
1

Improving SRAM FPGA Radiation Reliability
Through Low-Level TMR Implementation

Matthew Cannon, Andrew Keller and Michael Wirthlin
Brigham Young University

Abstract—Mitigation techniques, such as TMR with
repair, are used to reduce the negative effects of radiation
on FPGAs deployed in space environments. While these
techniques increase the robustness of the device, there
is still room for improvement in the range of 100 to
1,000x. These improvements can be realized through the
low-level implementation of the placement and routing on
the device. This work has implemented a wide variety
of techniques to realize these gains, achieving an overall
improvement of 57,443x through fault-injection testing and
an improvement of 350x in radiation testing.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGA) are com-
putational devices (much like a CPU or GPU) that are
being considered for many space-based applications. An
FPGA is a device with many configurable resources
coupled with a configurable routing network that allows
it to take on many different applications as shown in
Figure 1. It can implement any logic function, provided
that it contains a sufficient amount of resources to do
so. Due to the large bank of input/output (I/O) ports
available and amount of resources, FPGAs provide speed
and power benefits for many applications. Coupled with
their relatively inexpensive cost in low quantities, FPGAs
provide many benefits for potential space applications.

However, space is full of many radioactive particles
that can induce single event effects (SEE) in electronic
devices. SRAM FPGAs are particularly vulnerable to
SEEs in the form of single event upsets (SEU). An SEU
represents a change in the state of a memory structure,
such as a bit changing from 0 to 1, or vice-versa, 1
to 0. Such changes in the FPGA state will change the
underlying circuitry implemented on the device. This
can include introducing new circuitry to the device,
modifying the existing circuitry or the removal of some
circuitry. Before deployment in space, the circuit needs
to be tested to determine its sensitivity in the space
environment. The sensitivity may be improved through
the application of techniques specifically developed to
mitigate against SEUs.

CLB

Routing
Switchbox

Routing
Switchbox

Routing
Switchbox

Routing
Switchbox

Routing
Switchbox

Routing
Switchbox

Routing
Switchbox

Routing
Switchbox

Routing
Switchbox

Routing
Switchbox

Routing
Switchbox

Routing
Switchbox

CLB

CLB

CLB

CLB

CLB

Figure 1: General FPGA Architecture

One of the popular techniques to mitigate against the
effects of ionizing radiation is triple modular redundancy
(TMR). TMR uses three redundant copies of a module
to mask failures. When a module (i.e., the circuit to be
protected by TMR) is triplicated, three separate domains
are created: TMR0, TMR1, and TMR2, as shown in
Figure 2. All three domains are driven by the same input
stimulus and under normal operating conditions should
yield identical outputs. If one of the domains becomes
corrupted, its outputs may not match those of the other
two domains. An erroneous output is masked by voting
on the outputs from each domain so that only the major-
ity vote is propagated. Voters can be placed throughout a
module to synchronize internal signals between domains
and increase reliability (often referred to as partitioning).
The voting mechanism is often triplicated as well, which
prevents the introduction of single-point failures and
allows a voter to fail without compromising the integrity
of TMR. TMR is able to mask any error that is limited
to a single domain between voter insertion points.

Configuration memory repair is often coupled with

2

Figure 2: Triple Modular Redundancy

TMR to prevent the accumulation of errors that would
break TMR and is often implemented with configuration
scrubbing on FPGAs. Configuration scrubbing is usually
performed by partially reconfiguring the device with the
original bitstream to “scrub” incorrect values. Repair is
also needed for the state of the circuit. If the design
state becomes corrupted (e.g., counters, state machines,
status registers), there needs to be a method to clear
the error. Some errors will naturally flush out of the
design (i.e., the state is not used in next state logic),
or can be manually flushed out of the design on reset.
To allow self synchronization, voters need to be placed
along feedback paths throughout the design. Scrubbing
can even be implemented on BRAM by reading the ECC
and correcting any errors, if present [1].

