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Extreme heat is the leading weather-related cause of death in the
United States. Many individuals, however, fail to perceive this
risk, which will be exacerbated by global warming. Given that
awareness of one’s physical and social vulnerability is a critical
precursor to preparedness for extreme weather events, under-
standing Americans’ perceptions of heat risk and their geographic
variability is essential for promoting adaptive behaviors during
heat waves. Using a large original survey dataset of 9,217 respon-
dents, we create and validate a model of Americans’ perceived risk
to their health from extreme heat in all 50 US states, 3,142 coun-
ties, and 72,429 populated census tracts. States in warm climates
(e.g., Texas, Nevada, and Hawaii) have some of the highest heat-
risk perceptions, yet states in cooler climates often face greater
health risks from heat. Likewise, places with older populations
who have increased vulnerability to health effects of heat tend
to have lower risk perceptions, putting them at even greater
risk since lack of awareness is a barrier to adaptive responses.
Poorer neighborhoods and those with larger minority populations
generally have higher risk perceptions than wealthier neighbor-
hoods with more white residents, consistent with vulnerability
differences across these populations. Comprehensive models of
extreme weather risks, exposure, and effects should take individ-
ual perceptions, which motivate behavior, into account. Under-
standing risk perceptions at fine spatial scales can also support
targeting of communication and education initiatives to where
heat adaptation efforts are most needed.
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Extreme heat events cause more deaths than any other
weather-related hazard in the United States and are pro-

jected to become more frequent and intense over the 21st
century (1–3). Mortality and morbidity from heat exposure can
often be mitigated, however, if individuals perceive the risk,
have access to necessary resources, and take appropriate pre-
cautionary action (4). Mitigating the effects of heat can be
as simple as increasing fluid intake, using a fan, finding a
cooler location, or avoiding overexertion. However, if individ-
uals do not perceive heat exposure to be a threat, then they
may be less likely to take appropriate actions. Despite the
strong influence of risk perceptions on behavior, little effort
has been directed toward mapping risk perceptions because
of the difficulty in obtaining comprehensive social survey data
across large areas at fine spatial scales. Thus, while substan-
tial effort and resources continue to focus on mapping varia-
tions in a population’s exposure to and impacts from extreme
heat (5–9), which remains vital, comprehensive high-resolution
heat-risk-perception maps have thus far been beyond scientific
reach.

To understand how Americans in different parts of the coun-
try view the risks of heat waves to their health, we develop a
small-area estimation model using nationally representative sur-
vey data. The model estimates health-risk perceptions of heat
waves for every state, county, and populated census tract in the
United States based on individual and socio-environmental pre-
dictors of heat-risk perceptions. The model is validated by using

independent tract- and state-level survey data. Mapping risk per-
ceptions reveals the importance of physical factors, such as local
climate and land cover, along with demographic factors in shap-
ing Americans’ perceived risk to their personal, family’s, and
community’s health during a heat wave. Risk perceptions exhibit
substantial variation at multiple scales, with estimates across
states showing similar variation to estimates across census tracts
in major metropolitan areas. Results provide a tool for com-
municators and decision makers to understand the geographic
diversity in Americans’ judgments about the health risks of
extreme heat.

Extreme heat is one of the most severe environmental haz-
ards to public health, and it has numerous impacts on vital social
systems, including food, water, energy, and infrastructure (1, 4).
Extreme heat events are also projected to intensify in frequency
and severity due to climate change (2, 3, 10), with even greater
impacts in urban areas, due to heat-island effects (11–13) and
air pollution (14). Increasing urbanization, migration to climates
more prone to extreme heat, and an aging population that is
more vulnerable to heat stress compounds the problem in the
United States (5, 15, 16). Extreme heat typically becomes haz-
ardous during heat waves, multiday periods of excessively hot
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weather (often combined with high humidity) that, due to their
severity or duration, pose risks to human health (17, 18). The
point at which temperature and humidity levels threaten health,
however, varies depending on factors such as physiological sensi-
tivity, the ability to take protective action, individual psychologi-
cal factors, and individual exposure (9, 16, 19–22). Psychological
factors that influence health risks include risk perceptions, which
comprise beliefs and attitudes about the frequency, severity,
and duration of extreme heat events, as well as the dangers of
exposure. In addition to physical risk factors, previous research
underscores the importance of such risk perceptions—among
other social and behavioral factors—in increasing vulnerability
to hazards and the impacts of climate change (23–27). Objective
measures of vulnerability to extreme heat vary geographically
at local to regional scales due to differences in physical expo-
sure to hot weather driven by climate and land cover, variation
in demographic and health-status characteristics associated with
heat sensitivity, and availability of air conditioning, among other
factors (21, 28). Few studies, however, have focused on per-
ceptions of heat risk specifically or systematically collected data
on risk perceptions at the national scale to understand their
geographic and demographic variability. Previous research has
instead used qualitative case studies of subpopulations or sur-
veys in a small number of individual cities (29–34). Thus, there
remains a global knowledge gap about heat-risk perceptions and
how to effectively communicate about the risk (35). Societal vul-
nerability to extreme heat is understood as a function not only
of demographics and access to resources, but also of knowledge
and perceptions (36). Effective adaptation strategies to the risks
of extreme heat, therefore, must address public perceptions and
knowledge (13, 37).

