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The timehistory of ground-basedphotometrymeasurements, called lightcurves, canbeused
to determine the attitude of a spacecraft. The extraction of information about the satellite’s
attitude is realized through what is called lightcurve inversion. Lightcurve inversion utilizes
a filter or an optimization method to extract the information on the desired parameters. The
accuracy of the lightcurve inversion performance of three filters is compared. These filters are
the bootstrap particle filter, the extended Kalman filter and the unscented Kalman filter. The
attitude modes of a controlled spacecraft maintaining an inertially fixed attitude and spinning
at constant rates are simulated. When the spacecraft is maintaining its inertial attitude, none
of the filters are able to accurately estimate the satellite attitude. However, when the spacecraft
was rotating the filters were able to estimate the attitude for varying degrees of initial conditions.
The extended Kalman filter performs as well as the other two filters when the initial attitude
uncertainty is low. When the initial attitude uncertainty increases to high levels, the bootstrap
particle filter is the only filter able to accurately determine the spacecraft attitude.

I. Introduction
Photometry is a measure of how bright an object ap-

pears to an observer and is a function of the object’s physical
properties, the object’s shape, the light source illuminating
the object, and geometry. The ground-based photometry of
a spacecraft is using an electro-optical sensor, or telescope,
to view the spacecraft and determine its apparent magni-
tude, which is a quantification of how bright the object
appears in the sensor image. As the perceived brightness is
a function of geometry, the measurement is directly related
to the attitude of the spacecraft. In recent work (see [1–3]),
it has been shown that the time history of ground-based
photometry measurements, called lightcurves, can be used
to determine the attitude of a spacecraft.

The extraction of information about the satellite’s at-
titude, and oftentimes shape, is realized through what is
called lightcurve inversion. Lightcurve inversion utilizes a
filter or an optimization method to extract the information
on the desired parameters. Originally, the process was
developed for asteroids. In [4] Kaasalainen et al. demon-
strated the use of their optimization methods to extract
information about an asteroid’s pole direction, rotation
rates, light-scattering parameters, and shape. However,
with satellites additional complexities are introduced due
to factors such as spacecraft symmetry, satellite attitude
control systems, and limited observation times. To be
able to handle these additional complexities, the lightcurve
inversion for satellites is typically carried out using estima-
tion algorithms or filters. The commonly used approaches

include using the unscented Kalman filter (UKF) like in
[5, 6], or using particle filters like those used in [1, 7].

The unscented Kalman filter and particle filters are
frequently the methods of choice for lightcurve inversion
as the attitude dynamics and the measurement model are
both highly nonlinear. However, previous work by the
authors [8] demonstrated that there may be some use for
the extended Kalman filter (EKF) in performing lightcurve
inversion. This would be desirable as the EKF typically
performs much faster than the UKF or particle filters. Thus,
the purpose of this work is to compare the abilities of these
three filtering techniques in determining the attitude of a
satellite.

Particle filters estimate the state using a Monte Carlo–
type approach. This means that a large number of particles
are used to estimate the state. In this work, the boot-
strap particle filter (BPF) is used. The BPF operates by
first creating a distribution of particles, then propagating
the particles forward using the full nonlinear dynamics.
Whenever a measurement is available, the particles are
assigned weights, and these weights are used to resample
the particles so that there are always the same number of
particles, but they are clustered around the areas of greatest
likelihood. Linares et. al. in [7], and Holzinger et. al.
in [1] claim that a particle filter may be better suited to
perform lightcurve inversion than a UKF, as the severe non-
linearities can become non-Gaussian. These non-Gaussian
distributions would also result in poor performance of the
EKF.
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The extended Kalman filter was developed for use with
nonlinear systems and is very commonly used in spacecraft
guidance, navigation, and control applications. The EKF
works by linearizing the state and measurements about the
current state estimate and then uses these linear models
to estimate the satellite state. The underlying assumption
of the EKF is that these models are fairly representative
of the nonlinear dynamics and measurements. When this
is not the case, the EKF breaks down and is unable to
determine the proper estimate, or the filter diverges. In
many instances the linear models hold, and the EKF is able
to accurately estimate the state.

The unscented Kalman filter is another commonly used
approach for dealing with nonlinear dynamics and mea-
surements. However, instead of linearizing the dynamics
and measurement models, the UKF creates a set of points
from the covariance matrix called sigma points, and these
points utilize the full nonlinear dynamics and measurement
models to update the state estimate. According to Van
Der Merwe in [9], using the sigma points allows for the
mean and the covariance to be known up to the second
order terms of a Taylor series expansion of any nonlinear
function. The EKF linearizes the system, and thus, only
uses the first-order terms of the Taylor series expansion.
This means that the UKF may provide more accurate re-
sults and perform better than the EKF in cases of extreme
nonlinearities.

This work serves to compare the performance of these
three filters in performing satellite attitude determination
using lightcurves. The satellite dynamics will be restricted
to a satellite that is being controlled by an attitude control
system, and it is assumed that there are no uncertainties in
the shape model or knowledge of the physical parameters
of the spacecraft. The performance of the different filters
are compared by evaluating the accuracy of their results.
The following sections describe the models and formula-
tions used for the dynamics, measurements, and estimation
algorithms and then present the results and conclusions.

II. Dynamics models
This section presents the dynamics governing the mo-

tion of the spacecraft. These dynamics consist of two parts,
the translational motion of the spacecraft in orbit and the
rotational motion of the spacecraft, which is expressed
through the dynamics of the attitude.

A. Orbital dynamics
The orbital motion of the spacecraft being examined

in this paper is limited to motion due to the Earth’s grav-
itational field. The differential equations describing this
motion are presented below.

Û̄r = v̄ (1)
Ǖr = āgrav(r̄) (2)

In the above equations, r̄ and v̄ are respectively the
position and velocity of the spacecraft, and āgrav is an
N × N gravity model.