Testing a circuit’s sensitivity is typically done in one
of two ways: fault-injection or radiation testing. During
fault-injection, errors are randomly introduced into the
the devices memory and allowed time to propagate
through the system. If the error causes a failure, the
injected bit is marked as sensitive, the device is brought
back into a known state and the test resumes by selecting
a new random bit to inject. This can be easily performed
in a lab setting and can be done with the just access to
the device.

Radiation testing is done by exposing the device to
high energy particles (such as neutrons, protons or heavy
ions) while observing the devices behavior. Radiation
testing is required to fully understand how the device will
behave in its intended environment and to obtain accurate
information about the sensitivity of the circuit. However,
this type of testing can be difficult and expensive to
perform because it can only be done at a few facilities.
Typically, the device will first be tested via fault-injection
and only the most promising mitigation strategies will
be tested at particle beam. For this work, all mitigation
strategies were first tested using fault-injection and then
the most promising techniques were tested at a particle

beam.
As the repair rate increases, so should the reliability of

the TMR system. During fault injection testing, the repair
rate is essentially set to infinity. Mathematical models
dictate that the reliability of the TMR system with an
infinite repair rate should also be infinite. However, this
is not what we observe during testing. There are single
bits within the configuration memory, called single bit
failures (SBF). The presence of SBF in a circuit limits
the effectiveness of TMR, so removing SBF bits can
yield significant reliability improvements. TMR com-
bined with configuration scrubbing has already improved
the MTTF of a design in space by 50×. By removing
SBF bits from the design, the MTTF has a potential to
improve by 500× or even 5, 000×.

SBF bits are broken down into two categories: SPF
and CMF. SPF bits are caused by components that are
not fully triplicated. For example, in TMR, voters are
usually triplicated to avoid single points of failure. If a
component (such as an I/O port or a memory) is not
triplicated, then a resource failure could also cause a
TMR failure. The proper way to address these failures
is through complete triplication (i.e. triplicating the com-
ponent), however, there are other strategies to reduce
the impact these failures have on the bit sensitivity
(but not remove their impact completely). CMF bits are
different in that they affect multiple domains simultane-
ously. These can be completely removed through proper
mitigation strategies.

Previous work has shown that most SBFs occur in the
routing network and can be addressed through place-
ment and routing changes [2]. A circuit goes through
several design steps in order to be implemented on
an FPGA device. The first is logic synthesis, which
converts the hardware description language (HDL) into
device specific components, such as lookup tables (LUT)
and block memories (BRAM). After synthesis is pack-
ing/clustering, which packs the components produced
during synthesis into device specific sites or config-
urable logic blocks (CLB). Once packed, these CLBs
are assigned to specific locations on the device. After
placement the device can be routed. Finally, after these
implementation steps, the bitstream for the circuit is
generated which can be used to program the device.
This work makes changes to the synthesis, placement
and routing of the design to remove SBF.

II. SPF MITIGATION

SPF occurs because of untriplicated components in the
circuit. This can be common for global signals such as
resets and clocks, or could be untriplicated I/O ports.

3

The effectiveness of TMR will always be limited as
long as SPF is present in the design. The best way
to mitigate against these is to triplicate them, however,
there are still some options to reduce the impact of SPF
on the design, the idea being to minimize the footprint
of the untriplicated components. Fault-injection testing
has shown that the majority of these bits occur along
long routes, as the example in Figure 3 shows (red dots
showing locations of SPF bits that cause failure).

Figure 3: Example of single point failures on a high
fanout input pin net (left) and long reduction voter to
output pin net (right).

A. Split-Clock

An input I/O pin for a clock is first routed through
a buffer, typically a BUFG. In an untriplicated I/O
(common-IO) TMR design, there would only be one
clock net for each clock in the original design. Each
clock can be internally triplicated by being routed to
three buffers, one for each domain, and then the output
of each buffer is then routed to the cells associated with
that particular clock and TMR domain. This mitigation
technique is shown in Figure 4.