The urgency of understanding the determinants of heat-wave
vulnerability is compounded by global warming, which will exac-
erbate impacts due to higher average temperatures, more fre-
quent temperature extremes, increased humidity, and increased
weather variability (3, 38, 39). Global warming will exacerbate
extreme heat hazards in areas that already experience extreme
heat, but the hazard will also spread to areas with little prior
experience of health-threatening heat (2, 3). In such areas,
risk perceptions will likely lag the changing risk environment,
since they are strongly influenced by a variety of cognitive and
intuitive factors, including personal experience (27). The gap
between perceptions and changing baseline risk will compound
vulnerability if it reduces the likelihood of individuals to take
precautionary actions. Thus, it is important to understand how
people currently perceive the risk of extreme heat at the appro-
priate geographic scales necessary to target resources and reduce
population vulnerability.

Small-Area Estimation from National Survey Data
We use nationally representative survey data and multilevel
regression and poststratification (MRP), a small-area estima-
tion method, to provide high-resolution, nationwide estimates
of risk perceptions. We collected US national survey data (n =
9,217) in 10 waves at 2-wk intervals during summer 2015 using
a probability-sampled online panel, the GfK Knowledgepanel.
Our survey instrument contained nine questions eliciting respon-
dents’ judgments of negative health effects from heat waves
operationalized in terms of likelihood, severity, and worry.
Respondents were asked to evaluate each aspect in terms of
health risks to themselves (personal risks), family members (fam-
ily risks), and others in their community (community risks). Here,
we present an aggregate index of overall heat-risk perception for
all nine items (Cronbach’s α = 0.95).

We applied MRP to the national survey data to generate
estimates of heat-risk perceptions at the census-tract level for
all populated census tracts in the United States. MRP is a
powerful statistical approach increasingly being used to accu-

rately estimate public opinion (or other population estimates) at
subnational levels. The approach uses multilevel (hierarchical)
regression modeling of individual-level data in combination with
Census data and other geographically varying predictors (40–
42). Recent research has applied and validated MRP across a
range of subnational scales to develop public-opinion estimates
for decision and policy making in the context of climate change
(43, 44) and health behavioral indicators (45, 46). Our results
were validated by comparing model estimates against indepen-
dently conducted surveys (in randomly selected geographies) in
two census tracts and eight states.

Results
Our heat-risk perception index ranged from 0 to 100, with higher
values indicating higher risk perceptions. People with higher risk
perceptions were (i) more likely to think that a heat wave would
occur in their community; (ii) more likely to think that a heat
wave, were it to happen in their community, would affect the
health of themselves, their family, and others in their community;
and (iii) more worried about the effects of heat waves. Nation-
ally, the population-weighted mean heat-risk-perception index
was 40 (SD = 24.3). Overall, respondents perceived the risks of
extreme heat to themselves (mean = 34.6, SD = 27.0) to be lower
than risks to their family (mean = 39.6, SD = 27.2) or others in
their community (mean = 47.9, SD = 24.6).

