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ABSTRACT

Radio-Frequency Transmitter Geolocation Using Non-Ideal Received Signal Strength

Indicators

by

Samuel Whiting, Master of Science

Utah State University, 2018

Major Professor: Todd Moon, Ph.D.
Department: Electrical and Computer Engineering

Received signal strength (RSS) is a metric easily obtained with simple hardware that

measures the amount of power at a frequency of interest. By taking RSS measurements,

also known as indicators (RSSI), at different locations, the general location of a transmitter

can be estimated in what is commonly known as geolocation.

Geolocation based on RSS measurements differs from other geolocation methods in a

few critical ways. The first of these differences is the lack of time as a dimension in RSS

measurements. This greatly simplifies the hardware requirements and processing, but at

the cost of temporal information. Another key difference is that the RSS measurements

have no phase, and therefore there is no need for phase coherency in any of the receivers.

This again simplifies the measurements and calculations.

While the data may be easy to obtain, there are great challenges to overcome in order

to make accurate transmitter location estimates with these measurements. Most signifi-

cantly, the electromagnetic power measurements suffer from multi-path distortion, shad-

owing, additive thermal receiver noise, ambient radiation noise, hardware limitations, and

quantization.
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By appropriately modeling the problem, this thesis develops and proposes a number

of algorithms that can overcome these issues in order to geolocate a transmitter based

on spatially separated sequences of RSS measurements. In particular, a scheme for data

collection is presented and used to collect real-world datasets. Algorithms are developed in

simulation and tested on these real datasets. Comparisons are made as to which algorithms

perform better and a decision is made that the subset method, as described in chapter 6,

performs the best overall.

(129 pages)
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PUBLIC ABSTRACT

Radio-Frequency Transmitter Geolocation Using Non-Ideal Received Signal Strength

Indicators

Samuel Whiting

Locating a radio transmitter is important in a number of problems such as finding radio

tags, people with radios, and devices that are collecting information in an unauthorized

manner. Locating a radio transmitter is inherently difficult because the radio waves of

concern are not in the visible spectrum, they reflect and distort easily, and they propagate

at the speed of light.

A number of methods for locating transmitters are currently used, the majority of which

require expensive hardware and extensive processing. This thesis presents a method of using

simpler measurements to produce similar location estimates in order to augment or replace

current systems. While other systems have significant advantages, the methods proposed in

this thesis are advantageous because they only require easily-obtained measurements that

are based on the observed power of the transmission.

The research uses simulations and experiments on real-world data collected locally to

demonstrate the possibility of locating a transmitter using information of this type. The

conclusion is that some methods are able to compensate for the difficulties in the problem

more effectively, and produce useful location estimates.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Determining the physical location of a radio-frequency (RF) transmitter is a well-known

problem commonly referred to as geolocation. Geolocation information can be used to find

RF jammers or find unauthorized transmitters, locate RF tags, find or track people and

vehicles, as well address many other problems [1–5]. The problem is inherently difficult

for a few key reasons. Depending on the method used, a geolocation system may require

sophisticated hardware in order to achieve high degrees of synchronization and coherency.

Additionally, processing of large amounts of data required to locate the source can quickly

become intractable for modern computers. Other methods that may not require expensive

hardware may still be affected by electromagnetic phenomena such as multipath distortion

or fading [6, 7].

Among the most common methods for geolocation systems are time of arrival, time

difference of arrival, angle of arrival, received signal strength indicators, Doppler, pseudo-

Doppler, and the use of highly directional antennas. Of all of these methods, the one

which generally requires the least amount of hardware to implement is using received signal

strength (RSS) [8].

This thesis focuses on the use of RSS data in estimating transmitter location. Multi-

ple algorithms are proposed, evaluated, and tested in simulation to develop a geolocation

method best adapted to this problem. The algorithms are then tested on real-world datasets.
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1.2 Literature Review

1.2.1 Geolocation

Geolocation, as stated above, is useful for a number of reasons and is associated with a

considerable amount of research addressing its complexities as well as different methods for

obtaining accurate location estimates in a variety of settings. The most common methods

for geolocation include [1, 9]:

• Time of Arrival (TOA)

• Time Difference of Arrival (TDOA)

• Angle of Arrival (AOA or sometimes DOA)

• Received Signal Strength Indicators (RSSI)

It is also interesting to note that geolocation using WiFi fingerprinting is commonly

used on smart phones when GPS location services are unavailable. This method involves

making databases of known locations associated with known signal strengths when GPS

services are available and saving these measurements for later use. This method generally

has poor accuracy with comparison to other methods unless further processing is done [10].

This problem, where a receiver is trying to locate itself based on a known transmitter, is the

inverse of the presented research problem. For this reason, the WiFi fingerprinting method

is not considered here.

1.2.2 TOA/TDOA/AOA

Time-of-arrival methods are sometimes referred to as time of flight methods, and can be

used when the time of transmission is known. Besides requiring prior knowledge about the

signal, this method suffers greatly from synchronization problems, when the clocks between

receivers or between transmitters and receivers are not perfectly aligned [9, 11].

Time-difference-of-arrival methods address the case where the exact transmission time

of a signal is not known by the receivers. This is a commonly occurring case: searching
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for a signal without knowing exactly when it will be sent. By determining when receivers

capture a signal relative to each other, certain statements can be made about the location

of the transmitter. Specifically, hyperbolas can be drawn between receivers that represent

a constant difference of arrival time between the two receivers. When multiple receivers

are able to compare measurements, these hyperbolas should intersect at the location of the

transmitter. This method suffers from synchronization problems like the TOA method [9].

Both of these time methods also suffer from not having direct line-of-sight from transmitter

to receiver, which is common in urban environments [7].

Angle of arrival methods rely on phase differences to determine the angle from which

the signal of interest is propagating. Using an array of antennas (generally spaced at half-

wavelength intervals) and assuming planar wave propagation, the phase difference between

received signals at each antenna corresponds to the physical direction of the transmitter.

Perhaps even more than time-based methods, this phase method suffers greatly from mul-

tipath distortion [3, 7].

In general, these synchronization and multipath problems can be overcome using ex-

tensive processing or improved hardware. The proposed research seeks to address this

geolocation problem without the use of high-quality hardware or high degrees of time syn-

chronization. Instead, another measurement will be used (RSSI) which will serve both to

simplify the receiver design and to make data collection less rigorous [12].

1.2.3 RSSI

Received signal strength indicators give a raw power measurement and can be taken

using relatively simple hardware [2,4,8,13]. RSSI measurements are used to give measures

of signal quality and roughly determine how far a receiver is from a transmitter [14]. In

an ideal setting (where the transmitted power is known, there is no noise, and the signal

propagates through free space,) the distance that the signal has traveled to reach the receiver

can be found using the Friis transmission equation:
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Pr =
PtGtGrλ

2

(4π)2R2
. (1.1)

Of course, it is rarely the case that all of these ideal settings exist in a real system.

Specifically, this research project seeks to determine the location of a transmitter where the

power transmitted is not known, the signal is noisy, and the region between the receiver

and transmitter is not free space.

Not knowing the transmitted power can be dealt with in a way similar to how TDOA

methods operate without knowing transmission time. Measurements from multiple receivers

can be used to draw circles (in free space) of constant power ratios between those receivers.

The problems associated with RSSI measurements are well known, and “the mathe-

matical and statistical methods to tackle RSSI-variance problem need further research.” [6]

This research aims to address the non-idealities associated with using RSSI measurements

for geolocation.

1.2.4 Geolocation using Mobile Sensors

Distributed systems are well suited for taking RSSI measurements because the measure-

ment is simple and measurements must be taken at different physical locations. In practice,

one moving receiver can take multiple observations. For this reason, multiple studies have

been done using drones or other autonomous robots to geolocate a transmitter [2, 3, 8, 9].

While the research does not dictate measurements be taken autonomously using robots,

it does collect data using a mobile, distributed platform that allows a receiver to move

physically and take multiple measurements at different locations. For this reason, the work

done in this area is applicable to the research presented here, and provides useful insight

into the possibilities available to a distributed network of portable receivers.

1.3 Chapter Outlines

Chapter 2 presents the objectives of the research in more specific terms and outlines

the methods that will be used to develop the needed algorithms, including simulations and
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real world data collection and analysis. Also presented are notes on mapping latitude and

longitude positions to Cartesian coordinates, and the significance of loss coefficients, or path

loss.

Beginning in chapter 3, proposed algorithms are presented. The algorithm in chapter

3 is referred to as the circles algorithm, because it uses a geometric-based approach to solve

the geolocation problem. Derivations, simulations, and trials on real world datasets are

presented.

Following the circles algorithm, the Binary Cascading Probability (BCP) algorithm is

presented in chapter 4. The BCP algorithm relies on simple comparisons between power

measurements to update a grid of probabilities that represents transmitter location likeli-

hoods. Again, the algorithm is presented along with simulations and trials on real world

datasets.

Chapter 5 presents the 3-parameter method, which models the problem as a function

of three parameters and finds the optimal solution to this function using Newton’s method.

A simplification to this algorithm is also presented and is referred to as the simplified

algorithm, or simplified 3-parameter method. Both simulations and trials on real world data

are presented.

Chapter 6 builds on the 3-parameter method to form a new method referred to as the

subset method. It operates on subsets of measurements in order to compensate for noise

and provides a more probabilistic interpretation than is available with just the 3-parameter

method.

In an attempt to more accurately represent the system, Chapter 7 presents new models

that consider loss coefficients and additional noise terms as parameters. These models and

methods are generally referenced by the number of parameters they seek to estimate and

other important information they assume (e.g., the 6-parameter method with an alternative

cost function). These methods eventually prove to be unstable and do not produce useful

location estimates, but are discussed in order to explain why these models do not represent

the problem well.
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In chapter 8, a comparison of results from each method is presented. Trade-offs are

analyzed, and a determination is made as to which algorithm performs the best overall.

Additional observations are made about the possibility of using these geolocation estimates

in geographic analysis, alternative methods used for taking RSSI measurements, and non-

stationary transmitters.

Chapter 9 concludes the thesis and declares the objectives satisfied. Appendices for

complex equations and matrices are included at the end, along with code for performing

the presented algorithms.

Throughout the chapters, a number of algorithms are presented which are not included

in the final chapter’s analysis, but are nonetheless important. Either the concepts they

represent are used in other methods or the ideas behind them help to demonstrate that

other methods were considered in addition to the final ideas presented.



CHAPTER 2

Problem Definition

2.1 Objective

The overall purpose of this research is to develop algorithms to locate radio frequency

transmitters based on a set of received signal strength (RSS) measurements, which are also

known as indicators (RSSI). These measurements are assumed to be spatially separated in

the general local area of the transmitter. The center frequency of interest is known, and

the transmitter is assumed to be stationary.

In direct comparison with other geolocation methods, such as time-difference of arrival

(TDOA) and phase based algorithms such as direction of arrival (DOA) techniques, this

method (RSSI) may prove not to be the best solution for producing a final, accurate location

estimate quickly. To outperform all other methods is not the objective of this research. On

the contrary, this RSS-based algorithm is to be designed in such a way as to complement

other systems by providing additional information from available data.

The RSS data is substantially easier to obtain than other methods because, under the

assumptions, time synchronization is not important. Along those same lines of reasoning,

the individual power measurements made have no phase information, so phase coherency

is not a concern either. This greatly simplifies the data collection process as well as the

hardware. Simplicity in data collection is an important advantage of the methods presented

in this research. The data collection hardware and software were developed prior to this

research in order to create datasets to analyze the algorithms.

The ideal algorithm should be able to use noisy RSS measurements to produce a loca-

tion estimate for a transmitter of interest while ignoring the adverse effects of shadowing,

multi-path distortion, additive noise power, and thermal receiver noise. The desired algo-

rithm would also produce some metric of certainty along with the estimate to aid in the
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fusion of the estimate with estimates from other algorithms or methods.

2.2 Simulations

An accurate simulation can greatly aid the development of an algorithm by making

available far more information than is accessible in real world data and by allowing for

greater control over the system setup. Simulated data is also far easier to generate than

to record, and can therefore be used to test edge cases or unusual circumstances in rapid

succession. For these reasons and other, simulations were used initially to evaluate and

develop algorithms.

The simulations and models used are described in the following sections as the algo-

rithms are presented. In many cases, additional tests were done with the simulations, but

the outcomes and reasons behind these changes are considered either irrelevant in the final

conclusions or too lengthy to include in this thesis.

2.3 Data Collection Methods

An android phone was connected to a software defined radio (RTL-SDR) and ran a

GNURadio script to record power measurements. The phone combined the power measure-

ment with a set of GPS coordinates for the phone location. The data was offloaded to a

computer for processing.

The entire processing chain can be visualized in figure 2.1.

FIR Filter
Complex to
Magnitude

Squared

Log
(base 10)

One Second
Max

Output
for processing

RTL-SDR
I/Q Data

GPS
Coordinates

Fig. 2.1: Data collection scheme.
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In practice, the method for taking measurements could easily be automated by at-

taching RSS measuring radios and phones to autonomous vehicles. The architecture of the

system also allows for multiple measuring nodes to contribute data simultaneously, allowing

for multiple spatially-separated observers. The datasets used in this study were obtained

using a single receiver that moved around. Under our stationary transmitter assumption,

there should be no difference in these collection methods as long as the radios, gains, and

antennas are consistent.

2.4 Real Datasets

Real datasets were recorded in Logan, Utah, U.S, with a few different transmitters and

at different scales. The most commonly referenced datasets are as follows:

• sant1 - Walkie-talkie transmitting near the Sant building on Utah State University

(USU) campus.

• sant2 - Walkie-talkie near the Sant building on USU campus.

• quad3 - Walkie-talkie in the center of the USU Quad field.

• upr3 - Local FM radio station, measurements taken throughout USU campus.

• aggr1 - Local FM radio station, throughout USU campus and surrounding neighbor-

hood.

• aggr4 - Local FM radio station, around the city of Logan, Utah.

Descriptions of the datasets are given below, with figures 2.2, 2.3, 2.4, 2.5, 2.6, and 2.7

depicting the individual power measurements as points on a satellite map. The colors of

the points represent specific power measurements, which are not discussed in this thesis.

2.4.1 The sant1 dataset

This dataset will be referred to as the sant1 dataset throughout the paper. The sant1

dataset was taken Oct 21, 2017, in the small field outside the USU Sant building. The
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transmitter was a 0.5-watt walkie-talkie in the family radio service band. The RTL-SDR

recorded data with a 40 dB attenuator in line to prevent saturation. The sant1 dataset

roughly covers a 65× 65 square-meter region.

2.4.2 The sant2 dataset

This dataset will be referred to as the sant2 dataset throughout the paper. The sant2

dataset was taken Oct 21, 2017, in the small field outside the USU Sant building. The

transmitter was a 0.5-watt walkie-talkie in the family radio service band. The RTL-SDR

recorded data with a 40 dB attenuator in line to prevent saturation. The sant2 dataset

roughly covers a 65× 65 square meter region.

2.4.3 The quad3 dataset

This dataset will be referred to as the quad3 dataset throughout the paper. The quad3

dataset was taken Oct 21, 2017, on Utah State University campus around the field known

as “The Quad.” The transmitter was a 0.5-watt walkie-talkie in the family radio service

band. The RTL-SDR recorded data with a 40 dB attenuator in line to prevent saturation.

The Quad is an open field sized about 150× 125 square-meters.

2.4.4 The upr3 dataset

This dataset will be referred to as the upr3 dataset throughout the paper. The upr3

dataset was taken Nov 9, 2017, around Utah State University campus. The transmitter was

a local FM radio station broadcasting from a tower on campus. The upr3 dataset roughly

covers a 600× 850 square-meter region.

2.4.5 The aggr1 dataset

This dataset will be referred to as the aggr1 dataset throughout the paper. The aggr1

dataset was taken Nov 9, 2017, around Utah State University campus. The transmitter was

a local FM radio station broadcasting from a tower on campus. The aggr1 dataset roughly

covers a 1200× 1000 square-meter region.
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2.4.6 The aggr4 dataset

This dataset will be referred to as the aggr4 dataset throughout the paper. The aggr4

dataset was taken Feb 17, 2018, around the city of Logan, Utah. The transmitter was

a local FM radio station broadcasting from a tower on USU campus. The aggr4 dataset

roughly covers a 5000× 5000 square-meter region.

Fig. 2.2: The sant1 dataset. Fig. 2.3: The sant2 dataset.

Fig. 2.4: The quad3 dataset.

Fig. 2.5: The upr3 dataset.

Fig. 2.6: The aggr1 dataset. Fig. 2.7: The aggr4 dataset.
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2.5 Note on Loss Coefficients

The Friis transmission equation models the propagation of electromagnetic waves in

free space. Because of the free space assumption the exponent on the distance term in the

denominator is 2 or, in other words, the power loss is quadratic. A significant difference

and contribution of this research is to propose methods of estimating transmitter locations

in the presence of non-quadratic power loss.

The exponent of the distance term will be referred to as the loss coefficient throughout

this paper, though it is also commonly referred to as path loss. Typical loss coefficients are

generally in the range of 2 to 4 depending on the presence of trees, buildings, and other

obstructions. In some cases, loss coefficients can be less than 2 (for instance, inside some

buildings that act as waveguides) and can be far greater than 4 due to shadowing and

multipath effects. More detail about the circumstances and reasoning behind these values

can be found in [15].

The ability to accurately determine the loss coefficients would be useful not only in

improving location estimates, but also in determining features of the environment as well.

Heavily forested regions, for example, would create different sets of loss coefficients when

compared to measurements taken in a plains region with relatively open space, or compared

to an urban region with significant shadowing and strong multipath effects from reflective

surfaces. This possibility is discussed further in section 8.3.

Some of the proposed methods estimate loss coefficients as part of the algorithm. For

those which do not, a method for estimating loss coefficients from a location estimate is

provided in section 5.3.

2.6 Note on Latitudes and Longitudes

Most of the methods treat latitude and longitude coordinates as if they formed a

uniform grid. While not an exact representation of the setup, empirically using these in a

grid-like manner has no negative effect on the algorithms presented in this thesis. This is

due to the size of the search grid and the location on earth where measurements were taken.
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Whenever mentioned, the Cartesian mapping used is the one given in listing 2.1. The

code presents a way to change a pair of latitude and longitude points to a pair of Cartesian

points on a plane where the earth is represented as a flat surface with the x and y axes in

meters and the origin at the intersection point of the Prime Meridian and Equator. The

warping factor compensates for the distortion only at one given latitude, so the approxima-

tion is only good when close to that latitude. For the datasets used here, (all measurements

within 8 km of each other) this approximation is sufficient.

Listing 2.1: Cartesian Mapping

1 % mapping
2 DEG2RAD = pi /180 ;
3 warp fac to r = cos ( l a t 0 ∗DEG2RAD)
4
5 y0 = l a t 0 ∗ 111111;
6 x0 = lon0 ∗ 111111 ∗ warp fac to r ;
7
8 y1 = l a t 1 ∗ 111111;
9 x1 = lon1 ∗ 111111 ∗ warp fac to r ;

10
11 % now we can use the Cartes ian d i s t ance
12 d i s t met2 = sq r t ( ( x1−x0 ) ˆ2 + (y1−y0 ) ˆ2 )

2.6.1 Note on Elevation

The methods and hardware used to measure real-world data in this research do not

produce elevation metrics for the observations. Because of this, and to simplify the algo-

rithms and concepts, all observations are assumed to be on the same plane. While this

assumption can clearly cause distance errors it is treated as part of the unknown variations

of the GPS, power measurements, and loss coefficients.

Further work could be done to more accurately model the possibility of an elevated

transmitter.



CHAPTER 3

Circles Method

The circles algorithm attempts to draw circles of constant power ratio between obser-

vations in order to determine the transmitter location. Locations with large numbers of

intersections suggest a high likelihood of having a transmitter at that location.

3.1 Ideal Case

First examine the ideal case. Let there be measurements of power received, a known

power transmitted, known gains and frequencies, and assume quadratic power loss due to

distance. Friis transmission equation can be solved directly to obtain the distance, d.

Pr =
PtGtGrλ

2

(4π)2d2

d =

√
PtGtGrλ2

(4π)2Pr

Draw a circle of radius d that represents a locus of possible transmitter locations. This

simple simulation can be seen in figure 3.1.

If there are three observations, the transmitter location can be exactly determined by

finding where the circles intersect, as in figure 3.2.

3.2 Constant Power Ratio

Now assume that the transmitted power is not known. With two receivers, each can

measure a received power.

Pr1 =
PtGtGrλ

2

(4π)2d21

Pr2 =
PtGtGrλ

2

(4π)2d22

Taking the ratio of these two powers, most of the terms in Friis equation cancel, leaving
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Fig. 3.1: Ideal case with one observation.

Pr1
Pr2

=

PtGtGrλ2

(4π)2d21
PtGtGrλ2

(4π)2d22

=
d22
d21
.

Assuming everything is stationary, the distances d are constant, so this term can be

reduced to a constant, k, leaving

d2 = kd1 .

Substitute this into the ratio to get

Pr1
Pr2

= k2 .

This constant ratio is easily understood with an example. If k = 2, d2 is twice as long as

d1. This means the observation at d2 is twice as far away from the transmitter as the d1

observation. Circles of constant-ratio radius can be drawn using the power ratio between

the two observations. This is depicted in figure 3.3.

The transmitter must be somewhere on the circle of constant radii ratio. Adding more

observations, the location of the transmitter can be quickly determined based on the circle
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Fig. 3.2: Ideal case with three observations.

intersections (once we have 4 observations). This is depicted in figure 3.4.

How is it known where these circles lie, or in other words, how is it known which points

are on the locus of valid transmitter locations? Consider two circles, centered at (a, b) and

(c, d). These two circles have radii related by the constant k2, as defined earlier.

(x− a)2 + (y − b)2 = r2

(x− c)2 + (y − d)2 = k2r2

Since this radii ratio is known, equate these two circles as

(x− a)2 + (y − b)2 =
1

k2

(
(x− c)2 + (y − d)2

)
.

