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SUMMARY 24 

Ornamental grasses are popular in urban landscapes in Utah and the Intermountain West, 25 

one of the driest and fastest growing regions in the United States. This experiment evaluated the 26 

responses of five ornamental grass species [blue grama (Bouteloua gracilis), indian seaoats 27 

(Chasmanthium latifolium), 'Blue Dune' sand ryegrass (Leymus arenarius), pink muhly grass 28 

(Muhlenbergia capillaris), and 'Foxtrot' fountain grass (Pennisetum alopecuroides)] and two 29 

ornamental grass-like species [fox sedge (Carex vulpinoidea), and common rush (Juncus 30 

effusus)] to saline irrigation water in a greenhouse. Plants were irrigated weekly with a nutrient 31 

solution at an electrical conductivity (EC) of 1.2 dS∙m-1 (control) or saline solutions at EC of 5.0 32 

or 10.0 dS∙m-1. At the first harvest (9 weeks after the initiation of treatment), sand ryegrass, pink 33 

muhly grass, and fountain grass irrigated with solutions at EC of 5.0 and 10 dS∙m-1 had good 34 

visual quality with no or minimal foliar salt damage; however, the remaining species exhibited 35 

slight or moderate foliar salt damage. There were no significant differences in shoot dry weight 36 

(DW) among treatments within any species, except fox sedge and fountain grass. At the second 37 

harvest (18 weeks after the initiation of treatment), sand ryegrass, pink muhly grass, and fountain 38 

grass still had no or minimal foliar salt damage, and indian seaoats and fox sedge exhibited slight 39 

or moderate foliar salt damage. Compared to control, all species irrigated with solutions at EC of 40 

10.0 dS∙m-1 had reduced shoot DWs with the exception of blue grama. However, only common 41 

rush and pink muhly grass irrigated with solutions at EC of 5.0 dS∙m-1 had lower shoot DWs than 42 

the control. These results demonstrated that seven ornamental grass or grass-like species had a 43 

very strong tolerance to the salinity levels used in the 4-month experiment. Although plant 44 

growth was inhibited as a result of saline irrigation, plant visual quality of sand ryegrass, pink 45 

muhly grass, and fountain grass was still acceptable. These three species appear to be more 46 



suitable for landscapes where saline irrigation water is used. Further research is needed to 47 

evaluate more ornamental grasses for landscapes in salt-prone areas and nearby coastal regions. 48 

 49 

Introduction 50 

Water scarcity is a major concern in Utah and the Intermountain West, one of the driest and 51 

fastest growing regions in the United States (U.S.). Climate and human-driven changes in water 52 

quantity and quality could result in more restrictions on agricultural and landscape irrigation, a 53 

segment of water use that accounts for 82% of freshwater resources in Utah (Strong et al., 2010). 54 

Therefore, water conservation is becoming critically important throughout Utah and the 55 

Intermountain West. Alternative water sources such as treated and reclaimed sewage effluent 56 

(reclaimed water) are important for landscape irrigation with an established use record on golf 57 

courses in Utah and a handful of large corporate and municipal parks and landscapes in the arid 58 

to semiarid urban areas across the southwestern U.S. (Tanji et al., 2008). However, these water 59 

sources are still underutilized. This may be attributed to the high level of salinity and undesirable 60 

specific ions in reclaimed water that can potentially stress and damage landscape plants (Grieve, 61 

2011). Proper management is needed to reduce salinity stress, for example, monitoring salt 62 

concentration in reclaimed water, improving drainage, maintaining a leaching fraction, and using 63 

salt tolerant species (Niu and Cabrera, 2010). Selecting and utilizing salt-tolerant plants are one 64 

of the best practices for preventing salt damage on landscape plants and maintaining aesthetically 65 

appealing landscapes. Previous research has consistently documented that landscape plant 66 

species and/or cultivars show different responses to salinity stress (Niu and Cabrera, 2010; Niu et 67 

al., 2011; Wu and Dodge, 2005). There is an urgent need for research-based information on the 68 



salinity tolerance of landscape plants for use in landscapes irrigated with reclaimed water or in 69 

salt-prone areas. 70 

Ornamental grasses have recently received considerable attention in the U.S. green 71 

industry. Their production and landscape use has expanded in the last two decades. An estimated 72 

$158 million worth of ornamental grasses are sold annually in the U.S. (U.S. Department of 73 

Agriculture, 2015). Ornamental grasses are also popular in urban landscapes in Utah and the 74 

Intermountain West. Their use is expected to further increase due to the unique textures and 75 

patterns they contribute to the landscape, high drought tolerance, and low maintenance input 76 

(Gunnell et al., 2015). Blue grama is a warm-season perennial grass with low-growing habit, 77 

drought tolerance, and limited maintenance requirements (Wynia, 2007). It is grown in perennial 78 

gardens and used for native plant landscaping, habitat restoration, and erosion control projects. 79 

Indian seaoats is also a warm-season perennial grass that thrives in partial shade throughout most 80 

of its range and is used as ground cover in shady areas (Neill, 2007). Sand ryegrass is a bright 81 

blue, cool-season ornamental grass with straw-colored seed heads on stalks 8 to 12 inches above 82 

the foliage. It is a sand-loving grass species and can easily adapt to a highly salinized area (St. 83 

John et al., 2010). Pink muhly grass is a warm-season, hedge-like perennial with green leaves in 84 

dense clumps and pink flowers held above the foliage. It is an excellent garden plant because of 85 

its hardiness and drought tolerance, low maintenance needs, and general beauty (Kirk and Belt, 86 

