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ABSTRACT

The Effects of Geometric and Stoichometric

Change in Nanoparticles and Materials

on Lattice Thermal Conductivity

by

W. Tanner Yorgason, Master of Science

Utah State University, 2018

Major Professor: Nicholas Roberts, Ph.D.
Department: Mechanical and Aerospace Engineering

Thermal transport properties are critical for applications ranging from thermal man-

agement to energy conversion. Passive thermal management has been an area of study

for over a century and has only grown as technology has advanced because it requires no

additional energy to remove heat. Changing the nanostructure of the materials involved

in passive heat transfer methods, either by geometric changes or stoichiometric changes,

can greatly improve the effectiveness of this heat transfer method. In order to explore this

further, this work employs LAMMPS molecular dynamics (MD) simulation software to cal-

culate the lattice thermal conductivity (λp) of a nanoparticle (NP) and material used in

different passive heat transfer methods after either modifying their geometry or stoichiom-

etry. The NPs this work will simulate are single-wall carbon nanotubes (SWCNTs), which

have been well known for high λp, and their applications in improving thermal conductivity

in matrix materials. The material this work will simulate is magnesium silicide (Mg2Si),

a thermoelectric material. Thermoelectric materials, in general, become more efficient in

converting heat into electrical power as their λp decreases. λp will be calculated for SWC-

NTs of varying lengths, diameters, and at varying equilibration temperatures (Teq). λp will



iv

be calculated for samples of pure Mg2Si and Mg2Si with off-stoichiometry over a range of

Teq values. Two methods will be used to induce the off-stoichiometry: atomic silicon (Si)

substitutionals, and Si NPs. A range of stoichiometric ratios will be applied to the material

by both methods, and then λp will be calculated for each of these cases. This is done so

as to observe which method of stoichiometric change, given the same stoichiometric ratio,

decreases λp greater, and, therefore, causes Mg2Si to be a better thermoelectric material.

It is expected that increases in length will increase the λp of the SWCNT, while increases

in diameter and Teq will decrease λp. It is expected that increases in atomic percent (a/o)

Si and Teq will decrease λp regardless of the method of stoichiometric change, and that the

Si NP method will decrease λp more than the atomic Si substitutional method.

(70 pages)
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PUBLIC ABSTRACT

The Effects of Geometric and Stoichometric

Change in Nanoparticles and Materials

on Lattice Thermal Conductivity

W. Tanner Yorgason

Thermal transport properties are critical for applications ranging from thermal man-

agement to energy conversion. Passive thermal management has been an area of study

for over a century and has only grown as technology has advanced because it requires no

additional energy to remove heat. Changing the nanostructure of the materials involved

in passive heat transfer methods, either by geometric changes or stoichiometric changes,

can greatly improve the effectiveness of this heat transfer method. In order to explore this

further, this work employs LAMMPS molecular dynamics (MD) simulation software to cal-

culate the lattice thermal conductivity (λp) of a nanoparticle (NP) and material used in

different passive heat transfer methods after either modifying their geometry or stoichiom-

etry. The NPs this work will simulate are single-wall carbon nanotubes (SWCNTs), which

have been well known for high λp, and their applications in improving thermal conductivity

in matrix materials. The material this work will simulate is magnesium silicide (Mg2Si),

a thermoelectric material. Thermoelectric materials, in general, become more efficient in

converting heat into electrical power as their λp decreases. λp will be calculated for SWC-

NTs of varying lengths, diameters, and at varying equilibration temperatures (Teq). λp will

be calculated for samples of pure Mg2Si and Mg2Si with off-stoichiometry over a range of

Teq values. Two methods will be used to induce the off-stoichiometry: atomic silicon (Si)

substitutionals, and Si NPs. A range of stoichiometric ratios will be applied to the material

by both methods, and then λp will be calculated for each of these cases. This is done so

as to observe which method of stoichiometric change, given the same stoichiometric ratio,
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decreases λp greater, and, therefore, causes Mg2Si to be a better thermoelectric material.

It is expected that increases in length will increase the λp of the SWCNT, while increases

in diameter and Teq will decrease λp. It is expected that increases in atomic percent (a/o)

Si and Teq will decrease λp regardless of the method of stoichiometric change, and that the

Si NP method will decrease λp more than the atomic Si substitutional method.
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CHAPTER 1

INTRODUCTION

Any device that uses or produces electrical or mechanical energy also uses or produces,

to some extent, thermal energy. For this reason, thermal management has been an area

of study for over a century and has only grown as technology has advanced. Appropriate

thermal management can be achieved in a variety of ways, two of which are passive and

active. Passive methods require no additional energy to move heat, and are therefore

often favorable, though not always as effective as active methods. However, changing the

nanostructure of the materials involved in passive heat transfer methods using nanoparticles

(NPs) can have great effects on the thermal transport properties of these materials. This

can, in turn, allow passive methods to become more effective, allowing improvements to

passive methods such as greater efficiency in cooling systems for electronics, and greater

waste heat recovery at power generation facilities.

One of the two efforts in this work was understanding the thermal conductivity (λ)

of single wall carbon nanotubes (SWCNT), as they could significantly increase the λ of

materials if the NPs are introduced into the materials matrix. This could increase the

efficiency of current passive thermal management methods used in electronics. The second

effort of this work was decreasing the λ of magnesium silicide (Mg2Si) through addition of

Silicon (Si) NPs, in order to improve its thermoelectric properties. This would allow more

efficient conversion of heat into electricity, which would reduce the amount of heat lost to

the environment in power plants, and maybe even vehicles.

1.1 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations have been used for research for many years

now, allowing researchers in various fields to simulate nanoscale and microscale material

samples. Using periodic boundaries for the simulated space, or box, in which the material
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is encased can allow for fairly accurate calculations of bulk material properties. Since the

software to run these simulations is generally free under a General Public License (GPL),

one obvious advantage of computational simulations over experimental work is monetary

cost and time. Another advantage is the freedom in designing the material; perfect crystal

lattices, placement of structures and particles with picometer accuracy, and changing the

definition of potential energy between any number of particles are all possible. However,

due to the complicated calculations that allow the simulations to imitate a physical experi-

ment, the computational expense (the processing power a certain simulation requires to run

within a given time) these simulations require can be high for computational work. Also,

if the mathematical models for the interatomic potentials are not accurate, the results will

be incorrect. The first problem can be mitigated through the use of periodic boundaries,

parallelization of MD code, and knowing the minimum system size to represent bulk mate-

rial properties. However, the challenge regarding interatomic potential equation accuracy

is always a concern. Computational results are therefore verified by comparison against

available experimental results.

The most commonly used MD software package is LAMMPS (Large-scale Atomic/Molecular

Massively Parallel Simulator) and was originally developed in 1995 by Steve Plimpton [1].

Using LAMMPS, the λ of many materials has been determined, using a variety of methods.

These calculations have been comparable to experimental results, which, combined with

having the aforementioned advantage in freedom of simulating many different materials

and structures, has made computational research using LAMMPS in material science and

nanoscale heat transfer all the more popular.

There are, however, limitations in the calculation of λ using LAMMPS, one of which

being that LAMMPS does not account for electrons in the simulations the software performs.

This is significant, in view of Eqn. 1.1 [2]:

λ = λp + λe (1.1)

where λp is the component of λ that comes from the atomic lattice vibrations (phonons)
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in the material (known as lattice thermal conductivity), and λe is the component of λ

that comes from the motion of electrons in a material. Since LAMMPS treats atoms in

its simulations as spheres with no electrons, the λe component of λ in a given simulated

material is always missing. This issue can be mitigated, however, by making use of certain

add-on software available to LAMMPS, or simply by using materials with a negligible value

of λe.

Many methods for calculating λp involve at least one equilibration ensemble, either

before or during the phase of the simulation in which information from the system is recorded

to calculate λp. The equilibration ensembles commonly used in such methods are the NPT,

NVT, and NVE equilibration ensembles. The first two ensembles, NPT and NVT, time

integrate the Nose-Hoover style non-Hamiltonian equations of motion, so as to match the

positions and velocities of atoms sampled from the isothermal-isobaric (NPT) and canonical

(NVT) ensembles, respectively. These, like most LAMMPS ensembles, only perform this

integration on those atoms in the section of material the ensembles are applied to [1]. In

both of these ensembles, the number of atoms is held constant and both target a constant

temperature that can be input. The difference is that NPT targets a constant pressure

that can be adjusted, while NVT targets a constant volume based on the initial volume

when the ensemble begins. The NVE ensemble updates the positions and velocities of the

atoms in the section of material it is applied to, but in a way that is consistent with the

microcanonical ensemble [1]. Therefore, the NVE ensemble targets constant values for the

number of atoms, the volume they occupy, and their total energy, based on these values

when the NVE ensemble begins.

