
Utah NASA Space Grant Consortium Fellowship Symposium
Brigham Young University

A Low-Cost Trajectory Estimation System for Drones and Rockets

Stephen A. Whitmore* and Tyler J. Gardner†

Utah State University, Logan, Utah, 84322-4130

Drone aircraft have become very popular during the last few years. These remote-controlled aircraft often rely
on GPS receivers to track their position and velocity. However, it is often important for aircraft to measure
other information that GPS cannot provide. Recent developments in single-board computers have facilitated the
creation of cheap and effective embedded systems. This paper details the development and testing of a Raspberry
Pi-based low-cost trajectory estimation system. Data acquired from a pitot probe, GPS receiver, altimeter, and
accelerometer are fed into a Kalman filter to calculate a best-fit trajectory. The performance of the filter algorithm
was evaluated using test case data. Further testing of the hardware and estimator performance will be performed
during various future rocket test flights.

I. Nomenclature
xb f = Body-fixed x-axis
yb f = Body-fixed y-axis
zb f = Body-fixed z-axis
xn = NED x-axis (North)
ye = NED y-axis (East)
zd = NED z-axis (Down)
φ = roll (measured from local horizontal)
θ = pitch (measured from local horizontal
ψ = yaw (measured clockwise from true north)
p = roll rate
q = pitch rate
r = yaw rate
M = North-east-down to body-fixed rotation matrix
F = force
m = mass
g = gravitational acceleration (magnitude)
g0 = standard scale factor (9.81 m/s2)
u, v, w = velocity components along body-fixed axes
Ax = x component of acceleration
Ay = y component of acceleration
Az = z component of acceleration
µ = = gravitational parameter
Ω⊕ = angular velocity of the earth
R⊕ = radius of the earth corrected for bulge
Req = radius of the earth at the equator
e = spherical eccentricity of the earth

II. Introduction

OVER the past few years, there has been tremendous growth in the
sales and production of Unmanned Aerial Vehicles (UAVs) more

commonly known as drones. In the past, UAVs and drones have been
used largely by military and government organizations because of the
cost and size of these systems. However, many low-cost and smaller
UAV systems are now available to consumers. These remote-controlled
drone aircraft have become very popular among photographers, re-
searchers, and general hobbyists. Research groups and universities
have also developed their own UAV systems, many of which are au-
tonomous, to perform low-cost aerial surveys [1] [2].

Drones often rely on GPS receivers to track their position and ve-
locity. However, it is often important for aircraft to measure other flight
information that GPS cannot provide (such as airspeed). This makes it
difficult for these aircraft to capture a complete picture of their flight
behavior. Work has been conducted to investigate the use of cameras
and visual tracking to control drones. Some of these systems have been
designed to operate on-board an aircraft to track obstacles [3]. Other

*Professor, Mechanical and Aerospace Engineering Department, 4130 Old
Main Hill, AIAA Associate Fellow.

†Graduate Research Assistant, Mechanical and Aerospace Engineering De-
partment, AIAA Student Member.

systems use external tracking devices to keep track of the vehicle’s
trajectory and process tracking data [4]. These methods have been tar-
geted towards small, relatively slow, quad-rotor drones and only pro-
vide obstacle-avoidance benefits.

Larger and faster UAVs will need more information on airspeed
and trajectory, especially if they have a fixed-wing design. Many orga-
nizations and companies are currently working to develop autonomous
drones for use in delivery systems. While companies such as Amazon
and UPS may get most of the focus for their autonomous drone de-
velopment efforts, some organizations are actually using drone-based
delivery systems right now [5]. As efforts such as these to develop
autonomous drone aircraft continue, it will be necessary to develop a
more complete trajectory and airspeed estimation system. One simple
way to do this is to process available GPS and accelerometer data in a
filter and then add a pitot tube to provide an airspeed measurement.

This paper details the development of a Raspberry-Pi-based trajec-
tory estimation system for drones and rockets. This system will use the
Raspberry Pi Zero W shown in Fig. 1. The Raspberry Pi architecture
was chosen for this system because of its low cost, wide popularity,
and extensive documentation. The Zero W model was selected to save
weight and space.

