
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2019 

Structural Control of Thermal Fluid Circulation and Geochemistry Structural Control of Thermal Fluid Circulation and Geochemistry 

in a Flat-Slab Subduction Zone, Peru in a Flat-Slab Subduction Zone, Peru 

Brandt E. Scott 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Geology Commons 

Recommended Citation Recommended Citation 
Scott, Brandt E., "Structural Control of Thermal Fluid Circulation and Geochemistry in a Flat-Slab 
Subduction Zone, Peru" (2019). All Graduate Theses and Dissertations. 7469. 
https://digitalcommons.usu.edu/etd/7469 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7469&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=digitalcommons.usu.edu%2Fetd%2F7469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7469?utm_source=digitalcommons.usu.edu%2Fetd%2F7469&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


 

STRUCTURAL CONTROL OF THERMAL FLUID 

CIRCULATION AND GEOCHEMISTRY IN A 

FLAT-SLAB SUBDUCTION ZONE, PERU 

by 

Brandt E. Scott 

A thesis submitted in partial fulfillment 
of the requirements for the 

 
of 

 
MASTER OF SCIENCE 

 
in   

Geology 

 

Approved: 
 
 
 
 
 

Dennis Newell, Ph.D. Alexis Ault, Ph.D. 
Major Professor Committee Member 

 
 
 
 
 

Anthony Lowry, Ph.D. Richard S. Inouye, Ph.D. 
Committee Member Vice Provost for Graduate Studies 

 
 

UTAH STATE UNIVERSITY 
Logan, Utah 

2019 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Scott 2019 

All Rights Reserved 



 

ABSTRACT 
 
 
 

Structural Control of Thermal Fluid 

Circulation and Geochemistry in a 

Flat-Slab Subduction Zone, Peru 

by 

Brandt Scott, Master of Science 

Utah State University, 2019 

Major Professor: Dr. Dennis L. Newell 

Department: Geology 

 
Thermal spring geochemistry from the Cordillera Blanca and Huayhuash ranges in 

Peru reveal the influence of lithospheric-scale structures on hydrothermal fluid circulation. 

To test the influence of a major structure, such as the Cordillera Blanca detachment fault, 

thermal springs were targeted along the trace of the detachment fault (Group 1), within the 

hanging-wall of the fault (Group 2; western edge of Cordillera Blanca), on the east side of 

the Cordillera Blanca mountain range (Group 3), and in the Cordillera Huayhuash range 

(Group 4). Water and dissolved gas samples were acquired from all springs and analyzed 

for a suite of natural chemical and isotopic tracers. Group 1 and 2 springs yield dominantly 

brackish–saline, alkaline-chloride waters, with δ18OSMOW (−14.7 to −4.9 ‰) and δDSMOW 

(−113 to −74 ‰) values that suggest mixing with an isotopically distinct brine at depth. 

Cl/Br ratios in Group 1 and 2 springs are generally greater than seawater (> 647) and also 



 

support mixing with deep Cl-rich brine. In contrast, springs from Groups 3 and 4 exhibit a 

wide range of water types and plot along the global meteoric water line, suggesting a 

greater influence from shallow groundwater. Cl/Br ratios from Group 3 and 4 springs are 

typically lower than seawater (< 647) and are consistent with a dominant meteoric 

influence. A relatively narrow range of δ13CPDB values (-10.8 to -6.3 ‰) for dissolved 

inorganic carbon in Group 1 and 2 springs suggest mixing between organic and 

mantle/crustal carbon, compared to the wider range (-12.6 to -1.8 ‰) in Group 3 and 4 

springs that indicate the influence of marine carbonate-derived carbon. Calculated 

geothermometry temperatures of 91 to 226° C indicate deep flow-paths (up to 10 km) 

associated with Groups 1 and 2. Alternatively, Groups 3 and 4 yield geothermometry 

temperatures (40 – 98° C) that correspond to much shallower circulation (< 4 km), likely 

explaining the geochemical differences between Groups 3 and 4 versus Groups 1 and 2. 

Collectively, these datasets suggest that a network of permeability pathways between 

springs along the detachment (Group 1) and in its hanging-wall (Group 2) act as a structural 

control on hydrothermal fluids and accommodates deep fluid circulation. 

(72 pages) 



 

PUBLIC ABSTRACT 
 
 
 

Structural Control of Thermal Fluid 

Circulation and Geochemistry in a 

Flat-Slab Subduction Zone, Peru 

Brandt Scott 

Hot spring geochemistry from the Peruvian Andes provide insight on how faults, 

or fractures in the Earth’s crust, are capable of influencing fluid circulation. Faults can 

either promote or inhibit fluid flow and the goal of this study is test the role of a major fault, 

such as the Cordillera Blanca detachment, as a channel for transporting deep fluids to the 

surface. Hot springs are abundant in the Cordillera Blanca and Huayhuash ranges in Peru, 

and several springs issue along the Cordillera Blanca detachment, making this region an 

ideal setting for our study. To test the role of the Cordillera Blanca detachment, hot springs 

were sampled along the trace of the fault (Group 1), the western edge of the Cordillera 

Blanca (Group 2), the eastern side of the Cordillera Blanca (Group 3), and in the Cordillera 

Huayhuash (Group 4). Water and dissolved gas samples were collected from a total of 25 

springs and then analyzed for an array of geochemical parameters. Distinct fluid 

chemistries from Groups 1 and 2 suggest that the Cordillera Blanca detachment and 

adjacent minor faults to the west intersect at depth and provide a preferential flow path for 

deep fluid circulation. Understanding the influence of faults on fluid flow is essential for 



 

many disciplines (e.g. oil exploration, hydrology), and this work demonstrates that fluid 

geochemistry is an excellent tool for assessing the role of faults on fluid distribution. 
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1. Introduction 
 
 

1.1 Overview 
 

Thermal springs emanating along faults provide a geochemical window into fluid 

provenance, circulation pathways, and the influence of faults on fluid migration. Faults can 

act as conduits or barriers to fluid flow, thereby affecting the distribution, circulation depth, 

and overall geochemistry of aqueous fluids in the continental lithosphere (Hooper, 1991; 

Caine et al., 1996; Bense and Person, 2006). For example, fracture systems can provide 

effective pathways for the deep circulation of meteoric water, and its return to the surface 

in a hot spring (Nelson et al., 2009). Chemical and isotopic tracers from hot springs reflect 

processes occurring along the flow-path and can constrain the influence of faults on fluid 

flow. Geochemical studies of hot springs along strike-slip fault systems (California, 

Kennedy et al., 1997; Anatolia, Turkey; Mutlu et al., 2008; Himalayas, Klemperer et al., 

2013) demonstrate these faults can act as deep conduits, transferring mantle-derived fluids 

(mantle-He) to the surface, in the absence of active volcanism. In the case of an active 

extensional setting, 3He/4He ratios measured in hot springs from the Basin and Range of 

the western U.S. show the presence of mantle volatiles increasing with increasing strain 

rate and are attributed to transit along deeply-penetrating normal faults (Kennedy and van 

Soest, 2007). 

A recent study measured up to 25% mantle-He from hot springs along the 

Cordillera Blanca detachment (CBD) fault in a modern day flat-slab subduction zone in 

Peru (Newell et al., 2015) (Figs. 1, 2). Unlike typical “steep” subduction, which generates 

melt in the mantle via slab dehydration, flat-slab subduction eliminates the mantle wedge 
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and suppresses arc volcanism (Barazangi and Isacks, 1976; Pilger, 1981; Gutscher et al., 

2000; Ramos and Folguera, 2009). This amount of mantle-He is therefore unexpected for 

a flat-slab region devoid of magmatism over the last ~5 Ma (Giovanni et al., 2010; Newell 

et al., 2015; Margirier et al., 2016). Geophysical imaging from the Peruvian flat slab 

suggests tearing along part of the slab just north of the Nazca ridge, and the likely presence 

of upwelling asthenosphere into the tear region (Antonijevic et al., 2015). Mantle-He in the 

Cordillera Blanca is hypothesized to originate from either a tear-induced contact with the 

asthenosphere, or from slab-derived lithospheric mantle volatiles mobilized by 

metasomatic fluids (Newell et al., 2015). The mechanism and/or process responsible for 

transferring these deep-seated mantle volatiles to the surface is still largely unknown. 

The CBD is a major structural control in the Cordillera Blanca, capable of either 

inhibiting or promoting the migration of deep-seated fluids. The goal of this study is to test 

the role of the CBD as a channel for fluid migration, transferring deeply sourced fluids 

(including mantle volatiles) to the surface. The penetration depth of the CBD is poorly 

constrained, with an interpreted depth of at least ~10 km based on microseismicity 

(Deverchere et al., 1989). However, the structure has exhumed mylonites with deformation 

temperatures and pressures suggesting penetration deeper than the brittle-ductile transition 

(>15 km) (Hughes et al., in review). To complement the limited geophysical data, we 

investigate aqueous and stable isotope geochemistry of thermal springs located along the 

trace of the CBD, the hanging-wall of the CBD, east of the Cordillera Blanca mountain 

range, and in the Cordillera Huayhuash. Springs along the fault trace and in the hanging- 
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wall of the CBD are hypothesized to connect to hydrothermal fluids in the fault zone via 

fault-controlled high permeability flow (Newell et al., 2015). In this contribution, we build 

on prior work along the CBD (Newell et al., 2015), with new aqueous, gas, and stable 

isotope geochemistry data from hot springs throughout the region. We frame the data as a 

function of geographic location, highlight notable differences and similarities between hot 

springs, and explore the potential influence of lithospheric-scale structures on deeply 

circulating fluids in the Peruvian Andes. 

 
 
 

2. Geologic Setting 
 
 

2.1 Cordillera Blanca and Cordillera Huayhuash 
 

The Cordillera Blanca (CB) is a northwest trending massif that primarily comprises 

a Neogene granodiorite with lesser ignimbrites representing the last magmatic event to 

occur in this part of Peru (~5 Ma; Giovanni et al., 2010) (Fig. 2). Jurassic shales and 

phyllites, in addition to Cretaceous carbonates and quartzites, are primarily exposed on the 

eastern and southern margins of the CB (Fig. 2). There are also exposures of Jurassic and 

Cretaceous units capping the CB batholith (Giovanni et al., 2010). At the time of 

emplacement (~14 - 5 Ma; Margirier et al., 2016), the CB batholith intruded Jurassic and 

Cretaceous sedimentary rock, of the Eocene Marañon Fold and Thrust Belt (Megard, 1984; 

Petford and Atherton, 1996). Later compressional events (Quechua events) occurred at ~20 

Ma, ~9 Ma, and ~6-3 Ma, interspersed with periods of tectonic quiescence and extension 
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(Megard, 1984). The west side of the CB is cut by the Cordillera Blanca detachment fault 

(CBD), which strikes roughly parallel to the batholith exposure. 

