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Abstract Purpose: The oxyhemoglobin dissociation

curve describes the relationship between the partial pres-

sure of oxygen and the percent of hemoglobin satu-

rated with oxygen and varies with chemical and phys-

ical factors that differ for every patient. If variability

could be determined, patient specific oxygen therapy

could be administered. We have developed a proce-

dure for characterizing variations in the oxygen disso-

ciation curve. The purpose of this study was to vali-

date this procedure in surgical patients. Methods: The

procedure uses an automated system to alter oxygen

therapy and Hill’s equation to fit measurements. Once

measurements are gathered, the procedure uses an it-

erative least-squares method to determine best-fit pa-

rameters for the Hill equation. The procedure was per-

formed on surgical patients after which model fit was

assessed. Results: 39 patients participated in this study.

Using patient-specific parameter values increases corre-

lation when compared to standard values. The proce-

dure improved the model fit of patient saturation values

significantly in 19 patients. Conclusions: This paper

has demonstrated a procedure for determining patient-

specific pulse oximeter response. This procedure deter-

mined best-fit parameters resulting in a significantly

improved fit when compared to standard values. These

best-fit parameters increased the coefficient of determi-

nation R2 in all cases.
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1 Introduction

The oxyhemoglobin dissociation curve (ODC) de-

scribes the relationship between the percent of hemoglobin

saturated with oxygen (SHbO2) and the partial pres-

sure of oxygen (PO2) in the blood [12,7,15,6,8]. Due to

the allosteric effects of oxygen binding with hemoglobin’s

four oxygen binding sites, this response is a sigmoidal

curve [13,3]. Due to hemoglobin’s affinity for oxygen,

this sigmoid relationship plateaus at a PO2 of approxi-

mately 150 mm Hg in healthy patients [12]. Above 150

mm Hg the majority of hemoglobin binding sites are

fully saturated with oxygen, and thus SHbO2 is min-

imally responsive to changes in PO2 while below 150

mm Hg SHbO2 is highly responsive to changes in PO2

[1]. These characteristics of oxyhemoglobin’s response

to PO2 permit oxygen uptake in the lungs, at high PO2,
and oxygen unloading near tissue, at low PO2, and are

vital to oxygen transport in the body [9].

Besides oxygen, hemoglobin is responsive to other

notable allosteric effectors [7,17,19,20]. These include

chemical factors in the blood such as hydrogen ions

(pH), carbon dioxide (CO2), and 2,3-Diphosphoglycerate

(2,3-DPG) [5]. Hemoglobin’s allosteric effectors also in-

clude the physical factor of temperature (T ). Although

the effects of factors are well characterized, the values of

the factors are not clinically available in many patients.

Patient to patient variation in the concentrations and

levels of these effectors, in turn, can effect hemoglobin’s

affinity for oxygen. Differences in oxygen affinity can af-

fect the position and shape of the ODC, with increased

oxygen affinity shifting the curve to the left (lower PO2)

and decreased affinity shifting the curve to the right

[12]. Thus, hemoglobin’s affinity for oxygen varies from

patient to patient [18].

Variations in oxygen affinity change the shift and

shape of the ODC, including the PO2 at which the
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ODC transitions from a plateau to a steep slope. This

patient-to-patient variability impacts the level of oxy-

gen therapy required to prevent desaturation. However,

if a patient-specific ODC could be generated, the tran-

sition from the plateau to sharp curve could be char-

acterized, and patient-specific oxygen therapy could be

administered, preventing desaturation. One possibility

for determining patient variability is to create an au-

tomated procedure which uses a set of PO2 and pulse

oxygen saturation (SpO2) value pairs to fit a patient-

specific ODC. We have developed such a procedure which

is based on an automated oxygen delivery system and

Hill’s equation.

The procedure measures several levels of oxygen sat-

uration by varying oxygen therapy using an automated

system. Best-fit parameters (P50, n,K) for correspond-

ing saturation and oxygen measurements are then found

using an iterative minimal least-squares technique. Once

these parameters are found, the procedure constructs a

patient-specific ODC from which important character-

istics, including the transition from the plateau to the

steep slope of the curve, can be obtained. Extrapolation

of the ODC could also be used to predict a patient-

specific response to different levels of oxygen therapy.