Risk perceptions of extreme heat exhibited substantial vari-
ation from the local to regional scale in the United States
(47). An online visualization tool shows spatial variations across
the United States at state, county, and tract levels (avail-
able at: http://climatecommunication.yale.edu/visualizations-data/
heatwave-risk-perceptions/). At the state level, our aggregate
heat-risk-perception index estimates ranged from 31 to 45 (SD =
3.8). There was a distinct north–south gradient in perceptions of
harm from heat waves, with residents in southern states perceiv-
ing higher risk than those in northern states (Fig. 1). People in
the northern Midwest in particular exhibited lower risk percep-
tions than those in coastal states. Residents of Hawaii, Texas,
Nevada, and Louisiana had the highest perceived risk. Closer
examination of county-level (SD = 4.2) heat-risk perceptions
also showed substantial variation. Residents in the southern-
most counties in Texas perceived the greatest potential harm
from extreme heat, for example, as did residents of counties in
southern California and the Central Valley. In addition, highly
populated counties were important for determining the overall
level of risk perception within a state. The gradient in extreme
heat-risk perceptions evident in the United States in both the
state- and county-level maps was consistent with the latitudinal
temperature gradient and indicated that those living in warmer
climates perceive higher risks from extreme heat (regardless of
whether or not their health risks are actually higher). Likewise,
some of the lowest risk perceptions were in counties at high
elevations with cooler climates, such as in the Rocky Moun-
tains and Appalachians. Such patterns highlighted the influence
of climate as a key factor driving spatial variations in risk per-
ceptions; demographic influences, however, were also evident
at the national scale. Higher-than-average risk perceptions can
be found, for example, in some counties with relatively high
African-American populations (e.g., in east-central Mississippi
and Alabama) or Hispanic/Latino populations (e.g., in southern
California and Texas).

Spatial patterns in heat risk perceptions also showed strong
features at the census-tract level, with wide variation present,
even within the same counties (Fig. 2). Such patterns are not
wholly consistent with variations in temperature exposure. In
examples from the four most populated counties, Los Ange-
les County, CA; Cook County (Chicago), IL; Harris County
(Houston), TX; and Maricopa County (Phoenix), AZ, risk per-
ceptions varied within each county by ∼20 points (SD = 3.8–4.5).
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Fig. 1. State-level (Upper) and county-level (Lower) estimates of heat-risk
perception for the contiguous United States. Values indicate mean esti-
mated risk-perception index for the population of each state (SD = 3.8) or
county (SD = 4.2).

In each case, the more densely populated urban tracts tended
to exhibit higher relative risk perceptions than the suburban
and rural areas surrounding the cities. However, while tem-
perature differences may again partly explain these variations
due to urban heat-island effects, the spatial variability of risk
perceptions within urban cores points to other factors. Close
examination of the most densely populated areas (indicated by
smaller tract sizes) revealed an urban core with relatively low
risk perceptions of harm from extreme heat surrounded by a
ring of tracts with higher perceived harm (especially, for exam-
ple, in Harris County, TX). Such a pattern reflects a feature
of urban geography in many American cities explained primar-
ily by differences in economic, demographic, and social factors
(48). Thus, within urban areas, heat-risk perceptions are strongly
influenced by sociodemographics that are consistent with social
vulnerability (49).

Nationwide, at the census-tract level, we found patterns in
heat-risk perceptions that were associated with factors that pre-
dict social vulnerability to the hazard, including race, income,
and gender. Tracts with more white non-Hispanic/Latino resi-
dents tended to have lower heat-risk perceptions (r = −0.62,
P < 0.000), and tracts with proportionally more residents with
incomes below the poverty line tended to have higher risk per-
ceptions (r = 0.55, P< 0.000). Tracts with more women residents
also tended to have slightly higher risk perceptions (r = 0.09,

P < 0.000). By contrast, patterns in heat-risk perceptions dif-
fered from what might be expected based on the age distribution
of populations, since age is an important predictor of heat-health
risk. Instead, we found that tracts with proportionally more resi-
dents age 65 and over tended to have lower heat-risk perceptions
(r = −0.22, P < 0.000), and the relationship held for tract-
level median age (r = −0.038, P < 0.000). For example, Sumter
County, FL—which has the greatest proportion of residents over
age 65 at 49% (50)—had an estimated heat-risk perception index
of 40, tied with the national mean.