2010). Fountain grass is a warm-season, fine-textured, mounding perennial grass with narrow, 87 

medium-to-deep-green leaves and showy, silvery to pinkish-white, bristly, bottlebrush-like 88 

flower spikes. It typically grows in spreading clumps and needs full sun to light shade (Gilman, 89 

1999). These five species belong to the grass family (Poaceae). Fox sedge is a grass-like species 90 

in sedge family (Cyperaceae) with an inflorescence consisting of a dense, tangled cluster of 91 



flower spikes. It tolerates fluctuating water levels and periods of drying (Wennerberg, 2004). 92 

Common rush is a grass-like perennial in rush family (Juncaceae) with a smooth, cylindrical 93 

stem. It is cultivated as an ornamental plant for use in water gardens, native plant and wildlife 94 

gardens, and for larger designed natural landscaping and habitat restoration projects (U.S. 95 

Department of Agriculture, 2002). 96 

Salt tolerance has been evaluated on many grasses used for turf and forage (Bushman et 97 

al., 2016; Miyamoto, 2008; Tomar et al., 2003). Warm-season grasses are usually more salt 98 

tolerant than cool-season grasses when irrigated with impaired waters (Schiavon et al., 2012, 99 

2014). The salinity tolerance of ornamental grasses has also been reported in extension articles. 100 

For example, blue grama exhibited moderate tolerance to salinity levels at a saturated soil extract 101 

(ECe) of 4-8 dS∙m-1 (Kratsch et al., 2008). Indian seaoats, ‘Glaucus’ sand ryegrass, and fountain 102 

grass have high levels of tolerance to soil salinity (Jull, 2009). Sand ryegrass and pink muhly 103 

grass are highly tolerant to salt spray, and fountain grass is slightly tolerant to salt spray (Glen, 104 

2004). However, these reports are usually based on anecdotal observations. Furthermore, there 105 

are only a few ornamental grasses being investigated systematically for salinity tolerance. Zhang 106 

et al. (2012) reported that salinity tolerance of blue grama varied within ecotypes and was higher 107 

at the germination stage than the mature stage. Pink muhly grass was tolerant of saline irrigation 108 

with 100% of plants surviving even at sodium chloride (NaCl) irrigation rates of 10,000 mg·L-1, 109 

which is up to 20 times higher than what could be expected from greywater (Christova-Boal et 110 

al., 1996; LeCompte et al., 2016). ‘Hameln’ fountain grass appears to be slightly more tolerant of 111 

salt spray than ‘Gracillimus’ maiden grass [Miscanthus sinensis (Alvarez, 2006)]. Kikuyugrass 112 

(Pennisetum clandestinum) is salt tolerant with a threshold ECe of 8.0 dS∙m-1 (Grieve et al., 113 

2012) and shows promise as a suitable candidate for the saline-sodic water reuse system (Grieve 114 



et al., 2004). Due to the vast number of ornamental grass and grass-like plants commercially 115 

available in the green industry and a diversified salinity tolerance in ornamental grasses 116 

commonly planted in urban landscapes, there is a need to further evaluate ornamental plants for 117 

salt tolerance for landscape use. This study was designed to compare the growth of seven 118 

ornamental grass and grass-like species in response to irrigation with saline solutions. 119 

 120 

Materials and methods 121 

PLANT MATERIALS AND GROWING CONDITIONS. On 5 Oct. 2017, rooted cuttings 122 

in 32-cell trays (5.5 × 5.5 × 10.5 cm) of five ornamental grass species (blue grama, indian 123 

seaoats, 'Blue Dune' sand ryegrass, pink muhly grass, and 'Foxtrot' fountain grass) and two grass-124 

like species (fox sedge, common rush) were received from Hoffman Nursery (Rougemont, NC). 125 

Plants (~ 4 inches tall) were potted in 1-gal, injection-molded, polypropylene container (PC1D-4, 126 

Nursery Supplies, Inc., Orange, CA) filled with a soilless growing substrate consisting of 75% 127 

peat moss (Canadian sphagnum peat moss, SunGro Horticulture, Agawam, MA), 25% 128 

vermiculite (Therm-O-Rock West, Inc., Chandler, AZ), and 24.3 g/ft3 white athletic field 129 

marking gypsum (92% calcium sulfate dihydrate, 21% calcium, 17% sulfur; Western Mining and 130 

Minerals, Inc., Bakersfield, CA). The water capacity of the substrate mixture was 74%. 131 

All plants were grown in a greenhouse in Logan, UT (lat. 41°45'28"N, long. 111°48'47"W, 132 

elevation 1409 m) and well irrigated with tap water (EC = 0.37 dS∙m-1, pH = 8.25) until 133 

treatments started. The sodium adsorption ratio (SAR) of the tap water is 0.04, and the major 134 

ions in the tap water were calcium (Ca2+), magnesium (Mg2+), silicate (SiO3
2-), sulfate (SO4

2-), 135 

boron (B+), copper (Cu2+) at 48.1, 14.6, 11.4, 5.8, 4.3, and 3.2 mg·L–1, respectively. The average 136 

air temperature in the greenhouse was 22.5 ± 4.9 ℃ during the day and 20.8 ± 5.3 ℃ at night. 137 