The Cordillera Huayhuash (CH), ~60 km southeast and along strike of the CB, is an 

analogous massif exhibiting similar rock types, elevation, and tectonic history as the CB 

(Garver et al., 2005) (Fig. 2). Notably, the CB and CH contain the highest (Huascaran, 

6,655 m) and second highest peaks (Nevado Yerupaja, 6,634 m) along the Peruvian Andes, 

respectively. The CH predominantly comprises Cretaceous carbonates with smaller 

amounts of Early-Mid Tertiary volcanic rocks, all intruded by Miocene granitic plutons 

(Coney, 1971; Garver et al., 2005). A chain of Miocene plutons can be traced from the CH, 

north into the CB, suggesting related intrusive events. Additionally, silicic volcanism at ~6 

Ma, denoted the Puscanturpa volcanics, are exposed and correlated to Late Miocene 

Yungay volcanics in the CB (Garver et al., 2005). Similar geology and topography suggest 

that the CH is a southern extension of the CB, yet the CH apparently lacks extensive normal 

faulting analogous to the CBD (Fig. 2). This distinction and presence of thermal springs in 

the CH provide an excellent test for structural control on fluid circulation in active orogens. 
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Figure 1. Variable subduction styles along the Andean arc, highlighted by arc volcanoes, 
interspersed with flat-slab segments. Black rectangle denotes study area where elevated 
3He/4He ratios were measured from hot springs along the CBD (Newell et al., 2015). Inset 
displays extensive relief exhibited by the CBD (Photo: Dennis Newell). 

 
 
 

2.2 Extension in the Cordillera Blanca 
 

The NNW trending CBD extends ~200 km in length and dips WSW, ranging from 

19° in the south to 36° in the north (Giovanni et al., 2010) (Fig. 2). Exposures of the 

detachment, north of Huaraz, exhibit mylonite zones and vertical relief up to 2.5 km 
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(Giovanni et al., 2010) (Figs. 1, 2). The fault breaks into smaller segments, terminating ~80 

km to the SSE of Huaraz (Fig. 2). 40Ar/39Ar biotite dates from the hanging-wall indicate 

the onset of extension and faulting at ~5.4 Ma (Giovanni et al., 2010), followed by rapid 

batholith exhumation from ~5 to 2 Ma (Margirier et al., 2016). 

Some research groups interpret CBD development as the result of gravitational 

collapse of a thickened crust (Deverchère et al., 1989; Petford and Atherton, 1992). This 

hypothesis however does not explain the lack of faulting in the CH, which is located 

southeast of the CB (~60 km) and exhibits a similar crustal thickness. Alternatively, 

extension and faulting along the CB may be linked to coupling of the overlying plate with 

the under-riding Nazca ridge at ~5 Ma (McNulty and Farber, 2002) (Fig. 1). This 

hypothesis proposes that buoyancy forces associated with the subducted Nazca ridge are 

sufficient to cause regional surface uplift and induce faulting. However, if the Nazca ridge 

subducted under the CB at ~15 Ma, then this challenges the veracity of the previous model 

(Rosenbaum et al., 2005; Margirier et al., 2015). Thermokinematic modeling of the final 

stages of batholith exhumation link intrusive-related strain in the western flanks of the CB 

with the initiation of the CBD at ~5.4 Ma (Margirier et al., 2016). Causes of extension in 

this subduction setting remain largely speculative and the initiation of the CBD is likely 

due to a combination of these factors. Regardless, the CBD is a significant structure in our 

study area and likely plays a major role in controlling the distribution of hydrothermal 

fluids. 



7 
 

 
Figure 2. Thermal springs investigated along the Cordillera Blanca detachment (yellow 
triangles; Group 1), the hanging-wall (red triangles; Group 2), the footwall of the Cordillera 
Blanca (purple triangles; Group 3), and the Cordillera Huayhuash region (blue triangles; 
Group 4). These data are combined with previously published geochemistry data from the 
Cordillera Blanca (*) (Newell et al., 2015). Temperature, Cl isotope ratios, and 3He/4He 
(RC/RA) values are shown (this study; Newell et al., 2015). Surface geology modified from 
CB: Giovanni et al. (2010), CH: Cobbing et al. (1997). 
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3. Methods 
 
 

3.1 Thermal spring sample targets and processes 
 

New aqueous and stable isotope geochemistry data were acquired from 18 thermal 

springs located along the hanging-wall of the CBD, the footwall of the CBD, and the CH 

range (Fig. 2). These data are combined with previously published data from seven thermal 

springs along the trace and hanging-wall of the CBD (Newell et al., 2015). Here we report 

new geochemical data from 25 thermal springs in total, including duplicate samples from 

Baños Olleros and Baños Huancarhuaz (Table 1). To simplify the discussion of the results, 

we subdivide the springs into four groups based on geographic location. Group 1 (n = 4) 

are springs emanating along the trace of the CBD and Group 2 (n = 8) are springs located 

in the hanging-wall of the CBD (Fig. 2). Group 3 (n = 6) comprises springs to the east of 

the CB massif and Group 4 (n = 7) are springs located southward into the CH (Fig. 2). This 

subdivision allows us to objectively evaluate the role of lithospheric scale structures, like 

the CBD, on fluid pathways. 

All springs were sampled as close to the source as possible to reduce the effect of 

cooling, degassing, atmospheric exchange, and evaporation at the surface. In several 

locations, we observed discharge as a group of spring emanations that may be controlled 

by a combination of localized structures and/or permeability variations. In these cases, field 

parameters (T, pH, conductivity) were used to screen sample locations, and generally the 

location with the highest temperature and/or conductivity was chosen for sampling (Table 
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1). Additional water samples were acquired at Baños (Huancarhuaz, Aquilina, Olleros, 

Pomabamba and Rupac) for oxygen and hydrogen stable isotope analysis (Table A4). 

Techniques derived from methods used at volcanic arc settings and continental 

hydrothermal systems were used to sample thermal springs (e.g., Hilton et al., 2002). 

Temperature, pH, and conductivity of spring waters were measured in the field using an 

Oakton pH/cond/T portable meter (Fig. 3). Samples for water major and trace element 

chemistry, stable isotope ratios of oxygen, hydrogen, and chlorine were collected in 60 and 

125-ml high-density polyethylene bottles (cation samples filtered with 0.45 µm disposable 

filters; anions and alkalinity collected unfiltered with no headspace). Cation samples were 

acidified with trace-metal grade HNO3 in the lab immediately following fieldwork. Carbon 

stable isotope samples were collected in 30 ml amber glass vials with no headspace, and 

cold meteoric water was collected in 12 ml glass septa vials with no headspace. Water 

samples for helium isotope analyses and gas compositions were collected in ~12 X 3/8 in. 

O.D. annealed Cu tubing, cold-sealed with refrigeration clamps (Hilton et al., 2002) (Fig. 
 

4). 
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Figure 3. Field measurement of temperature, pH, and conductivity using an Oakton 
portable meter at Baños Conococha. 

 
 
 
 
 
 

Figure 4. Collection of water sample using Cu tubing equipped with refrigeration clamps 
at Baños Chavin. 
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3.2 Analytical techniques 
 

Oxygen, hydrogen, and carbon stable isotope ratios were measured at the Utah State 

University (USU) Stable Isotope Laboratory by continuous flow-isotope ratio mass 

spectrometry (CF-IRMS) using a ThermoScientific Delta V Advantage IRMS and 

Gasbench II. CO2 equilibration and H2 equilibration with Pt reduction methods were used 

to acquire δ18O and δD values, respectively. Results are reported in per mil (‰) relative to 

Standard Mean Ocean Water (SMOW) based on internal laboratory standards, calibrated 

using Vienna Standard Mean Ocean Water (VSMOW) and Vienna Standard Light 

Antarctic Precipitation (VSLAP). δ18O and δD uncertainties were ±0.06‰ and ±2.0‰, 

respectively. 

Carbon stable isotope (δ13C) values were measured from dissolved inorganic 

carbon in spring water samples using a modified phosphoric acid method (Salata et al., 

2000). We modified this method by acidifying the water to liberate CO2, and calibrating 

using international standards (NBS 19, LSVEC), and the principle of identical treatment. 

The principle of identical treatment involves making a dissolved DIC standard of NaHCO3, 

and calibrating it to solid-phase NaHCO3. Results are reported in per mil (‰) relative to 

the Pee Dee Belemnite (PDB) scale, with an uncertainty of ±0.1‰, determined by repeat 

analysis of NBS carbonate standards. 

All of the newly sampled springs (n = 12) and six of the springs sampled in 2015 

were analyzed for chlorine stable isotope ratios (Table A5). Chlorine stable isotope ratios 

(δ37Cl) were measured by IRMS equipped with a CH3Cl purification line at the University 
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of Texas, Austin (Barnes et al., 2009). δ37Cl values are reported in per mil (‰) relative to 

Standard Mean Ocean Chlorine (SMOC) based on internal laboratory standards. Analytical 

precision of δ37Cl is ±0.2‰, based on long-term analyses of three seawater standards and 

one rock standard. Dissolved gas compositions were measured at the Volatiles Laboratory, 

University of New Mexico (UNM) by quadrupole mass spectrometry and gas 

chromatography. 

Major and minor element concentrations were determined at the USU Water 

Research Laboratory using a Dionex Ion Chromatograph (anions) and Agilent ICP-MS 

(cations). Geochemist’s Workbench (Bethke, 2008) was used to calculate charge balances, 

saturation indices, and total dissolved solids. Total alkalinity was measured by manual 

colorimetric titration. 

3.3 Geothermometry 
 

Conventional SiO2, Na-K, Na-K-Ca, and K-Mg geoindicators (geothermometers) 

were utilized to estimate subsurface reservoir temperatures for each thermal spring. These 

reservoir temperatures are empirical calculations based on the assumption of water-rock 

chemical equilibrium at depth, and the preservation of equilibrium during migration to the 

surface (Fournier, 1977; Giggenbach, 1988). Silica geothermometers are based on the 

solubility of silica species (i.e. quartz, chalcedony) in water, as a function of temperature 

and pressure (Fournier, 1977). Thus, silica precipitation along flow paths can cause 

problems in the confidence of this geothermometer. The quartz geothermometer is best 

suited for reservoir temperatures >150°C and the chalcedony geothermometer is a better 



13 
 

approximation for temperatures <150°C. The Na-K cation geothermometer is based on the 

equilibrium between hydrothermal fluids and feldspars, and Na-K-Ca reflects equilibrium 

for feldspars and calcite (Giggenbach, 1988). The advantage to the Na-K geothermometer 

is that it re-equilibrates more slowly than the silica geothermometer, and can reveal 

temperatures from the deepest section of the reservoir (Giggenbach, 1988). The Na-K 

geothermometer is most applicable to waters with reservoir temperatures >100 °C and 

minimal Ca (log[Ca1/2/Na] + 2.06 <1) content (Fournier and Trusdell, 1973). The Na-K- 

Ca geothermometer is designed for higher concentrations of Ca and assumes the total 

conversion of Ca-plagioclase to calcite (Fournier and Truesdell, 1973). Unlike the Na-K 

and Na-K-Ca geothermometers, the K-Mg geothermometer re-equilibrates rapidly at cooler 

temperatures, thereby preserving a cooler and likely shallower reservoir signal 

(Giggenbach, 1988). The K-Mg geothermometer is also more influenced by mixing with 

shallow ground waters containing dissolved Mg. Differences and similarities between 

geothermometry temperatures can provide valuable information about the circulation depth 

and degree of fluid-rock interaction in thermal spring fluids. 