Solve to make an equation for a new circle as

(x− u)2 + (y − v)2 = w,

where
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Fig. 3.3: Using power ratios with two observations.

u =

(
ak2 − c

)
(k2 − 1)

v =

(
bk2 − d

)
(k2 − 1)

w = u2 + v2 −
(
k2
(
a2 + b2

)
− c2 − d2

)
k2 − 1

.

This new circle represents the locus of valid transmitter locations for the given power

ratio and observation locations.

3.3 Power Ratio with Additive Power Noise

In real-world observations, there will be noise added onto the measurements. In the

context of the circles algorithm, the locus of points may no longer intersect the true trans-

mitter location. Circle intersections may no longer provide a good estimate of location, as

can be seen in figure 3.5.

There can even be cases where there are no intersections at all, as in figure 3.6. How-

ever, this only occurs if we allow for negative noise in our measurements and all the noise
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Fig. 3.4: Using power ratios with three observations.

experienced in our observations should be an additive power. For this simulation, the

added noise was generated by taking the magnitude of a zero-mean Gaussian distribution

with standard deviation 0.2.

In general, this problem of additive noise can be overcome using more than just three

observations. Since it becomes tiresome to look at more than three or so circles, represent

this data as a heat map for easier interpretation. By taking a two-dimensional histogram

of the circle intersections, the data can be easily interpreted, as in figures 3.7 and 3.8.
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Fig. 3.5: Using power ratios with three observations and noise.

Fig. 3.6: Using power ratios with three observations and noise.
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Fig. 3.7: Using power ratios with 100 observations and noise.

Fig. 3.8: Using power ratios with 1000 observations and noise.
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3.4 Power Ratios with Loss Coefficient Noise

Another significant type of noise is differing loss coefficients. The Friis transmission

equation is for free space and therefore has a loss coefficient of 2 as the exponent to the

distance term, d. Previous work notes that differing loss coefficients occur frequently in

the real world, and that the problem needs further research [6]. Allowing for differing loss

coefficients, the equation for received power, Pr, then becomes

Pr =
PtGtGrλ

2

(4π)2dα
.

The analysis is done the same as before, but with the introduction of noise in the

model. Allowing for different loss coefficients in this way can negatively affect the location

estimate.

Doing so in simulation degrades the quality of this estimate; however, it still performs

well, as in figure 3.9. This simulation was run with loss coefficients having a Gaussian

distribution with a mean of 3.0 and a standard deviation of 0.2.

Fig. 3.9: Using power ratios with random loss coefficients and 1000 observations.
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3.5 Trials on Real Data

The circles algorithm was applied to the real datasets. Below are shown heat maps

representing two dimensional histogram data of circle intersections. Also provided are

simplified diagrams with observations, the estimated location, and the true transmitter

location marked.

Table 3.1: Circles algorithm errors for each dataset.

Dataset Error in meters

sant1 15.76
sant2 7.92
quad3 108.94
upr3 116.26
aggr1 164.96
aggr4 1862.26

Fig. 3.10: sant1 circles heat map. Fig. 3.11: sant1 circles diagram.

Fig. 3.12: sant2 circles heat map. Fig. 3.13: sant2 circles diagram.
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Fig. 3.14: quad3 circles heat map. Fig. 3.15: quad3 circles diagram.

Fig. 3.16: upr3 circles heat map. Fig. 3.17: upr3 circles diagram.

Fig. 3.18: aggr1 circles heat map. Fig. 3.19: aggr1 circles diagram.

Fig. 3.20: aggr4 circles heat map. Fig. 3.21: aggr4 circles diagram.
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3.5.1 Analysis of Real Data Results

The circles method is important because it is conceptually similar to triangulation, a

commonly used technique for geolocation.

The trials on real data gave results that approximated the true locations but never in a

completely convincing manner. The aggr1 and quad3 datasets were particularly poor, with

results that were so scattered as to be not useful.

3.5.2 Possible Improvements

Instead of making a histogram of circle intersections, a Gaussian probability could be

extruded along each locus of transmitter locations and then summed to the total probability

grid. This may allow more information from pairs of observations to contribute to the overall

estimate.

The algorithm, as described, first finds circles and then finds the intersections of those

circles. Complexity could be reduced by solving for the circle intersections directly as a

function of the three received powers and their positions.



CHAPTER 4

Binary-decision Cascading Probability (BCP)

In a simulation, let there be two observations, one transmitter, and no additive noise.

Let the loss coefficient for the entire grid (call this term α) be 3. With a known loss

coefficient, a circle of constant power ratio could be drawn between the two observations

that would intersect the transmitter, as in figure 4.1. If the loss coefficient were guessed too

low or too high, the locus circle would miss the transmitter, as in figures 4.2 and 4.3.

Fig. 4.1: Guessing a loss coefficient of 3.

The most significant assumption above is that the power loss coefficient is the same

everywhere. The only real difference from the free-space model is that it is no longer limited

to just being 2. In fact, this doesn’t change the power-ratio circle equation presented before,

besides needing to use a new value for constant k.

Pr1
Pr2

= kα

It is important to notice that the k in the circle equation is still just k2, and not kα.
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Fig. 4.2: Guessing a loss coefficient of 2. Fig. 4.3: Guessing a loss coefficient of 4.

The kα relates the received powers. This square in the k2 term then is not the loss coefficient

α, it is just the method of representing a circle of possible transmitter locations. The same

circle equation from before remains as

(x− a)2 + (y − b)2 =
1

k2

(
(x− c)2 + (y − d)2

)
.

Making multiple guesses as to what the loss coefficient was in the grid many circles

could be drawn, as in figure 4.4.

Fig. 4.4: Guessing loss coefficients as integers 1 through 6.
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Increasing the guess for the loss coefficients across the grid, eventually approaches a

line. This is depicted in figure 4.5 as the blue line.

Fig. 4.5: Locus for infinite loss coefficient as the blue line.

In figure 4.5, it can be safely guessed that the receiver is on the left side of the blue

line, where the blue line can be thought of as the loss coefficient being infinity. All finite

loss coefficients would put the transmitter on the left side. The largest assumption here is

that the loss coefficient is uniform across the entire grid. For now, however, employ this

assumption to begin making statements about transmitter locations.

4.1 BCP Algorithm

Consider an algorithm for geolocation, referred to as the BCP algorithm or method,

where BCP stands for binary-decision cascading probability, that works in the following

manner.

1. Make a grid of probabilities, all equal to begin with, meaning each place is equally

likely to have the transmitter located there.

2. Multiply all probabilities on the left side of the blue line in figure 4.5 by a factor (say

1.01) and divide all the probabilities on the other side of the line by that same factor.
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3. Normalize the probability grid matrix.

4. Iterate through every combination of observations (of which there are
(
n
2

)
), updating

the probability grid each time.

The general idea is that for any given pair of observations, the observation with the

higher power is closer to the receiver most of the time. Step 2 then increases the overall

estimate probability for grid locations closer to the stronger power measurement. If, over

the entire set, this generalization holds true, the grid location containing the transmitter

will have the highest probability of all grid locations.

In simulation, this method proves to be effective; however, improvements can readily

be made.

Rather than using the if-loss-was-infinity line, consider using just the midpoint and

drawing a line perpendicular to the line that connects observations. This concept is illus-

trated in figure 4.6.

Fig. 4.6: The blue line intersects the midpoint between observations.

The results are similar to using the infinite-loss line, but prove to be a little more

noise-resistant. Using the midpoint also has the benefits of being easier to compute, and of

being conceptually simpler. This method is intuitively understood as asking “which point
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is closer to the transmitter?” With the answer being (under these assumptions and in this

algorithm) “the observation with the highest power.”

With as few as 30 observations strong predictions can be made about transmitter

location in the presence of additive noise. Increasing this to 100 observations can results

in predictions that are exactly correct in simulation as seen in figures 4.7 and 4.9. In these

figures, the brighter coloring suggests a higher likelihood of transmitter location.

Fig. 4.7: BCP simulation results
with 30 observations.

Fig. 4.8: BCP simulation setup with
30 observations.

Fig. 4.9: BCP simulation results
with 100 observations.

Fig. 4.10: BCP simulation setup
with 100 observations.

However, when loss coefficients are not uniform, the estimates degrade in quality. Loss

coefficients were assigned to observations from a Gaussian distribution with a mean of 3.0
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and a variance of 0.04, and the BCP algorithm results are shown in figures 4.11 and 4.12.

Sometimes the method provides accurate estimates despite the loss coefficient noise, but

other times it estimates are biased.

Fig. 4.11: BCP simulation results
with random loss coefficients.

Fig. 4.12: BCP simulation results
with random loss coefficients, show-
ing bias.



31

4.2 Step-by-Step Visualization

A step-by-step example is provided to explain the BCP algorithm more completely.

Included below are the first 9 iterations of a run of the BCP algorithm. The different

symbols in the charts are significant. The black “X” marks the actual transmitter location.

The two red circles represent the two observations being compared at that step of the

algorithm. The larger red circle is the observation with the higher power measurement of

the two. The dotted black line divides the area of the grid into two regions based on the

midpoint of the two observations.

The color of the background grid represents the likelihood of the transmitter being

located in that region. The more yellow an area is, the more likely that region is believed

to contain the transmitter. The grid of likelihoods is updated from step to step, so that

step 1 initializes the probability grid, step 2 updates that grid, and so on.

The images in figure 4.13 show the first 9 steps of the algorithm applied to the sant1

dataset in order to demonstrate the behavior of the BCP algorithm. The completed run

(all steps executed) result can be seen in section 4.3.
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Fig. 4.13: The BCP Algorithm applied to the sant1 dataset, showing the first 9 steps of
the algorithm updating the probability grid. Step 7 is the only step which incorrectly
updates the grid of the 9 displayed here. The “X” marks the actual transmitter location,
the red circles are the two observations being compared with the larger circle representing
the observation with a higher power. The dotted line divides the grid along the midpoint
between the two observations. The grid coloring represents the estimate of transmitter
location, with yellow regions representing areas that are believed to be the most likely place
to contain the transmitter.
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4.3 Trials on Real Data

The BCP algorithm was applied to real datasets. Presented below are a table of errors

in meters and heat maps that represent probability mass for transmitter locations.

Table 4.1: BCP algorithm errors for each dataset.

Dataset Error in meters

sant1 2.50
sant2 5.46
quad3 41.46
upr3 181.36
aggr1 345.72
aggr4 841.77

Fig. 4.14: sant1 BCP heat map. Fig. 4.15: sant1 BCP diagram.

Fig. 4.16: sant2 BCP heat map. Fig. 4.17: sant2 BCP diagram.
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Fig. 4.18: quad3 BCP heat map. Fig. 4.19: quad3 BCP diagram.

Fig. 4.20: upr3 BCP heat map. Fig. 4.21: upr3 BCP diagram.

Fig. 4.22: aggr1 BCP heat map. Fig. 4.23: aggr1 BCP diagram.

Fig. 4.24: aggr4 BCP heat map.
Fig. 4.25: aggr4 BCP diagram.
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4.3.1 Analysis of Real Data Results

The BCP method is probably the most intuitive among the presented methods. It is

similar to the concept of the “hotter/colder” child’s game.

The BCP algorithm performs well on the datasets that were taken with direct line

of sight (sant1, sant2, quad3) but poorly on the datasets without (upr3, aggr1, aggr4).

Another difference between these two groups is that the direct line of sight group was

transmitting from walkie talkies which transmit at different powers and frequencies than

FM radio stations. While it is difficult to say what this method’s weakness is, it is clear

that it performs inconsistently.

4.3.2 Possible Improvements

A more algorithmic step size could be determined in order to give the desired “spread”

in the final probability grid. Alternatively, the ratio of power received between observations

could be used to determine a smarter step size to take. For instance, if the power ratio were

quite large, the comparison would be more certain, and the probabilities could be increased

by a larger scale.

It also may be beneficial to exclude comparisons for observations that are almost co-

located since their received powers may be very similar. The comparison between two very

similar power measurements is more susceptible to additive noise changing the binary result

of the comparison.



CHAPTER 5

3-Parameter Method

Begin again with the Friis transmission equation, with αi as the individual loss coeffi-

cients for each observation to form

Pi =
PtGtGrλ

2

(4π)2d
αi/2
i

,

with di being defined as the squared distance to the i’th observation, or

di , (xi − x0)2 + (yi − y0)2 .

Here the notation is xi and yi for the location of the i’th observation and x0 and y0 for

the transmitter location. Now eliminate terms that are not concerns in this model (such as

gains and wavelength) to form

Pi =
Pt

d
αi/2
i

=
Pt

((xi − x0)2 + (yi − y0)2)αi/2
.

Combine the terms on one side of the equation to form a new equation equal to zero.

Pid
αi/2
i − P0 = 0

Call this new function Ji, the cost function for the i’th observation.

Ji(x0, y0, P0) = Pid
αi/2
i − P0

The next step is to minimize the magnitude of our cost function. It is easier to minimize

the magnitude squared, and every Ji term should contribute to the overall cost, so sum J2
i

∀i. The new cost function that includes every individual observation cost is
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J(x0, y0, P0) =
∑
∀i
Ji

2 .

Seek to minimize our cost function in order to get it as close as possible to zero, the

value it theoretically should be. This model allows for changes in x0, y0, and P0 but leaves

the loss coefficients αi as known constants.

arg min
x0,y0,P0

J(x0, y0, P0) =
∑
∀i

[Pi((xi − x0)2 + (yi − y0)2)αi/2 − P0]
2

Determine the minimum using Newton’s method. Minimizing or maximizing a function

can be accomplished by looking for areas where the derivative of the function is zero. In

other words, find the roots of the derivative.

For a function of multiple variables, the first derivative, J ′(x), turns into a gradient,

and the second derivative, J ′′(x), turns into a Hessian matrix. The update equation is then

x[n+1] = x[n] − (O2J(x[n]))−1OJ(x[n]) (5.1)

where OJ(x) is the gradient, and O2J(x) is the Hessian.

With the current model, three parameters are used to minimize the cost function. This

results in a 3× 1 gradient and a 3× 3 Hessian.

OJ =


∂J
∂x0

∂J
∂y0

∂J
∂P0



O2J =


∂2J

∂x0∂x0
∂2J

∂x0∂y0
∂2J

∂x0∂P0

∂2J
∂y0∂x0

∂2J
∂y0∂y0

∂2J
∂y0∂P0

∂2J
∂P0∂x0

∂2J
∂P0∂y0

∂2J
∂P0∂P0


5.1 Gradient and Hessian

The gradient for the cost function J(x0, y0, P0) consists of three partial derivatives, and
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the Hessian for the cost function J(x0, y0, P0) consists of nine second-partial derivatives.

Both the gradient and Hessian can be found in appendix A.1.

When the loss coefficients are restricted to 2 (αi = 2,∀i), the gradient and Hessian

simplify greatly. This cancels out many of the more complicated terms and leaves the

gradient and Hessian that can be found in appendix A.2. Since initial guesses for the loss

coefficients are not available in the datasets, this initialization, αi = 2,∀i, will be commonly

used in the described algorithms and simulations.

5.2 3-Parameter Method in Simulation

Use Newton’s method to obtain a location and power estimate by choosing an initial

guess somewhere nearby the observations and with an arbitrary power guess. Iterate on the

estimate using (5.1) until the change from iteration to iteration is sufficiently small, or for

some set number of steps.

Using this 3-parameter method in an ideal simulation works well, as can be seen in

figure 5.1, where the blue diamonds represent the location estimate at different steps in the

Newton’s method optimization. For this simulation, ten steps were taken. The generated

observations each had loss coefficients of exactly 2, and their measured powers had no

additive noise. The simulation was, in this way, ideal.

Fig. 5.1: 3-parameter method simulation with no noise.
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Introducing noise into the simulation causes the final estimate using the Newton’s

method algorithm to not correctly identify the true transmitter location, as seen in figure

5.2. In this simulation, loss coefficients were assigned randomly to be 2.39, 2.61, and 2.47.

Zero mean Gaussian noise was added to each received power with a standard deviation of

0.1.

Fig. 5.2: 3-parameter method simulation with noise.

With enough observations, the effects of noise can be somewhat overcome, as seen in

figure 5.3.

In these simulations, the original estimates for individual loss coefficients were taken

to be 2. This allows for the use of the simplified gradient and Hessian equations and

empirically has had little effect on the overall quality of the final estimate. This version of

the 3-parameter method will be referred to as the simplified 3-parameter method.
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Fig. 5.3: 3-parameter method simulation with noise and additional observations.

5.3 Estimating Loss Coefficients

After using the 3-parameter method to make a location estimate it could be useful to

determine which loss coefficients would fit the data to this estimate. The goal here is to

estimate a loss coefficient for each individual observation.

Running the simplified version of the 3-parameter method results in a transmitted

power estimate. If a power estimate is not available, it can be obtained by taking the mean

of the received powers times the distances raised to the loss coefficients as

P̂0 =
1

n

n∑
i

(Pid
αi
i ) .

With the power estimate now available, solve for the individual loss coefficients as

αi =
log P̂0

Pi

log di
.

These loss coefficients can then be used in further analysis or in other algorithms.
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5.4 Trials on Real Data

The simplified 3-parameter (3p) method algorithm was applied to real datasets. Below

are diagrams with the final estimated location displayed alongside the observations and true

transmitter locations.

Table 5.1: Simplified 3-parameter algorithm errors for each dataset.

Dataset Error in meters

sant1 5.09
sant2 2.19
quad3 19.47
upr3 128.74
aggr1 107.05
aggr4 188.46

Fig. 5.4: sant1 3p diagram. Fig. 5.5: sant2 3p diagram.
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Fig. 5.6: quad3 3p diagram. Fig. 5.7: upr3 3p diagram.

Fig. 5.8: aggr1 3p diagram. Fig. 5.9: aggr4 3p diagram.

5.4.1 Analysis of Real Data Results

The simplified 3-parameter method algorithm works well for the real datasets. The

estimates are all reasonable, but the estimates for the datasets without direct line of sight

(upr3, aggr1, and aggr4) are of lower quality than the others.

The simplified 3-parameter algorithm is significant because it uses the simplest model

of the problem, ignoring many of the different complications inherent in the setup. It also

runs very quickly and produces a plausible estimate with very few computations, regardless

of starting location (anywhere on the grid of observations).

5.4.2 Possible Improvements

Taking into account more complex models is addressed later in this thesis. Improve-

ments to this algorithm, without changing it fundamentally, can mainly only be made in

regards to the implementation and efficiency.



CHAPTER 6

Subset Method

Returning to the simplified 3-parameter simulation, consider the case with three obser-

vations where loss coefficients are all identically two. The simplified 3-parameter method

produces a location estimate under the assumption that all the loss coefficients are uni-

formly two. In simulation, as seen in the previous section, this produces a perfect location

estimate, as in figure 6.1 when there is no additive power noise.

Fig. 6.1: Simplified 3-parameter method; loss coefficients are all 2.

Now consider the case where the loss coefficients are not strictly two. The estimates

produced by the simplified 3-parameter method are likely to be close to the true transmitter

location as long as the actual loss coefficients are distributed closely around some mean.

Notice in figures 6.2, 6.3, and 6.4 that the estimated locations are close to the actual

transmitter location, even though the loss coefficients in the simulation were not two, as

assumed by the simplified 3-parameter method. However, if loss coefficients are distributed

distant from each other (highly varied) the resulting estimate is poor, as can be seen in
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figure 6.5.

Fig. 6.2: Simplified 3-parameter
method; true loss coefficients are all
3.

Fig. 6.3: Simplified 3-parameter
method; true loss coefficients are all
4.

Fig. 6.4: Simplified 3-parameter
method; true loss coefficients are all
5.

Fig. 6.5: Simplified 3-parameter
method, true loss coefficients are 2,
3, and 4.

6.1 Subset Algorithm

The general idea of the subset algorithm is to repeat the 3-parameter method using

different subsets of data and save each final estimate. As long as the loss coefficients of each

observation are close to the same mean, the estimate should acceptable. By repeating the

analysis on different subsets, the average quality of the estimates should be good.

A simulation of this method, shown as both individual estimates and a heat map

histogram is shown in figures 6.6 and 6.7. In this simulation, the subset size was 3 samples,
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the minimum amount needed for the cost function to be exactly determined. Also note that

the number of observations was far fewer than what is present in the real datasets, in order

to help visualize the behavior of the algorithm.

Fig. 6.6: Location estimates from
different subsets, using the simplified
3-parameter method.

Fig. 6.7: Location estimates from
different subsets, using the simplified
3-parameter method.

6.2 Trials on Real Data

The subset algorithm was applied to the real datasets. Below are heat maps that

represent two-dimensional histograms of location estimates.

Subset sizes were chosen to be three samples each, the minimum number of samples

needed to exactly determine the cost function, which has 3-parameters.

Table 6.1: Subset algorithm errors for each dataset.

Dataset Error in meters

sant1 13.08
sant2 20.45
quad3 1.65
upr3 30.26
aggr1 64.92
aggr4 179.55
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Fig. 6.8: sant1 subset heat map. Fig. 6.9: sant1 subset diagram.

Fig. 6.10: sant2 subset heat map. Fig. 6.11: sant2 subset diagram.

Fig. 6.12: quad3 subset heat map. Fig. 6.13: quad3 subset diagram.

Fig. 6.14: upr3 subset heat map. Fig. 6.15: upr3 subset diagram.
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Fig. 6.16: aggr1 subset heat map. Fig. 6.17: aggr1 subset diagram.

Fig. 6.18: aggr4 subset heat map. Fig. 6.19: aggr4 subset diagram.
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6.2.1 Analysis of Real Data Results

The subset method produces good results on every dataset, with especially impressive

results on the quad3 dataset where it is able to determine the true location as closely as

the histogram quantization allows. It also does surprisingly well on the upr3 dataset, which

did not have direct line of sight for a majority of the measurements in addition to having

frequent shadowing.

The sant datasets still performed reasonably well, but suffered from the quantization

effect of the histogram. While the heat maps appear fine, the error the subset method

produces is somewhat large compared to the relatively small size of the observation grid.