The average daily light integral inside the greenhouse was 11.8 ± 6.2 mol∙m-2∙d-1 during the 138 

experiment. When light intensity inside the greenhouse was below 544 µmol∙m-2∙s-1, 139 

supplemental light at light intensities of 223 ± 37 µmol∙m-2∙s-1 at the canopy level was provided 140 

using 1000-W high-pressure sodium lamps (Hydrofarm, Petaluma, CA) from 600 to 2200 HR. 141 

TREATMENTS. A nutrient solution at EC of 1.2 dS∙m-1 was prepared by adding 0.8 g∙L-1 142 

15N-2.2P-12.5K water-soluble fertilizer (Peters Excel 15-5-15 Ca-Mag Special; ICL Specialty 143 

Fertilizers, Dublin, OH) to the tap water and used as the control. Saline solution at an EC of 5.0 144 

dS∙m-1 was prepared by adding 0.92 g∙L-1 NaCl and 0.88 g∙L-1 calcium chloride (CaCl2) to the 145 

aforementioned nutrient solution, and saline solution at an EC of 10.0 dS∙m-1 was prepared by 146 

adding 2.27 g∙L-1 NaCl and 2.18 g∙L-1 CaCl2 to the nutrient solution. The SARs were 4.88 and 147 

8.42 for the saline solutions with ECs of 5.0 and 10.0 dS∙m-1, respectively. This mixture was 148 

used because NaCl is the common salt in reclaimed water (Niu and Cabrera, 2010) and CaCl2 is 149 

used to forestall potential calcium deficiencies (Carter and Grieve, 2006). The pH of all solutions 150 

were adjusted to 6.5 ± 0.2 using nitric acid. Both control and saline solutions were prepared in 151 

100-L tanks with EC confirmed using an EC meter (LAQUA Twin; Horiba, Ltd., Kyoto, Japan) 152 

before irrigation. 153 

Five weeks after transplanting (10 Nov. 2017), plants were fully established with roots 154 

observed visually at the root ball’s periphery, and uniform plants were chosen for the 155 

experiment. From 10 Nov. 2017 to 3 Jan. 2018, treatment solutions were applied once per week 156 

for 8 weeks. At each irrigation, plants were irrigated with 1 L treatment solution per plant, 157 

resulting in a leaching fraction of approximately 35.0% ± 9.9%. Between treatment solution 158 

irrigations, plants were irrigated with 300 mL nutrient solution whenever the substrate surface (~ 159 

1 inch) became dry. Irrigation frequency varied with environmental conditions and treatment 160 



solution. Plants at higher salinity need less irrigation because of lower water use resulting from 161 

reduced transpiration and leaf area. On 12 Jan. 2018 (9 weeks after the initiation of treatment), 162 

five plants of each species were harvested (first harvest). On 24 Jan., the remaining five plants 163 

were repotted into 2-gal, injection-molded, polypropylene containers (No. 2B; Nursery Supplies, 164 

Inc., Orange, CA) with fresh substrate mentioned above, because they outgrew the 1-gal 165 

containers. Four vertical cuts were made along the root ball whenever circling roots had formed. 166 

From 27 Jan. to 16 Mar. 2018, treatment solutions were then applied once per week for eight 167 

weeks. A total of 1.5 L treatment solution irrigated each plant each time, resulting in a leaching 168 

fraction of approximately 13.4% ± 7.8%. On 24 Mar. (18 weeks after the initiation of treatment), 169 

all plants were harvested (second harvest). Abamectin (Avid® 0.15EC; Syngenta Crop Protection 170 

Inc., Greensboro, NC) was sprayed to control aphids (Aphidoidea) as needed. 171 

LEACHATE EC. The pour-through method described by Cavins et al. (2008) and Wright 172 

(1986) was used to determine leachate EC. In brief, a saucer was placed under the container 173 

which has drained for at least 30 min right after treatment solution was applied. A total of 100 174 

mL distilled water was poured on the surface of the substrate to obtain leachate in the saucer. 175 

The leachate solution was tested using an EC meter. One plant per treatment per species was 176 

chosen for measurement. Leachate EC readings were averaged across species. 177 

PLANT GROWTH. Plant height (centimeters) from the soil surface to the tip of the 178 

tallest leaf and the number of inflorescences were recorded at both harvest dates (12 Jan. and 24 179 

Mar.). At each harvest date, plant shoots of five plants per treatment per species were severed at 180 

the substrate surface, and leaf area was determined using an area meter (LI-3100; LI-COR® 181 

Biosciences, Lincoln, NE). Plant shoots were dried in an oven at 70 ℃ for 3 d, and shoot DW 182 



was determined. At the second harvest date, tillers were counted. In addition, roots were cleaned 183 

and dried in the oven at 70 ℃ for 3 d, and root DW was taken. 184 

FOLIAR SALT DAMAGE EVALUATION. Foliar salt damage was rated by giving a 185 

visual score based on a reference scale from 0 to 5, where 0 = dead; 1 = over 90% foliar damage 186 

(salt damage: leaf edge burn, necrosis, and discoloration); 2 = moderate (50% to 90%) foliar 187 

damage; 3 = slight (less than 50%) foliar damage; 4 = good quality with minimal foliar damage; 188 

and 5 = excellent with no foliar damage (Sun et al., 2015). The foliar salt damage rating did not 189 

consider plant size. 190 

CHLOROPHYLL CONTENT. Relative chlorophyll content [Soil-Plant Analysis 191 

Development (SPAD) reading] was measured using a handheld chlorophyll meter (SPAD 502 192 