Two main questions will be investigated throughout this project.
First, how well can the selected Raspberry Pi run a trajectory estima-
tion system? A Kalman filter has been developed to run on the Rasp-
berry Pi and estimate the trajectory of a rocket as detailed in section
IV. The filter will keep track of the rocket’s position and velocity and
a pitot probe will provide an airspeed measurement to keep track of
the rocket’s Mach number. The Kalman filter algorithm was tested in
MATLAB using a test case data set. This test case, and the results of
the algorithm test, are presented in section V.

Second, how well does the Raspberry Pi operate under high accel-
eration loads? Testing this system on a rocket will allow the system
to experience a wide-range of dynamics and conditions. Flight tests of
the trajectory estimation system will be performed this summer. The
predicted trajectory of these tests flights is shown in section VI.

III. Instrumentation
This section details the instrumentation used is this trajectory es-

timation system. Two altimeters, the RAVEN 4 and the TeleMetrum
v2.0, will be used to provide altimeter data and deployment charge igni-
tion. IMU data will be provided by the LORD MicroStrain 3DM-CV5-
25 IMU. Various pressure measurements will be taken by the PX142-
030A5V. These devices will be connected to the Raspberry Pi Zero W
to provide data to the Kalman filter. Table 1 provides a summary of key
specifications for the selected instruments.

As mentioned, the Raspberry Pi Zero Wa is the primary device that
this project is focused on. Like other Raspberry Pi devices, the Zero
W is capable of running various distributions of Linux. However, its 1
GHz single-core and 512 MB of RAM can be easily clogged up by GUI

ahttps://www.adafruit.com/product/3400
1



2

operating systems (OS). Therefore, the Zero W will run in a console-
only mode for this project to limit OS overhead. Besides the Zero W’s
small size (66.0mm by 30.5mm by 5.0mm or 2.6” by 1.2” by 0.2”) and
weight (9.3g or 0.3oz), this computer also consumes relatively little
power (0.6-1.2W).

Figure 1. Picture of the Raspberry Pi Zero W which will run the Kalman
filter.

The RAVEN 4b Altimeter shown in Figure 2 includes a 105G ac-
celerometer (400Hz axial and 200Hz lateral) and a dual-deploy charge
ignition controller. Primary charge ignition will be controlled by the
RAVEN 4. The RAVEN’s on-board high-rate data storage will be used
to log flight data independently of the Zero W and flight telemetry.

Figure 2. Picture of the RAVEN 4 Altimeter which will provide primary
charge ignition and flight logging.

Flight telemetry will be broadcast by the TeleMetrum v2.0c on the
70cm (440 MHz) amateur radio band during flight. The TeleMetrum
v2.0, shown in Figure 3 includes an integrated accelerometer, altime-
ter, and charge ignition controller. The TeleMetrum will provide al-
timeter data to the Raspberry Pi and secondary charge ignition for the
parachute deployment charges.

Figure 3. Picture of the TeleMetrum v2.0 Altimeter which will broadcast
flight telemetry and provide altimeter readings.

The LORD MicroStrain 3DM-CV5-25 IMUd shown in Figure 2
is a compact and light-weight Inertial Measurement Unit (IMU) that
provides sample rates upwards of 1000Hz. The LORD MicroStrain in-
cludes an adaptive Extended Kalman Filter with output rates up 500Hz.
These features allow the Kalman filter on the Raspberry Pi to process
IMU measurements without the need for additional filtering.

Figure 4. Picture of the LORD MicroStrain 3DM-CV5-25 which will pro-
vide accelerometer and gyroscope data.

bhttps://www.featherweightaltimeters.com/raven-altimeter.html
chttps://altusmetrum.org/TeleMetrum/
dhttps://www.microstrain.com/inertial/3dm-cv5-25

Pressure measurements at the rocket’s nose and inside the avionics
bay will be taken during flight by the PX142-030A5V pressure trans-
ducere shown in Figure 5. Because this transducer produces a high-
level output of 1-6Vdc, an analog-to-digital converter will be used to
connect the transducers to the GPIO on the Raspberry Pi. The PX142-
030A5V includes temperature compensation and offers a response time
of 1ms.

Figure 5. Picture of the PX142-030A5V pressure transducer.

Table 1. Summary of instrumentation specifications.

