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Abstract—This paper first summarizes recent results of a
proposed method for multiple, small, fixed-wing aircraft cooper-
atively localizing in GPS-denied environments. It then provides
a significant future works discussion to provide a vision for the
future of cooperative navigation. The goal of this work is to show
that many, small, potentially-lower-cost vehicles could collabora-
tively localize better than a single, more-accurate, higher-cost
GPS-denied system. This work is guided by a novel methodology
called relative navigation, which has been developed in prior
work. Initial work focused on the development and testing of
a monocular, visual-inertial odometry for fixed-wing aircraft
that accounts for fixed-wing flight characteristics and sensing
requirements. The front-end publishes information that enables a
back-end where the odometry from multiple vehicles is combined
with inter-vehicle measurements and is communicated and shared
between vehicles. Each vehicle is able to create a global, back-
end, graph-based map and optimize it as new information is
gained and measurements between vehicles overconstrain the
graph. These inter-vehicle measurements allow the optimization
to remove accumulated drift for more accurate estimates.

I. INTRODUCTION

More than ever before unmanned aircraft systems (UAS)
need the ability to accurately navigate in GPS-denied environ-
ments. In both civil and defense applications, UAS need to
have an accurate knowledge of their motion to complete their
mission objectives. The creation of highly-accurate, miniatur-
ized navigation systems that fuse inertial measurements with
GPS measurements (GPS-INS) has allowed UAS to operate
in a variety of new applications. These navigation capabilities
remain limited because most GPS-INS solutions are brittle
to GPS signal degradation and dropout. For example, civil
autonomous drone delivery services will need to accurately
navigate in and around obstacles where GPS signals are
partially or fully obstructed.

Many military defense applications require aerial navigation
in areas where GPS signals have been spoofed or jammed.
Some applications require long-distance, high-speed flights
under the constraint of limited communication with ground-
based command centers. In contrast to low-flying delivery
and inspection aircraft, these vehicles require less precision
because of their distance from obstacles, but need to limit
the accumulation of drift over time to achieve their mission
objective.
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Fig. 1. This work enables GPS-denied navigation on fixed-wing aircraft.
This high-fidelity, aircraft simulation was used to test the front-end, odometry
estimator.

There are many advantages for UAS to be small and
inexpensive. Aircraft designers often speak of size, weight,
and power (SWaP) constraints that influence trade-offs in
the design. Navigation capabilities have similar constraints.
GPS-denied solutions that only use inertial measurement units
(IMUs) have been successfully implemented, but these so-
lutions are only possible with highly-accurate, prohibitively-
expensive, military-grade IMUs that have been precisely cal-
ibrated. Small UAS often must utilize sensors that are much
less precise and instead use advanced algorithms to account
for sensor noise and remove drift from state estimates. Con-
structing small, lower-quality vehicles make it possible to
economically produce more vehicles to perform the mission
rather than one, highly reliable vehicle.

GPS-denied navigation on fixed-wing UAS requires spe-
cific sensing and estimation considerations. The majority of
previous GPS-denied research and development has mainly
focused on multirotor aircraft. Fixed-wing UAS differ from
multirotors because they have different aircraft dynamics, they
generally fly at higher speeds, and they are unable to stop
and hover in place. Multirotor UAS are often able to utilize
depth sensors, such as laser scanners, to effectively measure
their motion because they can fly in and around structure in
the environment. On fixed-wing UAS, depth sensors are less
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Fig. 2. The relative navigation architecture was developed for GPS-denied
navigation. Estimation and control are performed in a front end where the
vehicle operated relative to a local coordinate frame. The back end accounts
for global information by utilizing odometry from the front end and optimizing
it in a global pose-graph map.

effective at measuring the motion of the aircraft because they
usually fly high above the environment.

In general small UAS can also benefit from collaboration
to produce synergistic effects. Specifically for GPS-denied
navigation, collaboration may provide significant advantages.
Without position measurements to limit drift, global position
and yaw angle are unobservable [1]–[3]. Vehicles must use
other exteroreceptive sensing to limit how fast estimate drift
accumulates. If multiple vehicles could share measurements
then the drift of all the vehicles could be further limited and
provide even better navigation accuracy.

