
 1

Improving a Program to Test Optics for Space-Based Telescopes

Kylie M. Wolfe and R. Steven Turley
Department of Physics and Astronomy, Brigham Young University, Provo, Utah

Abstract
Current broadband multilayer mirrors used in space-
based telescopes cannot reflect light in the extreme
ultraviolet range. Our research seeks to expand the
wavelengths that broadband mirrors can reflect. Our
research on these mirrors is conducted using a
program called Octopus Measurements, which
controls our system of hardware. This program had
many design flaws that made it difficult to maintain,
so I redesigned it to remediate those flaws.

Introduction
 Our group studies multilayer mirrors for use
in space-based telescopes. Currently used broadband
mirrors for these telescopes cannot reflect the extreme
ultraviolet (XUV) wavelengths [1, 2], so we focus on
improving our mirrors’ reflectance in that range of the
spectrum.
 Generally, the way we study our mirrors is by
bouncing light off of them. We take the ratio of the
intensity of the reflected light to the intensity of the
light before it bounces off of the mirror to get the
reflectance of the mirror at various wavelengths and
angles of incidence. This occurs inside of a vacuum
chamber, since our aluminum mirrors easily oxidize in
air and since XUV light gets absorbed in the
atmosphere.
 In the simplest view of our hardware, there is
a sample, plasma source, and a detector. The plasma
source generates the XUV light to bounce off of the
sample mirror. The detector then measures the light
that bounced off of the sample, as shown in Figure 1.

 A simple scan across the mirror is a one-
dimensional (1D) scan. The single dimension, or axis
of the scan, can be chosen as the sample or detector
angle, or the x, y, or z position of the sample stage, as
shown in Figure 2. A user can choose an axis, which
corresponds to a motor in the system, a start, stop, and
increment value for the motor position, and then run a
scan. The results of the scan can then be displayed and
saved as amount of light recorded against each motor
position.
 Because all of our research must take place in
a vacuum chamber, shown in Figures 1 and 2 as the
large grey octagon, we can’t reach in and perform
these functions ourselves. Thus, we have a computer
program to handle those operations for us.

The Program
 The Octopus Measurements program has to
be able to keep track of and control most of the
hardware in the system, including but not limited to
the detector, motors, pumps, USB devices, and many
others. It also must provide an interface for working
with these hardware elements, ensure no damage will
happen to the system, and perform analysis on
recorded information. It is written in C# and uses the
Windows Presentation Foundation (WPF) framework
for its user interface (UI). Maintenance is done in
Visual Studio 2013.
 The program should specifically be able to
count the number of photons striking our detector in a
precise period of time, monitor alarm conditions on the
system, monitor the pressure in parts of the system,

Figure 1: Diagram of hardware system

Figure 2: Available axes for a 1D scan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/220142867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

and monitor the current and voltage in our plasma
source.
 Another important function of the program is
to capture standard operation procedures for common
operations such as pumping down the system, turning
on the detector, venting the chamber, and so forth.
Guiding inexperienced users through the safe step-by-
step procedures protects the instruments in the system.
 Octopus Measurements did all of these
required functions with varying success before my
refactoring work, but the code underneath was
difficult to work with. Most of the program’s
functionality was written in a single file,
octopus3.xaml.cs, which contained almost 3,000 lines
of code. This code ranged in function from enabling
and disabling buttons to launching new threads with
which to communicate with hardware. Furthermore,
the user interface has eight tabs in it, each with its own
functionality and purpose. This one file contained
most of the code for all eight tabs.
 The code was loosely organized with the
#region macro, which allows the user to collapse and
expand sections of code when viewed in Visual

Studio. While this afforded some abstraction, regions
were long and provided only cosmetic structure to the
code. Though C# is fully object-oriented, almost no
object-oriented design was used, and where it was
used failed to take full advantage of the benefits
objects can provide.
 This loose organization and mixing of
responsibilities made the code difficult to navigate. It
was difficult to see where new code should go, and
since there was no real structure to the code, it was
easy to disturb the function of other code when adding
new functionality or fixing bugs. Bugs were difficult
to find, and when found they were often difficult to fix
as well. The entire program was cognitively taxing to
work with as all pieces of the functionality, from
hardware to UI, were mixed in with each other.
 For example, my first semester on the project
I was tasked with adding controls for a few new pieces
of hardware. I first built the program in a separate
project, and then when it came time to integrate it in
with Octopus Measurements, I was completely
overwhelmed. I tried to follow the little organization
that was already there, which caused me to add pieces

Figure 3: 1D Scans tab of Octopus Measurements user interface with data from a 1D scan

