIdadt4 by AI1dadT4 AI2dadT4 AI3dadT4;  
 
AIdadt4 with AI1t4@0 AI2t4@0 AI3t4@0; 
 
!Unrestricting correlations 
HIt1 INt1 ODt3 AIt4 with MHI2 MHI3 MIN2 MIN3 
MOD2 MOD3 MAI2 MAI3; 
HIt1 with INdadt1 ODdadt3 AIdadt4; 
INt1 with HIdadt1 ODdadt3 AIdadt4; 
ODt3 with HIdadt1 INdadt1 AIdadt4; 
AIt4 with HIdadt1 INdadt1 ODdadt3; 
 
!Restricting correlations 
HIdadt1 with HIt1@0 MHI2@0 MHI3@0; 
INdadt1 with INt1@0 MIN2@0 MIN3@0; 
ODdadt3 with ODt3@0 MOD2@0 MOD3@0; 
AIdadt4 with AIt4@0 MAI2@0 MAI3@0; 
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!M4 Analysis 
INt1 (e); 
AIt4 on HIt1 (c); 
AIt4 on ODt3 (b); 
ODt3 on HIt1 (a1); 
ODt3 on INt1 (a2); 
HIxINt1 | HIt1 xwith INt1; 
ODt3 on HIxINt1 (a3); 
      
Model constraint: 
NEW(INDEXMM P2SDW P1SDW MEANW N1SDW N2SDW); 
INDEXMM = a3*b; 
P2SDW = (a1 + a3*2*SQRT(e)) * b; 
P1SDW = (a1 + a3*1*SQRT(e)) * b; 
MEANW = (a1 + a3*0*SQRT(e)) * b; 
N1SDW = (a1 - a3*1*SQRT(e)) * b; 
N2SDW = (a1 - a3*2*SQRT(e)) * b; 
 

Analysis: bootstrap = 1000; 
Output: cinterval(bcbootstrap); 
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 Appendix D: Results from Meta-Analytic Literature Review 
 
 

ID X variable M variable Y variable W variable N miss 
1a  2a  3a  b  c′  

2 Bipolar disorder Negative emotions Nonsuicidal self injury Behavioral 
impulsivity 

2994 .34 .26 -9 .28 .06 -9 

2 Bipolar disorder Negative emotions Nonsuicidal self injury Self-criticism 2990 .34 .26 -9 .00 .06 -9 
4 Social support from 

friends 
Ability beliefs about 
physical activity 

Physical activity 
enjoyment 

Support seeking self 
efficacy 

327 .04 .12 .38 .12 .22 .11 

4 Social support from 
friends 

Subjective task value 
toward physical 
activity 

Physical activity 
enjoyment 

Support seeking self 
efficacy 

327 .04 .06 .32 .02 .12 .11 

17 Adhd Self-awareness Social skills 
impairment 

Depression 171 .05 .26 .02 .23 .17 .25 

17 Adhd Emotional control Social skills 
impairment 

Depression 171 .05 .15 .07 .08 .14 .19 

19 Substance use disorder Behavioral health 
services 

Medical treatment 
utilization 

Depression 224 -9 .06 -.68 -.07 .57 .46 

21 Difficultness (age 4.5) Reactivity (age 12.5) Agreeableness (age 
16.5) 

Parental reasoning 
(age 8.5) 

965 .11 .19 -.04 .01 -.30 -.08 

21 Difficultness (age 4.5) Reactivity (age 12.5) Agreeableness (age 
16.5) 

Parental warmth 
(age 8.5) 

965 .11 .20 -.01 .07 -.22 -.07 

21 Difficultness (age 4.5) Reactivity (age 12.5) Agreeableness (age 
16.5) 

Parental punishment 
(age 8.5) 

965 .11 .18 .05 .09 -.23 -.11 

25 Depression Hopelessness Likelihood of 
experiencing suicide 
ideation 

Social support 2034 -9 .45 -.19 -.20 .20 .34 

25 Depression Hopelessness Severity of suicidal 
ideation 

Social support 2034 -9 .45 -.19 -.20 .21 .33 
 

26 Depressive symptoms Characterological self-
blame 

Victimization Friend depressive 
symptoms 

5374 -9 .10 .01 .03 .19 .08 

36 Felt age Awareness of age-
related change (aarc) 
gains 

Physical functioning Age 819 -9 .04 .05 .05 .07 .03 

36 Felt age AARC gains Life satisfaction Age 819 -9 .04 .05 .05 .07 .05 
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36 Atoa Aarc gains Physical functioning Age 819 -9 .07 .10 .04 .07 .02 
36 Atoa Aarc gains Life satisfaction Age 819 -9 .07 .10 .04 .04 .11 
36 Felt age Aarc losses Physical functioning Age 819 -9 .10 .15 .05 .01 .00 
36 Felt age Aarc losses Life satisfaction Age 819 -9 .10 .15 .05 .14 .05 
36 Atoa Aarc losses Physical functioning Age 819 -9 .15 .06 .04 .04 .02 
36 Atoa Aarc losses Life satisfaction Age 819 -9 .16 .05 .05 .07 .11 
37 Maternal depression 