This paper provides a summary of results from testing the
method that was proposed in last year’s report [4] to enable
multiple, small, fixed-wing UAS to collaboratively localize. A
major focus of this paper is to also provide a significant future
works section that will discuss the efforts necessary to have the
proposed method fully functional and fielded to autonomously
complete a mission. This paper summarizes work that is
presented in several other papers, including papers that are
already published [4], [10], currently under review [16], and
yet to be submitted.

II. PREVIOUS WORKS

Our method draws from previous research in three ar-
eas: The overall GPS-denied architecture utilizes the relative
navigation framework, the front-end, visual-inertial odometry
is a modification to the multi-state-constraint Kalman filter
(MSCKF), and the back-end optimization comes from the
wealth of literature on pose-graph optimization. Relevant work
in these areas is summarized in the following sections.

A. Relative Navigation

Researchers have previously proposed a new approach to
GPS-denied navigation called relative navigation [5], [6]. It is
a methodology and framework that separates the navigation
into two sub-tasks. It separates a front-end estimator from a
back-end optimization. The front end operates relative to the

local surroundings and the back end uses regular updates from
the front end to create and maintain a global map. Figure 2
shows the framework architecture.

Relative navigation is motivated by a fairly simple concept
called the relative-reset step [7], which is closely related to
keyframe-based methods. The concept is for the front-end
estimator to regularly declare a new local origin at the location
of the vehicle. This also serves to remove uncertainty from the
filter because the new origin is defined to be exact. At each
new origin the prior transform can be sent to the back end as
an edge in a directed pose graph.

The relative navigation approach has several advantages
over contemporary methods. It is locally observable by con-
struction and it has better filter consistency compared to
other state-of-the-art approaches [8]. The front end has the
computational advantages of an extended Kalman filter (EKF).
The pose graph used in the back end is able to better represent
large, nonlinear errors in odometry estimates. The back end
can also incorporate other constraints, such as opportunistic
GPS measurements or place-recognition loop closures.

Several tests have been perform to demonstrate relative nav-
igation [9]. Assumptions about vehicle dynamics, sensing, and
filtering have mostly limited the tests to multirotor aircraft at
relatively low speeds. The approach has also be implemented
with the entire architecture on a single vehicle that has enough
computational resources. Sensing requirements have ensured
the paths are in and around structured environments which
have allowed the paths be relatively short and include loops
back on themselves. These factors have limited the impact of
the relative navigation architecture as a solution to the GPS-
denied navigation problem.

B. Relative MSCKF

In the majority of the relative navigation work the front-
end state estimator has been called the relative multiplicative
extended Kalman filter (RMEKF) [7]. The RMEKF has re-
quired a keyframe-based odometry as a measurement and the
odometries have used depth sensors, such as laser scanners
and RGBD cameras, to resolve scale ambiguity. Fixed-wing
aircraft, where RGBD and laser depth sensors are impractical
due to the increased distance to features in the environment,
require a different approach. Further, the main functions of
the RMEKF were to combine inertial and visual odometry
measurements and to perform a relative reset at each keyframe
declaration. The odometry alone would otherwise be sufficient
to provide the back end with odometry edge transformations
from pose to pose.

More recently, a new tightly-coupled, visual-inertial odom-
etry has been introduced as a front-end estimator [10]. It uses
only monocular imagery, without depth measurements, for ex-
teroreceptive sensing. It combines the odometry calculations,
inertial measurements, and relative-reset steps into one filter.
This filter was developed specifically to enable fixed-wing
UAS to use the relative navigation framework.

The new filter is based on the MSCKF. The MSCKF is more
ideal for fixed-wing UAS because it makes no assumptions
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about the distance to observed features, requires no depth
measurements, and makes no assumptions about the vehicle
dynamics. The MSCKF uses a unique measurement model that
was originally presented in [11]. It avoids adding uncertainty
to the filter by not initializing states that are not well known.
Further, updates are performed after a image feature moves
out of view and all information about that feature has been
obtained.

Since its introduction, the MSCKF has seen extensive
development in the literature. It has been demonstrated for
use on ground vehicles [12], spacecraft [13], and even smart
phones [14]. It has also been compared to several more-recent
visual-inertial odometries and its accuracy and consistency
properties remain comparable to the state-of-the-art with less
computational burden [15]. The complete estimator develop-
ment and front-end results are presented in [16].