Plus; Minolta Camera Co., Osaka, Japan) 1 week before each harvest date. Ten healthy and fully 193 

expanded leaves of each plant of all species were chosen for measurements with the exception of 194 

common rush. Instead, a protocol described by Lichtenthaler and Buschmann (2001) was used to 195 

determine the chlorophyll content of common rush. In brief, fresh leaves (1 g) were ground with 196 

10 mL ethanol (ethyl alcohol 190 proof, 95%, Pharmco-AAPER, Greenfield Global USA Inc., 197 

Brookfield, CT). The extract was centrifuged at 1300 gn using a centrifuge (Marathon 21K; 198 

Thermo Fisher Scientific, Waltham, MA) for 20 min. The supernatant (~ 6 mL) was then 199 

collected and stored overnight in the dark at room temperature. Samples were loaded into plastic 200 

cuvettes (PMMA; VWR International LLC., Radnor, PA), and spectrophotometric readings at 201 

wavelengths of 470, 648.6, and 664.1 nm were made using a spectrophotometer (BioMate™ 3; 202 

Thermo Fisher Scientific, Waltham, MA). The chlorophyll a and b contents were estimated using 203 

the formula: Ca (micrograms per milliliter) = 13.36 A664.1 – 5.19 A648.6; Cb (micrograms per 204 

milliliter) = 27.43 A648.6 – 8.12 A664.1. The concentration of carotenoids was calculated as follows: 205 



C(x+c) (micrograms per milliliter) = (1000 A470 – 2.13 Ca – 97.64 Cb) /209. SPAD readings are 206 

positively correlated with destructive chlorophyll measurements in st. augustinegrass 207 

(Stenotaphrum secondatum) (Rodriguez and Miller, 2000). 208 

EXPERIMENTAL DESIGN AND STATISTICAL ANALYSIS. All plants were 209 

arranged in the greenhouse following a split-plot experimental design with salinity levels as the 210 

main plot factor and seven species as the subplot factor. Ten plants per treatment per species 211 

were used. Due to different plant growth habits, data was analyzed separately for each species 212 

following a completely randomized experimental design with three salinity levels. Visual score 213 

was analyzed as multinomial data, whereas number of inflorescences and tillers were analyzed as 214 

negative binomial data. Means separation among treatments was adjusted using Tukey’s method 215 

for multiplicity at α = 0.05. Means separation among species was also conducted for visual score. 216 

All statistical analyses were performed with the GENMOD and GLIMMIX procedures of 217 

SAS/STAT 14.3 in SAS (Version 9.4, SAS Institute, Cary, NC). 218 

Results and discussion 219 

Salts gradually built up in the plant root zone when plants received saline water 220 

irrigation, as indicated by increased salinity level in the leachate solution (Fig. 1). From 10 Nov. 221 

2017 to 3 Jan. 2018, the EC of the leachate solution ranged from 4.1 to 8.4 dS·m–1 and from 5.9 222 

to 13.8 dS·m–1 when irrigated with solutions at EC of 5.0 and 10.0 dS∙m-1, respectively. 223 

However, the EC of the leachate solution stayed around 2.0 dS·m–1 for the control. From 27 Jan. 224 

to 16 Mar. 2018, the EC of the leachate solution for control was from 2.4 to 3.8 dS·m–1 with an 225 

average of 3.0 dS·m–1. The EC of the leachate solution ranged from 6.1 to 13.5 dS·m–1 and from 226 

8.6 to 20.9 dS·m–1 when irrigated with solutions at EC of 5.0 and 10.0 dS∙m-1, respectively. 227 

These results are similar to previous reports (Sun et al., 2015; Wu et al., 2016) that consistently 228 



documented that the salinity level in the leachate solution increased when irrigated with saline 229 

solution and the EC of leachate was higher than that of the treatment solution after two or three 230 

irrigation events. 231 

At the first harvest, sand ryegrass, pink muhly grass, and fountain grass exhibited no 232 

foliar salt damage when irrigated with solutions at EC of 5.0 dS·m–1, and they had minimal foliar 233 

salt damage with visual scores of 4.4 or above when irrigated with solutions at EC of 10.0 dS·m–234 

1 (Table 1). Common rush experienced minimal foliar salt damage with an average visual score 235 

of 4.5 and 3.9 when irrigated with solutions at EC of 5.0 and 10.0 dS·m–1, respectively. Blue 236 

grama, indian seaoats, and fox sedge had slight foliar salt damage with average visual scores 237 

ranging from 3.0 to 3.8 when irrigated with solutions at EC of 5.0 and 10.0 dS·m–1. At the 238 

second harvest, fountain grass and pink muhly grass still showed no foliar salt damage using 239 

solutions at EC of 5.0 dS·m–1 and had minimal or slight damage using solutions at EC of 10.0 240 

dS·m–1. Sand ryegrass and indian seaoats experienced minimal foliar salt damage when irrigated 241 

with solutions at EC of 5.0 and 10.0 dS·m–1. Fox sedge plants had moderate foliar salt damage 242 

with an average visual score of 3.0 using solutions at EC of 5.0 dS·m–1 and 2.4 using solutions at 243 