(prenatal & 6 month 
avg) 

Unresponsive 
behaviors (6 months) 

Internalizing behaviors 
(2 years) 

Observed infant 
affect 

259 -9 .34 -9 .16 .10 .24 

37 Maternal depression 
(prenatal & 6 month 
avg) 

Unresponsive 
behaviors (6 months) 

Externalizing 
behaviors (2 years) 

Observed infant 
affect 

259 -9 .34 -9 .16 .13 .13 

46 Gender noncomformity Homophobic name-
calling 

Social anxiety Sexual attraction 1,026 -9 .11 .11 .06 .07 .28 

46 Gender noncomformity Homophobic name-
calling 

Psychological distress Sexual attraction 1,026 -9 .11 .11 .06 .19 .26 

47 Age 15 romantic 
relationship 

Age 20 chronic stress Age 20 depressive 
symptoms 

5-httlpr (genetics) 815 .13 .05 .05 .08 .15 .04 

49 Attentional impulsivity Perceived self-
regulatory success in 
dieting 

Body mass index 
percentile 

Motor impulsivity 122 -9 .15 .05 .22 .29 .03 

49 Attentional impulsivity Perceived self-
regulatory success in 
dieting 

Body mass index 
percentile 

Non-planning 
impulsivity 

122 -9 .15 .22 .02 .29 .03 

50 Negative urgency Eating expectancies Dysregulated eating Appearance 
pressures 

313 -9 .36 .24 .06 .22 .36 

50 Negative urgency Eating expectancies Dysregulated eating Thin-ideal 
internalization 

313 -9 .36 .02 .11 .37 .37 

50 Negative urgency Eating expectancies Dysregulated eating Body dissatisfaction 313 -9 .37 .06 .01 .42 .33 
50 Negative urgency Eating expectancies Dysregulated eating Dietary restraint 313 -9 .38 .10 .02 .41 .40 
53 Peer emotional 

victimization 
Hopelessness Depressive symptoms Future orientation 259 -9 .20 .01 .19 .21 .23 

53 Familial emotional 
victimization 

Hopelessness Depressive symptoms Future orientation 259 -9 .21 .10 .16 .19 .27 
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55 Life event stress Early maladaptive 
schemas 

Binge eating Impulsivity 2359 .08 .42 .21 .06 .18 .09 

56 Play group vs play as 
usual 

Mothers power 
assertive discipline 

Commited compliance Mothers self-report 
life satisfaction 

186 .13 -.08 .19 -.26 -.25 -9 

56 Play group vs play as 
usual 

Mothers power 
assertive discipline 

Opposition Mothers self-report 
life satisfaction 

186 .13 -.08 .19 -.26 .26 -9 

56 Play group vs play as 
usual 

Mothers power 
assertive discipline 

Externalizing 
behaviors 

Mothers self-report 
life satisfaction 

186 .13 -.08 .19 -.26 .16 -9 

56 Play group vs play as 
usual 

Mothers power 
assertive discipline 

Internalizing behaviors Mothers self-report 
life satisfaction 

186 .13 -.08 .19 -.26 .10 -9 

56 Play group vs play as 
usual 

Mothers power 
assertive discipline 

Commited compliance Clinician rated 
maternal 
psychosocial 
functioning 

186 .13 -.07 .00 -.04 -.27 -9 

56 Play group vs play as 
usual 

Mothers power 
assertive discipline 

Opposition Clinician rated 
maternal 
psychosocial 
functioning 

186 .13 -.07 .00 -.04 .28 -9 

56 Play group vs play as 
usual 

Mothers power 
assertive discipline 

Externalizing 
behaviors 

Clinician rated 
maternal 
psychosocial 
functioning 

186 .13 -.07 .00 -.04 .15 -9 

56 Play group vs play as 
usual 

Mothers power 
assertive discipline 

Internalizing behaviors Clinician rated 
maternal 
psychosocial 
functioning 

186 .13 -.07 .00 -.04 .07 -9 

58 Emotionally depriving Disconnection/ 
rejection 

Depressive symptoms Negative affect 403 -9 .04 .22 .02 .64 .03 

58 Emotionally depriving Disconnection/ 
rejection 

Depressive symptoms Extraversion 403 -9 .05 .15 .01 .64 .03 

58 Emotionally depriving Impaired autonomy & 
performance 

Depressive symptoms Negative affect 403 -9 .01 .23 .05 .66 .05 

58 Emotionally depriving Impaired autonomy & 
performance 

Depressive symptoms Extraversion 403 -9 .00 .14 .04 .66 .05 

58 Over-protective Disconnection/ 
rejection 

Depressive symptoms Negative affect 403 -9 
 

.03 .14 .08 .64 .02 
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58 Over-protective Disconnection/ 
rejection 