To demonstrate this effect, re-run the algorithm on the sant2 dataset, with a histogram

bin size equal to that of the upr3 dataset. As can be seen in figure 6.20, the true transmitter

location is (correctly) in the highest bin of the histogram.

Fig. 6.20: Subset algorithm on the sant2 dataset with 37 meters per bin.

6.2.2 Possible Improvements

The subset method could be improved by developing a more algorithmic way to choose

histogram bin spacing. For example, a scheme that quantized results based on real-world

metrics such as 10×10 meter blocks may quantize results in a way that avoids the problems
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inherent in the algorithm for small-scale observation grids.

Another possible improvement would be to avoid choosing as a subset three observa-

tions that are almost exactly co-located. This may eliminate some of the poorer estimates

from the histogram and allow for more of the high-quality estimates to contribute.



CHAPTER 7

Clustering Method

Previous models did not allow for the discovery of the loss coefficients at the same time

a location estimate was being made. By introducing the loss coefficients as parameters in

the cost functions, Newton’s method should be able to adjust the values until they reach

some optimal point.

If each observation had its own individual loss coefficient parameter, the resulting

system of equations would be underdetermined. Instead, assume that the observations

can be clustered into k individual groups, where each group has its own loss coefficient.

Clustering can be done spatially, or by estimating the loss coefficients using a previous

method as discussed in section 5.3.

7.1 K-means clustering

The general approach to clustering in this chapter is to estimate the loss coefficients

as in section 5.3 and then to group the observations using k-means clustering. K-means

clustering iteratively classifies points into k different groups by selecting random centers and

then re-evaluating the centers using the points that are nearest to each center. K-means is

one of the most often used clustering algorithms [16].

7.2 6-parameter Method

For brevity, introduce again a distance squared term as

di , (xi − x0)2 + (yi − y0)2.
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The new cost function associated with this model has six parameters,

J(x0, y0, P0, α1, α2, α3) =
∑
∀i

(P0 − Pidj(i)/2i )2

J(x0, y0, P0, α1, α2, α3) =
∑
∀i
P 2
0 + P 2

i d
j(i)
i − 2P0Pid

j(i)/2
i , (7.1)

where j(i) selects which loss coefficient group is to be used,

j(i) =


α1 i ∈ Group 1

α2 i ∈ Group 2

α3 i ∈ Group 3 .

Newton’s method is used to minimize the cost function in (7.1). The corresponding

gradient and Hessian are found in appendix A.3. The entire chain of processing is to estimate

location and power using the simplified 3-parameter method, estimate the loss coefficients,

group the observations using k-means clustering, and finally minimize (7.1) using Newton’s

method.

Running on real data quickly suggests that this approach is not viable in every case.

As seen in figure 7.1, the Newton iterations take the location estimate off the observation

grid.

Rather than presenting the different results on each of the datasets, examine the cost

function 7.1 and evaluate its structure.

As stated earlier, the distances used are pseudo distances obtained by approximating

the latitude and longitudes as a uniformly spaced grid. This results in the squared distance

term, di, being less than one. The two right terms in (7.1), P 2
i d

j(i)
i and 2P0Pid

j(i)/2
i , can

be effectively driven to zero by allowing the loss coefficients to grow arbitrarily high. The

leftmost term (P 2
0 ) can be driven to zero directly, as it is a free parameter of the system.

This essentially creates a minimum that does not strictly lie near the true transmitter
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Fig. 7.1: 6-parameter method on the quad3 dataset.

location. In simulation and running on real datasets, this results in Newton steps that do

not necessarily approach the true transmitter location.

By switching to an actual Cartesian grid (mapping to a meter grid as discussed in

section 2.6) the distances are all greater than 1 (di > 1, ∀i). In this case, the two right

terms, (P 2
i d

j(i)
i and 2P0Pid

j(i)/2
i ) can be minimized by allowing the loss coefficients to grow

towards negative infinity. The mapping does not address the problems inherent in (7.1).

7.3 6-parameter Method with an Alternative Cost Function

Address the problems of (7.1) by changing the cost function. Starting from the original

model,

Pi =
P0

d
αi/2
i

,

leave the distance term in the denominator, resulting in

P0

d
αi/2
i

− Pi = 0.

Building a cost function in the same manner as before, sum the cost of each loss squared,

and allow the loss coefficients to be clustered as
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J(x0, y0, P0, α1, α2, α3) =
∑
∀i

(Pi − P0d
−j(i)/2
i )2

J(x0, y0, P0, α1, α2, α3) =
∑
∀i
P 2
i + P 2

0 d
−j(i)
i − 2P0Pid

−j(i)/2
i . (7.2)

In comparison with (7.1), (7.2) should not be able to drive the leftmost squared term,

P 2
i , to zero directly, perhaps addressing the issue inherent in the previous model.

Again, optimization is done using Newton’s method, and the relevant gradient and

Hessian can be found in appendix A.4. Running on real data quickly demonstrates that

this method diverges as well, as in figure 7.2. The Newton steps begin close to the true

location (due to using the simplified 3-parameter estimate as a starting location) but quickly

leave the observation grid.

Fig. 7.2: 6-parameter method on the upr3 dataset, alternative cost function.

The largest problem immediately obvious with this method is that singularities in the

cost function are created at every observation. Since the distance term is in the denom-

inator, any location near the observation will have a cost function approaching infinity.

Projecting the cost function onto a 2-dimensional plane of location, these singularities are
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easily visualized for the datasets, as in figure 7.3. The logical conclusion to draw is that the

singularities create regions that corrupt the cost function anywhere near an observation,

making it difficult to find the transmitter location.

Fig. 7.3: 6-parameter log cost function on the quad3 dataset, alternative cost function.

7.4 7-parameter Newton’s Alternative Cost Function

Consider another cost function, one that models the possibility of a constant noise floor,

adding a 7th parameter to (7.2). The new cost function in (7.3) allows for an additive noise

floor term to be added to each observation. This parameter models the electromagnetic

interference present in every measurement from other transmitters and radiating bodies.

J(x0, y0, P0, N0, α1, α2, α3) =
∑
∀i

(Pi − P0d
−j(i)/2
i −N0)

2

J =
∑
∀i
P 2
i +N2

0 + P 2
0 d
−j(i)
i − 2PiN0 − 2P0Pid

−j(i)/2
i (N0 − Pi) (7.3)

The performance of this method is similar to that of the 6-parameter method with

the alternative cost function. Singularities caused by the distance term in the denominator

again corrupt the cost function and result in diverging steps, as in figure 7.4.
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Fig. 7.4: 7-parameter method on the aggr1 dataset, alternative cost function.

The cost function, projected onto the location plane, is again plotted in order to visu-

alize the singularities in figure 7.5.

Fig. 7.5: 7-parameter log cost function on the aggr1 dataset, alternative cost function.

The constant noise term does little to correct any flaws in the previous cost functions

and behaves similarly to the cost function in (7.2). Using a Cartesian mapping to produce

distances greater than one does not affect the overall performance of this method. Rather,

it changes the ending state of the parameters being estimated and changes the visualization
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of the cost function. The resulting estimate is no better than when using the latitude and

longitude as a uniform grid.

7.5 Backtracking Line Search and Log Barriers

The model in (7.2) imposes no restriction on the loss coefficients or the power transmit-

ted. In the physical world, the transmitted power is always positive and the loss coefficients

should also be positive. Incorporate these restrictions using a log barrier in the cost func-

tion. As practical values for loss coefficients, restrict them to the range 1.5 < αi < 4.5 and

restrict the power merely to be positive P0 > 0.

The log-barrier method adds a finite amount to the cost function as the parameters

approach the barrier, which then increases quickly to infinity as the barrier is approached.

Practically, this is implemented by appending terms to the cost function in (7.2) to form

(7.4) as

J(x0, y0, P0, α1, α2, α3) =∑
∀i
P 2
i + P 2

0 d
−j(i)
i − 2P0Pid

−j(i)/2
i +

−1

t
[log(P0)

+ log(−α1 + 4.5) + log(α1 − 1.5)

+ log(−α2 + 4.5) + log(α2 − 1.5)

+ log(−α3 + 4.5) + log(α3 − 1.5)] , (7.4)

where t is a value that determines how steep the approach towards infinity is as the barrier

is approached. In practice, it is common to start t at a low value to allow for easy avoidance

of the barrier, and to increase it in successive iterations in order to make it more closely

match the ideal barrier, a step function.

Since Newton’s method can take large steps, it is imperative to prevent a step being

taken outside of the log barrier due to the step size being too large. The preventative

method employed here is the backtracking line search, which finds the largest step size that
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can be used in an iterative method which still minimizes the given cost function.

Using both the log barrier and the backtracking line search, the cost function in (7.4)

is minimized using Newton’s method. The resulting behavior is an iterative method that is

too “timid” to take any steps. The initial estimate is generally the final estimate, and for

this reason this approach was abandoned.

7.6 Possible Improvements

None of the clustering methods presented in this chapter proved to work well empiri-

cally. The conclusion drawn is that the more complex models allowed too much freedom to

the loss coefficients to be useful. Other combinations of clustering with different methods

may prove to be beneficial, or even loss coefficient estimation based on satellite imaging

data. Such avenues are not explored further in this paper.



CHAPTER 8

Comparison of Methods and Results

The table below summarizes the results from the four methods evaluated.

Table 8.1: Errors in meters for each method and dataset.

Dataset/Method circles BCP simplified 3p subset

sant1 15.76 2.50 5.09 13.08

sant2 7.92 5.46 2.19 20.45

quad3 108.94 41.46 19.47 1.65

upr3 116.26 181.36 128.74 30.26

aggr1 164.96 345.72 107.05 64.92

aggr4 1862.26 841.77 188.46 179.55

Overall, the subset method algorithm performs the best. In cases where observation

location is known to be very close to the transmitter (within 25 meters) the simplified 3-

parameter method outperforms the subset method. The direct comparison between methods

can be found in figure 8.1 as a direct visualization of the data in table 8.1. The errors in the

aggr4 dataset cannot be represented accurately on the chosen scale for the circles method

and the BCP method, so those values have been excluded from figure 8.1.

It may also be useful to view the average error for each method. Taking into account

only this average error it seems that the subset method is the best overall, as in figure 8.2.

As before, the aggr4 dataset was excluded from this average since it is on a much larger

scale than the other datasets.
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Fig. 8.1: Error comparison by method and dataset.

Fig. 8.2: Average error comparison by method and dataset in meters.
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However, the approximate size of the observation grid should be accounted for. Mea-

suring by the diagonal of the region with observations, the approximate dataset sizes are

as listed in table 8.2.

Table 8.2: Dataset size by diagonals in meters.

Dataset Diagonal length
in meters

sant1 92

sant2 92

quad3 195

upr3 1040

aggr1 1562

aggr4 7071

Dividing each error by the diagonal dataset size, a feel for how significant each error is

can be obtained. The average normalized errors for each method are shown in figure 8.3.

Fig. 8.3: Average error comparison by method and dataset, normalized.

The subset method now seems to perform slightly worse than the simplified 3-parameter

method. However, both perform far better than the circles method or the BCP method in

terms of both error in meters as well as normalized error.

Previously, a brief discussion of the problems with the subset method on the sant
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datasets was presented. Removing these datasets from the average errors using the justifi-

cation that they are too small, the normalized error is shown in figure 8.4.

Fig. 8.4: Average error comparison by method and dataset, normalized, and excluding the
sant datasets.

Using this interpretation of average errors, the subset method produced the best results.

As another means of comparison, group the errors in meters by dataset. This representation

can be seen in figure 8.5 and gives scale to the errors in each estimate. The subset method

produces the best results for a majority of the datasets.
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Fig. 8.5: Error comparison by dataset in meters.

8.1 Ending Location Estimate Representation

Another consideration in evaluating each method is the type of resulting final estimate

for each method. If fusion of this data with other methods of geolocation is desired, a prob-

abilistic representation of the location estimate would be necessary. Of the four methods

compared above, the circles, BCP and subset methods all provide this. Since these three

methods all produce heat maps, an easy visual comparison of the methods can be made as

seen in figures 8.6 and 8.7.

Fig. 8.6: The quad3 heat maps. From left to right: circles, BCP, subset.

The 3-parameter method estimate is, in this research, strictly a single best-fit estimate

for all observations. Because of this, representing the estimate in a probabilistic manner is
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Fig. 8.7: The upr3 heat maps. From left to right: circles, BCP, subset.

difficult. Ellipses could be drawn using the final resulting Hessian matrix, but in practice

the scale of these ellipses proved too inconsistent to be used in an algorithmic manner to

represent the certainty of the estimates.

8.2 Error Analysis vs Number of Observations Used

A natural question to ask about the given analysis would be how many samples are

needed in order to make an accurate location estimate. While many factors influence the

answer to this question, insight can be gained by running these algorithms on subsets of

the datasets and observing the quality of the estimates.

The simplified 3-parameter algorithm was applied to the datasets, taking different

numbers of observations from the entire set each time. Using 25 trials of each observation

amount, an average error term was made in order to analyze the effect that the number of

observations has on the transmitter location estimate. The plots of these results is shown

in figure 8.8. It is evident that the general behavior is as expected: the error of the estimate

decreases as the number of observations used increases.

Similar analysis was done for the other algorithms and the results for the quad3 dataset

are shown in figure 8.9. Trend lines have been fitted where appropriate. The circles algo-

rithm does not necessarily produce better estimates with more observations available. The

BCP method improves its estimate with more observations used, with diminishing returns

around the 300 observation mark. Similarly, the 3-parameter method has diminishing re-

turns, but it reaches this point far faster, around the 100 observation mark. The subset

algorithm appears to plateau rapidly at the 100 observation mark but the error drops again
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Fig. 8.8: Location estimate error as a function of number of observations used with the
simplified 3-parameter method.

around the 300 sample mark until it reaches it’s almost perfect location estimate.

Further analysis could be done on the number of observations needed in order to pro-

duce estimates of a sufficient quality.
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Fig. 8.9: Location estimate error as a function of number of number of observations used
on the quad3 dataset. From left to right and top to bottom: circles, BCP, 3 Parameter,
subset.

8.3 Estimating Environmental Features

Using the location estimates obtained by any of the methods above, it is possible to

then estimate the loss coefficients for each observation, as described in section 5.3. The loss

coefficient at a specific location may give insight into the geography or features in a region.

For instance, a region with large loss coefficients may be shadowed by a building while a

region with loss coefficients around 2 may have direct line of sight to the receiver.

Figure 8.10 depicts this type of analysis done for the aggr1 dataset. In this figure,

the darker points mark areas where the loss coefficient is estimated to be very low. The

brighter, more blue observations are locations with higher loss coefficients. For reference,

figure 8.11 depicts the satellite image of the aggr1 dataset again. The brighter sections of

observations suggest that some kind of shadowing or null in the antenna pattern might be
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at that location.

Fig. 8.10: The aggr1 loss coefficient groups. Fig. 8.11: The aggr1 dataset for comparison.

Further development of these types of estimation might prove useful for analyzing the

radio propagation characteristics of regions, but is not discussed further here.

8.4 Alternative Power Measurements

In the processing chain shown in figure 2.1, a max operation is used over one second

of data in order to output a final RSS measurement for the observation. An alternative

approach would be to instead average the power over that second.

The GNURadio script responsible for power measurements was modified with a custom

block that allowed for this averaging to be done in an efficient manner. The maximum

powers were computed alongside the averages, resulting in a processing chain as seen in

figure 8.12.
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Fig. 8.12: Modified data collection scheme.

A new dataset was taken using this new collection scheme. The dataset is referred to

as the aggr8 dataset and was taken around USU campus on a local FM radio channel. A

satellite image with the observations marked can be seen in figure 8.13.

Fig. 8.13: The aggr8 dataset.

The algorithms were applied to the aggr8 dataset using both the average power and

the maximum power data. The resulting errors in meters can be seen in table 8.3.

In all the cases except for using 3-parameter method, the ending location estimate

ended up having the same error, and was also in the same location for the average power

and maximum power measurements. The errors match in these cases exactly (to two decimal
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Table 8.3: Errors in meters for each method on the aggr8 dataset using average power
compared to maximum power.

Dataset/Method circles BCP simplified 3p subset

aggr8 power average 158.09 279.84 162.87 134.83
aggr8 power max 158.09 279.84 147.41 134.83

places) because the Circles, BCP, and Subset methods all quantize the estimates into a finite

number of bins (for these results, a grid of 30× 30 bins was used).

For the 3-parameter method, the average power measurements actually produced a

worse location estimate than the maximum power measurements, but only by about 15

meters. The aggr8 dataset covers a 900 × 900 meter region, so normalizing this error

difference by the diagonal length of 1273 meters means that the 15 meter difference is only

about 1 percent of the span of the region. The two location estimates are effectively the

same.

Taking the average power rather than the maximum power has no significant effect on

the quality of the location estimate. Since the maximum operation is supported natively

in GNURadio, the original data collection scheme is used as the default method in this

research.

8.5 Notes on Non-Stationary Transmitters

The analysis presented assumes that the transmitter is stationary. If finding a moving

transmitter is desired, a number of options are available for fitting these algorithms to this

situation and are possible areas of further research.

Given a scenario where it is desired to find a unmanned aerial vehicle pilot, a number of

searching drones could be deployed to take RSS measurements. These measurements would

be reported into a central node to be processed using one of the discussed algorithms.

The observations would be set to decay, or expire after a set amount of time, allowing

for the possibility that the transmitter has moved. In this way, a constantly updating

location estimate could be provided using multiple moving measurement nodes. A similar

configuration, though not using the algorithms presented in this paper, is discussed in [9].



CHAPTER 9

Conclusion

9.1 Contributions

The research presented provides algorithms that locate a transmitter based on RSSI.

Models for differing loss coefficients and noise were analyzed, and real world data was used

to test the assumptions made. The work presented provides a stepping stone for future

work in geolocation and modeling of RSS power loss as well as providing a viable method

for performing geolocation.

9.2 Future Work

Areas of further research and improvement have been noted in sections above. In

summary, each of the algorithms presented could be improved in a variety of ways. The

BCP algorithm could be changed to deal with close comparisons more logically and the

circles algorithm could extrude probabilities along the resulting loci in a way that represents

the uncertainty of the measurements. The cost functions presented represent only a few of

the possibilities that could be used in an optimization problem, and other models of the

system could be developed to more closely model the complexities of the problem.

Further work could also be done to implement these algorithms in a way that could

track a moving transmitter. Observations could be time-expiring, and a Kalman filter could

be used to improve the estimations over time.

9.3 Conclusion

Geolocation using RSS measurements can help solve common geolocation problems

when high degrees of synchronization are unavailable or impractical. In addition, geoloca-

tion based on RSS measurements can combine well with networks of distributed receivers
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working together to locate a source since there is no time-dependent feature of the data.

Many different algorithms were proposed and presented in this text, four of which were

presented in depth. The methods in section 7 were presented and developed in pursuit

of a more complete model, but since none of those methods proved viable in the end, the

complete results of their development and experiments were not included. It should suffice

to say that the more complex models that allow more freedom in the estimation of loss

coefficients demonstrated inconsistencies that made them impractical in regular use.

The best method for the datasets considered in this research was the subset method

presented in section 6. It resulted in the smallest average error in meters and qualitatively

produced the most useful and accurate histogram heat maps. As the purpose of this thesis

was to develop and compare methods for geolocation based on RSS measurements, the

objective was achieved.
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APPENDIX A

Gradients and Hessians

A.1 3-parameter Method

The 3-parameter Newton’s iterations require a 3×1 gradient and a 3×3 Hessian, which

are listed below as partial derivatives.

Cost Function

J(x0, y0, P0) =
∑
i

(Pid
αi
i − P0)

2

Gradient

∂J

∂x0
= 2

∑
i

Piαi(x0 − xi)
[
Pid

αi−1
i − P0d

αi
2
−1

i

]

∂J

∂y0
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∑
i
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2
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i
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i

Hessian
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i

]
+

2Piαi(x0 − xi)2
[
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∂J2
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∑
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1 = 2 ∗ number of observations

A.2 Simplified 3-Parameter Method

Restricting all loss coefficients to be 2, the gradient and Hessian simplify as follows.
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Simplified Gradient
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∂J2

∂P0∂y0
=
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∂y0∂P0
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∂P0∂P0
= 2

∑
i

1 = 2 ∗ number of observations

A.3 6-Parameter Method

The 6-parameter Newton’s iterations require a 6 × 1 gradient and a 6 × 6 Hessian,

which are listed below as partial derivatives. Note that the obviously symmetric partials

have been assumed to be understood as their partial pair.

