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complexes. Heterodimers of ZF2C6H5 (Z = P, As, Sb, Bi) and NH3
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Abstract
When bound to a pair of F atoms and a phenyl ring, a pyramidal pnicogen (Z) atom can form a pnicogen bond wherein an NH3

base lies opposite one F atom. In addition to this σ-hole complex, the ZF2C6H5 molecule can distort in such a way that the NH3

approaches on the opposite side to the lone pair on Z, where there is a so-called π-hole. The interaction energies of these π-hole
dimers are roughly 30 kcal/mol, much larger than the equivalent quantities for the σ-hole complexes, which are only 4–13 kcal/
mol. On the other hand, this large interaction energy is countered by the considerable deformation energy required for the Lewis
acid to adopt the geometry necessary to form the π-hole complex. The overall energetics of the complexation reaction are thus
more exothermic for the σ-hole dimers than for the π-hole dimers.
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Introduction

Recent years have witnessed a dramatic growth in interest in
noncovalent interactions. New insights have been gleaned
from a palette of computational tools based on quantum chem-
istry. While any single noncovalent interaction is weak in
comparison to a covalent bond, such interactions nonetheless
exert a powerful impact on numerous processes linked to bio-
chemistry or crystal engineering, nanoparticle self-assembly,

drug binding, and biomolecular folding processes [1–14].
After decades of scientific attention devoted to the hydrogen
bond [4, 8, 15–20], a number of different but related
noncovalent interactions have enjoyed the limelight more re-
cently. Many of these bonds derive from the σ-hole concept,
wherein—even though it does not carry a partial positive
charge—an electronegative atom can nonetheless attract a nu-
cleophile via an anisotropic electronic distribution which pro-
vides a positive electrostatic potential in a constricted region
lying opposite a covalent bond [21–28]. The σ-hole area may
be treated as an acidic binding site that attracts an incoming
nucleophile, which may take the form of a lone pair, an anion,
or even a π-electron system. In addition to the electrostatic
attraction, noncovalent bonds benefit from electron transfer
from a Lewis base to a σ* antibonding orbital of the acid
[29–33], which also contributes to the directionality of the
σ-hole bond [34–36].

In addition to σ-holes, which appear directly opposite co-
valent bonds, certain molecules can also develop π-holes,
which lie above the plane of the system [37–43] and give rise
to a π-hole-bonded complex [44]. These π-holes have been
identified in numerous molecules, such as carbonyls, trisub-
stituted centers, and nitro- and acyl-carbon-containing entities
[40, 45, 46]. The ensuing π-hole interactions share many of
the same features with their σ-hole cousins [47] and can be
responsible for even stronger bonds [48]. Although the study
of π-hole interactions is accelerating, direct comparisons of σ-
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and π-bonds for the same pair of subunits [44, 48–60] remain
limited, leaving many questions unanswered.

The pnicogen bond is a case in point. It has been reason-
ably widely examined [34, 61–74], but little has been deter-
mined in terms of competing configurations of a given pair of
molecules. For example, the complexes PH2R···BrCl (R = H,
F, OH, OCH3, CH3) were studied at the MP2 level [74], fo-
cusing on two possible σ-hole arrangements: halogen-bonded
vs pnicogen-bonded. The halogen bonds were calculated to be
stronger and driven primarily by electrostatics, while the
weaker pnicogen bonds relied mostly on dispersion. With re-
spect to π-electron donors, Zhu and coworkers observed a
reversal in that pnicogen bonds were stronger than halogen
bonds in complexes between PH2Cl and substituted benzene
[68]. The strongest σ-hole bonding in PH2R complexes with
formaldehyde [75] was found to occur when R =NO2, follow-
ed by R = F and R = Cl. Pnicogen bonds exhibit cooperativity
with H-bonds, as noted in complexes of π-electron systems
such as benzene with PCl3 [65]. There have been some studies
of π-hole pnicogen bonds, but those studies focused on the
hypervalent PO2Cl molecule [76], PO2R [77], or the
(H2C=PH2)

+ ion [78], none of which can contain a σ-hole.
π-Hole pnicogen bonds have been identified in unconvention-
al bonding situations such as NNO [79], but these are quite
weak and there is no competing σ-hole interaction.

Although there has been little examination of σ-hole versus
π-hole bonding in pnicogen bonds, there has been some study
of this question for the related tetrel bond wherein TF4 (T = Si,
Ge, Sn) molecules were paired with pyridine derivatives [80].
The approach of the Lewis base prompted large-scale geom-
etry distortion in TF4, changing its shape from tetrahedral to
trigonal bipyramidal. This transformation led to the formation
of two types of dimers with σ-hole and π-hole characteristics.
While the latter were more stable with regard to interaction
energies (surpassing 50 kcal/mol), the accompanying defor-
mation of the monomer geometry was so high in these con-
figurations that the overall energetics favored the σ-hole com-
plexes. The ability of tetrel atoms to engage in bothσ-hole and
π-hole interactions was recently examined [81], and it was
learned that π-complexes can be stronger than their σ ana-
logues, although different molecules were used for each class
of interaction. Aerogen bonds are capable of forming both σ-
hole and π-hole interactions, and recent calculations [82] sug-
gest that it is the latter that are the stronger. In another some-
what related study, σ-hole pnicogen bonds were compared
with a π-hole tetrel bond [83].

The ability of TF4 molecules to undergo [80] a geometrical
transformation so as to form either a σ-hole or π-hole tetrel
bond inspired us to wonder if something of this sort is also
possible for pnicogen atoms. If such is the case, then there are
a number of obvious and important questions. Would σ-hole
or π-hole complexes be more stable, and how much deforma-
tion energy might be required for each to form? It would be

interesting to determine the underlying sources of the stability
of each to see what differences there might be. Do both sorts
of bonds require the same proportions of electrostatic, polari-
zation, and dispersion energy contributions? How do the
quantitative aspects of the σ- and π-holes of the properly
distorted monomer differ from each other, and do their mag-
nitudes correlate with the strength of the interaction with a
base? It would be interesting to determine whether both sorts
of bonds undergo the same systematic trends as the pnicogen
atom grows larger, i.e., P → As → Sb → Bi. The present
communication details the results of calculations intended to
answer these questions.

Systems and computational methods

The proper selection of electron donors and acceptor is crucial
to deriving a systematic understanding of the nature of the
bonding. In the Lewis acid, sufficiently potent electron-
withdrawing substituents must be attached to the pnicogen
atom to ensure the presence of regions of positive potential
that can attract a base. The entire molecule must be flexible
enough that geometrical deformations to accommodate both
sorts of bonding are feasible. For the Lewis acid, then, the set
of molecules ZF2C6H5 (Z = P, As, Sb, Bi) was selected. The F
atoms act as electron-withdrawing agents, and the phenyl ring
can rotate as needed. NH3was chosen as the Lewis base due to
its small size, which minimizes complicating secondary inter-
actions, as well as its easily available lone pair of electrons.

The geometries of dimeric complexes between ZF2C6H5

(Z = P, As, Sb, Bi) and NH3 were optimized at the MP2 level
in conjunction with the aug-cc-pVDZ basis set [84, 85].
Optimization was also carried out at the BLYP-D3/
Def2TZVPP level of theory. Energies were additionally com-
puted at the CCSD(T)/aug-cc-pVDZ level (using MP2-
generated minima) for the purposes of comparison and vali-
dation [86–92]. For accurate electronic descriptions of the
heavy Sb and Bi atoms, the aug-cc-pVDZ-PP basis set with
pseudopotentials taken from the EMSL library was employed
[93]. Structures were verified as true minima by checking that
all vibrational frequencies were positive. Computations were
performed via the Gaussian 09 software package [94].
Molecular electrostatic potential (MEP) analysis was applied
to identify and quantify all MEP extrema using the WFA-SAS
and MultiWFN programs [95–97]. Interaction energies were
calculated as the difference in energy between the complex
and the sum of monomers (with the same geometries as they
adopt within the complex). Binding energies were computed
relative to the monomers in their isolated optimized structures.
Both quantities were corrected for basis set superposition error
(BSSE) using the counterpoise protocol [98]. The electron
density topology was analyzed using AIMAll software [99].
Energy decomposition analysis (EDA) was performed at the
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BLYP-D3/ZORA/TZ2P level using DFT-optimized geome-
tries with the aid of ADF software [100–102]. In order to
analyze interorbital connections and charge flow between
the monomers, the natural bond orbital (NBO) procedure
(using GenNBO 6.0) was utilized using the wavefunction
generated at the DFT level [103]. The CSD (Cambridge
Structural Database) [104] was searched for pertinent experi-
mental crystal structures similar to those described in this
manuscript.