Depressive symptoms Extraversion 403 -9 .05 .15 .01 .64 .02 

58 Over-protective Impaired autonomy & 
performance 

Depressive symptoms Negative affect 403 -9 .06 .14 .11 .67 .04 

58 Over-protective Impaired autonomy & 
performance 

Depressive symptoms Extraversion 403 -9 .02 .09 .02 .67 .04 

58 Belittling Disconnection/ 
rejection 

Depressive symptoms Negative affect 403 -9 .03 .19 .08 .63 .04 

58 Belittling Disconnection/ 
rejection 

Depressive symptoms Extraversion 403 -9 .08 .27 .12 .63 .04 

58 Belittling Impaired autonomy & 
performance 

Depressive symptoms Negative affect 403 -9 .03 .24 .08 .71 .03 

58 Belittling Impaired autonomy & 
performance 

Depressive symptoms Extraversion 403 -9 .12 .25 .16 .71 .03 

59 Maternal depressive 
symptoms 

Warmth Toddler internalizing 
outcomes 

Toddler negative 
emotionality 

91 .23 .09 .15 .05 .04 .12 

63 Mindfulness Satisfaction Physical activity Activity habit 398 -9 .38 .16 -.09 .10 .03 
69 Anti-bisexual prejudice Expectations of stigma Psychological distress Bicultural self-

efficacy (SE) 
411 -9 .28 -.22 .05 .10 .11 

69 Anti-bisexual prejudice Internalized biphobia Psychological distress Bicultural SE 411 -9 .02 -.34 .04 .12 .11 
69 Anti-bisexual prejudice Outness Psychological distress Bicultural SE 411 -9 .22 .15 .06 -.07 .11 
69 Anti-bisexual prejudice Expectations of stigma Psychological well-

being 
Bicultural SE 411 -9 .28 -.22 .05 -.12 -.03 

69 Anti-bisexual prejudice Internalized biphobia Psychological well-
being 

Bicultural SE 411 -9 .02 -.36 .04 -.20 -.03 

69 Anti-bisexual prejudice Outness Psychological well-
being 

Bicultural SE 411 -9 .22 .15 .06 .08 -.03 

69 Anti-bisexual prejudice Expectations of stigma Psychological distress Cognitive flexibility 411 -9 .31 -.17 .14 .04 .12 
69 Anti-bisexual prejudice Internalized biphobia Psychological distress Cognitive flexibility 411 -9 .08 -.23 .01 .05 .12 
69 Anti-bisexual prejudice Outness Psychological distress Cognitive flexibility 411 -9 .22 .15 .06 -.01 .12 
69 Anti-bisexual prejudice Expectations of stigma Psychological well-

being 
Cognitive flexibility 411 -9 .31 -.17 .14 -.11 -.08 

69 Anti-bisexual prejudice Internalized biphobia Psychological well-
being 

Cognitive flexibility 411 -9 .08 -.23 .01 -.13 -.08 

69 Anti-bisexual prejudice Outness Psychological well-
being 

Cognitive flexibility 411 -9 .22 .15 .06 .03 -.08 
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70 Early life experiences Social comparison Psychotic experiences Loneliness 785 .00 .17 .05 .01 .06 .10 
70 Early life experiences Post-traumatic 

cognitions 
Psychotic experiences Loneliness 785 .00 .46 .08 .16 .16 .10 

70 Early life experiences Peer victimisation Psychotic experiences Loneliness 785 .00 .24 .04 .05 .14 .10 
73 Supportive reactions to 

child's negative 
emotions 

Child emotion 
regulation 

Internalizing 
symptoms 

Parent/child dyadic 
collaboration 

150 -9 .39 -9 .21 -.34 -.15 

73 Supportive reactions to 
child's negative 
emotions 

Child emotion 
regulation 

Externalizing 
symptoms 

Parent/child dyadic 
collaboration 

150 -9 .39 -9 .21 -.35 -.10 

73 Unsupportive reactions 
to child's negative 
emotions 

Child emotion 
regulation 

Internalizing 
symptoms 

Parent/child dyadic 
collaboration 

150 -9 -.20 -9 -.08 -.36 .14 

73 Unsupportive reactions 
to child's negative 
emotions 

Child emotion 
regulation 

Externalizing 
symptoms 

Parent/child dyadic 
collaboration 

150 -9 -.20 -9 -.08 -.38 .04 

86 Intervention condition Post-intervention 
communication 

Trajectory of 
internalizing 

Baseline 
communication 

721 -9 .16 .03 .14 .12 .07 

94 Rejection sensitivity Friendship self-
silencing 

Friendship support Parental support 103 -9 .26 -9 .24 .25 .10 

94 Rejection sensitivity Friendship self-
silencing 

Depression Parental support 103 -9 .24 -9 .24 .25 .17 

99 Pain intensity Pain catastrophizing Pain interference Satisfaction with life 142 -9 .31 .34 .21 .39 .38 
100 School connectedness Affiliation with 

deviant peers 
Problematic internet 
use 

Self-control 2758 .02 -.21 -.09 .07 .18 -.03 

111 SES Adolescent's self 
esteem 

Life satisfaction Optimism 688 -9 -.20 .68 .08 .18 -.07 

124 Prenatal father 
involvement 

Post-birth father child 
involvement 

Maternal identity Interparental 
relationship quality 

125 -9 .61 .32 .09 .14 .31 

129 Trauma exposure Post-traumatic stress Posttraumatic growth Resilience 359 -9 .16 -9 .10 .05 .21 
130 Self-efficacy Intention Vigorous physical 

activity (1 week later) 
Friend support 226 -9 .70 .14 -.10 .27 -.07 

 
Note. Bold values indicate estimates that were statistically significant. N = the sample size, miss = proportion of missing in analysis.
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Appendix E: Standardizing M and Y Trait Factors  
 

