Quaternions, Octonions, and Electromagnetism

By Ben Shaw Mentor: Dr. Charles Torre

Ben Shaw, Dr. Charles Torre

Student Research Symposium

April 8, 2019 1 / 9

Review: Real and Imaginary numbers

Real numbers (\mathbb{R}):

- $\bullet 1,2,3...$
- $\bullet \frac{1}{2}, \frac{7}{3}...$
- $\bullet \sqrt{2}, e \approx 2.718...$

Imaginary (Complex) numbers (\mathbb{C}):

 $\bullet i = \sqrt{-1}$

• General Form: a + bi, where $a, b \in \mathbb{R}$

Quaternions: III

- General Form: a + bi + cj + dk. Multiplication: $i^2 = j^2 = k^2 = ijk = -1$
- Noncommutative: $q_1q_2 \neq q_2q_1$ for $q_1, q_2 \in \mathbb{H}$
- Pure Quaternion: bi + cj + dk, called the imaginary part. Looks like $b\hat{x} + c\hat{y} + d\hat{k}$.
- $q_1 \cdot q_2 = \mathsf{Re}(q_1 \cdot q_2) + \mathsf{Im}(q_1 \cdot q_2).$
- \implies Dot product: $-\text{Re}(q_1 \cdot q_2)$
- \implies Cross product: Im $(q_1 \cdot q_2)$
- \bullet E & M: Given by Maxwell equations, originally expressed in terms of $\mathbb H.$ Vectors eventually became the convention.

Octonions: O

- General form: $a_0e_0 + a_1e_1 + a_2e_2 + a_3e_3 + a_4e_4 + a_5e_5 + a_6e_6 + a_7e_7$, where each $a_i \in \mathbb{R}$, and each $e_i^2 = -1$ except for e_0 , which is 1 (placeholder). Many multiplication tables exist.
- Not associative! i.e. $a(bc) \neq (ab)c$. Not commutative.
- Alternative: a(bc) = (ab)c iff either b = a or b = c. a(ac) = (aa)c, (ac)c = a(cc).
- Can we use octonions instead of 7+1 dimensional vectors in Electromagnetism? If so, why even bother?

Source-Free Octonionic Maxwell Equations

- Conjecture: ME's look the same.
- Some key vector identities hold true for Octonions. In particular, one that results in wave equations for both E and B. Solutions: $E = E_0 \cos(\mathbf{k} \cdot \mathbf{x} - \omega t)$. Similar for B.
- Maxwell Equations impose extra conditions: $\mathbf{B} = \frac{1}{\omega} \mathbf{k} \times \mathbf{E}$. Additionally, \mathbf{k} is perpendicular to both \mathbf{E} and \mathbf{B} .
- In order to compare to the Conventional theory, we will need to construct an Octonionic Faraday Tensor (Matrix). We use the same formulas as in 3+1 dimensional theory.
- \bullet We can express this Tensor purely in terms of components of ${\bf E}.$

Source-Free Conventional Maxwell Equations

- Conventionally, there is no vector field notion of B: no cross product.
- B is a Tensor (Matrix), part of $F_{\mu\nu}$: F_{ij} . Electric field: F_{i0} .
- Solutions to the conventional equations involve derivatives of A, the 8-dimensional vector potential. $F_{\mu\nu}$ is then written in terms of A.
- "Gauge freedom" allows us to choose ${\bf A}$ such that the divergence of ${\bf A}$ is zero. Then, we get wave equation solutions.

・ロト ・四ト ・ヨト ・ヨト

Comparison of Conventional and Octonionic theories

- Equal Components = Equal Tensors = Equal Theories
- \bullet Octonionic Faraday Tensor in terms of components of E, Conventional Faraday Tensor in terms of A.

• Well-defined function with a well-defined inverse using $E^{j} = \omega A^{j} - k_{j} A^{0}$.

 \bullet Note: only seven independent components of ${\bf A}$ due to choosing $A^{\nu}{}_{,\nu}=0.$

• Reminiscent of
$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla V.$$

- One can approach source-free, 7+1 dimensional electrodynamics conventionally or by way of Octonions.
- What about the general Maxwell Equations?
- What about Quantum Mechanics? Is GR + QM a matter of QM in various algebraic environments?
- Or are Octonions the solution to GR + QM? Dr. Cohl Furey

A D N A B N A B N

Questions?

Ben Shaw, Dr. Charles Torre

Student Research Symposium

▶ < E ▶ E ∽ Q C April 8, 2019 9/9

イロト イヨト イヨト イヨト