B. Rotational dynamics
There a number of different ways to represent the atti-

tude of a spacecraft (for examples, see [10]). This paper
utilizes the quaternion attitude representation as it avoids
some of the singularities associated with other representa-
tions. A quaternion is a four-element vector with unit norm
that contains information about both the axis of rotation
and the magnitude of the rotation about the angle. Here
the quaternion representation contains the scalar element
as the first element of the quaternion, and the vector com-
ponents as the last three components. Furthermore, the
earth-centered inertial (ECI) frame is the frame of reference
from which the satellite body attitude is determined.

qI→b =

[
q0

q̄

]
(3)

q̄ =
[
q1 q2 q3

]T
(4)

In the above expressions, the I refers to the inertial
frame, and the b refers to the spacecraft body frame. Un-
less otherwise denoted, superscripts will be used to relate
which frame the vectors are coordinatized in. The general
differential equations with quaternions for the rotational
motion of a spacecraft are presented below.

ÛqI→b =
1
2

[
0
ω̄b

]
⊗ qI→b (5)

Û̄ωb = J−1[T − ω̄b × Jω̄b] + w̄ (6)

In the above equations, ω̄ is the angular velocity, and
J is the inertia matrix of the spacecraft. The term T is
the sum of the torques acting on the spacecraft, including
gravity gradient, aerodynamic drag, and control torques,
and w is a random angular acceleration term with power
spectral density, Qw .

Equations 5 and 6 are the full rotational dynamics
equations for any space object. However, satellites are
often capable of maintaining their own attitude through
an attitude control system. For simulation purposes each
spacecraft is defined as having an operational control sys-
tem. This means that the satellite will maintain its attitude
as either an inertial hold, where its attitude stays fixed, or
rotating at a constant rate. The differential equations that
describe this controlled motion are presented below.
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ÛqI→b =
1
2

[
0
ω̄b

]
⊗ qI→b (7)

Û̄ωb = 0 (8)

III. Measurement Model
The attitude of the spacecraft is estimated by analyzing

lightcurves, which are the time history of the apparent
magnitude of the object. The governing equation for the
calculating the apparent magnitude of the spacecraft is:

MΛ = −2.5 log10

(
IΛ
Fsun

)
− 26.74 (9)

Where Fsun is the average illumination intensity of the sun
at a given distance. The apparent magnitude of the satellite
is dependent upon the amount of light that is reflected by
the satellite. To simplify calculations, it is assumed that the
satellite shape is convex, and the shape of the satellite is
represented by a series of flat plates or facets. Each facet is
defined by an area, Ai , and a unit normal vector, n̂i . Using
the facet representation, the reflection can be calculated for
each of the individual facets and then summed to give the
total reflection. Figure 1 illustrates the reflection geometry
for a given facet.

In this figure, the vector v̄r is the satellite to observer
vector, s̄ is the satellite to sun vector, h̄ is the bisector
of these two vectors, and n̂i is the unit normal of the
facet. With these parameters it is then possible to calculate
photometric flux, IΛ, in equation 9.

The term IΛ is the calculated photometric flux received
by the EO sensor from the satellite at a given time. The
amount of flux that is being captured by a sensor is depen-
dent upon the amount of light that is being reflected by the
object. Under the assumption that the light reflects equally
on all wavelengths over a particular wavelength band, the
photometric flux can be found using equation 10 below.

IΛ =
1

v̄Tr v̄r
Fsun ( s̄)

N f∑
i=1

Ai,visρi

(
v̂br , ŝ

b, pi,
)

(10)

In the above equation, ρi is the total reflectance of the
object which is dependent upon the reflection geometry
and the physical reflection properties of the given facet
represented by pi . The terms properties of pi include the
specular/diffuse reflection weight, diffuse albedo term, and
the surface roughness parameter of the facet. The vector
v̄br is the satellite to observer vector and s̄b is the satellite
to sun vector, both expressed in the satellite body frame.

The term Ai,vis is the visible projected area of the facet.
It is found using the following equations:

Ai,vis = Ai 〈n̂i · v̂r 〉 (11)

where 〈·〉 is the nonnegative operator defined as

〈x〉 =

{
x x ≥ 0
0 x < 0

(12)

This term ensures that the light reflected from the
spacecraft is visible to the observer.

Bidirectional reflectance distribution function
A bidirectional reflectance distribution function

(BRDF) is a model that is used to describe the reflection
from a facet surface given the direction of the impinging
light and the direction of the observer viewing the reflected
light. Here, the BRDF model introduced by Cook et al.
for computer modeling is utilized [11]. The reflection is
found for each individual facet (denoted by i) and then
summed to give the total reflectance of the satellite, which
is determined by a weighted combination of a specular and
a diffuse reflection component as shown in the equation
below.

ρi = ξiRd + (1 − ξi)Rs (13)

The term ξ is the prescribed specular/diffuse weight
of the facet. The diffuse reflection is modeled using a
Lambertian reflection model where light reflects equally in
all directions.

Rd =
ai(n̂b · ŝb)

π
(14)

In the above equation, ai is the diffuse albedo term for
the ith facet.

The specular reflection is determined using the follow-
ing equation.

Rs =
F
4

D
(n̂b · ŝb)

G
(n̂b · v̂b)

(15)

Where F is the Fresnel equation, D is the facet slope
distribution function, and G is the geometric attenuation
factor. Each of these terms will be described below with
the accompanying equations.

The Fresnel equation, F, is used to describe the re-
flectance of a surface.

F =
1(gi − c)2

2(gi + c)2

[
1 +
(c(gi + c) − 1)2

(c(gi + c) + 1)2

]
(16)

c = v̂b · ĥb, g2
i = n2

i + c2 − 1 (17)

ni =
1 +

√
F0,i

1 −
√

F0,i
(18)
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Fig. 1 Reflection geometry for a given facet of the spacecraft shape model

In the above equations, F0,i is the Fresnel equation at
zero angle of incidence, and ni is the index of refraction.