RAVEN 4 Altimeter
Pressure Error < 1mbar (0.1% FS)

TeleMetrum v2.0 Altimeter
GPS horiz position ±2.5m

LORD MicroStrain IMU
Accelerometer 100µg/√Hz

Gyroscope bias 8 dph in-run
Gyroscope ARW 0.3°/√hr

Pitch-roll dynamic accuracy ±0.4°

PX142-030A5V Pressure Transducer
Output 1 to 6 Vdc (±2.5 Vdc PX143)

Linearity ±0.75% FS BFSL
Hysteresis 0.15% FS (0.30% FS ≤ 5 psi)

Zero Balance 1.0 Vdc ±0.05

IV. Development of the Kalman Filter

The method of formulating a Kalman filter is fairly well known, so
only the key equations for this system and filter will be presented here.
Reference [6] provides a good introduction to the Kalman filter. Fur-
ther background into the derivation of the Kalman filter and its various
forms can be found in [7].

A. Coordinate Definitions

This system will make use of two main coordinate systems and a
set of Euler angles as defined in this section. The body-fixed coordinate
system is defined as show in Figure 6. This coordinate system will align
with the axial directions of the IMU.

ehttps://www.omega.com/pptst/PX140.html



3

Figure 6. Illustration showing the orientation of the body-fixed coordinate
system (axis on the right) and the IMU (axis on the left).

The second coordinate system that will be used is Local North-
East-Down (NED). This coordinate system is centered in the same lo-
cation as the body-fixed frame, but is always aligned with true-north,
east, and down (towards the center of the earth). The relationship of
the body-fixed frame to the NED frame can be seen in Figure 7. Also
show in this figure are the definitions of the roll, pitch , and yaw Euler
angles. All rotations and angular rates are defined as positive in the
”clockwise” or ”right-handed” direction.

Figure 7. Illustration of the north-east-down (x-y-z) frame and the roll,
pitch, yaw Euler angles. Notice that while the NED frame is not centered
on the craft in this depiction, the NED frame used for this system is centered
in the same location as the body-fixed frame.

The NED and body-fixed coordinate frames can be related to each
other through use of the Euler angles defined previously. These angles
can be used to form the following rotation matrix.

M =

M11 M12 M13
M21 M22 M23
M31 M32 M33

 (1)

Where

M11 = cos φ cos θ
M12 = sinψ cos θ
M13 = − sin θ
M21 = cosψ sin theta sin φ − sin φ cos phi
M22 = sinψ sin θ sin φ + cosψ cos φ
M23 = cos θ sin φ
M31 = cosψ sin θ cos phi + sinψ cos φ
M32 = sinψ sin θ cos φ − cosψ sin φ
M33 = cos θ cos φ

This rotation matrix would be used as followsu
v
w

 =

M11 M12 M13
M21 M22 M23
M31 M32 M33


vn
ve
vd

 (2)

where u, v, and w are the velocity components of the rocket in
the body-fixed frame. To go from body-fixed to NED coordinates, one
would simply use the transpose of the rotation matrix M. To simplify
notation, the rotation matrix M and its components will be referred to
from here on out using matrix element notation (Mi j).

B. Equations of Motion

This section will present the system’s equations of motion which
will be used in the Kalman filter. First, the equations for the velocity
and acceleration of the rocket will be derived and presented. These
equations will be numerically integrated to keep track of the vehicle’s
state. Two possible models for gravity will then be shown and the
differences between these models will be discussed. The collected state
equations for the system will then be presented.

1. Acceleration and Velocity

A vector equation for the acceleration of the rocket can be found
as follows using Newton’s second law.∑ ~F

m
=

d~v
dt

=
∂~v
∂t

+ ~ω × ~v (3)

The left side of equation 3 can be found using the linear accelera-
tion values output by the IMU plus the effects of gravity.∑ ~F

m
= g0 ~AIMU + gM

001
 = g0

Ax
Ay
Az

 + g

M13
M23
M33

 (4)

The rotational acceleration term on the right side of equation 3
comes out to be

~ω × ~v =

p
q
r

 ×
u
v
w

 =

 0 −r q
r 0 −p
−q p 0


u
v
w

 (5)

Substituting equations 4 and 5 into equation 3 and solving for ∂~v
∂t

results in the first differential equation of motion for this system.

∂~v
∂t

=

 u̇
v̇
ẇ

 =

 0 r −q
−r 0 p
q −p 0


u
v
w

 + g0

Ax
Ay
Az


cg

+ g

M13
M23
M33

 (6)

The second equation of motion for this system simply relates the
body-fixed velocity of the rocket to the NED velocity of the rocket.
This equation comes almost directly from equation 2.