Standardizing X, W, M, and Y constructs in order to calculate factor loading estimates to 
determine the relative proportion of method variance with each construct. Known values 
used in calculations are included in the table below. Note that all X, M, W, and Y latent 
means were set to 0.  
 

Parameter Label Parameter Value 
( )imtVar ε  .2 

( )imXVar T  1.0 

( )imWVar T  1.0 

( )imMVar T  1.0 

( )imYVar T  1.0 

( )imtVar M  1.0 

1 1( , )mX mWCorr T T  .5 

1a  .275 

2a  .255 

3a  .147 

b  .235 
c′  .195 

 
Models were standardized by setting variances for X, W, M, and Y to 1.0. To standardize 
the M and Y factors in Mplus, residual variances for M and Y were calculated and 
appropriate model constraints were implemented. Covariance algebra was used following  
MacKinnon (2008) and Appendix A in Thoemmes, MacKinnon, & Reiser (2010). 
 
Standardizing M 
 
The variance of the trait, M, is dependent on the variance of the trait, X, the variance of 
the trait, W, the covariance between X and W, and a residual term.  
 

2 2
1 1 1 2 1 1 2 1 1( ) ( ) ( ) 2 ( , ) ( )mM mX mW mX mW MVar T a Var T a Var T a a Cov T T Var e= + + +  

 
Substituting 1 for all factor variances resulted in a simplified equation shown below. 
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2 2
1 2 1 2 1 1

2 2
1 2 1 2 1 1

1 1 1 2 ( , ) ( )

1 2 ( , ) ( )

mX mW M

mX mW M

a a a a Cov T T Var e

a a a a Cov T T Var e

= × + × + +

= + + +

 

 
Algebra was used to solve for the residual factor variance of the M trait factor, and values 
were substituted to find the residual variance for M.  
 

2 2
1 2 1 2 1 1

2 2

( ) 1 2 ( , )
1 (.275) (.255) 2(.275)(.255)(.5)
.7892

M mX mWVar e a a a a Cov T T= − − −

= − − −
=

 

 
The residual variance for M, given other known values, was ( ) .7892MVar e = . 
 
Standardizing Y 
 
The variance of the trait, Y, is dependent on the variance of X, the variance of M, the 
covariance between X and M (which is the product of the 1a  path and the variance of X, 
MacKinnon, 2008, p. 86), and a residual term.  
 

2 2
1 1 1 1 1( ) ( ) ( ) 2 ( , ) ( )mY mM mX mM mX YVar T b Var T c Var T bc Cov T T Var e′ ′= + + +  

 
The variance of the trait, M, is dependent on the variance of X, the variance of W, the 
covariance between X and W, and a residual term, as shown in the section above. 
Substituting the equation for the variance of M results in the following full equation. 
 

[ ]

2 2 2
1 1 1 2 1 1 2 1 1

2
1 1 1

( ) ( ) ( ) 2 ( , ) ( )

      ( ) 2 ( ) ( )
mY mX mW mX mW M

mX mX Y

Var T b a Var T a Var T a a Cov T T Var e

c Var T bc a Var T Var e

 = + + + 
′ ′+ + +

 

 
Substituting 1 for all factor variances resulted in a simplified equation as shown below. 
 

2 2 2 2
1 2 1 2 1 1 1

2 2 2 2
1 2 1 2 1 1 1

1 1 1 2 ( , ) ( ) 1 2 1 ( )

1 2 ( , ) ( ) 2 ( )

mX mW M Y

mX mW M Y

b a a a a Cov T T Var e c a bc Var e

b a a a a Cov T T Var e c a bc Var e

′ ′ = × + × + + + × + × + 

′ ′ = + + + + + + 

 

 
Algebra was used to solve for the residual factor variance for the M trait factor. 
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2 2 2 2
1 2 1 2 1 1 1( ) 1 2 ( , ) ( ) 2Y mX mW MVar e b a a a a Cov T T Var e c a bc′ ′ = − + + + − −   

 
It was also known that the variance of the M trait factor was equal to 1, meaning the 
equation could be even further reduced. 
 

2 2
1

2 2
1

( ) 1 1 2

1 2

YVar e b c a bc

b c a bc

′ ′= − × − −

′ ′= − − −

 

 
Values were substituted to find the residual variance for Y. 
 