Cost Function
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A.4 6-Parameter Method with Alternative Cost Function

The 6-parameter Newton’s iterations with the alternative cost function also require a

6× 1 gradient and a 6× 6 Hessian, which are listed below as partial derivatives. Note that

the obviously symmetric partials have been assumed to be understood as their partial pair.
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(Pi − P0d
−j(i)/2
i )2

Gradient

∂J

∂x0
= 2

∑
i

P0j(i)(x0 − xi)
[
Pid

−j(i)
2
−1

i − P0d
−j(i)−1
i

]

∂J

∂y0
= 2

∑
i

P0j(i)(y0 − yi)
[
Pid

−j(i)
2
−1

i − P0d
−j(i)−1
i

]

∂J

∂P0
= 2

∑
i

P0d
−j(i)
i − 2Pid

−j(i)
2

i
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∂J

∂αk
=

∑
i,j(i)=αk

P 2
0 d
−j(i)
i ln(d−1i )− 2P0Pid

−j(i)
2

i ln(d
−1
2
i )

Hessian

∂J2

∂x0∂x0
= 2

∑
i

P0j(i)

[
Pid

−j(i)
2
−1

i − P0d
−j(i)−1
i + 2(x0 − xi)2

[
Pi(
−j(i)

2
− 1)d

−j(i)
2
−2

i − P0(−j(i)− 1)d
−j(i)−2
i

]]

∂J2

∂y0∂y0
= 2

∑
i

P0j(i)

[
Pid

−j(i)
2
−1

i − P0d
−j(i)−1
i + 2(y0 − yi)2

[
Pi(
−j(i)

2
− 1)d

−j(i)
2
−2

i − P0(−j(i)− 1)d
−j(i)−2
i

]]

∂J2

∂p0∂p0
= 2

∑
i

d
−j(i)
i

∂J2

∂αk∂αk
= P 2

0 d
−j(i)
i ln(d−1i )2 − 2P0Pid

−j(i)
2

i ln(d
−1
2
i )2

∂J2

∂x0∂y0
= 4

∑
i

P0j(i)(xi − x0)(yi − y0)
[
Pi(
−j(i)

2
− 1)d

−j(i)
2
−2

i − P0(−j(i)− 1)d
−j(i)−2
i

]

∂J2

∂x0∂P0
= 2

∑
i

j(i)(x0 − xi)
[
Pid

−j(i)
2
−1

i − 2P0d
−j(i)−1
i

]

∂J2

∂y0∂P0
= 2

∑
i

j(i)(y0 − yi)
[
Pid

−j(i)
2
−1

i − 2P0d
−j(i)−1
i

]
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∂J2

∂x0∂αk
= 2

∑
i,j(i)=αk

P0(x0 − xi)

[
Pid

−j(i)
2
−1

i − P0d
−j(i)−1
i + j(i)Pid

−j(i)
2
−1

i ln(d
−1
2
i )− j(i)P0d

−j(i)−1
i ln(d−1i )

]

∂J2

∂y0∂αk
= 2

∑
i,j(i)=αk

P0(y0 − yi)

[
Pid

−j(i)
2
−1

i − P0d
−j(i)−1
i + j(i)Pid

−j(i)
2
−1

i ln(d
−1
2
i )− j(i)P0d

−j(i)−1
i ln(d−1i )

]

∂J2

∂P0∂αk
= 2

∑
P0d

−j(i)
i ln(d−1i )− Pid

−j(i)
2

i ln(d
−1
2
i )

∂J2

∂αl∂αk
= 0, k 6= l

A.5 7-Parameter Method with Alternative Cost Function

The 7-parameter Newton’s iterations require a 7 × 1 gradient and a 7 × 7 Hessian,

which are listed below as partial derivatives. Note that the obviously symmetric partials

have been assumed to be understood as their partial pair.

Cost Function

J(x0, y0, P0, N0, α1, α2, α3) =
∑
∀i

(Pi − P0d
−j(i)/2
i −N0)

2

Gradient

∂J

∂x0
= −2

∑
i

j(i)(x0 − xi)P0

[
P0d

−j(i)−1
i + (N0 − Pi)d

−j(i)
2
−1

i

]
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∂J

∂y0
= −2

∑
i

j(i)(y0 − yi)P0

[
P0d

−j(i)−1
i + (N0 − Pi)d

−j(i)
2
−1

i

]

∂J

∂P0
= 2

∑
i

P0d
−2j(i)
i + (N0 − Pi)d−j(i)i

∂J

∂N0
= 2

∑
i

N0 − Pi + P0d
−j(i)

2
i

∂J

∂αk
=

∑
i,j(i)=αk

P 2
0 d
−j(i)
i ln(d−1i ) + 2P0(N0 − Pi)d

−j(i)
2

i ln(d
−1
2
i )

Hessian

∂J2

∂x0∂x0
= −2

∑
i

j(i)P0

[
P0d

−j(i)−1
i + (N0 − Pi)d

−j(i)
2
−1

i

]
+

2j(i)(x0 − xi)2P0

[
P0(−j(i)− 1)d

−j(i)−2
i + (N0 − Pi)(

−j(i)
2
− 1)d

−j(i)
2
−2

i

]

∂J2

∂y0∂y0
= −2

∑
i

j(i)P0

[
P0d

−j(i)−1
i + (N0 − Pi)d

−j(i)
2
−1

i

]
+

2j(i)(y0 − yi)2P0

[
P0(−j(i)− 1)d

−j(i)−2
i + (N0 − Pi)(

−j(i)
2
− 1)d

−j(i)
2
−2

i

]

∂J2

∂x0∂y0
= 4

∑
i

j(i)(x0−xi)(y0−yi)P0

[
P0(j(i) + 1)d

−j(i)−2
i + (N0 − Pi)(

j(i)

2
+ 1)d

−j(i)
2
−2

i

]

∂J2

∂x0∂P0
= −2

∑
i

j(i)(x0 − xi)
[
2P0d

−j(i)−1
i + (N0 − Pi)d

−j(i)
2
−1

i

]

∂J2

∂y0∂P0
= −2

∑
i

j(i)(y0 − yi)
[
2P0d

−j(i)−1
i + (N0 − Pi)d

−j(i)
2
−1

i

]
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∂J2

∂x0∂N0
= −2

∑
i

j(i)(x0 − xi)P0d
−j(i)

2
−1

i

∂J2

∂y0∂N0
= −2

∑
i

j(i)(y0 − yi)P0d
−j(i)

2
−1

i

∂J2

∂P0∂P0
= 2

∑
i

d
−j(i)
i

∂J2

∂N0∂N0
= 2

∑
i

1 = 2 ∗ number of observations

∂J2

∂P0∂N0
= 2

∑
i

d
−j(i)

2
i

∂J2

∂αk∂αk
=

∑
i,j(i)=αk

P0d
−j(i)
i ln(d−1i )2 + 2P0(N0 − Pi)d

−j(i)
2

i ln(d
−1
2
i )2

∂J2

∂x0∂αk
= −2

∑
i,j(i)=αk

(x0 − xi)P0

[
P0d

−j(i)−1
i + (N0 − Pi)d

−j(i)
2
−1

i

]

+j(i)(x0 − xi)P0

[
P0d

−j(i)−1
i ln(d−1i ]) + (N0 − Pi)d

−j(i)
2
−1

i ln(d
−1
2
i )

]

∂J2

∂x0∂αk
= −2

∑
i,j(i)=αk

(y0 − yi)P0

[
P0d

−j(i)−1
i + (N0 − Pi)d

−j(i)
2
−1

i

]

+j(i)(y0 − yi)P0

[
P0d

−j(i)−1
i ln(d−1i ]) + (N0 − Pi)d

−j(i)
2
−1

i ln(d
−1
2
i )

]

∂J2

∂P0∂αk
= 2

∑
i,j(i)=αk

P0d
−j(i)
i ln(d−1i ) + (N0 − Pi)d

−j(i)
2

i ln(d
−1
2
i )

∂J2

∂N0∂αk
= 2

∑
i,j(i)=αk

P0d
−j(i)

2
i ln(d

−1
2
i )
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∂J2

∂αl∂αk
= 0, k 6= l
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APPENDIX B

Code

B.1 Circles

The circles method is included below as a Matlab script.

Listing B.1: The circles method.

1 % Sam Whiting Nov 2017
2 % Performs the c i r c l e s a lgor i thm on a datase t
3 c l e a r ; c l c ; c l o s e a l l ;
4
5 %% pick which data set to run on
6 % o r i g i n a l da ta s e t s
7 % datase t = ' sant1 ' ;
8 % datase t = ' sant2 ' ;
9 % datase t = ' quad3 ' ;

10 datase t = ' upr3 ' ;
11 % datase t = ' aggr1 ' ;
12
13 % new data s e t s
14 % datase t = ' upr4 ' ;
15 % datase t = ' aggr2 ' ;
16 % datase t = ' aggr2 trunc ' ;
17 % datase t = ' aggr4 ' ; % l a r g e datase t
18 % datase t = ' aggr6 ' ; % average powers here
19 % datase t = ' aggr8 ' ; % mixed power/ averages ( s ee r e ad r s s d a t a .m)
20
21 % simulated datase t
22 datase t = ' sim ' ;
23
24 %% some controls/parameters to change
25
26 % path l o s s ( can be a range )
27 % n range = 3 .1 : . 1 : 3 . 3 ;
28 n range = 2 ;
29
30 % downsample amount
31 n downsamp = 1 ;
32
33 % data t runcat i on (what range o f po in t s to use )
34 t runcate = 0 ; % f l a g to s i g n a l t runcat i on or not
35 s t a r t = 1 ; % s t a r t i n g index
36 n obs e rva t i on s = 100 ; % how many po in t s to use
37
38 % togg l e p l o t s
39 plot heat map = 1 ;
40 p lo t hea t w i th d iag ram = 0 ;
41 plot d iagram = 1 ;
42 d i ag ram draw c i r c l e s = 0 ;
43 p l o t e r r o r s v s n = 0 ;
44
45 % bins in the heat map ( along one ax i s )
46 nbins = 30 ;
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47
48
49 %% open the f i l e
50 [ r x l o c a t i on , rx power , n rx , t x l o c a t i o n ] = ...
51 r e ad r s s d a t a ( dataset , n downsamp , truncate , s t a r t , n obse rvat i ons , 0 ,0) ;
52
53 %% determine dimensions/edges
54 [ lon0 , lon1 , la t0 , l a t 1 ] = get d imens ions ( datase t ) ;
55 x edges = l i n s p a c e ( lon0 , lon1 , nbins ) ;
56 y edges = l i n s p a c e ( la t0 , la t1 , nbins ) ;
57
58 %% run for each path loss coef f ic ient guess
59 s a v e e r r o r s = [ ] ; save n = [ ] ;
60 f o r z = 1 : l ength ( n range )
61 n = n range ( z ) ;
62 f p r i n t f ( 'Running with path l o s s n = %.2 f . . . \ n ' , n ) ;
63
64 %% circ les of constant radii ratio
65 combs = combnk ( 1 : n rx , 2 ) ; % a l l the d i f f e r e n t pa i r s o f r e c e i v e r s
66 n combs = length ( combs ) ;
67 u = ze ro s ( n combs , 1 ) ; v = ze ro s ( n combs , 1 ) ;w = ze ro s ( n combs , 1 ) ;
68 f o r q = 1 : n combs
69 k = combs (q , 1 ) ;
70 m = combs (q , 2 ) ;
71 [ u(q ) , v (q ) ,w2(q ) ] = power ra t i o ( r x l o c a t i o n (k , 1 ) , r x l o c a t i o n (k , 2 ) , ...
72 r x l o c a t i o n (m, 1 ) , r x l o c a t i o n (m, 2 ) , ...
73 nthroot ( ( rx power (k ) / rx power (m) ) , n ) ) ;
74 end
75 i f (w2 <= 0)
76 f p r i n t f ( 'ERROR: negat ive rad iu s \n ' ) ;
77 re turn ;
78 end
79
80 %% find c irc le intersections
81 w = sq r t (w2) ;
82 ix = ze ro s ( n combs , 2 , 2 ) ;
83 f o r q = 1 : n combs
84 k = combs (q , 1 ) ;
85 m = combs (q , 2 ) ;
86 [ i x (q , 1 , : ) , i x (q , 2 , : ) ] = c i r c c i r c (u(k ) , v ( k ) ,w(k ) , ...
87 u(m) , v (m) ,w(m) ) ;
88 end
89
90 %% histogram
91 [N, x edges , y edges ] = h i s t count s2 ( ix ( : , 1 , : ) , i x ( : , 2 , : ) , x edges , y edges ) ;
92
93 % f i nd the middle o f the max bin in the histogram
94 [ ˜ , ind1 ] = max(N( : ) ) ; % stack and f i nd argmax
95 [ x gues s b in , y gue s s b in ] = ind2sub ( s i z e (N) , ind1 ) ; % turn a l i n e a r argmax in to a

2d one
96 bin width = x edges (2 ) − x edges (1 ) ;
97 x gues s = x edges ( x gue s s b in ) + .5∗ bin width ; % long i tude guess ( middle o f max

bin )
98 y gues s = y edges ( y gue s s b in ) + .5∗ bin width ; % l a t i t u d e guess ( middle o f max

bin )
99

100 %% error term
101 error m = l l d i s t a n c e ( x guess , y guess , t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ) ;
102 f p r i n t f ( 'TX Actual : Lat %.8 f \n ' , t x l o c a t i o n (2 ) ) ;
103 f p r i n t f ( ' Lon %.8 f \n ' , t x l o c a t i o n (1 ) ) ;
104 f p r i n t f ( 'TX Estimate : Lat %.8 f \n ' , y gues s ) ;
105 f p r i n t f ( ' Lon %.8 f \n ' , x gues s ) ;
106 f p r i n t f ( ' Error : %.2 f meters \n ' , error m ) ;
107
108 %% heatmaps
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109 i f p lot heat map == 1
110 heat data = rot90 (N) ;
111 f i g u r e ;
112 imagesc ( [ lon0 , lon1 ] , [ l a t0 , l a t 1 ] , f l i p ( heat data , 1) ) ;
113 % t i t l e ( [ dataset , ' with l o s s c o e f f n = ' , num2str (n) ] ) ;
114 t i t l e ( [ dataset , ' C i r c l e s Method ' ] ) ;
115 hold on ;
116 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'w ' , 'LineWidth ' , 5 , 'Marker

' , 'x ' ) ;
117 lgnd = legend ( tx p lo t , ' Transmitter ' ) ;
118 x l ab e l ( ' l on ' ) ; y l ab e l ( ' l a t ' ) ;
119 ax i s ( 'xy ' ) ; pbaspect ( [ 1 , 1 , 1 ] ) ;
120 % se t ( lgnd , ' co lo r ' , [ 1 5 7 , 1 63 , 1 73 ] / 255 ) ;
121 end
122
123 i f p l o t hea t w i th d iag ram == 1
124 heat data = rot90 (N) ;
125 f i g u r e ;
126 imagesc ( [ lon0 , lon1 ] , [ l a t0 , l a t 1 ] , f l i p ( heat data , 1) ) ;
127 % t i t l e ( [ dataset , ' with l o s s c o e f f n = ' , num2str (n) ] ) ;
128 t i t l e ( [ dataset , ' C i r c l e s Method ' ] ) ;
129 hold on ;
130 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'w ' , 'LineWidth ' , 5 , 'Marker

' , 'x ' ) ;
131 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
132 gu e s s p l o t = s c a t t e r ( x guess , y guess , 200 , 'k ' , 'LineWidth ' , 3 , 'Marker ' , ' o ' ) ;
133 legend ( [ rx p lo t , tx p l o t , g u e s s p l o t ] , ' Observat ions ' , ' Transmitter ' , ' Estimated

Locat ion ' ) ;
134 x l ab e l ( ' l on ' ) ; y l ab e l ( ' l a t ' ) ;
135 ax i s ( 'xy ' ) ; pbaspect ( [ 1 , 1 , 1 ] ) ;
136 end
137
138 %% diagram
139 i f p lot d iagram == 1
140 f i g u r e ;
141 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
142 hold on ; s e t ( gca , ' yd i r ' , ' normal ' ) ;
143
144 % adding c i r c l e s to the p l o t can slow th ing s down a l o t . . .
145 i f d i ag ram draw c i r c l e s == 1
146 f o r k = 1 : n combs
147 d r aw c i r c l e (u(k ) , v ( k ) ,w(k ) , ' r−− ' , 2 ) ;
148 end
149 end
150
151 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker

' , 'x ' ) ;
152 gu e s s p l o t = s c a t t e r ( x guess , y guess , 200 , 'k ' , 'LineWidth ' , 3 , 'Marker ' , ' o ' ) ;
153 % t i t l e ( [ dataset , ' with l o s s c o e f f n = ' , num2str (n) ] ) ;
154 t i t l e ( [ dataset , ' C i r c l e s Method ' ] ) ;
155 legend ( [ rx p lo t , tx p l o t , g u e s s p l o t ] , ' Observat ions ' , ' Transmitter ' , ' Estimated

Locat ion ' ) ;
156 ax i s ( [ lon0 , lon1 , la t0 , l a t 1 ] ) ; pbaspect ( [ 1 , 1 , 1 ] ) ;
157 end
158
159 s a v e e r r o r s = [ s av e e r r o r s , error m ] ;
160 f p r i n t f ( ' \n ' ) ;
161 end
162
163 %% error vs loss coef f ic ient plot
164 i f p l o t e r r o r s v s n == 1
165 f i g u r e ;
166 p l o t ( n range , s a v e e r r o r s ) ;
167 t i t l e ( [ ' Error vs Loss Co e f f i c i e n t , ' , da ta se t ] ) ;
168 x l ab e l ( ' l o s s c o e f f i c i e n t n ' ) ;
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169 y l ab e l ( ' e r r o r in meters ' ) ;
170 end

B.2 BCP

The BCP method is included below as a Matlab script.

Listing B.2: The BCP method.

1 % Sam Whiting Nov 2017
2 % Performs the BCP algor i thm on a datase t
3 c l e a r ; c l c ; c l o s e a l l ;
4
5 %% pick which data set to run on
6 % o r i g i n a l da ta s e t s
7 % datase t = ' sant1 ' ;
8 % datase t = ' sant2 ' ;
9 % datase t = ' quad3 ' ;

10 % datase t = ' upr3 ' ;
11 % datase t = ' aggr1 ' ;
12
13 % new data s e t s
14 % datase t = ' upr4 ' ;
15 % datase t = ' aggr2 ' ;
16 % datase t = ' aggr2 trunc ' ;
17 % datase t = ' aggr4 ' ; % l a r g e datase t
18 % datase t = ' aggr6 ' ; % average powers here
19 % datase t = ' aggr8 ' ; % mixed power/ averages ( s ee r e ad r s s d a t a .m)
20
21 % simulated datase t
22 datase t = ' sim ' ;
23
24 %% some controls/parameters to change
25
26 % downsample amount
27 n downsamp = 1 ;
28
29 % data t runcat i on (what range o f po in t s to use )
30 t runcate = 0 ; % f l a g to s i g n a l t runcat i on or not
31 s t a r t = 1 ; % s t a r t i n g index
32 n obs e rva t i on s = 100 ; % how many po in t s to use
33
34 % togg l e p l o t s
35 plot heat map = 1 ;
36 p lo t hea t w i th d iag ram = 0 ;
37 plot d iagram = 1 ;
38
39 % togg l e debugging s t ep s ( very verbose )
40 debug steps = 0 ;
41 auto s t ep = 0 ; % how many seconds to pause , or 0 f o r key prompt
42
43 % seed random number genera to r i f d e s i r ed
44 rng (1234) ;
45
46 % how c l o s e i s too c l o s e f o r ob s e rva t i on s ? Wil l sk ip these pa i r s
47 t o o c l o s e d i s t a n c e = 0 ;
48
49 % bins in the heat map ( along one ax i s )
50 n b ins = 30 ;
51
52 % bayes ian step ( mu l t i p l i c a t i v e f a c t o r )
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53 s t e p s i z e = 1 . 0 0 1 ;
54 % s t e p s i z e = 1 . 1 ;
55
56 % use the midpoint or the k−weighted midpoint
57 use midpoint = 1 ; % 1 i s t rue ( use r e a l midpoint )
58 n es t imate = 4 ; %doesn ' t matter i f we ' re j u s t us ing the midpoint . . .
59
60
61 %% open the f i l e
62 [ r x l o c a t i on , rx power , n rx , t x l o c a t i o n ] = ...
63 r e ad r s s d a t a ( dataset , n downsamp , truncate , s t a r t , n obse rvat i ons , 0 ,0) ;
64
65 %% determine dimensions/edges
66 [ lon0 , lon1 , la t0 , l a t 1 ] = get d imens ions ( datase t ) ;
67 x edges = l i n s p a c e ( lon0 , lon1 , n b ins ) ;
68 y edges = l i n s p a c e ( la t0 , la t1 , n b ins ) ;
69
70 %% the BCP algorithm
71 p r i o r = ones ( n bins , n b ins ) /( n b ins ˆ2) ; % gr id o f p r o b a b i l i t i e s
72
73 combs = combnk ( 1 : n rx , 2 ) ;
74 n combs = length ( combs ) ;
75
76 % randomly mix up the combinat ions o f ob s e rva t i on s order
77 combs = combs ( randperm ( length ( combs ) ) , : ) ;
78
79 s k i p t o t a l = 0 ;
80
81 f o r z = 1 : n combs
82 % which combination o f po in t s do we use ?
83 index1 = combs ( z , 1 ) ;
84 index2 = combs ( z , 2 ) ;
85
86 point1 = r x l o c a t i o n ( index1 , : ) ;
87 power1 = rx power ( index1 ) ;
88 point2 = r x l o c a t i o n ( index2 , : ) ;
89 power2 = rx power ( index2 ) ;
90
91 % ignore the comparison i f the obs e rva t i on s are too c l o s e ( t e s t i n g )
92 i f l l d i s t a n c e ( po int1 (1 ) , po int1 (2 ) , po int2 (1 ) , po int2 (2 ) ) < t o o c l o s e d i s t a n c e
93 s k i p t o t a l = s k i p t o t a l +1;
94 cont inue ;
95 end
96
97 % k i s the power r a t i o
98 k = nthroot ( power1/power2 , n e s t imate ) ;
99

