Utah State University

Digital Commons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2018

Radio-Frequency Transmitter Geolocation Using Non-ldeal
Received Signal Strength Indicators

Samuel Whiting
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Cf Part of the Electrical and Electronics Commons

Recommended Citation

Whiting, Samuel, "Radio-Frequency Transmitter Geolocation Using Non-Ideal Received Signal Strength
Indicators" (2018). All Graduate Theses and Dissertations. 7038.
https://digitalcommons.usu.edu/etd/7038

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has

been accepted for inclusion in All Graduate Theses and /[x\

Dissertations by an authorized administrator of /\

DigitalCommons@USU. For more information, please (l .()Al UtahStateUniversity
contact digitalcommons@usu.edu. /'g;m MERRILL-CAZIER LIBRARY


https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7038&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.usu.edu%2Fetd%2F7038&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7038?utm_source=digitalcommons.usu.edu%2Fetd%2F7038&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

RADIO-FREQUENCY TRANSMITTER GEOLOCATION USING NON-IDEAL
RECEIVED SIGNAL STRENGTH INDICATORS
by

Samuel Whiting

A thesis submitted in partial fulfillment
of the requirements for the degree

of
MASTER OF SCIENCE
in

Electrical Engineering

Approved:

Todd Moon, Ph.D. Jacob Gunther, Ph.D.

Major Professor Committee Member

Reyhan Baktur, Ph.D. Mark R. McLellan, Ph.D.
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2018



Copyright (© Samuel Whiting 2018

All Rights Reserved

ii



iii

ABSTRACT

Radio-Frequency Transmitter Geolocation Using Non-Ideal Received Signal Strength

Indicators

by

Samuel Whiting, Master of Science

Utah State University, 2018

Major Professor: Todd Moon, Ph.D.
Department: Electrical and Computer Engineering

Received signal strength (RSS) is a metric easily obtained with simple hardware that
measures the amount of power at a frequency of interest. By taking RSS measurements,
also known as indicators (RSSI), at different locations, the general location of a transmitter
can be estimated in what is commonly known as geolocation.

Geolocation based on RSS measurements differs from other geolocation methods in a
few critical ways. The first of these differences is the lack of time as a dimension in RSS
measurements. This greatly simplifies the hardware requirements and processing, but at
the cost of temporal information. Another key difference is that the RSS measurements
have no phase, and therefore there is no need for phase coherency in any of the receivers.
This again simplifies the measurements and calculations.

While the data may be easy to obtain, there are great challenges to overcome in order
to make accurate transmitter location estimates with these measurements. Most signifi-
cantly, the electromagnetic power measurements suffer from multi-path distortion, shad-
owing, additive thermal receiver noise, ambient radiation noise, hardware limitations, and

quantization.
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By appropriately modeling the problem, this thesis develops and proposes a number

of algorithms that can overcome these issues in order to geolocate a transmitter based
on spatially separated sequences of RSS measurements. In particular, a scheme for data
collection is presented and used to collect real-world datasets. Algorithms are developed in
simulation and tested on these real datasets. Comparisons are made as to which algorithms
perform better and a decision is made that the subset method, as described in chapter 6,

performs the best overall.

(129 pages)



PUBLIC ABSTRACT

Radio-Frequency Transmitter Geolocation Using Non-Ideal Received Signal Strength
Indicators

Samuel Whiting

Locating a radio transmitter is important in a number of problems such as finding radio
tags, people with radios, and devices that are collecting information in an unauthorized
manner. Locating a radio transmitter is inherently difficult because the radio waves of
concern are not in the visible spectrum, they reflect and distort easily, and they propagate
at the speed of light.

A number of methods for locating transmitters are currently used, the majority of which
require expensive hardware and extensive processing. This thesis presents a method of using
simpler measurements to produce similar location estimates in order to augment or replace
current systems. While other systems have significant advantages, the methods proposed in
this thesis are advantageous because they only require easily-obtained measurements that
are based on the observed power of the transmission.