There are several methods which employ LAMMPS to calculate λp. Four of these

methods are described below, along with their advantages and disadvantages. As one might

assume, each method has different strengths and weaknesses, and so, each method is best

suited for the simulation of different experimental setups. A summary of their advantages

and disadvantages, along with experimental setups best suited for simulation by the method

can be seen in Table 1.1.
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1.2 Equilibrium Molecular Dynamics with Green Kubo Formalism

The equilibrium molecular dynamics (EMD) method assumes that the system is already

in equilibrium, or close enough to it, that little if any equilibration is needed before data are

collected from the system. For this reason, only the NPT or NVT ensembles are applied,

sometimes in succession, beginning with the NPT ensemble. This method calculates λp

without applying a heat flux or temperature gradient to the system. Instead, the energy

and displacement of each atom are recorded during either the NPT or NVT ensemble

(whichever one is applied last), and are used to calculate J , using Eqn. 1.2:

J =
d

dt

∑

i

Eiri (1.2)

where Ei is the energy per atom and ri is the displacement of per atom with respect to

the specific direction. J is in turn used to calculate λp using Eqn. 1.3, the Green Kubo

formalism:

λp =
1

3kBT 2
eqV

∫ ∞

0

〈J(t)J(0)〉dt (1.3)

where kB is Boltzmann’s constant, Teq is the equilibration temperature of the system, V is

the volume of the system, and t is time. The factor of three in the denominator accounts

for an average over three orthogonal directions in which λp is calculated. For a specific

direction, this becomes Eqn. 1.4:

λpβ =
1

kBT 2V

∫ ∞

0

〈Jβ(t)Jβ(0)〉dt (1.4)

where β is the specific direction and Jβ is a component of J in the specific direction. The

calculation of J , on through the calculation of λp, can be coded into the LAMMPS script

or accomplished by an outside code after the simulation has run.

One of the biggest advantages of the EMD method is that it is computationally in-

expensive. This is because it requires a relatively small number of atoms (on the order

of 1000). This advantage also stems from the lack of an applied a heat flux, temperature
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gradient, or any other non-equilibrium condition on the system. As non-equilibrium con-

ditions such as these would increase the time needed for the system to reach equilibrium,

their absence allows for the accumulation of valuable equilibrium state data in shorter time.

Another advantage is the method’s ability to allow periodic boundaries in all directions.

This allows a λp calculation to take into account the longer phonon wavelengths that often

contribute significantly to λp [3], as opposed to methods like the NEMD approach which

are unable to account for these phonons without significant increase in computational cost,

due to their non-periodic boundaries in at least one direction.

While the EMD method is much less computationally intensive than other MD meth-

ods, the post processing can be much more computationally expensive than that of other

MD methods. This method is also limited in its ability to simulate more complicated

geometries (such as large, non-crystalline systems), as it is usually only applied to cubic

simulation boxes [3], [4], [5]. This would mean that a geometry with a significant length

in only one direction would require, instead of just a rectangular prism to contain the ge-

ometry, a cube with a much greater volume. Thus the much greater volume translates to

many more particles involved in the simulation, and so results in a greater computational

expense. Finally, the EMD method can struggle with calculating accurate λp for materials

with high λp [3]. This is because the time it can take for phonons in high λp materials to

decay can be very long. Therefore, if the simulation is not run for a period of time that

would allow all the phonons of a given material to decay naturally, the total energy the

phonons carry in reality will be truncated, resulting in an undercalculation of λp [3].

1.3 Phonon Wave Packet

The phonon wave packet method, as described by Choi et al [6], allows for a direct

observation of the behavior of phonons scattering at an interface during molecular dynam-

ics simulations. This allows for calculation of α, the phonon energy transmission ratio,

described by Eqn. 1.5:
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α =
Etr

E
(1.5)

where Etr is the energy transmitted across the boundary, and E is the initial wave-packet

energy.

In the PWP method, wave-packets are constructed from a single branch of the ma-

terials phonon dispersion curve, having a narrow frequency range, ω, and a well-defined

polarization. The wave-packet is generated by displacing the materials atoms according to

Eqn. 1.6:

un = Aǫ exp[ik(xn − xo)− (xn − xo)
2ξ−2] (1.6)

where un is the displacement of the nth atom, A is the amplitude of the displacement, ǫ

is the polarization vector, k is the wave vector, xn is the location of the atom along the

direction of transport, xo is the location of the center of the wave-packet, and ξ is the width

of the wave-packet. Once formed, the wave-packet can be allowed to propagate through

the material. As it encounters changes in the materials crystalline structure, it will either

transmit, reflect, or partially reflect and transmit. This is accomplished through an MD

simulation in which un is allowed to propagate through the system and across the boundary

at an equilibration temperature (Teq) of 0 K by means of an NVE ensemble [6]. For further

accuracy, this step may be preceded by an MD equilibration run of the system, involving

NPT, NVT, and NVE, usually applied in that order. In either case, once accomplished, α

can be calculated using Eqn. 1.5. α can then be used to better understand energy transfer

at the interface of the boundaries for a specific ω.

When α is calculated over a sufficient range of ω, such that α can be modeled as a

function of ω, λp can be calculated by the Eqn. 1.7 (adapted from Gu et al [7]):

λp =
L

2πA2

∫ ∞

0

~ω
∂n0(ω, Teq)

∂Teq
Tr(ω)DOS(ω)dω (1.7)

where L is the length of the sample in the direction of the heat flux, A is the cross-section
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area perpendicular to the direction of the heat flux, ~ is Planck’s constant divided by 2π,

ω is the frequency of a given phonon, n0 is the equilibrium phonon distribution function,

Tr(ω) is the transmission coefficient, α, at a given ω, and DOS(ω) is the phonon density

of states at a given ω.

The PWP method is particularly useful for boundary conductance and resistance, the

boundary being a change in the systems crystalline structure, material, or both. This

method is useful because other simulation methods would be more computationally intensive

and cannot easily, if at all, recover the information necessary to calculate α. The higher

computational expense comes from the fact that the other methods require a larger number

of atoms or require more intensive post processing. The higher Teq the other methods

often employ introduces more phonons, and phonons in practically random directions, to

the system, making the recovery of information regarding the energy loss of a phonon as it

passed through an interface difficult at best. Further, since the PWP method uses only a

single branch of the materials phonon dispersion curve, with a narrow frequency range, and

a well-defined polarization, it is much easier to track how much of this wave is transmitted

to the other side of the boundary, as it can practically be treated as a phonon.

For this same reason, the PWP method is not advantageous when simulating systems

for bulk λp. This is because in simulating only a single branch of the materials phonon

dispersion curve, with a narrow frequency range, and a well-defined polarization, only a very

small portion of the materials total heat transfer processes can be represented, resulting in

an underestimation of λp. Worse still, this underestimation can be anywhere from slight

to drastic, since the information given is used to describe the heat transfer processes of

essentially only one phonon.

1.4 Non-equilibrium Molecular Dynamics

Another method for calculating λp is the non-equilibrium molecular dynamics (NEMD)

method. This method builds on the EMD method in that it also applies the NPT and NVT

ensembles. This method differs, however, in that it applies a third ensemble to equilibrate

the system, namely, the NVE ensemble. This additional equilibration ensemble is added
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so that the system can further equilibrate, in hopes of further accuracy in the results

of the simulation. The other exception is that a non-equilibrium condition is applied to

the system during the NVE ensemble, such as a heat flux or temperature gradient. This

condition is usually applied after the NVE ensemble has run for some time, allowing for

proper equilibration of the system before the non-equilibrium condition is applied.

After the non-equilibrium condition has been employed and the system has reached

a steady state, information from the system is collected. Information regarding the non-

equilibrium method used (for example, the value of the applied heat flux) is used with the

system’s collected information (for example, the temperature gradient) to calculate λp. As

λp usually only applies to solids, it is calculated using Eqn. 1.8, Fourier's law:

q = −λp
dT

dx
A (1.8)

where q is the energy added and subtracted from the system per timestep (so as to apply

a heat flux), A is the area that q is passing through, and dT
dx

is the temperature gradient.

Rearranging Eqn. 1.8, Eqn. 1.9 is obtained:

λp = −
q

A

dx

dT
(1.9)

which can be used to calculate λp.

The NEMD method is advantageous for systems with complicated geometries, as the

system size is generally required to be large in order to ensure the longer phonon modes are

accounted for. These systems can also take on almost any shape, though it is often preferred

that it be a rectangular prism, the longer dimension being parallel with the heat flux or

temperature gradient. This advantage is the most critical, as it enables exact control over

atomic placement in systems of at least 100,000 atoms. The NEMD method thus allows

one to create virtually any nanoscale solid-state structure and retrieve simulated values for

λp or other material properties. Another advantage of the NEMD method is its relatively

simple post processing requirements as compared to EMD, PWP, and other MD methods.
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Simply put, the NEMD method does most of the computational work upfront, whereas the

other methods do less, and so need more post processing work than the NEMD method.

Finally, this method often results in a better approximation of a real system, as it involves

100,000 or more atoms.

The biggest disadvantage of the NEMD method is the computational expense. In MD

simulations, computational expense scales with N3, N being the number of particles within

the simulation. Also, NEMD simulations are required to be longer in the direction of the

heat flux or temperature gradient so as to better capture all possible phonon modes in the

material. These facts, combined with the fact that NEMD simulations need to simulate a

longer time period (often 15 nanoseconds (ns)) of real time, ensure that NEMD simulations

have much greater computational cost than other comparable methods. In addition, care

must be used to ensure that the temperature gradient information used is along the linear

portion of the curve, far enough away from both the heat source and sink where the flux is

being added and subtracted. In order to retrieve the information required to calculate λp,

post processing scripts may be necessary as the time that these simulations need to be run,

and the rate of output, produces large text files (100 Mb or more).

1.5 Normal Mode Decomposition

A more recent method of calculating λp is normal mode decomposition (NMD). This

method was developed by Alan McGaughey, and uses the EMD method with the Green

Kubo formalism. The difference is that this method divides up the phonons in groups based

on their frequencies in order to get λp values for each phonon frequency group.