Results

Monomer characteristics

The isolated ZF2C6H5 (Z = P, As, Sb, Bi) monomers were
fully optimized at the MP2/aug-cc-pVDZ and BLYP-D3/
Def2TZVPP levels. The equilibrium geometries of these
monomers calculated at the MP2 level are similar; they all
have a highly pyramidal Z atom close to the Cs point group.
This general structure is presented as conformer A in Fig. 1.
Despite appearing to be in close proximity, AIM analysis does
not find any bond critical point between the F and ring H
atoms when Z = P, As, or Bi. In the case of BiF2C6H5, how-
ever, one of the F atoms is nearly coplanar with the aromatic
ring, with a dihedral angle φ(F–Bi–C–C) = 11.3° (see
Table S1 in the BElectronic supplementary material,^ ESM),
and AIM finds a BCP between this F and the nearby ring H
atom. On the other hand, this interaction is rather weak, with
an electron density at the BCP of only 0.0095 au.

Unlike MP2, the DFT functional identified two separate
stable conformers of ZF2C6H5. In addition to the A geometry
discussed above, the B conformer rotates the ZF2 group such
that both F atoms lie below the phenyl ring, and the Z lone pair
points above this ring, belonging to the Cs point group.
Structure B is slightly less stable than A, by 1.04, 0.70, and
0.58 kcal/mol for Z = P, As, and Sb, respectively; these

differences are even smaller in terms of ΔG. DFT, like MP2,
does not identify a B geometry for BiF2C6H5.

The molecular electrostatic potential surrounding the A
geometry of PF2C6H5 is displayed in Fig. 2; similar diagrams
are obtained for the other ZF2C6H5 systems. The most intense
σ-holes lie opposite the F atoms, along extensions of the P–F
bonds. The value of Vs,max on this surface increases with the
size of the Z atom from 19.4 kcal/mol for Z = P to 52.6 kcal/
mol for Z = Bi, as may be seen in the first column of Table 1.
There is a second, but weaker, σ-hole opposite the C–P bond,
with smaller Vs,max values listed in the last column of Table 1.
The calculated Vs,min for the isolated ammonia molecule that
acts as a Lewis base is −37.7 kcal/mol.

σ-Hole and π-hole dimer interactions

When each ZF2C6H5 molecule was paired with NH3, two
types of dimer geometries were identified. As illustrated in
the top half of Fig. 3, in the first case the NH3 approaches Z
along the direction of one of the two Z–F σ-holes. Another
dimer structure is related to the Bmonomer geometry, wherein
the NH3 lies roughly perpendicular to the C–Z covalent bond,
in between the two Z–F bonds. These two structures are des-
ignated σ-hole and π-hole complexes, respectively.

The geometric details of these two types of dimers are
listed in Table 2. F1 refers to the F atom that lies directly
opposite the NH3 N atom in the σ-hole structure, and F2 refers
to the other F atom. The angle θ(F1–Z···N) in the σ-hole ge-
ometries ranges between 155° and 166°, and is more linear for
the smaller Z atoms. The intermolecular distances R(Z···N) are
surprisingly insensitive to the nature of the Z atom, and are
longest for P and shortest for As. In contrast, this same dis-
tance is highly dependent upon Z for the π-hole complexes,
elongating from 1.932 Å for P to 2.343 Å for Bi. This pattern
fits the simple idea of a progressively larger Z atom along this
series. Note also that the N atom lies on the same side of the
phenyl plane as the two F atoms, with the angles θ(F–Z–N) all
less than 80°. The bond lengths r(Z–F1) for the F lying

Fig. 1 Structures of the A and B
conformers of the isolated
ZF2C6H5 monomers
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opposite the N in the σ-hole dimers are consistently longer
than r(Z–F2) by about 0.01 Å, consistent with the idea of
charge transfer into the σ*(Z–F1) antibonding orbital (see
below). The Z–F bond lengths are considerably longer in the
π-hole complexes.

The substituents around the central Z atom constitute a py-
ramidal structure. Its deviation from planarity can be quantified
as the sum of the three angles θ(X–Z–Y), where X and Y refer
to the substituent atoms (C or F). This sum would be equal to
360° for a fully planar structure, so deviations from this sum can
be considered as a measure of the nonplanarity, i.e., the
Bpyramidality.^ As shown in the last column of Table 2, this
angle sum is quite small for the σ-hole complexes, less than
290°. The deviation from planarity gets larger as the Z atom
grows in size. On the other hand, the uncomplexed monomers
are also quite nonplanar, as may be seen in the last column of
Table S1. The increase in nonplanarity caused by complexation,
i.e., the difference in ∑θ(Z) between the monomer and com-
plex, is between 4° and 7°. The angle sum is much closer to
360° for the π-hole complexes. This change from the monomer
amounts to a 40–50° loss of pyramidal character, i.e., a flatten-
ing of the pyramid at the central Z atom. This alteration has
important repercussions for the energetics of this process, as
elaborated below.

The interaction energies of the various heterodimers ob-
tained at three different levels of theory are presented in
Table 3. The most striking trend in these values is that the
interactions involved in the π-hole complexes are much stron-
ger than those for the σ-hole complexes. Eint lies in the range
24–34 kcal/mol for these structures—much larger than the 4–
13 kcal/mol range for the σ-hole geometries. Taking the
CCSD(T)/aug-cc-pVDZ values as a benchmark, the MP2
quantities for the π-hole dimers are slightly inflated, whereas
those calculated at the BLYP-D3/Def2TZVPP level are sig-
nificantly underestimated. The three levels provide much
more uniform data for the σ-hole geometries. With regard to
the former structures, Eint tends to drop slowly as the Z atom
becomes larger; the opposite pattern emerges for the σ-hole
dimers, where NH3 is bound more than three times more
strongly for Z = Bi than for P.

AIM analysis of these complexes helps us to understand
these energetic trends. The relevant molecular graphs are
displayed in Fig. S1 of the ESM, where all structures are
shown to contain a bond critical point between the pnicogen
and the N atom of the base. The relevant characteristics of this
critical point are listed in Table 4, along with any secondary
critical points between the two molecules. All of the data
support the stronger binding of the π-hole dimers as compared
to the σ-hole dimers. For example, ρ is between 2 and 5 times
larger for the former than the latter, and ∇2ρ is much larger as
well. H is much more negative for the π-hole dimers than for
the σ-hole dimers, again consistent with the stronger binding
in the former. Less consistent are the values within each series.
ρ only grows slowly with increasing Z size for the σ-hole set,
while the interaction energy grows much more quickly. While
the π-hole Eint is insensitive to the identity of Z, there is a clear
tendency for ρ to decrease as the size of Z increases. It can also
be observed that additional NH···F H-bonds are indicated by
AIM, which add to the larger interaction energies for the π-

Fig. 2 MEPs of the isolated
PF2C6H5 σ-hole donor molecule,
computed on the 0.001 au
isodensity surface at the MP2/
aug-cc-pVDZ level. Color ranges,
in kcal/mol, are: red greater than
15, yellow between 8 and 15,
green between 0 and 8, blue
below 0 kcal/mol

Table 1 Molecular electrostatic potential maxima (kcal/mol) on the
0.001 au isodensity surface of ZF2C6H5, calculated at the MP2/aug-cc-
pVDZ level of theory

Isolated molecule Vs,max for Z–F σ-hole Vs,max for C–Z σ-hole

PF2C6H5 +19.4 +12.0

AsF2C6H5 +28.2 +15.6

SbF2C6H5 +38.4 +23.6

BiF2C6H5 +52.6 +27.4
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hole dimers. Even though the corresponding bond path is not
observed in each of the dimers investigated, the CH···F or

NH···F interactions may contribute to the overall interaction
energy [105, 106].