The facet slope distribution function, D, is a term that
is used to determine the specular reflection due to a rough
surface. According to Cook et al. in [11], it represents how
much of the surface of the facet is oriented in the direction
of the bisector ĥi . To calculate this term, the Beckmann
distribution function from [12] is used. For the observer
to best view the specular reflection of a perfectly smooth
surface, the facet unit normal has to be aligned with the
bisector defined in Figure 1. The Beckmann distribution is
a function of the angle γ between the bisector and the unit
normal, and the slope of the roughness of the surface, m.
This distribution term, D, is calculated as follows

D =
1

πm2
i cos4γi

e
−

(
t an2γi

m2
i

)
(19)

where

γi = cos−1(n̂b
i · ĥ

b) (20)

The final term in Equation 15 is the geometric attenua-
tion factor, G. This term accounts for the self-shadowing
of the surface due to roughness.

G = min
{
1,

2cosγi(n̂b · v̂br )

(v̂br · ĥb)
,

2cosγi(n̂b · ŝb)

(v̂br · ĥb)

}
(21)

In implementing these equations in simulation, a sim-
plifying assumption is made for the diffuse albedo term,
ai = F0,i . For justification of this assumption refer to [1].

IV. Estimation Algorithms
The primary purpose of this paper is to compare the ac-

curacy of three estimation algorithms in extracting attitude
information through lightcurve inversion. The objective
of this section is to present the information needed to use

these algorithms for this objective. However, before going
into the individual estimation methods, there are some def-
initions and explanations common to all of the algorithms
that need to be presented. Thus, the following sections will
first present these items, and then the specific algorithms.

A. Truth model dynamics
Using simulation to determine the effectiveness of an

estimation algorithm requires definition of the truth model
that will be used to gauge filter performance. The different
estimation methods require that there be some models for
the truth dynamics and also the uncertainty associated with
the dynamics and measurement models.

In section II.B it was explained that the satellites under
consideration are all equipped with an attitude control
system (ACS). This means that in general, the satellite will
follow a commanded trajectory. This is expressed in the
differential equations

Ûq∗,I→b =
1
2

[
0
ω̄b

]
⊗ q∗I→b (22)

Û̄ωb = 0 (23)

Here the ∗ is used to signify the commanded attitude.
However, no ACS operates perfectly. There are random
perturbations that need to be rejected and biases needing
to be corrected. This means that at any given time there
is some range (determined by the ability of the ACS) in
which the true attitude differs from the commanded attitude.
To represent this in simulation, the commanded attitude is
propagated forward in time, and the true attitude is com-
puted at discrete intervals by perturbing the commanded
attitude values by some small amount as shown in the
equation below.

qI→b =

[
1

wd/2

]
⊗ q∗I→b (24)
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Here wd/2 is a discrete noise term with strength given
by E[wd(i)wd( j)T ] = Qwd

δ(ti − tj) where δ is the Kro-
necker delta function.

This approach is used to ensure that the covariance
matrix of the estimation algorithms doesn’t grow due to
process noise, but remains within a set value like what
would be expected from an operational ACS.

The apparent magnitude measurements, ỹ used in the
filters are all taken from this true state.

ỹ = h (xk, k) + νk = MΛ(qI→b,k, k) + νk (25)

The strength of the measurement noise, R, is given
as E[νjνTk ] = Rδ(tj − tk), where again δ is the Kronecker
delta function.

B. Error vector representations
As stated previously in section II.B, the attitude rep-

resentation used is the quaternion as it proves an efficient
means of representing the attitude while avoiding singu-
larities associated with other representations. However, a
defining feature of the quaternion attitude representation
is that it requires a unit norm. As will be shown in the
following sections, calculating or applying the state updates
is done in an additive manner. This can result in the quater-
nion unit norm constraint being violated. To prevent this
from occurring, a "local" small angle error vector attitude
representation is used inside the filters while maintaining
a "global" quaternion attitude representation as the state
estimate.

The filter attitude error states are represented using
the generalized Rodrigues parameters (GRPs). Linares
et al. in [13], express that this representation yields a
minimum parameter representation for the attitude state,
and the error covariance is the same to the first order using
this representation or quaternions. A quaternion can be
expressed as a GRP using the following equation:

θ̄ = f
q̄

a + q0
(26)

where a is a parameter from 0 to 1, and f is a scale fac-
tor commonly set to f = (2(1 + a)) [13]. Computing
quaternions from GRPs can be done using the following
equations.

q0 =
−a‖θ̄ ‖2 + f

√
f 2 + (1 − a2)‖θ̄ ‖2

f 2 + ‖θ̄ ‖2
(27)

q̄ = f −1 [a + q0] θ̄ (28)

q =

[
q0

q̄

]
(29)

A second representation is used to express the error
between the truth model and the estimated state for the
results. This other representation is a rotation vector. The
rotation vector can be computed from a quaternion using
the following equations.

ē =
q̄

‖ q̄‖
(30)

ψ = 2 arctan
(
‖ q̄‖

q0

)
(31)

ψ̄ = ψ ē (32)

The conversion to a quaternion from the rotation vector
is found using the following equations.

ψ = ‖ψ̄‖ (33)

ē =
ψ̄

ψ
(34)

q =

[
cos (ψ/2)
sin (ψ/2)ē

]
(35)

C. Bootstrap particle filter
A particle filter is an estimation method that is used to

recursively estimate the state variables by creating a distri-
bution of particles that are weighted with the measurements
to represent the actual state that is being estimated. The
Bootstrap particle filter (BPF) was developed by Gordon
et. al. [14]. It is also known as the sample importance re-
sample filter. This filter first samples the given distribution
to place the particles such that they represent the current
knowledge of the true probability density function. Then
the particles are propagated forward in time through the full
nonlinear differential equations, and when a measurement
is available the filter assigns weights and determines the
particles of highest likelihood. Then after this, it uses what
is called a resampling algorithm. This involves the reas-
signing of particle values based on those particles that have
the largest weights so that the same number of particles is
kept at each update phase of the filter, but they are grouped
around the area of greatest likelihood.