 3

of my code all throughout the main octopus3 file.
Then, when we ended up removing the hardware my
code corresponded to, I had to hunt down all of the bits
and pieces of it to remove it from the code as well.
 My next project with the program was to
extract code relating to certain USB devices into
objects to prevent concurrent access that was crashing
the program. Again, this task sent me all through the
code to understand what each USB device did, and
what each individual use did before I could extract its
correctly.
 With both of these projects, the lack of
object-oriented design not only made changes hard to
make but also made the program difficult to test. To
truly test the program, I had to run Octopus
Measurements in its entirety, manually click buttons
on the user interface, and use the physical hardware.
This often required help from other people, and
sometimes was not even possible if the hardware could
not be run.
 With all of these problems, Octopus
Measurements was rigid and fragile, despite generally
performing its duties. It was in desperate need of
refactoring, which is improving the underlying code
while retaining outward functionality. My goal then
was to refactor the code to make the code more
readable, expandable, and otherwise maintainable.

New Architecture
 The solution I created to improve Octopus
Measurements is a layered architecture that breaks up
the program’s functionality into five high-level
groups: views, presenters, services, hardware, and
analysis. The dependencies between these layers can
be seen in Figure 4. This architecture divides each
tab’s functionality not only into individual files, but
also into individual responsibilities. While this
division does add some overhead to the code, it is not
in areas where time is critical to the function of the
system. Time critical code is all in one layer, the
hardware layer, where it can be optimized as much as
necessary. Eventually the entire program will be
broken up into these layers, but for now only the 1D
Scans tab refactored into them. For simplicity’s sake,
I will explain the layers as though they have been fully
implemented.
 The view layer connects with the necessary
WPF functions to make the UI work. This includes
both event handlers and updates to the information on

the screen. Since UI code is difficult to test, this layer
has as little functionality in it as possible. The event
handlers just pass information to the presenter layer
and display popups for errors if they occur in other
layers.
 The presenter layer contains the functionality
that was stripped from the view layer. The presenters
handle any interaction by launching the appropriate
services or analyses, and then returning results to the
view layer to be displayed. The presenter layer also
does various other tasks that don’t fit cleanly into
another layer, such as input validation and saving data
to a file.
 The analysis layer is fairly simple. It groups
all of the functions that analyze collected data together
into classes.
 The service layer, on the other hand, is a bit
complicated. It serves as the bridge between the
presenter layer and the hardware layer, allowing the
presenters to access hardware through a clean interface
such as a 1D Scanner. Using 1D scans as an example,
this provides a layer of abstraction so that the presenter
can simply order a 1D scan without worrying about the
details of moving motors and reading data from the
detector. The OneDScanner class allows the
OneDPresenter class to do a scan by providing
validated scan parameters, starting a scan, and then the
OneDPresenter receives the scan result data in return.
 The hardware layer has a class for each type
of physical hardware in the system. These classes use
National Instruments libraries to communicate with
the physical hardware. The hardware layer also has
classes that manage the hardware to prevent multiple
parts of the program from trying to access the same

Figure 4: Layered architecture of new design.
Arrows show dependencies between layers.

 4

hardware at the same time. This kind of access is
called concurrent access, and it can cause problems
such as incorrect measurements.
 This new architecture takes advantage of
abstractions, which allows a programmer to think only
about a certain chunk of a program at a time, instead
of worrying about the entire functionality all at once.
It also takes advantage of the object-oriented nature of
C#, which protects each piece of the program from
being unintentionally or detrimentally modified by
other pieces. This is called encapsulation or
information hiding [3]. Using object-oriented
principles also allows for automated testing of
individual pieces, known as unit testing, as well as
multiple pieces together, known as integration testing.
Already I have been able to test this code with
automated tests, instead of having to run the whole
system together on the physical hardware as before.

New Hardware Management System
 Most of this project consisted of refactoring
the existing code but part of it included adding new
functionality. The new functionality has to do with
concurrent access to hardware. For example, if a 1D
scan was using a motor and the detector, the scan
results could be compromised if another part of the
program tried to move that motor or change a setting
on the detector during the scan. The big additions I
made to the hardware layer prevent this kind of access
from happening.
 The simplest way I could think of to
implement this is through a combination of the
protection proxy and façade patterns, meaning a single
class acts access as the restricting access point to the
entire layer [4]. The problem with this design is that it
would contain a method for every function that could
be called on every hardware class. That would be an
enormous class, and would have many of the same
readability and maintainability problems that the
original large octopus3.xaml.cs file had.
 The solution I created instead is not perfect,
but it achieves this central functionality without
having one giant class to control everything. Basically,
the functionality is split into three groups: an instance
manager, a restrictor, and restrictables.
 The instance manager is the access point for
every piece of hardware. It is a singleton class,
meaning only one object of it can be instantiated at a
time. When it is instantiated, it also creates all of the