 
 
 

4. Results 

 
4.1 Aqueous geochemistry 

 
Apparent flow rate and degassing (bubbling at source) varied between springs, and 

temperature, pH, and conductivity range from 16.9 – 88.9 °C, 5.0 – 7.9, and 170 – 23,000 

μS, respectively (Table 1). Major element compositions are highly variable. However, all 
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4 

Group 1 springs and majority of Group 2 springs exhibit Na-Cl type waters (Fig. 5). In 

contrast, Group 3 and Group 4 springs display a wide range of water types (Na-HCO3, Ca- 

SO4, Ca-Cl, Na-Cl, Ca-HCO3) (Fig. 5). Springs from Groups 1 and 2 yielding Na-Cl water 

types are distinguished by relatively high concentrations of total dissolved solids (TDS) 

(up to 15,357 mg/l). Groups 3 and 4 yield <1,000 mg/l in TDS (excluding Baños Jocos 

Peinado; Fig. 6). Group 3 spring, Jocos Peinado yields Ca-SO4 water, containing 2,814 

mg/l in TDS and the highest concentration of SO 2- (1,452 mg/l) among the 25 spring 

samples analyzed (Fig. 6). 
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Table 1. Sample ID, location, and field parameters for hot springs in the Cordillera Blanca 
and Cordillera Huayhush, Peru. 
Group/Location 

(Baños) Sample ID Latitude Longitude Elevation (m) T (°C) pH Cond. 
(uS) 

Group 1        

Huancarhuaz DN13CB11 -8.94365 -77.78461 2721 73.3 6.22 5120 
Aquilina DN13CB14 -8.61294 -77.88359 1930 78.3 6.26 2130 

Huancarhuaz DNCB15-08 -8.9415 -77.7853 2721 69.9 6.4 5750 
Pacatque DNCB15-10 -8.61294 -77.88359 - 88.9 6.84 2280 
Group 2        

Olleros 2b DN13CB05 -9.6683 -77.46262 3453 20.4 6.56 23200 
Olleros 4 DN13CB06 -9.6673 -77.46327 3432 47.8 6.49 21500 
Merced DN13CB07 -9.2591 -77.61185 3002 38.4 5.03 723 
Chancos DN13CB08b -9.31958 -77.57518 2863 47.6 6.22 6020 

Monterrey DN13CB09 -9.46841 -77.53543 2983 46.4 5.89 6240 
Shangol DN13CB13 -8.98458 -77.81697 2214 39.6 6.01 1025 

Pumapampa DNCB15-12 9.880278 77.286389 4185 19.2 5.95 3970 
Recuay DNCB15-13 -9.718 -77.459 - 16.9 6.81 14380 

Group 3        
Aticara DNCB15-11 -8.6125 -77.8836 2662 36.6 8.87 170 

Pomabamba DNCB17-2 -8.826 -77.46 2910 50.5 6.62 468.2 
Chihuan DNCB17-6 -8.672 -77.634 3304 36.5 7.02 606.6 
Rupac DNCB17-9 -8.595 -77.566 2443 61.5 6.18 229.5 

Jocos Peinado DNCB17-13 -8.295 -77.488 1591 40.6 6.31 3332 
Chavin DNCB17-21 -9.611 -77.182 3214 41 7.47 1406 

Group 4        

Conococha DNCB17-24 -10.129 -77.289 4026 28 7.98 233.1 
Azulmina DNCB17-25 -9.938 -76.963 3870 70.7 5.96 1452 

Taurimpampa DNCB17-30 -9.847 -76.817 3244 45.3 6.24 1387 
Banos (Batan) DNCB17-32 -10.048 -76.722 3390 64.7 5.71 940.3 

Conoc (La Union) DNCB17-36 -9.781 -76.805 3175 42.2 6.68 376.7 
Machaycancha (Conog) DNCB17-37 -10.164 -76.811 3835 44.6 6.4 567.6 

Janac DNCB17-38 -10.154 -76.902 4343 51.5 6.48 720.3 
- not determined 
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Figure 5. Spatial relation of thermal spring water types as a function of the CBD. Legend 
(top-right) denotes major element constituents represented by Stiff diagrams. The shape of 
the Stiff diagrams corresponds to the relative concentration of major elements in each water 
sample. Springs along the trace and in the hanging-wall of the CBD (left) are characterized 
as Na-Cl type waters, with concentrations up to 200 meq/kg. Springs in the footwall of the 
CBD and in the Cordillera Huayhuash (right) exhibit a variety of water types with 
significantly lower concentrations. Several springs from each group are represented to 
highlight trends, but not all samples are shown. Arsenic (As) concentrations are also shown 
for reference. 
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Figure 6. Piper diagram (Piper, 1944) illustrating the major ion chemistry in thermal 
springs divided into groups based on geographic location. In the middle parallelogram, the 
total dissolved solids (TDS, mg/kg) are scaled by circle size. Note that the Group 1 and 2 
springs are dominated by Na-Cl water types and have much higher TDS than Group 3 and 
4 springs. Red-shaded areas highlight Na-Cl dominated waters. 

 
 
 

Additional halogen data (Br, and o37Cl) were measured from a subset (n = 18 of 
 

25) of thermal springs to evaluate salinity sources. Spring waters exhibit a range of 

chloride-bromide (Cl/Br) molar ratios, with Group 1 (626 – 1148) and Group 2 (1038 – 

1410) springs generally yielding ratios higher than Group 3 (228 – 1095) and Group 4 (331 

– 586) springs (Table A5). This distinction is illustrated in Figure 7A, where Group 1 and 

2 springs have ratios higher than seawater and Group 3 and 4 springs contain ratios lower 

than seawater (excluding Baños Chihuan). Halogen data from thermal springs emanating 
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along other representative active volcanic arcs (Taupo Volcanic Zone - New Zealand, 

Bernal et al., 2014; Cascade arc, Cullen et al., 2015), are included for comparison (Fig. 7). 

Cl/Br ratios from arc-related springs overlap and plot similarly to Cl/Br ratios of Group 1 

and 2 springs (Fig 7A). Baños Recuay contains substantially more Cl- (6019 mg/l) than 

most springs and plots as a horizontal deviation from other springs in Figures 7B and 7D. 
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Figure 7. Evaluation of salinity sources in hot springs along the Cordillera Blanca and 
Huayhuash. Other arc-related systems are shown for reference to aid in interpreting data 
(Bernal et al., 2014; Cullen et al., 2015). A) Cl- vs. Br-, with the molar ratio of seawater 
(Cullen et al., 2015) and Midwestern U.S. precipitation (Panno et al., 2006) denoted by 
dashed lines. Group 1 and 2 springs generally exhibit Cl/Br ratios greater than seawater, 
consistent with other arc-related springs. B) Group 1 springs fall on a mixing trend between 
a saline and dilute end-member on a plot of Cl/Br vs. Cl-. Cl- and Cl/Br end-members that 
are most sensitive to the data are: 3.5 mM and 50 for dilute water and 100 mM and 1,200 
for saline source. We consider Baños Recuay an outlier to the data, with a significantly 
higher Cl- concentration, and thus not included in the fit of the mixing trend (see text for 
discussion). C) Data from this study and arc-related springs exhibit a positive correlation 
between δ18O values and Cl- content. D) Cl-source ternary mixing model (after Li et al., 
2015), displaying high variability among Cl sources in data from this study and arc-related 
springs. Cullen et al., (2015) suggests that basalts (star) in the Cascade Range control δ37Cl 
values, but that an additional source or process (X) are required to account for the full range 
of values. 
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Trace element concentrations vary between springs, but notable constituents across 

all groups include aluminum, iron, zinc, antimony, titanium, and arsenic (Table A3). Group 

1 and 2 springs generally yield higher concentrations of trace elements than Group 3 and 4 

springs (Table. A3). For example, Group 1 springs contain up to 10,800 ppb arsenic (As) 

and Group 2 springs contain up to 2,600 ppb As; compared to Group 3 (up to 200 ppb As) 

and Group 4 (up to 600 ppb As) springs. Sr and Ba are positively correlated with Cl- 

concentration (Fig. A1). 

4.2 Stable isotope geochemistry 

 
New oxygen (δ18O) and hydrogen (δD) stable isotope ratios were acquired from CB 

and CH hot springs (n = 21, including duplicates), and combined with previously published 

spring data (n = 9, including duplicates; Table 2; Newell et al., 2015). Investigated hot 

spring groups range in δ18O and δD from -14.4 to -12.6 and -113 to -94 ‰ (Group 1), - 

14.7 to -4.9 and -111 to -74 ‰ (Group 2), -15.3 to -13.1 and -116 to -94 ‰ (Group 3), and 

-16.8 to -14.4 and -130 to -115 ‰ (Group 4), respectively (Table 2). A majority of springs 

from Groups 1, 3, and 4 display an affinity to meteoric water and plot along the Global 

Meteoric Water Line (GMWL) (Fig. 8A). More specifically, Group 4 springs fall contain 

the lowest values along the GMWL (Fig. 8A). In contrast, Group 2 springs possess δ18O 

ratios higher than meteoric water and δD ratios below the GMWL and define a trendline 

with a slope of 3.1 (R2 = 0.87) (Fig. 8A). Collectively, δ18O ratios from all investigated hot 

springs exhibit a positive relationship with increasing Cl- concentration (Fig. 7C). δ18O 

ratios and Cl-  content from arc-related springs show a similar correlation and Cascade-arc 
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springs overlap with Group 1 and 2 springs from this study (Bernal et al., 2014; Cullen et 

al., 2015) (Fig. 7C). 

We also report δ18O and δD ratios from streams and ponds (n = 5) representative of 

local meteoric water. These ratios from local meteoric water are combined with values 

reported by Newell et al. (2015) and Mark and McKenzie (2007) to assess a general 

signature of local waters in the CB and CH region (Fig. 8A). Stable isotope ratios from 

Mark and McKenzie (2007) comprise glaciated and non-glaciated waters strictly from the 

CB. Note that two samples of meteoric water contain similar δ18O and δD ratios as springs 

in Group 2 (Fig 8A). One of these samples is sourced from a small pond (~3 m in diameter) 

near the town of Quiches (this study), and the other is sourced from a highly evaporitic lake 

(Lake Conococha), near the town of Conococha (Mark and McKenzie, 2007) (Fig. 2). 
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Figure 8. A) δ18O versus δD for thermal springs and cold local meteoric water in the 
Cordillera Blanca region. Group 2 springs form a linear trend to values higher than local 
meteoric water and Group 1, 3, and 4 springs fall along the GMWL. B) δ13C (dissolved 
inorganic carbon) and δ18O of springs in the Cordillera Blanca and Huauyhuash. Disparities 
in the range of δ13C and δ18O between springs groups are highlighted. 
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Carbon (δ13C) stable isotope ratios in dissolved inorganic carbon were measured 

from a subset (n = 22 of 30) of thermal spring water samples (Table 2). Groups 1 and 2 

exhibit a distinct relationship in their δ13C vs. δ18O ratios, compared to Groups 3 and 4. 