The actual application of this method is very complex, and so the process for the NMD

method will largely be summarized by the following adaptation from McGaughey et al [8].

After a material and its atomic structure are selected, a unit cell needs to be chosen. The

cell will be the entire physical space that LAMMPS will simulate, and so can be thought

of as the simulation cell. Next, the allowed wave vectors are specified for the simulation

cell. Once specified, quasi-harmonic lattice dynamics calculations are performed in order to

obtain the frequencies and mode shapes of all normal modes associated with this material
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and its atomic structure. MD simulations are then run so that the position and velocity

of each atom is output. Finally, the atomic positions and velocities are projected onto the

normal mode coordinates. For a time-domain or frequency-domain analysis, the reader is

referred to [8], as a more in-depth explanation can be found in the original work.

Because this information allows one to identify the λp dependencies for certain ranges

of phonon modes, one can then better know which ranges of modes are most important

to λp, and which are not. These more important ranges of phonon modes can then be

targeted as what should be preserved, as opposed to the entire spectrum of phonons, if

the material undergoes changes in crystalline structure or stoichiometry. This also has

applications in heat transfer between two, or more, materials. For example, instead of

looking at the available phonon modes of each material, and trying to match every, or even

most, phonon modes, one could simply focus on finding a match between the ranges of

modes that contribute most to each materials λp, all but eliminating thermal boundary

resistance.

The biggest advantage of this method is the information that it makes available about

the material. The previous paragraph gives one example of an application of this informa-

tion, however there are many others, such as mismatching the contributing ranges of phonon

modes purposefully so that better insulation is obtained. One advantage that results of all

the information made available is a more accurate calculation of λp. An example of this

can be seen in [9] and [4].

The biggest disadvantage of the NMD method is the post processing computational

expense. The simulations are essentially EMD simulations, and so run fairly quickly, but

the post processing for NMD is considerably more involved than the EMD, as can be seen

early in this section. The NMD method also requires extra software, such as GULP, to

generate a phonon dispersion relation, and obtain normal mode information used in the

NMD process. Other disadvantages are those seen in the EMD method, such as struggling

with simulating large, non-crystalline systems and materials with high λp.
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Table 1.1: Advantages and Disadvantages of Various MD Methods for Calculation of λp
MD Method Advantages Disadvantages

EMD

• Computationally inexpensive
• Cannot represent asymmetric
geometry

• Can give more accurate λp
• Computationally expensive
post-processing requirements

• Does not require an applied
heat flux or temperature gradient

Struggles with calculating
materials with high λp

• Ideal for : λp calculation of
single crystalline materials

PWP

• Computationally inexpensive
• Only gives information for a
specific range of phonon
frequencies

• Gives more detailed
information regarding a specific
range of phonon frequencies

• Cannot easily account for
effects of complex stoichiometric
changes on λp

• Ideal for : λp calculation across
material or crystalline boundaries

NEMD

• Handles complex lattice
geometries such as NPs, defects,
and stoichiometric changes well

• Computationally expensive

• Post processing is
computationally inexpensive

• Simulations need to be long in
the direction of the heat flux to
produce accurate results for λp

• Uses a larger number of
particles (˜100,000) and
simulates a longer period of time
(often 15 ns), thus better
simulating a real system

• Needs to simulate a longer
period of time (often 15 ns) of
real time to be valid

• Ideal for : λp calculation
materials with complex and/or
stoichiometry or unique
crystalline structure

NMD

• Shows the contribution of
phonon normal modes to λp

• Post processing is very
computationally expensive

• More accurately calculates λp
• Struggles to simulate large
non-crystalline systems

• Ideal for : Very accurate λp
calculation of single crystalline
materials

• Requires use of lattice
dynamics program, such as
GULP, to generate a phonon
dispersion relation, and obtain
normal mode information
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1.6 The Method Chosen for This Work: NEMD

The NEMD method was chosen for this work for a variety of reasons. First, and most

importantly, it allows much more complicated geometries in the system, geometries for which

none of the other methods can accurately calculate λp. This fact makes the NEMD method

ideal for changing the nanostructure of the system, especially along a particular direction

or directions. This is important for simulating anisotropic changes in the nanostructure of

materials, such as changing the diameter and length of a SWCNT or adding Si NPs to the

lattice of Mg2Si. Because total differences in computational time plus post processing time

for each method are roughly equivalent, this is the most important reason for choosing the

NEMD method. However, other reasons are given in the following two paragraphs.

Also, the NEMD method can calculate an accurate λp for SWCNTs, which NPs have

a notoriously high λp (see Table 1.2), unlike the EMD method. In addition, because the

NEMD method uses a larger number of particles and simulates a longer time period, it

can be seen as a more accurate method for calculating λp for materials that have had

mixed results for λp in the past. SWCNTs are NPs that clearly fall into this category,

as can be seen in Table 1.2. Further, though the λp of Mg2Si has been known for some

time [10], changes to λp made by stoichiometric change to the material are not nearly as

well established. Therefore, the NEMD method should help to better approximate correct

values for λp for these materials.

Another reason for choosing the NEMD method is for ease of post processing. For

Mg2Si and SWCNTs, determining and correcting errors in λp calculation using an EMD

or NMD approach can be difficult due to the complicated nature of the post processing

calculations. The NEMD method post processing, however, is not only less computationally

expensive, but also involves simpler calculations, and therefore results in post processing

code that is easier to debug. As an example, a script of some kind, if not a very complex one,

is needed to compute λp for the other methods, where, depending on length of time run and

frequency of data taken, the post processing for the NEMD method can be computed using

a Microsoft Excel spreadsheet. This simple nature of the post processing for the NEMD
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method also eases the work of determining whether the source of the erroneous λp is in the

LAMMPS script or post processing method. More information regarding the advantages of

this method can be seen in Table 1.1.

The remainder of this document will consist of the Objectives, Approach, Nanopar-

ticle and Material Backgrounds, Simulations Setup, Results and Discussion, Conclusion,

and References chapters. The Objectives chapter consists of the list of objectives this work

intends to fulfill. The Approach chapter consists of the plan to meet the aforementioned

objectives. The Nanoparticle and Material Backgrounds chapter covers some information

about the materials and the reason for the investigation of their respective λp values. The

Simulations Setup chapter explains the setup details for the LAMMPS simulation. The Re-

sults and Discussion chapter consists of the presentation of the results, and their associated

potential explanations. The Conclusion chapter contains specific conclusions for SWCNT

and Mg2Si, and a general conclusion based on both works. Lastly, the References chapter

consists of a list of sources cited by this work.
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Table 1.2: λp of isolated SWCNT at Teq of 300 K* obtained using computational and
experimental techniques and some setup information (adapted from Lukes et al [11])

Molecular Dynamics Simulations

Reference λp
(Wm-1K-1)

SWCNT
Length
(nm)

Cross-
Sectional
Area (m2)

Chirality Simulation
Technique

Osman et al. [12] 1700 30 14.6×10−19 (10, 10) NEMD

Che et al. [13] 2980 40 4.3×10−19 (10, 10) EMD

Yao et al. [14] 1 - 4×1023 6 - 60 14.6×10−19 (10, 10) EMD

Padgett and Brenner et al.
[15]

40 - 320 20 - 310 14.6×10−19 (10, 10) NEMD

Moreland et al. [16] 215 - 831 50 - 1000 14.6×10−19 (10, 10) NEMD

Maruyama et al. [17] 260 - 400 10 - 100 14.6×10−19 (10, 10) NEMD

Boltzmann-Peierls Phonon Transport Equation (*Teq = 316 K)

Reference λp
(Wm-1K-1)

SWCNT
Length
(nm)

Cross-
Sectional
Area (m2)

Chirality Simulation
Technique

Mingo and Broido [18] 80 - 9500 10 - 109 (10, 10)

Experimental Measurement

Reference λp
(Wm-1K-1)

SWCNT
Length
(nm)

Diameter
(nm)

Yu et al. [19] 2000 2600 1

Yu et al. [19] 1×104 2600 3

Pop et al. [20] 3400 2600 1.7
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CHAPTER 2

OBJECTIVES

1. Using LAMMPS MD software and applying the NEMD method, obtain values for λp of

SWCNT at various Teq (50 to 500 K, at 50 K increments), lengths (25, 100, and 200

nm), and diameters (1.5 and 6.9 nm)

2. Using LAMMPS MD software and applying the NEMD method, obtain values for λp of

Mg2Si at various stoichiometries modified by number of Si NPs (0, 1, 2, 4, 8, and 16

NPs) and at various Teq (300, 600, and 900 K)

3. Using LAMMPS MD software and applying the NEMD method, obtain values for λp of

Mg2Si at various stoichiometries (those corresponding to the stoichiometries generated

in objective 2) modified by substitutional Si atoms (33.33, 34.29, 35.32, 37.29, 41.37, and

49.55 a/o Si) and at various Teq (300, 600, and 900 K)
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CHAPTER 3

APPROACH

3.1 SWCNT

The following will be done on my personal computer and a research desktop in ENLAB

205. First, a method to create the lattice structure of the SWCNTs to be simulated will

be developed. Then, the consistent valence force field (CVFF) potential, as used in Zang

et al [21], will be implemented to describe the interatomic potential of the carbon atoms in

the SWCNT. The Visual Molecular Dynamics (VMD) software [22] will be used to build

the crystal structure (in this case, perfect crystalline structure) of each of the SWCNTs.