C. Graph Optimization

The relative-navigation back end has, in the past, been used
to keep track of the global map by creating a directed pose
graph. During the relative reset, the position and heading angle
states and covariances are zeroed and the transformation from
just before the reset is sent to the global back-end as an edge in
the graph. Covariance uncertainty is effectively removed from
the front-end filter and sent to a global back end where the
pose graph has the ability to represent non-linear uncertainties
from yaw better than a Gaussian filter [8]. The back end is
able to do edge optimization on the graph of pose estimates
to improve global states for performing a global mission.
The optimization is also able to incorporate and account for
other constraints, such as opportunistic GPS measurements and
place-recognition loop closures, for more accurate localization.

Graph-based optimization methods have been effectively
used in robotic localization for some time [17]. Advances
in computational power and sparse-matrix mathematics have,
more recently, increased both the speed at which the opti-
mizations can be performed and the number of nodes, or
factors, that can be considered in the graph. Generalized
graph optimization (g2o) [18], Georgia Tech smoothing and
mapping (GTSAM), and incremental smoothing and mapping
(ISAM) [19] are all graph optimization frameworks that have
open-source implementations that are available for research.
In the past, the relative-navigation back end has used the g2o
graph optimization framework but recently other methods have
been explored.

GTSAM is a smoothing and mapping toolbox that uses
factor graphs to iteratively optimize a bipartite graph [20].
This means that it performs maximum a-posteriori inference
through the relationships of states and factors that relate
the states. Factors can be sensor measurements or odometry
between aircraft poses. Odometry estimates are binary factors
and measurements, such as opportunistic GPS or bearing to
static features, are unary factors.

Because the global back end uses a pose graph that is
a relatively sparse representation of the vehicle odometry,
it has potential to be useful for multi-vehicle cooperative
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Fig. 3. The front-end estimator was tested in simulation and hardware flight
tests. The simulation results show here were originally presented in [4]. Top:
The path of the aircraft. The accumulated estimate (red) is compared actual
path (blue). Gray × indicate relative-reset origins. Bottom: Accumulated error
is less than 2% of the total distance traveled. Gray vertical lines indicated
relative resets. The aircraft flew nearly 2200 m and the filter is nearly twice
as accurate as previously reported results.

localization. Multiple vehicle cooperation has the potential to
limit estimate drift over extended flights due to the increased
baseline between sensors [21], [22]. Other work has shown
that multiple vehicles can collaboratively estimate the vehicle
state using poses as factors in factor graph smoothing frame-
works [23].

III. EXPERIMENTS AND RESULTS

Results for this work were obtained in two distinct efforts.
The front-end estimator was first developed and tested in
simulation as well as on a hardware flight demonstration. The
back-end map was then also tested single and multi-vehicle
scenarios using simulation, recorded data front-end data, and
in a flight demonstration. These results are presented below.

A. Front-end Estimator

The estimator was first tested using the ROS/Gazebo sim-
ulation tools that were developed as part of ROSplane [24].
Figure 1 shows an example of the simulation environment.
The simulation testing aided the development of the filter and
initial simulation results were shown in [10]. The filter was
initially coded in the Python programming language and was
able to achieve a total accumulated error of less than 3% of
the total distance traveled. This result included the caveat that
the simulation was run at half speed in order for the filter to
keep up with the measurement information.
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Some slight improvements to the filter were presented in
last year’s report [4]. The main improvements came from the
reimplementation of the filter in the C++ programing language
instead of Python. The greater speed from C++ allowed the
filter to run in real time while using more tracked features
and more images per second. These improvements allowed the
filter to maintain error less than 2% of the distance traveled
and were necessary for enabling the filter to run in hardware
experiments. Figure 3 shows the results that were presented
in that paper, where the top plot show the true and estimated
trajectory and the bottom plot shows the error as a percent of
the total distance traveled.

Further simulation testing is presented in [16]. This testing
uses a higher fidelity simulation that includes more realistic
sensor noise and error sources. The simulation testing also
demonstrates a slight weakness in the algorithm. That is, when
flying straight and level, the forward velocity is unobservable.
This weakness is particularly problematic for a fixed-wing
aircraft which often fly straight and level for long periods. The
best case showed that the filter was capable of maintaining
error less than 1% of the distance as long as the trajectory
remained observable, but the estimates incurred a large scale
bias in the forward direction otherwise.