Group 1 and 2 springs yield a relatively narrow range in δ13C ratios (-10.8 to -6.3 ‰) and 

wide range in δ18O ratios (-14.7 to -4.9), compared to Group 3 and 4 springs that yield a 

wider range in δ13C ratios (-12.6 to -1.8 ‰) and narrower range in δ18O ratios (-16.8 to - 

13.8) (Fig 8B; Table 2). 

We report chlorine (δ37Cl) stable isotope ratios from a subset (n = 18 of 30) of 

spring samples that range from -0.6 to 0.7 ‰ (Table 2), exhibiting no apparent trends with 

geographic location (spring groups). There are also no significant correlations between 

δ37Cl ratios and temperature, Cl- concentrations, or δ18O values (Fig. A2). δ37Cl and Cl- data 

from this study are compared to a Cl-source ternary mixing model (Li et al., 2015), 

alongside similar data from arc-related hot springs (Taupo Volcanic Zone - New Zealand, 

Bernal et al., 2014; Cascade arc, Cullen et al., 2015) (Fig. 7D). We observe some variability 

in our δ37Cl data; however, springs from comparative studies show similar to even more 

variability (Fig. 7D). 
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Table 2: Stable isotope ratios (O, H, C, Cl) measured from springs in the CB and CH 
ranges. 

Thermal Spring 
(Baños) 

Sample ID Elevation 
(m asl) 

o18O (‰) 
SMOW 

oD (‰) 
SMOW 

o13C 
(‰ ) 
PDB 

o37Cl (‰) 
SMOC 

Group 1       
Aquilina DN13CB14 1930 -14.2 -107.3 -10.7 - 
Huancarhuaz DNCB15-7 - -13.6 -105.9 -10.8 0.1 
Huancarhuaz DNCB15-8 2721 -12.6 -94.4 - -0.3 
Aqulina DNCB15-9b 1884 -14.4 -112.9 - -0.5 
Pacatque DNCB15-10 - -14.3 -102.6 - 0.4 
Group 2       
Olleros 1 DN13CB04 3464 -7.8 -81.1 - - 
Olleros 2b DN13CB05 3453 -6.4 -74.3 -7.8 - 
Olleros 4 DN13CB06 3432 -4.9 -79.8 -10.3 - 
Merced DN13CB07 3002 -12.6 -94.4 -6.3 - 
Chancos DN13CB08a 2863 - - -9.0 - 
Chancos DN13CB08b 2863 -10.5 -85.9 -9.7 - 
Monterrey DN13CB09 2983 -10.2 -87.7 -10.0 - 
Shangol DN13CB13 2214 -13.0 -98.5 - - 
Pumapampa DNCB15-12 4185 -14.7 -111.0 - 0.1 
Recuay DNCB15-13 - -6.3 -78.8 - -0.4 
Group 3       
Aticara DNCB15-11 2662 -13.1 -93.9 - - 
Pomabamba DNCB17-1 2901 -14.3 -104.2 -4.3 - 
Pomabamba DNCB17-2 2910 -14.5 -110.1 -3.4 0.2 
Chilhuan DNCB17-6 3304 -14.9 -109.7 -10.2 -0.1 
Rupac DNCB17-7b 2360 -15.2 -107.3 -9.3 - 
Rupac DNCB17-9 2443 -15.3 -112.6 -8.2 0.7 
Jocos Peinado DNCB17-13 1591 -13.8 -103.3 -2.2 -0.6 
Chavin DNCB17-21 3214 -14.6 -116.1 -2.7 0.2 
Group 4       
Conococha DNCB17-24 4026 -14.9 -117.8 -12.6 0.3 
Azulmina DNCB17-25 3870 -16.0 -123.9 -1.8 0.1 
Taurimpampa DNCB17-30 3244 -14.4 -114.5 -1.9 0.2 
Banos (Batan) DNCB17-32 3390 -16.8 -129.9 -3.5 0 
Conoc (La Union) DNCB17-36 3175 -15.3 -118.2 -6.0 -0.1 
Machaycancha DNCB17-37 3835 -16.1 -120.3 -8.0 -0.2 
Janac DNCB17-38 4343 -16.6 -125.4 -7.7 0.1 

-not determined 
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4.3 Gas geochemistry 

 
Dissolved gas compositions (water vapor free) in water samples from a subset (n = 

11 of 25) of hot spring samples are reported in Table A6. Major volatile compositions are 

dominated by CO2 (17 – 96 mol %) and N2 (3 – 87 mol %). We also observe lesser amounts 

of O2 (< 4 mol %), Ar (< 2 mol %), CH4 (<1.5 mol %), He (<0.5 mol %), H2 (<0.2 mol %), 

and CO (<0.01 mol %). Hot spring samples fall on a mixing line between a mantle/crust 

origin and meteoric end-member (Fig. 9). Two Group 3 springs, Rupac and Jocos Peinado, 

contain undetectable amounts of dissolved He, and therefore plot on the Ar – N2 tie line 

(Fig. 9). In order to quantify the mantle versus crustal contributions, additional isotopic 

data are required, such as 3He/4He ratios. 
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Figure 9. Inert gas ternary diagram, depicting relative abundance of He, N2, and Ar (after 
Giggenbach, 1992). Air and air-saturated water (ASW) are plotted for reference. Gases 
from investigated hot springs primarily fall along a mixing line between crust/mantle and 
meteoric water. 

 
 

4.4 Geothermometry 

 
Reservoir temperatures from a subset (n = 23 of 25) of CB and CH hot springs are 

estimated using silica and various cation geothermometers (Fournier and Truesdell, 1973; 

Fournier, 1977; Arnorsson et al., 1983; Giggenbach, 1988). Several distinctions between 

geothermometers are observed across all spring groups. Springs, excluding Baños 

Huancarhuaz, yield quartz geothermometer temperatures <150 °C, making the chalcedony 

geothermometer more applicable (Fournier, 1977) (Table 3). Hot spring temperatures 



27 
 

provided by the chalcedony geothermometer (36 – 141 °C) are relatively lower than their 

corresponding Na-K (120 – 351 °C) and Na-K-Ca (40 – 245 °C) geothermometry 

temperatures (Table. 3). Note that dissolved silica was not measured on the 2015 samples, 

and thus silica temperatures are not calculated for these 5 springs (Table 3). The majority 

of reservoir temperatures provided by the K-Mg geothermometer (44 – 172 °C) are also 

lower than corresponding Na-K and Na-K-Ca temperature estimates (Table. 3). 

Reservoir temperature estimates are also observed to vary between spring groups. 

Surface temperatures from all Group 1 springs (73 – 89 °C) are notably higher than Group 

2 (17 – 48 °C), Group 3 (37 – 62 °C), and Group 4 (28 - 71 °C) springs (Table 3). Reservoir 

temperatures calculated using the Na-K-Ca geothermometer are generally higher in Group 

1 (152 - 226 °C) and Group 2 (91 – 245 °C) springs, than in Group 3 (42 – 79 °C) and 

Group 4 (40 – 98 °C) springs (Table 3). This relationship is also exhibited by temperatures 

calculated with the K-Mg geothermometer: Group 1 (121 – 167 °C) and Group 2 (71 – 172 

°C), versus Group 3 (45 – 65 °C) and Group 4 (44 – 77 °C) (Table 3). 

 
A ternary comparing Na-K and K-Mg geothermometers (Giggenbach, 1988), 

shows that several Group 1 and 2 springs plot in the “partial equilibrium field”, yielding 

Na-K temperatures from 200 – 275 °C and K-Mg temperatures from 71 – 172 °C (Fig. 10). 

All of the Group 3 and 4 springs plot as “immature waters” with unreliable reservoir 

temperatures and proportionally higher amounts of dissolved Mg (Fig. 10). Additionally, 

four springs from Groups 3 and 4, Baños (Rupac, Conoc, Machayacancha, and Janac), yield 

Na-K-Ca temperatures that are lower than their corresponding surface temperature 
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(Table 3). We observe this same contradicting relationship from the chalcedony 

geothermometer (Jocos Peinado, Chavin, Batan) and K-Mg geothermometer (Rupac, 

Azulmina), strictly among the Group 3 and 4 springs (Table 3). Reservoir temperature 

estimates that are erroneously low is a common result of thermal fluid disequilibrium from 

a meteoric influence (Yock, 2009; Karingithi, 2009). 

Table 3. Reservoir temperatures calculated using silica and cation geothermometers. 
Thermal 
Springs (Baños) 

Surface 
Temp 
(°C) 

Quartz 
conductive 
(Fournier, 
1977) 

Chalcedony 
conductive 
(Arnorsson et 
al., 1983) 

Na-K 
(Giggenbach, 
1988) 

Na-K-Ca 
(Fournier 
and 
Truesdell, 
1973) 

K-Mg 
(Giggenbach, 
1988) 

Group 1       

Huanacarhuaz 73.3 169 141 260 226 167 
Aquilina 78.3 140 112 200 152 121 
Pacatque 88.9 - - 220 168 132 
Group 2       

Olleros 47.8 - - 265 245 172 
Merced 38.4 85 57 263 91 71 
Chancos 47.6 140 112 275 209 137 
Monterrey 46.4 - - 257 229 147 
Shangol 39.6 87 58 234 108 83 
Pumapampa 19.2 - - 313 176 118 
Recuay 16.9 - - 242 217 136 
Group 3       

Aticara 36.6 - - 120 43 55 
Pomabamba 50.5 113 84 273 79 58 
Chihuan 36.5 89 60 189 44 50 
Rupac 61.5 101 73 348 48 45 
Jocos Peinado 40.6 67 38 326 66 65 
Chavin 41 65 36 248 42 46 
Group 4       

Conococha 28 67 38 226 44 51 
Azulmina 70.7 110 81 285 78 69 
Tauripampa 45.3 106 77 288 80 76 
Baños Batan 64.7 91 62 284 98 77 
Conoc 42.2 78 49 294 42 44 
Machayacancha 44.6 98 69 333 43 57 
Janac 51.5 127 99 351 40 56 

- not determined 
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Figure 10. Geothermometry ternary diagram of the Na-K and K-Mg geothermometers 
(modified from Giggenbach, 1988). Group 3 and 4 springs plot as immature waters in the 
Mg corner and Group 1 and 2 springs exhibit a range of trends, including along the 200- 
260°C Na-K isotherms in the partial equilibrium field. 

 
 
 

5. Discussion 
 

Aqueous and stable isotope geochemistry data are compared from spring groups (1 
 

– 4) to discern the role of structures like the CBD as a conduit for deeply circulated fluids. 
 

Thermal springs located along the hanging-wall of the CBD (Group 2) are interpreted to 
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issue from steep normal faults that intersect with the CBD at depth (Newell et al., 2015). 