The research uses simulations and experiments on real-world data collected locally to
demonstrate the possibility of locating a transmitter using information of this type. The
conclusion is that some methods are able to compensate for the difficulties in the problem

more effectively, and produce useful location estimates.
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CHAPTER 1
INTRODUCTION

1.1 Overview

Determining the physical location of a radio-frequency (RF) transmitter is a well-known
problem commonly referred to as geolocation. Geolocation information can be used to find
RF jammers or find unauthorized transmitters, locate RF tags, find or track people and
vehicles, as well address many other problems [1-5]. The problem is inherently difficult
for a few key reasons. Depending on the method used, a geolocation system may require
sophisticated hardware in order to achieve high degrees of synchronization and coherency.
Additionally, processing of large amounts of data required to locate the source can quickly
become intractable for modern computers. Other methods that may not require expensive
hardware may still be affected by electromagnetic phenomena such as multipath distortion
or fading [6,7].

Among the most common methods for geolocation systems are time of arrival, time
difference of arrival, angle of arrival, received signal strength indicators, Doppler, pseudo-
Doppler, and the use of highly directional antennas. Of all of these methods, the one
which generally requires the least amount of hardware to implement is using received signal
strength (RSS) [8].

This thesis focuses on the use of RSS data in estimating transmitter location. Multi-
ple algorithms are proposed, evaluated, and tested in simulation to develop a geolocation

method best adapted to this problem. The algorithms are then tested on real-world datasets.



1.2 Literature Review

1.2.1 Geolocation

Geolocation, as stated above, is useful for a number of reasons and is associated with a
considerable amount of research addressing its complexities as well as different methods for
obtaining accurate location estimates in a variety of settings. The most common methods

for geolocation include [1,9]:

Time of Arrival (TOA)

Time Difference of Arrival (TDOA)

Angle of Arrival (AOA or sometimes DOA)

Received Signal Strength Indicators (RSSI)

It is also interesting to note that geolocation using WiFi fingerprinting is commonly
used on smart phones when GPS location services are unavailable. This method involves
making databases of known locations associated with known signal strengths when GPS
services are available and saving these measurements for later use. This method generally
has poor accuracy with comparison to other methods unless further processing is done [10].
This problem, where a receiver is trying to locate itself based on a known transmitter, is the
inverse of the presented research problem. For this reason, the WiFi fingerprinting method

is not considered here.

1.2.2 TOA/TDOA/AOA
Time-of-arrival methods are sometimes referred to as time of flight methods, and can be
used when the time of transmission is known. Besides requiring prior knowledge about the
signal, this method suffers greatly from synchronization problems, when the clocks between
receivers or between transmitters and receivers are not perfectly aligned [9,11].
Time-difference-of-arrival methods address the case where the exact transmission time

of a signal is not known by the receivers. This is a commonly occurring case: searching
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for a signal without knowing exactly when it will be sent. By determining when receivers
capture a signal relative to each other, certain statements can be made about the location
of the transmitter. Specifically, hyperbolas can be drawn between receivers that represent
a constant difference of arrival time between the two receivers. When multiple receivers
are able to compare measurements, these hyperbolas should intersect at the location of the
transmitter. This method suffers from synchronization problems like the TOA method [9].
Both of these time methods also suffer from not having direct line-of-sight from transmitter
to receiver, which is common in urban environments [7].

Angle of arrival methods rely on phase differences to determine the angle from which
the signal of interest is propagating. Using an array of antennas (generally spaced at half-
wavelength intervals) and assuming planar wave propagation, the phase difference between
received signals at each antenna corresponds to the physical direction of the transmitter.
Perhaps even more than time-based methods, this phase method suffers greatly from mul-
tipath distortion [3,7].

In general, these synchronization and multipath problems can be overcome using ex-
tensive processing or improved hardware. The proposed research seeks to address this
geolocation problem without the use of high-quality hardware or high degrees of time syn-
chronization. Instead, another measurement will be used (RSSI) which will serve both to

simplify the receiver design and to make data collection less rigorous [12].

1.2.3 RSSI

Received signal strength indicators give a raw power measurement and can be taken
using relatively simple hardware [2,4,8,13]. RSSI measurements are used to give measures
of signal quality and roughly determine how far a receiver is from a transmitter [14]. In
an ideal setting (where the transmitted power is known, there is no noise, and the signal
propagates through free space,) the distance that the signal has traveled to reach the receiver

can be found using the Friis transmission equation:



P,GiG N2
) = Lt 1.1
(47)2 R? (L.1)

Of course, it is rarely the case that all of these ideal settings exist in a real system.
Specifically, this research project seeks to determine the location of a transmitter where the
power transmitted is not known, the signal is noisy, and the region between the receiver
and transmitter is not free space.