Each simulation will be run for a total of 2 ns, using a timestep of 1 fs, and an equilibration

process consisting of the NPT, NVT, and NVE ensembles. Next, using this lattice structure

and potential model, a reasonably accurate λp for a given SWCNT will be obtained. Fol-

lowing these initial steps, changes in length, diameter, and Teq will be made to the original

SWCNT, according to what is stated in the Objectives chapter, and λp will be calculated

for each new system created by these changes, so that the effects of each change on λp can

be calculated. The results will then be plotted as λp vs. SWCNT Teq graphs; one graph dis-

playing information regarding changes in SWCNT length, the other displaying information

regarding changes in SWCNT diameter.

3.2 Mg2Si

The following will be done on my personal computer, a research desktop in ENLAB

205, and using the Center for High Powered Computing (CHPC) at the University of Utah.

First, a method to create the lattice structure of Mg2Si will be developed, so as to create the

perfect crystalline antifluorite lattice of Mg2Si. A method will also be developed to create the

perfect crystalline diamond lattice of the pure Si NPs. Then, an extended MEAM potential
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developed by Zhang et al [23] will be implemented to describe the interatomic potential of

Mg2Si, pure Si (for the Si NPs), and off-stoichiometry Mg2Si. Each simulation will be run

for a total of 15 ns, using a timestep of 1 or 0.1 fs (depending on the level of complexity

of the stoichiometry and lattice structure), and an equilibration process consisting of the

NPT, NVT, and NVE ensembles. Using these lattice structures and potential model, a

reasonably accurate λp for bulk Mg2Si will then be obtained. Following these initial steps,

changes in stoichiometry, both by addition of Si NPs (achieved through the LAMMPS MD

software) and addition of substitutional Si atoms (achieved using a MATLAB script), will be

implemented. The Si atomic percent (a/o) and Teq of the systems will then be changed, the

first being modified either by addition of Si NPs or substitutional Si atoms. These changes

will be made according to what is stated in the Objecives chapter. As a reference system,

a pure Mg2Si system will undergo the same changes as the stoichiometrically modified

systems, with the exception of the changes in stoichiometry; i.e., only Teq will be changed.

For each change to each system, λp will be calculated so as to quantify the effect of each of

the aforementioned system modifications on λp. This information will then be plotted so

that there are four graphs total: λp vs. Teq and λp vs. Si a/o for stoichiometric manipulation

Mg2Si by substitutional Si, and λp vs. Teq and λp vs. Number of Si NPs Present in Mg2Si

for stoichiometric manipulation Mg2Si by addition of Si NPs. Each of the λp vs. Teq graphs

will include the plot of information for the pure Mg2Si whose only modifications were in

Teq.
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CHAPTER 4

Nanoparticle and Material Backgrounds

4.1 SWCNT

SWCNT have long since been known for their high λp, and so much work has been

done to use these NPs to enhance the λp of other materials by embedding SWCNTs in said

materials. One of the most prominent examples of this is embedding SWCNTs in polymers

to improve the λp of the composite material. A composite polymer with a high λp would

have important applications in heat exchangers, computer components, and other thermal

devices where an electrically insulative but thermally conductive material is desired. Ideally,

the composite would also be lightweight, flexible, corrosion resistant, and relatively easy to

process [24].

Information critical to the results of these efforts is the λp of the SWCNTs themselves,

which can depend on a variety of factors such as Teq, length [3], diameter [25], and others.

Current SWCNT fabrication processes can manipulate the length of the NPs and perhaps

even the diameters of the SWCNTs [26]. This work seeks to understand how the λp of

SWCNTs is affected by changes in these parameters. All of the systems generated by

VMD [22] are perfect crystalline, in contrast to the reality of fabricated SWCNTs; however,

general trends in changes in λp based on changes in length, diameter, Teq should be valuable

predicting changes in λ in real SWCNTs based on length, diameter, and actual T .

4.2 Mg2Si

4.2.1 Note

This and all sections following regarding Magnesium Silicide (Mg2Si) are taken from a

journal article [27] written by the author, which was published in MRS Advances in August

of 2017. Information from the journal article is included here for purposes of completeness.
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Addition of Si NPs to Magnesium Silicide (Mg2Si), a well-known thermoelectric, may

increase this materials efficiency in waste-heat recovery, as shown in similar work [28]. The

figure of merit (ZT ), which is used to determine the efficiency of a thermoelectric material

to convert heat into electric power, is a dimensionless parameter described by Eqn. 4.1 [2]:

ZT = S2
σTabs
λ

(4.1)

where S is the Seebeck coefficient, σ is the electrical conductivity, Tabs is the absolute

temperature, and λ is the thermal conductivity of the thermoelectric material. Eqn. 4.1

shows that ZT can be increased by lowering the λ of the material. λ is defined by equation

Eqn. 1.1 in the introduction.

Usually, the positive correlation between λ and σ, which occurs due to the positive

correlation between λe and σ, presents a challenge in achieving a high ZT value in thermo-

electric materials. However, at 300 K, the λe of Mg2Si is very small relative to λ, being 0.2

Wm-1K-1 or less [29], while λ has been measured at 7.8 Wm-1K-1 [10]. Therefore, λ should

depend much more on changes in λp than changes in λe. Further, the Si NPs (32.562 Å in

diameter) should cause much more phonon scattering than electron scattering, due to the

size difference in the mean free paths of phonons and electrons [30]. Therefore, the presence

of Si NPs should not cause a significant change in σ or λe . In addition, adding Si NPs to

a material is known to increase S [31].

From [32], Mg2Si is not magnetic, and its magnetic properties should not be affected by

the proposed stoichiometric changes. This implies that thermal properties of this material

and those of its stoichiometrically changed systems should not be affected by their magnetic

properties, as these properties would be and remain nonmagnetic. Given this information,

decreasing λp using Si NPs should result in a higher ZT value. Though decreasing λp

through the addition of Si NPs should increase ZT , LAMMPS [1], the MD software used,

can only calculate λp, as mentioned in the introduction. This fact necessitates further

research to obtain the S, σ, and λ values for each of our systems in order to calculate

accurate ZT values, and thus identify the nanostructure resulting in the greatest ZT value.
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The focus of the work with Mg2Si, therefore, is to find the nanostructure resulting in the

lowest λp value, so as to provide a strong starting point for these future efforts.
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CHAPTER 5

Simulations Setup

5.1 SWCNT

As mentioned in the introduction, the NEMD equilibration process was used in con-

junction with LAMMPS [1] MD software. VMD software [22] was used to create data files

to define the positions of each atom, their bonds, bond angles, dihedrals, and impropers

in the SWCNTs. Data files for SWCNTs of lengths of 25, 100, and 200 nm, each with a

diameter of 1.5 nm, were created using VMD. One last data file was created for a SWCNT

with a length of 200 nm and a diameter of 6.9 nm to compare the diameter differences.

For simplicity purposes, the diameter of any SWCNT mentioned hereafter will be 1.5 nm

unless otherwise stated. Due to inexperience at the time this work was done, and that di-

ameters were could only be controlled indirectly, these two diameters alone were applied to

the SWCNTs. These data files were then read by LAMMPS input files, one for each of the

data files generated. See Figure 5.1 for a visual representation of the SWCNTs generated

using VMD.

Each LAMMPS [1] input file was written so that it constructed a unit cell simulation

box (see Figure 5.2), with dimensions oriented along the x-, y-, and z-axes, respectively

(the longest dimension being along the z-axis). The boundaries of the simulation box were

set to be periodic, but sufficient space was placed between the boundaries in the x- and y-

directions and the SWCNT to ensure that the simulation calculated λp for only one SWCNT,

not many right next to one another. SWCNT hot and SWCNT cold sections of the material

were created close to either end of the simulation box, which act as a heat source and a

heat sink, creating a constant heat flux. To ensure that these sections would not interfere

with each other due to the nature of the periodic boundaries, both ends of the simulation

box were capped with SWCNT walls, or sections of the material in which the atoms do not
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Fig. 5.1: Visual representation of the 25, 100, 200 nm, and 69 nm diameter, SWCNTs, from
top to bottom, respectively. The yellow lines are the edges of the simulation box.

move. Here symmetry was not important since, due to the periodic boundaries, these two

sections were in reality one section. The segment tested for λp was the material between

the heat source and sink. For clarity purposes, this section, whose λp is measured, will be

referred to as the SWCNT test section. A visual representation of the simulation setup can

be seen in Figure 5.2.