As shown in the figure, there are a few locations where
SPF can occur in the original design, denoted by the red
“x”s. The first location is from the input pin to the buffer
and the second location is from the buffer to the cells
of each domain. While the figure only shows one red
“x”, it is likely that each of these nets uses multiple
wire segments, which would correspond to multiple
configuration bits. One “x” is used for simplicity to
mark the different locations SPF can occur. After buffer
triplication, there is only one location where SPF can
occur, on the net from the input pin to each of the
buffers. The possibility for SPF has been removed from
the design implementation after the buffers.

I/O

FF

FF

FF

I/O

FF

FF

FF

BUFG

BUFGs

Figure 4: Triplicating Clocks

B. Split-IO

Similar to split-clocks, logic input pins can also be
split. This is done by introducing a pseudo-buffer into
the netlist. Like a clock buffer, this pseudo-buffer can
be inserted for each separate domain to force the net to
split, but unlike a clock buffer, this is the pseudo-buffer’s
only purpose. This pseudo-buffer is implemented as a
pass-through LUT, which is a single input LUT, whose
function is to copy the logic value of the input wire
onto the output wire. The split-IO technique using pass-
through LUTs is shown in Figure 5. These LUTs are
constrained to be placed in the CLB tile closet to the
input pin.

I/O

Cell2

Cell0

Cell1
I/O

LUT2

Cell0

Cell2

LUT0

LUT1 Cell1

Pass-Through
LUTs

Figure 5: Pass-Through LUTs

C. Early-Split (ES)

Both of these techniques, split-clock and split-IO, can
be used together. When used together, they are referred
to as early split (ES). Generally, they would be most
effective when used together, but certain circumstances
may dictate otherwise. These cases could arise in certain
environments where parts of the FPGA may be more
susceptible to failure than other parts. When only con-
sidering single bit upsets (SBU), however, there should
be no reason why all of these techniques should not be
used.

III. CMF MITIGATION

Even after triplicating all I/O, there are still single bits
that will cause the design to fail, referred to as CMF bits.
These bits affect multiple domains and may require more
spatial separation to be eliminated. In order to understand
the removal techniques a brief overview of the cause for

4

discovered CMF bits (more information can be found in
[3]).

The routing configuration bits of the device do not
control individual programmable interconnect points
(PIPs), but instead control the rows and columns of a
mux (referred to as a routing mux). The programmed
row and column bits act as a grid to select one input to
propagate to the output wire. The input of the selected
column on each row is allowed to drive the row wire,
but only the selected row is able to drive the output
wire. When a second column bit becomes programmed
(through an SEU), a second column in the mux is
allowed to drive the row wires (but not the output),
possibly creating multiple shorts in the mux (up to one
short per row wire), as shown in Figure 6.

0 1 2 3 4

5

6

8

7

clk_TMR_0

clk_TMR_1

data_TMR_2

data_TMR_0

data_TMR_1

load_TMR_0

load_TMR_1

Configuration Upset

Short

Figure 6: Example of multiple shorts in a routing mux

It is these multiple shorts that cause CMF. Further-
more, through testing TMR failure has only been ob-
served when multiple clock nets are shorted in these sit-
uations. Two techniques have been developed to address
this issue: incremental placement and striping.

A. Incremental Placement (PCMF)

The goal of this technique is to either limit each tile to
a single domain, or ensure that multiple domain tiles do
not share flip-flops in the same partition (assuming the
TMR design is using advanced partitioning techniques).
Because the chosen placement is likely already sub-
optimal (heuristics are used for placement), this work
assumes that slightly altering the placement should have
a negligible impact on its timing. In this technique tiles
with CMF are identified and a swap is attempted with
a site in one of the tiles neighbors. This will ensure
that multiple shorts between clocks will not happen and
routing can continue using the vendor’s tool.