2 2( ) 1 (.235) (.195) 2(.275)(.235)(.195)
.8815

YVar e = − − −
=

 

 
The residual variance for Y, given other known values, was ( ) .8815YVar e =  
 
Setting M and Y Factor Variances to 1 in Mplus 
 
In Mplus, model constraints were used to ensure that the variances of M and Y were both 
set equal to 1. These constraints used the following code: 
 

Model constraint: 
 
0 = a1^2+a2^2+2*a1*a2*cov+varM - 1; 
0 = b^2*(a1^2+a2^2+2*a1*a2*cov+varM)+c^2+2*a1*b*c+varY 
- 1; 

 
This piece of code corresponds to equations presented earlier in this appendix. The 
variances of X and W could easily be set to 1 without using model constraints. 
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Appendix F: Determining λ and γ to accurately estimate ( )imtCon τ & ( )imtMspe τ  
 
All trait and method factors had a total variance equal to 1.0 or the total variance of the 
factor was calculated to be equal to 1.0. Therefore, estimating consistency and method-
specificity was equal across X, M, W, and Y factors. To calculate consistency and method 
specificity, factor loadings were appropriately estimated. 
 
Reference Method Indicators: For indicators pertaining to the reference method, a simple 
equation was used to calculate λ, solving from Equation 29 from Chapter III.  
 

2
1

1
1 1

( ) ( ) ( )
( ) ( )

mt imt imt
i t

mt mt

Con T Var M Var
Var T Con T

γ ε
λ

 + =
−

 

 
Because the reference method does not load onto any method factor, γ implicitly equals 0 
and was used to reduce the equation. Further, substituting 1 for all factor variances 
resulted in a simplified equation shown below. 
 

 

[ ]1
1

1

1

1

( ) 0 ( ) ( )
1 ( )

( ) ( )
1 ( )

mt imt
i t

mt

mt

mt

Con T Var M Var
Con T

Con T Var
Con T

ε
λ

ε

× +
=

−

×
=

−

 

 
Non-reference Method Indicators. For indicators pertaining to the non-reference method, 
the following system of linear equations was used to determine parameter estimates for λ 
and γ pertaining to X and W. The system of equations restructures the consistency and 
method-specificity equations from Chapter III, setting values equal to 0. 
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2 2 2
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imt imt mt imt imt imt imt
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Mspe Y Var T Var M Var Var M

λ γ ε λ

λ γ ε γ

  = + + −  


 = + + −  
 

 
Substituting 1 for all factor variances resulted in a simplified system of equations. 
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  = × + × + − ×  


 = × + × + − ×  

  = + + −  


 = + + −  

 

 
Known parameter values for each condition were substituted into the system of 
equations, resulting in λ and γ for each of the simulation conditions. 
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Appendix G: Example Mplus Code for the Monte Carlo Simulation Study 
 
 
 

Example Code for Correct Model Specification 
 
Title: M4 Model 
 
Montecarlo: 

 
names are X1mom X2mom X3mom X1dad X2dad X3dad 
          M1mom M2mom M3mom M1dad M2dad M3dad 
          Y1mom Y2mom Y3mom Y1dad Y2dad Y3dad 
          W1mom W2mom W3mom W1dad W2dad 
W3dad; 
nobservations = 200; !sample size 
nreps = 500; !number of replications 
seed = 84780; 
 
MODEL POPULATION: 
XxW | X XWITH W; !create interaction term 
 
! MTMM Model Con = .8, Mspe = .2 
X by X1mom*.894 X1dad*.8 X2mom*.894 X2dad*.8 
X3mom*.894 X3dad*.8; 
M by M1mom*.894 M1dad*.8 M2mom*.894 M2dad*.8 
M3mom*.894 M3dad*.8; 
Y by Y1mom*.894 Y1dad*.8 Y2mom*.894 Y2dad*.8 
Y3mom*.894 Y3dad*.8; 
W by W1mom*.894 W1dad*.8 W2mom*.894 W2dad*.8 
W3mom*.894 W3dad*.8; 
 
! M-1 method factors  
Xdad by X1dad*.4 X2dad*.4 X3dad*.4; 
Mdad by M1dad*.4 M2dad*.4 M3dad*.4;  
Ydad by Y1dad*.4 Y2dad*.4 Y3dad*.4; 
Wdad by W1dad*.4 W2dad*.4 W3dad*.4; 
 
!Intercepts - values based on application 
[X1mom*1.02 X2mom*0.88 X3mom*1.02 X1dad*1.01 
X2dad*0.90 X3dad*1.02];    
[M1mom*1.03 M2mom*0.87 M3mom*0.99 M1dad*1.03 
M2dad*0.86 M3dad*0.97];    
[Y1mom*1.58 Y2mom*1.41 Y3mom*1.58 Y1dad*1.63 
Y2dad*1.40 Y3dad*1.62];  
[W1mom*0.98 W2mom*1.06 W3mom*1.04 W1dad*1.05 
W2dad*1.07 W3dad*1.05];  
[X@0 M@0 W@0 Y@0]; 
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!Correlations not allowed 
X with Xdad@0; 
M with Mdad@0; 
Y with Ydad@0; 
W with Wdad@0; 
!Corr between methods and common traits not 
of same method - based on application 
Xdad with M*.10 Y*.10 W*.08; 
Mdad with X*.18 Y*.02 W*.13; 
Ydad with X*.13 M*.03 W*.22; 
Wdad with X*.04 M*.07 Y*.12; 
!Correlation between X and W 
X with W*0.5; 
 