Compared to Groups 3 and 4 springs, Groups 1 and 2 springs both yield predominantly Na- 

Cl water types, high TDS, elevated trace metals, similar stable isotope geochemistry, and 

a higher range of calculated geothermometry temperatures. Geochemical and stable isotope 

similarities between Group 1 and Group 2 springs support an interconnected fracture 

network promoting deep fluid pathways for these two groups. Data from Groups 1 and 2 

also suggest mixing with hydrothermal brine at depth, facilitated by these interrelated flow- 

paths (Fig. 11). In contrast, data from Groups 3 and 4 springs lack evidence for deep brine 

influence, and reflect shallower circulation and equilibration with the sedimentary host 

rock. This study reveals that the CBD and adjoining normal faults promote deep fluid 

migration, thereby affecting fluid-rock interactions and resulting fluid geochemistry. 

Moreover, these results reveal a fault-controlled mechanism for deeply-derived mantle 

volatiles measured in hot springs to migrate through the brittle crust (e.g., Kennedy et al., 

1997; Mutlu et al., 2008; Newell et al., 2015). 

5.1 Geochemistry of Group 1 and Group 2 springs 

 
Group 1 and Group 2 springs are both dominated by Na-Cl water types with TDS 

concentrations up to 15,357 mg/l (Figs. 5, 6). These data suggest relatively high TDS, Na- 

Cl rich source, and/or fluid-rock reactions controlling their water chemistry. Na-Cl water 

types can result from meteoric recharge mixing with deeply sourced hydrothermal brine, 

similar to processes observed at active volcanic arcs (Fournier, 1987, Giggenbach et al., 

1990). Volatiles derived from emplaced magma can produce brine; however, we currently 



31 
 

lack evidence of active magmatism in this setting. Alternatively, fluid interaction with 

sodic plagioclase (albite) and alteration minerals (e.g., chlorite) can yield a Na-Cl brine 

characteristic of deeply circulating fluids in a granite reservoir (Kuhn, 2004; Bucher and 

Stober, 2010; Pepin et al., 2014). Possible origins for Cl- in this setting include residual Cl- 

rich fluids partitioned from earlier magmatism (~5 Ma) and/or prolonged circulation of 

dilute fluids through hot rocks with a history of magma injections (Fournier, 1987). 

Leaching of evaporites in host rocks along the flow-paths may also explain the Na- 

Cl dominated waters. Cl/Br molar ratios are informative as a geochemical tracer for sources 

of chloride, and thus salinity in crustal fluids (Kesler et al., 1996; Panno et al., 2006; Leisen 

et al., 2012; Bernal et al., 2014). Hydrothermal leaching of evaporite would result in Cl/Br 

ratios that are substantially higher than seawater (647). Br- does not substitute into halite, 

so dissolution of halite typically results in Cl/Br ratios >10,000 (Banks et al., 2000; Leisen 

et al., 2012). Cl/Br ratios from Group 1 and 2 springs are only ~2X the ratio of seawater 

(Fig. 7A), implying evaporite dissolution is not the dominant source of chloride. This is 

consistent with the lack of reported evaporite units in the sedimentary rock-types, and 

supradetachment basin-fill sediments along the CBD (Giovanni et al., 2010). 

Serpentinites, formed by the hydration of the mantle lithosphere, are a potential 

source of Cl- (0.2 -0.5 wt%) in subduction zones (Sharp and Barnes, 2004; Kendrick et al., 

2011). Dehydration of a subducting flat slab and transfer of Cl-rich fluids to the lithosphere 

may lend to the observed Na-Cl water types (Humphreys et al., 2003; Hoke and Lamb, 

2007; Butcher et al., 2017). This process may not sufficiently account for the localized 
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distribution of Na-Cl springs along the trace and hanging-wall of the CBD; however, it 

should not be ruled out as a possibility. 

δ18O and δD stable isotope ratios are useful for discerning fluid phase changes, 

fluid-rock interactions, and/or fluid mixing (Sharp, 2007). Unlike Group 1 springs that 

exhibit an affinity to meteoric water, Group 2 springs contain δ18O and δD ratios that 

deviate from the GMWL (Fig. 8A). This deviation in δ18O and δD ratios is likely the result 

of mixing between groundwater and a brine that has exchanged at elevated temperatures 

with silicate bedrock (see Newell et al., 2015). Contributions from brine is also consistent 

with high concentrations of TDS and trends in major element concentrations (Fig. 6) 

Trends observed in halogen data (Cl-, Cl/Br, δ37Cl) from this study support mixing 

between different brine and groundwater sources (Fig. 7B). Several studies use halogen 

data to assess mixing between groundwater and higher-salinity sources (e.g., seawater, 

brine, halite, magmatic fluids; Katz et al., 2011; Leisen et al., 2012; Li et al., 2015). 

Following this approach, Fig. 7B shows that a binary mixing line between a dilute meteoric 

end-member and a Cl-rich source explain most of our data. Baños Recuay contains 

significantly more Cl- (6019 mg/l) than other springs in the region and deviates horizontally 

from the Cl/Br vs. Cl- mixing trend (Fig. 7B). Waters emanating from Recuay were 

observed to have particularly low discharge, potentially resulting in increased evaporation 

and therefore increased Cl- concentrations. Specifically, evaporative concentration below 

halite saturation will not change the Cl/Br ratio but will increase the Cl- content (Katz et 

al., 2011), resulting in the horizontal shift on Figure 7B. Similarly, this evaporative 
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concentration at Recuay results in an increase in Cl- without altering o37C values (Fig. 7D). 

Baños Recuay is therefore excluded from the fit of the mixing trend due to likely 

evaporative processes occurring at the surface. 

The broad range in δ37Cl values supports our interpretation of mixing between 

dilute and brine-like fluid sources (Fig. 7D). δ37Cl is a powerful provenance tool used for 

accessing the contribution and mixing of different chlorine sources (e.g., mantle, seawater, 

subducted marine sediments, volcanic rocks at depth) (Chiaradia, et al., 2014; Cullen et al., 

2015). Our data is consistent with the spread of δ37Cl values observed at arc-related hot 

springs (Bernal et al., 2014; Cullen et al., 2015), and could indicate a mixture between a 

“seawater” source and a deeper crustal (or magmatic) end member, diluted by meteoric 

water (Fig. 7D). Cullen et al. (2015) attributes high δ37Cl values and Cl- concentrations to 

fluid-rock interactions with volcanic rocks at depth (Fig 7D). They recognize that volcanic 

rocks cannot account for the full range of values and suggest that additional mechanisms, 

such as contribution from 37Cl-enriched HCl vapor via magmatic degassing, are required 

(Fig. 7D). 

Aqueous and stable isotope geochemistry data from Group 1 and 2 springs support 

mixing between a localized Cl-rich source and groundwater. We propose that hydrothermal 

brine is located at depth and focused within the hanging-wall of the CBD, thereby only 

contributing to Group 1 and Group 2 springs (Fig. 11). We favor mixing between meteoric 

recharge and brine as a plausible origin for the high TDS, Na-Cl dominated waters with 

higher-than-meteoric δ 18O and δD values. 
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5.2 Geochemistry of Group 3 and Group 4 springs 

 
In contrast to Group 1 and Group 2 springs, Group 3 and Group 4 springs exhibit a 

wide range of water types with relatively low TDS (<1000 mg/l) (Figs. 5, 6). This suggests 

that these springs do not share a common fluid-rock interaction history, and rather act as 

separate emanations with individual fluid properties. This is expected because these springs 

issue from a diverse range of localities: Group 3 – east and northeast of CBD, Group 4 – 

south of CB and along the CH (Fig. 2). Mixing trends established from Cl/Br ratios and Cl- 

concentrations suggest that Group 3 and 4 springs are strongly influenced by dilute meteoric 

water, likely explaining the overall low TDS measured (Fig. 7B). Dilution of thermal 

waters in Groups 3 and 4 can also explain geothermometry temperatures that are estimated 

to be lower than corresponding surface temperatures (Table 3), as well as falling in the 

“immature water field” of the Giggenbach diagram (Fig. 10). Cl/Br ratios from springs in 

Groups 3 and 4 are generally lower than the ratio for seawater, unlike Cl- rich springs in 

Groups 1 and 2 that yield ratios higher than seawater (Fig. 7A). These lower Cl/Br ratios 

suggest that Group 3 and 4 springs are less influenced by brine at depth and are more 

indicative of a meteoric signature. 

Stable isotope data measured from Group 3 and 4 spring waters also support the 

influence of local meteoric water. δ18O and δD values from Group 3 springs are slightly 

higher than Group 4 springs, but values from both Groups 3 and 4 are notably similar to 

global meteoric water (Fig. 8A). These low, meteoric-like values from Group 3 and 4 

springs typically result from mixing with shallow groundwater and recharge from high 
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4 

elevation sources. The relationship between low δ18O and higher altitudes are commonly 

linked to isotopic fractionation at lower temperatures of precipitation (Dansgaard, 1964; 

McKenzie et al., 2001). Most Group 4 springs issue from a higher elevation than Group 3 

springs, likely explaining the comparably lower δ18O and δD values (Table 1). The altitude 

effect is also often mimicked by shallow groundwater, depending on residence time and 

fluid pathways. Fig. 8A also shows that majority of meteoric samples yield ratios similar 

to global meteoric water, excluding two samples collected from highly evaporitic settings. 

Continuous surface evaporation, with a lack of recharge, often results in waters with higher 

δ18O and δD values (Dansgaard, 1964), likely explaining the deviation in these two 

meteoric samples (Fig. 8A). 

Collectively, these data indicate that thermal ground waters emanating from Group 

3 and 4 springs are geochemically distinct from thermal waters observed at Group 1 and 2 

springs. These dilute thermal waters with lower Cl/Br ratios and meteoric-like stable 

isotope data (Groups 3 and 4) support a dominant shallowly-circulated groundwater 

influence. Aside from slightly higher δ18O and δD values in Group 3 springs (Fig. 8A), no 

apparent trends emerge between Group 3 and Group 4 springs. Baños Jocos Peinado is the 

one spring that acts as an outlier to the Group 3 springs, yielding 2,814 mg/l in TDS and 

the highest overall concentration of SO 2- (1,452 mg/l) (Fig. 6; Table A2). Jocos Peinado 

also yields the highest As (210 ppb) and lowest δ37Cl (-0.6) ratio among the Group 3 springs 

(Table A3, Table 2). This spring emanates from the northeast CB region, where extensional 

faulting is reported to have triggered a 6.8 Mw earthquake (Quiches fault; Doser, 1987; 
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Bellier et al., 1991). Pleistocene extension in the northeast CB is hypothesized to be the 

result of reactivated Eocene thrusts (Bellier et al., 1991). We suggest that Pleistocene 

extensional features in this region play a role in influencing flow-paths and fluid properties, 

similar to processes hypothesized for Group 1 and 2 springs. 

5.3 Geothermometry and fluid depths 

 
Reservoir temperature estimates (RTE) provided by geothermometry are useful for 

evaluating temperatures at depth, fluid-rock interaction along flow-paths, and estimates of 

fluid circulation depth. Processes such as boiling, mineral precipitation during ascent, re- 

equilibration with rocks along flow-paths, and mixing with shallowly circulated meteoric 

waters can promote disequilibrium and alter/overprint RTE (Fournier and Truesdell, 1973; 

Fournier, 1977; Giggenbach, 1988; Yock, 2009). We suggest the Na-K-Ca 

geothermometry data are most reliable for detecting the deepest fluid circulation depths. 