B. Striping

Another solution is to restrict each tile to only allow
cells of one domain to be placed there. While it is
difficult in the tools to restrict each individual tile, it
is possible to perform this by restricting each column.
This can be done by setting a pblock (partial recon-
figuration block) for each domain in a column. Thus,
the columns of the device are “striped”. The tools are
forced to comply with these restrictions, thus enforcing
the spatial separation necessary to remove CMF from
the design. Striping the design is more effective than
creating three large pblocks (i.e., one for each domain);
however, forcing spacial separation at this level can be
detrimental to the maximum clock frequency and can
increase routing congestion [4].

IV. RESULTS

All of the presented techniques were implemented on
the four different circuits, the b13, md5, sha3 and aes128.
The b13 design comes from the ITC’99 benchmark suite
and is a simple finite state machine that interfaces with a
weather station. It has been used by a mitigation working
group to test benefits of TMR [5]. This particular design
instantiates 256 copies of the b13 to increase resource
utilization and statistics collection. The md5, sha3 and
aes128 are all hashing algorithms. They are also instan-
tiated multiple times to increase resource utilization.

All of the TMR techniques were implemented on the
four circuits to measure their impact on resource utiliza-
tion. The geometric mean results are presented in Table I.
Routing was not able to complete for the striping design
on the md5 and sha3 circuits. An important observation
from this table is that the number of routing nodes for
the striped design is 4.2× that of the unmitigated circuit,
.25 greater than any other TMR variation. This suggests
that striping has a great affect on the circuit’s routing.

The fault-injection infrastructure for this work con-
sisted of a custom setup using Nexys Video Artix-
7 FPGA boards available from Digilent. Each setup
consists of 2 boards, one master and one device under
test (DUT), connected via the FMC card slot. The master
operates with a golden copy of the design (i.e. no CRAM
fault injections) in lockstep with the DUT running the
same design, but subject to CRAM upsets. After fault-
injection, the design was allowed to run for a period
of time to flush out any faults in the system, before
being scrubbed and repeating the process. After finding
a failure the device was reconfigured and the bit was
injected again to verify the upset. Fault-injection was
preformed via the JTAG interface.

5

Table I: Mean Implementation Metrics

Metric/Technique fmax (MHz) # nodes # cells # sites # tiles

M
ea

n

Unmitigated 1× 1× 1× 1× 1×
Common-IO (1-Voter) 0.77× 3.48× 3.16× 3.75× 3.62×
Common-IO (3-Voter) 0.73× 3.66× 3.44× 3.73× 3.56×
Split-IO 0.80× 3.69× 3.44× 3.67× 3.55×
Split-clock 0.73× 3.70× 3.44× 3.83× 3.68×
Split-clock-PCMF 0.73× 3.76× 3.44× 3.83× 3.69×
ES 0.73× 3.68× 3.44× 3.67× 3.55×
ES-PCMF 0.73× 3.78× 3.44× 3.76× 3.68×
Trip-IO (1-Voter) 0.79× 3.62× 3.17× 3.86× 3.74×
Trip-IO (3-Voter) 0.77× 3.89× 3.44× 3.87× 3.75×
PCMF 0.76× 3.95× 3.44× 3.87× 3.77×
Striped 0.78× 4.20× 3.51× 3.46× 3.24×

Due to the reduction in cross-section of these new
techniques, many copies of the design are run concur-
rently in our setup to collect meaningful statistics, as
shown in Figure 7. This setup is used for both radiation
testing and fault injection testing. Because 5 copies of
the circuit are run concurrently, this allows data to be
collected 5× faster, or in radiation testing, provides
≈ 5× effective fluence.

Figure 7: Boards in the neutron beam at LANSCE.