100 % k middle i s the weighted midpoint
101 k middle = [ ( k∗ point1 (1 ) + point2 (1 ) ) /(k+1) , ( k∗ point1 (2 ) + point2 (2 ) ) /(k+1) ] ;
102
103 % true midpoint
104 r ea l m idd l e = [ ( po int1 (1 ) + point2 (1 ) ) /2 , ( po int1 (2 ) + point2 (2 ) ) / 2 ] ;
105
106 % k s l op e i s the orthogona l s l ope o f the l i n e between the two po in t s
107 k s l op e = −( po int1 (1 ) − point2 (1 ) ) / ( po int1 (2 ) − point2 (2 ) ) ;
108
109 % k i n t e r c e p t i s the y i n t e r c e p t o f the orthogona l l i n e through the
110 % k middle po int
111 i f use midpoint == 1
112 k i n t e r c e p t = rea l m idd l e (2 ) − ( r e a l m idd l e (1 ) ∗ k s l op e ) ; % try us ing ac tua l

midpoint in s t ead
113 e l s e
114 k i n t e r c e p t = k middle (2 ) − ( k middle (1 ) ∗ k s l op e ) ;
115 end
116
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117 % Which po int i s i t c l o s e s t to ?
118 i f ( k > 1) % k>1 means i t was c l o s e r to po int 1
119 above = ( point1 (2 ) > point1 (1 ) ∗ k s l op e + k i n t e r c e p t ) ;
120 e l s e % e l s e i t was c l o s e r to po int 2
121 above = ( point2 (2 ) > point2 (1 ) ∗ k s l op e + k i n t e r c e p t ) ;
122 end
123
124 % % % % k x ax i s
125 % % % k x = 0 : . 1 : 2 0 ;
126 % % % % po in t s on the k−l i n e
127 % % % k lo cu s = ( k x .∗ k s l op e ) + k i n t e r c e p t ;
128
129 % update every g r id po int
130 f o r a = 1 : n b ins
131 f o r b = 1 : n b ins
132
133 x0 = x edges (b) ; % the x coord inate in degree s
134 y0 = y edges ( a ) ; % y coord inate
135
136 i f ( above == 1) % use the space above the l i n e
137 i f ( y0 > ( x0∗ k s l op e + k i n t e r c e p t ) )
138 p r i o r ( a , b ) = p r i o r ( a , b) ∗ s t e p s i z e ;
139
140 e l s e
141 p r i o r ( a , b ) = p r i o r ( a , b) / s t e p s i z e ;
142 end
143 e l s e % e l s e use below the l i n e
144 i f ( y0 < ( x0∗ k s l op e + k i n t e r c e p t ) )
145 p r i o r ( a , b ) = p r i o r ( a , b) ∗ s t e p s i z e ;
146 e l s e
147 p r i o r ( a , b ) = p r i o r ( a , b) / s t e p s i z e ;
148 end
149 end
150
151 end
152 end
153
154 % normal ize the p r i o r
155 p r i o r = p r i o r /(sum(sum( p r i o r ) ) ) ;
156
157 % a debugging step ( very verbose )
158 i f debug steps == 1
159 f i g u r e ;
160 imagesc ( [ lon0 , lon1 ] , [ l a t0 , l a t 1 ] , p r i o r ) ;
161 s e t ( gca , ' x t i ck ' , [ ] )
162 s e t ( gca , ' x t i c k l a b e l ' , [ ] )
163 s e t ( gca , ' y t i ck ' , [ ] )
164 s e t ( gca , ' y t i c k l a b e l ' , [ ] )
165 ax i s ( 'xy ' ) ; hold on ;
166 pbaspect ( [ 1 , 1 , 1 ] ) ;
167 t i t l e ( [ ' Step ' , num2str ( z ) ] ) ;
168 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker

' , 'x ' ) ;
169
170 sz1 = 50 ; sz2 = 50 ;
171 i f ( k > 1) sz1 = 250 ; % c l o s e r to p1
172 e l s e sz2 = 250 ; % c l o s e r to p2
173 end
174 s c a t t e r ( po int1 (1 ) , po int1 (2 ) , sz1 , ' r ' , ' f i l l e d ' ) ;
175 s c a t t e r ( po int2 (1 ) , po int2 (2 ) , sz2 , ' r ' , ' f i l l e d ' ) ;
176
177 % k x ax i s
178 k x = l i n s p a c e ( lon0 , lon1 ) ;
179 % po in t s on the k−l i n e
180 k l o cu s = ( k x .∗ k s l op e ) + k i n t e r c e p t ;
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181 % p lo t k l i n e
182 p l o t ( k x , k locus , 'k−− ' , 'LineWidth ' , 2 ) ;
183
184 i f auto s t ep == 0
185 pause ;
186 e l s e
187 pause ( auto s t ep ) ;
188 end
189 end
190 end
191
192 %% find the middle of the max bin in the histogram
193 p r i o r f l i p = pr io r ' ;
194 [ ˜ , ind1 ] = max( p r i o r f l i p ( : ) ) ; % stack and f i nd argmax
195 [ x gues s b in , y gue s s b in ] = ind2sub ( s i z e ( p r i o r ) , ind1 ) ; % turn a l i n e a r argmax in to a

2d one
196 bin width = x edges (2 ) − x edges (1 ) ;
197 % x gues s = x edges ( x gue s s b in ) + .5∗ bin width ; % long i tude guess ( middle o f max bin

)
198 % y gues s = y edges ( y gue s s b in ) + .5∗ bin width ; % l a t i t u d e guess ( middle o f max bin )
199 x gues s = x edges ( x gue s s b in ) ; % long i tude guess
200 y gues s = y edges ( y gue s s b in ) ; % l a t i t u d e guess
201
202 %% generate an error term
203 error m = l l d i s t a n c e ( x guess , y guess , t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ) ;
204 f p r i n t f ( 'TX Actual : Lat %.8 f \n ' , t x l o c a t i o n (2 ) ) ;
205 f p r i n t f ( ' Lon %.8 f \n ' , t x l o c a t i o n (1 ) ) ;
206 f p r i n t f ( 'TX Estimate : Lat %.8 f \n ' , y gues s ) ;
207 f p r i n t f ( ' Lon %.8 f \n ' , x gues s ) ;
208 f p r i n t f ( ' Error : %.2 f meters \n ' , error m ) ;
209
210 f p r i n t f ( ' \n ' ) ;
211 f p r i n t f ( 'Number o f p a i r s sk ipped : %d\n ' , s k i p t o t a l ) ;
212 f p r i n t f ( ' Percentage o f p a i r s sk ipped : %.2 f percent \n ' ,100∗ s k i p t o t a l /nchoosek ( n rx , 2 )

) ;
213
214 %% plot the heat map
215 i f p lot heat map == 1
216 f i g u r e ;
217 imagesc ( [ lon0 , lon1 ] , [ l a t0 , l a t 1 ] , p r i o r ) ;
218 hold on ;
219 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'w ' , 'LineWidth ' , 5 , 'Marker ' , 'x

' ) ;
220 % gue s s p l o t = s c a t t e r ( x guess , y guess , 2 00 , ' k ' , ' LineWidth ' , 3 , ' Marker ' , ' o ' ) ;
221 % legend ( [ tx p lo t , g u e s s p l o t ] , ' Transmitter ' , ' Estimated Location ' ) ;
222 legend ( [ t x p l o t ] , ' Transmitter ' ) ;
223 x l ab e l ( ' l on ' ) ; y l ab e l ( ' l a t ' ) ;
224 % co l o rba r ;
225 ax i s ( 'xy ' ) ;
226 t i t l e ( [ 'BCP Method , ' , da tase t ] ) ;
227 ax i s ( 'xy ' ) ; pbaspect ( [ 1 , 1 , 1 ] ) ;
228
229 end
230
231 %% plot the heat map with diagram
232 i f p l o t hea t w i th d iag ram == 1
233 f i g u r e ;
234 imagesc ( [ lon0 , lon1 ] , [ l a t0 , l a t 1 ] , p r i o r ) ;
235 hold on ;
236 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker ' , 'x

' ) ;
237 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' ) ;
238 gu e s s p l o t = s c a t t e r ( x guess , y guess , 200 , 'k ' , 'LineWidth ' , 3 , 'Marker ' , ' o ' ) ;
239 legend ( [ rx p lo t , tx p l o t , g u e s s p l o t ] , ' Observat ions ' , ' Transmitter ' , ' Estimated

Locat ion ' ) ;
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240 x l ab e l ( ' l on ' ) ; y l ab e l ( ' l a t ' ) ;
241 % co l o rba r ;
242 ax i s ( 'xy ' ) ;
243 t i t l e ( [ 'BCP, ' , da ta se t ] ) ;
244 x l ab e l ( ' l on ' ) ; y l ab e l ( ' l a t ' ) ;
245 ax i s ( 'xy ' ) ; pbaspect ( [ 1 , 1 , 1 ] ) ;
246 end
247
248 %% plot the diagram
249 i f p lot d iagram == 1
250 f i g u r e ;
251 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
252 hold on ;
253 s e t ( gca , ' yd i r ' , ' normal ' ) ;
254
255 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker ' , 'x

' ) ;
256 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
257 gu e s s p l o t = s c a t t e r ( x guess , y guess , 200 , 'k ' , 'LineWidth ' , 3 , 'Marker ' , ' o ' ) ;
258 legend ( [ rx p lo t , tx p l o t , g u e s s p l o t ] , ' Observat ions ' , ' Transmitter ' , ' Estimated

Locat ion ' ) ;
259 t i t l e ( [ 'BCP Method , ' , da tase t ] ) ;
260 ax i s ( [ lon0 , lon1 , la t0 , l a t 1 ] ) ;
261 pbaspect ( [ 1 , 1 , 1 ] ) ;
262 end

B.3 3-parameter

The 3-parameter method is included below as a Matlab script.

Listing B.3: The 3-parameter method

1 % Sam Whiting Nov 2017
2 % Performs the 3−parameter method on a datase t
3 c l e a r ; c l c ; c l o s e a l l ;
4
5 %% pick which data set to run on
6 % o r i g i n a l da ta s e t s
7 % datase t = ' sant1 ' ;
8 % datase t = ' sant2 ' ;
9 % datase t = ' quad3 ' ;

10 % datase t = ' upr3 ' ;
11 % datase t = ' aggr1 ' ;
12
13 % new data s e t s
14 % datase t = ' upr4 ' ;
15 % datase t = ' aggr2 ' ;
16 % datase t = ' aggr2 trunc ' ;
17 % datase t = ' aggr4 ' ; % l a r g e datase t
18 % datase t = ' aggr6 ' ; % average powers here
19 % datase t = ' aggr8 ' ; % mixed power/ averages ( s ee r e ad r s s d a t a .m)
20
21 % simulated datase t
22 datase t = ' sim ' ;
23
24 %% some controls/parameters to change
25
26 % downsample amount
27 n downsamp = 1 ;
28
29 % data t runcat i on (what range o f po in t s to use )
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30 t runcate = 0 ; % f l a g to s i g n a l t runcat i on or not
31 s t a r t = 1 ; % s t a r t i n g index
32 n obs e rva t i on s = 100 ; % how many po in t s to use
33
34 % togg l e p l o t s
35 p lot d iagram = 1 ;
36 plot newton = 0 ;
37 p l o t e l l i p s e s = 0 ;
38
39 % pausing
40 pause each s t ep = 0 ;
41 auto s t ep = . 5 ; % how many seconds to pause , or 0 f o r key prompt
42
43 % newtons method i t e r a t i o n s
44 n i t e r = 10 ;
45
46 %% open the f i l e
47 [ r x l o c a t i on , rx power , n rx , t x l o c a t i o n ] = ...
48 r e ad r s s d a t a ( dataset , n downsamp , truncate , s t a r t , n obse rvat i ons , 0 ,0) ;
49
50 %% determine dimensions/edges
51 [ lon0 , lon1 , la t0 , l a t 1 ] = get d imens ions ( datase t ) ;
52
53 %% newton ' s method
54 x data = r x l o c a t i o n ( : , 1 ) ; y data = r x l o c a t i o n ( : , 2 ) ;
55 newton vector = [ lon1 ; l a t 0 ; 0 ] ; % step va lue s . i n i t i a l c ond i t i on s go here
56
57 grad = ze ro s (3 , 1 ) ;
58 hess = ze ro s (3 , 3 ) ;
59
60 i f p lot newton == 1
61 f i g u r e ;
62 p l o t ( newton vector (1 ) , newton vector (2 ) , 'bd ' , 'LineWidth ' , 2 ) ;
63 hold on ;
64 t i t l e ( [ 'Newtons Method , ' , da tase t ] ) ;
65 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker ' , 'x

' ) ;
66 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
67 ax i s ( [ lon0 , lon1 , la t0 , l a t 1 ] ) ;
68 pbaspect ( [ 1 , 1 , 1 ] ) ;
69 y l ab e l ( 'Lat ' ) ;
70 x l ab e l ( 'Lon ' ) ;
71 end
72
73 f p r i n t f ( ' i n i t : %.4 f %.4 f %.4 f \n ' , newton vector (1 ) , newton vector (2 ) , newton vector

(3 ) ) ;
74 f o r z = 1 : n i t e r
75
76 % squared d i s t anc e metr ic to be used f o r grad/ hess
77 d2 = ( newton vector (1 )−x data ( : ) ) . ˆ2 + ( newton vector (2 ) − y data ( : ) ) . ˆ 2 ;
78
79 % compute the g rad i en t
80 grad (1 ) = 4∗sum( rx power .∗ ( newton vector (1 )−x data ( : ) ) .∗ ( rx power .∗ d2 −

newton vector (3 ) ) ) ;
81 grad (2 ) = 4∗sum( rx power .∗ ( newton vector (2 )−y data ( : ) ) .∗ ( rx power .∗ d2 −

newton vector (3 ) ) ) ;
82 grad (3 ) = 2∗sum( newton vector (3 ) − rx power .∗ d2 ) ;
83
84 % compute the Hess ian
85 hess (1 , 1 ) = 4∗sum( rx power .∗ ( rx power .∗ d2 − newton vector (3 ) ) + 2∗ rx power . ˆ2

. ∗ ( newton vector (1 )−x data ( : ) ) . ˆ2 ) ;
86 hess (1 , 2 ) = 8∗sum( rx power . ˆ2 .∗ ( newton vector (1 )−x data ( : ) ) .∗ ( newton vector

(2 ) − y data ( : ) ) ) ;
87 hess (2 , 1 ) = hess (1 , 2 ) ;
88 hess (1 , 3 ) = −4∗sum( rx power .∗ ( newton vector (1 )−x data ( : ) ) ) ;
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89 hess (3 , 1 ) = hess (1 , 3 ) ;
90
91 hess (2 , 2 ) = 4∗sum( rx power .∗ ( rx power .∗ d2−newton vector (3 ) ) + 2∗ rx power . ˆ2

. ∗ ( newton vector (2 )−y data ( : ) ) . ˆ2 ) ;
92 hess (2 , 3 ) = −4∗sum( rx power .∗ ( newton vector (2 )−y data ( : ) ) ) ;
93 hess (3 , 2 ) = hess (2 , 3 ) ;
94
95 hess (3 , 3 ) = 2∗ n rx ;
96
97 % do one newton step
98 newton vector = newton vector − hess \grad ; % xstep − inv ( hess ) ∗ grad
99 f p r i n t f ( ' s tep %d : %.4 f %.4 f %.4 f \n ' , z , newton vector (1 ) , newton vector (2 ) ,

newton vector (3 ) ) ;
100
101 i f p lot newton == 1
102 i f pause each s t ep == 1
103 pause ( auto s t ep ) ;
104 end
105 p lo t ( newton vector (1 ) , newton vector (2 ) , 'bd ' , 'LineWidth ' , 2 ) ;
106 end
107
108 end
109 x gues s = newton vector (1 ) ;
110 y gues s = newton vector (2 ) ;
111 f p r i n t f ( ' \n ' ) ;
112
113 i f p lot newton == 1
114 gu e s s p l o t = s c a t t e r ( x guess , y guess , 200 , 'k ' , 'LineWidth ' , 3 , 'Marker ' , ' o ' ) ;
115 legend ( [ rx p lo t , tx p l o t , g u e s s p l o t ] , ' Observat ions ' , ' Transmitter ' , ' Estimated

Locat ion ' ) ;
116 end
117
118 %% Generate an error term
119 error m = l l d i s t a n c e ( x guess , y guess , t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ) ;
120 f p r i n t f ( 'TX Actual : Lat %.8 f \n ' , t x l o c a t i o n (2 ) ) ;
121 f p r i n t f ( ' Lon %.8 f \n ' , t x l o c a t i o n (1 ) ) ;
122 f p r i n t f ( 'TX Estimate : Lat %.12 f \n ' , y gues s ) ;
123 f p r i n t f ( ' Lon %.12 f \n ' , x gues s ) ;
124 f p r i n t f ( ' Error : %.2 f meters \n ' , error m ) ;
125
126 %% diagram plot
127 i f p lot d iagram == 1
128 f i g u r e ;
129 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
130 hold on ;
131 s e t ( gca , ' yd i r ' , ' normal ' ) ;
132
133 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker ' , 'x

' ) ;
134 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
135 gu e s s p l o t = s c a t t e r ( x guess , y guess , 200 , 'k ' , 'LineWidth ' , 3 , 'Marker ' , ' o ' ) ;
136 legend ( [ rx p lo t , tx p l o t , g u e s s p l o t ] , ' Observat ions ' , ' Transmitter ' , ' Estimated

Locat ion ' ) ;
137 t i t l e ( [ ' S imp l i f i e d 3 Parameter Method , ' , da tase t ] ) ;
138 ax i s ( [ lon0 , lon1 , la t0 , l a t 1 ] ) ;
139 pbaspect ( [ 1 , 1 , 1 ] ) ;
140 end
141
142 %% el l ipses plot
143 i f p l o t e l l i p s e s == 1
144
145 f i g u r e ;
146 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
147 hold on ;
148 s e t ( gca , ' yd i r ' , ' normal ' ) ;
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149
150 % p lo t the major and minor ax i s
151 mu = [ x gues s ; y gues s ] ;
152 p a r t i a l s = hess ( 1 : 2 , 1 : 2 ) ;
153 [ u , v ] = e i g ( inv ( p a r t i a l s ) ) ;
154 v1 = u ( : , 1 ) / sq r t ( v (1 , 1 ) ) ;
155 v2 = u ( : , 2 ) / sq r t ( v (2 , 2 ) ) ;
156 p l o t ( [mu(1) ,mu(1)+v1 (1 ) ] , [mu(2) ,mu(2)+v1 (2 ) ] ) ;
157 p l o t ( [mu(1) ,mu(1)+v2 (1 ) ] , [mu(2) ,mu(2)+v2 (2 ) ] ) ;
158
159 % p lo t contours
160 f o r k = [ . 0 1 , . 1 , 1 , 1 0 , 1 0 0 ]
161 [ y ] = p l o t e l l i p s e ( inv ( p a r t i a l s ) ,mu, k ) ;
162 p l o t ( y ( 1 , : ) , y ( 2 , : ) ) ;
163 end
164
165 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker ' , 'x

' ) ;
166 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
167 gu e s s p l o t = s c a t t e r ( x guess , y guess , 200 , 'k ' , 'LineWidth ' , 3 , 'Marker ' , ' o ' ) ;
168 legend ( [ rx p lo t , tx p l o t , g u e s s p l o t ] , ' Observat ions ' , ' Transmitter ' , ' Estimated

Locat ion ' ) ;
169 t i t l e ( [ ' Level Curves , ' , da tase t ] ) ;
170 ax i s ( [ lon0 , lon1 , la t0 , l a t 1 ] ) ;
171 pbaspect ( [ 1 , 1 , 1 ] ) ;
172 end
173
174 %% functions
175 % p lo t an e l l i p s e
176 func t i on [ x ] = p l o t e l l i p s e (A, x0 , c )
177 % determine the po in t s to p l o t an e l l i s p e in two dimensions ,
178 % desc r ibed by (x−x0 ) '∗A∗(x−x0 ) = c , where A i s symmetric
179
180 dtheta = 0 . 1 ;
181 [ u , d ] = e i g (A) ;
182 x = [ ] ;
183 d = inv ( sq r t (d) ) ;
184 f o r theta = 0 : dtheta : 2∗ pi
185 w = sq r t ( c ) ∗ [ cos ( theta ) ; s i n ( theta ) ] ;
186 z = d∗w;
187 x = [ x u∗z + x0 ] ;
188 end
189 x = [ x x ( : , 1 ) ] ;
190 end

B.4 Subset

The subset method is included below as a Matlab script.

Listing B.4: The subset method.