The chalcedony geothermometer is susceptible to disequilibrium by silica precipitation 

during fluid ascent. The loss of dissolved silica to precipitation results in anomalously low 

RTE (Fournier, 1977). Quartz saturation indices (log SI) for all spring waters fall between 

0 and 1 (saturated - supersaturated; Table A2), likely explaining why chalcedony (and most 

quartz) RTE are lower than the corresponding cation RTE (Table 3). RTE from the Na-K 

geothermometer are commonly influenced by dissolved Ca, and are applicable when 

“log[Ca1/2/Na] + 2.06 <1” (Fournier and Trusdell, 1973). Baños (Olleros, Monterrey, 

Huanacarhuaz, and Recuay) are the only springs that meet the criteria for the Na-K 
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geothermometer (Table 3). All other springs in the CB and CH contain relatively high Ca 

(log[Ca1/2/Na] + 2.06 >1), making the Na-K-Ca geothermometer ideal for this study. 

Geothermometry data provide a means for explaining the geochemical differences 

between springs along the trace and hanging-wall of the CBD (Groups 1 and 2) and springs 

east of the CBD and in the CH (Groups 3 and 4). Assuming a geothermal gradient of 

25°C/km and an average surface temperature of 0° C, RTE (Na-K-Ca) from Group 1 

springs (152 – 226 °C) and Group 2 springs (91 – 245 °C) correspond to circulation depths 

that range from 6 to 9 km and 4 to 10 km, respectively. In contrast, RTE from Group 3 

springs (42 – 79 °C) and Group 4 springs (40 – 98 °C) correspond to substantially lower 

circulation depths (< 4 km) (Table 3). Geothermometry data from Group 3 and 4 springs 

also indicate significant disequilibrium between the Na-K and K-Mg geothermometers, 

denoting these springs as immature waters with proportionally higher dissolved Mg (Fig. 

10). At shallow depths, during upwelling and cooling, the K-Mg geothermometer re- 

equilibrates with host-rock faster than the Na-K system, making disequilibrium common 

among shallowly circulating fluids at cooler temperatures (Giggenbach, 1988). Dilution 

from near-surface waters can also promote disequilibrium and might contribute to our 

observed results. A recent study analyzing hot springs in West Malaysia linked immature 

waters and disagreement between geothermometers to mixing with near-surface cold water 

(Baioumy et al., 2015). 

We propose that waters emanating from Group 3 and 4 springs are shallowly circulating, 

compared to the deeper flow-paths interpreted for Group 1 and 2 springs. Additionally, if 
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fluids from Group 3 and 4 springs have a prolonged residence time in the shallow crust, 

then they are also likely subjected to mixing with near-surface waters. The distinction in 

geothermometry temperatures calculated for Groups 1 and 2, versus Groups 3 and 4 could 

potentially be linked to the presence of Tertiary granodiorite along the flow-paths of 

Groups 1 and 2, and the relative lack thereof for Groups 3 and 4. However, Baños Aticara 

(Group 3) and Baños Conococha (Group 4) are two springs that overlie the granodiorite 

body and yield relatively low geothermometry temperatures, challenging this hypothesis. 

Also note that these two springs are not located along faults associated with the CBD, 

similar to most Group 3 and 4 springs (Fig. 2). Differences in circulation depths between 

Groups 1 and 2 (up to 10 km) and Groups 3 and 4 (up to 4 km) is likely related to the 

presence and communication within deep fracture networks, such as the CBD and 

adjoining hanging-wall normal faults. The focusing of thermal fluids along a fault system 

also likely decreases the amount of mixing with near-surface waters. Although there are 

some local structures (e.g. thrust faults) associated with Group 3 and 4 springs (Fig. 2), this 

study suggests that they are not as deeply penetrating as the CBD fracture network. Thus, 

the difference in flow-paths and fluid-rock interactions that occur along these different 

paths likely explains the geochemical distinctions between springs in Groups 1 and 2 and 

springs in Groups 3 and 4. 
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Figure 11. Schematic cross-section through the Cordillera Blanca detachment fault (CBD). 
Cross-section highlights hypothesized fluid sources and circulation differences between 
springs east of the CBD (left) and springs west of the CBD (right). Reservoir temperature 
estimates (Na-K-Ca) and aqueous/stable isotope geochemistry from hot springs are shown 
for reference. Unknown presence of hanging-wall granodiorite and unknown contribution 
of mantle volatiles to Group 3 and 4 springs are denoted by (?). 

 
 

5.4 Fault-controlled fluid chemistry 

 
Aqueous geochemistry and stable isotope data from this study collectively show 

that deeply-penetrating faults like the CBD impart a significant influence on fluid 

distribution. We suggest that the CBD acts as a conduit, facilitating deep fluid circulation 

and the transfer of Na-Cl brine to springs in Groups 1 and 2 (Fig. 11). The 200-km long 

detachment fault and adjoining hanging-wall normal faults provide a network of 

preferential flow-paths for vertical fluid flow (including infiltration and advection from 

depth). Away from the CBD and its hanging-wall, geochemistry and geothermometry data 

suggest waters emanating from Group 3 and 4 springs do not penetrate as deeply as Group 
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1 and 2 springs, and therefore reflect a shallower circulation path. For Group 1 and 2 

springs, geothermometry suggests fault-controlled fluid circulation to depths up to ~10 km, 

which is consistent with observations at other major detachment fault zones worldwide. For 

example, δD of synkinematic micas along the Columbia River detachment in North 

America (Person et al., 2007) and the central Menderes Massif in western Turkey (Hetzel 

et al., 2013) indicate meteoric infiltration depths of up to 7 and 8 km, respectively. 

Meteoric-like δD values from micas along the southern Tibetan detachment in the 

Himalayas support the penetration of surface waters to depths beneath the brittle-ductile 

transition zone (Gébelin et al., 2017). These prior investigations conclude that detachment 

faults provide effective pathways for deep meteoric fluid circulation. 

The distinction in flow-paths between springs in Groups 1 and 2, versus springs in 

Groups 3 and 4 is accompanied by disparate fluid-rock interaction histories, as suggested 

by the spring geochemistry. Several geothermal studies utilize carbon (δ13C) stable isotopes 

to discern between organic, carbonate, and mantle derived sources of carbon in fluids (Sano 

and Marty, 1995; Mutlu et al., 2008; Kulongoski et al., 2013; Newell et al., 2015). δ13C 

(CO2) values typically range from −9 to −4‰ in the mantle, −40 to −20‰ in organic 

sediments, and −2 to 2‰ in carbonates (Sano and Marty, 1995). In our study area, Group 

1 and 2 springs yield a narrow range of relatively low values (-10.8 to -6.3 ‰), consistent 

with a carbon source dominated by a mix of organic and mantle/crustal carbon (Fig 8B, 

Table 2). Group 3 and 4 springs springs yield a much wider range of δ13C values (-12.6 to 

-1.8 ‰), with higher  values  suggesting mixing of marine carbonate-derived  carbon and 
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organic carbon (Fig 8B, Table 2). We interpret carbon input differences in this setting to 

be the result of dissimilar fluid-rock interactions along the flow-paths. If waters emanating 

from Group 3 and 4 springs are indeed shallowly circulating, then the observed δ13C values 

can be explained by fluid-rock interactions with Cretaceous carbonates and organic-rich 

Jurassic phyllites (Fig. 2). Similar δ13C values (-4.3 to -1.0 ‰) from normal fault-controlled 

hot springs in the Tibetan Plateau are interpreted to result from fluid-rock interactions with 

underlying marine carbonates (Yokoyama et al., 1999). In contrast, δ13C of deeply 

circulating waters emanating from Group 1 and 2 springs are less influenced by shallow 

carbonate bedrock, and instead likely reflect a deep crustal (potentially mantle) source. This 

notion is supported by elevated 3He/4He ratios (up to 25 % mantle-derived) measured in a 

subset (n = 6 of 10) of Group 1 and 2 springs, indicating contribution from deeply- derived 

fluids (Newell et al., 2015). The focusing of thermal fluids to the surface along the CBD 

also likely contributes to the lack of carbonate-like δ13C ratios in Group 1 and 2 springs. 

We also attribute higher trace metal concentrations, specifically As, in Group 1 (up 

to 10,800 ppb) and Group 2 (up to 2,600 ppb) springs, compared to Group 3 (200 ppb ) and 

Group 4 (up to 600 ppb) springs to differences in fluid-rock interactions (Table A3). The 

source of As in this region is currently unknown; however, there appears to be a correlation 

between proximity to the CBD and higher As content. Anthropogenic sources, such as mine 

drainages, are often linked to elevated As in groundwater (Nordstrom and Alpers, 1999; 

Plumlee et al., 1999). Baños Azulmina emanates near a local mine and has the 



42 
 

potential to mobilize mineral deposits. This process likely explains elevated metals 

measured at this spring; however, it cannot account for the widespread distribution of As 

in the region. Naturally occurring As is less common in igneous rocks and typically highest 

in slates, phyllites, and black shales because of their pyrite content (Smedley and 

Kinniburgh, 2002). Jurassic shales and phyllites prolific throughout the CB and CH 

(Giovanni et al., 2010) may be a potential source for the As contribution, but more work 

needs to be done to constrain its provenance. 

In contrast to different aqueous geochemistry exhibited by spring groups, gas 

compositions from all spring waters are highly variable. Group (1, 2, 3, and 4) springs plot 

on a mixing line between a crustal or mantle origin and air-saturated water (meteoric) (Fig. 

9). Hot springs investigated in the western U.S. (Goff et al., 2002; Newell et al., 2005; 

Werner et al., 2008) plot similarly on the crustal/mantle – meteoric mixing line. These 

studies also measured 3He/4He ratios to evaluate the relative contribution of crustal and 

mantle sources. Additional 3He/4He data from this study is therefore necessary to further 

delineate fluid provenance. Appreciable amounts of H2 gas (up to 0.3 vol. %) are also 

observed in hot spring waters from this study. H2 is a primary energy source for microbial 

activity in hydrothermal settings, and therefore typically has a short residence time 

(Chapelle et al., 2002; Peterson et al., 2011). The amount of H2 gas measured in this study 

suggests the active production and flux of H2 gas within the crust and fluids feeding CB 

and CH hot springs. 

Considering the CBD acts as a migration channel for deeply derived fluids, we 
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might anticipate that this structure is also responsible for the presence of mantle-derived 

He measured in several Group 1 and 2 springs (Newell et al., 2015). Helium flux 

calculations that consider the dilution of mantle fluids by radiogenic production of He 

suggest that these mantle fluids are actively advecting from a present-day source at depth 

(Newell et al., 2015). Multiple disparities in fluid geochemistry between spring groups 

strongly suggest that the CBD taps and migrates deeply sourced fluids to springs in close 

proximity. If mantle-He volatiles behave similar to fluid geochemistry, then the CBD likely 

focuses and transfers mantle-He together with deep-seated fluids. Numerous studies have 

demonstrated the apparent relationship between elevated 3He/4He ratios and deep fracture 

networks (Kennedy et al., 1997; Kulongoski et al., 2003, 2005; Klemperer et al., 2015). 