Model estimates were validated against independent surveys
conducted in two census tracts in the communities of Brawley,
Imperial County, CA (n = 277); and Peoria, Peoria County, IL
(n = 364). Tracts were selected by first stratifying all US counties
with heat-related mortality statistics recorded in the CDC WON-
DER database (51) into those with above- and below-average
per-capita mortality and above- and below-average risk percep-
tions. One county was then randomly selected from each of the
two groups that had higher-than-average heat-related deaths and
either lower- or higher-than-average risk perceptions. That is,
one county had higher-than-average risk perceptions (Imperial
County, CA), and the other had lower-than-average risk percep-
tions (Peoria County, IL). One census tract was then randomly
selected within each of the two counties. Compared against these
tract-level surveys, the mean absolute error of our MRP model
estimates was 2.7 points (Fig. 3).

We also validated our estimates against independent online
surveys conducted in eight states. States were selected by strati-
fying all 50 states and the District of Columbia into population
quartiles and randomly selecting two states within each quartile.
Compared against these state-level surveys, the mean absolute
error of our MRP model estimates was 1.6 points, and the

Fig. 2. Tract-level estimates of heat risk perception for the four largest US
counties by population. Tracts are shaded by the difference from the aver-
age for each county. Los Angeles County, CA (mean = 47, SD = 4.1; Upper
Left); Cook County, IL (mean = 40, SD = 4.5; Upper Right); Harris County, TX
(mean = 46, SD = 3.9; Lower Left); and Maricopa County, AZ (mean = 44,
SD = 3.8; Lower Right).
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Fig. 3. External validation of estimated risk-perception index with inde-
pendent survey estimates in randomly selected tracts in Imperial County
(Brawley), CA (Left); and Peoria County, IL (Right). The mean absolute error
between MRP model estimates and the external survey results was 2.7
points. The risk-perception index is generally higher in Brawley than in Peo-
ria. In both census tracts, Hispanic females have the highest risk perceptions,
while white males have the lowest.

correlation of the model estimates to the state-level survey
results was r = 0.82 (SI Appendix, Fig. S1).

Within the two census tracts selected for our external-
validation surveys, we saw demographic patterns across
race/ethnicity and gender. While white respondents had the
lowest heat-risk perceptions, Hispanic/Latino respondents had
the highest risk perceptions in both tracts. Women tended
to perceive higher risks from extreme heat than men. Esti-
mated heat-risk perceptions overall were 14 points higher in
the Imperial County, CA, tract than in the Peoria County,
IL, tract, which also illustrates regional-scale geographic
differences.

Model estimates of heat-risk perception compared favorably
to separate tract- and state-level surveys. However, since the
underlying survey data are distributed by population, estimates
for geographic areas with larger populations are likely to be more
accurate than those for smaller populations (43). Likewise, esti-
mates at broader geographic scales (states and counties) tend to
be more accurate than those at finer scales (census tracts).

US population exposure to extreme heat will continue to
grow in the 21st century under most climate scenarios, driven
by changes in climate, population growth, and shifts in pop-
ulation distribution to more exposed areas (5). We compared
our risk-perception estimates at the census-division level to an
ensemble mean scenario of population exposure for 2041–2070
reported by Jones et al. (5) (Fig. 4). Risk-perception estimates
and population exposure were highly correlated, both under
the base period (1971–2000; r = 0.77) and future projections
(2041–2070; r = 0.80). Population exposure and risk percep-
tions were highest in the West-South-Central division (including
Texas, Oklahoma, Arkansas, and Louisiana). Risk perceptions
were lower than expected, based on current and projected popu-
lation exposure, in the Mountain division (including the states
of Arizona, Nevada, Colorado, Utah, New Mexico, Montana,
Idaho, and Wyoming).

Discussion and Conclusions
Estimates of extreme heat-risk perceptions indicate that sociode-
mographic as well as physical contextual factors are both associ-
ated with risk perceptions, which consequently vary across space
and exhibit scale-dependent patterns. For example, populations
located in warmer climates have the highest risk perceptions.
However, epidemiological research suggests that such popula-
tions do not necessarily experience the greatest health effects
from extreme heat (52–54). In addition, while at the state and
county level, risk perceptions are consistent with differences in
average temperatures, at local (city and neighborhood) scales,

variation in risk perceptions is also strongly related to sociode-
mographic factors. Place-based social vulnerability factors are
associated with heat-risk perceptions. Areas with high-minority
and low-income populations, for example, perceive greater risks;
likewise, white men tend to judge the risks of heat to be lower
than do others, as with other risks (55). A key exception to these
patterns is age, because areas with older populations do not per-
ceive greater risks, despite their increased vulnerability to the
health effects of heat. This is consistent with qualitative findings
that older people tend not to consider themselves vulnerable to
heat, even while acknowledging that others in their age group
may have elevated vulnerability (29, 34).