1 % Sam Whiting Nov 2017
2 % Performs the subset method on a datase t
3 c l e a r ; c l c ; c l o s e a l l ;
4
5 %% pick which data set to run on
6 % o r i g i n a l da ta s e t s
7 % datase t = ' sant1 ' ;
8 % datase t = ' sant2 ' ;
9 % datase t = ' quad3 ' ;

10 % datase t = ' upr3 ' ;
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11 % datase t = ' aggr1 ' ;
12
13 % new data s e t s
14 % datase t = ' upr4 ' ;
15 % datase t = ' aggr2 ' ;
16 % datase t = ' aggr2 trunc ' ;
17 % datase t = ' aggr4 ' ; % l a r g e datase t
18 % datase t = ' aggr6 ' ; % average powers here
19 % datase t = ' aggr8 ' ; % mixed power/ averages ( s ee r e ad r s s d a t a .m)
20
21 % simulated datase t
22 datase t = ' sim ' ;
23
24 %% some controls/parameters to change
25
26 % downsample amount
27 n downsamp = 1 ;
28
29 % data t runcat i on (what range o f po in t s to use )
30 t runcate = 0 ; % f l a g to s i g n a l t runcat i on or not
31 s t a r t = 10 ; % s t a r t i n g index
32 n obs e rva t i on s = 250 ; % how many po in t s to use
33
34 % how many times to do newton ' s method on a d i f f e r e n t subset
35 n subs e t s = 3 ∗ 10000 ;
36 % s i z e o f each subset can be s e t as a percentage or in samples
37 s u b s e t s i z e = . 2 ; % s e t as a percentage
38 subse t sample s = 3 ; % i f t h i s i s not 0 , t h i s w i l l o v e r r i d e the percentage
39
40 d i f f e r e n t s i z e s u b s e t s = 0 ; % do we want to go through a l i s t o f subset s i z e s ?
41 s u b s e t s i z e s l i s t = [ 3 , 6 ] ; % the l i s t o f subset s i z e s to use
42
43 % togg l e p l o t s
44 p lot d iagram = 1 ;
45 plot newton = 0 ;
46 plot heat map = 1 ;
47 p lo t hea t w i th d iag ram = 0 ;
48
49 % est imate l o s s c o e f f i c i e n t s ?
50 e s t im a t e l o s s c f s = 0 ;
51 n c l a s s e s = 3 ; % only 5 c o l o r s so f a r
52 p l o t c l a s s e s = 0 ; % p lo t the diagram?
53 p l o t l o s s c f s = 0 ; % obse rva t i on s vs l o s s c f s
54
55 %heatmap bins
56 n b ins = 30 ;
57
58 % psuedo i nv e r s e or normal
59 use p inv = 0 ;
60
61 % verbose−ness
62 p r i n t e a c h e r r o r = 0 ;
63
64 % newtons method i t e r a t i o n s
65 n i t e r = 10 ;
66
67 %% open the f i l e
68 [ r x l o c a t i on , rx power , n rx , t x l o c a t i o n ] = ...
69 r e ad r s s d a t a ( dataset , n downsamp , truncate , s t a r t , n obse rvat i ons , 0 ,0) ;
70
71 %% determine dimensions/edges
72 [ lon0 , lon1 , la t0 , l a t 1 ] = get d imens ions ( datase t ) ;
73 x edges = l i n s p a c e ( lon0 , lon1 , n b ins+1) ;
74 y edges = l i n s p a c e ( la t0 , la t1 , n b ins+1) ;
75
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76 %% newton ' s method loop
77
78 i f p lot newton == 1
79 f i g u r e ;
80 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker ' , 'x

' ) ;
81 hold on ;
82 t i t l e ( [ num2str ( n subs e t s ) , ' subse t s o f ' , num2str ( subse t sample s ) , ' samples ,

Newtons Method on ' , da ta se t ] ) ;
83 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
84 % legend ( [ rx p lo t , t x p l o t ] , ' Observations ' , ' Transmitter ' ) ;
85 ax i s ( [ lon0 , lon1 , la t0 , l a t 1 ] ) ;
86 pbaspect ( [ 1 , 1 , 1 ] ) ;
87 end
88
89 % arrays f o r ho ld ing r e s u l t s
90 X GUESS = ze ro s ( n subset s , 1 ) ;
91 Y GUESS = ze ro s ( n subset s , 1 ) ;
92
93 % f i nd out how many samples are in each subset
94 i f subse t sample s == 0
95 subse t sample s = f l o o r ( s u b s e t s i z e ∗n rx ) ;
96 end
97
98 % i f the re i s a l i s t , f i nd i t ' s l ength
99 i f d i f f e r e n t s i z e s u b s e t s == 1

100 d i v i s o r = n subse t s / l ength ( s u b s e t s i z e s l i s t ) +1; % how many subse t s f o r each
s i z e in the l i s t

101 idx = f l o o r ( ( 1 : n subs e t s ) / d i v i s o r ) + 1 ; % [11111 2222222 33333 ] % indexes f o r
s i z e to use

102 end
103
104 f o r q = 1 : n subs e t s
105
106 % combinat ions o f d i f f e r e n t s i z e subse t s
107 i f d i f f e r e n t s i z e s u b s e t s == 1
108 subse t sample s = s u b s e t s i z e s l i s t ( idx (q ) ) ;
109 % f p r i n t f ( '%d ' , s u b s e t s i z e s l i s t ( idx (q ) ) ) ;
110 end
111
112 % pick out our random subset o f data
113 sub s e t i ndexe s = randperm ( n rx , subse t sample s ) ;
114 x data = r x l o c a t i o n ( subse t indexe s , 1 ) ;
115 y data = r x l o c a t i o n ( subse t indexe s , 2 ) ;
116 power data = rx power ( sub s e t i ndexe s ) ;
117
118 x s t ep = [ lon1 ; l a t 0 ; 0 ] ; % step va lues . i n i t i a l c ond i t i on s go here
119
120 grad = ze ro s (3 , 1 ) ;
121 hess = ze ro s (3 , 3 ) ;
122
123 % f p r i n t f ( ' i n i t : %.4 f %.4 f %.4 f \n ' , x s t ep (1 ) , x s t ep (2 ) , x s t ep (3 ) ) ;
124 f o r z = 1 : n i t e r
125
126 % squared d i s t anc e metr ic to be used f o r grad/ hess
127 d2 = ( x s t ep (1 )−x data ( : ) ) . ˆ2 + ( x s t ep (2 ) − y data ( : ) ) . ˆ 2 ;
128
129 % compute the g rad i en t
130 grad (1 ) = 4∗sum( power data .∗ ( x s t ep (1 )−x data ( : ) ) .∗ ( power data .∗ d2 −

x s t ep (3 ) ) ) ;
131 grad (2 ) = 4∗sum( power data .∗ ( x s t ep (2 )−y data ( : ) ) .∗ ( power data .∗ d2 −

x s t ep (3 ) ) ) ;
132 grad (3 ) = 2∗sum( x s t ep (3 ) − power data .∗ d2 ) ;
133
134 % compute the Hess ian
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135 hess (1 , 1 ) = 4∗sum( power data .∗ ( power data .∗ d2 − x s t ep (3 ) ) + 2∗power data
.ˆ2 . ∗ ( x s t ep (1 )−x data ( : ) ) . ˆ2 ) ;

136 hess (1 , 2 ) = 8∗sum( power data .ˆ2 .∗ ( x s t ep (1 )−x data ( : ) ) .∗ ( x s t ep (2 ) −
y data ( : ) ) ) ;

137 hess (2 , 1 ) = hess (1 , 2 ) ;
138 hess (1 , 3 ) = −4∗sum( power data .∗ ( x s t ep (1 )−x data ( : ) ) ) ;
139 hess (3 , 1 ) = hess (1 , 3 ) ;
140
141 hess (2 , 2 ) = 4∗sum( power data .∗ ( power data .∗ d2−x s t ep (3 ) ) + 2∗power data .ˆ2

. ∗ ( x s t ep (2 )−y data ( : ) ) . ˆ2 ) ;
142 hess (2 , 3 ) = −4∗sum( power data .∗ ( x s t ep (2 )−y data ( : ) ) ) ;
143 hess (3 , 2 ) = hess (2 , 3 ) ;
144
145 hess (3 , 3 ) = 2∗ n rx ;
146
147 % do one newton step
148 i f use p inv == 0
149 x s t ep = x s t ep − hess \grad ; % xstep − inv ( hess ) ∗ grad
150 e l s e
151 x s t ep = x s t ep − pinv ( hess ) ∗grad ; % xstep − inv ( hess ) ∗ grad
152 end
153 % f p r i n t f ( ' s tep %d : %.4 f %.4 f %.4 f \n ' , z , x s t ep (1 ) , x s t ep (2 ) , x s t ep (3 ) ) ;
154
155 end
156 % f p r i n t f ( '\n ' ) ;
157 x gues s = x s t ep (1 ) ;
158 y gues s = x s t ep (2 ) ;
159
160 i f p lot newton == 1
161 % gue s s p l o t = s c a t t e r ( x guess , y guess , 2 00 , ' k ' , ' LineWidth ' , 3 , ' Marker ' , ' o ' ) ;
162 % legend ( [ rx p lo t , tx p l o t , g u e s s p l o t ] , ' Observations ' , ' Transmitter ' , '

Estimated Locat ions ' ) ;
163 s c a t t e r ( x guess , y guess , 5 0 , 'b ' , 'Marker ' , ' . ' ) ;
164 end
165
166 % Generate an e r r o r term
167 i f p r i n t e a c h e r r o r == 1
168 error m = l l d i s t a n c e ( x guess , y guess , t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ) ;
169 f p r i n t f ( 'For subset number %d , the e r r o r i s %.2 f meters \n ' , q , error m ) ;
170 end
171
172 % SAVE in fo rmat ion f o r p l o t t i n g l a t e r
173 X GUESS(q ) = x gues s ;
174 Y GUESS(q ) = y gues s ;
175 end
176
177 i f p lot newton == 1
178 legend ( ' Transmitter ' , ' Observat ions ' , 'Newtons Method Est imates ' ) ;
179 end
180
181 %% histogram
182 % make the 2d histogram
183 [ h i s t da ta , x edges , y edges ] = h i s t count s2 (X GUESS,Y GUESS, x edges , y edges ) ;
184
185 % f i nd the middle o f the max bin in the histogram
186 [ ˜ , ind1 ] = max( h i s t d a t a ( : ) ) ; % stack and f i nd argmax
187 [ x gues s b in , y gue s s b in ] = ind2sub ( s i z e ( h i s t d a t a ) , ind1 ) ; % turn a l i n e a r argmax

in to a 2d one
188 bin width = x edges (2 ) − x edges (1 ) ;
189 x gues s = x edges ( x gue s s b in ) + .5∗ bin width ; % long i tude guess ( middle o f max bin )
190 y gues s = y edges ( y gue s s b in ) + .5∗ bin width ; % l a t i t u d e guess ( middle o f max bin )
191
192 %% heatmaps
193 i f p lot heat map == 1
194 heat data = rot90 ( h i s t d a t a ) ;
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195 f i g u r e ;
196 imagesc ( [ lon0 , lon1 ] , [ l a t0 , l a t 1 ] , f l i p ( heat data , 1) ) ;
197 % t i t l e ( [ num2str ( n subs e t s ) , ' subse t s o f s i z e ' , num2str ( s u b s e t s i z e ∗100) , '% ,

Newtons Method on ' , da tase t ] ) ;
198 t i t l e ( [ num2str ( n subs e t s ) , ' subse t s o f ' , num2str ( subse t sample s ) , ' samples ,

subset method on ' , da ta se t ] ) ;
199 hold on ;
200 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker ' , 'x

' ) ;
201 legend ( tx p lo t , ' Transmitter ' ) ;
202 x l ab e l ( ' l on ' ) ; y l ab e l ( ' l a t ' ) ;
203 ax i s ( 'xy ' ) ; pbaspect ( [ 1 , 1 , 1 ] ) ;
204 end
205
206 i f p l o t hea t w i th d iag ram == 1
207 heat data = rot90 ( h i s t d a t a ) ;
208 f i g u r e ;
209 imagesc ( [ lon0 , lon1 ] , [ l a t0 , l a t 1 ] , f l i p ( heat data , 1) ) ;
210 t i t l e ( [ num2str ( n subs e t s ) , ' subse t s o f ' , num2str ( subse t sample s ) , ' samples ,

subset method on ' , da ta se t ] ) ;
211 hold on ;
212 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker ' , 'x

' ) ;
213 % rx p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
214 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' ) ;
215 gu e s s p l o t = s c a t t e r ( x guess , y guess , 200 , 'k ' , 'LineWidth ' , 3 , 'Marker ' , ' o ' ) ;
216 legend ( [ rx p lo t , tx p l o t , g u e s s p l o t ] , ' Observat ions ' , ' Transmitter ' , ' Estimated

Locat ion ' ) ;
217 % legend ( [ rx p lo t , t x p l o t ] , ' Observations ' , ' Transmitter ' ) ;
218 x l ab e l ( ' l on ' ) ; y l ab e l ( ' l a t ' ) ;
219 ax i s ( 'xy ' ) ; pbaspect ( [ 1 , 1 , 1 ] ) ;
220 end
221
222 %% diagram plot
223 i f p lot d iagram == 1
224 f i g u r e ;
225 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
226 hold on ;
227 s e t ( gca , ' yd i r ' , ' normal ' ) ;
228
229 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker ' , 'x

' ) ;
230 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
231 gu e s s p l o t = s c a t t e r ( x guess , y guess , 200 , 'k ' , 'LineWidth ' , 3 , 'Marker ' , ' o ' ) ;
232 legend ( [ rx p lo t , tx p l o t , g u e s s p l o t ] , ' Observat ions ' , ' Transmitter ' , ' Estimated

Locat ion ' ) ;
233 t i t l e ( [ num2str ( n subs e t s ) , ' subse t s o f ' , num2str ( subse t sample s ) , ' samples ,

subset method on ' , da ta se t ] ) ;
234 ax i s ( [ lon0 , lon1 , la t0 , l a t 1 ] ) ;
235 pbaspect ( [ 1 , 1 , 1 ] ) ;
236 end
237
238 %% generate a f ina l error term
239 error m = l l d i s t a n c e ( x guess , y guess , t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ) ;
240 f p r i n t f ( 'TX Actual : Lat %.8 f \n ' , t x l o c a t i o n (2 ) ) ;
241 f p r i n t f ( ' Lon %.8 f \n ' , t x l o c a t i o n (1 ) ) ;
242 f p r i n t f ( 'TX Estimate : Lat %.8 f \n ' , y gues s ) ;
243 f p r i n t f ( ' Lon %.8 f \n ' , x gues s ) ;
244 f p r i n t f ( ' Error : %.2 f meters \n ' , error m ) ;
245
246 %% estimate power and loss c f s
247 i f e s t im a t e l o s s c f s == 1
248 l o s s g u e s s = 2 ;
249 % d i s t an c e s = l l d i s t a n c e ( repmat ( x s t ep (1 ) , n rx , 1 ) , repmat ( x s t ep (2 ) , n rx , 1 ) ,

r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) ) ;
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250 d i s t an c e s = sq r t ( ( x s t ep (1 )−r x l o c a t i o n ( : , 1 ) ) . ˆ2 + ( x s t ep (2 )−r x l o c a t i o n ( : , 2 ) )
. ˆ2 ) ;

251 p es t imate = sum( rx power .∗ d i s t an c e s . ˆ l o s s g u e s s ) / n rx ; % power t ransmit ted i f
l o s s c o e f f i c i e n t=2

252 % we have our es t imate o f power , now l e t ' s f i nd l o s s c o e f f i c i e n t s f o r each
253 % point
254
255 r a t i o s = p es t imate . / rx power ;
256 l o s s c f s = log ( r a t i o s ( : ) ) . / l og ( d i s t an c e s ( : ) ) ;
257
258 i f p l o t l o s s c f s == 1
259 f i g u r e ; p l o t ( l o s s c f s ) ; t i t l e ( ' Loss C o e f f i c i e n t s ' ) ;
260 end
261
262 % kmeans c l u s t e r i n g o f po in t s
263 % n c l a s s e s = 5 ;
264 [ IDX, c en t e r s ] = kmeans ( l o s s c f s , n c l a s s e s ) ; % c l u s t e r [ 1 , 2 , 3 , 2 , 3 , 2 , 1 , 1 , 1 ]
265 grp = ze ro s ( n rx , n c l a s s e s ) ; % f o r binary index ing
266 f o r z = 1 : n c l a s s e s
267 grp ( : , z ) = (IDX == z ) ; % make an index ing va r i ab l e
268 end
269
270 % de f i n e some c o l o r s
271 % co l o r ( 1 , : ) = [232 , 42 , 13 ] /256 ; % red
272 % co l o r ( 2 , : ) = [237 , 140 , 37 ] /256 ; % orange
273 % co l o r ( 3 , : ) = [237 , 233 , 36 ] /256 ; % ye l low
274 % co l o r ( 4 , : ) = [ 26 , 219 , 29 ] /256 ; % green
275 % co l o r ( 5 , : ) = [ 19 , 19 , 196 ] /256 ; % blue
276
277 % cen t e r s are now from 0 to 1
278 centers norm = ( cente r s−min( c en t e r s ) ) /max( cente r s−min( c en t e r s ) ) ;
279
280 % co l o r = [ centers norm .ˆ .5∗86+170 , centers norm .ˆ2∗200 , centers norm ∗ . 1∗13 ] / 256 ;

% red
281 c o l o r = [ centers norm .∗0+10 , centers norm .∗80+10 , centers norm .∗200+56]/256 ; %

red
282 % darker means lower l o s s c f
283
284
285 i f p l o t c l a s s e s == 1
286 f i g u r e ;
287 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker

' , 'x ' ) ;
288 hold on ;
289 t i t l e ( [ ' obse rva t i on s by l o s s c o e f f i c i e n t s , ' , da tase t ] ) ;
290 f o r z = 1 : n c l a s s e s
291 % grp tmp = grp ( : , z ) ;
292 grp = (IDX == z ) ;
293 r x p l o t ( z ) = s c a t t e r ( r x l o c a t i o n ( grp , 1 ) , r x l o c a t i o n ( grp , 2 ) , [ ] , c o l o r ( z , : ) ,

' f i l l e d ' ) ;
294 % rx p l o t ( z ) = s c a t t e r ( r x l o c a t i o n ( grp ( : , z ) , 1 ) , r x l o c a t i o n ( grp ( : , z ) , 2 )

, [ ] , c o l o r ( z , : ) , ' f i l l e d ' ) ;
295 end
296 legend ( ' Transmitter ' ) ;
297 ax i s ( [ lon0 , lon1 , la t0 , l a t 1 ] ) ;
298 pbaspect ( [ 1 , 1 , 1 ] ) ;
299 end
300
301 end
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B.5 7-parameter

The 7-parameter method is included below as a Matlab script.

Listing B.5: The 7-parameter method.

1 % Sam Whiting Jan 2018
2 % Performs the 7−parameter method on a datase t
3 % Uses the model with J ( x0 , yo , po , no , a1 , a2 , a3 ) and kmeans c l u s t e r i n g
4 c l e a r ; c l c ; c l o s e a l l ;
5
6 %% pick which data set to run on
7 % o r i g i n a l da ta s e t s
8 % datase t = ' sant1 ' ;
9 % datase t = ' sant2 ' ;

10 % datase t = ' quad3 ' ;
11 % datase t = ' upr3 ' ;
12 % datase t = ' aggr1 ' ;
13
14 % new data s e t s
15 % datase t = ' upr4 ' ;
16 % datase t = ' aggr2 ' ;
17 % datase t = ' aggr2 trunc ' ;
18 % datase t = ' aggr4 ' ; % l a r g e datase t
19 % datase t = ' aggr6 ' ; % average powers here
20 % datase t = ' aggr8 ' ; % mixed power/ averages ( s ee r e ad r s s d a t a .m)
21
22 % simulated datase t
23 datase t = ' sim ' ;
24
25 %% some controls/parameters to change
26
27 % downsample amount
28 n downsamp = 1 ;
29
30 % data t runcat i on (what range o f po in t s to use )
31 t runcate = 0 ; % f l a g to s i g n a l t runcat i on or not
32 s t a r t = 100 ; % s t a r t i n g index
33 n obs e rva t i on s = 10 ; % how many po in t s to use
34
35 % togg l e p l o t s
36 p lot d iagram = 0 ;
37 plot newton = 1 ;
38 p l o t c l a s s e s = 1 ;
39 p l o t c o s t = 1 ;
40
41 % pausing
42 pause each s t ep = 0 ;
43 auto s t ep = . 5 ; % how many seconds to pause , or 0 f o r key prompt
44
45 % ca r t e s i a n or l a t / lon f o r newton ' s
46 u s e c a r t e s i a n = 0 ;
47
48 % psuedo i nv e r s e or dangerous i nv e r s e
49 use p inv = 1 ;
50
51 % newtons method i t e r a t i o n s
52 n i t e r = 100 ;
53
54 %% open the f i l e
55 [ r x l o c a t i on , rx power , n rx , t x l o c a t i o n ] = ...
56 r e ad r s s d a t a ( dataset , n downsamp , truncate , s t a r t , n obse rvat i ons , 0 ,0) ;
57
58 %% determine dimensions/edges
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59 [ lon0 , lon1 , la t0 , l a t 1 ] = get d imens ions ( datase t ) ;
60
61 % % % %% convert from l a t lon to a c a r t e s i a n g r id
62 % % % % ( : , 1 ) i s to a c c e s s the l ong i tude s
63 % % % % ( : , 2 ) i s the l a t i t u d e s
64 % % % mean lat i tude = mean( r x l o c a t i o n ( : , 2 ) ) ; % what l a t i t u d e are we working at
65 % % % warp fac to r = cos ( mean lat i tude ∗ pi /180) ; % away from the equator means s c a l e us

back
66 % % % meter s per deg = 111111; % meters per degree at the equator
67 % % %
68 % % % rx l o c a t i o n c a r t e s i a n = ze ro s ( s i z e ( r x l o c a t i o n ) ) ;
69 % % % rx l o c a t i o n c a r t e s i a n ( : , 1 ) = r x l o c a t i o n ( : , 1 ) ∗ meter s per deg ∗ warp fac to r ; %

l ong i tude s need warping
70 % % % rx l o c a t i o n c a r t e s i a n ( : , 2 ) = r x l o c a t i o n ( : , 2 ) ∗ meter s per deg ; % l a t i t u d e s

are ok
71
72 %% simplified 3 parameter newton ' s method
73 x data = r x l o c a t i o n ( : , 1 ) ; y data = r x l o c a t i o n ( : , 2 ) ;
74 x s t ep = [ lon1 ; l a t 0 ; 0 ] ; % step va lues . i n i t i a l c ond i t i on s go here
75
76 % % % x data = r x l o c a t i o n c a r t e s i a n ( : , 1 ) ; y data = r x l o c a t i o n c a r t e s i a n ( : , 2 ) ;
77 % % % mean locat ion = mean( r x l o c a t i o n c a r t e s i a n ) ;
78 % % % x step = [ mean locat ion ' ; 0 ] ; % step va lues . i n i t i a l c ond i t i on s go here
79
80 grad = ze ro s (3 , 1 ) ;
81 hess = ze ro s (3 , 3 ) ;
82
83 i f p lot newton == 1
84 f i g u r e ;
85 p l o t ( x s t ep (1 ) , x s t ep (2 ) , 'd ' , 'LineWidth ' , 2 ) ;
86 hold on ;
87 t i t l e ( [ 'Newtons Method , ' , da tase t ] ) ;
88 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker ' , 'x

' ) ;
89 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
90 ax i s ( [ lon0 , lon1 , la t0 , l a t 1 ] ) ;
91 pbaspect ( [ 1 , 1 , 1 ] ) ;
92 end
93
94 f p r i n t f ( ' i n i t : %.4 f %.4 f %.4 f \n ' , x s t ep (1 ) , x s t ep (2 ) , x s t ep (3 ) ) ;
95 f o r z = 1 : n i t e r
96
97 % squared d i s t anc e metr ic to be used f o r grad/ hess
98 d2 = ( x s t ep (1 )−x data ( : ) ) . ˆ2 + ( x s t ep (2 ) − y data ( : ) ) . ˆ 2 ;
99 % d2 = l l d i s t a n c e ( x s t ep (1 ) , x s t ep (2 ) , x data ( : ) , y data ( : ) ) ;