The BPF is especially suited to nonlinear state estima-
tion problems. In [1], Holzinger et. al. suggest that the BPF
is very well suited for the lightcurve inversion problem as
the measurements and dynamics are exceedingly nonlinear
and non-Gaussian in nature.

This following paragraphs outline the formulation of
the BPF for use in the lightcurve inversion problem. The
majority of the algorithm is taken as presented in [15] with
the resampling algorithm implemented as shown in [14].

The state that is being estimated consists of the attitude
quaternion and the angular velocity terms.
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x̂ =

[
q̂I→b̂

ω̂b

]
(36)

The measurement model for the filter is shown in equa-
tion 25

1. Propagation
The first step in implementing the particle filter is to

create a distribution of particles about the initial estimate
of the state, x̂0, using the initial covariance, P0.

The state estimate is the expected value of the com-
manded trajectory and so the differential equations for the
particle propagation are shown in the following equations.

[
Û̂qI→b̂

Û̂ωb

]
=


1
2

[
0
ω̄b

]
⊗ q̂I→b̂

0

 (37)

When no measurements are available, the state esti-
mate is just the propagated value of the state estimate at
the previous time. However, the covariance matrix for any
given time is calculated using the following approach. First
the error between the particle values and the state estimate
is calculated. Note that the frame indices are dropped for
ease in writing.

δxq =

[
δq
δω

]
=

[
q(i) ⊗ q̂−1

ω(i) − ω̂

]
(38)

Here the i refers to the ith particle and q̂−1 is the
quaternion conjugate of the attitude estimate. The general
equation to find the conjugate of a quaternion is shown
below.

q−1 =

[
q0

−q̄

]
(39)

Then all of the δq terms are converted to error GRPs
using equation 26 which gives δxθ . The covariance matrix
is then calculated using the standard statistical approach.

2. Update and resampling
In order to account for the deviations of the truth model

from the commanded trajectory at a given time, whenever
a measurement is available, the attitude state of the individ-
ual particles is perturbed by a process noise sample drawn
from N(0,Qwd

). This process noise is added in the same
manner as equation 24. Then to process the measurement,
the residuals are first found by subtracting the computed
measurements of the individual particles from the available
measurement.

wi
k = ỹk − hk

(
x̂ik, tk

)
(40)

It is assumed that the measurement residual is Gaus-
sian in nature, and so a Gaussian distribution is used to
assign weights to the particles. Note that the terms scaling
the exponential are dropped as the whole thing will be
normalized later.

w̃i
k = e−

1
2

(
wi

k

T
R−1
k
wi

k

)
(41)

where Rk is the variance of the measurement. The
weights w̃k

i are then normalized as shown below:

W i
k =

w̃i
k∑N

i=1 w̃
i
k

(42)

Where N is the number of particles. After the weights have
been assigned, the updated estimate of the mean and the co-
variance are calculated before resampling the particles. As
this, by definition, changes the distribution of the particles.
To do this, the first step is to find the error quaternions of
all of the particles compared to the current state estimate.

xδq =

[
δq
ω

]
=

[
q(i) ⊗ (q̂−)−1

ω(i)

]
(43)

The error quaternions are then converted to error GRPs
using equation 26. This gives xδθ . Then the mean and
covariance can be calculated using the following equations
taken from [16]. A new estimate value is calculated using
the weights and the particles.

x̂δθ,k =

[
δθ̂

ω̂+

]
=

N∑
i=1

W (i)
k
x(i)
δθ,k

(44)

The difference of each of the particles from the mean is
determined and used to calculate the updated covariance.

x̃(i)
δθ,k
= x(i)

δθ,k
− x̂δθ,k (45)

Pk ≈

N∑
i=1

W (i)
k
x̃(i)
δθ,k

(
x̃(i)
δθ,k

)T
(46)

The mean estimate is then converted back into a quater-
nion by first converting x̂δθ,k back into an error quaternion,
δq̂k , using equations 27–29. Then the new quaternion
estimate is found using

q̂+ = δq̂k ⊗ q̂− (47)

and the a posteriori state estimate is

x̂+k =

[
q̂+

ω̂+

]
. (48)
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After the updated mean estimate and covariance are
calculated, the particles are resampled using the method
presented in Gordon et al. [14].

3. Particle roughening
A key feature of the BPF is that it is driven by process

noise. In cases where there is little to no process noise, the
filter does not perform well. Additionally, the BPF is prone
to what is known as the impoverishment problem. The
impoverishment problem is what occurs when the weights
are not very well distributed and so the filter narrows in on
a solution space of only one or two particles. This results
in obtaining an erroneous answer that is output with very
high certainty. To avoid this issue, an additional step called
particle roughening may be used. Particle roughening
jitters the particles with another set of noise, which results
in changing the distribution so that they aren’t all focused
on a single particle. The method used for roughening the
particles is taken from [16].

To implement this roughening, an independent jitter
is drawn from a Gaussian distribution, N(0, Jk). The ma-
trix Jk is a diagonal matrix where the diagonal elements
comprise σ2

1 ...σ
2
n . The lth standard deviation is given by

σl = GElN−1/n (49)
where El is the length of the interval between the maximum
and minimum values of this component (before roughen-
ing), n is the dimension of the state space, and N is the
number of particles. G is a tuning parameter that is used to
determine how much noise is needed.

When computing these values of the jitters, it is impor-
tant to note that the quaternion components of the particles
need to be converted to error GRPs using equation 26 and
the a posteriori estimate of the quaternion. Then the above
equations can be used to calculate the jitters. Finally, the
jitters are applied by converting the GRP components of
the jitters to error quaternions and applying the noise in a
similar manner to the update in equation 47. The ω com-
ponents of the jitters are just added to the ω components
of the different particles.