The objective of this study was to validate the pro-

cedure for determining patient-specific pulse oxygen sat-

uration response. If validated, the procedure could char-

acterize patient-specific oxyhemoglobin using an auto-

mated system and non-invasive techniques.

2 Methods

This study was performed in accordance with the

1964 Helsinki declaration and its later amendments or

comparable standards. Study approval came from the

University of Utah Institutional Review Board. All pa-

tients participated with written informed consent.

2.1 Procedure for characterizing oxygen saturation

response

The procedure for characterizing pulse oxygen sat-

uration response uses an automated system to alter

oxygen therapy to generate patient-specific oxygen flow

and saturation data pairs. Hill’s equation is then used to

characterize the data set for each patient. To determine

oxygen saturation response, the automated system ad-

ministers different levels of oxygen therapy gathering

measurements for oxygen and saturation levels at each

level. The procedure then uses iterative least squares

residual techniques to find the best-fit curve for the

gathered measurements.

Automated System

Monitor

Microcontroller

Pulse

Oximeter

Gas

Analyzer

Cannula
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Source
Flow Valve

Fig. 1 Schematic diagram of the automated system

2.1.1 Automated oxygen therapy system

Figure 1 shows a schematic diagram of the auto-

mated oxygen therapy system which includes a laptop

computer. The automated system varies oxygen flow

rate using a proportional solenoid valve (MD PRO,

Parker Hannifin, Hollis, NH) connected to a compressed

oxygen source. A laptop computer collects end-tidal

oxygen (etO2) measurements from a gas analyzer (Cap-

noMAC, Datex, Helsinki, Finland). The laptop com-

puter also collects SpO2 from a pulse oximeter (LNCSTM,

Masimo, Irvine, CA). The system monitored nasal pres-

sure to determine breath phase, and discontinued oxy-

gen flow during exhalation so that etO2 measurements

were not contaminated by supplemental oxygen.

2.1.2 Theoretical aspects

While varying oxygen, the procedure collects pairs

of etO2 and SpO2 measurements. Since the system varies

oxygen, a range of SpO2 measurements can be mea-

sured to characterize a patient’s ODC. After collecting

pairs of measurements, the procedure fits the data to

Hill’s equation:

SHbO2 = f(PO2) = K
(PO2/P50)n

1 + (PO2/P50)n
, (1)

where P50 is the PO2 at which 50% of hemoglobin are

saturated with oxygen (SHbO2 = 50%), n is the Hill

coefficient, and K is the maximum saturation possible.

Hill’s Equation can be used to calculate SHbO2 for

any given PO2. Its three variables can be used to deter-

mine ODC shift (P50), slope (n), and offset (K). The

value of these three variables depends on the conforma-

tion of hemoglobin and thus varies between patients.
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2.1.3 Determining the best-fit parameters

The procedure finds the best fit P50, n, and K val-

ues for each volunteer using iterative non-linear least-

squares fitting as implemented in the least squares func-

tion of the optimize module in SciPy (SciPy, v1.1.0,

The SciPy community) [14].

The solution to a non-linear least-squares problem

is a local minimizer of the problem:

min{
m∑
i=1

fi(x)2}, (2)

where m is the number of residuals [2]. For analyzing

pulse oxygen saturation response, the problem is of the

form:

fi(x) = K
(PO2i/P50)n

1 + (PO2i/P50)n
− SpO2i, (3)

where PO2i (independent) and SpO2i (dependent) are

the ith measured SpO2 and etO2 points, respectively.

The patient-specific parameters are contained in x =

{P50, n,K}. The Jacobian matrix, which is helpful for

computing the minimization problem, can be found us-

ing the following equations:

Ji0 =
∂fi
∂P50

= −Kn
P50

(PO2i/P50)n

[1 + (PO2i/P50)n]2
(4)

Ji1 =
∂fi
∂n

= Klog(PO2i/P50)
(PO2i/P50)n

[1 + (PO2i/P50)n]2
(5)

Ji2 =
∂fi
∂K

=
(PO2i/P50)n

1 + (PO2i/P50)n
(6)

where log is the natural logarithm and values in x are

all positive. The constraints for x are shown in Table 1.