Fig. 3 MP2/aug-cc-pVDZ-
optimized structure (top and side
views) of complexes of NH3 with
ZF2C6H5

Table 2 Structural parameters (distances in Å, angles in degrees) in complexes of ZF2C6H5 with NH3, as evaluated at the MP2/aug-cc-pVDZ level

R(N···Z) r(Z–C) r(Z–F1)
r(Z–F2)

θ(F1–Z···N)
θ(F2–Z···N)

θ(F1–Z···F2) θ(F1–Z···C)
θ(F2–Z···C)

φ(F1–Z-C–C)
φ(F2–Z-C–C)

∑θ(Z)a

σ-Hole complexes

NH3···PF2C6H5 2.767 1.842 1.672
1.661

165.7
76.0

94.0 95.8
98.1

63.7
31.2

287.9

NH3···AsF2C6H5 2.623 1.950 1.796
1.782

162.7
75.3

91.4 93.4
96.6

56.0
35.8

281.4

NH3···SbF2C6H5 2.627 2.149 1.969
1.958

155.5
72.4

88.4 90.5
95.0

44.6
43.8

273.9

NH3···BiF2C6H5 2.708 2.238 2.069
2.058

154.5
70.6

89.2 89.7
93.7

37.7
51.4

272.6

π-Hole complexes

NH3···PF2C6H5 1.932 1.867 1.814 79.6 159.1 91.2 12.9 341.5

NH3···AsF2C6H5 2.046 1.966 1.916 77.6 155.2 90.1 14.9 335.4

NH3···SbF2C6H5 2.252 2.152 2.053 74.1 147.8 87.6 17.6 323.0

NH3···BiF2C6H5 2.343 2.235 2.153 72.9 145.6 87.2 18.2 320.0

a Sum of the three angles around Z
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NBO evaluation of the charge transfer from orbitals of the
base to those of the Lewis acid provides an alternative perspec-
tive on the nature of the bonding. The second and sixth columns
of Table 5 present the total charge transferred from the N lone
pair to any of the orbitals of the Lewis base for σ-hole-bonded
and π-hole-bonded complexes, respectively. In other columns
of the table, this total charge transferred is split into that trans-
ferred to LV orbitals of the Z atom, defined by NBO as one-
center unfilled nonbonded valence orbitals of Z, and that trans-
ferred to the σ*(Z–C) antibonding orbital involving the phenyl
C, respectively. Another two columns of the table refer to
CT the total charge transferred, i.e., the total natural charge on

all atoms of each subunit. The NBO data tend to mimic the
interaction energies in Table 3 to some extent. As an illustration
of this, the relationship between CT and interaction energy is
presented in Fig. S2 of the ESM. The much stronger binding of
the π-hole complexes is reflected in the interorbital and total
charge transfer. Also reproduced is the diminishingπ-hole bond
strength with larger Z. With the exception of Z = Bi, the σ-hole
data show a trend for increasing energy as Z gets larger.

Decomposition of the interaction energy into its constituent
parts provides further insights into the nature of these dimers.
The data in Table 6 illustrate that roughly 60% of the interac-
tions in both σ-hole and π-hole complexes are based on elec-
trostatic attraction. This percentage increases a little as the Z
atom grows heavier. Orbital interactions account for a larger
share of the interaction energy in the π-hole dimers (35–46%)
as compared to their σ-hole analogues (only 30–32%). This
distinction is consistent with the larger NBO charge transfer
values. The σ-hole geometries make up the difference with a
larger fraction of dispersion energy, which makes virtually no
contribution to the π-hole structure. However, there is quite a
distinction between the σ-hole and π-hole dimers in that the
overall quantities are much larger for the latter structures. A
large part of this increase is due to their much shorter inter-
molecular distances, as detailed in Table 2.

Monomer deformations

The above analyses considered the interactions between the
two subunits after each has altered its internal geometry to that
which it adopts within the context of the dimer. This atomic
rearrangement requires a certain amount of energy. The defor-
mation energies required for this transformation are reported
in Table 7. These values show that it is the Lewis acid
ZF2C6H5 which undergoes the major transformation, as the
NH3 requires less than 1 kcal/mol. The deformation energy of
the Lewis acid is also quite small for the σ-hole dimers—on
the order of 1 kcal/mol or less. However, the deformation
energies of the π-hole structures are dramatically different;
they are all greater than 15 kcal/mol. This quantity is smallest
for BiF2C6H5, but it climbs rapidly as Z shrinks, reaching over
43 kcal/mol for Z = P.

As described earlier, a major aspect of the internal rear-
rangement of each Lewis acid is a change in the
pyramidization of the Z atom. This deformation results in an
intensification of the positive region of the MEP surrounding
the Z atom. The Vs,max in each properly deformed Lewis acid
is displayed in the last column of Table 7, along with the
increase relative to the undistorted monomer in parentheses.
One can see that this increase is relatively modest for the σ-
hole geometries in the upper part of the table—only about
10% or less. However, the much weaker pyramidization of
the Z atom in the π-hole dimers is accompanied by substantial
enhancement ofVs,max. This enhancement is asmuch as nearly

Table 4 AIM bond critical point (BCP) properties: electron density ρ,
Laplacian of electron density ∇2ρ, total electron energy (H), and the ratio
–G/V, as calculated at the MP2/aug-cc-pVDZ level (values in au)

Interaction ρ ∇2ρ H −G/
V

σ-Hole-bonded

NH3···PF2C6H5 P···N 0.022 0.050 −0.001 0.95

NH3···AsF2C6H5 As···N 0.031 0.063 −0.003 0.88

NH3···SbF2C6H5 Sb···N 0.035 0.077 −0.004 0.89

NH3···BiF2C6H5 Bi···N 0.032 0.085 −0.002 0.93

F···N 0.017 0.068 0.000 1.03

π-Hole-bonded

NH3···PF2C6H5 P···N 0.100 0.097 −0.065 0.58

F···H 0.020 0.079 0.000 1.01

F···H 0.020 0.079 0.000 1.01

NH3···AsF2C6H5 As···N 0.093 0.161 −0.040 0.67

F···H 0.018 0.069 0.000 1.02

F···H 0.018 0.069 0.000 1.02

NH3···SbF2C6H5 Sb···N 0.070 0.202 −0.015 0.82

F···H 0.014 0.055 0.001 1.05

F···H 0.014 0.055 0.001 1.05

NH3···BiF2C6H5 Bi···N 0.066 0.206 −0.009 0.87

F···H 0.013 0.048 0.001 1.07

F···H 0.013 0.048 0.001 1.07

a Values for Sb and Bi complexes are not available fromAIM analysis due
to the basis set used during investigation

Table 3 Interaction energies (Eint, kcal/mol) of complexes of ZF2C6H5

with NH3, as calculated at the MP2/aug-cc-pVDZ (I), BLYP-D3/
Def2TZVPP (II), and CCSD(T)/aug-cc-pVDZ (III) levels of theory

σ-Hole π-Hole

(I) (II) (III) (I) (II) (III)

NH3···PF2C6H5 −4.32 −4.00 −3.62 −34.33 −25.90 −31.69
NH3···AsF2C6H5 −7.16 −7.43 −6.26 −33.01 −26.38 −30.82
NH3···SbF2C6H5 −11.49 −10.88 −10.53 −30.55 −25.45 −29.06
NH3···BiF2C6H5 −13.06 −12.51 −12.24 −27.91 −24.00 −26.42
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50% in the case of Z = P. The much more intense holes in the
π-hole cases are largely responsible for their much larger in-
teraction energies as compared to the σ-hole cases.

However, an apparent anomaly is also present, but only for
π-hole-bonded complexes. The π-holes in the deformed
Lewis acids become progressively more intense as the Z atom
grows larger, but at the same time there is no corresponding
increase in the interaction energy. In fact, the latter quantity
steadily decreases as Z grows larger. The electrostatic compo-
nent of the interaction energy from Table 6 also diminishes in
the sequence P→Bi, in contrast to the rising pattern of Vs,max

seen in Table 7. This contrary behavior is an indication that the
value of the MEP of a particular point in the vicinity of a
molecule does not always correlate with the actual electrostat-
ic element of an intermolecular interaction. It should also be
emphasized that this lack of correlation can be explained as
the consequence of the large contribution of the orbital inter-
action component.

When considering the overall complexation reaction, all spe-
cies (monomers and dimer alike) are typically considered to be
in their optimized geometries. This reaction, or binding, energy
must therefore incorporate any deformation energies of each
species. The binding energies Eb obtained when the deforma-
tion energies are appropriately combined with the interaction
energies are presented in Table 8. Comparison with Table 3
shows that the energetics of the σ-hole complexes barely

change, since their deformation energies are small. The large
deformation energies of the π-hole dimers, on the other hand,
lead to dramatic changes. Eb is quite a bit less exothermic than
Eint, even to the point of becoming endothermic for the smaller
Z atoms. Another notable reversal is that it is the σ-hole rather
than the π-hole complexes that are more stable. This preference
is quite large, 14 kcal/mol for Z = P, but it then diminishes for
larger Z atoms, dropping to only 1 or 2 kcal/mol for Bi. The
trend in the binding energies also changes to a trend noted
earlier for the interaction energies. Whereas the latter quantity
is insensitive to the nature of the Z atom for the π-hole com-
plexes, the binding energies display strongly increasing exo-
thermicity as Z transitions from P to Bi.