For example, in western Anatolia, Turkey, springs emanating along the trace of the North 

Anatolian Fault Zone yield the highest 3He/4He ratios (Mutlu et al., 2008). Similarly, 

Kulongoski et al. (2013) observed decreasing 3He/4He ratios in hot springs with increasing 

distance from the San Andreas Fault. All of these studies attribute major strike-slip faults 

with deep fluid circulation, rapid transfer of mantle-He to the surface, and a lesser influence 

from crustal-He dilution. Aqueous geochemistry and geothermometry data from this study 

suggests that the deeply-penetrating CBD acts similar to these strike-slip systems in 

promoting deep fluid circulation. He isotope measurements from Group 3 and 4 springs 

are necessary to fully discern the role of the CBD in respect to mantle-He transfer. If 

mantle-He volatiles are indeed coupled with fluid chemistry as we suspect, then we expect 

substantially higher 3He/4He ratios from Group 1 and 2 springs, compared to Group 3 and 

4 springs. Alternatively, if mantle-He volatiles are distributed independent of the fluid 
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chemistry, then we might expect similar 3He/4He ratios from all spring groups. 
 
 
 

6. Conclusion 
 

This study evaluates the influence of the Cordillera Blanca detachment fault (CBD) 

on hot spring geochemistry in the Cordillera Blanca (CB), Peru. Hot springs from a variety 

of locations in the Peruvian Andes were sampled and analyzed for their aqueous, gas, and 

stable isotope geochemistry compositions. Spring locations are geographically categorized 

into four groups to discern the role of the CBD as a conduit for fluid flow. Group 1 springs 

issue along the trace of the CBD, Group 2 springs emanate along the hanging-wall of the 

CBD, Group 3 springs are located in the footwall and east of the CBD, and Group 4 

comprise springs south of the CBD and in the Cordillera Huayhuash (CH). Geochemistry 

results from Group 1 and 2 springs show similar Na-Cl dominated waters, relatively high 

TDS, and enrichment in δ18O and δD values that collectively suggest interrelated flow- 

paths mixing with deep-seated hydrothermal brine. Geothermometry temperatures from 

Group 1 and 2 springs correspond to reservoir depths up to 10 km, thereby supporting deep 

circulation pathways that could accommodate mixing between meteoric recharge and Na- 

Cl brine. These data also support the inference of Group 2 springs issuing along steep 

hanging-wall normal faults that intersect the CBD at depth. Alternatively, Group 3 and 4 

springs yield a wide range in water types, low TDS, and meteoric-like O and H stable 

isotopes that imply a greater degree of influence from shallow groundwater. Moreover, 

lower geothermometry temperatures and disequilibrium between cation geothermometers 
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support shallower circulation depths (up to 4 km) when compared to Group 1 and 2 springs. 

Variability in circulation depth among springs correlates with distinct fluid-rock interaction 

histories and can explain the disparity in Cl/Br ratios, trace element concentrations, and C 

stable isotope values between Groups 1 and 2 and Groups 3 and 4. We propose that the 

CBD fracture network is acting as a primary structural control on fluid distribution, 

facilitating deep flow-paths and the migration of Na-Cl brine to springs along the trace and 

hanging-wall of the CBD. We also suspect that the CBD is responsible for the transfer of 

mantle volatiles through the brittle crust to springs in Groups 1 and 2. Further He isotope 

data from Group 3 and 4 springs are needed to test this hypothesis. This investigation 

demonstrates that chemical and isotopic tracers from fault-bound hot springs are excellent 

tools for discerning flow-paths and determining the influence of regional tectonics on fluid 

distribution. 
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Appendix A 
 
 

Figure A1. Strontium (red) and barium (blue) vs. log chlorine concentration from hot springs located proximal and distal to the 
Cordillera Blanca detachment. Both trace elements exhibit a positive relationship with increasing chlorine. 
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Figure A2. o37Cl values from hot springs proximal and distal to the Cordillera Blanca detachment, as a function of log Cl- 

concentration (top), spring surface temperature (middle), and o18O values (bottom). No obvious trends are observed. 
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Appendix B: Thermal spring location and aqueous geochemistry data 

Table A1. Sample ID, location, and field parameters for hot springs in the Cordillera Blanca and Cordillera Huayhush, Peru. 
Group/Location (Baños) Sample ID Latitude Longitude Elevation (m) T (°C) pH Cond. (uS) 

Group 1        

Huancarhuaz DN13CB11 -8.94365 -77.78461 2721 73.3 6.22 5120 
Aquilina DN13CB14 -8.61294 -77.88359 1930 78.3 6.26 2130 

Huancarhuaz DNCB15-08 -8.9415 -77.7853 2721 69.9 6.4 5750 
Pacatque DNCB15-10 -8.61294 -77.88359 - 88.9 6.84 2280 
Group 2        

Olleros 2b DN13CB05 -9.6683 -77.46262 3453 20.4 6.56 23200 
Olleros 4 DN13CB06 -9.6673 -77.46327 3432 47.8 6.49 21500 
Merced DN13CB07 -9.2591 -77.61185 3002 38.4 5.03 723 
Chancos DN13CB08b -9.31958 -77.57518 2863 47.6 6.22 6020 

Monterrey DN13CB09 -9.46841 -77.53543 2983 46.4 5.89 6240 
Shangol DN13CB13 -8.98458 -77.81697 2214 39.6 6.01 1025 

Pumapampa DNCB15-12 -9.880278 -77.286389 4185 19.2 5.95 3970 
Recuay DNCB15-13 -9.718 -77.459 - 16.9 6.81 14380 

Group 3        

Aticara DNCB15-11 -8.6125 -77.8836 2662 36.6 8.87 170 
Pomabamba DNCB17-2 -8.826 -77.46 2910 50.5 6.62 468.2 

Chihuan DNCB17-6 -8.672 -77.634 3304 36.5 7.02 606.6 
Rupac DNCB17-9 -8.595 -77.566 2443 61.5 6.18 229.5 

Jocos Peinado DNCB17-13 -8.295 -77.488 1591 40.6 6.31 3332 
Chavin DNCB17-21 -9.611 -77.182 3214 41 7.47 1406 

Group 4        

Conococha DNCB17-24 -10.129 -77.289 4026 28 7.98 233.1 
Azulmina DNCB17-25 -9.938 -76.963 3870 70.7 5.96 1452 

Taurimpampa DNCB17-30 -9.847 -76.817 3244 45.3 6.24 1387 
Banos (Batan) DNCB17-32 -10.048 -76.722 3390 64.7 5.71 940.3 

Conoc (La Union) DNCB17-36 -9.781 -76.805 3175 42.2 6.68 376.7 
Machaycancha (Conog) DNCB17-37 -10.164 -76.811 3835 44.6 6.4 567.6 

Janac DNCB17-38 -10.154 -76.902 4343 51.5 6.48 720.3 
- not determined 
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Table A2. Major element concentrations (ppm) for Cordillera Blanca and Cordillera Huayhuash hot springs. 
 

Group/Location 
(Baños) Sample ID Na Mg K Ca HCO3 Cl SO4 Si Charge 

Balance (%) 
Quartz 
S.I. a 

Calcite 
S.I. a 

Group 1             
Huancarhuaz DN13CB11 1164 2.74 162.5 70 779.6 1468 38.4 79 3 0.8 -0.3 
Aquilina DN13CB14 431 1.22 28.1 29.5 488.8 282 148 48.9 5 0.5 -0.6 
Huancarhuaz DNCB15-08 1299.7 4.46 198.89 114.2 805.4 2080.27 46.09 - -4 - 0.1 
Pacatque DNCB15-10 562.03 1.78 47.96 46.81 646.8 467.13 189.15 - 1 - 0.5 
Group 2             
Olleros 2b DN13CB05 4948 48 694 330 2103 7369 16 - 2 - 0.2 
Olleros 4 DN13CB06 4714 38.2 690 285 2029.5 6553 85 - 4 - 0.5 
Merced DN13CB07 82.07 9.4 11.8 33.04 259.9 76.5 9.6 16.1 0 0.6 -3.4 
Chancos DN13CB08b 1079 17.3 175.9 150.8 952.9 1372 111 49.5 3 0.9 -0.2 
Monterrey DN13CB09 1297 9.77 174.2 51.4 538.3 1708 3.32 - 6 - -1.4 
Shangol DN13CB13 223 12.9 22.8 73.6 191.8 57.5 384 16.7 8 0.6 -1.6 
Pumapampa DNCB15-12 675.99 49.11 162.33 252.47 1000.7 2054.69 15.39 - -20 - -0.9 
Recuay DNCB15-13 3222.86 76.84 362.47 351.29 2257.6 6019.81 45.31 - -9 - 0.6 
Group 3             
Aticara DNCB15-11 45.19 0.15 0.74 4.05 67.1 7.75 41.24 - 1 - 0.2 
Pomabamba DNCB17-2 45.41 10.84 7.24 19.95 198 18.37 25.41 29.43 -3 0.6 -0.9 
Chihuan DNCB17-6 62.77 5.5 3.47 47.88 173.3 24.39 120.35 17.64 -3 0.6 -0.3 
Rupac DNCB17-9 9.79 7.58 3.18 12.88 61.9 1.29 49.74 23.2 -6 0.4 -2 
Jocos Peinado DNCB17-13 114.44 108.05 30.83 535.99 371.2 227.65 1451.64 10.27 -2 0.2 -0.2 
Chavin DNCB17-21 67.3 42.04 8.16 191.58 532.1 72.84 267.49 9.7 -1 0.3 -0.2 
Group 4             
Conococha DNCB17-24 24.79 2.14 2.29 15.97 99 17.69 1.35 10.21 -1 0.5 0 
Azulmina DNCB17-25 98.01 24.19 17.83 120.36 315.6 150.07 211.1 27.59 -4 0.4 -0.8 
Taurimpampa DNCB17-30 96.43 14.6 18.14 111.26 525.9 165.14 29.53 25.35 -10 0.2 -0.4 
Banos (Batan) DNCB17-32 97.49 12.02 17.46 49.33 247.5 143.11 17.56 18.41 -2 0.3 -1.6 
Conoc (La Union) DNCB17-36 18.73 10.85 3.73 32.63 123.7 25.32 22.55 13.55 3 0.4 -0.9 
Machaycancha 
(Conog) DNCB17-37 21.74 9.15 6.23 70.65 160.9 16.39 122.34 21.43 -2 0.6 -0.9 

Janac DNCB17-38 20.09 10.82 6.68 91.65 198 21.67 184.46 38.84 -8 0.8 -0.5 
- not determined; a saturation index defined as the log[ion activity product(IAP)/solubility product(Ksp)]; calculated using 
Geochemist’s Workbench (Bethke, 2008). 
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Table A3. Trace element concentrations (ppb) for Cordillera Blanca and Cordillera Huayhuash hot springs. 
 