Each circuit was fault injected to measure the bit
sensitivity improvement over the unmitigated design.
The geometric mean results are shown in Table II. The
individual results for each circuit are plotted in Figure 8,
with 95% confidence intervals shown. Generally, the
split-IO technique performs slightly better than the split-
clock technique, although the split-clock-PCMF tech-
nique is just as effective as the split-IO technique. The
best technique for common-IO TMR was ES-PCMF,
which is the split-IO, split-clock and PCMF all applied
to the circuit. This yielded a sensitivity improvement
of 2,340×. For the B13 and MD5 circuits, ES-PCMF
showed a lower bit sensitivity than trip-IO TMR.

Completely triplicating the circuit showed, on aver-
age, an order of magnitude improvement over the best

common-IO TMR technique. The bit sensitivity for trip-
IO TMR is skewed low by the AES128 design which did
not show any failed bits during fault injection. This is
likely due to the minimal feedback in the circuit which
creates few partitions. This allows the tool spatially
separate the TMR domains better, leading to fewer CMF
bits. Similarly, the SHA3 also has few partitions and only
a few sensitive bits were found during fault injection.
In contrast, the MD5 design has many partitions and
displayed a higher sensitivity for trip-IO TMR.

PCMF and striping showed further improvement upon
trip-IO TMR. For striping, no failed bits have been
observed during fault injection. Because one failed bit
is always assumed when calculating bit sensitivity, the
improvement is limited by how amount of injected bits.
The PCMF design did not show as much improvement as
striping, but it did show a 2× improvement on average.
For the B13 and MD5 designs which have more feedback
and partitions, PCMF showed more improvement.

U
n
m

it
ig

a
te

d

C
o
m

m
o
n
-I

O
 1

V

C
o
m

m
o
n
-I

O
 3

V

S
p
lit

-I
O

S
p
lit

-C
lo

ck

S
p
lit

-C
lo

ck
-P

C
M

F

E
S

E
S
-P

C
M

F

T
ri

p
-I

O
 1

V

T
ri

p
-I

O
 3

V

P
C

M
F

S
tr

ip
e
d

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

S
e
n
si

ti
v
it

y

Fault Injection Results

B13
MD5
SHA3
AES128

Figure 8: Fault injection sensitivity of designs/circuits

In radiation testing, the striped design only showed
marginal improvement over TMR (1.4×) while the

6

Table II: Fault Injection Mean Results

Metric/
Technique

Number of
Injections

Number of
Failures

Sensitivity Improvement

M
ea

n
R

es
ul

ts

Unmitigated 6, 045, 542 330, 450 3.80× 10−2 1×
Common-IO (1-Voter) 6, 037, 318 16, 967 1.56× 10−3 24.3×
Common-IO (3-Voter) 6, 132, 724 3, 367 3.16× 10−4 121×
Split-IO 8, 000, 000 5, 447 8.45× 10−5 450×
Split-clock 6, 538, 320 778 1.13× 10−4 336×
Split-clock-PCMF 6, 336, 939 486 8.45× 10−5 450×
ES 9, 255, 262 313 2.27× 10−5 1, 675×
ES-PCMF 18, 000, 000 377 1.63× 10−5 2, 340×
Trip-IO (1-Voter) 16, 000, 000 50, 836 4.83× 10−4 78.8×
Trip-IO (3-Voter) 28, 000, 000 225 2.09× 10−6 18, 235×
PCMF 21, 541, 693 49 9.92× 10−7 38, 341×
Striped 4, 000, 000 0 5.00× 10−7 57, 443×

Table III: Neutron Radiation Testing Results

TMR
Type

Fluence
(n/cm2)

Number
of Failures

Cross-Section
(cm2)