As the length of the SWCNT changed, so did the simulation box length and the lengths

of each section (SWCNT hot, cold, test, and wall sections) in the z-direction. For the 25

nm length SWCNT, the lower SWCNT wall section length was 20.6 Å, the SWCNT cold

section length was 21 Å, the SWCNT test section length was 167 Å, the SWCNT hot section

length was 21 Å, and the upper SWCNT wall section length was 20.9 Å, making a total

length for the unit cell simulation box 250.5 Å. For the 100 nm length SWCNT, the lower

SWCNT wall section length was 99.5 Å, the SWCNT cold section length was 101 Å, the

SWCNT test section length was 600 Å, the SWCNT hot section length was 101 Å, and

the upper SWCNT wall section length was 99.5 Å, making a total length for the unit cell

simulation box 1001.0 Å. For the 200 nm length SWCNT, the lower SWCNT wall section

length was 199.5 Å, the SWCNT cold section length was 201 Å, the SWCNT test section

length was 1100 Å, the SWCNT SWCNT hot section length was 201 Å, and the upper

SWCNT wall section length was 199 Å, making a total length for the unit cell simulation
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Fig. 5.2: Visual representation of the simulation setup using the 25 nm long SWCNT system
as an example. The red-shaded volume represents the SWCNT hot section, the blue-shaded
volume the SWCNT cold section, and the gray-shaded volumes represent the SWCNT wall
sections. The yellow lines are the edges of the unit cell simulation box.

box 2000.6 Å. For all SWCNT systems, the dimensions in the x- and y-directions were 100

Å. These systems will continue to be referred to as the 25 nm, 100 nm, and 200 nm SWCNT

systems, respectively, although their actual length differs slightly from these values. The

dimensions used for the 200 nm SWCNT system were also used for the 69 nm diameter

SWCNT system.

Because of the nature of the output of VMD, specifically its including information on

bonds, bond angles, dihedrals, and impropers, a molecular style was used in conjunction

with the atom style command in the aforementioned LAMMPS input files. This style, along

with the information provided by the VMD software, required that only certain interatomic

potentials be employed. Specifically, the interatomic potentials were required to provide

information regarding each bond, bond angle, dihedral, and improper, such as associated

energy and angle values. The potential selected was the constant valence force field, as

implemented by Zang et al [21]. Eqn. 5.1 through Eqn. 5.6 describe the potential in greater

detail.
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E = Epair + Ebond + Eangle + Edihedral + Eimproper (5.1)

where E is the total energy of the interatomic potential, and Epair, Ebond, Eangle, Edihedral,

and Eimproper are defined by Eqn. 5.2 through Eqn. 5.6

Epair = 4ǫE

[

(σr
r

)12

−
(σr
r

)6
]

, r < rc (5.2)

where σr is the distance at which the interatomic potential is zero, ǫE is the depth of the

interatomic potential well, r is the distance between one atom and another, and rc is the

cutoff distance, or the distance over which this potential equation is applied.

Ebond = Kb(rb − rb0)
2 (5.3)

where Kb is the stiffness of the bond, rb is the bond length, and rb0 is the bond length

reference value.

Eangle = Ka(theta− θ0)
2 (5.4)

where Ka is the stiffness of the bond angle, and θ is the value for the bond angle, and θ0 is

the bond angle reference value.

Edihedral = Kd[1 + ddcos(ndψd)] (5.5)

where Kd is the energy barrier height of the dihedral angle, dd represents the direction of

dihedral angle (having a value of either -1 or +1), nd is the multiplicity of the dihedral

angle, and ψd is the value for the dihedral angle.

Eimproper = Ki[1 + dicos(niψi)] (5.6)

where, similar to Eqn. 5.5,Ki is the energy barrier height of the improper angle, di represents

the direction of improper angle (having a value of either -1 or +1), nd is the multiplicity of
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the improper angle, and ψi is the value for the improper angle.

The necessary coefficients and constants, from [21], for the CVFF potential were then

converted to the unit system used by the LAMMPS input file, and implemented in the

input file. The coefficients and constant used in Eqn. 5.2 were not used, but instead other

parameters (namely ǫE = 1 eV, σr = 1 Å, and rc = 1 Å) were used. The application of this

potential and the aforementioned coefficients and constants led to stable systems from Teq

of 50 through 500 K. This system stability was taken to imply that this potential was valid

for the SWCNT systems in this work.

Each simulation was run for a total of 2 ns to ensure that the systems reached steady

state. This shorter run time was possible due to SWCNTs being thermally fast, resulting in

thermal equilibration for the NP in less time than most materials. The 2 ns were divided so

that most of the time was given to the constant heat flux application, as follows: NPT and

NVT each ran for 0.3 ns, NVE ran for 0.4 ns, then NVE continued to run while a constant

heat flux was applied for an additional 0.1 ns, and the remaining 0.9 ns were used to record

temperature gradients every 0.2 ps, while the NVE and constant heat flux continued to run.

Each of the systems were simulated at Teq of 50, 100, 150, 200, 250, 300, 350, 400, 450, and

500 K, and at an equilibration pressure of 0.0 bars.

The temperature values composing the temperature gradient were collected in the

following way. The temperature values were averaged both temporally and spatially, being

determined by a time increment (0.2 ps) to be averaged over as well as a 3-dimensional

space to be averaged over. The 3- dimensional space, or chunk is determined by a length

value, which is used to break up the SWCNT test section into rectangular prisms along the

z-direction, with divisions being perpendicular to the z-direction every certain chunk size

length value. The chunk size values of 25, 100, and 200 Å were used in each simulation

according to the length of the SWCNT simulated (25, 100, and 200 nm respectively).

Using the aforementioned averaging process, the occurrence of steady state in these average

temperature values was identified. The average temperature values were averaged over

the time from the beginning of steady state until the end of the simulation. This process,
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which was repeated for each system, provided a temperature gradient for the entire SWCNT

test section. As mentioned in the introduction, Eqn. 1.9 was modified to account for the

direction of the heat flux as shown in Eqn. 5.7:

λp = −
q

A

dz

dT
(5.7)

Eqn. 5.7 was then used to calculate the λp of each system. This equation was used

over a number of chunks to obtain a more accurate temperature gradient, and thus a more

accurate value for λp. The number of chunks used varied from 3 to 7, in an effort to ensure

that Eqn. 1.9 was only applied over linear portions of the temperature gradient.

In calculating λp for SWCNTs, there are at least two ways calculate A. One is to

calculate the circular area of the SWCNT (”circle method”) and the other is to calculate

only that area that is associated with the material itself, in other words, A is calculated

as an annulus (”annulus method”). This work uses the latter method which, in view of

Eqn. 1.9, leads to much higher values of λp. According to the annulus method used by this

work, A scales with d/2, d being diameter. If the circle method is used instead, A scales

with d2/4. If one takes these different methods for calculating A into account, and adjusts

accordingly, then the resulting trends in λp are the same, regardless of the choice between

the two methods for calculating A. However, throughout this work with SWCNTs, unless

otherwise mentioned, A will be calculated using the annulus method.

5.2 Mg2Si

As mentioned in the introduction, the NEMD equilibration process was used with

LAMMPS [1] MD software. This method of using the NPT, NVT, and then NVE ensembles

is especially helpful when Teq is 600 or 900 K. This is because these higher Teq values

are likely to cause thermal expansion, which longer equilibration processes should more

accurately capture.

A LAMMPS input file was written so that it constructed an 8 by 8 by 128 unit cell

(50.704 by 50.704 by 811.264 Å) simulation box (see Figure 5.3), with dimensions oriented
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Fig. 5.3: Visual representation of the simulation setup using the pure Mg2Si system as an
example. The red-shaded volume represents the Mg2Si hot section, the blue-shaded volume
the Mg2Si cold section, and the gray-shaded volumes represent the Mg2Si wall sections.

along the x-, y-, and z-axes, respectively (the longest dimension being along the z-axis).

The boundaries of the simulation box were set to be periodic so that bulk λp could be

better simulated. Mg2Si hot and Mg2Si cold sections of the material were created close to

either end of the simulation box, which act as a heat source and a heat sink, creating a

constant heat flux. These Mg2Si hot and Mg2Si cold sections were each 47.535 Å in length

in the z-direction. To ensure that these sections would not interfere with each other due to

the nature of the periodic boundaries, both ends of the simulation box were capped with

Mg2Si walls, or sections of the material in which the atoms do not move. These Mg2Si

wall sections were 44.366 and 47.535 Å in length in the z-direction. Here symmetry was

not important since, due to the periodic boundaries, these two sections were in reality one

section. The segment tested for λp was the material between the heat source and sink,

and though it varied slightly between systems due to the movement of atoms as the system

equilibrated, this section was initially 624.293 Å in length in the z-direction and changed

by no more than 50 Å. For clarity purposes, this section, whose λp is measured, will be

referred to as the Mg2Si test section. A visual representation of the simulation setup can

be seen in Figure 5.3.

In order to initialize the locations of the Mg and Si atoms for the simulation, an

antifluorite lattice structure consisting of an FCC lattice with a lattice constant (a) equal

to 6.338 Å for the Si atoms, and a BCC lattice with a equal to 3.169 Å for the magnesium

(Mg) atoms, was employed. Each Mg BCC lattice was centered within each Si FCC lattice.

The Si NP system simulations used spherical pure Si NPs, all oriented in the center of the

simulation box, parallel to the z-axis, and evenly spaced along this axis. A diamond lattice

was used for the Si NPs, with an a of 5.427 Å. The diameter of each Si NP was 32.562 Å
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(See Figure 5.4). In order to ensure that the stoichiometry of the substitutional Si atoms

in the Mg2Si matrix matched that of the Si NP systems, a MATLAB script was written

to read in a LAMMPS data file for pure Mg2Si, which contained the positions of every

atom in the simulation box. It then identified the Mg atoms by their assigned type in the

data file, which was 1, and randomly replaced them with 2, which was the type assigned

to the Si atoms. This was done according to the target a/o Mg, which was entered at the

beginning of the script. The target a/o Mg and the results differed by less than 1 a/o Mg

(See Figure 5.4). The a/o targeted was that of each respective system involving Si NPs,

so as determine whether the decrease in λp was caused by the nanostructure or by the

stoichiometry of the systems of Mg2Si with Si NPs. From This should have a similar effect

as the NP addition to Mg2Si [33], the Si atomic substitutions should have an effect similar

to the NP addition to Mg2Si on λp. These data files were then read in by a LAMMPS input

script so that each Mg2Si system could be simulated.