∂~x
∂t

=

ẋn
ẏe
żd

 =

M11 M21 M31
M12 M22 M32
M13 M23 M33


u
v
w

 (7)

2. Gravity Models

The first gravity model presented includes the first harmonic of the
earth’s gravity field and provides a correction for the centrifugal force
due to the earth’s rotation.

g =
µ

(R⊕ + hMS L)2 −Ω2
⊕(R⊕ + hMS L) (8)

Where

µ = 3.9860044 × 105km3/s2

Ω⊕ = 7.2929115 × 10−5rad/s

R⊕ =
Req√

1 + e2

1−e2 sin2 λ

Req = 6378.13649km
e = 0.08181980

Another reasonably accurate and less complex model suitable for
real-time calculations is

galt =(9.780318m/s2)
[
1 + 0.0053024 sin2(λ)

+ 0.0000058 sin2(2λ)
]
− 3.086 × 10−6s−2 · hMS L (9)



4

In both of these models, λ is the geodetic latitude of the rocket.
The North Branch, Minnesota launch sitef is located at 45.547 deg lat-
itude and 270 m. At this location, these two models give the following
results:

g = 9.7972
galt = 9.8060

These results differ by approximately 0.0898%. Considering the
altitude range and duration of our rocket’s flight, both of these models
are acceptable for this application.

3. Accelerometer Corrections for Center of Gravity Offset

Because the rocket’s avionics bay will not allow the IMU to be
placed precisely at the vehicle’s center of gravity, it is necessary to
correct the sensed accelerations for centrifugal forces resulting from
angular rotations. These corrections are given by the following trans-
formation.

Ax
Ay
Az


cg

=

Ax
Ay
Az


IMU

+
1
g0

 (r2 + q2)XIMU − (pq − ṙ)YIMU − (rp + q̇)ZIMU
−(pq + ṙ)XIMU + (p2 − r2)YIMU − (rq + ṗ)ZIMU
−(rp − q̇)XIMU − (rq − ṗ)YIMU + (q2 + p2)ZIMU

 (10)

Since the angular acceleration rates ṗ, q̇, and ṙ are not available
in real time, only the corrections due to the angular rates will be
performed. The cg-corrected acceleration values will be used in the
Kalman filter calculations. For a rigid airframe, the angular rates at the
IMU will be the same as those at the center of gravity. The X, Y, Z
position of the IMU is measured along the body axes of the vehicle as
defined in Fig. 6 from the vehicle’s center of gravity.

4. Collected State Equations

Referring back to the equations of motion presented earlier, there
are six state variables that will be directly estimated by the Kalman
filter. The collected velocity and position equations are

∂~x
∂t

=



u̇
v̇
ẇ
ẋn
ẏe
żd


=



0 r −q 0 0 0
−r 0 p 0 0 0
q −p 0 0 0 0

M11 M21 M31 −1/τx 0 0
M12 M22 M32 0 −1/τy 0
M13 M23 M33 0 0 −1/τz





u
v
w
xn
ye
zd



+ g0



Ax
Ay
Az
0
0
0


cg

+ g



M13
M23
M33

0
0
0


(11)

which match the general state-space form

~̇x = A~x + B~u (12)

The inverse time-constant (−1/τ) terms which can be seen in equa-
tion 11 are added to the collected state equations to provide low-pass
filtering of the GPS-based position data. This will help compensate for
noisy data from the GPS receiver. The acceleration and rotation-rate
data are filtered by the IMU and therefore do not need to be filtered by
the real-time state estimation algorithm.

fThe main flight tests will be performed during the Midwest High Power
Rocket Competition in North Branch, Minnesota. Therefore, the comparison of
the gravity models is conducted assuming this location.

5. Measurement Equation

In addition to the collected state equations, a model for the mea-
surements of the system is needed to form the Kalman filter. As men-
tioned previously, this system will make use of altitude, position, and
airspeed measurements. The measurement model for this system is
given by the matrix equation


haltimeter

V2
inf

xn,GPS
ye,GPS
zd,GPS

 =


0 0 0 0 0 −1
u v w 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





u
v
w
xn
ye
zd


(13)

which is equivalent to

~y = H~x + D~u (14)

For this system, the D matrix is a zero matrix because none of the
control values appear in the measurement equations.