Increasing atmospheric greenhouse-gas concentrations that
are causing global temperatures to rise are affecting the United
States, where mean temperatures have increased by 1.3 ◦F to
1.9 ◦F since record-keeping began in 1895 (56). As the climate
continues to warm, populations in northern states and at higher
elevations will become more exposed to extreme heat (3). Epi-
demiological research already indicates that such populations
(e.g., in the northeastern United States) are at higher risk of neg-
ative health impacts from heat than are populations in places
more acclimatized to warm weather (53). The rate at which
individuals’ risk perceptions and behaviors change, however, is
unknown and may lead to a growing gap between these factors
and actual health risks if either do not keep pace with the chang-
ing climate. There is growing evidence that rising greenhouse gas
concentrations are already affecting some characteristics (e.g.,
likelihood and severity) of heat waves (57), and projections of
future climate change indicate that heat will become an increas-
ing problem (58). Populations in areas that already experience
frequent extreme heat events, such as the US South and South-
west, will be more exposed to extreme heat, but better infras-
tructure, experience, and acclimation may facilitate adaptation
to some extent. Populations in areas with few of these factors,
such as those in some northern areas, may become increasingly
at risk for negative health impacts from extreme heat as cli-
mate changes exacerbate extreme heat events beyond previous
experience.
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An analysis of city- to national-scale trends in heat-related
mortality found evidence that populations in the United States
have indeed become more resilient to heat over time, even when
accounting for increases in the use of air conditioning (59).
Despite increased resilience, however, an increase in average
temperatures by 5 ◦F (central climate projection) would lead
to more than an additional 1,900 deaths per summer across
105 US cities (59). A better understanding of the variation in
Americans’ risk perceptions, and especially of how perceptions
of extreme heat do or do not translate into behaviors, will help
build resilience to increasing heat in the coming decades.

Local climate, land cover, and other contextual factors are
associated with risk perceptions alongside demographic predic-
tors, but physical factors appear to be more important in driving
national-scale responses. Sociodemographic predictors, in con-
trast, are more relevant to risk perceptions at finer scales. In
addition, variation among states is similar to variation among
census tracts in major metropolitan areas. Heat-risk perceptions
are a key predictor of protective responses (37), and policy to
reduce risk should be responsive to risk perceptions, both to
bring risk perceptions into line with actual vulnerability (for sub-
populations that underestimate their risk), but also to respond
to the needs of subpopulations where high risk perceptions cor-
respond with elevated vulnerability. Future efforts designed to
increase awareness about the health risks of extreme heat and
to understand differences in heat-risk perception and behavior
among different populations may become particularly important
in places where future exposure is expected to increase the most
(5, 60). These results provide insights and a tool for communica-
tors and decision makers to understand the geographic diversity
in Americans’ judgments about the health risks of extreme heat
and point toward the need for additional analyses that can help
identify areas where gaps between actual and perceived risk may
exist or may grow in the future.

Materials and Methods
We constructed an aggregate index of heat-risk perception using our three
groups of three questions in an online survey instrument designed to elicit
risk judgments of negative health effects from heat waves operationalized
in terms of likelihood, severity, and worry. Respondents used a slider bar to
indicate their answer on a 0–100 scale. Respondents answered each ques-
tion for: (i) “Your health”; (ii) “The health of others in your family”; and (iii)
“The health of others in your community.” Our questions were as follows.
(i) “A heat wave is a period of unusually and uncomfortably hot weather.
Thinking about your local area, how likely is it, if at all, that each of the fol-
lowing will be harmed by a heat wave in the next five years? If you’re not
sure, just give your best estimate.” Response options ranged from 0% (“Def-
initely will not be harmed”) to 100% (Definitely will be harmed). We also
included a separate response option of “[w]ill not be harmed because a heat
wave will not occur.” (ii) “If a heat wave were to occur in your local area,
how much, if at all, do you think it would harm the following?” Response
options ranged from 0 (“Would cause no harm at all”) to 100 (“Would cause
extreme harm”). (iii) “How worried, if at all, are you about the effects of
heat waves on the following?” Response options ranged from 0 (“Not wor-
ried at all”) to 100 (“Extremely worried”). Our heat-risk-perception index is
the unweighted mean of responses to these nine survey items. The index has
high internal consistency (Cronbach’s α = 0.95). The study was approved as
exempt by the Yale University and Utah State University Institutional Review
Board, which provided a waiver of written informed consent for the survey.