!Correlation between method factors  
Xdad with Wdad*0.2 Mdad*0.2 Ydad*0.2; 
Wdad with Mdad*0.2 Ydad*0.2; 
Mdad with Ydad*0.2; 
 
!Variances - standardized 
X1mom*.2 X1dad*.2 X2mom*.2 X2dad*.2 X3mom*.2 
X3dad*.2; 
W1mom*.2 W1dad*.2 W2mom*.2 W2dad*.2 W3mom*.2 
W3dad*.2; 
M1mom*.2 M1dad*.2 M2mom*.2 M2dad*.2 M3mom*.2 
M3dad*.2;  
Y1mom*.2 Y1dad*.2 Y2mom*.2 Y2dad*.2 Y3mom*.2 
Y3dad*.2;  
X@1 Xdad@1;  
W@1 Wdad@1;  
M@.7892 Mdad@1;  
Y@.8815 Ydad@1;  
 
!Moderated mediation effects based on lit 
review 
M on X*0.275 (a1);  
M on W*0.255 (a2); 
M on XxW*0.147 (a3); 
Y on M*0.235 (b); 
Y on X*0.194 (c); 

 
Analysis: 

 
type = RANDOM; 
algorithm = INTEGRATION; 
estimator = ML; 
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Model: XxW | X XWITH W; !create interaction term 

 
! MTMM Model - Con = .8, Mspe = .2 
X by X1mom*.894 
     X1dad*.8 (x1d) 
     X2mom*.894 
     X2dad*.8 (x2d) 
     X3mom*.894 
     X3dad*.8 (x3d); 
M by M1mom*.894 
     M1dad*.8 (m1d) 
     M2mom*.894 
     M2dad*.8 (m2d) 
     M3mom*.894 
     M3dad*.8 (m3d); 
Y by Y1mom*.894 
     Y1dad*.8 (y1d) 
     Y2mom*.894 
     Y2dad*.8 (y2d) 
     Y3mom*.894 
     Y3dad*.8 (y3d); 
W by W1mom*.894 
     W1dad*.8 (w1d) 
     W2mom*.894 
     W2dad*.8 (w2d) 
     W3mom*.894 
     W3dad*.8 (w3d); 
 
! M-1 method factors  
Xdad by X1dad*.4 (xdad1) 
        X2dad*.4 (xdad2) 
        X3dad*.4 (xdad3);  
Mdad by M1dad*.4 (mdad1) 
        M2dad*.4 (mdad2) 
        M3dad*.4 (mdad3);  
Ydad by Y1dad*.4 (ydad1) 
        Y2dad*.4 (ydad2) 
        Y3dad*.4 (ydad3); 
Wdad by W1dad*.4 (wdad1) 
        W2dad*.4 (wdad2) 
        W3dad*.4 (wdad3); 
 
!Intercepts - values based on application 
[X1mom*1.02 X2mom*0.88 X3mom*1.02 X1dad*1.01 
X2dad*0.90 X3dad*1.02];    
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[M1mom*1.03 M2mom*0.87 M3mom*0.99 M1dad*1.03 
M2dad*0.86 M3dad*0.97];    
[Y1mom*1.58 Y2mom*1.41 Y3mom*1.58 Y1dad*1.63 
Y2dad*1.40 Y3dad*1.62];  
[W1mom*0.98 W2mom*1.06 W3mom*1.04 W1dad*1.05 
W2dad*1.07 W3dad*1.05];  
[X@0 M@0 W@0 Y@0]; 
 
!Correlations not allowed 
X with Xdad@0; 
M with Mdad@0; 
Y with Ydad@0; 
W with Wdad@0; 
!Corr between methods and common traits not 
of same method - based on application 
Xdad with M*.10 Y*.10 W*.08; 
Mdad with X*.18 Y*.02 W*.13; 
Ydad with X*.13 M*.03 W*.22; 
Wdad with X*.04 M*.07 Y*.12; 
!Correlation between X and W 
X with W*0.5 (cov); 
!Correlation between method factors  
Xdad with Wdad*0.2 Mdad*0.2 Ydad*0.2; 
Wdad with Mdad*0.2 Ydad*0.2; 
Mdad with Ydad*0.2; 
 
!Variances 
X1mom*.2 X1dad*.2 X2mom*.2 X2dad*.2 X3mom*.2 
X3dad*.2; 
W1mom*.2 W1dad*.2 W2mom*.2 W2dad*.2 W3mom*.2 
W3dad*.2; 
M1mom*.2 M1dad*.2 M2mom*.2 M2dad*.2 M3mom*.2 
M3dad*.2;  
Y1mom*.2 Y1dad*.2 Y2mom*.2 Y2dad*.2 Y3mom*.2 
Y3dad*.2;  
X@1 Xdad@1;  
W@1 Wdad@1;  
M*.7892 (varM); 
Mdad@1;  
Y*.8815 (varY); 
Ydad@1;   
 