D. Extended Kalman filter
The extended Kalman filter (EKF) is an estimation

technique that is widely used for nonlinear state estimation.
The EKF operates by linearizing the state dynamics and
measurements about the current estimate. Then using
measurements that are weighted based off of their accuracy,
a gain is calculated that updates the state and covariance to
better match the truth. The EKF is less expensive compu-
tationally than the particle filter, but the filter may cease
to function when the linear dynamics and measurements
approximations don’t closely match the nonlinear dynamics
and measurements.

The multiplicative extended Kalman filter (MEKF) is a
form of the Kalman filter that has been modified to account
for the quaternion as one of the states being estimated.
As explained in Markley and Crassidis [10], the standard
update equation for the extended Kalman filter (EKF) is
additive. However, a quaternion is defined as having a
magnitude of 1. Adding the standard update can change
the magnitude of the quaternion, so the MEKF is an EKF
that has been adapted to update the quaternion in a multi-
plicative manner. This is done by assuming that the current
estimate of q̂ is related to the true q by a small angle
rotation vector δθ. The manner in which this is done is
outlined in the following sections.

1. Propagation
The state for the propagation portion of the MEKF is

the full quaternion and angular velocity vector. These are
propagated forward using Equation 37. However, the state
that goes into the update portion of the filter is:

δx =

[
δθ

δω

]
(50)

The state error covariance is propagated using equation
51.

Pk = Φk−1Pk−1Φ
T
k−1 +Qd (51)

Where Qd is a very small discrete random noise that is
applied only to keep the filter from "becoming overconfi-
dent" and rejecting measurements. As stated previously,
with the controlled satellite, it is not desirable that there is
process noise that greatly increases the covariance of the
estimate. It should just grow based on the initial uncer-
tainties in the dynamics. The term Φ is the state transition
matrix found from the linearized dynamics of the system.
It is calculated as:

Φ = eF∆T (52)

where the Jacobian F for the controlled satellite is

F =

[
[−ω̄×] I3×3

03×3 03×3

] �����
x̂

. (53)

In the previous equation, the brackets [×] are used to
signify the cross product matrix of a vector.

2. Update
The state and state error covariance is updated as fol-

lows: First the Kalman gain is calculated.

Kk = P−k HT
k (HkP−k HT

k + HkQwd,kHT
k + Rk)

−1 (54)
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The term R is the variance of the measurement error,
the HkQwd,kHT

k
is used to map the noise that perturbs the

commanded quaternion trajectory to the truth model into
the measurement space, and the measurement partial, H,
is given by

H =

(
∂h
∂x

)
x−
k

=
[
∂MΛ

∂δθ 1×3 01×3

]
. (55)

As the measurement model is very complex, these
partial derivatives are computed numerically.

The state correction is computed using the Kalman gain
and the measurement residual,

δxk = Kk (ỹk − ŷk) , (56)

and the quaternion and angular velocity are updated using
the following equations.

q̂+k = δq(δ̂θk) ⊗ q̂−k (57)
ω̂+k = ω̂

−
k +

ˆδωk (58)

The δq term in equation 57 is found by converting
the δ̂θ to a quaternion using equations 27–29. The error
covariance is updated as shown below.

P+ = (I6×6 − KkHk) P−k (I6×6 − KkHk)
T +KkRkKT

k (59)

E. Unscented Kalman Filter
The unscented Kalman filter is another type of Kalman

filter that is designed to deal with nonlinear estimation
problems. It is typically a method of choice when there
are complex dynamics and measurement models that make
it difficult to compute the Jacobians for the EKF. Thus it
should be well-suited to the problem examined here. The
driving mechanism of UKF is the unscented transform
(UT) of the system. The UT uses the mean and the covari-
ance matrix of the state to determine the location for the
sigma points. These points are then weighted and used to
propagate and update the state estimate utilizing the full
nonlinear dynamics and measurement models. However,
the standard UT can drive the covariance matrix to be
non-positive semidefinite and so most often the scaled
unscented transform (SUT) is used to maintain the pos-
itive semidefinite nature of the covariance matrix. The
SUT replaces the original set of sigma points with a trans-
formed set scaled by a parameter α while maintaining the
same mean and covariance of the estimate. The following
equations demonstrate how to set up an UKF for attitude
determination using the SUT. The development of these
equations is taken mostly from [9].

Starting with an estimate for the state and the covari-
ance, the first step is augmenting the covariance to include

the measurement noise and process noise if it is being used.
Here a superscript a will be used to stand for the augmented
terms.

P(a)0 =


P0 0 0
0 Q 0
0 0 R

 (60)

As with the EKF, a very small amount amount of
process noise is used to "open" up the filter to prevent
measurement rejection. The mean is also augmented to
include the means of the process and measurement noise.
This forms the initial sigma point, χ0.

χ
(a)
0 =


χ
(x)
0
χ
(Q)
0
χ
(R)
0

 =

x̂

0
0

 (61)

The next step involves assigning the locations of the
other sigma points and their respective weights using the
scaled unscented transform. There are three tuning param-
eters which go into this. The first, α, is a term between
0 and 1 that is used to control the spread of the sigma
points. The smaller the value of α, the smaller the effect
of nonlocal terms on the estimate. The second term, β, is
a nonnegative weighting term that is used to incorporate
knowledge of higher order terms like kurtosis. β = 2 is
the choice for a Gaussian prior. A choice of the third
term, κ ≥ 0, is used to ensure that the covariance matrix is
positive semidefinite. These three parameters are used in
conjunction with the square root of the covariance matrix
to determine the location of the sigma points as shown
below.