As a note for clarity: all systems, including the Si NPs, were single crystalline, the only

defects being Si NPs, and substitutional Si atoms in the Mg2Si matrix. For more detail,

see Figure 5.4.

Fig. 5.4: Visual representation of the system of pure Mg2Si (left), Mg2Si with 8 Si NP
(center), and Mg2Si with substitutional Si atoms matching the stoichiometry of 8 Si NP
system (right). The Mg atoms are colored red, the Si atoms green, and the Si atoms in the
NP are colored blue. The yellow lines are the edges of the simulation box.

An extended modified embedded atom method (MEAM) potential developed by Zhang

[23] was implemented in order to describe the interatomic potentials of Mg2Si as well as
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its changes in stoichiometry. Eqn. 5.8 [1] describes how this potential is implemented using

LAMMPS.

Esys =
∑

i

{

Fi(ρ̄i) +
1

2

∑

i 6=j

φij(rij)

}

(5.8)

where Esys is the total energy of a system of atoms, Fi is the embedding energy as

a function of ρ̄i, ρ̄i is the atomic electron density, φij is a pair potential interaction as a

function of rij , i refers to the atom in question, j refers to the neighboring atoms of i, and

rij is the distance between atoms i and j.

The extended MEAM potential contains files with information that represents the po-

tentials of the many possible stoichiometries of Mg2Si, and so different potential information

was used for different stoichiometries. For the pure Mg2Si case, the potential information

specifically designated for that stoichiometry was used. In the case of the Mg2Si with Si

NPs, the same potential information used for pure Mg2Si for the matrix material, as well as

the potential information describing pure Si for the Si NPs, was applied. When matching

the stoichiometry of the Si NP simulations with random substitutions of Mg atoms for Si

atoms, the same potential information used for pure Mg2Si was once again applied. This

assignment of potentials was based on the assumption of little difference between these cases

due to the theoretically even distribution of the Si atoms and the similar a/o Si value to

pure Mg2Si. This has been proved in part by the stability of the system despite the high

Teq (900 K) and greater a/o Si.

Each simulation was run for a total of 15 ns to ensure that the systems reached steady

state. The 15 ns were divided so that most of the time was given to the constant heat

flux application: NPT, NVT, and NVE each ran 0.6 ns, then the NVE continued while

the constant heat flux was applied for another 2.0 ns, and the remaining 11.2 ns were used

to record temperature gradients every 0.2 ps or 0.02 ps, while the NVE and constant heat

flux continued to run. Each of the systems involving pure Mg2Si, Mg2Si with Si NPs, and

Mg2Si with substitutional Si atoms, were simulated at Teq of 300, 600, and 900 K, and at

an equilibration pressure of 0.0 bars. In almost all the Si NP and random Si substitutional
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simulations, it was necessary to decrease the timestep size in order to maintain the stability

of the system of atoms in the simulation box. The increase of the Teq, a/o Si, and number

of Si NPs in the systems all made it necessary to decrease the timestep size, which was done

by a factor of 10.

The temperature values composing the temperature gradient were collected in the

following way. The temperature values were averaged both temporally and spatially, being

determined by a time increment to be averaged over as well as a 3-dimensional space to be

averaged over. The 3- dimensional space, or chunk is determined by a length value, which

is used to break up the Mg2Si test section into rectangular prisms along the z-direction,

with divisions being perpendicular to the z-direction every certain chunk size length value.

Time increments values of 0.2 ps or 0.02 ps (for the simulations with the smaller timestep)

were used in their respective simulations, while the chunk size value of 50 Å was used in

all simulations. Using the aforementioned averaging process, the occurrence of steady state

in these average temperature values was identified. The average temperature values were

averaged over the time from the beginning of steady state until the end of the simulation.

This process, which was repeated for each system, provided a temperature gradient for the

entire Mg2Si test section. Eqn. 5.7 was then used to calculate the λp of each system. This

equation was used over 11 chunks to obtain a more accurate temperature gradient, and thus

a more accurate value for λp.
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CHAPTER 6

Results and Discussion

6.1 SWCNT

In order complete a basic verification of the validity of the interatomic potential, the

200 nm SWCNT system was simulated at Teq of 300 K. This resulted in a λp of 2.457×104

Wm-1K-1, which when circle method for A, gives a value of 8.335×103 Wm-1K-1, falling

within the range of the values reported in Table 1.2, and those reported by Lukes et al [11].

As no information in the table indicates the method of area calculation, this value may fall

outside the range of most of the values. However, the perfect crystallinity of the system

considerably enhances λp. From this point, this, and the other SWCNT systems were

simulated at the aforementioned Teq values.

The highest value of λp was 3.940×104 (A using circle method: 1.337×104) Wm-1K-1,

and was found in the 200 nm SWCNT system at a Teq of 50 K. The lowest value of λp

was 933.2 (A using circle method : 316.7) Wm-1K-1, and was found in the 25 nm SWCNT

system at a Teq of 50 K. These values, and all others for the various Teq, lengths, and

diameters applied to the SWCNTs, are very high, which is characteristic of SWCNTs (see

Table 1.2). These values may still seem high, but this may be attributed, at least in part, to

the perfect crystallinity of the SWCNT systems simulated. More information on the results

can be found in Figure 6.1 and Figure 6.2

The fact that the lowest value for λp comes from the shorts length SWCNT tested makes

sense, as the longer wavelength phonons that tend to carry more heat are not allowed in

such a short system [3]. However, this value would normally be expected to occur at the

highest Teq value used, not the lowest. This is typically an incorrect artifact of LAMMPS,

as it assumes a classiscal Dulong and Petit model in which λp essentially goes to infinite

Wm-1K-1 as Teq goes to 0 K (assuming the length in the direction of the heat flux is long
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enough). From Figure 6.1 and Figure 6.2, it is easy to see that only the 200 nm SWCNT

system seems to exhibit this behavior. Ironically, though the this is the only system whose

λp behaves the way it should according to LAMMPS, this also means that this is the

system with the least accurate results when compared with what would be expected for

experimental results.

One possible explanation for the apparent deviation of λp to infinite Wm-1K-1 as Teq

goes to 0 K is that λp is not actually following that trend, but instead will peak and then

decrease, approaching a value of 0 Wm-1K-1 as Teq goes to 0 K, just as plots of λp vs Teq

for most materials do [34].

The mechanism that likely causes λp to decrease at Teq increases is multi-phonon scat-

tering. As Teq increases, the phonon population increases, and so more scattering between

phonons, or multi-phonon scattering, occurs, thus impeding λp. The mechanism that likely

causes the decrease in λp as Teq decreased, seen from Figure 6.1 only in the 25 and 100

nm SWCNT systems, is suppression of long-wavelength phonons due to the length of these

systems in the direction of the applied heat flux.

Other general trends in Figure 6.1 and Figure 6.2 are that increase in SWCNT length

leads to an increase in the value of λp, and that an increase in the diameter of SWCNTs

leads to a decrease in λp values. These results regarding changes in length were generally

expected.

Figure 6.3, adapted from Saito et al [35] shows the phonon dispersion and phonon

density of states plots for SWCNT. The slopes of each of the lines in the phonon dispersion

plot (left) can be taken as the propagating velocity, through the material, of the associated

normal phonon mode.

It can be seen from this figure that there are many long-wavelength phonons with high

velocities. These long-wavelength phonons can only exist where length of the SWCNT at

least half their wavelength, and they tend to transfer heat much better due to their high

propagating velocities, and their longer phonon lifetimes, or time that they exist before

scattering. Therefore, as the length of the SWCNT system increased, more of these phonons
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Fig. 6.3: Phonon dispersion and phonon density of states plots for SWCNT (adapted from
[35]).
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with longer lifetimes and higher velocities [3] populated the SWCNT. The higher population

of these phonons, often known as acoustic phonons, led to higher values of λp.

Increases in diameter resulted in increases in A, however, this work was only considering

A that included the physical material. This means that as A increases, so does volume of

the material, thus decreasing dT per unit length. In view of Eqn. 5.7, the increase in A and

decrease in dT should cancel any effects on the value of λp. Therefore the drop in λp seen

in Figure 6.2 cannot be attributed to the SWCNTs changes in diameter and the resulting

changes in A.

One explanation is given by Yue et al [25]. In their work, they found that the optical

phonon population increased, specifically in the lower optical phonon frequencies, with

increase in the diameter of the SWCNTs. This resulted in more optical-acoustic scattering

processes, leading to decreasing λp values as SWCNT diameter increased. Their values for

λp and diameters at which these values were calculated do not match those of this work,

which can be attributed to differences in the interatomic potential used.