2.1.4 Estimating oxygen saturation

After the best-fit parameters have been determined

using the methods described in Section 2.1.3, the pro-

cedure proceeds by estimating oxygen saturation. This

is done using the best-fit parameters, etO2 values, and

Equation (1). End-tidal oxygen values are converted to

PO2 by compensating for local atmospheric pressure

(640 mm Hg) and the partial pressure of water vapor

at 37o C (47 mm Hg):

PO2 = (640− 47)
etO2

100%
mm Hg (7)

Table 1 Constraints for x = {P50, n,K}

Parameter Range Units

P50 15 - 75 mm Hg
n 1.5 - 3.9 unitless
K 0.94 - 1.0 unitless

2.2 Model fit assessment

Model fit assessment methods can be used to quan-

tify how well the model performs. These assessment

methods analyze how well the model describes data (de-

scriptive error) and how well it predicts data (predic-

tive error). For modeling oxygen saturation response,

model description and prediction error can be analyzed

to validate the ability of the procedure to fit and predict

SpO2.

Descriptive error can be determined by calculating

the coefficient of determination R2:

R2 = 1−
∑n

i=1(yi − f(xi))
2∑n

i=1(yi − y)2
, (8)

where f is the Hill equation with best-fit parameters

for the particular data set x, f(xi) represents model

estimates computed using f and xi, yi are observed

measurements, and y is the mean of all the yi measure-

ments:

y =
1

n

n∑
i=1

yi (9)

Leave-one-out cross-validation can be performed by

calculating the predictive coefficient of determination

Q2:

Q2 = 1−
∑n

i=1(yi − f(−i)(xi))
2∑n

i=1(yi − y)2
, (10)

where f−i(xi) represents the value at xi produced when

the best-fit parameters were calculated by leaving out

xi. Cross-validation calculates Q2 by using Equation

(10) to loop through each measurement for a given data

set, leaving out one data point each time, using the re-

maining data points to determine the best fit model

parameters, and using those best-fit parameters to pre-

dict the point left out.

2.3 Study setup and protocol

Participants were selected from surgical patients at

the University of Utah Moran Eye Center. Potential

participants were selected by a chart review before surgery.

Eligible participants had an adult American Society of

Anesthesiologists physical status of I-III and were aged
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> 18 yr. Patients with a baseline SpO2 ≤ 93% on room

air, surgery scheduled for less than 20 minutes, ARDS,

lung disease, cardiovascular disease, or pregnancy were

not eligible to participate.

Before the surgery, participants were fitted with a

sampling nasal cannula and the automated system’s

pulse oximeter. The sampling line of the nasal can-

nula was connected to the system’s gas analyzer. Dur-

ing the procedure, the automated system administered

oxygen at varying flow rates. Each flow rate was ad-

ministered for two minutes after which etO2 and SpO2

were recorded. Given that surgery time would vary be-

tween patients we expected to acquire a different num-

ber of paired measurements for each patient. Once the

surgery concluded and all paired measurements for a

patient were collected data analysis proceeded as de-

scribed in Sections 2.1.3 and 2.1.4. Once best-fit pa-

rameters had been determined and oxygen saturation

estimated model fit was assessed as described in Sec-

tion 2.2. For comparison, fit for a model using generic

parameter values, x = {26.8, 2.7, 1.0}, was also assessed

using Equation 8.

2.4 Statistical analysis

Statistical analysis was performed using Python (v2.7.14,

Python Software Foundation, Beaverton, OR). Median

R2 and Q2 across all patients was calculated. The in-

terquartile range (IQR), including 25th and 75th per-

centiles, was used to report uncertainty.

Differences between measurements yi and model out-

put f(xi) were compared for both descriptive and pre-

dictive modeling using limits of agreement (LoA) meth-

ods. The absolute difference between measurements yi
and model output f(xi)/f(−i)(xi) is the residual and

was calculated for all measurements:

f(xi)− yi (11)

f(−i)(xi)− yi (12)

LoA methods calculated the mean difference of all data

points using (11) or (12). 95% LoA were calculated as

±1.96 SD where SD is the standard deviation of the

difference between all data points. To determine dif-

ferences between predictive and descriptive modeling,

the LoA for descriptive and predictive modeling were

compared.