χ0 = x̂, i = 0 (62)

χi = x̂ +
√
(L + λ)Px, i = 1, ..., L (63)

χi = x̂ −
√
(L + λ)Px, i = L + 1, ..., 2L (64)

Here L is length of the augmented state, and λ is given
by

λ = α2(L + κ) − L. (65)

The sigma point with index i = 0 contains the original
mean value. The square root of the covariance matrix
is done using the Cholesky decomposition. The weights
assigned to the different sigma points are given:

w
(m)
0 =

λ

L + λ
i = 0 (66)

w
(c)
0 =

λ

L + λ
+ (1 − α2 + β) i = 0 (67)

w
(m)
i = w

(c)
i =

1
2(L + λ)

i = 1, ..., 2L (68)
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Here the superscripts of m refer to the weights asso-
ciated with the specific sigma points for calculating the
mean, and the c for the weights of the specific sigma points
when calculating the covariance matrix.

Now in the context of the attitude with the quaternion
representation. The attitude sigma points cannot be as-
signed in the additive manner above. To overcome this,
the error GRPs are used to define the sigma points. The
approach for dealing with the sigma points in this manner
comes from [17]. With the error GRPs the 0th sigma point
that corresponds to the mean is always 0 as it should align
with the mean and thus, have no error. The other sigma
points are then just taken directly from the covariance.
This is done by taking the first sigma point and adding or
subtracting from it the columns of the scaled square root
covariance matrix. So when initializing the sigma points,
they are

χ
(i)
θ =


δθ

ω0
0

 , i = 0...2L (69)

1. Propagation and time update equations
The general form of propagating the sigma points

through the differential equation is

χx
k |k−1 = f

(
χx
k−1, χ

v
k−1

)
(70)

where only the state components of the sigma points change,
but the process noise components of the respective sigma
points are still applied. To propagate the different sigma
points through the nonlinear dynamics of equation 37 re-
quires that the state vectors be in terms of the quaternion.
To do this, the GRPs of the sigma points are converted to
error quaternions using equations 27–29. Then the errors
are applied to the current state estimate.

χ
(i)
q = δq(i) ⊗ q̂ (71)

With the sigma points expressed in terms of the quater-
nion, the state sigma points can be propagated through the
dynamics of equation 37.

After propagation the process noise is applied in a
similar manner to equation eq: disperturb. Note that for
this controlled case, the value of the process noise is very
small. After propagation, the sigma points need to be
changed back to the error GRPs for calculating the updated
mean estimate and covariance matrix. This is done by
first computing the error quaternion using the following
equation.

X (i)δq,K = δq(i)
k
⊗ (q(0)

k
)−1 (72)

Note that the 0th sigma point error quaternion is the
unit quaternion. Then using equation 26 the quaternion

components of the sigma points are changed to error GRPs.
Again, the 0th sigma point should have 0 error when ex-
pressed as a GRP. The following equations are then applied
to compute the new mean and the new covariance matrix.

x̂−k =
2L∑
i=0

w
(m)
i χx

i,k |k−1 (73)

P−xk =
2L∑
i=0

w
(c)
i

(
χx
k |k−1 − x̂−k

) (
χx
k |k−1 − x̂−k

)T
(74)

The mean value calculated in equation 73 is then con-
verted back to the error quaternion using equations 27–29
and used to update the previous attitude state estimate (after
propagation). This update is done in a similar manner to
equation 57.

2. Measurement Update equations
At the times when a measurement is available, a small

amount of process noise of strength Qwd
is applied to the

quaternion sigma points to account for the deviations of the
truth model from the commanded trajectory. This is the
same approach as was used for the BPF. However, instead
of the noise being drawn from the normal distribution, it is
found from the scaled square root of the covariance of the
process noise strength. With that extra noise applied the
sigma points can then be used to update the state estimate
based on the available measurements.

To begin, the expected measurements for each of the
sigma points are computed. Note that in this case, the
quaternions just after propagation, are used to calculate the
expected measurements. Measurement noise is applied to
the computed measurements by using corresponding noise
components of the sigma points.

Yk |k−1 = h
(
χx
k−1, χ

R
k−1

)
(75)

Then, using the computed distribution of measurements
from the sigma points, a mean measurement is calculated.

ŷ−k =

2L∑
i=0

w
(m)
i Yi,k |k−1 (76)

Using this mean measurement value and the mean of
the sigma points from 73, the measurement covariance and
the state/measurement cross-covariance can be calculated.

Pỹk =

2L∑
i=0

w
(c)
i

(
Yk |k−1 − ŷ−k

) (
Yk |k−1 − ŷ−k

)T (77)

Pxk yk =

2L∑
i=0

w
(c)
i

(
χx
k |k−1 − x̂−k

) (
Yk |k−1 − ŷ−k

)T (78)
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These two matrices are then used to calculate the
Kalman gain.

Kk = Pxk yk P−1
ỹk

(79)

With the Kalman gain the state update can be com-
puted using the measurement and the mean calculated
measurement.

x̂+k = x̂−k + Kk(yk − ŷ−k ) (80)

The state updates can then be applied like what was
done with the EKF and the covariance of the state variables
is updated using the following equation.

P+xk = P−xk − KkPỹk KT
k (81)

V. Results
The purpose of this section is to explain the different

test cases, present the results obtained, and provide some
discussion as to the significance of these results.

There are some parameters common to all of the dif-
ferent test cases considered. To be able to determine if the
filters were actually working well, the shape model was
chosen so that each of the different facets had a distinct
value for the apparent magnitude when at conditions for
perfectly specular reflectance to the ground observer. This
corresponds to the facet normal vector aligning with the
bisector h̄ depicted in figure 1. The shape and reflection
parameters of the satellite are presented in table 1.