EC of 10.0 dS·m–1. Visual scores were not taken at the second harvest date for blue grama and 244 

common rush due to aphid infestation. McKenney et al. (2016) observed that the visual quality 245 

of blue muhly grass (Muhlenbergia lindheimeri), indian seaoats, and foothill sedge (Carex 246 

tumulicola) plants were hardly affected by increasing salinity until EC of 5.0 dS·m–1, but 247 

declined sharply at EC of 10.0 dS·m–1. They also found that blue muhly grass irrigated with 248 

solutions at EC of 10.0 dS·m–1 still had acceptable visual quality, but indian seaoats and foothill 249 

sedge exhibited poor visual quality. 250 



 The relative chlorophyll content (SPAD reading) of all ornamental grass and grass-like 251 

plants irrigated with solutions at EC of 5.0 dS·m–1 was similar to that in the control at the first 252 

harvest (Table 1). Blue grama, sand ryegrass, and fountain grass irrigated with solutions at EC of 253 

10.0 dS·m–1 also had similar SPAD readings to those in the control. However, fox sedge and 254 

pink muhly grass irrigated with solutions at EC of 10.0 dS·m–1 had lower SPAD readings than 255 

that in the control. At the second harvest, blue grama, sand ryegrass, pink muhly grass, and 256 

fountain grass irrigated with solutions at EC of 5.0 and 10.0 dS·m–1 had similar SPAD values to 257 

those in control. However, the SPAD readings of fox sedge irrigated with solutions at EC of 5.0 258 

and 10.0 dS·m–1 were less than that in the control. Interestingly, all indian seaoats had yellowish 259 

foliage during the entire experiment. This might be attributed to high light levels in the 260 

greenhouse because indian seaoats usually thrives in partial shade throughout most of its range 261 

and is planted in shady areas (Neill, 2007). Norcini et al. (2001) found that the foliage of indian 262 

seaoats was more yellowish when grown under full sun than when grown in the shade. The 263 

SPAD readings of indian seaoats were greater than that in the control when plants were irrigated 264 

with a saline solution, which might be caused by increased specific leaf weight (the weight per 265 

unit area of a leaf) under osmotic stress (Acosta-Motos et al., 2017; Caudle et al., 2014; García-266 

Valenzuela et al., 2005). In common rush, the chlorophyll and carotenoid contents determined by 267 

chemical extraction and spectrophotometer were not significantly different among treatments 268 

(data not shown). These results are in line with a previous report that increasing salinity stress 269 

did not change the SPAD reading of blue muhly, indian seaoats, and foothill sedge (McKenney 270 

et al., 2016). 271 

At the first harvest, blue grama, fox sedge, common rush, and sand ryegrass plants 272 

irrigated with solutions at EC of 5.0 dS·m–1 had a similar height to those in control (Table 2). 273 



Nevertheless, indian seaoats, pink muhly grass, and fountain grass irrigated with solutions at EC 274 

of 5.0 dS·m–1 were 26%, 22%, and 18%, respectively, shorter than those in the control. All 275 

ornamental grass and grass-like plants irrigated with solutions at EC of 10.0 dS·m–1 had a 276 

reduction of 10% to 38% in height compared to the control. At the second harvest, compared to 277 

the control, blue grama, fox sedge, pink muhly grass, and fountain grass irrigated with solutions 278 

at EC of 5.0 dS·m–1 reduced their height by 18%, 12%, 29%, and 12%, respectively. The height 279 

of the remaining three species irrigated with solutions at EC of 5.0 dS·m–1 did not differ from the 280 

control. Except sand ryegrass, all ornamental grass and grass-like plants irrigated with solutions 281 

at EC of 10.0 dS·m–1 had a 13% to 36% reduction in height compared to the control. McKenney 282 

et al. (2016) documented in their research that blue muhly and foothill sedge plants irrigated with 283 

solutions at EC of 10.0 dS·m–1 were much shorter than those at lower EC levels, but indian 284 

seaoats exhibited similar height among salinity treatments. 285 

At the first harvest, all ornamental grass and grass-like plants irrigated with solutions at 286 

EC of 5.0 dS·m–1 had similar leaf area to those in control with an exception of indian seaoats, 287 

which had a 38% reduction (Table 2). The leaf area of indian seaoats, common rush, and 288 

fountain grass irrigated with solutions at EC of 10.0 dS·m–1 was 48%, 31%, and 67% less than in 289 

the control, respectively. At the second harvest, there was no significant difference in the leaf 290 

area of all ornamental grass and grass-like plants irrigated with solutions at EC of 5.0 dS·m–1 and 291 

control. Indian seaoats, fox sedge, common rush, and fountain grass irrigated with solutions at 292 

EC of 10.0 dS·m–1 had 52%, 29%, 55%, 46% smaller leaf area, respectively, than those in the 293 

control. Similarly, reduction in leaf area has been observed in many plant species under salinity 294 

stress (Sun et al., 2015; Wu et al., 2016). This could be considered a first line of defense strategy 295 

against salt-induced drought conditions. Salinity lowers the water potential of the soil solution, 296 



thereby making water less available to plants, and reducing leaf surface area with fewer stomata 297 

could significantly reduce water loss as an adaptation to a saline environment. 298 