hardware objects and keeps track of each one. Then, if
any other part of the system needs to use a piece of
hardware, it can only obtain it from the instance
manager, which ensures duplicate hardware objects do
not get created for the same piece of physical
hardware.
 The restrictor keeps track of what parts of the
program are using which pieces of hardware at any
given time. When a user class asks the restrictor for a
piece of hardware, it either notifies the user class that
that hardware is in use by another class, or it restricts
it so that only that user class can use it. When the user
class is done using the hardware, it must notify the
restrictor so that other classes can access that piece of
hardware.
 If a class tries to use a piece of hardware
without asking the restrictor for access, the hardware
object itself will prevent the class from using it. That
is because the hardware classes are all restrictables.
They can be restricted with a key string, and if
anything tries to use them without the proper key
string, they will not work. The restrictor generates
these key strings and restricts the hardware with them
when it is granting hardware access to a user class. The
restrictor then gives the proper key string to the user
class.
 This system has some disadvantages. For
one, using a piece of hardware is complicated by the
greater number of steps involved. Also, the three
pieces of the system are rather tightly coupled, in that
they need to know a lot of details about each other as
well. This means that if one needs to change, others
will likely need to change too. It also means that many
of the hardware classes share some of the code that
makes them restrictables. These problems are often
called “code smells,” and are usually indicative of
design problems [5]. Eventually these problems
should be resolved, but for now the code works and
succeeds in preventing unauthorized access to
hardware when using this new system.

Implementation-level Refactoring
 The changes to the 1D Scans tab and the
underlying hardware have already gone a long way to
make the program more understandable by breaking
up the code into multiple files. As I did this
decomposition, though, I also tried to clean up
individual pieces of code to be more readable. One
example of this is the code for actually performing a

 5

1D scan, by moving motors and reading from the
detector.
 Figure 5 shows what this code looked like
before the refactoring. Both of the functions in this
block are callbacks, which were called when a piece of
hardware finished performing its function. The first
callback specifically was called when a motor finished
moving to a specific position and the second was

called when the detector finished reading a count. The
algorithm for performing a 1D scan is exists in this
code, but it is hard to see as control flows mysteriously
between these two functions.
 Control here starts with the first time
scan1dCounted is called. On the first call, the code sits
for a bit to eliminate noise at the beginning of the scan,

Figure 5: The 1D scan code before it was refactored

 6

as shown on lines 25 to 33. If it is not the first count,
then it adds the count data to the graph (line 36) and
checks to see if the scan should stop (line 41). If the
scan should stop, then it does the cleanup for the whole
scan right from lines 46 to 55. If the scan continues,
then it tells the motor to move to the next position.
When the motor finishes that move, it will call the
other callback, scan1dMoved which starts another
detector count on line 11. This will call the
scan1dCounted callback, and so forth until the scan is
finished.
 This code is difficult to understand as it tries
to do everything from moving motors to cleaning up
the UI after the scan. The way these two callbacks
interact is not clear without understanding of the rest
of the code. Furthermore, the code is complicated by
the communication between threads. It appears that
these callbacks are meant to be called from a thread
other than the UI thread. Thus, each call that interacts
with UI elements must do a Dispatcher.Invoke block
to get back to the UI thread, as seen on lines 7, 37, and
44. These blocks add another confusing layer of
complexity to this code. The comments are somewhat
helpful in understanding the code, but also lead to
confusion as seen in the comment conversation on
lines 23 and 24.
 Contrast this difficult code with the code in
Figure 6, which shows this same functionality in the
new, refactored version of the code. This code uses a
single function, no callbacks, and async/await syntax.
This makes the 1D scan algorithm much easier to see

and understand. First the code prepares to scan on line
3, and then does the first count. As in the old code, it
waits a moment to let the noise at the beginning of the
scan settle out. This is all shown on lines 5-8. Then,
the scan is achieved with a single for loop, which goes
from the start position to the end position,
incrementing by the specified increment value. Each
time, it takes a single count measurement and
processes it. Then, when the scan is done, it cleans up.
 This code is essentially just the algorithm for
performing a 1D scan. While this code appears
significantly shorter, overall, there may be more lines
of code than before. These other lines aren’t pictured,
but they exist in functions such as setUpScan (line 3)
and doSingleCount (lines 6 and 17). Breaking the extra
code into functions makes this function much easier to
understand, since the reader doesn’t have to worry
about the details of understanding how a single count
is taken, or how the scan is set up, or how any of the
other functions work. The function names provide
enough information to understand the algorithm
without knowing the details.
 The async/await paradigm is also helpful
here, as no callbacks or threads have to be dealt with.
The code simply sleeps until the awaited action is
finished, and then it continues on to the next line. This
pattern is shown in line 3, among others, where the
code waits for everything to be set up before
continuing on to the first count. Without async and
await, this code would have to be written with a