C. Kalman Filter Equations

An Extended-Discrete Kalman filter will be used as the core of the
state estimation algorithm. The filter will propagate the state estimate
by integrating equation 11. The state transition matrix will be used to
propagate the state covariance. The state estimate and covariance will
then be updated using the discrete Kalman filter update equations.

1. State Propagation Equations

Because accelerometer and gyroscope information is needed to
propagate the state equations, the state estimate (estimates are denoted
by the hat notation) will be propagated using the trapezoidal rule.

~̂x−k+1 = ~̂x + (~̇xk+1 + ~̇xk)∆t/2 (15)

The state covariance will be propagated using the standard formu-
lation for a discretized Kalman filter.

P̂−k+1 = φkPkφ
T
k + Qk (16)

The approximate state transition matrix for the system can be found
using the matrix exponential. Only the first two terms of the expansion
will be used. To simplify the work, the A matrix can first be subdivided
into the following matrices.

A =

[
[~ω×] 03×3
MT [τ]

]
(17)

The state transition matrix can then be approximated by

φ = eA∆t ≈ I + A∆t + A2∆t2/2

=

[
I3×3 + [~ω×]∆t + [~ω×][~ω×]∆t2/2 03×3

MT ∆t + (MT [~ω×] + [τ]MT )∆t2/2 I3×3 + [τ] + [τ][τ]

]
(18)

2. State Update Equations

The state estimate and state covariance are both updated when mea-
surement information is received from a sensor. Every update requires
the Kalman gain to be calculated using the following equation.

Kk = P−k HT
k (HkP−k HT

k + Rk)−1 (19)

Because each measurement will be processed individually, the
Kalman gain will be calculated separately for each measurement. Once
the Kalman gain is calculated for a particular measurement, the state
estimate is updated as follows.

~̂xk = ~̂x−k + Kk(zk − Hk ~̂x−k ) (20)



5

The state covariance matrix is updated for each measurement using
the standard covariance update equation. The Joseph form is not used
here to save on computation time and resources.

Pk = (I − KkHk)P−k (21)

To streamline the computation performance of the real-time algo-
rithm, each of these matrix equations will be expanded and calculated
as a series of equations for each vector or matrix element. Each mea-
surement will also be processed separately by the Kalman filter as mea-
surement information is received from the sensors.

V. Test Case Results

The Kalman filter algorithm was tested in MATLAB using a two-
dimensional test case. White noise was added to the accelerometer,
gyroscope, altitude, and GPS measurements to match the instrument
specifications given in Table 1. The algorithm was first run without any
measurements to test the performance of the state propagation. Two
more tests were then run simulating altitude and then GPS position
data.

A. No Measurement Data

Running the algorithm without any altitude or GPS measurements
gave the following results as shown in Figures 8 and 9. Both the es-
timate of the rocket’s altitude stayed within ±2m of the actual value,
and the estimate of the rocket’s velocity stayed within ±0.25m/s of the
actual velocity. However, notice how the position estimate appears to
be drifting away from the expected value as time increases. Some drift
is expected because this estimate is only based on integration of the
accelerometer and gyroscope data.

Figure 8. Plot of the rocket’s estimated altitude and velocity without any
altitude or GPS measurements.

B. Altitude Measurement Only

Incorporating an altitude measurement to update the filter’s state
estimate gave the results shown in Figures 10 through 11. As expected,
adding a measurement of the rocket’s altitude helped to decrease the er-
ror in the estimate’s altitude. The largest error in the estimated altitude
occurs around motor burnout when the rocket is traveling fastest. How-
ever, notice how the error in the rocket’s estimated velocity increased
after including this measurement.

Figure 9. Plot of the error in the rocket’s estimated altitude and velocity
without any altitude or GPS measurements.

Figure 10. Plot of the rocket’s estimated altitude and velocity using an
altitude measurement.

Figure 11. Plot of the error in the rocket’s estimated altitude and velocity
using an altitude measurement.

C. GPS Measurement Only

Testing a simulated GPS height measurement to update the filter’s
state estimate gave results similar to the last case. this is not surprising,
since this gives almost identical information to the altitude measure-
ment. Figures 10 through 11 show the estimates and errors for this test.
The largest error in the estimated altitude once again occurs around



6

motor burnout. After that, the filter successfully decreases the error in
the altitude measurement. Including this GPS measurement did not im-
prove the estimate of the velocity. No x-position data was available for
this test case, so future tests of the filter will include more dimensions
for testing.