Fox sedge and pink muhly grass plants did not produce any inflorescences during the 299 

entire experiment (Table 3). At the first harvest, all common rush and fountain grass did not form 300 

inflorescences. Indian seaoats produced less inflorescences when saline water irrigation was 301 

applied. Although the remaining two plant species produced inflorescences, there were no 302 

significant differences among treatments. At the second harvest, the number of inflorescences of 303 

blue grama, indian seaoats, and sand ryegrass also did not change; however, irrigation with 304 

solutions at EC of 5.0 dS·m–1 reduced the number of inflorescences of common rush by 50%, 305 

and irrigation with solutions at EC of 10.0 dS·m–1 lowered the number of inflorescences of 306 

common rush and fountain grass by 89% and 48%, respectively. Hunter and Wu (2005) observed 307 

no significant effect of salinity on flowering in native California grass species that received 308 

moderate salt spray. However, decreased flowering on ‘Gracillimus’ maiden grass and ‘Hameln’ 309 

fountain grass occurred at 100% seawater salt spray, whereas no difference in flowering was 310 

observed at 50%, 25%, or 0% seawater salt spray (Scheiber et al., 2008). Additionally, fox sedge 311 

and fountain grass irrigated with solutions at EC of 10.0 dS·m–1 had 26% and 23% fewer tillers, 312 

respectively, compared to their respective control. Saline water irrigation slightly reduced the 313 

number of tillers of other tested species (Table 3). 314 

At the first harvest, saline solutions at EC of 5.0 and 10.0 dS·m–1 did not affect the shoot 315 

growth of all species except fox sedge and fountain grass. Fox sedge irrigated with solutions at 316 

EC of 5.0 dS·m–1 and 10.0 dS·m–1 had 16% and 17%, respectively, less shoot DW than in the 317 

control, whereas fountain grass irrigated with solutions at EC of 10.0 dS·m–1 produced 54% less 318 

shoot DW than in the control (Table 4). At the second harvest, saline solutions at EC of 5.0 and 319 



10.0 dS·m–1 had no influence on the shoot growth of blue grama (Table 4). The solution at EC of 320 

10.0 dS·m–1 lowered the shoot DW of indian seaoats, fox sedge, sand ryegrass, and fountain 321 

grass by 55%, 29%, 19%, and 41%, respectively, but this was not the case for plants irrigated 322 

with solutions at EC of 5.0 dS·m–1. Both saline solutions at EC of 5.0 and 10.0 dS·m–1 reduced 323 

the shoot DW of common rush by 30% and 49%, respectively, and that of pink muhly grass by 324 

28% and 43%. Saline water irrigation also inhibited the root growth of fox sedge, common rush, 325 

and pink muhly grass with reductions of 35%, 69%, and 64% for plants irrigated with solutions 326 

at EC of 5 dS·m–1 and of 71%, 77%, and 80% for plants irrigated with solutions at EC of 10 327 

dS·m–1, respectively (Table 4). Saline irrigation water at EC of 10 dS·m–1 hindered the root 328 

growth of indian seaoats and fountain grass by 57% and 59%, respectively. The total DW of blue 329 

grama, indian seaoats and fountain grass irrigated with solutions at EC of 5.0 dS·m–1 was not 330 

different from that in controls. However, a reduction of 12% to 37% in total DW was recorded 331 

for fox sedge, common rush, sand ryegrass, and pink muhly grass plants irrigated with solutions 332 

at EC of 5.0 dS·m–1. All plant species except blue grama had a reduction of 22% to 53% in total 333 

DW when irrigated with solutions at EC of 10.0 dS·m–1. These results are in agreement with a 334 

previous report (Alvarez, 2006) that the root, shoot, and whole plant biomass gain of ‘Hameln’ 335 

fountain grass and ‘Gracillimus’ maiden grass decreased as the seawater concentration increased 336 

from 0% to 100%. Shoot DW of buffalograss (Buchloe dactyloides) and blue grama also 337 

declined with salinity level increasing from 0 to 10 g·L-1 (Zhang et al., 2012). LeCompte et al. 338 

(2016) observed that the root and shoot DW of muhly grass decreased with high NaCl 339 

concentrations increasing from 2000 to 10,000 mg·L-1, but there was no significant effect of low 340 

NaCl concentrations (0-1000 mg·L-1) on its root and shoot DW. 341 



This research evaluated seven ornamental grass and grass-like species for their tolerance 342 

to saline irrigation water containing NaCl and CaCl2 salts that could be expected from reclaimed 343 

water. Unlike many ornamental herbaceous and woody shrub species screened in the past, these 344 

ornamental grass and grass-like plants showed a very strong tolerance to the salinity levels in the 345 

4-month greenhouse experiment. Sand ryegrass, pink muhly grass, and fountain grass plants 346 

were still of high visual quality and marketable, although their plant growth reduced as a result 347 

of saline water irrigation. These three species had minimum foliar salt damage, but the remaining 348 

tested species exhibited slight or moderate foliar salt damage. Sand ryegrass, pink muhly grass, 349 

and fountain grass appear to be more suitable for landscapes where saline irrigation water is 350 

used. Plant responses to saline water in this research could also be applied to landscapes in salt-351 

prone areas and nearby coastal regions. 352 

 353 
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Table 1. Visual score and relative chlorophyll content [soil plant analysis development (SPAD reading) of seven ornamental grass or 474 

grass-like species irrigated with nutrient solution [Electrical conductivity (EC) = 1.2 dS·m-1; Control] or saline solution [EC = 5.0 475 

dS·m-1 (EC 5) or 10.0 dS·m-1 (EC 10)] in a greenhouse. Plants were harvested after the eighth (first harvest, 9 weeks after the initiation 476 

of treatment) and sixteenth irrigation (second harvest, 18 weeks after the initiation of treatment). z 477 