Figure 6: The 1D scan code after it was refactored

 7

callback, which would segment the algorithm into
multiple pieces as it was segmented in the older code.
 This specific example is one of many places
where I applied this type of code cleanup in the 1D
scan code. Generally I tried to replace callbacks with
async/await functions, and I tried to ensure each
function was easily understandable by breaking it up
into more functions if necessary. This increased the
amount of abstraction, making the functions easier to
comprehend [3]. Making these kinds of
implementation-level changes to the code augmented
the readability improvements that breaking up the
overall design into layers began. Changing the code
itself to be more readable is a huge part of refactoring.

Conclusion
 The changes I made to Octopus
Measurements this year have made great strides in
fixing some of the design issues in the original
program. The 1D scan functionality has been broken
up into multiple layers, the hardware is now more
protected against simultaneous use by different
entities in the code, and the code itself is clearer.
 There is still a great more to do, however, as
these changes have only been enacted in the 1D Scans
tab. The next big step in the refactoring of Octopus
Measurements will be applying this same architecture
to the other seven tabs in the program. As I do so next
year, I will be fixing some of the functionality in the
program that has been broken or never fully
implemented, including 𝜃-2𝜃 (T2T) scans. This
functionality is complicated, and did not work well in
the old design because of this complexity. T2T scans
involve moving the sample stage to an angle θ with
respect to the beam of light, and then moving the
detector to an angle of twice theta to catch the light
bouncing off of the mirror. The scan occurs as θ
changes, moving both the sample stage and detector
arm.
 That functionality is relatively simple, but
there are many other operations that need to be
performed during a T2T scan. Occasionally during the
scan, the mirror needs to be moved and the detector
needs to measure how much light is coming out of the
plasma source directly. This measurement is called I0,
and is used for calculating reflectance. The I0 may vary
with time, so the T2T scan code needs to take this
variation into account. Furthermore, the data may need
to be saved to a file periodically to preserve it in case

of a crash during the scan. Additionally, the detector is
unable to register the entire beam coming off of the
mirror, so the detector will likely need to do a 1D scan
or some other smaller scan at each θ location, and then
calculate the light bouncing off of the mirror from that
smaller scan. All of this extra complexity made the
T2T code in the old design almost impossible to
understand, which is likely why it does not yet work.
This kind of scan will allow our team to more easily
calculate the reflectance of our mirrors, and it will be
much easier to implement using the new design.
 After the whole program has been refactored
and fixed, it will be much easier to add other new
features, too. One of these new features could be a way
to run the UI on mock hardware, thus allowing for UI
testing without running on the real hardware. Another
new feature that would be beneficial is a new tab that
can track what pieces of hardware are currently
restricted by what parts of the program, with a safety
button to release restricted hardware in case a part of
the program forgets to release its hardware when it is
done using it.
 Overall, these changes have made and will
continue to make the code easier to understand,
modify, fix, and expand. This will allow our team to
take better measurements, as Octopus Measurements
becomes flexible enough to change with the needs of
the group.

References
[1] D. Allred, R. Turley, S. Thomas, S. Willett, S.
Perry and M. Greenburg, "Progress towards adding
EUV reflectance to broadband Al mirrors for space-
based observatories", UV/Optical/IR Space
Telescopes and Instruments: Innovative Technologies
and Concepts VIII, vol. 10398, 2017.
[2] M. Greenburg, D. Allred and R. Turley,
"Optimization of Broadband Multilayer Mirror
Reflectivity via a Genetic Algorithm", The Journal of
the Utah Academy of Sciences, Arts, & Letters, vol.
94, pp. 317-325, 2017 [Online]. Available:
http://www.utahacademy.org/wp-
content/uploads/2018/04/JUASAL-full-text-2017-
revised2.pdf. [Accessed: 20- Apr- 2019]
 [3] S. Nakov et al., Fundamentals of Computer
Programming with C#. Veliko Tarnovo, Bulgaria:
Faber, 2013, pp. 807-852. [Online]. Available:
https://introprogramming.info/english-intro-csharp-

 8

book/read-online/chapter-20-object-oriented-
programming-principles/
[4] E. Gamma, R. Helm, R. Johnson and J. Vlissides,
Design Patterns. Reading, Massachusetts: Addison-
Wesley, 1994, pp. 185-193, 207-217.
[5] "Code Smells", Sourcemaking.com. [Online].
Available:
https://sourcemaking.com/refactoring/smells.
[Accessed: 20- Apr- 2019]