The flight-test experiments were then performed on a small
hobby-grade fixed-wing platform called the STRIX Strato-
Surfer by Ready Made RC. The platform was outfitted with
a Jetson TX2 flight computer, a monocular camera, and in
InterialSense IMU. The IMU was also capable of producing a
GPS-INS solution for truth comparison. The aircraft was man-
ually flown over a 6 km trajectory. Several improvements had
to be introduced to the filter to account for additional sources
of error, including calibration, timing, and initialization errors.
The largest modification included adding the camera extrinsic
calibration to the state vector and estimating it throughout the
trajectory. The observability of the calibration also necessitated
the use of a partial update [25], a modification of the Schmidt-
Kalman filter [26].

Experiments of the front-end were ultimately successful.
The filter could maintain error less 2.5% of the distance
travel, while periodically publishing transformations that were
appropriate for use in the back-end map. Both simulation
and hardware testing revealed the front-end estimates had
unobservable forward velocity when flying straight and level
and as error accumulates the estimates become biased. Further,
these biases are correlated from one edge to the next because
velocity estimates are not reset in the keyframe reset step.
While this is an unfortunate problem associated with using a
visual-inertial odometry, this problem was overcome through
modifications to the back-end graph.

B. Back-end Map

To address the velocity bias observed in the front-end
results, a modification to the standard graph was introduced
in [16]. An addition of a scale-bias factor to the graph, which
is similar to gyro bias walk factors used in accelerometer
preintegration factor-graph methods.

-5000 -4000 -3000 -2000 -1000 0 1000

East (m)

-1000

0

1000

2000

3000

4000

5000

N
o
rt

h
 (

m
)

Truth

Unoptimized

Optimized

Range

Fig. 4. This back-end graph includes edges from three vehicles, or more
accurately three flight tests, with starting location of the second and third
vehicles artificially offset by 500 m south and 500 m east respectively. The
graph includes simulated inter-vehicle range measurements. The localization
accuracy of all vehicles improve and the relative position of the swarm is
maintained. Similar results were originally presented in [16].

The results showed with the scale-bias factors and oppor-
tunistic global measurements the back-end graph was able
to optimize for an accurate vehicle trajectory. The back-end
results in [16] used the recorded front-end transformations,
as well as simulated global measurement and optimized the
trajectory in post-process. The simulated global measurements
utalized the true position recorded from the InterialSense GPS-
INS, and consisted of global position measurements from
either a GPS receiver or satellite image-based localization,
as well as distance measurements to ground-based ranging
systems.

To show the potential for cooperative localization, the
work in [16] also combined several recorded flights into one
graph. The graph also included simulated inter-vehicle range
measurements. The graph was optimized using GTSAM and
showed that the vehicle localization improved due to cooper-
ation. An example of the results that provided in the paper
are shown in Figure 4. The results, as well as some limited
analysis, showed the potential for the multi-vehicle cooperative
localization that was proposed in last year’s report [4].

While the potential of cooperative localization was shown
by the results demonstrated thus far, the results also have
limitations. Foremost, the results have only been produced
by post-processing recorded data and only optimize once at
the end of the trajectory. Further, the results do not address
concerns with communication, including how and when the
communication between vehicles happens. Finally, one result
fails to quantify the total benefit of cooperative navigation. For
example, local minima in the optimization have the potential
to worsen the localization accuracy in some instances.

A simulation was then developed to help address some
of the shortcomings of the previous results. The simulation
includes several simulated agents each with a simplified front-
end estimator, where the statical accuracy matches the per-
formance of the previously developed front end. The agents
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Fig. 5. Hardware tests of the complete system were performed on a STRIX
StratoSurfer, RC-grade aircraft. The cooperative localization was tested with
one complete agent and other agents utilizing recorded data from previous
flights. This means that the communication was real and the test was
completely realistic to the aircraft’s perspective.

can also periodically communicate with the each other and
request the missing information for the complete graph. Each
agent also has its own back-end and the graph is optimized
every time a inter-vehicle measurement is taken between the
vehicles. The simulation also enables Monti-Carlo testing to
quantify the benefits of the approach.