6.2 Mg2Si

First, a value for λp of pure Mg2Si at 300 K was calculated, which resulted in a λp of

8.454 ± 1.094 Wm-1K-1. Since this value is comparable to the experimental value of 7.8

Wm-1K-1 found by LaBotz, R [10], the aforementioned geometry and potential information

was used to proceed. λp relating to changes the mean free path (Λ) can be calculated using

Eqn. 6.1 [36]:

λp =
1

3
ΛCv (6.1)

where C is the heat capacity and v is the average speed of phonons through a given

material. This v was calculated using a linear approximation of the acoustic branches from

the X point to the Γ point (see Figure 6.4, adapted from [37]), thus giving a higher-than-

average group phonon velocity. This was not the average velocity of all of the phonons, as v

should be, but was instead an estimation. The value for C was taken from [38] and converted
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Fig. 6.4: Phonon dispersion and phonon density of states plots for Mg2Si (adapted from
[37]). Experimental points along the phonon dispersion plot are from [39] and [40], rep-
resented by solid red circles. Experimental points along the phonon density of states are
from [41], represented by solid red diamonds.

using the density and molecular mass of Mg2Si. The value for Λ was calculated using

Eqn. 6.1, using the aforementioned values for v and C, and using λp from the simulation

of pure Mg2Si at Teq of 300 K. The values for Λ were adjusted for taking into account the

ratio of an Si NP’s projection compared to that of the surrounding Mg2Si, the number of

Si NPs, and their associated spacing. With this, the 16 Si NP Mg2Si system still needed

to be adjusted. The finished product of these efforts can be seen in Figure 6.5. All of this

was done, including the many estimations and adjustments, so that the trend could be seen

on the graph, and so that it could give realistic results. Though many estimations had

been done, the general trend of the theoretical and computational plots of λp in Figure 6.5

appear to agree.

The lowest λp for the Mg2Si systems with Si NPs at Teq of 300 K was 1.791 ± 0.124

Wm-1K-1, resulting from the system with 16 Si NPs (an equivalent stoichiometry of 49.55

a/o Si). This same nanostructure also resulted in the lowest λp for the Mg2Si systems

with Si NPs at Teq of 600 and 900 K, with values of 1.649 ± 0.157 and 1.280 ± 0.214

Wm-1K-1. For further information on the λp of Mg2Si systems with Si NPs, see Figure 6.5
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Fig. 6.5: λp vs. number of Si NPs present in Mg2Si systems at Teq values of 300, 600, and
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300 K Theor.

and Figure 6.6.

The lowest λp for the Mg2Si systems with dispersed Si atoms at Teq of 300 K was 1.300

± 0.053 Wm-1K-1 , resulting from the 49.55 a/o Si system. This same nanostructure also

resulted in the lowest λp for the Mg2Si systems with dispersed Si atoms at Teq of 600 and

900 K, with values of 1.064 ± 0.117 and 0.9347 ± 0.292 Wm-1K-1. This last value was the

lowest overall. For more information on the λp of Mg2Si systems with dispersed Si atoms,

see Figure 6.7 and Figure 6.8.

From Figure 6.5 and Figure 6.7, it is easy to see that, as predicted, λp decreased as a/o

Si and the number of Si NPs in Mg2Si increased. It is interesting to note that λp decreased

with diminishing returns, roughly following an asymptotic decay, as both the number of

Si NPs and the a/o Si in Mg2Si increased. However, the data from the dispersed Si atom
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method seemed to more closely resemble an asymptotic decay when compared to the data

of the Si NP method. In Figure 6.6 and Figure 6.8, the effect of Teq on λp declines as

NP count increases because the phonons whose propagation the higher Teq would normally

hinder have, as the NP concentration increases, already been hindered due to boundary

resistance.

6.2.1 Reduction in λp in 1 Si NP Case

As can be seen in From Figure 6.5, the λp of the 1 Si NP cases for each Teq are

consistently lower than that of their 2 Si NP counterparts, a clear break from the trend of

the rest of the data. The 1 Si NP case had its sole Si NP in the center of the simulation

box, directly half way between the hot and cold sections. Because of this, it was thought

bringing the 2 Si NPs in the 2 Si NP at 300 K Teq case closer to the center of the simulation

box could provide a better approximation of the 1 Si NP at 300 K Teq case whose Si NP

was at the center of its simulation box. Then the λp of this new simulation set up could be

compared with the λp of the original set up for the 2 Si NP case, and it would be clear to

see whether the concentration of the Si NPs at the center of the simulation box effected λp.

The new system of 2 Si NPs had the spacing between them decreased from 405.6 to 215.5

Å. This new system was run, resulting in a λp of 4.403 Wm-1K-1, as opposed to that of the

original, 5.877 Wm-1K-1. This seems to imply that as Si NPs are more concentrated at the

halfway point between heat sink and heat source, the λp values decrease, despite no change

in stoichiometry. Since the 1 Si NP case has the Si NP placed directly at the center of the

simulation, it seems to make sense that this specific set of 1 Si NP simulations with the NP

at the center of the simulation box result in lower than expected values for λp.
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CHAPTER 7

Conclusion

7.1 SWCNT

The major results from the work with SWCNTs are that increases in length and de-

creases in diameter increase resulting values of SWCNT λp. Another interesting result is

that as SWCNT length increases, the peak λp value occurs at a lower and lower Teq. All

of these results, especially the latter, need more simulations to obtain more concrete con-

clusions. More systems of SWCNT should be simulated between lengths of 0 and 200 nm,

between diameters of 0 and 6.9 nm, and between Teq of 0 and 50 K. These simulations

should give enough information to better conclude whether the results are an artifact of the

interatomic potential, LAMMPS, or perhaps worth experimental verification.

7.2 Mg2Si

The first major result from this work is that increasing the a/o Si in a Mg2Si system,

whether through addition of Si NPs or dispersed Si atoms, decreases λp. This is of course

only true to a certain a/o of Si in Mg2Si, as diminishing reductions in λp occur as a/o Si in

Mg2Si increases.

Comparing the two methods of a/o Si addition, the systems of Mg2Si with atomically

dispersed Si tend to have the lower values λp. This may have to do with the mass difference

between Si and Mg, or the fact that the Si substitutionals are spaced such that they decrease

the Λ of Mg2Si. In the Si NP method, boundary resistance seems to have a greater effect

on λp reduction when Si NP concentrations are smaller, such as the 1 and 2 NP cases, than

the decrease in Λ does on λp reduction.

As mentioned previously, experimental work will be necessary as a later step to verify

that the ZT increases in systems arranged according to this work significantly enough for
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application.

7.3 Summary Conclusion

SWCNT and Mg2Si are very different for many reasons. Besides the one being a NP,

and the other a material in the original sense of the word, the first is generally valued

due to its high λp, while the value of Mg2Si increases as methods to decrease its λp are

discovered. For both materials, information was recovered that was generally expected,

and that generally agrees with experimental results. For example increasing the length of

SWCNT system increases the resulting λp. Also, increasing the a/o Si in Mg2Si systems

decreases the resulting λp. For both systems, it was expected that λp would decrease as

Teq increased, which was also generally true. Both material systems also had interesting

unexpected results, such as the shift in the peak of values for λp of the 200 nm length

SWCNT, or the case of the lower than expected λp value for the Mg2Si with one Si NP.

These results, when compared to their respective experimental results, seem to imply at

least two things. First, that MD simulations struggle with accuracy of individual values and

therefore are prone to produce artifacts in the results. Second, and somewhat in contrast,

that MD simulations can produce results close to experimental results, in some cases, and

often agree with trends found experimentally. Combining these two points, MD simulations

are used most effectively in finding trends in data, maybe even showing promising areas of

experimental research, as long as their limitations and potential for unrealistic results are

understood.

For this specific work, and as mentioned in part before, further work could be done

on SWCNTs with Teq values closer to 0 K, a greater number of different diameters and

lengths, and even different potential functions. Mg2Si, however, may be a candidate for a

few experimental measurements of the λp, as well as σ, of the stoichiometries that seem to

lower λp the most. Some MD simulations could be run as well regarding the reduction in

λp in 1 Si NP to discover the potential artifact in either the LAMMPS code, the extended

MEAM potential used, or the reality of human error that caused this result.
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789–839, 1912.

[35] R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, “Raman
intensity of single-wall carbon nanotubes,” Physical Review B, vol. 57, no. 7, pp. 4145–
4153, Feb. 1998.

[36] G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane di-
rection of superlattices,” Phys. Rev. B, vol. 57, pp. 14 958–14 973, Jun 1998.

[37] X. Liu, Y. Wang, J. O. Sofo, T. Zhu, L.-Q. Chen, and X. Zhao, “First-principles
studies of lattice dynamics and thermal properties of mg2si1xsnx,” Journal of Materials
Research, vol. 30, pp. 2578–2584, September 2015.

[38] O. Madelung, U. Rssler, and M. Schulz, “Magnesium silicide (mg2si) debye temper-
ature, heat capacity, density, melting point,” in Non-Tetrahedrally Bonded Elements
and Binary Compounds I. Springer, 1998, pp. 1–4.

[39] M. T. Hutchings, T. W. D. Farley, M. A. Hackett, W. Hayes, S. Hull, and U. Steigen-
berger, “Neutron scattering investigation of lattice dynamics and thermally induced



48

disorder in the antifluorite mg2si,” Solid State Ionics, vol. 28, pp. 1208–1212, Septem-
ber 1988.

[40] R. J. Kearney, T. G. Worlton, and R. E. Schmunk, “Lattice dynamics of magnesium
stannide at room temperature,” Journal of Physics and Chemistry of Solids, vol. 31,
pp. 1085–1097, May 1970.