Not knowing the transmitted power can be dealt with in a way similar to how TDOA
methods operate without knowing transmission time. Measurements from multiple receivers
can be used to draw circles (in free space) of constant power ratios between those receivers.

The problems associated with RSSI measurements are well known, and “the mathe-
matical and statistical methods to tackle RSSI-variance problem need further research.” [6]
This research aims to address the non-idealities associated with using RSSI measurements

for geolocation.

1.2.4 Geolocation using Mobile Sensors

Distributed systems are well suited for taking RSSI measurements because the measure-
ment is simple and measurements must be taken at different physical locations. In practice,
one moving receiver can take multiple observations. For this reason, multiple studies have
been done using drones or other autonomous robots to geolocate a transmitter [2,3,8,9].

While the research does not dictate measurements be taken autonomously using robots,
it does collect data using a mobile, distributed platform that allows a receiver to move
physically and take multiple measurements at different locations. For this reason, the work
done in this area is applicable to the research presented here, and provides useful insight

into the possibilities available to a distributed network of portable receivers.

1.3 Chapter Outlines
Chapter 2 presents the objectives of the research in more specific terms and outlines

the methods that will be used to develop the needed algorithms, including simulations and
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real world data collection and analysis. Also presented are notes on mapping latitude and
longitude positions to Cartesian coordinates, and the significance of loss coefficients, or path
loss.

Beginning in chapter 3, proposed algorithms are presented. The algorithm in chapter
3 is referred to as the circles algorithm, because it uses a geometric-based approach to solve
the geolocation problem. Derivations, simulations, and trials on real world datasets are
presented.

Following the circles algorithm, the Binary Cascading Probability (BCP) algorithm is
presented in chapter 4. The BCP algorithm relies on simple comparisons between power
measurements to update a grid of probabilities that represents transmitter location likeli-
hoods. Again, the algorithm is presented along with simulations and trials on real world
datasets.

Chapter 5 presents the 3-parameter method, which models the problem as a function
of three parameters and finds the optimal solution to this function using Newton’s method.
A simplification to this algorithm is also presented and is referred to as the simplified
algorithm, or simplified 3-parameter method. Both simulations and trials on real world data
are presented.

Chapter 6 builds on the 3-parameter method to form a new method referred to as the
subset method. It operates on subsets of measurements in order to compensate for noise
and provides a more probabilistic interpretation than is available with just the 3-parameter
method.

In an attempt to more accurately represent the system, Chapter 7 presents new models
that consider loss coeflicients and additional noise terms as parameters. These models and
methods are generally referenced by the number of parameters they seek to estimate and
other important information they assume (e.g., the 6-parameter method with an alternative
cost function). These methods eventually prove to be unstable and do not produce useful
location estimates, but are discussed in order to explain why these models do not represent

the problem well.
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In chapter 8, a comparison of results from each method is presented. Trade-offs are
analyzed, and a determination is made as to which algorithm performs the best overall.
Additional observations are made about the possibility of using these geolocation estimates
in geographic analysis, alternative methods used for taking RSSI measurements, and non-
stationary transmitters.

Chapter 9 concludes the thesis and declares the objectives satisfied. Appendices for
complex equations and matrices are included at the end, along with code for performing
the presented algorithms.

Throughout the chapters, a number of algorithms are presented which are not included
in the final chapter’s analysis, but are nonetheless important. Either the concepts they
represent are used in other methods or the ideas behind them help to demonstrate that

other methods were considered in addition to the final ideas presented.



CHAPTER 2

Problem Definition

2.1 Objective

The overall purpose of this research is to develop algorithms to locate radio frequency
transmitters based on a set of received signal strength (RSS) measurements, which are also
known as indicators (RSSI). These measurements are assumed to be spatially separated in
the general local area of the transmitter. The center frequency of interest is known, and
the transmitter is assumed to be stationary.

In direct comparison with other geolocation methods, such as time-difference of arrival
(TDOA) and phase based algorithms such as direction of arrival (DOA) techniques, this
method (RSSI) may prove not to be the best solution for producing a final, accurate location
estimate quickly. To outperform all other methods is not the objective of this research. On
the contrary, this RSS-based algorithm is to be designed in such a way as to complement
other systems by providing additional information from available data.

The RSS data is substantially easier to obtain than other methods because, under the
assumptions, time synchronization is not important. Along those same lines of reasoning,
the individual power measurements made have no phase information, so phase coherency
is not a concern either. This greatly simplifies the data collection process as well as the
hardware. Simplicity in data collection is an important advantage of the methods presented
in this research. The data collection hardware and software were developed prior to this
research in order to create datasets to analyze the algorithms.