Vibrational analysis

Certain features of the vibrational spectrum can shed light on
the fundamental nature of molecular interactions. Selected
vibrational frequencies and intensities of the monomers and
their complexes are displayed in Table 9. The first two rows of
this table document progressively redshifted symmetric and
antisymmetric Z–F stretching frequencies as Z grows larger,
along with slowly reducing intensities. With respect to the σ-
hole complexes, the N···Z stretching frequency shifts to the
blue as Z becomes larger, consistent with the strengthening
interaction energy. The interaction becomes slightly weaker in

Table 5 NBO values of the sum of E(2) for LP(N) donation to the Lewis acid, along with the charge donated to selected ZF2C6H5 orbitals (Z = P, As,
Sb, Bi) and the total charge transferred (CT, in me) from ammonia to ZF2C6H5, as calculated at the BLYP-D3/def2-TVZPP level

σ-Hole-bonded complexes π-Hole-bonded complexes

LP(N)
→ Lewis acid

LP(N)
→ LV(Z)

LP(N)→
σ*(C–Z)

CT LP(N)
→ Lewis acid

LP(N)
→ LV(Z)

LP(N)→
σ*(C–Z)

CT

NH3···PF2C6H5 12.6 11.2 0.2 60 196.6 183.7 4.8 330

NH3···AsF2C6H5 26.3 24.3 0.5 90 146.1 138.0 3.6 284

NH3···SbF2C6H5 36.1 29.4 1.6 107 128.1 102.6 4.6 243

NH3···BiF2C6H5 30.8 25.6 0.9 90 111.7 84.9 3.0 230

Table 6 EDA/BLYP-D3/ZORA/
TZ2P decomposition of the
interaction energies (in kcal/mol)
of σ-hole-bonded and π-hole-
bonded complexes into Pauli
repulsion (EPauli), electrostatic
(Eelec), orbital interaction (Eoi),
and dispersion (Edisp) terms (each
percentage value expresses the
relative contribution of the term to
the sum of all attractive energy
terms)

Complex Eint EPauli Eelec % Eoi % Edisp %

σ-Hole-bonded complexes

NH3···PF2C6H5 −4.28 24.28 −15.67 55 −9.01 32 −3.89 14

NH3···AsF2C6H5 −6.95 37.46 −26.11 59 −14.37 32 −3.93 9

NH3···SbF2C6H5 −9.83 49.77 −36.92 62 −19.00 32 −3.68 6

NH3···BiF2C6H5 −11.62 43.04 −34.87 64 −16.20 30 −3.60 7

π-Hole-bonded complexes

NH3···PF2C6H5 −26.34 198.52 −116.97 52 −104.13 46 −3.77 2

NH3···AsF2C6H5 −24.01 168.06 −108.17 56 −80.20 42 −3.71 2

NH3···SbF2C6H5 −24.20 124.63 −90.59 61 −54.76 37 −3.49 2

NH3···BiF2C6H5 −22.75 109.29 −82.49 62 −46.06 35 −3.50 3
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the π-hole dimers, which is also consistent with the redshifting
Z···N stretching frequency. The much higher interaction ener-
gies of the π-hole complexes are reflected in the considerably
greater Z···N stretching frequencies.

In fact, there are very strong correlations between these
intermolecular stretching frequencies and other aspects of
the binding. The correlation with the interaction energy exhib-
ited in Fig. 4a for both the σ-hole and π-hole complexes sug-
gests a linear relationship. This correlation is especially good
for the σ-hole structures, with R2 = 0.946. The correlation is
even better with the intensities of the σ-holes and π-holes,
with R2 reaching 0.999 for the σ-holes. However, it is perhaps
surprising to note a negative slope for the π-holes in Fig. 4b,
which links a more intense π-hole to a reduced ν(N···Z). This
opposite behavior was also noted above for the relationship of
Vs,max to the full electrostatic component.

The formation of σ-hole complexes is expected to result in
the transfer of electron density into the σ*(Z–F1) antibonding
orbital. This shift will lengthen this bond, as already noted
above, and will weaken the bond and thereby shift the
stretching frequency to the red. A comparison of the frequen-
cy νa(ZF2) of each monomer with ν(Z–F1) in the correspond-
ing σ-dimer confirms this expectation, with a redshift of about
40 cm−1. This change in frequency is accompanied by band

intensification, with I increasing by a factor of 1.5 for all Z
except Bi. For the π-geometries, we can compare the νa(ZF2)
values for the dimer and monomer. This frequency shifts
heavily to the red by 126–227 cm−1, with the greatest shifts
occurring for the smallest Z atoms.

Discussion and conclusions

The Z atom in ZF2C6H5 is not the only site that can attract a
base such as NH3. There are positive regions of the MEP that
surround the aryl H atoms as well, as may be seen in Fig. 2.
Table S2 in the ESM shows that Vs,max lies in the vicinity of
+20 kcal/mol for these H atoms. It is no surprise, then, that
there are a number of secondary minima on the potential en-
ergy surfaces of these heterodimers that contain a CH···N H-
bond. These structures are depicted in Table S3 of the ESM,
along with selected geometric parameters and interaction en-
ergies. The latter are all between 2 and 3 kcal/mol, very much
smaller than those of the primary σ-hole and π-hole com-
plexes that are the focus of this work. Even the complexes
which combine a CH···N H-bond with NH···F interactions in
the last row of Table S3 of the ESM are still much more
weakly bound than the primary structures.

In any computational elucidation of bimolecular com-
plexes, there is always the issue of experimental confirmation.
A survey of the CSD (Cambridge Structural Database) [104]
provides experimental evidence of the existence of both σ-
and π-types of tetracoordinate pnicogen complexes. The first
two examples collected in Table S4 of the ESM [107–110]
clearly indicate the ability of a pnicogen atom, in this case As,

Table 7 Deformation energies (Edef, kcal/mol) of complexes of
ZF2C6H5 with NH3, as calculated at the MP2/aug-cc-pVDZ level of
theory

Edef (ZF2C6H5) Edef (NH3) Edef Vs,max (Δ)

σ-Hole

NH3···PF2C6H5 0.55 0.01 0.56 22.0 (+2.6)

NH3···AsF2C6H5 0.78 0.02 0.80 31.3 (+3.1)

NH3···SbF2C6H5 1.02 0.06 1.08 42.3 (+3.9)

NH3···BiF2C6H5 0.97 0.05 1.02 53.4 (+0.8)

π-Hole

NH3···PF2C6H5 43.12 0.64 43.76 36.2 (+16.8)

NH3···AsF2C6H5 33.07 0.66 33.73 44.0 (+15.8)

NH3···SbF2C6H5 21.83 0.50 22.33 56.6 (+18.2)

NH3···BiF2C6H5 16.37 0.53 16.90 60.9 (+8.3)

Table 8 Binding energies (Eb, kcal/mol) of complexes of ZF2C6H5with
NH3, as calculated at the MP2/aug-cc-pVDZ (I), BLYP-D3/Def2TZVPP
(II), and CCSD(T)/aug-cc-pVDZ (III) levels of theory

σ-Hole π-Hole

(I) (II) (III) (I) (II) (III)

NH3···PF2C6H5 −3.76 −3.58 −3.15 9.43 12.07 11.21

NH3···AsF2C6H5 −6.36 −6.76 −5.58 −0.72 0.17 2.29

NH3···SbF2C6H5 −10.41 −10.03 −9.59 −8.23 −7.94 −7.13
NH3···BiF2C6H5 −12.03 −11.89 −11.35 −11.01 −10.57 −10.06

Table 9 Selected frequencies, ω (cm−1), IR intensities, I (km mol−1),
and vibrational assignments of complexes of ZF2C6H5 with ammonia;
values were calculated at the MP2/aug-cc-pVDZ level of theory

Assignmenta,b PF2C6H5 AsF2C6H5 SbF2C6H5 BiF2C6H5

ω I ω I ω I ω I

Monomers (conformer A)

νs(ZF2) 799 138 677 96 618 81 566 78

νa(ZF2) 777 142 655 97 601 85 561 93

σ-Hole complexes

(NH3···Z) 118 9 151 20 184 32 221 6

ν(Z–F2) 782 123 651 92 587 94 538 98

ν(Z–F1) 741 219 616 136 561 115 519 97

π-Hole complexes

ν(NH3···Z) + νs(ZF2) 573 61 510 25 368 1 350 2

νa(ZF2) 550 311 484 245 476 202 435 197

νs(ZF2) + ν(NH3···Z) 424 1 401 1 486 23 463 21

aAbbreviations: ν stretching. Subscripts: s symmetric, a antisymmetric
b Predominant component of the normal mode
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to bind a Lewis base through a σ-hole that lies directly oppo-
site a F atom. Three examples of π-systems are also provided,
including systems incorporating As and Bi.

The large deformation energies noted here for the π-hole
complexes are not without precedent. A recent study of
hypervalent pnicogen and other bonds [111] noted a rear-
rangement from a trigonal bipyramidal ZF5 monomer to a
square-pyramidal complex, which was associated with a large
deformation energy. This sort of deformation occurs not only
in ZF5 but also in TF4 [112] (T = tetrel atom), whichwould not
be considered hypervalent. These distortion energies in tetrel
bonds can control the preferred equilibrium geometry [80] and
tend to lessen as the size of the central tetrel atom increases

[113], consonant with the findings here for pnicogen bonds.
Similar distortions were observed [81] in both TR4(σ) and
TR2=CH2(π) tetrel-bonding molecules.