100
101 % compute the g rad i en t
102 grad (1 ) = 4∗sum( rx power .∗ ( x s t ep (1 )−x data ( : ) ) .∗ ( rx power .∗ d2 − x s t ep (3 ) )

) ;
103 grad (2 ) = 4∗sum( rx power .∗ ( x s t ep (2 )−y data ( : ) ) .∗ ( rx power .∗ d2 − x s t ep (3 ) )

) ;
104 grad (3 ) = 2∗sum( x s t ep (3 ) − rx power .∗ d2 ) ;
105
106 % compute the Hess ian
107 hess (1 , 1 ) = 4∗sum( rx power .∗ ( rx power .∗ d2 − x s t ep (3 ) ) + 2∗ rx power . ˆ2 . ∗ (

x s t ep (1 )−x data ( : ) ) . ˆ2 ) ;
108 hess (1 , 2 ) = 8∗sum( rx power . ˆ2 .∗ ( x s t ep (1 )−x data ( : ) ) .∗ ( x s t ep (2 ) − y data ( : )

) ) ;
109 hess (2 , 1 ) = hess (1 , 2 ) ;
110 hess (1 , 3 ) = −4∗sum( rx power .∗ ( x s t ep (1 )−x data ( : ) ) ) ;
111 hess (3 , 1 ) = hess (1 , 3 ) ;
112
113 hess (2 , 2 ) = 4∗sum( rx power .∗ ( rx power .∗ d2−x s t ep (3 ) ) + 2∗ rx power . ˆ2 . ∗ ( x s t ep

(2 )−y data ( : ) ) . ˆ2 ) ;
114 hess (2 , 3 ) = −4∗sum( rx power .∗ ( x s t ep (2 )−y data ( : ) ) ) ;
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115 hess (3 , 2 ) = hess (2 , 3 ) ;
116
117 hess (3 , 3 ) = 2∗ n rx ;
118
119 % do one newton step
120 x s t ep = x s t ep − hess \grad ; % xstep − inv ( hess ) ∗ grad
121 f p r i n t f ( ' s tep %d : %.4 f %.4 f %.4 f \n ' , z , x s t ep (1 ) , x s t ep (2 ) , x s t ep (3 ) ) ;
122
123 i f p lot newton == 1
124 i f pause each s t ep == 1
125 pause ( auto s t ep ) ;
126 end
127 p lo t ( x s t ep (1 ) , x s t ep (2 ) , 'd ' , 'LineWidth ' , 2 ) ;
128 end
129
130 end
131 f p r i n t f ( ' \n ' ) ;
132 x gues s = x s t ep (1 ) ;
133 y gues s = x s t ep (2 ) ;
134
135 % % % % le t ' s change back to l a t lon here
136 % % % x gues s = x s t ep (1 ) / meter s per deg / warp fac to r ;
137 % % % y gues s = x s t ep (2 ) / meter s per deg ;
138
139 i f p lot newton == 1
140 gu e s s p l o t = s c a t t e r ( x guess , y guess , 200 , 'k ' , 'LineWidth ' , 3 , 'Marker ' , ' o ' ) ;
141 legend ( [ rx p lo t , tx p l o t , g u e s s p l o t ] , ' Observat ions ' , ' Transmitter ' , ' Estimated

Locat ion ' ) ;
142 end
143
144 %% generate an error term
145 error m = l l d i s t a n c e ( x guess , y guess , t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ) ;
146 f p r i n t f ( 'TX Actual : Lat %.8 f \n ' , t x l o c a t i o n (2 ) ) ;
147 f p r i n t f ( ' Lon %.8 f \n ' , t x l o c a t i o n (1 ) ) ;
148 f p r i n t f ( 'TX Estimate : Lat %.8 f \n ' , y gues s ) ;
149 f p r i n t f ( ' Lon %.8 f \n ' , x gues s ) ;
150 f p r i n t f ( ' Error : %.2 f meters \n ' , error m ) ;
151
152 %% diagram plot
153 i f p lot d iagram == 1
154 f i g u r e ;
155 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
156 hold on ;
157 s e t ( gca , ' yd i r ' , ' normal ' ) ;
158
159 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker ' , 'x

' ) ;
160 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
161 gu e s s p l o t = s c a t t e r ( x guess , y guess , 200 , 'k ' , 'LineWidth ' , 3 , 'Marker ' , ' o ' ) ;
162 legend ( [ rx p lo t , tx p l o t , g u e s s p l o t ] , ' Observat ions ' , ' Transmitter ' , ' Estimated

Locat ion ' ) ;
163 t i t l e ( [ 'Bayes Method , ' , da tase t ] ) ;
164 ax i s ( [ lon0 , lon1 , la t0 , l a t 1 ] ) ;
165 pbaspect ( [ 1 , 1 , 1 ] ) ;
166 end
167
168 %% estimate power and loss c f s
169 l o s s g u e s s = 2 ;
170 % d i s t an c e s = l l d i s t a n c e ( repmat ( x s t ep (1 ) , n rx , 1 ) , repmat ( x s t ep (2 ) , n rx , 1 ) ,

r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) ) ;
171 d i s t an c e s = sq r t ( ( x s t ep (1 )−r x l o c a t i o n ( : , 1 ) ) . ˆ2 + ( x s t ep (2 )−r x l o c a t i o n ( : , 2 ) ) . ˆ2 )

;
172 p es t imate = sum( rx power .∗ d i s t an c e s . ˆ l o s s g u e s s ) / n rx ; % power t ransmit ted i f l o s s

c o e f f i c i e n t=2
173 % we have our es t imate o f power , now l e t ' s f i nd l o s s c o e f f i c i e n t s f o r each
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174 % point
175
176 r a t i o s = p es t imate . / rx power ;
177 l o s s c f s = log ( r a t i o s ( : ) ) . / l og ( d i s t an c e s ( : ) ) ;
178 f i g u r e ; p l o t ( l o s s c f s ) ; t i t l e ( ' Loss C o e f f i c i e n t s ' ) ;
179
180 % kmeans c l u s t e r i n g o f po in t s
181 n c l a s s e s = 5 ;
182 [ IDX, c en t e r s ] = kmeans ( l o s s c f s , n c l a s s e s ) ; % c l u s t e r [ 1 , 2 , 3 , 2 , 3 , 2 , 1 , 1 , 1 ]
183 grp = ze ro s ( n rx , n c l a s s e s ) ; % f o r binary index ing
184 f o r z = 1 : n c l a s s e s
185 grp ( : , z ) = (IDX == z ) ; % make an index ing va r i ab l e
186 end
187
188 % de f i n e some c o l o r s
189 c o l o r ( 1 , : ) = [232 , 42 , 13 ] /256 ; % red
190 c o l o r ( 2 , : ) = [237 , 140 , 37 ] /256 ; % orange
191 c o l o r ( 3 , : ) = [237 , 233 , 36 ] /256 ; % ye l low
192 c o l o r ( 4 , : ) = [ 26 , 219 , 29 ] /256 ; % green
193 c o l o r ( 5 , : ) = [ 19 , 19 , 196 ] /256 ; % blue
194
195 i f p l o t c l a s s e s == 1
196 f i g u r e ;
197 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker ' , 'x

' ) ;
198 hold on ;
199 t i t l e ( [ ' obs e rva t i on s by l o s s c o e f f i c i e n t s , ' , da tase t ] ) ;
200 f o r z = 1 : n c l a s s e s
201 % grp tmp = grp ( : , z ) ;
202 grp = (IDX == z ) ;
203 r x p l o t ( z ) = s c a t t e r ( r x l o c a t i o n ( grp , 1 ) , r x l o c a t i o n ( grp , 2 ) , [ ] , c o l o r ( z , : ) , '

f i l l e d ' ) ;
204 % rx p l o t ( z ) = s c a t t e r ( r x l o c a t i o n ( grp ( : , z ) , 1 ) , r x l o c a t i o n ( grp ( : , z ) , 2 ) , [ ] ,

c o l o r ( z , : ) , ' f i l l e d ' ) ;
205 end
206 legend ( ' Transmitter ' ) ;
207 ax i s ( [ lon0 , lon1 , la t0 , l a t 1 ] ) ;
208 pbaspect ( [ 1 , 1 , 1 ] ) ;
209 end
210 return ;
211
212 %% 7 parameter newton ' s method
213
214 x data = r x l o c a t i o n ( : , 1 ) ; y data = r x l o c a t i o n ( : , 2 ) ;
215
216 % s t a r t i n g l o c a t i o n / i n i t i a l c ond i t i on s
217 % from the s imp l i f i e d model newtons method run
218 newton star t = [ x gues s ; y gues s ] ;
219
220 % newton vector = [ x0 y0 p0 n0 a1 a2 a3 ]
221 newton vector = [ newton star t ; 5 ; 4 ; 2 . 1 ; 2 . 2 ; 2 . 3 ] ; % step va lues . i n i t i a l

c ond i t i on s go here
222 newton vector = [ newton star t ; 5 ; 4 ; c en t e r s ] ; % step va lues . i n i t i a l c ond i t i on s go

here
223
224 grad = ze ro s (7 , 1 ) ;
225 hess = ze ro s (7 , 7 ) ;
226
227 i f p lot newton == 1
228 f i g u r e ;
229 p l o t ( newton vector (1 ) , newton vector (2 ) , 'd ' , 'LineWidth ' , 2 ) ;
230 hold on ;
231 t i t l e ( [ 'Newtons Method , ' , da tase t ] ) ;
232 t x p l o t = s c a t t e r ( t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ,200 , 'k ' , 'LineWidth ' , 5 , 'Marker ' , 'x

' ) ;
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233 r x p l o t = s c a t t e r ( r x l o c a t i o n ( : , 1 ) , r x l o c a t i o n ( : , 2 ) , ' r ' , ' f i l l e d ' ) ;
234 ax i s ( [ lon0 , lon1 , la t0 , l a t 1 ] ) ;
235 pbaspect ( [ 1 , 1 , 1 ] ) ;
236 end
237
238 %rename a few th ings
239 x i = x data ( : ) ;
240 y i = y data ( : ) ;
241 p i = rx power ( : ) ;
242 % % % c f = IDX ( : ) ;
243 % % % a l = ze ro s (3 , 1 ) ;
244
245 % va r i ab l e to s t o r e co s t func t i on va lue s
246 SAVE J = ze ro s ( n i t e r , 1 ) ;
247
248 f p r i n t f ( ' i n i t : %.4 f %.4 f %.4 f %.4 f %.2 f %.2 f %.2 f \n ' , newton vector (1 ) ,

newton vector (2 ) , ...
249 newton vector (3 ) , newton vector (4 ) , newton vector (5 ) , newton vector (6 ) ,

newton vector (7 ) ) ;
250
251 f o r z = 1 : n i t e r
252
253 % newton vector = [ x0 , y0 , p0 , n0 , a l (1 ) , a l (2 ) , a l (3 ) ] ;
254 x0 = newton vector (1 ) ;
255 y0 = newton vector (2 ) ;
256 p0 = newton vector (3 ) ;
257 n0 = newton vector (4 ) ;
258 % % % a l (1 ) = newton vector (5 ) ;
259 % % % a l (2 ) = newton vector (6 ) ;
260 % % % a l (3 ) = newton vector (7 ) ;
261 a l = newton vector (IDX + 4) ; % [ a l1 a l1 a l2 a l3 a l3 a l2 a l2 a l1 . . . ]
262
263 % squared d i s t anc e metr ic to be used f o r grad/ hess
264 d2 = ( xi−x0 ) . ˆ2 + ( yi−y0 ) . ˆ 2 ;
265
266 % % % % DEBUG output our co s t func t i on to see i f i t r e a l l y i s minimized
267 J = sum( p i . ˆ2 + n0ˆ2 + p0 ˆ2 .∗ d2 .ˆ(− a l ) − 2∗ p i ∗n0 + 2∗p0 .∗ d2 .ˆ(− a l /2) . ∗ ( n0−p i

) ) ;
268 SAVE J( z ) = J ;
269 % % % % f p r i n t f ( ' J at s tep %d : %.8 f \n ' , z , J ) ;
270
271 % compute the g rad i en t
272 grad (1 ) = −2∗sum( a l .∗ ( x0−x i ) .∗ p0 . ∗ ( p0∗d2 .ˆ(− al −1) + (n0−p i ) .∗ d2 .ˆ(− a l /2−1)

) ) ;
273 grad (2 ) = −2∗sum( a l .∗ ( y0−y i ) .∗ p0 . ∗ ( p0∗d2 .ˆ(− al −1) + (n0−p i ) .∗ d2 .ˆ(− a l /2−1)

) ) ;
274 grad (3 ) = 2∗sum( p0∗d2 .ˆ(− a l ) + (n0−p i ) .∗ d2 .ˆ(− a l /2) ) ;
275 grad (4 ) = 2∗sum( n0 − p i + p0 .∗ d2 .ˆ(− a l /2) ) ;
276
277 idx5 = ( a l == newton vector (5 ) ) ;
278 idx6 = ( a l == newton vector (6 ) ) ;
279 idx7 = ( a l == newton vector (7 ) ) ;
280
281 grad (5 ) = sum( idx5 . ∗ ( p0ˆ2∗d2 .ˆ(− a l ) .∗ l og ( d2 .ˆ(−1) ) + 2∗p0 ∗(n0−p i ) .∗ d2 .ˆ(− a l /2)

.∗ l og ( d2 .ˆ(−1/2) ) ) ) ;
282 grad (6 ) = sum( idx6 . ∗ ( p0ˆ2∗d2 .ˆ(− a l ) .∗ l og ( d2 .ˆ(−1) ) + 2∗p0 ∗(n0−p i ) .∗ d2 .ˆ(− a l /2)

.∗ l og ( d2 .ˆ(−1/2) ) ) ) ;
283 grad (7 ) = sum( idx7 . ∗ ( p0ˆ2∗d2 .ˆ(− a l ) .∗ l og ( d2 .ˆ(−1) ) + 2∗p0 ∗(n0−p i ) .∗ d2 .ˆ(− a l /2)

.∗ l og ( d2 .ˆ(−1/2) ) ) ) ;
284
285 % compute the Hess ian
286 %Jxx
287 hess (1 , 1 ) = −2∗sum( a l ∗p0 . ∗ ( p0∗d2 .ˆ(− al −1) + (n0−p i ) .∗ d2 .ˆ(− a l /2−1) ) ...
288 +2∗a l . ∗ ( x0−x i ) . ˆ 2 . ∗ p0 . ∗ ( p0∗(−al −1) .∗ d2 .ˆ(− al −2) + (n0−p i ) .∗(− a l /2−1) .∗

d2 .ˆ(− a l /2−2) ) ) ;
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289 %Jyy
290 hess (2 , 2 ) = −2∗sum( a l ∗p0 . ∗ ( p0∗d2 .ˆ(− al −1) + (n0−p i ) .∗ d2 .ˆ(− a l /2−1) ) ...
291 +2∗a l . ∗ ( y0−y i ) . ˆ 2 . ∗ p0 . ∗ ( p0∗(−al −1) .∗ d2 .ˆ(− al −2) + (n0−p i ) .∗(− a l /2−1) .∗

d2 .ˆ(− a l /2−2) ) ) ;
292
293 %Jxy
294 hess (1 , 2 ) = 4∗sum( a l . ∗ ( xi−x0 ) . ∗ ( yi−y0 ) .∗ p0 . ∗ ( p0 ∗( a l +1) .∗ d2 .ˆ(− al −2) + (n0−p i )

. ∗ ( a l /2+1) .∗ d2 .ˆ(− a l /2−2) ) ) ;
295 hess (2 , 1 ) = hess (1 , 2 ) ;
296
297 %Jxp
298 hess (1 , 3 ) = −2∗sum( a l . ∗ ( x0−x i ) . ∗ ( 2∗p0∗d2 .ˆ(− al −1) + (n0−p i ) .∗ d2 .ˆ(− a l /2−1) ) )

;
299 hess (3 , 1 ) = hess (1 , 3 ) ;
300
301 %Jyp
302 hess (2 , 3 ) = −2∗sum( a l . ∗ ( y0−y i ) . ∗ ( 2∗p0∗d2 .ˆ(− al −1) + (n0−p i ) .∗ d2 .ˆ(− a l /2−1) ) )

;
303 hess (3 , 2 ) = hess (2 , 3 ) ;
304
305 %Jpp
306 hess (3 , 3 ) = 2∗sum( d2 .ˆ(− a l ) ) ;
307
308 %Jnn
309 hess (4 , 4 ) = 2∗ n rx ;
310
311 %Jxn
312 hess (1 , 4 ) = −2∗sum( a l . ∗ ( x0−x i ) .∗ p0 .∗ d2 .ˆ(− a l /2−1) ) ;
313 hess (4 , 1 ) = hess (1 , 4 ) ;
314
315 %Jyn
316 hess (2 , 4 ) = −2∗sum( a l . ∗ ( y0−y i ) .∗ p0 .∗ d2 .ˆ(− a l /2−1) ) ;
317 hess (4 , 2 ) = hess (2 , 4 ) ;
318
319 %Jpn
320 hess (3 , 4 ) = 2∗sum(d2 .ˆ(− a l /2) ) ;
321 hess (4 , 3 ) = hess (3 , 4 ) ;
322
323 %Jaa
324 hess (5 , 5 ) = sum( idx5 . ∗ ( p0ˆ2∗d2 .ˆ(− a l ) . ∗ ( l og ( d2 .ˆ(−1) ) ) . ˆ2 + 2∗p0 ∗(n0−p i ) .∗ d2

.ˆ(− a l /2) . ∗ ( l og ( d2 .ˆ(−1/2) ) ) . ˆ2 ) ) ;
325 hess (6 , 6 ) = sum( idx6 . ∗ ( p0ˆ2∗d2 .ˆ(− a l ) . ∗ ( l og ( d2 .ˆ(−1) ) ) . ˆ2 + 2∗p0 ∗(n0−p i ) .∗ d2

.ˆ(− a l /2) . ∗ ( l og ( d2 .ˆ(−1/2) ) ) . ˆ2 ) ) ;
326 hess (7 , 7 ) = sum( idx7 . ∗ ( p0ˆ2∗d2 .ˆ(− a l ) . ∗ ( l og ( d2 .ˆ(−1) ) ) . ˆ2 + 2∗p0 ∗(n0−p i ) .∗ d2

.ˆ(− a l /2) . ∗ ( l og ( d2 .ˆ(−1/2) ) ) . ˆ2 ) ) ;
327
328 %Jxa
329 hess (5 , 1 ) = −2∗sum( idx5 . ∗ ( ( x0−x i ) .∗ p0 . ∗ ( p0∗d2 .ˆ(− al −1) + (n0−p i ) .∗ d2 .ˆ(− a l

/2−1) ) ...
330 +a l . ∗ ( x0−x i ) .∗ p0 . ∗ ( p0∗d2 .ˆ(− al −1) .∗ l og ( d2 .ˆ(−1) ) + (n0−p i ) .∗ d2

.ˆ(− a l /2−1) .∗ l og ( d2 .ˆ(−1/2) ) ) ) ) ;
331 hess (6 , 1 ) = −2∗sum( idx6 . ∗ ( ( x0−x i ) .∗ p0 . ∗ ( p0∗d2 .ˆ(− al −1) + (n0−p i ) .∗ d2 .ˆ(− a l

/2−1) ) ...
332 +a l . ∗ ( x0−x i ) .∗ p0 . ∗ ( p0∗d2 .ˆ(− al −1) .∗ l og ( d2 .ˆ(−1) ) + (n0−p i ) .∗ d2

.ˆ(− a l /2−1) .∗ l og ( d2 .ˆ(−1/2) ) ) ) ) ;
333 hess (7 , 1 ) = −2∗sum( idx7 . ∗ ( ( x0−x i ) .∗ p0 . ∗ ( p0∗d2 .ˆ(− al −1) + (n0−p i ) .∗ d2 .ˆ(− a l

/2−1) ) ...
334 +a l . ∗ ( x0−x i ) .∗ p0 . ∗ ( p0∗d2 .ˆ(− al −1) .∗ l og ( d2 .ˆ(−1) ) + (n0−p i ) .∗ d2

.ˆ(− a l /2−1) .∗ l og ( d2 .ˆ(−1/2) ) ) ) ) ;
335 hess (1 , 5 ) = hess (5 , 1 ) ;
336 hess (1 , 6 ) = hess (6 , 1 ) ;
337 hess (1 , 7 ) = hess (7 , 1 ) ;
338
339 %Jya
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340 hess (5 , 2 ) = −2∗sum( idx5 . ∗ ( ( y0−y i ) .∗ p0 . ∗ ( p0∗d2 .ˆ(− al −1) + (n0−p i ) .∗ d2 .ˆ(− a l
/2−1) ) ...

341 +a l . ∗ ( y0−y i ) .∗ p0 . ∗ ( p0∗d2 .ˆ(− al −1) .∗ l og ( d2 .ˆ(−1) ) + (n0−p i ) .∗ d2
.ˆ(− a l /2−1) .∗ l og ( d2 .ˆ(−1/2) ) ) ) ) ;

342 hess (6 , 2 ) = −2∗sum( idx6 . ∗ ( ( y0−y i ) .∗ p0 . ∗ ( p0∗d2 .ˆ(− al −1) + (n0−p i ) .∗ d2 .ˆ(− a l
/2−1) ) ...

343 +a l . ∗ ( y0−y i ) .∗ p0 . ∗ ( p0∗d2 .ˆ(− al −1) .∗ l og ( d2 .ˆ(−1) ) + (n0−p i ) .∗ d2
.ˆ(− a l /2−1) .∗ l og ( d2 .ˆ(−1/2) ) ) ) ) ;

344 hess (7 , 2 ) = −2∗sum( idx7 . ∗ ( ( y0−y i ) .∗ p0 . ∗ ( p0∗d2 .ˆ(− al −1) + (n0−p i ) .∗ d2 .ˆ(− a l
/2−1) ) ...