The ideal algorithm should be able to use noisy RSS measurements to produce a loca-
tion estimate for a transmitter of interest while ignoring the adverse effects of shadowing,
multi-path distortion, additive noise power, and thermal receiver noise. The desired algo-

rithm would also produce some metric of certainty along with the estimate to aid in the



fusion of the estimate with estimates from other algorithms or methods.

2.2 Simulations

An accurate simulation can greatly aid the development of an algorithm by making
available far more information than is accessible in real world data and by allowing for
greater control over the system setup. Simulated data is also far easier to generate than
to record, and can therefore be used to test edge cases or unusual circumstances in rapid
succession. For these reasons and other, simulations were used initially to evaluate and
develop algorithms.

The simulations and models used are described in the following sections as the algo-
rithms are presented. In many cases, additional tests were done with the simulations, but
the outcomes and reasons behind these changes are considered either irrelevant in the final

conclusions or too lengthy to include in this thesis.

2.3 Data Collection Methods

An android phone was connected to a software defined radio (RTL-SDR) and ran a
GNURadio script to record power measurements. The phone combined the power measure-
ment with a set of GPS coordinates for the phone location. The data was offloaded to a
computer for processing.

The entire processing chain can be visualized in figure 2.1.

T Q@ Complex to . .
RTL-SDR Ll ©ip piler Magnitude |—1 Log | One Second _ 0{”]’“?_
1/Q Data Squared (base 10) Max for processing

GPS

Coordinates

Fig. 2.1: Data collection scheme.
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In practice, the method for taking measurements could easily be automated by at-
taching RSS measuring radios and phones to autonomous vehicles. The architecture of the
system also allows for multiple measuring nodes to contribute data simultaneously, allowing
for multiple spatially-separated observers. The datasets used in this study were obtained
using a single receiver that moved around. Under our stationary transmitter assumption,
there should be no difference in these collection methods as long as the radios, gains, and

antennas are consistent.

2.4 Real Datasets
Real datasets were recorded in Logan, Utah, U.S, with a few different transmitters and

at different scales. The most commonly referenced datasets are as follows:

e santl - Walkie-talkie transmitting near the Sant building on Utah State University
(USU) campus.

e sant2 - Walkie-talkie near the Sant building on USU campus.
e quad3 - Walkie-talkie in the center of the USU Quad field.
e uprd - Local FM radio station, measurements taken throughout USU campus.

e aggrl - Local FM radio station, throughout USU campus and surrounding neighbor-
hood.

e aggrd - Local FM radio station, around the city of Logan, Utah.

Descriptions of the datasets are given below, with figures 2.2, 2.3, 2.4, 2.5, 2.6, and 2.7
depicting the individual power measurements as points on a satellite map. The colors of

the points represent specific power measurements, which are not discussed in this thesis.

2.4.1 The santl dataset
This dataset will be referred to as the santl dataset throughout the paper. The santl

dataset was taken Oct 21, 2017, in the small field outside the USU Sant building. The



10

transmitter was a 0.5-watt walkie-talkie in the family radio service band. The RTL-SDR
recorded data with a 40 dB attenuator in line to prevent saturation. The santl dataset

roughly covers a 65 x 65 square-meter region.

2.4.2 The sant2 dataset

This dataset will be referred to as the sant2 dataset throughout the paper. The sant2
dataset was taken Oct 21, 2017, in the small field outside the USU Sant building. The
transmitter was a 0.5-watt walkie-talkie in the family radio service band. The RTL-SDR
recorded data with a 40 dB attenuator in line to prevent saturation. The sant2 dataset

roughly covers a 65 X 65 square meter region.

2.4.3 The quad3 dataset

This dataset will be referred to as the quad3 dataset throughout the paper. The quad3
dataset was taken Oct 21, 2017, on Utah State University campus around the field known
as “The Quad.” The transmitter was a 0.5-watt walkie-talkie in the family radio service
band. The RTL-SDR recorded data with a 40 dB attenuator in line to prevent saturation.

The Quad is an open field sized about 150 x 125 square-meters.

2.4.4 The upr3 dataset

This dataset will be referred to as the upr3 dataset throughout the paper. The upr3
dataset was taken Nov 9, 2017, around Utah State University campus. The transmitter was
a local FM radio station broadcasting from a tower on campus. The upr3 dataset roughly

covers a 600 x 850 square-meter region.