Predicting heat-wave-risk perceptions at the tract level by using MRP
proceeded from variable and model selection to testing and validation. In
MRP, a multilevel regression model was fit to an individual-level dependent

variable using a combination of individual-level demographic predictors
(treated as random effects), grouped random effects, and group-level
predictors (fixed effects) across geographic units within the dataset. In
the second step, poststratification, the fitted model was applied to the
population of the study area across each demographic–geographic type
within the population, using census data cross-tabulated across each type.
Estimates for each demographic–geographic type could then be aggre-
gated by their population to produce estimates for every geographic
unit.

Our individual-level model used age group, gender, and race/ethnicity
as predictors, with an interaction term for age by gender by race/ethnicity;
these variables were the source of the point-value intercepts in the model.
Individuals were also grouped geographically according to their census
tract, county, state, and census division. The multilevel model used random
effects for grouping variables. Random effects were related to each other
by their hierarchical structure and thus were partially pooled toward their
group mean. Greater pooling occurred for smaller groups and when group-
level variance was low. Group-level predictors (fixed effects) were also used
to improve model fit (41, 42) and were based on respondents’ geographic
location. We used random-forest analysis (61) to identify important tract-
level predictors, including educational attainment, poverty, and disability
status; impervious surface land cover; and gridded long-term mean temper-
ature as tract-level predictors; these were the source of the model’s slope
estimates (see SI Appendix for details).

We specified our model as follows, predicting heat-risk perceptions (y)
for each individual i:

yi ∼N
(
γ

0
+α

race
j[i] +α
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k[i] +α
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l[i] +α

race.age.gend
j[i],k[i],l[i] +α

tract
t[i] ,σ2

y

)
,

where

α
tract
t ∼N

(
α

region
r[t] +α

state
s[t] +α

county
c[t] + γ

tmeantmeant

+ γ
landcoverlandcovert + γ

educationeducationt + γ
lowinclowinct

+ γ
disability65disability65t ,σ

2
tract

)
for t = 1, . . . , 6994.

Each variable was indexed over individual i and over response categories
j, k, l, j:k:l, r, s, c, and t for race/ethnicity (σ = 2.72), age (σ = 0.99), gen-
der (σ = 2.65), a race/ethnicity by age by gender interaction (σ = 0.16),
state (σ = 0.79), census division (σ = 1.52), county (σ = 2.69), and census
tract (σ = 1.44), respectively. The tract variable was further modeled as a
function of the mean of daily mean summer (June/July/August) temper-
ature within the census tract (1981–2010) from the Daymet dataset (62),
the mean percentage imperviousness within the tract in 2011 from the
National Land Cover Dataset (63), the percentage of the adult popula-
tion with a bachelor’s degree or higher in 2014 (50), the percentage of
households receiving benefits from the Supplemental Nutrition Assistance
Program in 2014 (50), and the percentage of residents age 65 and over with
disability status in 2014 (50). Respondents for whom tract-level data were
unavailable (n = 6) or who did not answer all nine questions in the heat-
risk-perception index (n = 333) were omitted from the regression analysis.
The model was fit by using the lmer function in the r package lme4 using
maximum-likelihood estimation (pseudo R2 = 0.42). For poststratification,
we used the modeled point estimates of the random effects for the demo-
graphic variables, county, state, and census division and the fixed effects
at the tract level. We applied the model to 2015 5-y American Commu-
nity Survey data cross-tabulated by age group, gender, and race/ethnicity
across all US states, counties, and census tracts. The tract-level estimates
were aggregated by population to create the county- and state-level
estimates.
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