In conclusion, ZF2C6H5 molecules containing a pair of F
atoms and a phenyl ring surrounding a pnicogen atom Z form
a fairly strong complex with an NH3 molecule. For each Z,
there are two possible geometric arrangements, depending
upon the positions of the two F atoms. When one F is located
above the aromatic ring plane and the other below it, the base
positions itself directly opposite one of the two F atoms in a σ-
hole arrangement. If both F atoms lie on the same side of the
ring and almost in the same plane, the NH3 is located directly
above the Z atom, perpendicular to the ring plane, in a π-hole
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orientation. The interaction energies in the latter system are
considerably larger than those in the former, on the order of
30 kcal/mol. However, at the same time, the π-hole dimers
require a good deal more deformation of the ZF2C6H5 mono-
mer, meaning that the overall dimerization process is more
exothermic for the σ-hole structures. This overall preference
for the σ-hole is most substantial for the smaller Z atoms,
nearly disappearing for Z = Bi.

Acknowledgements This work was financed in part by a statutory activ-
ity subsidy from the Polish Ministry of Science and Higher Education for
the Faculty of Chemistry of Wroclaw University of Science and
Technology. The generous computer time allocated by the Wroclaw
Supercomputer and Networking Center is acknowledged.

Compliance with ethical standards

Conflict of interest There are no conflicts of interest to declare.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

1. Bulfield D, Huber SM (2016) Halogen bonding in organic syn-
thesis and organocatalysis. Chem Eur J 22(41):14434–14450.
https://doi.org/10.1002/chem.201601844

2. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L (2008) Self-
healing and thermoreversible rubber from supramolecular assem-
bly. Nature 451:977. https://doi.org/10.1038/nature06669. https://
www.nature.com/articles/nature06669#supplementary-
information

3. Hobza P, Muller-Dethlefs K (2009) Non-covalent interactions:
theory and experiment. Royal Society of Chemistry, London

4. Kendall K, Roberts AD (2015) van der Waals forces influencing
adhesion of cells. Philos Trans R Soc Lond Ser B Biol Sci
370(1661):20140078. https://doi.org/10.1098/rstb.2014.0078

5. Lacour J, Moraleda D (2009) Chiral anion-mediated asymmetric
ion pairing chemistry. Chem Commun 46:7073–7089. https://doi.
org/10.1039/B912530B

6. Lehn J-M (2002) Toward self-organization and complex matter.
Science 295(5564):2400. https://doi.org/10.1126/science.
1071063

7. Lim JYC, Beer PD (2018) Sigma-hole interactions in anion rec-
ognition. Chem 4(4):731–783. https://doi.org/10.1016/j.chempr.
2018.02.022

8. Müller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a
challenge for experiment and theory. Chem Rev 100(1):143–168.
https://doi.org/10.1021/cr9900331

9. Strekowski L, Wilson B (2007) Noncovalent interactions with
DNA: an overview. Mutat Res Fundam Mol Mech Mutagen
623(1):3–13. https://doi.org/10.1016/j.mrfmmm.2007.03.008

10. Stupp SI, LeBonheur V, Walker K, Li LS, Huggins KE, Keser M,
Amstutz A (1997) Supramolecular materials: self-organized nano-
structures. Science 276(5311):384. https://doi.org/10.1126/
science.276.5311.384

11. Wagner JP, Schreiner PR (2015) London dispersion in molecular
chemistry—reconsidering steric effects. Angew Chem Int Ed
54(42):12274–12296. https://doi.org/10.1002/anie.201503476

12. Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-
assembly and nanochemistry: a chemical strategy for the synthesis
of nanostructures. Science 254(5036):1312. https://doi.org/10.
1126/science.1962191

13. Zhao Y, Cotelle Y, Sakai N, Matile S (2016) Unorthodox interac-
tions at work. J Am Chem Soc 138(13):4270–4277. https://doi.
org/10.1021/jacs.5b13006

14. Zhou P, Huang J, Tian F (2012) Specific noncovalent interactions
at protein-ligand Interface: implications for rational drug design.
Curr Med Chem 19(2):226–238. https://doi.org/10.2174/
092986712803414150

15. Grabowski SJ (2006) Hydrogen bonding—new insights, vol 3.
Springer, Berlin

16. Desiraju GR, Steiner T (2006) The weak hydrogen bond in struc-
tural chemistry and biology. Oxford University Press, Oxford

17. Gilli G, Gilli P (2009) The strength of the H-bond: definitions and
thermodynamics. In: The nature of the hydrogen bond: outline of a
comprehensive hydrogen bond theory. Oxford University Press,
Oxford

18. Zundel G, Sandorfy C, Schuster P (1976) The hydrogen bond:
recent developments in theory and experiments, vol 2. North-
Holland, Amsterdam

19. Gilli G, Gilli P (2009) The nature of the hydrogen bond: outline of
a comprehensive hydrogen bond theory. Oxford University Press,
Oxford, p 23

20. Scheiner S (1997) Hydrogen bonding: a theoretical perspective.
Oxford University Press, New York

21. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen
bonding: the sigma-hole. J Mol Model 13(2):291–296. https://doi.
org/10.1007/s00894-006-0130-2

22. Murray JS, Lane P, Clark T, Politzer P (2007) Sigma-hole bond-
ing: molecules containing group VI atoms. J Mol Model 13(10):
1033–1038. https://doi.org/10.1007/s00894-007-0225-4

23. Murray JS, Lane P, Politzer P (2007) A predicted new type of
directional noncovalent interaction. Int J Quantum Chem
107(12):2286–2292. https://doi.org/10.1002/qua.21352

24. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) An
overview of halogen bonding. J Mol Model 13(2):305–311.
https://doi.org/10.1007/s00894-006-0154-7

25. Politzer P, Murray JS, Lane P (2007) Sigma-hole bonding and
hydrogen bonding: competitive interactions. Int J Quantum
Chem 107(15):3046–3052. https://doi.org/10.1002/qua.21419

26. Politzer P, Murray JS, Concha MC (2008) Sigma-hole bonding
between like atoms; a fallacy of atomic charges. J Mol Model
14(8):659–665. https://doi.org/10.1007/s00894-008-0280-5

27. Murray JS, Riley KE, Politzer P, Clark T (2010) Directional weak
intermolecular interactions: sigma-hole bonding. Aust J Chem
63(12):1598–1607. https://doi.org/10.1071/Ch10259

28. Politzer P, Murray JS (2013) Halogen bonding: an interim discus-
sion. ChemPhysChem 14(2):278–294. https://doi.org/10.1002/
cphc.201200799

29. Isaacs ED, Shukla A, Platzman PM, Hamann DR, Barbiellini B,
Tulk CA (1999) Covalency of the hydrogen bond in ice: a direct
X-ray measurement. Phys Rev Lett 82(3):600–603. https://doi.
org/10.1103/PhysRevLett.82.600

30. Ghanty TK, Staroverov VN, Koren PR, Davidson ER (2000) Is
the hydrogen bond in water dimer and ice covalent? J Am Chem
Soc 122(6):1210–1214. https://doi.org/10.1021/ja9937019

31. Grabowski SJ (2011)What is the covalency of hydrogen bonding?
Chem Rev 111(4):2597–2625. https://doi.org/10.1021/cr800346f

32. Bauzá A, Frontera A (2015) Aerogen bonding interaction: a new
supramolecular force? Angew Chem Int Ed 54(25):7340–7343.
https://doi.org/10.1002/anie.201502571

  152 Page 10 of 13 J Mol Model          (2019) 25:152 

https://doi.org/10.1002/chem.201601844
https://doi.org/10.1038/nature06669
https://www.nature.com/articles/nature06669#supplementary-information
https://www.nature.com/articles/nature06669#supplementary-information
https://www.nature.com/articles/nature06669#supplementary-information
https://doi.org/10.1098/rstb.2014.0078
https://doi.org/10.1039/B912530B
https://doi.org/10.1039/B912530B
https://doi.org/10.1126/science.1071063
https://doi.org/10.1126/science.1071063
https://doi.org/10.1016/j.chempr.2018.02.022
https://doi.org/10.1016/j.chempr.2018.02.022
https://doi.org/10.1021/cr9900331
https://doi.org/10.1016/j.mrfmmm.2007.03.008
https://doi.org/10.1126/science.276.5311.384
https://doi.org/10.1126/science.276.5311.384
https://doi.org/10.1002/anie.201503476
https://doi.org/10.1126/science.1962191
https://doi.org/10.1126/science.1962191
https://doi.org/10.1021/jacs.5b13006
https://doi.org/10.1021/jacs.5b13006
https://doi.org/10.2174/092986712803414150
https://doi.org/10.2174/092986712803414150
https://doi.org/10.1007/s00894-006-0130-2
https://doi.org/10.1007/s00894-006-0130-2
https://doi.org/10.1007/s00894-007-0225-4
https://doi.org/10.1002/qua.21352
https://doi.org/10.1007/s00894-006-0154-7
https://doi.org/10.1002/qua.21419
https://doi.org/10.1007/s00894-008-0280-5
https://doi.org/10.1071/Ch10259
https://doi.org/10.1002/cphc.201200799
https://doi.org/10.1002/cphc.201200799
https://doi.org/10.1103/PhysRevLett.82.600
https://doi.org/10.1103/PhysRevLett.82.600
https://doi.org/10.1021/ja9937019
https://doi.org/10.1021/cr800346f
https://doi.org/10.1002/anie.201502571