+95% Confidence
-95% Confidence

FIT
Sea-Level

Improvement

Unmitigated 3.19× 1011 555 1.74× 10−9 1.89× 10−9

1.59× 10−9 2.26× 101 1×

Common-IO 8.61× 1010 51 5.92× 10−10 7.58× 10−10

4.26× 10−10 7.70× 100 2.9×

Split-clock 1.48× 1011 39 2.64× 10−10 3.60× 10−10

1.87× 10−10 3.43× 100 6.6×

ES 2.69× 1011 19 7.06× 10−11 1.10× 10−10

4.28× 10−11 9.18× 10−1 25×

ES-PCMF 4.91× 1011 33 6.72× 10−11 9.43× 10−11

4.62× 10−11 8.74× 10−1 26×

Trip-IO 1.69× 1012 34 2.01× 10−11 2.81× 10−11

1.39× 10−11 2.62× 10−1 86×

PCMF 3.98× 1011 2 5.03× 10−12 1.81× 10−11

5.03× 10−13 6.53× 10−2 350×

Striped 1.90× 1012 28 1.47× 10−11 2.13× 10−11

9.79× 10−12 1.92× 10−1 120×

U
n
m

it
ig

a
te

d

C
o
m

m
o
n
-I

O

S
p
lit

-C
lo

ck E
S

E
S
-P

C
M

F

T
ri

p
-I

O

S
tr

ip
e
d

P
C

M
F

10-13

10-12

10-11

10-10

10-9

10-8

C
ro

ss
 S

e
ct

io
n
 (
cm

2
)

Neutron Radiation Results

Figure 9: Neutron cross-section of designs

PCMF design showed significant improvement (4×) over
TMR. As a note, the Striped design was tested at a
2× higher flux rate than the PCMF design which could
account for some of the failures. All failures on both
designs can be attributed to multi-cell upsets (MCUs)
and upset accumulation (multiple single upsets before
repair). The differences in improvement between fault-
injection and radiation testing are due to radiation testing
triggering other SEEs that can not be tested during fault-
injection and is expected. However, the techniques that
perform well during fault-injection also perform well
during radiation testing. All of the radiation results are
shown in Table III and the cross-sections are plotted in
Figure 9.

7

V. CONCLUSION

FPGAs are computational devices that can be used in
space, but proper mitigation techniques must be applied
to assure proper functionality. A TMR tool has been
previously developed to help mitigate against SEUs in
space and has yielded good results. However, there are
many single configuration bits that still cause failure that
could be addressed through more advanced techniques.

An automated tool was developed for this work to
identify and remove these single configuration bits that
cause failure. Several techniques were developed to
address these bits with varying success. Results from this
initial experiment suggest that that the most promising
technique can improve the MTTF by 5× over traditional
TMR with the vast majority of failures occurring from
multiple upsets (instead of single upsets).

This technique and additional techniques that will be
developed are improving the reliability of SRAM-based
FPGAs in the presence of ionizing radiation. These will
allow SRAM-based FPGAs to be increasingly considered
for use in spacecraft and other environments with high
levels of radiation.

REFERENCES

[1] N. Rollins, M. Fuller, and M. J. Wirthlin, “A comparison
of fault-tolerant memories in SRAM-based FPGAs,” in 2010
IEEE Aerospace Conference, March 2010, pp. 1–12. [Online].
Available: https://doi.org/10.1109/AERO.2010.5446661

[2] L. Sterpone and M. Violante, “A new reliability-oriented place
and route algorithm for SRAM-based FPGAs,” IEEE Transac-
tions on Computers, vol. 55, no. 6, pp. 732–744, June 2006.

[3] M. Cannon et al., “Improving the effectiveness of TMR de-
signs on FPGAs with SEU-aware incremental placement,” in
2018 IEEE 26rd Annual International Symposium on Field-
Programmable Custom Computing Machines, April 2018, pp.
1–8.

[4] M. J. Cannon et al., “Strategies for removing common mode
failures from TMR designs deployed on SRAM FPGAs,” IEEE
Transactions on Nuclear Science, vol. 66, no. 1, pp. 207–215,
Jan 2019.

[5] H. Quinn et al., “Using benchmarks for radiation testing of
microprocessors and FPGAs,” IEEE Transactions on Nuclear
Science, vol. 62, no. 6, pp. 2547–2554, Dec 2015.