Figure 12. Plot of the rocket’s estimated altitude and velocity using a GPS
position measurement.

Figure 13. Plot of the error in the rocket’s estimated altitude and velocity
using a GPS position measurement.

VI. Flight Testing
The flight trajectory of the planned rocket flight tests was simulated

using custom code. This simulation uses a fourth-order Runge-Kutta
integrator to numerically integrate the 2D ballistic equations of motion.
The launch altitude and other location-dependent conditions were set
to match those of North Branch, Minnesota. Atmospheric drag effects
were modeled using the 1976 US Standard Atmosphere and models for
skin friction, pressure, wake, fin dither, and fin leading edge drag. The
rocket drag coefficient calculated from these equations was adjusted for
compressibility effects using the modified Karman rule. Table 2 sum-
marizes the magnitudes of key parameters associated with the launch
and recovery elements of the trajectory.

A. Flight Analysis

1. Launch to Apogee

Figure 14 shows the predicted altitude of the rocket over time from
launch to apogee. The simulation predicts that the rocket will reach
apogee 20.73 seconds after launch. The peak altitude of the test flights
is estimated to be 2538.4 m Above Ground Level (AGL) (8328.1 ft).

Figure 14. Plot of the rocket’s expected altitude from launch to apogee.

Figure 15 shows the estimated velocity of our rocket the time, with
the velocity peaking at about 2.5 seconds after launch. The simulation
estimates the peak velocity to be 340.757 m/s (1117.970 ft/s - Mach
1.01).

Figure 15. Plot of the rocket’s expected airspeed from launch to apogee.

As expected, the simulation predicts that the rocket’s peak accel-
eration will occur shortly after launch. Figure 16 shows a plot of the
predicted acceleration loads the rocket will experience. Both simula-
tion cases predict that the rocket’s peak acceleration will be 17.45 g.
After reaching a maximum, the acceleration loads will then drop off
and reverse. This load reversal corresponds with motor burnout. Thus,
it can be seen that the rocket will experience the majority of its accel-
eration loading during the first five seconds of flight.

Figure 16. Plot of the rocket’s expected acceleration from launch to apogee.

The thrust and drag forces acting on the rocket are predicted to re-
sult in the loads shown in Figure 17. The peak thrust load predicted by
both simulations is just above 505 N (113.5 lbf). Both simulations then



7

predict a peak drag load of around 300 N (67.4 lbf). This peak drag
load once again corresponds with the transonic drag increase. Figure
18 illustrates this correlation, showing a comparison of the rocket’s
predicted Mach number and drag coefficient over time. The drag coef-
ficient clearly peaks as the rocket reaches Mach 1.

Figure 17. Plot of the expected thrust and drag loads that the rocket will
experience from launch to apogee.

Figure 18. Plot of mach number and the rocket’s expected drag coefficient
from launch to apogee.

2. Apogee to Landing

For the second part of flight from apogee to landing, the simulation
included a drogue and a main parachute. Both chutes were simulated
with an inflation exponent of 0.86 and a fill time shape exponent of 2.
Both chutes also were simulated using an opening shock load factor of
1.8. The drogue deploys at an altitude of 2500 m (8202.1 ft) AGL. After
drogue deployment, the rocket is predicted to have a drogue descent
speed of about 15 m/s (49.2 ft/s).

The main chute deploys afterwards at an altitude of 300 m (984.3
ft) AGL. With both the main and drogue chutes deployed, the rocket is
predicted to have a final vertical descent and landing speed of about 4.6
m/sec (15.1 ft/sec). Figure 19 shows the predicted horizontal, vertical,
and total airspeed of our rocket from apogee to landing.

Figure 19. Plot of the rocket’s expected airspeed from apogee to landing.

The acceleration load produced by the drogue and main chutes at
deployment, shown in Figure 20, are predicted to be 7.32 g’s and 2.02
g’s respectively. These acceleration loads correspond to deployment
loads for each parachute between 210 N (47.2 lbf) and 225 N (50.6 lbf)
shown in Figure 21.

Figure 20. Plot of the rocket’s expected acceleration from apogee to land-
ing. The peaks correspond to the deployment of the drogue and main
chutes.