Species 

Visual score (0 to 5 scale)y SPAD reading 

First harvest Second harvest First harvest Second harvest 

Control EC 5 EC 10 Control EC 5 EC 10 Control EC 5 EC 10 Control EC 5 EC 10 

Blue grama 5.0 aAx 3.8 bC 3.8 bE -w - - 33.4 a 33.0 a 33.4 a 32.0 a 31.9 a 31.0 a 

Indian seaoats 4.2 aB 3.7 bC 3.0 cF 4.6 aAB 4.0 abB 3.8 bA 17.1 b 19.6 ab 23.6 a 30.9 b 36.9 a 33.0 b 

Fox sedge 5.0 aA 3.0 bD 3.0 bF 4.0 aB 3.0 bC 2.4 cB 45.6 a 45.3 a 43.9 b 47.2 a 44.4 b 42.8 c 

Common rush 5.0 aA 4.5 bB 3.9 cD -w - - -v - - -v - - 

Sand ryegrass 5.0 aA 5.0 aA 5.0 aA 5.0 aA 4.4 abB 4.0 bA 55.8 ab 54.9 b 57.0 a 59.3 a 57.7 a 59.1 a 

Pink muhly grass 5.0 aA 5.0 aA 4.4 bC 5.0 aA 5.0 aA 3.6 bA 39.5 a 38.4 ab 37.5 b 38.3 a 39.0 a 37.7 a 

Fountain grass 5.0 aA 5.0 aA 4.7 bB 5.0 aA 5.0 aA 4.0 bA 46.2 a 44.6 a 44.5 a 44.3 a 44.9 a 44.9 a 

z 1 dS∙m-1 = 1 mmho/cm. 478 



y 0 = dead; 1 = more than 90% foliar salt damage (salt damage: leaf burn, necrosis, and discoloration); 2 = moderate (50% to 90%) 479 

foliar salt damage; 3 = slight (less than 50%) foliar salt damage; 4 = good quality with minimal foliar salt damage; and 5 = excellent 480 

without foliar salt damage.  481 

x Means with same lowercase letters within a row and harvest date are not significantly different among treatments by Tukey’s method 482 

for multiplicity at α = 0.05. For visual score, means with same uppercase letters are not significantly different among species by 483 

Tukey’s method for multiplicity at α = 0.05. 484 

w Plants infested with aphids (Aphidoidea), and visual scores were not taken. 485 

v SPAD 502 Plus chlorophyll meter (Minolta Camera Co., Osaka, Japan) did not work on this species.  486 



Table 2. Height and leaf area per plant of seven ornamental grass or grass-like species irrigated with nutrient solution [Electrical 487 

conductivity (EC) = 1.2 dS·m-1; Control] or saline solution [EC = 5.0 dS·m-1 (EC 5) or 10.0 dS·m-1 (EC 10)] in a greenhouse. Plants 488 

were harvested after the eighth (first harvest, 9 weeks after the initiation of treatment) and sixteenth irrigation (second harvest, 18 489 

weeks after the initiation of treatment). z 490 

Species 

Height (cm)z Leaf area (cm2)z 

First harvest Second harvest First harvest Second harvest 

Control EC 5 EC 10 Control EC 5 EC 10 Control EC 5 EC 10 Control EC 5 EC 10 

Blue grama 76.1 ay 74.1 a 66.1 b 75.0 a 61.4 b 58.4 b 1165 a 1192 a 1041 a 2138 a 1761 a 1730 a 

Indian seaoats 56.0 a 41.3 b 40.2 b 76.8 a 68.4 a 52.8 b 1274 a 785 b 668 b 2919 a 2450 ab 1406 b 

Fox sedge 85.3 a 82.4 a 76.9 b 92.4 a 81.8 b 80.0 b 4367 a 4008 a 3775 a 6793 a 6003 ab 4859 b 

Common rush 93.0 a 87.7 a 77.5 b 93.0 a 87.5 ab 75.3 b 2944 a 2855 ab 2030 b 4497 a 2876 ab 2027 b 

Sand ryegrass 91.2 a 88.1 a 77.6 b 85.2 a 85.0 a 76.4 a 2764 a 2441 a 2027 a 4731 a 3997 a 3323 a 

Pink muhly grass 58.0 a 45.6 b 41.9 b 81.2 a 57.6 b 52.0 b 1021 a 897 a 901 a 1863 a 1417 a 1106 a 

Fountain grass 87.0 a 71.3 b 53.9 c 91.2 a 80.0 b 74.6 b 2634 a 2010 a 875 b 3964 a 3729 a 2152 b 

z 1 dS∙m-1 = 1 mmho/cm, 1 cm = 0.3937 inch, 1 cm2 = 0.1550 inch2. 491 

y Means with same lowercase letters within a row and harvest date are not significantly different among treatments by Tukey’s method 492 

for multiplicity at α = 0.05.  493 



Table 3. Number of inflorescences and number of tillers per plant of seven ornamental grass or grass-like species irrigated with 494 

nutrient solution [Electrical conductivity (EC) = 1.2 dS·m-1; Control] or saline solution [EC = 5.0 dS·m-1 (EC 5) or 10.0 dS·m-1 (EC 495 

10)] in a greenhouse. Plants were harvested after the eighth (first harvest, 9 weeks after the initiation of treatment) and sixteenth 496 

irrigation (second harvest, 18 weeks after the initiation of treatment). z 497 

Species 

Inflorescences (no.)  Tillers (no.) 