The final result is to produce the complete system using the
hardware setup described previously. In addition, the vehicle
uses a small 915 MHz telemetry radio for communication. The
protocol used in the simulation was then implemented using
the MAVLink protocol. Flying multiple vehicles simultane-
ously was beyond the scope of the project so the single vehicle
instead communicated with a ground vehicle that was playing
the front-end data recorded from previous flights. The setup
is shown in Figure 5. Each vehicle, both recorded and actual,
had a back-end that included the front-end edges and range
measurements between vehicles. The aircraft was flown high
above the environment while relatively straight-and-level over
the 6 km trajectory. The graph was again optimized at every
range measurement and produced real-time results that were,
at the end of the flight, similar to those shown in Figure 4.

These final results, both simulation and hardware tests, were
recently obtained and will be included in a future publication.
The publication will also describe necessary changes to the
architecture in Figure 2 to allow for cooperative localization.
The results show that cooperation between vehicles is valuable
for improving the accuracy of the localization and that the
method is robust to limited communication, including delay
and momentary dropout.

IV. FUTURE WORK

While the results presented are significant for improving
localization and navigation capabilities of fixed-wing UAS,
localization and navigation are only part of what is necessary
to fly a mission and achieve an objective. This section will
outline several improvement, extensions, and alternate meth-
ods that could be used to both improve the proposed method
and to extend the capabilities of the system.

A. Planning and Control

First, in this work the system architecture shown in Figure 2
is incomplete, though it has been demonstrated in it’s entirety
elsewhere [6], [9]. Specifically this work has focused on nav-
igation and localization but experiments were flown manually
and did not include the planner and controller necessary to fly
autonomously. Thus far the front-end and back-end division
of a controller has not been explored for a fixed-wing UAS
but would be necessary for completing a fully autonomous
mission.

The controller for cooperative navigation has also not been
explored. The vehicles need a way to cooperatively complete
a mission as well as de-conflict trajectories that would cause
a crash. A centralized planner would be straitforward but
would go against the decentralized and opportunistic nature
of the proposed method. More elegant would be decentralized
planner that uses a consensus algorithm to help all the vehicles
arrive at the same plan. This would require a major modifica-
tion to the proposed communication scheme and would require
significant testing to make sure the solution remains robust to
communications dropout and delay.

The cooperative controller could also be constructed to
improve accuracy in the back-end graph. The graphs ability to
remove accumulated drift is correlated with the quality of the
constraints that it creates between aircraft. For example, when
the UAS are all flying in the same direction and at the same
speed, inter-vehicle range measurement only help to remove
yaw error. If instead a single UAS flew perpendicular to the
others, the position accuracy would also increase because
the constraints on the graph would effectively provide more
information. A controller could be developed to exploit this
phenomenon. It could, for example, periodically have one
agent do some sharp turns or even vary the commanded
airspeed between agents to gain the benefit.

B. Front-End Improvements

The next group of potential improvements could focus on
improving the front-end odometry method. The choice of the
MSCKF measurement model has many advantages, but more
modern visual-inertial odometries can be more accurate [15].
The MSCKF particularly struggles and estimates can diverge
in two cases; in straight-and-level flight and also when the
UAS is stopped, such as sitting on the ground or hovering
in place. Other odometries, such as VINS [27], can maintain
accurate estimates for longer but ultimately the states are
unobservable and estimate will eventually become inaccurate.
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Forward velocity unobservability can be remedied by con-
trolling the UAS such that it remains observable, as we have
demonstrated [16], or perhaps more elegantly, adding more
sensing modalities. Feasible options include airspeed sensors
or single-point depth sensors. An airspeed sensor would,
however, measure the forward velocity with respect to the
airmass and therefore would require modeling the wind, which
may be challenging. Relying on a depth sensor, such as a
sonar or single laser altimeter, could improve the scale of the
estimates by adding constraints on the distance to observed
features. A model for combining a depth sensor in combination
with a camera is presented in [28]. This type of approach
could be applied to the MSCKF measurements. The MSCKF
performs a least-squares optimization to solve for the feature
location. A simple distance constraint on the optimization
could improve estimates of the scale and thus the velocity
of the aircraft.

C. Map Generation

The map could also be improved and better utilized. The
current capability primarily uses the map for measure the
localization error. The visual map could be created to facilitate
completion of various mission objectives, including surveil-
lance and target identification. A simple but effective way
to accomplish this would be by tiling the keyframe images
to create a visual representation of the terrain. Tiling the
keyframe images could also provide constraints to the back-
end optimization to improve global estimates.