Figure 21. Plot of the rocket’s expected drag loading (right) from apogee to
landing. The peaks correspond to the deployment of the drogue and main
chutes.

With a 15 knot wind, the simulation predicts that the rocket will
drift approximately 2464 m (8084 ft) down range of the launch site.
Figure 22 shows the down range position of the rocket with respect to
time. The rocket is expected to land 260 seconds after launch.



8

Figure 22. Plot of the rocket’s expected down range ground position from
apogee to landing with a wind of 15 knots.

Table 2. Summary of key trajectory events.

Launch to Apogee
Peak Altitude 2539.34 m AGL
Peak Velocity 340.869 m/s

Peak Acceleration 17.45 g’s
Peak Mach Number 1.01

Time to Apogee 20.73 s

Landing Conditions
Wind Speed 15 Kts (7.72 m/s)

Horizontal Velocity 7.72 m/s
Vertical Velocity 4.592 m/sec (15.1 ft/s)

Drogue Opening Load -7.32 g’s
Main Opening Load -2.02 g’s

Time to Landing (from Launch) 260 s
Downwind Drift Range 2464 m

VII. Conclusion
The presented Kalman filter algorithm works well with test case

data and is performing as expected. However, additional fine-tuning
is needed so that the filter will provide a more accurate estimate of
the rocket’s velocity using altitude and GPS measurements. Adding
additional GPS data in the x and y directions should help to improve
this estimate.

However, despite how well the filter does or does not perform using
test data, the true test will be to see how well it performs in flight. Test
flights this summer will help to determine how the Zero W performs
under high acceleration loads. The most challenging portion of flight
for the filter will be the first five seconds as the rocket accelerates to
Mach 1 and then decelerates.

Acknowledgments
I would like to acknowledge Dr. Stephen Whitmore for providing

support and mentorship throughout this project as my major professor.
I would also like to acknowledge Dr. David Geller for his help with
portions of the Kalman filter algorithm. Finally, I would like to thank
the Utah NASA Space Grant Consortium for funding this project.

References
[1] Jensen, A. M., Hardy, T., McKee, M., and Chen, Y., “Using a multispec-

tral autonomous unmanned aerial remote sensing platform (AggieAir) for
riparian and wetlands applications,” 2011 IEEE International Geoscience
and Remote Sensing Symposium, 2011, pp. 3413–3416. .

[2] Zaman, B., Jensen, A. M., and McKee, M., “Use of high-resolution mul-
tispectral imagery acquired with an autonomous unmanned aerial vehicle
to quantify the spread of an invasive wetlands species,” 2011 IEEE Inter-
national Geoscience and Remote Sensing Symposium, 2011, pp. 803–806.
.

[3] Kendall, A. G., Salvapantula, N. N., and Stol, K. A., “On-board object
tracking control of a quadcopter with monocular vision,” 2014 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS), 2014, pp. 404–
411. .

[4] Santana, L. V., Brandão, A. S., Sarcinelli-Filho, M., and Carelli, R., “A tra-
jectory tracking and 3D positioning controller for the AR.Drone quadrotor,”
2014 International Conference on Unmanned Aircraft Systems (ICUAS),
2014, pp. 756–767. .

[5] Ackerman, E., and Strickland, E., “Medical delivery drones take flight in
east africa,” IEEE Spectrum, Vol. 55, No. 1, 2018, pp. 34–35. .

[6] Welch, G., and Bishop, G., “An Introduction to the Kalman Filter,” Aviation
Week & Space Technology, Vol. 145, No. 24, 1997, pp. 44–46.

[7] Crassidis, J. L., and Junkins, J. L., Optimal Estimation of Dynamic Systems,
Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series,
CRC Press, New York, 2011, pp. 144–148.


	Nomenclature
	Introduction
	Instrumentation
	Development of the Kalman Filter
	Coordinate Definitions
	Equations of Motion
	Acceleration and Velocity
	Gravity Models
	Accelerometer Corrections for Center of Gravity Offset
	Collected State Equations
	Measurement Equation

	Kalman Filter Equations
	State Propagation Equations
	State Update Equations


	Test Case Results
	No Measurement Data
	Altitude Measurement Only
	GPS Measurement Only

	Flight Testing
	Flight Analysis
	Launch to Apogee
	Apogee to Landing


	Conclusion
	References