First harvest Second harvest Second harvest 

Control EC 5 EC 10 Control EC 5 EC 10 Control EC 5 EC 10 

Blue grama 20.2 ay 15.7 a 21.4 a 41 a 38 a 36 a 450 a 420 a 366 a 

Indian seaoats 3.4 a 1.8 b 1.8 b 21 a 18 a 14 a 47 a 46 a 35 a 

Fox sedge -x - - - - - 370 a 332 ab 275 b 

Common rush - - - 53.3 a 26.5 b 6 c 655 a 502 a 482 a 

Sand ryegrass 0.1 a 0.2 a 0 a 2 a 1 a 1 a 46 a 44 a 43 a 

Pink muhly grass - - - - - - 422 a 350 a 351 a 

Fountain grass - - - 22 a 19 a 12 b 100 a 90 ab 78 b 

z1 dS∙m-1 = 1 mmho/cm. 498 

y Means with same lowercase letters within a row and harvest date are not significantly different among treatments by Tukey’s method 499 

for multiplicity at α = 0.05. 500 



x No plants flowered during the entire experimental period.  501 



Table 4. Shoot, root, and total dry weight (DW) of seven ornamental grass or grass-like species irrigated with nutrient solution 502 

[Electrical conductivity (EC) = 1.2 dS·m-1; Control] or saline solution [EC = 5.0 dS·m-1 (EC 5) or 10.0 dS·m-1 (EC 10)] in a 503 

greenhouse. Plants were harvested after the eighth (first harvest, 9 weeks after the initiation of treatment) and sixteenth irrigation 504 

(second harvest, 18 weeks after the initiation of treatment). z 505 

Species 

Shoot DW (g)z Root DW (g) Total DW (g) 

First harvest Second harvest Second harvest Second harvest 

Control EC 5 EC 10 Control EC 5 EC 10 Control EC 5 EC 10 Control EC 5 EC 10 

Blue grama 27.6 ay 21.8 a 21.8 a 74.0 a 68.0 a 64.8 a 17.8 a 12.0 a 11.8 a 91.8 a 79.9 a 76.6 a 

Indian seaoats 16.2 a 12.4 a 11.0 a 57.1 a 47.0 ab 25.7 b 16.6 a 13.6 ab 7.1 b 73.6 a 60.5 a 32.8 b 

Fox sedge 66.9  a 56.4 b 55.5 b 173.4 a 165.1 a 123.3 b 50.9 a 33.0 b 14.8 c 224.3 a 198.1 b 138.2 c 

Common rush 62.7 a 59.1 a 47.7 a 185.6 a 130.7 b 95.4 b 15.7 a 4.9 b 3.6 b 201.3 a 135.6 b 99.0 b 

Sand ryegrass 48.4 a 45.3 a 41.4 a 146.7 a 132.4 ab 118.7 b 61.3 a 47.7 a 43.0 a 208.1 a 180.1 b 161.6 b 

Pink muhly grass 24.1 a 25.7 a 20.9 a 122.3 a 88.3 b 69.3 b 42.7 a 15.3 b 8.4 b 165.0 a 103.6 b 77.7 b 

Fountain grass 40.9 a 30.9 ab 19.0 b 169.7 a 158.2 a 100.8 b 60.4 a 50.0 a 24.5 b 230.1 a 208.1 a 125.3 b 

z 1 dS∙m-1 = 1 mmho/cm, 1 g = 0.0353 oz. 506 

y Means with same lowercase letters within a row and harvest date are not significantly different among treatments by Tukey’s method 507 

for multiplicity at α = 0.05. 508 



Fig. 1. Time course of the electrical conductivity (EC) of leachate solution collected after 509 

ornamental grass or grass-like species irrigated with a nutrient solution at EC of 1.2 dS·m-1 510 

(Control) or a saline solution at EC of 5.0 dS·m-1 (EC 5) or 10.0 dS·m-1 (EC 10) in a greenhouse. 511 

One plant per treatment per species was chosen for measurement. Leachate EC readings were 512 

averaged across seven ornamental grass and grass-like species. Vertical bars represent standard 513 

errors of seven measurements. Arrow denotes that plants grown in 1-gal containers were repotted 514 

into 2-gal containers. 1 dS∙m-1 = 1 mmho/cm, 1 gal = 3.7854 L.  515 



Figure 1. 516 
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	PLANT MATERIALS AND GROWING CONDITIONS. On 5 Oct. 2017, rooted cuttings in 32-cell trays (5.5 × 5.5 × 10.5 cm) of five ornamental grass species (blue grama, indian seaoats, 'Blue Dune' sand ryegrass, pink muhly grass, and 'Foxtrot' fountain grass) and...
	All plants were grown in a greenhouse in Logan, UT (lat. 41 45'28"N, long. 111 48'47"W, elevation 1409 m) and well irrigated with tap water (EC = 0.37 dS∙m-1, pH = 8.25) until treatments started. The sodium adsorption ratio (SAR) of the tap water is 0...
	TREATMENTS. A nutrient solution at EC of 1.2 dS∙m-1 was prepared by adding 0.8 g∙L-1 15N-2.2P-12.5K water-soluble fertilizer (Peters Excel 15-5-15 Ca-Mag Special; ICL Specialty Fertilizers, Dublin, OH) to the tap water and used as the control. Saline ...
	Five weeks after transplanting (10 Nov. 2017), plants were fully established with roots observed visually at the root ball’s periphery, and uniform plants were chosen for the experiment. From 10 Nov. 2017 to 3 Jan. 2018, treatment solutions were appli...