Tiling the images for map creation requires the knowledge
of distance to the images as well as estimates from one
image to the next. Simple approaches use the altitude of the
aircraft to obtain the distance and then assume the terrain
is flat, using the so-called flat-earth model. In our approach
the front end provides the inter keyframe transforms. The
MSCKF measurement model also solves for the location of
the observed features in the keyframe coordinates frame. This
means the image provides dense appearance information and
the features become a sparse point cloud with corresponding
location information. If the terrain is fairly smooth, meaning
not sharp cliffs or jagged corners, an image could be draped
over the point cloud to provide a rough shape of the terrain
for a given keyframe image. The separate keyframe images
could then be combined using a combination of iterative
closest point and image transformation methods. Map creation,
however, greatly increases the complexity of sharing informa-
tion between cooperative agents and would require significant
communications changes.

D. Back-End Measurements

Exploring various other types of back-end measurements,
as well as alternate use cases, may highlight the practical
advantages of the proposed method. A potential scenario
was partially demonstrated in a previous paper [16], where
only one vehicle has access to global measurements but the
reset of the vehicles gained the localization advantages of
those measurements. A small alteration to the scenario would

be to have one vehicle use a global measurement from a
satellite image-based localization. A similar method is used
in [13] to initialize an entry-decent-and-landing filter of a
spacecraft approaching a planetary body. There approach uses
prerecorded satellite images to find the current location of the
aircraft but are complex and computationally expensive.

Another relevant scenario would be applying the rela-
tive navigation architecture and cooperative localizing when
multiple vehicles are trying to achieve a goal location, are
performing target tracking, or are prosecuting a enemy vehicle.
In this scenario not all vehicles are able to measure the location
of the target. The blind vehicles must rely on the targeting
capabilities of one or more other UAS to know their relative
position. Since the inter-vehicle relative position is maintained
by the proposed method then this may be an effective way to
increase the capability of the less capable agents.

V. CONCLUSION

This research contributes to the maturation of small un-
manned aircraft. Before introduction into the national airspace
or use in military applications, small unmanned aircraft will
need greater reliability and to be robust to GPS signal
degradation and dropout. This research utilizes state-of-the-art
methods to expand the capabilities of these aircraft.

This work has demonstrated a feasible method for collabora-
tively localizing fixed-wing UAS in GPS-denied environments.
The work is significant because it directly acknowledges
and addresses challenges of GPS-denied, fixed-wing UAS.
GPS-denied solutions for multi-rotor aircraft have been fairly
common, but are less common for fixed-wing aircraft. Often,
solutions that do exist make significant simplifying assump-
tions, such as operating over flat-earth or in Manhattan world
environments, or having complex or unreasonable sensing
requirements, such as downward facing camera or depth
measurements. This work uses minimal sensing (only camera,
IMU, and inter-vehicle range) and makes no such simplifying
assumptions. It further enables GPS-denied navigation within a
collaborative framework capable of incorporating inter-vehicle
measurements from multiple aircraft. These measurements
over constrain the graph and allow the graph smoothing and
optimization to remove accumulated error from the graph.

The work also extends the impact of the relative navigation
framework. It allows the value of the framework to be shown
for a alternate type of vehicle with a different mission profile.
Since the back-end constrains the graph with inter-vehicle
measurements and not with loop closures, the aircraft will be
able to fly in relatively long, straight paths at high speeds.
These mission profiles may be more representative of real-
world UAS scenarios.

A number of results were summarized. The approach was
first demonstrated using a high fidelity aircraft simulation
of a small fixed-wing aircraft with simulated sensors. The
simulated aircraft dynamics and sensor-noise characteristics
were representative of those from an actual small, unmanned
fixed-wing aircraft. Both provided here and in previous works
the accuracy and consistency of the relative odometry were
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presented, as well as hardware results that use a GPS-INS
for ground-truth comparison. The multi-aircraft cooperative
flight demonstration, enabled by a modified relative-navigation
back end and the tightly-coupled, visual-inertial front end,
demonstrate the value of the complete system.

Several proposed future works were also proposed. The
proposals focus on both completing the architecture and ex-
tending the capabilities of the system to additional compelling
scenarios.
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