[41] D. Bessas, R. E. Simon, K. Friese, M. Koza, and R. P. Hermann, “Lattice dynamics
in intermetallic mg2ge and mg2si,” Journal of Physics: Condensed Matter, vol. 26, p.
485401, November 2014.



49

APPENDICES



50

APPENDIX A

Sample LAMMPS MD Scripts

A.1 Sample LAMMPS MD Script for λ p of SWCNT Systems

##–SIMULATION OF λ p OF A SWCNT–##

##–SYSTEM INTIALIZATION–##

clear
echo both

units metal
dimension 3
atom style molecular
boundary p p p
processors 1 1 1

##–DATA FILE INPUT–##

#read data data4Mol 200nm.txt
#read data Mol data4 100nm.txt
read data Mol data4 25nm.txt

##–REGION SETUP–##

region wall1 block -50 50 -50 50 -1 20 units box
region cold block -50 50 -50 50 20 41 units box
region tube block -50 50 -50 50 41 208 units box
region hot block -50 50 -50 50 208 229 units box
region wall2 block -50 50 -50 50 229 251 units box

##–INTERATOMIC POTENTIAL INFORMATION–##

bond style harmonic
bond coeff 1 20.81443 1.340
angle style harmonic
angle coeff 1 3.902706 119.9773623
dihedral style harmonic
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dihedral coeff 1 0.13009 -1 2
improper style cvff improper coeff 1 0.016044458 -1 2

pair style lj/cut 1
pair coeff * * 1 1

mass * 12

##–GROUPING REGIONS–##

group wall1 region wall1
group wall2 region wall2
group cold region cold
group hot region hot
group tube region tube
group nowalls union cold tube hot

##–T eq SET AND INITIALIZATION–##

variable t equal 50.0
timestep 0.001
thermo 200
neighbor 2.0 bin
neigh modify every 3 delay 3
velocity nowalls create $t 49284121
thermo 200

##–NEMD EQUILIBRATION–##

fix 7 nowalls npt temp tt 10 iso 0.0 0.0 10
run 300000
unfix 7

fix 8 nowalls nvt temp tt 1
run 300000
unfix 8

fix 1 nowalls nve
variable g ke equal ke(tube)
variable g temp equal v g ke/1.5/8.617343e-5/19540
thermo 200
thermo style custom step temp ke etotal v g temp
run 400000

##–CONSTANT HEAT FLUX APPLICATION–##
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fix 3 cold heat 1 -0.625
fix 4 hot heat 1 0.625
compute coldBath cold temp
compute hotBath hot temp
thermo 200
thermo style custom step temp ke etotal v g temp c coldBath c hotBath
run 100000

##–TEMPERATURE GRADIENT DATA COLLECTION–##

compute KE tube ke/atom

variable temp atom c KE/1.5/8.617343e-5

compute 2 tube chunk/atom bin/1d z lower 25 units box

fix 5 tube ave/chunk 200 1 200 2 v temp file tanner imp di pair style lj cut 10 pair coeff * * 1 1 temp50 HF0.625

run 900000

A.2 Sample LAMMPS MD Script for λ p of MgxSix Systems

###SIMULATION OF λp OF Mg2Si WITH 2 Si NPs ###

##–SYSTEM INTIALIZATION–##

#clear
#echo both
units metal
dimension 3
atom style atomic
boundary p p p

##–LATTICE INFORMATION AND REGION SETUP–##

lattice fcc 6.338

region box block 0 8 0 8 0 128 units lattice

variable h equal 2
variable s equal (64-($h/2))
variable e equal (64+($h/2))
variable g equal .25
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variable a equal ($s-$g)
variable b equal ($e+$g)
variable r equal 3
variable R equal ($r+$g)

region wall1 block 0 8 0 8 0 7 units lattice
region cold block 0 8 0 8 7 14.5 units lattice
region uppertube block 0 8 0 8 14.5 64 units lattice
#region shield block 0 8 0 8 $a $b units lattice
#region nanoparticle block 0 8 0 8 $s $e units lattice
#region nanoparticle1 sphere 4 4 3.25 $r units lattice
#region shield1 sphere 4 4 3.25 $R units lattice
#region nanoparticle2 sphere 4 4 11.25 $r units lattice
#region shield2 sphere 4 4 11.25 $R units lattice
#region nanoparticle3 sphere 4 4 19.25 $r units lattice
#region shield3 sphere 4 4 19.25 $R units lattice
#region nanoparticle4 sphere 4 4 27.25 $r units lattice
#region shield4 sphere 4 4 27.25 $R units lattice
region nanoparticle5 sphere 4 4 35.25 $r units lattice
region shield5 sphere 4 4 35.25 $R units lattice
#region nanoparticle6 sphere 4 4 43.25 $r units lattice
#region shield6 sphere 4 4 43.25 $R units lattice
#region nanoparticle7 sphere 4 4 51.25 $r units lattice
#region shield7 sphere 4 4 51.25 $R units lattice
#region nanoparticle8 sphere 4 4 59.25 $r units lattice
#region shield8 sphere 4 4 59.25 $R units lattice
#region nanoparticle9 sphere 4 4 67.25 $r units lattice
#region shield9 sphere 4 4 67.25 $R units lattice
#region nanoparticle10 sphere 4 4 75.25 $r units lattice
#region shield10 sphere 4 4 75.25 $R units lattice
#region nanoparticle11 sphere 4 4 83.25 $r units lattice
#region shield11 sphere 4 4 83.25 $R units lattice
#region nanoparticle12 sphere 4 4 91.25 $r units lattice
#region shield12 sphere 4 4 91.25 $R units lattice
region nanoparticle13 sphere 4 4 99.25 $r units lattice
region shield13 sphere 4 4 99.25 $R units lattice
#region nanoparticle14 sphere 4 4 107.25 $r units lattice
#region shield14 sphere 4 4 107.25 $R units lattice
#region nanoparticle15 sphere 4 4 115.25 $r units lattice
#region shield15 sphere 4 4 115.25 $R units lattice
#region nanoparticle16 sphere 4 4 123.25 $r units lattice
#region shield16 sphere 4 4 123.25 $R units lattice
region lowertube block 0 8 0 8 64 113 units lattice
region hot block 0 8 0 8 113 120.5 units lattice
region wall2 block 0 8 0 8 120.5 128 units lattice
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create box 3 box
create atoms 2 box

##–SI NP LATTICE INFORMATION AND CREATION–##

lattice sc 3.169 origin .5 .5 .5
create atoms 1 box

#delete atoms region shield1
#delete atoms region shield2
#delete atoms region shield3
#delete atoms region shield4
delete atoms region shield5
#delete atoms region shield6
#delete atoms region shield7
#delete atoms region shield8
#delete atoms region shield9
#delete atoms region shield10
#delete atoms region shield11
#delete atoms region shield12
delete atoms region shield13
#delete atoms region shield14
#delete atoms region shield15
#delete atoms region shield16

lattice diamond 5.427
#create atoms 3 region nanoparticle1
#create atoms 3 region nanoparticle2
#create atoms 3 region nanoparticle3
#create atoms 3 region nanoparticle4
create atoms 3 region nanoparticle5
#create atoms 3 region nanoparticle6
#create atoms 3 region nanoparticle7
#create atoms 3 region nanoparticle8
#create atoms 3 region nanoparticle9
#create atoms 3 region nanoparticle10
#create atoms 3 region nanoparticle11
#create atoms 3 region nanoparticle12
create atoms 3 region nanoparticle13
#create atoms 3 region nanoparticle14
#create atoms 3 region nanoparticle15
#create atoms 3 region nanoparticle16

##–INTERATOMIC POTENTIAL INFORMATION–##
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pair style meam
pair coeff * * newpotential.txt Mg Si Si6 mgsi.meam Mg Si Si6

##–GROUPING REGIONS–##

group wall1 region wall1
group wall2 region wall2
group cold region cold
group hot region hot
group uppertube region uppertube
group lowertube region lowertube
group nowalls union cold uppertube lowertube hot
group tube union uppertube lowertube

##–T eq SET AND INITIALIZATION–##

timestep .001
restart 1000000 Restart 2multi 300K.*
dump 6 all xyz 10000000 xyzcoord 2multi 300K*.txt
variable t equal 300
thermo 200
neighbor 2.0 bin
neigh modify every 3 delay 3
velocity nowalls create $t 49284121

##–NEMD EQUILIBRATION–##

fix 10 nowalls npt temp $t $t 10 iso 0.0 0.0 10
run 600000
unfix 10

fix 8 nowalls nvt temp $t $t 1
run 600000
unfix 8

timestep 0.0001
fix 1 nowalls nve
variable g ke equal ke(tube)
variable g temp equal v g ke/1.5/8.617343e-5/98305
thermo 200
thermo style custom step temp ke etotal v g temp
run 6000000

##–CONSTANT HEAT FLUX APPLICATION–##
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fix 3 cold heat 1 -0.19
fix 4 hot heat 1 0.19
compute coldBath cold temp
compute hotBath hot temp
thermo style custom step temp ke etotal v g temp c coldBath c hotBath
run 20000000

##–TEMPERATURE GRADIENT DATA COLLECTION–##

compute KE tube ke/atom

variable temp atom c KE/1.5/8.617343e-5

compute 2 tube chunk/atom bin/1d z lower 50 units box

fix 5 tube ave/chunk 200 1 200 2 v temp file Mg2Si1 2multi nanopart 300K HG 2ns HF0.19 Chsz50.txt

run 112000000
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