For each patient an F-test was used to determine

if the specific fit improved model-fit significantly com-

pared to a standard ODC. The F-statistic F was cal-

culated as:

Table 2 Median and dispersion of optimal values for P50, n,
and K

Parameter Mean (SD) Range (Min. - Max.) Units

P50 32.0 (14.4) 53.4 (15.0 - 68.4) mm Hg
n 3.2 (0.8) 2.2 (1.67 - 3.9) unitless
K 1.00 (0.01) 0.06 (0.94 - 1.00) unitless

F =

(
RSSstd−RSSspec

pspec−pstd

)
(

RSSspec

n−pspec

) , (13)

where RSSstd and RSSspec are the residual sum of

squares (RSS) when using the standard and specific

curves respectively, pstd = 0 and pspec = 3 are the num-

ber of parameters in the standard and specific models

respectively, and n is the number of data points. The

specific model fit was significantly improved if F calcu-

lated using (13) was greater than the critical value of

the F-distribution with (pspec − pstd,n− pspec) degrees

of freedom and α = 0.05.

3 Results

39 patients participated in this study. 498 data points

were evaluated with an average of 12 data points per pa-

tient. The median values as well as standard deviation

(SD) and range for P50, n, and K are shown in Table

2. For 19 of the 39 patients, a specific ODC improved

model-fit significantly (F > F -critical).

Figure 2 shows the model fit for a typical patient.

The best fit parameters for this particular patient were
x = {24.9, 1.9, 0.99}. When performing leave-one-out

analysis, the mean ± SD for the best fit parameters was

x = {25.0±1.6, 1.9±0.1, 0.99±0.001}. Using a patient-

specific ODC to fit patient data points increased corre-

lation (R2 : 0.94 vs. -2.36, specific vs. generic) and im-

proved model fit significantly (F > F -critical). Leave-

one-out analysis also showed increased correlation (Q2 =

0.92). This patient-specific curve shows how oxygen sat-

uration would begin to drop long before a standard

ODC would predict. For example, oxygen saturation

at 70 mm Hg for the standard curve is 0.93 while for

the patient-specific curve it is 0.87.

The coefficient of determination R2 for all patients

are shown in Figure 3. Using patient-specific param-

eter values resulted in increased correlation compared

to standard values (median (IQR) R2: 0.42 (0.63) vs.

-0.22 (2.08), specific vs. standard). The median differ-

ence (specific - standard) in R2 for paired data was 0.85

with an interquartile range from 0.29 to 1.90. The me-

dian absolute difference between modeled data points
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Fig. 2 Model fit and prediction for a select patient. For
this particular patient, the best fit values were x =
{24.9, 1.9, 0.99}. Correlation increased when using a specific
oxyhemoglobin dissociation curve (R2: 0.94 vs. -2.36, specific
vs. standard). Leave-one-out analysis also showed increased
correlation (Q2 = 0.92)

f(xi) and observed measurements yi for all patients

was -0.0005 SpO2. The 95% LoA were from -0.0149 to

0.0140 SpO2 (Figure 4).

The predictive coefficient of determination Q2 for

all patients are shown in Figure 3. The median (IQR)

Q2 was 0.07 (0.81). The median absolute difference be-

tween predicted data points f(−i)(xi) and observed mea-

surements yi for all patients was -0.0005 SpO2. The 95%

LoA were from -0.0189 to 0.0179 SpO2 (Figure 4).

4 Discussion

This manuscript describes a procedure for determin-

ing a patient-specific pulse oxygen saturation response.

Results have shown that the procedure improved the

model fit of patient saturation values significantly in

19 of 39 patients. Results have also shown that using

patient-specific parameter values increases correlation

when compared to standard values. The predictive ca-

pability of the procedure was also tested, and results

show that the LoA when predicting were within ± 0.02

SpO2.