!Moderated mediation effects based on lit 
review 
M on X*0.275 (a1);  
M on W*0.255 (a2); 
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M on XxW*0.147 (a3); 
Y on M*0.235 (b); 
Y on X*0.194 (c); 

 
Model 
constraint: 

 
NEW(INDEXMM*.035 P2SDW*.134 P1SDW*.099 
MEANW*.064 N1SDW*.030 N2SDW*-.0045 
X1MVtau*.2 X2MVtau*.2 X3MVtau*.2 
M1MVtau*.2 M2MVtau*.2 M3MVtau*.2 
Y1MVtau*.2 Y2MVtau*.2 Y3MVtau*.2 
W1MVtau*.2 W2MVtau*.2 W3MVtau*.2); 
! W =1, W removed from equation 
INDEXMM = a3*b; 
P2SDW = (a1 + a3*2) * b; 
P1SDW = (a1 + a3*1) * b; 
MEANW = (a1 + a3*0) * b; 
N1SDW = (a1 - a3*1) * b; 
N2SDW = (a1 - a3*2) * b; 
!proportion of true variance due to method 
effect 
X1MVtau = xdad1^2 / (xdad1^2 + x1d^2); 
X2MVtau = xdad2^2 / (xdad2^2 + x2d^2); 
X3MVtau = xdad3^2 / (xdad3^2 + x3d^2); 
W1MVtau = wdad1^2 / (wdad1^2 + w1d^2); 
W2MVtau = wdad2^2 / (wdad2^2 + w2d^2); 
W3MVtau = wdad3^2 / (wdad3^2 + w3d^2); 
M1MVtau = mdad1^2 / (mdad1^2 + m1d^2); 
M2MVtau = mdad2^2 / (mdad2^2 + m2d^2); 
M3MVtau = mdad3^2 / (mdad3^2 + m3d^2); 
Y1MVtau = ydad1^2 / (ydad1^2 + y1d^2); 
Y2MVtau = ydad2^2 / (ydad2^2 + y2d^2); 
Y3MVtau = ydad3^2 / (ydad3^2 + y3d^2); 
 
!assuring variances remain equal to 1 
0 = a1^2+a2^2+2*a1*a2*cov+varM - 1; 
0 = b^2*(a1^2+a2^2+2*a1*a2*cov+varM)+ 
c^2+2*a1*b*c+varY - 1; 

 
Output: 

 
sampstat tech9; 

 
 

Example Code for Incorrect Model Specification 
 

Title: M4 Model 
 
Montecarlo: 

 
names are X1mom X2mom X3mom X1dad X2dad X3dad 
          M1mom M2mom M3mom M1dad M2dad M3dad 
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          Y1mom Y2mom Y3mom Y1dad Y2dad Y3dad 
          W1mom W2mom W3mom W1dad W2dad 
W3dad; 
nobservations = 200; !sample size 
nreps = 500; !number of replications 
seed = 84780; 
 
MODEL POPULATION: 
XxW | X XWITH W; !create interaction term 
 
! MTMM Model Con = .8, Mspe = .2 
X by X1mom*.894 X1dad*.8 X2mom*.894 X2dad*.8 
X3mom*.894 X3dad*.8; 
M by M1mom*.894 M1dad*.8 M2mom*.894 M2dad*.8 
M3mom*.894 M3dad*.8; 
Y by Y1mom*.894 Y1dad*.8 Y2mom*.894 Y2dad*.8 
Y3mom*.894 Y3dad*.8; 
W by W1mom*.894 W1dad*.8 W2mom*.894 W2dad*.8 
W3mom*.894 W3dad*.8; 
 
! M-1 method factors  
Xdad by X1dad*.4 X2dad*.4 X3dad*.4; 
Mdad by M1dad*.4 M2dad*.4 M3dad*.4;  
Ydad by Y1dad*.4 Y2dad*.4 Y3dad*.4; 
Wdad by W1dad*.4 W2dad*.4 W3dad*.4; 
 
!Intercepts - values based on application 
[X1mom*1.02 X2mom*0.88 X3mom*1.02 X1dad*1.01 
X2dad*0.90 X3dad*1.02];    
[M1mom*1.03 M2mom*0.87 M3mom*0.99 M1dad*1.03 
M2dad*0.86 M3dad*0.97];    
[Y1mom*1.58 Y2mom*1.41 Y3mom*1.58 Y1dad*1.63 
Y2dad*1.40 Y3dad*1.62];  
[W1mom*0.98 W2mom*1.06 W3mom*1.04 W1dad*1.05 
W2dad*1.07 W3dad*1.05];  
[X@0 M@0 W@0 Y@0]; 
 