2.4.5 The aggrl dataset

This dataset will be referred to as the aggrl dataset throughout the paper. The aggrl
dataset was taken Nov 9, 2017, around Utah State University campus. The transmitter was
a local FM radio station broadcasting from a tower on campus. The aggrl dataset roughly

covers a 1200 x 1000 square-meter region.
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2.4.6 The aggr4 dataset
This dataset will be referred to as the aggrd dataset throughout the paper. The aggrd
dataset was taken Feb 17, 2018, around the city of Logan, Utah. The transmitter was
a local FM radio station broadcasting from a tower on USU campus. The aggrd dataset

roughly covers a 5000 x 5000 square-meter region.

A

Fig. 2.6: The aggrl dataset. Fig. 2.7: The aggr4 dataset.
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2.5 Note on Loss Coefficients

The Friis transmission equation models the propagation of electromagnetic waves in
free space. Because of the free space assumption the exponent on the distance term in the
denominator is 2 or, in other words, the power loss is quadratic. A significant difference
and contribution of this research is to propose methods of estimating transmitter locations
in the presence of non-quadratic power loss.

The exponent of the distance term will be referred to as the loss coefficient throughout
this paper, though it is also commonly referred to as path loss. Typical loss coefficients are
generally in the range of 2 to 4 depending on the presence of trees, buildings, and other
obstructions. In some cases, loss coefficients can be less than 2 (for instance, inside some
buildings that act as waveguides) and can be far greater than 4 due to shadowing and
multipath effects. More detail about the circumstances and reasoning behind these values
can be found in [15].

The ability to accurately determine the loss coefficients would be useful not only in
improving location estimates, but also in determining features of the environment as well.
Heavily forested regions, for example, would create different sets of loss coefficients when
compared to measurements taken in a plains region with relatively open space, or compared
to an urban region with significant shadowing and strong multipath effects from reflective
surfaces. This possibility is discussed further in section 8.3.

Some of the proposed methods estimate loss coefficients as part of the algorithm. For
those which do not, a method for estimating loss coefficients from a location estimate is

provided in section 5.3.

2.6 Note on Latitudes and Longitudes

Most of the methods treat latitude and longitude coordinates as if they formed a
uniform grid. While not an exact representation of the setup, empirically using these in a
grid-like manner has no negative effect on the algorithms presented in this thesis. This is

due to the size of the search grid and the location on earth where measurements were taken.



13

Whenever mentioned, the Cartesian mapping used is the one given in listing 2.1. The
code presents a way to change a pair of latitude and longitude points to a pair of Cartesian
points on a plane where the earth is represented as a flat surface with the x and y axes in
meters and the origin at the intersection point of the Prime Meridian and Equator. The
warping factor compensates for the distortion only at one given latitude, so the approxima-
tion is only good when close to that latitude. For the datasets used here, (all measurements

within 8 km of each other) this approximation is sufficient.

Listing 2.1: Cartesian Mapping

% mapping
DEG2RAD = pi/180;
warp_factor = cos(lat0*DEG2RAD)

y0O = latO0 * 111111;
x0 = lon0 * 111111 % warp-_factor;
yl = latl * 111111;
x1 = lonl % 111111 % warp_factor;

% now we can use the Cartesian distance

dist_met2 = sqrt( (x1-x0)"2 4+ (yl—y0)"2 )

2.6.1 Note on Elevation

The methods and hardware used to measure real-world data in this research do not
produce elevation metrics for the observations. Because of this, and to simplify the algo-
rithms and concepts, all observations are assumed to be on the same plane. While this
assumption can clearly cause distance errors it is treated as part of the unknown variations
of the GPS, power measurements, and loss coefficients.

Further work could be done to more accurately model the possibility of an elevated

transmitter.




CHAPTER 3
Circles Method

The circles algorithm attempts to draw circles of constant power ratio between obser-
vations in order to determine the transmitter location. Locations with large numbers of

intersections suggest a high likelihood of having a transmitter at that location.

3.1 Ideal Case
First examine the ideal case. Let there be measurements of power received, a known
power transmitted, known gains and frequencies, and assume quadratic power loss due to

distance. Friis transmission equation can be solved directly to obtain the distance, d.

P_BQ@V
" (4m)2d?

g P.GG )2
\ (4n)2P.