Table 1 Shape and reflection model parameters of
the spacecraft

Face A(m2) ξ a m

+Z 0.01 0.1 0.7 0.4
+Y 0.01 0.1 0.5 0.5
+X 0.01 0.1 0.95 0.04
−X 0.01 0.5 0.95 0.08
−Y 0.01 0.5 0.80 0.5
−Z 0.01 1 0.95 0.3

The satellite being observed is in a medium-Earth
orbit (MEO) with initial Keplerian orbital elements of
a = 20, 000 km, e = 1.38 × 10−8, i = 0 deg, Ω = 0 deg,
ω = 0 deg, and M = 0 deg. The observation periods for
all simulations share a common epoch of December 17,
2009, at 4:47:15 universal time. The simulated observatory
is located at 30 (deg) south latitude, 111 (deg) west and
an elevation of 3.059 km. All the results are based off of
observations simulated for 600 seconds with measurements
taken every 5 seconds. The 1σ measurement noise value

for the apparent magnitude measurements is set at 0.3
apparent magnitude.

In all of the test cases the initial attitude of the satel-
lite was set so that the +x (spacecraft body frame) facet
normal was aligned with the sun/observer bisector. The
initial inertial to body quaternion is qI→b(t = 0) =[
0.2077 0.3209 −0.3641 −0.8493

]T
. In each case

the filter models are initialized by adding a random per-
turbation to both the attitude and angular velocity of the
satellite. This perturbation is determined by the initial
levels of uncertainty in these parameters. The initial condi-
tions of the filter estimates were all initialized to the same
values so that the results could be easily compared. The
initial 1σ uncertainty in the angular velocity was set to
0.2 deg

s for all of the different test cases. In each case the
particle filter used 10,000 particles and the different filters
were each tuned in order to have good performance.

As the attitude of the satellite is being controlled, the
simulated motion of the spacecraft was limited to two
modes of operation. The first mode being the spacecraft
maintaining an inertially fixed attitude, and the second
mode is the spacecraft spinning at a constant rate. For each
of these different modes of operation the different test cases
are set up so that there is only a difference in the initial
conditions of the knowledge of the attitude. However, only
a single test case is presented for the inertially fixed mode
of operation. This first test case is when the satellite is
maintaining and inertial hold with five degrees of initial
uncertainty in the attitude estimate. The other four test
cases are for a spinning spacecraft. For these tests the truth
model angular velocity is ω =

[
2.5 0 3.6

]
deg
s . The

initial uncertainty levels of the spinning test cases are 5,
10, 30 , and 60 degrees 1σ. Please note that as the mea-
surements from a single one of the spinning satellite test
cases is representative of the measurements for the other
rotating spacecraft test cases, only a single measurement
curve for the spinning cases is depicted in figure 3.

As the goal is to compare the abilities of the different
filters to estimate the attitude of the satellite, the presented
results contain plots designed to show filter performance.
These plots comprise the error between the true spacecraft
state, and the 3σ bounds taken from the covariance matrix
of the different filters. The error is calculated by first find-
ing the error quaternion using the equation shown below,
and then transforming this error quaternion into an error
rotation vector using equations 30–32.

δqε = qI→b ⊗ q̂I→b̂ (82)

The 3σ values for each component of the state are
found by taking the square root of the respective diagonal
elements of the covariance matrix and multiplying these
values by 3. Please note that for brevity, the results only
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show the estimates for the attitude. As the attitude is a
function of the angular velocity, an accurate attitude esti-
mate implies an accurate angular velocity estimate, and so
only the attitude results are presented.

A. Test case 1: satellite maintaining inertial attitude
The first test case involves the satellite maintaining

an inertial orientation. In this case the angular velocity
components are all set to 0 while maintaining the same
initial uncertainty in the angular velocity of 0.2 deg

s . This
is the same value used for all of the other test cases. The
initial uncertainty in the attitude was set to five degrees.
The results for this test case are presented in figure 2.
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Fig. 2 Results for test case 1, satelite maintaining an inertially fixed attitude with 5 degrees of initial uncertainty

From these results it is clear that none of the filters was
able to accurately estimate the spacecraft attitude. With
the BPF and UKF, the error only increased over time. This
means that the uncertainty in the state estimate increased
using the filter. With the EKF, the filter diverged, as the
error left the covariance bounds. From looking at the
measurements in the figure, there are no peaks or valleys
in the measurement curve. The measurements just tend
to trend slowly downward. It is likely that there was not
enough information in the measurement for the filters to

determine whether this decrease in magnitude was due to
some rotation, or due to the actual case of the apparent
magnitude changing strictly because of the satellite orbital
motion. It is possible that the inclusion of a second obser-
vatory could improve these results. As the filters all failed
for this low initial uncertainty case, only the one test case
with the inertially fixed attitude is presented.
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B. Test case 2: Spinning satellite with 5 deg initial atti-
tude uncertainty
The second test case involves the truth model

satellite spinning with an angular velocity of ω =

[
2.5 0 3.6

]
deg
s . The initial 1σ uncertainty in the

attitude estimate is 5 degrees. The simulation results for
this case are presented in figure 3
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Fig. 3 Results for test case 2, the spinning satellite with 5 degrees of initial attitude uncertainty

In the figure, the error between the truth state and
the filter state for each of the three angle components is
depicted in black with the 3σ error bounds depicted in the
bright colors. As can be seen from the figure, the overall
trend is that the covariance bounds are decreasing. This
shows that the filters are converging upon the state estimate.
All three filters are able to get the error down to the same
level thus they would each be equally suitable for attitude

determination under these conditions. .

C. Test case 3: Spinning satellite with 10 deg initial
attitude uncertainty
In figure 4 the results are presented for the case where

the spacecraft is spinning, but the initial attitude uncertainty
has been increased to 10 degrees.
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(c) UKF attitude estimate error and covariance bounds

Fig. 4 Results for test case 3, the spinning satellite with 10 degrees of initial attitude uncertainty

In this run, the solution of the extended Kalman filter
has diverged. This can be seen from how the error is no
longer contained within the 3σ bounds. However, despite
the EKF failing, the unscented Kalman filter is still able
to accurately estimate the attitude of the spacecraft. This
implies that the initial uncertainty is large enough that the
underlying assumptions of the extended Kalman filter begin
to break down. The BPF is also to accurately estimate the

attitude of the spacecraft.

