High reliability in a constrained environment

Isaac Rhea, Jon M. Huntsman School of Business, The Center for Growth and Opportunity isaac.rhea@growthopportunity.org Faculty Mentor: Dr. Scott Hammond, Jon M. Huntsman School of Business scott.hammond@usu.edu

April 2019

Research Questions

• What are the constraints faced by Highly Reliable Teams? How do these constraints develop?

• How do these constraints affect how HRTs operate?

Motivation

• Constraints, at times, may restrain a team's ability to operate in the most efficient manner.

• A deeper understanding of how individuals and groups interact with regulations can improve policy design.

Methodology

• Qualitative investigation through ethnographic techniques to identify patterns and data.

• Develop a taxonomy that organizes the continuum of constraints.

Highly Reliable Teams (HRT)

• Furthered the previous work on reliability, such as Weick and Sutcliffe (2007), to conceptualize Highly Reliable Teams which share many attributes of Highly Reliable Organizations.

• Not just a fixed subset of an organization, but rather a flexible unit that draws from a pool of qualified members to respond to missions.

HRT's Cont.

• Positive outcomes are expected and failure is high consequence.

• HRTs solve complex problems through a 3-step process: Problem anticipation, response, review.

• Examples: Surgical teams, search and rescue, air traffic control, ship navigation, etc.

Complex Problems

• Complex problems are characterized by unfamiliarity, dynamic conditions, and high consequences in the case of failure.

• Requires a sequence of decisions and each decision may provide potentially useful information for subsequent decisions in a dynamic environment (Edwards, 1962).

• "Decisions have to be made in real time" (Brehmer, 1992).

Problem Solving Process

Problem

Anticipation

Based on previous experiences, teams forecast the likely droumstances of future missions and prepare accordingly.

Step 3

Response

A team is assembled and deployed. Leadership determines how predetermined operating procedures will be employed.

After-action Review What went well? How can we improve?

Formal Constraints

• Developed by teams and regulators in the problem anticipation stage.

 Designed to lower the risks of HRT operation, which include physical harm and legal liability.

Formal Constraints Cont.

• Limited by ability to foresee the circumstances of future missions -- Cannot prescribe a course of action for all possible circumstances.

• Constructed and enforced through deliberate processes.

Informal Constraints

 Are not limited by problem anticipation and thus complement formal constraints by guiding team decision making in any situation.

• Enforced by social sanctions and pressures.

Risk Mitigation and Operational Success

• Formal constraints incorporate the lessons learned from previous missions to provide structure that increases efficiency and safety.

• Informal constraints, such as values and social norms, provide criteria for decision making, especially to balance taking risks and operating safely.

Innovation in HRT operations

- Constructive deviance and after-action reviews lead to improvements of formal constraints.
- There is some resistance to new technology and techniques (Duemmel, 2017)

Conclusions and Future Applications

• Constraints are essential to HRT success, though regulators and team leadership should be cautious of implementing formal constraints that impede teams.

• Highly Reliable Team training and development. Encourage mission reviews and feedback cycle.