33. Gao M, Cheng J, Li W, Xiao B, Li Q (2016) The aerogen—π
bonds involving π systems. Chem Phys Lett 651:50–55. https://
doi.org/10.1016/j.cplett.2016.03.021

34. Guan LY, Mo YR (2014) Electron transfer in pnicogen bonds. J
Phys Chem A 118(39):8911–8921. https://doi.org/10.1021/
jp500775m

35. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an
electrostatically-driven highly directional noncovalent interaction.
Phys Chem Chem Phys 12(28):7748–7757. https://doi.org/10.
1039/c004189k

36. Stone AJ (2013) Are halogen bonded structures electrostatically
driven? J Am Chem Soc 135(18):7005–7009. https://doi.org/10.
1021/ja401420w

37. Esrafili MD, Mohammadian-Sabet F, Baneshi MM (2015)
Cooperative and substitution effects in enhancing the strength of
fluorine bonds by anion-pi interactions. Can J Chem 93(11):
1169–1175. https://doi.org/10.1139/cjc-2015-0154

38. McDowell SAC, Joseph JA (2015) A comparative study of model
halogen-bonded, pi-hole-bonded and cationic complexes involv-
ing NCX and H2O (X = F, Cl, Br). Mol Phys 113(1):16–21.
https://doi.org/10.1080/00268976.2014.939116

39. Bauza A, Frontera A, Mooibroek TJ (2016) Pi-hole interactions
involving nitro compounds: directionality of nitrate esters. Cryst
Growth Des 16(9):5520–5524. https://doi.org/10.1021/acs.cgd.
6b00989

40. Echeverria J (2017) Alkyl groups as electron density donors in pi-
hole bonding. CrystEngComm 19(42):6289–6296. https://doi.org/
10.1039/c7ce01259d

41. Zhang JR, Li WZ, Cheng JB, Liu ZB, Li QZ (2018) Cooperative
effects between pi-hole triel and pi-hole chalcogen bonds. RSC
Adv 8(47):26580–26588. https://doi.org/10.1039/c8ra04106g

42. Bauza A, Mooibroek TJ, Frontera A (2015) Directionality of pi-
holes in nitro compounds. Chem Commun 51(8):1491–1493.
https://doi.org/10.1039/c4cc09132a

43. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) Sigma-
holes, pi-holes and electrostatically-driven interactions. J Mol
Model 18(2):541–548. https://doi.org/10.1007/s00894-011-1089-1

44. Wang H, Wang W, Jin WJ (2016) σ-Hole bond vs π-hole bond: a
comparison based on halogen bond. Chem Rev 116(9):5072–
5104. https://doi.org/10.1021/acs.chemrev.5b00527

45. Jabłoński M (2019) In search for a hydride-carbene bond. J Phys
Org Chem e3949. https://doi.org/10.1002/poc.3949

46. Jabłoński M (2018) Hydride-triel bonds. J Comput Chem 39(19):
1177–1191. https://doi.org/10.1002/jcc.25178

47. Bauza A, Mooibroek TJ, Frontera A (2015) The bright future of
unconventional σ/π-hole interactions. ChemPhysChem 16(12):
2496–2517. https://doi.org/10.1002/cphc.201500314

48. Gao L, Zeng Y, Zhang X, Meng L (2016) Comparative studies on
group III σ-hole and π-hole interactions. J Comput Chem 37(14):
1321–1327. https://doi.org/10.1002/jcc.24347

49. SolimannejadM, Ramezani V, Trujillo C, Alkorta I, Sanchez-Sanz
G, Elguero J (2012) Competition and interplay between sigma-
hole and pi-hole interactions: a computational study of 1:1 and 1:2
complexes of nitryl halides (O2NX) with ammonia. J Phys Chem
A 116(21):5199–5206. https://doi.org/10.1021/jp300540z

50. Zhao XR,Wang H, JinWJ (2013) The competition of C–X⋯O=P
h a l o g e n b o n d a n d π - h o l e⋯O=P bo n d b e tw e e n
halopentafluorobenzenes C6F5X (X=F, Cl, Br, I) and
triethylphosphine oxide. J Mol Model 19(11):5007–5014.
https://doi.org/10.1007/s00894-013-2007-5

51. Esrafili MD, Vakili M (2014) Halogen bonds enhanced by σ-hole
and π-hole interactions: a comparative study on cooperativity and
competition effects between X⋯N and S⋯N interactions in
H3N⋯XCN⋯SF2 and H3N⋯XCN⋯SO2 complexes (X = F,
Cl, Br and I). J Mol Model 20(6):2291. https://doi.org/10.1007/
s00894-014-2291-8

52. Esrafili MD, Vakili M, Solimannejad M (2014) Cooperative inter-
action between π-hole and single-electron σ-hole interactions in
O2S⋯NCX⋯CH3 and O2Se⋯NCX⋯CH3 complexes (X = F,
Cl, Br and I). Mol Phys 112(16):2078–2084. https://doi.org/10.
1080/00268976.2014.884730

53. Gao L, Zeng Y, Zhang X, Meng L (2016) Comparative studies on
group III sigma-hole and pi-hole interactions. J Comput Chem
37(14):1321–1327. https://doi.org/10.1002/jcc.24347

54. Nziko VDN, Scheiner S (2016) Comparison of pi-hole tetrel
bonding with sigma-hole halogen bonds in complexes of XCN
(X = F, Cl, Br, I) and NH3. Phys Chem Chem Phys 18(5):3581–
3590. https://doi.org/10.1039/c5cp07545a

55. Zhou PP, Yang X, Ye WC, Zhang LW, Yang F, Zhou DG, Liu SB
(2016) Competition and cooperativity of sigma-hole and pi-hole
intermolecular interactions between carbon monoxide and
bromopentafluorobenzene. New J Chem 40(11):9139–9147.
https://doi.org/10.1039/c6nj01904h

56. Fanfrlik J, Svec P, Ruzickova Z, Hnyk D, Ruzicka A, Hobza P
(2017) The interplay between various sigma- and pi-hole interac-
tions of trigonal boron and trigonal pyramidal arsenic triiodides.
Crystals 7(7):225. https://doi.org/10.3390/cryst7070225

57. Saha S, Desiraju GR (2017) Sigma-hole and pi-hole synthonmim-
icry in third-generation crystal engineering: design of elastic crys-
tals. Chem Eur J 23(20):4936–4943. https://doi.org/10.1002/
chem.201700813

58. Naseer MM, Bauza A, Alnasr H, Jurkschat K, Frontera A (2018)
Lone pair-pi vs. sigma-hole-pi interactions in bromine head-
containing oxacalix[2]arene[2]triazines. CrystEngComm 20(23):
3251–3257. https://doi.org/10.1039/c8ce00666k

59. Wei YX, Li QZ (2018) Comparison for sigma-hole and pi-hole
tetrel-bonded complexes involving cyanoacetaldehyde. Mol Phys
116(2):222–230. https://doi.org/10.1080/00268976.2017.
1377851

60. Politzer P, Murray JS (2018) Sigma-holes and -holes: similarities
and differences. J Comput Chem 39(9):464–471. https://doi.org/
10.1002/jcc.24891

61. Alkorta I, Elguero J, Del Bene JE (2013) Pnicogen bonded com-
plexes of PO2X (X = F, Cl) with nitrogen bases. J Phys Chem A
117(40):10497–10503. https://doi.org/10.1021/jp407097e

62. Del Bene JE, Alkorta I, Elguero J (2013) Properties of complexes
H2C=(X)P:PXH2, for X = F, Cl, OH, CN, NC, CCH, H, CH3, and
BH2: P⋯P pnicogen bonding at sigma-holes and pi-holes. J Phys
Chem A 117(45):11592–11604. https://doi.org/10.1021/
jp409016q

63. Scheiner S (2013) Detailed comparison of the pnicogen bond with
chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem
113(11):1609–1620. https://doi.org/10.1002/qua.24357

64. Xu HY, Wang W, Zou JW (2013) Theoretical study of pnicogen
bonding interactions between PH2X and five-membered heterocy-
cles. Acta Chim Sin 71(8):1175–1182. https://doi.org/10.6023/
A13030332