Sample ID Be Al V Cr Mn Fe Co Ni Cu Zn As Se Sr Cd Sb Ba Ti 
Group 1                  
DN13CB11 5.62 - 2.31 - 443 449 - - 1.73 - 1655 3.04 - - 36 646 9.28 
DN13CB14 3.83 29.7 - - 77.4 399 - - - 5.91 1496 - - - 21.7 91.8 1.18 
DNCB15-08 12.36 2.23 - - 566.26 1111.1 - - - 6.81 1851.21 2.31 5099.29 - 40.41 876.37 15.09 
DNCB15-10 8.73 12.1 - - 109.76 607.17 - - - 6.1 2634.25 - 2544.08 - 39.48 153.88 2.25 
Group 2                  
DN13CB05 1.04 41.4 6.12 0.43 411 12345 - 1.13 16.6 - 2107 7.46 - - 0.26 1123 - 
DN13CB06 1.29 46.5 5.87 0.32 347 6570 - 0.91 15.3 - 10806 6.88 - - 0.35 554 1.35 
DN13CB07 0.62 - - - 1096 8565 - - - 6.33 2.37 - - - - 43.6 - 
DN13CB08b 1.67 - 2.7 - 180 197 - - 1.67 - 622 2.36 - - 6.29 249 0.5 
DN13CB09 0.55 - 2.06 - 1787 155 - - 1.98 - 1.26 3 - - 0.25 1200 0.02 
DN13CB13 3.7 - - - 2931 1957 13.7 19.3 - 5532 390 - - 1.47 179 24.6 17 
DNCB15-12 6.46 212.54 - - 1709 8452.14 0.32 0.91 - 6.05 9.37 0.19 2913.41 - - 447.4 - 
DNCB15-13 0.52 2.01 - - 1077 193.71 - - - - 4.05 1.9 11697.83 - - 1126.21 - 
Group 3                  
DNCB15-11 - 20.73 0.73 - 0.24 - - 0.51 2.23 8.04 38.25 - 61 - - - - 
DNCB17-2 0.08 - - - 161 18.31 - - - - 4.13 - 412.36 - - 268.32 - 
DNCB17-6 0.08 1.86 - - 297 - - - - 2.39 2.28 - 482.32 - - 55.35 - 
DNCB17-9 - 0.82 - - 316 2287.25 0.17 - - 10.03 16.53 - 71.82 - - 133.16 0.11 
DNCB17-13 4.75 2.48 - 1.2 4.58 59.58 - - - - 210.19 - 6022.82 - - 21.43 - 
DNCB17-21 0.07 1.54 - - 160.26 50.38 0.36 - - 3.86 0.76 - 2844.48 - 10.92 49.1 0.22 
Group 4                  
DNCB17-24 - 2.72 - - 57.78 190.45 - - - 3 36.35 - 139.95 - - 36.73 - 
DNCB17-25 0.75 8.74 - - 873.78 1915.84 - - - 12.43 9.07 - 2702.39 - 6.89 99.54 2.76 
DNCB17-30 0.08 1.42 - 18.63 76.13 307.05 - - 1.18 3.94 125.67 - 896.94 - 5.81 889.15 0.19 
DNCB17-32 0.19 4.64 - - 316.4 266.91 - - - 2.96 244.67 - 825.1 - 12.81 723.07 1.95 
DNCB17-36 - 2.39 - - 179.58 113.29 - - - - 52.69 - 436.81 - 3.42 255.9 - 
DNCB17-37 0.14 0.68 - - 333.83 458.37 - - - 3.45 597.83 - 916.47 - 3.84 72.79 - 
DNCB17-38 0.08 4.03 - - 189.87 387.6 - - - - 17.29 - 2200.1 - - 98.38 - 

- below detection limit 
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Table A4. Oxygen and hydrogen stable isotope ratios for hot springs and meteoric water in the Cordillera Blanca and Huayhuash. 
 

Location Sample ID Latitude Longitude Elevation (m) o18O (‰) SMOW oD (‰) SMOW 
Group 1       
Baños Huanacarhuaz DN13CB11 -8.94365 -77.78461 2721 -13.33 -103.7 
Baños Aquilina DN13CB14 -8.61294 -77.88359 1930 -14.21 -107.27 
Baños Huancarhuaz DNCB15-7 - - - -13.64 -105.92 
Baños Huancarhuaz DNCB15-8 -8.9415 -77.7853 2721 -12.6 -94.4 
Baños Aqulina DNCB15-9b -8.61294 -77.88359 1884 -14.44 -112.85 
Baños Pacatque DNCB15-10 -8.6125 -77.8836 - -14.29 -102.62 
Group 2       
Baños Olleros 1 DN13CB04 -9.66857 -77.46303 3464 -7.75 -81.1 
Baños Olleros 2b DN13CB05 -9.6683 -77.46262 3453 -6.42 -74.3 
Baños Olleros 4 DN13CB06 -9.6673 -77.46327 3432 -4.93 -79.8 
Banos Merced DN13CB07 -9.2591 -77.61185 3002 -12.6 -94.4 
Baños Chancos DN13CB08b -9.31958 -77.57518 2863 -10.48 -85.9 
Baños Monterrey DN13CB09 -9.46841 -77.53543 2983 -10.22 -87.7 
Baños Shangol DN13CB13 -8.98458 -77.81697 2214 -12.96 -98.5 
Baños Pumapampa DNCB15-12 -9.880278 -77.286389 4185 -14.74 -110.96 
Baños Recuay DNCB15-13 -9.718 -77.459 - -6.31 -78.79 
Group 3       
Baños Aticara DNCB15-11 -8.6125 -77.8836 2662 -13.07 -93.92 
Baños Pomabamba DNCB17-1 -8.82545 -77.45945 2901 -14.31 -104.2 
Baños Pomabamba DNCB17-2 -8.826 -77.46 2910 -14.46 -110.08 
Baños Chilhuan DNCB17-6 -8.672 -77.634 3304 -14.92 -109.73 
Baños Rupac DNCB17-7b -8.596 -77.568 2360 -15.16 -107.31 
Baños Rupac DNCB17-9 -8.595 -77.566 2443 -15.26 -112.55 
Baños Jocos Peinado DNCB17-13 -8.295 -77.488 1591 -13.83 -103.3 
Baños Chavin DNCB17-21 -9.611 -77.182 3214 -14.57 -116.05 
Group 4       
Baños Conococha DNCB17-24 -10.129 -77.289 4026 -14.9 -117.81 
Baños Azulmina DNCB17-25 -9.938 -76.963 3870 -15.97 -123.85 
Baños Taurimpampa DNCB17-30 -9.847 -76.817 3244 -14.44 -114.49 
Baños (Batan) DNCB17-32 -10.048 -76.722 3390 -16.81 -129.91 
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Baños Conoc (La Union) DNCB17-36 -9.781 -76.805 3175 -15.32 -118.24 
Baños Machaycancha (Conog) DNCB17-37 -10.164 -76.811 3835 -16.12 -120.29 
Baños Janac DNCB17-38 -10.154 -76.902 4343 -16.58 -125.35 
Cold meteoric water       
Lag. Quesho DNCB15-5 -9.08822 -77.69595 3482 -14.42 -103.35 
Rio Pomabamba DNCB17-3 -8.824616 -77.4608 2893 -14.44 -95.33 
Rio Sihuas DNCB17-8 -8.596 -77.568 2360 -13.92 -104.32 
Pond Above Quiches DNCB17-20 -8.462683 -77.501883 3214 -6.37 -70.02 
Rio Mosna DNCB17-22 -9.61075 -77.182183 3205 -15.21 -119.8 
Rio Azulmina DNCB17-26 -9.938 -76.963 3870 -15.4 -118.68 

 

Table A5. Halogen data (Cl, Br, o37Cl) from Cordillera Blanca and Cordillera Huayhuash hot springs. 
Location Sample ID Cl (mM) Br (mM) Cl/Br o37Cl (‰) SMOC 
Group 1      

Baños Huancarhuaz DNCB15-7 41.41 0.0373 1109 0.1 
Baños Huancarhuaz DNCB15-8 58.67 0.0511 1148 -0.3 

Baños Aqulina DNCB15-9b 7.93 0.0127 626 -0.5 
Baños Pacatque DBCB15-10 13.17 0.0153 861 0.4 

Group 2      
Baños Pumapampa DNCB15-12 57.97 0.0411 1410 0.1 

Baños Recuay DNCB15-13 169.82 0.1636 1038 -0.4 
Group 3      

Baños Pomabamba DNCB17-2 0.52 0.0023 228 0.2 
Baños Chilhuan DNCB17-6 0.69 0.0006 1095 -0.1 

Baños Rupac DNCB17-9 0.04 0.0001 468 0.7 
Baños Jocos Peinado DNCB17-13 6.42 0.0149 430 -0.6 

Baños Chavin DNCB17-21 2.05 0.0052 394 0.2 
Group 4      

Baños Conococha DNCB17-24 0.5 0.0009 575 0.3 
Baños Azulmina DNCB17-25 4.23 0.0124 341 0.1 

Baños Taurimpampa DNCB17-30 4.66 0.0141 331 0.2 
Baños (Batan) DNCB17-32 4.04 0.0137 294 0 

Baños Conoc (La Union) DNCB17-36 0.71 0.0017 426 -0.1 
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Baños Machaycancha (Conog) DNCB17-37 0.46 0.0011 407 -0.2 
Baños Janac DNCB17-38 0.61 0.001 586 0.1 

 
 

Table A6. Gas composition (mole % in mmol/mol) for Cordillera Blanca and Cordillera Huayhuash hot springs. 
Location Sample ID CO2 Ar N2 CH4 H2 He CO O2 

Group 1          

Baños Huancarhuaz DNCB15-7 93.7 0.083 5.3 0.001 0.1 0.18 0.01 0.624 

Baños Huancarhuaz DNCB15-8 74.9 0.378 23.9 0.01 0.21 0.0319 0.011 0.491 

Baños Aqulina DNCB15-9b 10.7 2.21 86.5 0.003 0.04 0.0466 - 0.538 

Group 2          

Baños Pumapampa DNCB15-12 96 0.167 3 0.019 0 0.4387 - 0.354 

Group 3          

Baños Aticara DNCB15-11 17.2 1.91 80.6 - 0.03 0.0846 - 0.112 

Baños Chilhuan DNCB17-6 38.9 1.62 56.2 0.402 0.046 0.544 - 2.24 

Baños Rupac DNCB17-7b 53.4 0.857 40.9 0.718 0.039 - - 4.05 

Baños Jocos Peinado DNCB17-13 76.6 0.593 21.6 0.036 0.031 - - 1.1 

Baños Chavin DNCB17-21 48.8 0.919 48.9 0.01 0.331 0.2823 - 0.79 

Group 4          
Baños Azulmina DNCB17-25 95.4 0.092 3.61 0.022 0.004 0.0933 - 0.789 

Baños Taurimpampa DNCB17-30 87.2 0.34 11.6 0.018 0.019 0.1026 - 0.682 

- not determined 
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