345 +a l . ∗ ( y0−y i ) .∗ p0 . ∗ ( p0∗d2 .ˆ(− al −1) .∗ l og ( d2 .ˆ(−1) ) + (n0−p i ) .∗ d2
.ˆ(− a l /2−1) .∗ l og ( d2 .ˆ(−1/2) ) ) ) ) ;

346 hess (2 , 5 ) = hess (5 , 2 ) ;
347 hess (2 , 6 ) = hess (6 , 2 ) ;
348 hess (2 , 7 ) = hess (7 , 2 ) ;
349
350 %Jpa
351 hess (5 , 3 ) = 2∗sum( idx5 . ∗ ( p0∗d2 .ˆ(− a l ) .∗ l og ( d2 .ˆ(−1) ) + (n0−p i ) .∗ d2 .ˆ(− a l /2) .∗

l og ( d2 .ˆ(−1/2) ) ) ) ;
352 hess (6 , 3 ) = 2∗sum( idx6 . ∗ ( p0∗d2 .ˆ(− a l ) .∗ l og ( d2 .ˆ(−1) ) + (n0−p i ) .∗ d2 .ˆ(− a l /2) .∗

l og ( d2 .ˆ(−1/2) ) ) ) ;
353 hess (7 , 3 ) = 2∗sum( idx7 . ∗ ( p0∗d2 .ˆ(− a l ) .∗ l og ( d2 .ˆ(−1) ) + (n0−p i ) .∗ d2 .ˆ(− a l /2) .∗

l og ( d2 .ˆ(−1/2) ) ) ) ;
354 hess (3 , 5 ) = hess (5 , 3 ) ;
355 hess (3 , 6 ) = hess (6 , 3 ) ;
356 hess (3 , 7 ) = hess (7 , 3 ) ;
357
358 %Jna
359 hess (5 , 4 ) = 2∗sum( idx5 . ∗ ( p0∗d2 .ˆ(− a l /2) .∗ l og ( d2 .ˆ(−1/2) ) ) ) ;
360 hess (6 , 4 ) = 2∗sum( idx6 . ∗ ( p0∗d2 .ˆ(− a l /2) .∗ l og ( d2 .ˆ(−1/2) ) ) ) ;
361 hess (7 , 4 ) = 2∗sum( idx7 . ∗ ( p0∗d2 .ˆ(− a l /2) .∗ l og ( d2 .ˆ(−1/2) ) ) ) ;
362 hess (4 , 5 ) = hess (5 , 4 ) ;
363 hess (4 , 6 ) = hess (6 , 4 ) ;
364 hess (4 , 7 ) = hess (7 , 4 ) ;
365
366 % ja1a2 ( z e r o s )
367 hess (5 , 6 ) = 0 ;
368 hess (6 , 5 ) = 0 ;
369 hess (5 , 7 ) = 0 ;
370 hess (7 , 5 ) = 0 ;
371 hess (6 , 7 ) = 0 ;
372 hess (7 , 6 ) = 0 ;
373
374 % do one newton step
375 i f use p inv == 0
376 newton vector = newton vector − hess \grad ; % xstep − inv ( hess ) ∗ grad
377 e l s e
378 newton vector = newton vector − pinv ( hess ) ∗grad ; % xstep − inv ( hess ) ∗ grad
379 end
380 % % % % Try c l i p p i n g
381 % % % fo r s = 4 :6
382 % % % i f newton vector ( s ) < 1 .5
383 % % % newton vector ( s ) = 1 . 5 ; % c l i p at 1 . 5
384 % % % e l s e i f newton vector ( s ) > 4
385 % % % newton vector ( s ) = 4 ; %c l i p at 4
386 % % % end
387 % % % end
388
389 f p r i n t f ( ' s tep : %.4 f %.4 f %.4 f %.4 f %.2 f %.2 f %.2 f \n ' , newton vector (1 ) ,

newton vector (2 ) , ...
390 newton vector (3 ) , newton vector (4 ) , newton vector (5 ) , newton vector (6 ) ,

newton vector (7 ) ) ;
391
392 i f p lot newton == 1
393 i f pause each s t ep == 1
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394 pause ( auto s t ep ) ;
395 end
396 p lo t ( newton vector (1 ) , newton vector (2 ) , 'd ' , 'LineWidth ' , 2 ) ;
397 end
398
399 end
400 x gues s = newton vector (1 ) ;
401 y gues s = newton vector (2 ) ;
402 f p r i n t f ( ' \n ' ) ;
403
404 i f p lot newton == 1
405 gu e s s p l o t = s c a t t e r ( x guess , y guess , 200 , 'k ' , 'LineWidth ' , 3 , 'Marker ' , ' o ' ) ;
406 legend ( [ rx p lo t , tx p l o t , g u e s s p l o t ] , ' Observat ions ' , ' Transmitter ' , ' Estimated

Locat ion ' ) ;
407 end
408
409 i f p l o t c o s t == 1
410 f i g u r e ;
411 p l o t (SAVE J) ;
412 t i t l e ( 'Cost Function J ' ) ;
413 % ax i s ( [ 0 , n i t e r ,−10 ,1 e15 ] ) ;
414 end
415
416 % shut down i f the co s t func t i on i s ever negat ive
417 i f (sum(SAVE J < 0) > 0)
418 f p r i n t f ( ' \n\nWARNING: J was once negat ive ! ! \ n ' ) ;
419 f p r i n t f ( ' ending execut ion . . . \ n ' ) ;
420 re turn ;
421 end
422
423 %% generate an error term the second time
424 error m = l l d i s t a n c e ( x guess , y guess , t x l o c a t i o n (1 ) , t x l o c a t i o n (2 ) ) ;
425 f p r i n t f ( 'TX Actual : Lat %.8 f \n ' , t x l o c a t i o n (2 ) ) ;
426 f p r i n t f ( ' Lon %.8 f \n ' , t x l o c a t i o n (1 ) ) ;
427 f p r i n t f ( 'TX Estimate : Lat %.8 f \n ' , y gues s ) ;
428 f p r i n t f ( ' Lon %.8 f \n ' , x gues s ) ;
429 f p r i n t f ( ' Error : %.2 f meters \n ' , error m ) ;

B.6 Generating simulated data

This script generates simulated RSSI data which is placed into a .csv file. The .csv file

can then be processed using the algorithm scripts above.

Listing B.6: Script to generate simulated RSSI data.

1 % Sam Whiting 2018
2 % generate s imulated data and save i t in . . / sim/merged . csv
3 c l e a r ; c l c ; c l o s e a l l ;
4
5 %% some controls/parameters to change
6
7 % f i l ename
8 f i l ename = 'merged . csv ' ;
9

10 % number o f ob s e rva t i on s to s imulate
11 n rx = 30 ;
12
13 % random seed f o r c o n s i s t i n c y i f d e s i r ed
14 rng (123) ;
15
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16 % l o s s c o e f f i c i e n t c h a r a c t e r i s t i c s
17 mean l o s s c f = 2 ;
18 s t d d e v l o s s c f = 0 ;
19
20 % add i t i v e power no i s e c h a r a c t e r i s t i c s ( w i l l be r e c t i f i e d to be >=0)
21 s td d ev no i s e = . 1 ;
22
23 % de f i n e dimensions / edges
24 b i g s e t = 1 ; % 1 f o r a b igge r area l a t / lon
25
26 i f b i g s e t == 1
27 lon0 = −111.813; lon1 = −111.803; % upr3 s i z e
28 l a t 0 = 41 . 7 4 ; l a t 1 = 41 . 7 5 ;
29 e l s e i f b i g s e t == 0
30 lon0 = −111.814; lon1 = −111.811; % quad3 s i z e
31 l a t 0 = 41 . 7395 ; l a t 1 = 41 . 7425 ;
32 end
33
34 %% generate data ( lat/lon here)
35 % tran smi t t e r
36 tmp = rand (2) ;
37 t x l o c a t i o n = [ lon0 ∗tmp(1) + (1−tmp(1) ) ∗ lon1 , l a t 0 ∗tmp(2) + (1−tmp(2) ) ∗ l a t 1 ] ; %

random l o c a t i o n in the r eg i on
38 tx power = 10 ;
39 c l e a r tmp ;
40
41 % r e c e i v e r s / ob s e rva s t i on s
42 tmp ( : , 1 ) = rand ( n rx , 1 ) ;
43 tmp ( : , 2 ) = 1−tmp ( : , 1 ) ;
44 tmp ( : , 3 ) = rand ( n rx , 1 ) ;
45 tmp ( : , 4 ) = 1−tmp ( : , 3 ) ;
46 l o n r e g i o n = [ lon0 ; lon1 ; ] ; % random point between l ong i tude l im i t s
47 l a t r e g i o n = [ l a t 0 ; l a t 1 ; ] ; % random point between l a t i t i u d e l im i t s
48 r x l o c a t i o n = [ tmp ( : , 1 : 2 ) ∗ l on r eg i on , tmp ( : , 3 : 4 ) ∗ l a t r e g i o n ] ; % random po in t s in the

r eg i on
49 r x d i s t an c e = sq r t ( ( t x l o c a t i o n (1 ) − r x l o c a t i o n ( : , 1 ) ) . ˆ2 + ( t x l o c a t i o n (2 ) −

r x l o c a t i o n ( : , 2 ) ) . ˆ 2 ) ;
50 l o s s c f s i n i t = mean l o s s c f + s t d d e v l o s s c f ∗ randn ( s i z e ( r x d i s t an c e ) ) ; % l o s s

c o e f f i c i e n t s
51 % l o s s c f s i n i t = [ 2 . 3 9 ; 2 . 6 1 ; 2 . 4 7 ] ; % hard code some va lue s
52 rx power = tx power . / ( r x d i s t an c e . ˆ l o s s c f s i n i t ) ;
53 rx power = rx power + abs ( s t d d ev no i s e ∗ randn ( s i z e ( r x d i s t an c e ) ) ) ; % don ' t a l low

negat ive power no i s e
54 rx powerdb = 10∗ l og10 ( rx power ) ;
55 datase t = ' Simulat ion ' ; % fake datase t f o r p l o t t i t l e s
56
57 %% generate data ( cartesian )
58 % removed
59
60 %% write data out to f i l e
61
62 % lon l a t e l e v powerdb
63 f u l l f i l e n am e = [ ' . . / sim/ ' , f i l ename ] ;
64 data = [ r x l o c a t i on , z e r o s ( s i z e ( rx power ) ) , rx powerdb ] ;
65 data = [ [ t x l o c a t i on , 0 , tx power ] ; data ] ; % add tx i n f o as the f i r s t row
66 % csvwr i t e ( f u l l f i l e n ame , data ) % 5 d i g i t , too low p r e c i s i o n
67 dlmwrite ( f u l l f i l e n ame , data , ' p r e c i s i o n ' , 16) % 16 d i g i t s should be p lenty



110

B.7 Functions used in scripts

The read rss data function opens a .csv file of RSSI data and returns the relevant data

in vectors.

Listing B.7: Read RSSI data from a .csv file.

1 func t i on [ r x l o c a t i on , rx power , n rx , t x l o c a t i o n ] = r e ad r s s d a t a ( da t a s e t s t r i n g
, n downsamp , ...

2 truncate , s t a r t , n obse rvat i ons ,
random se lect ion ,
n s amp l e s l e s s t h an t o t a l )

3 % re tu rn s the RSSI data
4 % rx l o c a t i o n conta in s l a t / lon coo rd ina t e s f o r each obse rvat i on
5 % rx power conta in s the power r e c e i v ed ( not in db) f o r each obse rvat i on
6 % n rx i s number o f ob s e rva t i on s
7 % tx l o c a t i o n i s the t rue t r an smi t t e r l o c a t i o n f o r the datase t ( f o r e r r o r
8 % checking )
9

10 i f strcmp ( da t a s e t s t r i n g , ' sim ' )
11 f i l ename = [ ' . . / ' , d a t a s e t s t r i n g , ' /merged . csv ' ] ; % cons t ruc t f i l e name
12 data = csvread ( f i l ename ) ;
13 t x l o c a t i o n = data ( 1 , : ) ; % f i r s t row i s tx l o c a t i o n f o r sim
14 data = data ( 2 : end , : ) ; % throw away f i r s t row now
15 r x l o c a t i o n = data ( : , 1 : 2 ) ; % f i r s t two columns are coo rd ina t e s
16 rx powerdb = data ( : , 4 ) ; % four th column i s power (db)
17 rx power = 10 . ˆ ( rx powerdb /10) ;
18 n rx = length ( rx power ) ;
19 re turn
20 end
21
22 %% open the f i l e
23 % assumes d i r e c t o r y s t r u c tu r e o f . . / datase t /merged . csv
24 f i l ename = [ ' . . / ' , d a t a s e t s t r i n g , ' /merged . csv ' ] ; % cons t ruc t f i l e name
25 data = csvread ( f i l ename ) ;
26 data = downsample ( data , n downsamp) ;
27 t o t a l n r x = length ( data ( : , 1 ) ) ;
28
29 i f t runcate == 1
30 data = data ( s t a r t : s t a r t+n obse rvat i ons , : ) ;
31 end
32
33 i f random se l e c t i on == 1
34 n samp l e s de s i r ed = t o t a l n r x − n s amp l e s l e s s t h an t o t a l ;
35 data = data ( randperm ( t o t a l n r x , n samp l e s de s i r ed ) , : ) ; % randomly s e l e c t n rows
36 end
37
38 r x l o c a t i o n = data ( : , 1 : 2 ) ; % f i r s t two columns are coo rd ina t e s
39 n rx = length ( r x l o c a t i o n ) ;
40
41 rx powerdb = data ( : , 4 ) ; % four th column i s power in db
42
43 % f o r the s p e c i a l datase t ( aggr8 so f a r ) averages and maxes
44 % are both inc luded , with avg in 4 th co l and maxs in 5 th co l
45 % rx powerdb = data ( : , 5 ) ; % f i f t h column ( op t i ona l f o r avg/max)
46
47 rx power = 10 . ˆ ( rx powerdb /10) ;
48
49 %% also return the true transmitter location for error checking
50 i f strcmp ( da t a s e t s t r i n g , ' sant1 ' )
51 t x l o c a t i o n = [−111.8086 , 4 1 . 7 4 1 8 9 ] ;
52 end
53 i f strcmp ( da t a s e t s t r i n g , ' sant2 ' )
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54 t x l o c a t i o n = [−111.8086 , 4 1 . 7 4 1 8 9 ] ;
55 end
56 i f strcmp ( da t a s e t s t r i n g , ' quad3 ' )
57 t x l o c a t i o n = [−111.812753 , 4 1 . 7 4 0911 ] ;
58 end
59 i f strcmp ( da t a s e t s t r i n g , ' upr3 ' )
60 t x l o c a t i o n = [ −111 .805308 ,41 .745314 ] ;
61 end
62 i f strcmp ( da t a s e t s t r i n g , ' aggr1 ' )
63 t x l o c a t i o n = [ −111 .805308 ,41 .745314 ] ;
64 end
65
66
67 % new data s e t s
68 i f strcmp ( da t a s e t s t r i n g , ' aggr2 ' ) | | strcmp ( da t a s e t s t r i n g , ' aggr2 t runc ' )
69 t x l o c a t i o n = [ −111 .805308 ,41 .745314 ] ;
70 end
71 i f strcmp ( da t a s e t s t r i n g , ' upr4 ' )
72 t x l o c a t i o n = [ −111 .805308 ,41 .745314 ] ;
73 end
74 i f strcmp ( da t a s e t s t r i n g , ' aggr4 ' )
75 t x l o c a t i o n = [ −111 .805308 ,41 .745314 ] ;
76 end
77 i f strcmp ( da t a s e t s t r i n g , ' aggr6 ' )
78 t x l o c a t i o n = [ −111 .805308 ,41 .745314 ] ;
79 end
80 i f strcmp ( da t a s e t s t r i n g , ' aggr8 ' )
81 t x l o c a t i o n = [ −111 .805308 ,41 .745314 ] ;
82 end
83
84 end

The get dimensions() function returns latitude and longitude dimensions for each dataset.

Listing B.8: Get dimensions of a specific dataset.

1 func t i on [ lon0 , lon1 , la t0 , l a t 1 ] = get d imens ions ( d a t a s e t s t r i n g )
2 % get d imens ions ( ) r e tu rn s the co rne r s ( bottom l e f t and top r i g h t )
3 % that conta in a l l ob s e r va t i o s o f the datase t o f i n t e r e s t
4
5 lon0 = 0 ; lon1 = 0 ;
6 l a t 0 = 0 ; l a t 1 = 0 ;
7
8 %% determine dimensions/edges
9 i f strcmp ( da t a s e t s t r i n g , ' sim ' )

10 lon0 = −111.813; lon1 = −111.803; % upr3 s i z e s imu la t i on
11 l a t 0 = 41 . 7 4 ; l a t 1 = 41 . 7 5 ;
12 end
13
14 i f strcmp ( da t a s e t s t r i n g , ' sant1 ' )
15 lon0 = −111.809; lon1 = −111.808;
16 l a t 0 = 41 . 7415 ; l a t 1 = 41 . 7425 ;
17 end
18 i f strcmp ( da t a s e t s t r i n g , ' sant2 ' )
19 lon0 = −111.809; lon1 = −111.808;
20 l a t 0 = 41 . 7415 ; l a t 1 = 41 . 7425 ;
21 % % % lon0 = −111.809; lon1 = −111.806;
22 % % % la t 0 = 41 . 7415 ; l a t 1 = 41 . 7445 ;
23 end
24 i f strcmp ( da t a s e t s t r i n g , ' quad3 ' )
25 lon0 = −111.814; lon1 = −111.811;
26 l a t 0 = 41 . 7395 ; l a t 1 = 41 . 7425 ;
27 end
28 i f strcmp ( da t a s e t s t r i n g , ' upr3 ' )
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29 lon0 = −111.813; lon1 = −111.803;
30 l a t 0 = 41 . 7 4 ; l a t 1 = 41 . 7 5 ;
31 end
32 i f strcmp ( da t a s e t s t r i n g , ' aggr1 ' )
33 lon0 = −111.814; lon1 = −111.799;
34 l a t 0 = 41 . 7 38 ; l a t 1 = 41 . 7 53 ;
35 end
36
37
38 % new data s e t s
39 i f strcmp ( da t a s e t s t r i n g , ' aggr2 ' ) | | strcmp ( da t a s e t s t r i n g , ' aggr2 t runc ' )
40 lon0 = −111.854790; lon1 = −111.790018;
41 l a t 0 = 41 .727532 ; l a t 1 = 41 .780853 ;
42 end
43 i f strcmp ( da t a s e t s t r i n g , ' upr4 ' )
44 lon0 = −111.854790; lon1 = −111.790018;
45 l a t 0 = 41 .727532 ; l a t 1 = 41 .780853 ;
46 end
47 i f strcmp ( da t a s e t s t r i n g , ' aggr4 ' )
48 lon0 = −111.853744; lon1 = −111.790018;
49 l a t 0 = 41 .734865 ; l a t 1 = 41 .780853 ;
50 end
51
52 i f strcmp ( da t a s e t s t r i n g , ' aggr6 ' )
53 lon0 = −111.813; lon1 = −111.803;
54 l a t 0 = 41 . 7 4 ; l a t 1 = 41 . 7 5 ;
55 end
56 i f strcmp ( da t a s e t s t r i n g , ' aggr8 ' )
57 lon0 = −111.812390; lon1 = −111.800378;
58 l a t 0 = 41 .741021 ; l a t 1 = 41 .749668 ;
59 end
60
61
62 end

The lldistance() function returns the distance in meters between two latitude/longitude

coordinate pairs.

Listing B.9: Return distance between latitude and longitude points.

1 func t i on d i s t = l l d i s t a n c e ( la t1 , lon1 , la t2 , lon2 )
2 % return d i s t ance in meters between l a t and lon po in t s
3 % based on the have r s ine formula
4 % https : //www. movable−type . co . uk/ s c r i p t s / l a t l o n g . html
5 DEG TO RAD = pi / 180 ;
6 RAD TO DEG = 180 / p i ;
7 theta = lon1 − lon2 ;
8 d i s t = s i n (DEG TO RAD∗ l a t 1 ) .∗ s i n (DEG TO RAD∗ l a t 2 ) + cos (DEG TO RAD∗ l a t 1 ) .∗ cos

(DEG TO RAD∗ l a t 2 ) .∗ cos (DEG TO RAD∗ theta ) ;
9 d i s t = acos ( d i s t ) .∗ RAD TO DEG;

10 d i s t = d i s t ∗ 60 ∗ 1 .1515 ∗ 1.609344 ∗ 1000 ;
11 end
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The power ratio() function is used in the circles algorithm to find the loci of possible

transmitter locations.

Listing B.10: Find a circle given a power ratio and observation locations

1 func t i on [ u , v ,w] = power ra t i o ( a , b , c , d , k )
2 % Sam Whiting 2017
3 % re tu rn s a c i r c l e cente red at (u , v ) with rad iu s sq r t (w) .
4 % c i r c l e 1 at ( a , b) ; c i r c l e 2 at ( c , d )
5 % constant r a t i o o f r ad i i , c i r c l e 1 rad iu s / c i r c l e 2 rad iu s = k
6 u = ( a∗k − c ) / (k−1) ;
7 v = (b∗k − d) / (k−1) ;
8 w = uˆ2 + vˆ2 − ( k∗( aˆ2 + bˆ2) − c ˆ2 − dˆ2 ) / (k−1) ;
9 end

The draw circle() function is used in the circles algorithm to draw individual loci.

Listing B.11: Plot a circle given a center and radius.

1 func t i on h = d r aw c i r c l e (x , y , r , s t r i ng , width )
2 % draw a c i r c l e at po int (x , y ) with rad iu s r
3 % based on mathworks support team answer :
4 % https : //www. mathworks . com/mat labcentra l / answers /98665−how−do−i−plot−a−c i r c l e −with−a

−given−radius−and−c en te r
5 hold on ;
6 th = 0 : p i /50 :2∗ pi ;
7 x0 = r ∗ cos ( th ) + x ;
8 y0 = r ∗ s i n ( th ) + y ;
9 h = p lo t ( x0 , y0 , s t r i ng , 'LineWidth ' , width ) ;

10 end
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