These results demonstrate the ability of the proce-

dure to provide a more accurate estimate of patient

oxygen saturation response when compared with us-

ing standard parameter values. This accurate estimate

could help determine a patient’s specific response and

thus define the PO2 at which a patient’s SpO2 would

begin to decline rapidly. Further, this accurate estimate

could be used to describe the decline in SpO2 with time.

Previous related research has studied how accurately

SpO2 predicts arterial partial pressure of oxygen (PaO2)
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Fig. 3 Coefficient of determination R2/Q2 when model pa-
rameters are set to standard values compared to when model
parameters are set to best-fit values. The upper panel shows
an expanded view of all R2/Q2 values while the lower panel
shows a magnified view centered on the R2/Q2 range from 0
to 1

[4,11]. Brockway et al. found that PaO2 correlated sig-

nificantly with SpO2. This research has added to these

results by demonstrating increased correlation when de-

termining patient-specific parameter values.

As expected, the mean best-fit values for model pa-

rameters (Table 2) compared well with typical standard

values. However, a wide range of parameter values was

observed when considering the patient population as a

whole. This wide range demonstrates the utility in de-

termining patient-specific parameter values to predict

oxygen saturation response.

For some of the parameters, the upper or lower pa-

rameter constraint was reached in at least one patient.

Two bounds of particular interest for which this oc-

curred were the lower bound of P50=15 and the upper

bound of n = 3.9. Had the constraint window for these

parameters been broader correlation may have been im-

proved but the parameter value may not have been

physiologically realistic. This demonstrates the balance

between improved model fit and physiologically real-

istic results. The proper range for realistic constraint

windows on P50, n, and K should be explored further

and considered in future research on oxygen saturation

response.

When predicting SpO2, as simulated using leave-

one-out cross-validation, this procedure exhibited larger

LoA compared to descriptive modeling. This result in-

dicates that the predictive capability of the procedure

depends on the number of measurements acquired, with

the predictive capability of the procedure increasing

with the number of measurements. Therefore, the num-

ber of measurements acquired may influence the accu-

racy of the procedure’s predictions and thus the proce-
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Fig. 4 Bland-Altman analysis for descriptive and predictive
modeling. For descriptive modeling (left) the median abso-
lute difference was -0.0005 SpO2 with 95% LoA from -0.0149
to 0.0140 SpO2. For predictive modeling (right) the median
absolute difference was -0.0005 SpO2 with 95% LoA from -
0.0189 to 0.0179 SpO2

dure should be used with care when circumstance only

allows for only a few paired measurements. However,

further research should be conducted to determine the

predictive capability of the procedure when using mea-

surements with less error.

The procedure described here measures etO2 as a

non-invasive representation of PaO2. These two mea-

surements have been shown to agree well [16] in healthy

patients with minimal alveolar-arterial (A-a) oxygen

gradient. However, these measurements may not yield

accurate oxygen saturation response in patient popula-

tions with significant A-a gradient. For these popula-

tions, oxygen saturation and partial pressure of oxygen

measurements acquired by arterial blood gas analysis

should be used instead. Conveniently the procedure de-

scribed here does not require any adjustment to facili-

tate these type of measurements.

The procedure also measures SpO2 to represent SHbO2.

Although SpO2 measurement is less invasive, it has a re-

ported accuracy of ± 2-3% compared with SHbO2. This

accuracy was not considered in the present research and

may have affected the best-fit parameters, particularly

K. If for example, the pulse oximeter reported a SpO2

of 98% at 100% SHbO2, the procedure may have deter-

mined the best-fit value of K to be 0.98. With this in

consideration, the accuracy of SpO2 may in part have

affected the range of K values observed in this study.

Future directions for this research would be to com-

bine the procedure with existing models [8,10] to sim-

ulate and predict oxygen saturation and time to de-

saturation in patients with varying levels of respiratory

drive. Predicting the course of SpO2 for a given amount

of time could help explore and experiment with simu-

lations on different clinical scenarios that may not be

safe to study in volunteers or patients.

5 Conclusion

In summary, this paper has demonstrated and tested

a procedure for determining patient-specific pulse oxy-

gen saturation response. The procedure was able to

determine best-fit parameters that resulted in signifi-

cantly improved fit when compared to using standard

parameter values. These best-fit parameters increased

the coefficient of determination R2 in all cases.
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