65. Xu HY, WangW, Zou JW, Xu XL (2014) Theoretical calculations
of pi-type pnicogen bonds in the triad intermolecular complexes. J
Theor Comput Chem 13(8):1450068. https://doi.org/10.1142/
S0219633614500680

66. Lo R, Svec P, Ruzickova Z, Ruzicka A, Hobza P (2016) On the
nature of the stabilisation of the E⋯π pnicogen bond in the
SbCl3⋯toluene complex. Chem Commun 52(17):3500–3503.
https://doi.org/10.1039/c5cc10363k

67. Esrafili MD, Sadr-Mousavi A (2017)Modulating of the pnicogen-
bonding by a H⋯π interaction: an ab initio study. J Mol Graph
Model 75:165–173. https://doi.org/10.1016/j.jmgm.2017.04.017

68. Zhu JQ, Cao SW,WangW, XuXL, XuHY (2017) The substituent
effects on π-type pnicogen bond interaction. Iop C Ser Earth Env
63(1):012027. https://doi.org/10.1088/1755-1315/63/1/012027

J Mol Model          (2019) 25:152 Page 11 of 13   152 

https://doi.org/10.1016/j.cplett.2016.03.021
https://doi.org/10.1016/j.cplett.2016.03.021
https://doi.org/10.1021/jp500775m
https://doi.org/10.1021/jp500775m
https://doi.org/10.1039/c004189k
https://doi.org/10.1039/c004189k
https://doi.org/10.1021/ja401420w
https://doi.org/10.1021/ja401420w
https://doi.org/10.1139/cjc-2015-0154
https://doi.org/10.1080/00268976.2014.939116
https://doi.org/10.1021/acs.cgd.6b00989
https://doi.org/10.1021/acs.cgd.6b00989
https://doi.org/10.1039/c7ce01259d
https://doi.org/10.1039/c7ce01259d
https://doi.org/10.1039/c8ra04106g
https://doi.org/10.1039/c4cc09132a
https://doi.org/10.1007/s00894-011-1089-1
https://doi.org/10.1021/acs.chemrev.5b00527
https://doi.org/10.1002/poc.3949
https://doi.org/10.1002/jcc.25178
https://doi.org/10.1002/cphc.201500314
https://doi.org/10.1002/jcc.24347
https://doi.org/10.1021/jp300540z
https://doi.org/10.1007/s00894-013-2007-5
https://doi.org/10.1007/s00894-014-2291-8
https://doi.org/10.1007/s00894-014-2291-8
https://doi.org/10.1080/00268976.2014.884730
https://doi.org/10.1080/00268976.2014.884730
https://doi.org/10.1002/jcc.24347
https://doi.org/10.1039/c5cp07545a
https://doi.org/10.1039/c6nj01904h
https://doi.org/10.3390/cryst7070225
https://doi.org/10.1002/chem.201700813
https://doi.org/10.1002/chem.201700813
https://doi.org/10.1039/c8ce00666k
https://doi.org/10.1080/00268976.2017.1377851
https://doi.org/10.1080/00268976.2017.1377851
https://doi.org/10.1002/jcc.24891
https://doi.org/10.1002/jcc.24891
https://doi.org/10.1021/jp407097e
https://doi.org/10.1021/jp409016q
https://doi.org/10.1021/jp409016q
https://doi.org/10.1002/qua.24357
https://doi.org/10.6023/A13030332
https://doi.org/10.6023/A13030332
https://doi.org/10.1142/S0219633614500680
https://doi.org/10.1142/S0219633614500680
https://doi.org/10.1039/c5cc10363k
https://doi.org/10.1016/j.jmgm.2017.04.017
https://doi.org/10.1088/1755-1315/63/1/012027


69. Benz S, Poblador-Bahamonde AI, Low-Ders N, Matile S (2018)
Catalysis with pnictogen, chalcogen, and halogen bonds. Angew
Chem Int Ed 57(19):5408–5412. https://doi.org/10.1002/anie.
201801452

70. Lee J, Lee LM, Arnott Z, Jenkins H, Britten JF, Vargas-Baca I
(2018) Sigma-hole interactions in the molecular and crystal struc-
tures of N-boryl benzo-2,1,3-selenadiazoles. New J Chem 42(13):
10555–10562. https://doi.org/10.1039/c8nj00553b

71. Li Y, Xu ZF (2018) Competition between tetrel bond and
pnicogen bond in complexes of TX3-ZX2 and NH3. J Mol
Model 24(9):247. https://doi.org/10.1007/s00894-018-3732-6

72. McDowell SAC, Buckingham AD (2018) A computational study
of chalcogen-containing H2X...YF and (CH3)2X...YF (X = O, S,
Se; Y = F, Cl, H) and pnicogen-containing H3X′...YF and
(CH3)3X′...YF (X′ = N, P, As) complexes. ChemPhysChem
19(14):1756–1765. https://doi.org/10.1002/cphc.201800179

73. Esrafili MD, Mousavian P, Mohammadian-Sabet F (2019) Tuning
of pnicogen and chalcogen bonds by an aerogen-bonding interac-
tion: a comparative ab initio study. Mol Phys 117(1):58–66.
https://doi.org/10.1080/00268976.2018.1492746

74. Wu JY, Yan H, Zhong AG, Chen H, Jin YX, Dai GL (2019)
Theoretical and conceptual DFT study of pnicogen- and
halogen-bonded complexes of PH2X⋯BrCl. J Mol Model
25(1):28. https://doi.org/10.1007/s00894-018-3905-3

75. Liu Y-Z, Yuan K, Yuan Z, Zhu Y-C, Zhao X (2015) Theoretical
exploration of pnicogen bond noncovalent interactions in
HCHO⋯PH2X (X = CH3, H, C6H5, F, Cl, Br, and NO2) com-
plexes. J Chem Sci 127(10):1729–1738. https://doi.org/10.1007/
s12039-015-0933-8

76. Wang YH, Zeng YL, Li XY, Meng LP, Zhang XY (2016) The
mutual influence between pi-hole pnicogen bonds and sigma-hole
halogen bonds in complexes of PO2Cl and XCN/C6H6 (X = F, Cl,
Br). Struct Chem 27(5):1427–1437. https://doi.org/10.1007/
s11224-016-0762-5

77. Esrafili MD, Mohammadian-Sabet F (2015) Pnicogen-pnicogen
interactions in O2XP:PH2Y complexes (X =H, F, CN; Y =H, OH,
OCH3, CH3, NH2). Chem Phys Lett 638:122–127. https://doi.org/
10.1016/j.cplett.2015.08.045

78. Del Bene JE, Alkorta I, Elguero J (2015) Exploring the
(H2C=PH2)(+):N-base potential surfaces: complexes stabilized
by pnicogen, hydrogen, and tetrel bonds. J Phys Chem A
119(48):11701–11710. https://doi.org/10.1021/acs.jpca.5b06828

79. Alkorta I, Legon AC (2018) An ab initio investigation of the
geometries and binding strengths of tetrel-, pnictogen-, and
chalcogen-bonded complexes of CO2, N2O, and CS2 with simple
Lewis bases: some generalizations. Molecules 23(9):2250. https://
doi.org/10.3390/molecules23092250

80. Zierkiewicz W, Michalczyk M, Wysokiński R, Scheiner S (2019)
Dual geometry schemes in tetrel bonds: complexes between TF4
(T = Si, Ge, Sn) and pyridine derivatives. Molecules 24(2):376

81. Zierkiewicz W, Michalczyk M, Scheiner S (2018) Comparison
between tetrel bonded complexes stabilized by sigma and pi hole
interactions. Molecules 23(6):1416. https://doi.org/10.3390/
molecules23061416

82. Zierkiewicz W, Michalczyk M, Scheiner S (2018) Aerogen bonds
formed between AeOF2 (Ae = Kr, Xe) and diazines: comparisons
between sigma-hole and pi-hole complexes. Phys Chem Chem
Phys 20(7):4676–4687. https://doi.org/10.1039/c7cp08048d

83. Dong WB, Wang Y, Cheng JB, Yang X, Li QZ (2019)
Competition between sigma-hole pnicogen bond and pi-hole
tetrel bond in complexes of CF2=CFZH2 (Z = P, As, and Sb).
Mol Phys 117(3):251–259. https://doi.org/10.1080/00268976.
2018.1508782

84. Moller C, Plesset MS (1934) Note on an approximation treatment
for many-electron systems. Phys Rev 46(7):0618–0622. https://
doi.org/10.1103/PhysRev.46.618

85. Dunning TH (1989) Gaussian-basis sets for use in correlated mo-
lecular calculations .1. The atoms boron through neon and hydro-
gen. J Chem Phys 90(2):1007–1023. https://doi.org/10.1063/1.
456153

86. Purvis GD, Bartlett RJ (1982) A full coupled-cluster singles and
doubles model: the inclusion of disconnected triples. J Chem Phys
76(4):1910–1918. https://doi.org/10.1063/1.443164

87. Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic
configuration interaction. A general technique for determining
electron correlation energies. J Chem Phys 87(10):5968–5975.
https://doi.org/10.1063/1.453520

88. Lee CT, Yang WT, Parr RG (1988) Development of the Colle–
Salvetti correlation-energy formula into a functional of the elec-
tron-density. Phys Rev B 37(2):785–789. https://doi.org/10.1103/
PhysRevB.37.785

89. Raghavachari K, Trucks GW, Pople JA, Headgordon M (1989) A
5th-order perturbation comparison of electron correlation theories.
Chem Phys Lett 157(6):479–483. https://doi.org/10.1016/S0009-
2614(89)87395-6

90. Becke AD (1993) Density-functional thermochemistry. 3. The
role of exact exchange. J Chem Phys 98(7):5648–5652. https://
doi.org/10.1063/1.464913

91. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence,
triple zeta valence and quadruple zeta valence quality for H to Rn:
design and assessment of accuracy. Phys Chem Chem Phys 7(18):
3297–3305. https://doi.org/10.1039/b508541a

92. Weigend F (2006) Accurate coulomb-fitting basis sets for H to Rn.
Phys Chem Chem Phys 8(9):1057–1065. https://doi.org/10.1039/
b515623h

93. Peterson KA (2003) Systematically convergent basis sets with
relativistic pseudopotentials. I. Correlation consistent basis sets
for the post-d group 13–15 elements. J Chem Phys 119(21):
11099–11112. https://doi.org/10.1063/1.1622923

94. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,
Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson
GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov
AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M,
Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda
Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE,
Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN,
Staroverov VN, Kobayashi R, Normand J, Raghavachari K,
Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N,
Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C,
Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ,
Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K,
Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich
S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J,
Fox DJ (2009) Gaussian 09, vol E.01. Gaussian, Inc., Wallingford

95. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010)
Quantitative analysis of molecular surfaces: areas, volumes, elec-
trostatic potentials and average local ionization energies. J Mol
Model 16(11):1679–1691. https://doi.org/10.1007/s00894-010-
0692-x

96. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction
analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/
jcc.22885

97. Bijina PV, Suresh CH (2016) Molecular electrostatic potential
analysis of non-covalent complexes. J Chem Sci 128(10):1677–
1686. https://doi.org/10.1007/s12039-016-1162-5

98. Boys SF, Bernardi F (1970) Calculation of small molecular inter-
actions by differences of separate total energies—some procedures
with reduced errors. Mol Phys 19(4):553. https://doi.org/10.1080/
00268977000101561

99. Keith AT (2014) AIMAll (version 14.11.23). TK Gristmill
Software, Overland Park

  152 Page 12 of 13 J Mol Model          (2019) 25:152 

https://doi.org/10.1002/anie.201801452
https://doi.org/10.1002/anie.201801452
https://doi.org/10.1039/c8nj00553b
https://doi.org/10.1007/s00894-018-3732-6
https://doi.org/10.1002/cphc.201800179
https://doi.org/10.1080/00268976.2018.1492746
https://doi.org/10.1007/s00894-018-3905-3
https://doi.org/10.1007/s12039-015-0933-8
https://doi.org/10.1007/s12039-015-0933-8
https://doi.org/10.1007/s11224-016-0762-5
https://doi.org/10.1007/s11224-016-0762-5
https://doi.org/10.1016/j.cplett.2015.08.045
https://doi.org/10.1016/j.cplett.2015.08.045
https://doi.org/10.1021/acs.jpca.5b06828
https://doi.org/10.3390/molecules23092250
https://doi.org/10.3390/molecules23092250
https://doi.org/10.3390/molecules23061416
https://doi.org/10.3390/molecules23061416
https://doi.org/10.1039/c7cp08048d
https://doi.org/10.1080/00268976.2018.1508782
https://doi.org/10.1080/00268976.2018.1508782
https://doi.org/10.1103/PhysRev.46.618
https://doi.org/10.1103/PhysRev.46.618
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.443164
https://doi.org/10.1063/1.453520
https://doi.org/10.1103/PhysRevB.37.785
https://doi.org/10.1103/PhysRevB.37.785
https://doi.org/10.1016/S0009-2614(89)87395-6
https://doi.org/10.1016/S0009-2614(89)87395-6
https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.464913
https://doi.org/10.1039/b508541a
https://doi.org/10.1039/b515623h
https://doi.org/10.1039/b515623h
https://doi.org/10.1063/1.1622923
https://doi.org/10.1007/s00894-010-0692-x
https://doi.org/10.1007/s00894-010-0692-x
https://doi.org/10.1002/jcc.22885
https://doi.org/10.1002/jcc.22885
https://doi.org/10.1007/s12039-016-1162-5
https://doi.org/10.1080/00268977000101561
https://doi.org/10.1080/00268977000101561


100. Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Towards
an order-N DFT method. Theor Chem Accounts 99(6):391–403.
https://doi.org/10.1007/s002140050021

101. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, Van
Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with
ADF. J Comput Chem 22(9):931–967. https://doi.org/10.1002/
jcc.1056

102. Scientific Computing & Modelling NV (2014) ADF2014. Vrije
Universiteit, Amsterdam

103. Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural
bond orbital analysis program. J Comput Chem 34(16):1429–
1437. https://doi.org/10.1002/jcc.23266

104. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The
Cambridge Structural Database. Acta Crystallogr B 72:171–179.
https://doi.org/10.1107/S2052520616003954

105. Shahbazian S (2018) Why bond critical points are not Bbond^
critical points. Chem Eur J 24(21):5401. https://doi.org/10.1002/
chem.201705163

106. Jabłoński M (2018) Bond paths between distant atoms do not
necessarily indicate dominant interactions. J Comput Chem
39(26):2183–2195. https://doi.org/10.1002/jcc.25532

107. Vrana J, Jambor R, Ruzicka A, Lycka A, De Proft F, Dostal L
(2013) N→As intramolecularly coordinated organoarsenic(III)
chalcogenides: isolation of terminal As-S and As-Se bonds. J
Organomet Chem 723:10–14. https://doi.org/10.1016/j.
jorganchem.2012.10.029

108. Carmalt CJ, Cowley AH, Culp RD, Jones RA, Kamepalli S,
Norman NC (1997) Synthesis and structures of intramolecularly

base-coordinated group 15 aryl halides. Inorg Chem 36(13):2770–
2776. https://doi.org/10.1021/ic9701165

109. James SC, Norman NC, Orpen AG (1999) Pyridine adducts of
arylbismuth(III) halides. J Chem Soc Dalton Trans 2837–2843.
https://doi.org/10.1039/a900823c

110. Dostal L, Jambor R, Ruzicka A, Jirasko R, Holecek J, De Proft F
(2011) OCO and NCO chelated derivatives of heavier group 15
elements. Study on possibility of cyclization reaction via intramo-
lecular ether bond cleavage. Dalton Trans 40(35):8922–8934.
https://doi.org/10.1039/c1dt10234f

111. Scheiner S, Lu J (2018) Halogen, chalcogen, and pnicogen bond-
ing involving hypervalent atoms. Chemistry 24(32):8167–8177.
https://doi.org/10.1002/chem.201800511

112. Zierkiewicz W, Michalczyk M, Scheiner S (2018) Implications of
monomer deformation for tetrel and pnicogen bonds. Phys Chem
Chem Phys 20(13):8832–8841. https://doi.org/10.1039/
c8cp00430g

113. Scheiner S (2018) Steric crowding in tetrel bonds. J Phys Chem A
122(9):2550–2562. https://doi.org/10.1021/acs.jpca.7b12357

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

J Mol Model          (2019) 25:152 Page 13 of 13   152 

https://doi.org/10.1007/s002140050021
https://doi.org/10.1002/jcc.1056
https://doi.org/10.1002/jcc.1056
https://doi.org/10.1002/jcc.23266
https://doi.org/10.1107/S2052520616003954
https://doi.org/10.1002/chem.201705163
https://doi.org/10.1002/chem.201705163
https://doi.org/10.1002/jcc.25532
https://doi.org/10.1016/j.jorganchem.2012.10.029
https://doi.org/10.1016/j.jorganchem.2012.10.029
https://doi.org/10.1021/ic9701165
https://doi.org/10.1039/a900823c
https://doi.org/10.1039/c1dt10234f
https://doi.org/10.1002/chem.201800511
https://doi.org/10.1039/c8cp00430g
https://doi.org/10.1039/c8cp00430g
https://doi.org/10.1021/acs.jpca.7b12357

	On...
	Abstract
	Introduction
	Systems and computational methods
	Results
	Monomer characteristics
	σ-Hole and π-hole dimer interactions
	Monomer deformations
	Vibrational analysis

	Discussion and conclusions
	References