!Correlations not allowed 
X with Xdad@0; 
M with Mdad@0; 
Y with Ydad@0; 
W with Wdad@0; 
!Corr between methods and common traits not 
of same method - based on application 
Xdad with M*.10 Y*.10 W*.08; 
Mdad with X*.18 Y*.02 W*.13; 
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Ydad with X*.13 M*.03 W*.22; 
Wdad with X*.04 M*.07 Y*.12; 
!Correlation between X and W 
X with W*0.5; 
 
!Correlation between method factors  
Xdad with Wdad*0.2 Mdad*0.2 Ydad*0.2; 
Wdad with Mdad*0.2 Ydad*0.2; 
Mdad with Ydad*0.2; 
 
!Variances - standardized 
X1mom*.2 X1dad*.2 X2mom*.2 X2dad*.2 X3mom*.2 
X3dad*.2; 
W1mom*.2 W1dad*.2 W2mom*.2 W2dad*.2 W3mom*.2 
W3dad*.2; 
M1mom*.2 M1dad*.2 M2mom*.2 M2dad*.2 M3mom*.2 
M3dad*.2;  
Y1mom*.2 Y1dad*.2 Y2mom*.2 Y2dad*.2 Y3mom*.2 
Y3dad*.2;  
X@1 Xdad@1;  
W@1 Wdad@1;  
M@.7892 Mdad@1;  
Y@.8815 Ydad@1;  
 
!Moderated mediation effects based on lit 
review 
M on X*0.275 (a1);  
M on W*0.255 (a2); 
M on XxW*0.147 (a3); 
Y on M*0.235 (b); 
Y on X*0.194 (c); 

 
Analysis: 

 
type = RANDOM; 
algorithm = INTEGRATION; 
estimator = ML; 
 

Model: XxW | X XWITH W; !create interaction term 
 
! MTMM Model - Con = .8, Mspe = .2 
X by X1mom*.894 
     X1dad*.8 (x1d) 
     X2mom*.894 
     X2dad*.8 (x2d) 
     X3mom*.894 
     X3dad*.8 (x3d); 
M by M1mom*.894 
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     M1dad*.8 (m1d) 
     M2mom*.894 
     M2dad*.8 (m2d) 
     M3mom*.894 
     M3dad*.8 (m3d); 
Y by Y1mom*.894 
     Y1dad*.8 (y1d) 
     Y2mom*.894 
     Y2dad*.8 (y2d) 
     Y3mom*.894 
     Y3dad*.8 (y3d); 
W by W1mom*.894 
     W1dad*.8 (w1d) 
     W2mom*.894 
     W2dad*.8 (w2d) 
     W3mom*.894 
     W3dad*.8 (w3d); 
 
! No M-1 method factors  
 
!Intercepts - values based on application 
[X1mom*1.02 X2mom*0.88 X3mom*1.02 X1dad*1.01 
X2dad*0.90 X3dad*1.02];    
[M1mom*1.03 M2mom*0.87 M3mom*0.99 M1dad*1.03 
M2dad*0.86 M3dad*0.97];    
[Y1mom*1.58 Y2mom*1.41 Y3mom*1.58 Y1dad*1.63 
Y2dad*1.40 Y3dad*1.62];  
[W1mom*0.98 W2mom*1.06 W3mom*1.04 W1dad*1.05 
W2dad*1.07 W3dad*1.05];  
[X@0 M@0 W@0 Y@0]; 
 
!Correlation between X and W 
X with W*0.5 (cov); 
 
!Variances 
X1mom*.2 X1dad*.2 X2mom*.2 X2dad*.2 X3mom*.2 
X3dad*.2; 
W1mom*.2 W1dad*.2 W2mom*.2 W2dad*.2 W3mom*.2 
W3dad*.2; 
M1mom*.2 M1dad*.2 M2mom*.2 M2dad*.2 M3mom*.2 
M3dad*.2;  
Y1mom*.2 Y1dad*.2 Y2mom*.2 Y2dad*.2 Y3mom*.2 
Y3dad*.2;  
X@1; 
W@1; 
M*.7892 (varM); 
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Y*.8815 (varY); 
 
!Moderated mediation effects based on lit 
review 
M on X*0.275 (a1);  
M on W*0.255 (a2); 
M on XxW*0.147 (a3); 
Y on M*0.235 (b); 
Y on X*0.194 (c); 

 
Model 
constraint: 

 
NEW(INDEXMM*.035 P2SDW*.134 P1SDW*.099 
MEANW*.064 N1SDW*.030 N2SDW*-.0045); 
! W =1, W removed from equation 
INDEXMM = a3*b; 
P2SDW = (a1 + a3*2) * b; 
P1SDW = (a1 + a3*1) * b; 
MEANW = (a1 + a3*0) * b; 
N1SDW = (a1 - a3*1) * b; 
N2SDW = (a1 - a3*2) * b; 
 
!assuring variances remain equal to 1 
0 = a1^2+a2^2+2*a1*a2*cov+varM - 1; 
0 = b^2*(a1^2+a2^2+2*a1*a2*cov+varM)+ 
c^2+2*a1*b*c+varY - 1; 

 
Output: 

 
sampstat tech9; 
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