D. Test case 4: Spinning satellite with 30 deg initial
attitude uncertainty
For this test case, the initial attitude uncertainty of the

spinning spacecraft is increased to 30 degrees. The filter
results are presented in figure 5.
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(b) A zoomed in look at the results of the BPF in estimating the
attitude of the spacecraft
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(c) EKF attitude estimate error and covariance bounds
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(d) UKF attitude estimate error and covariance bounds

Fig. 5 Results for test case 4, the spinning satellite with 30 degrees of initial attitude uncertainty

It can clearly be seen that both the UKF and the EKF
have diverged at this level of initial uncertainty in the space-
craft attitude, and they are unable to accurately estimate
the state. However, the top parts of the figure show that the
BPF is still able to obtain an accurate estimate. The final
3σ covariance bounds are less than 10 degrees, and the
error is between the covariance bounds. This means that at
this level of uncertainty in the attitude state, the best choice
for attitude estimation would be the bootstrap particle filter.

E. Test case 5: Spinning satellite with 60 deg initial
attitude uncertainty

In this case, the initial uncertainty has been increased
to 60 degrees. The 3σ value is 180 degrees which corre-
sponds to the uncertainty limit for spacecraft attitude. As
the previous results showed that the other filters diverged.
The only results presented for this test case are for the BPF.
The filter results are presented in figure 6

14



0 100 200 300 400 500 600
-200

0

200

1
 (

d
e
g
)

0 100 200 300 400 500 600
-200

0

200

2
 (

d
e
g
)

0 100 200 300 400 500 600

time (s)

-200

0

200

3
 (

d
e
g
)
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(b) A zoomed in look at the results of the BPF in estimating the
attitude of the spacecraft

Fig. 6 Results for test case 4, the spinning satellite with 60 degrees of initial uncertainty

In the figure, the plot on the left shows the high level
view of the filter’s performance, and the plot on the right
depicts a zoomed in look at these results. The figure illus-
trates that even under some of the worst conditions, the

bootstrap particle filter is still able to determine the attitude
of the satellite. Figure 7 provides some insight into why
this is the case despite the failing of the other two filters.
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(a) All of the particles’ angle errors vs time for θ1 (b) All of the particles’ angle errors vs time for θ2

(c) All of the particles’ angle errors vs time for θ3

Fig. 7 The error angles components over time for all of the particles used in the BPF

The time history of the error rotation vector compo-
nents for all of the individual particles is plotted. From
examining the figures, it becomes apparent that in the be-
ginning of the estimation process, there were instances in
which the particles were clustered about multiple locations.
It is likely that these multiple clusters formed due to the
distribution being multi-modal at these times. Over time
all of the particles came together to converged to the true
solution. Further work needs to be done to verify that the
system is indeed multi-model. However, it is clear that for
this scenario, the BPF is the best option for determining
the attitude of the satellite.

VI. Conclusion
The choice of which filter to use for lightcurve inversion

is heavily dependent upon the knowledge of the spacecraft’s
state and the actual rotation of the spacecraft. For the setup
of this paper, none of the filters were well suited for estimat-
ing the spacecraft attitude while it maintained an inertially

fixed attitude. However, in increasing the rotation rate,
and exposing more of the shape’s facets to the observer,
the filters were able to accurately estimate the spacecraft
attitude.

The EKF, while much faster computationally than the
other two approaches, is only able to determine the attitude
of the satellite when there is already a lot of information
about the spacecraft state. When the initial attitude uncer-
tainty was five degrees (for the rotating spacecraft), the EKF
performed as well as the BPF or the UKF. However when
that error doubled, the EKF diverged and filter performance
decreased.

The UKF was able to perform better than the EKF
in some instances. However, as the initial uncertainty
increased, the UKF was also unable to estimate the attitude
of the spacecraft. However, there may be many instances
in which the UKF could serve as a starting point for other
estimation techniques.

In all of the test cases involving a rotating spacecraft,
the BPF was able to estimate the satellite attitude with
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a high level of accuracy. However, the BPF took much
longer to run than either the EKF or the UKF. Furthermore,
in realistic situations, it may be difficult to properly tune
the BPF. However, if properly tuned, the BPF would be
the best suited for determining the attitude of a spacecraft
when there is little to no a priori information about the
attitude of the spacecraft.

Please note that these results are only for very spe-
cific cases. The facet parameters were configured to yield
different apparent magnitude measurements when placed
under ideal conditions for specular reflection. In a realistic
situation, it is likely that the different components of the
spacecraft may reflect light in a similar manner. Further-
more, the rotation rates chosen for the spacecraft are rather
large. The spacecraft is spinning very quickly. In practice,
the spacecraft might spin at a much slower rate and it might
take many more observations to be able to determine the
spacecraft attitude to the accuracy shown in the figures.
However, this is intended to be a starting point to use as
a reference when selecting the filters for use in practical
applications or analysis.

Another point to consider is that although the BPF was
shown to be the best choice when little to no information
about the spacecraft attitude is known, it is possible that a
bank of filters, either UKFs or EKFs could be used with
different sets of initial conditions to determine the attitude
of the spacecraft. Further work will need to be done to
determine whether the banks of filters would yield more
accurate results in a more timely manner than using the
BPF.

Future work involves further testing to determine
whether the BPF is the best filter for every occasion. Ad-
ditionally, work could be done to determine whether the
addition of a second sensor could improve the results ob-
tained in this work. Other work could include determining
whether there are the "best" values for tuning the filters such
that they will work for every satellite attitude determination
using lightcurve scenario. Furthermore, one of the key
assumptions of this work is that the shape and physical
reflection properties of the satellite are perfectly known.
This is likely not the case for real-world applications. Thus,
future work includes adding these parameters to the esti-
mation process. Finally, future work also includes testing
these different estimation techniques on real-world satellite
data.
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