Coding to Develop Early Mathematical and Computational Thinking in Kindergarten: A Case Study

Lise E.Welch, Joseph S. Kozlowski, Hannah Evans Mentors: Drs. Jessica F. Shumway, Jody Clarke-Midura, Victor R. Lee Graduate Student Research Symposium, April 11, 2019

Introduction

Problem and Purpose for this Case Study

Problem:

- Increasing need to meaningfully integrate computer science skills with mathematics (Weintrop et al., 2016)
- The integration of computational thinking and mathematics skills is an area lacking in early childhood.

Purpose:

- Investigate a situation in which CT and mathematics skills might manifest in a complementary way
- Describe how CT and mathematics skills interplay within a technology task

Computational Thinking

Definition:

"The conceptual foundation required to solve problems effectively and efficiently (i.e., algorithmically, with or without the assistance of computers) with solutions that are reusable in different contexts" (Schute, Sun, & Asbell-Clarke, 2017).

Methodology

Research Question

What mathematical thinking (MT) and computational thinking (CT) skills arise when a pair of five-year-old kindergarten students participate in a series of robotics coding tasks?

Participants and Setting

*Each child is given a pseudonym for anonymity. The pair of students in this study are not pictured in this presentation.

Data Source

Each task, with the exception of the first, was video-taped with both a stationary and a roving camera.

Data Analysis

Major elements identified using knowledge, skills, and abilities

Coded video clips exhibiting these elements Coding analyzed for pattern emergence, then categorized into major themes Results and Conclusion

Results

Research Question

What MT and CT skills arise when a five-year-old kindergarten student participates in a series of robotics coding tasks?

MT and CT Themes

MT:

 Iterations and Spatial Reasoning

CT:

• Debugging and Problem-Solving

MT

Iterations and Spatial Reasoning

Debugging and Problem-Solving

CT

Other work by the Coding in Kindergarten (CIK) research team, funded by a USU Research Catalyst grant.

- Shumway, F. J., Clarke-Midura, J., Lee, Victor, R. L., Hamilton, M. M., & Baczuk, C. (2019). Coding toys in kindergarten. *Teaching Children Mathematics*, 25(5), 314-317.
- Clarke-Midura, J., Lee, V. R., Shumway, J. F., & Hamilton, M. M. (under review). The building blocks of coding: A comparison of early childhood coding toys. *Information and Learning Science*.
- Hamilton, M. M., Clarke-Midura, J., Shumway, J. F., & Lee, V. R. (under review). An emerging technology report on coding toys and computational thinking in early childhood. *Technology, Knowledge, and Learning*.

Further questions may be directed to our team at lisewelch@hotmail.com.

References

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016).
A K-6 computational thinking curriculum framework: Implications for teacher knowledge. *Educational Technology* & Society, 19 (3), 47–57.

Barr, V., & Stevenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science community? AMC Inroads 2(1), 48–54. <u>https://doi.org/10.1145/1929887.1929905</u>.

Ioannou, A. & Makridou, E. (2018). Exploring the potentials of educational robotics in the development of computational thinking: A summary of current research and practical proposal for future work. *Educational Information Technology*, 23, 2531–2544. <u>https://doi.org/10.1007/s10639-018-9729-z</u>.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. *Educational Research Review*, 22, 142–158.

Weintrop, J., Beheshti, E., Horn, M., Oron, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. *Journal of Science Education Technologies*, 25, 127–147. <u>https://doi.org/10.1007/s10956-015-9581-5</u>.

Wing, J. M. (2006). Computational thinking. *Communications of the ACM*, 49(3), 33–35. <u>https://doi.org/10.1145/1118178.1118215</u>.