Draw a circle of radius d that represents a locus of possible transmitter locations. This
simple simulation can be seen in figure 3.1.
If there are three observations, the transmitter location can be exactly determined by

finding where the circles intersect, as in figure 3.2.

3.2 Constant Power Ratio

Now assume that the transmitted power is not known. With two receivers, each can

measure a received power.

P.GiG N2

P = A2 2
(477) di

P,.GG\?

Py = Lﬂ
(47)>d3

Taking the ratio of these two powers, most of the terms in Friis equation cancel, leaving
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50 Ideal RSS Simulation

®  QObservation
18 X Transmitter

16

14

12

10

Fig. 3.1: Ideal case with one observation.
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Assuming everything is stationary, the distances d are constant, so this term can be

reduced to a constant, k, leaving

do = kdy .
Substitute this into the ratio to get
P,
=g
PT2

This constant ratio is easily understood with an example. If k = 2, ds is twice as long as
di. This means the observation at do is twice as far away from the transmitter as the dy
observation. Circles of constant-ratio radius can be drawn using the power ratio between
the two observations. This is depicted in figure 3.3.

The transmitter must be somewhere on the circle of constant radii ratio. Adding more

observations, the location of the transmitter can be quickly determined based on the circle
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Ideal RSS Simulation
20 ~
# Observations
18 X Transmitter

16
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Fig. 3.2: Ideal case with three observations.

intersections (once we have 4 observations). This is depicted in figure 3.4.
How is it known where these circles lie, or in other words, how is it known which points
are on the locus of valid transmitter locations? Consider two circles, centered at (a,b) and

(¢,d). These two circles have radii related by the constant k2, as defined earlier.
(- + (y=b)? = 72

(:U—c)2 + (y—d)2 = k%

Since this radii ratio is known, equate these two circles as
(o + -0 = (@0 + G- ).
Solve to make an equation for a new circle as
(2 —u)

where
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Ideal RSSI1 Simulation, Power Ratios
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Fig. 3.3: Using power ratios with two observations.
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This new circle represents the locus of valid transmitter locations for the given power

ratio and observation locations.

3.3 Power Ratio with Additive Power Noise

In real-world observations, there will be noise added onto the measurements. In the
context of the circles algorithm, the locus of points may no longer intersect the true trans-
mitter location. Circle intersections may no longer provide a good estimate of location, as
can be seen in figure 3.5.

There can even be cases where there are no intersections at all, as in figure 3.6. How-

ever, this only occurs if we allow for negative noise in our measurements and all the noise
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Ideal RSSI1 Simulation, Power Ratios
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Fig. 3.4: Using power ratios with three observations.

experienced in our observations should be an additive power. For this simulation, the
added noise was generated by taking the magnitude of a zero-mean Gaussian distribution
with standard deviation 0.2.

In general, this problem of additive noise can be overcome using more than just three
observations. Since it becomes tiresome to look at more than three or so circles, represent
this data as a heat map for easier interpretation. By taking a two-dimensional histogram

of the circle intersections, the data can be easily interpreted, as in figures 3.7 and 3.8.
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Fig. 3.5: Using power ratios with three observations and noise.
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Fig. 3.6: Using power ratios with three observations and noise.
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RSSI Sim, noise o= 0.2, 100 rcvs

x Actual TX location

250

Fig. 3.7: Using power ratios with 100 observations and noise.

RSSI Sim, noise o= 0.2, 1000 rcvs <10%

=X Actual TX location 3
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Fig. 3.8: Using power ratios with 1000 observations and noise.
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3.4 Power Ratios with Loss Coefficient Noise

Another significant type of noise is differing loss coefficients. The Friis transmission
equation is for free space and therefore has a loss coefficient of 2 as the exponent to the
distance term, d. Previous work notes that differing loss coefficients occur frequently in
the real world, and that the problem needs further research [6]. Allowing for differing loss

coefficients, the equation for received power, P,, then becomes

_ PGG, N
" (4m)2de
The analysis is done the same as before, but with the introduction of noise in the
model. Allowing for different loss coefficients in this way can negatively affect the location
estimate.
Doing so in simulation degrades the quality of this estimate; however, it still performs
well, as in figure 3.9. This simulation was run with loss coefficients having a Gaussian

distribution with a mean of 3.0 and a standard deviation of 0.2.

RSSI Sim, noise «= 0.2, 1000 rcvs

> Actual TX location 5000
4500
4000

3500

3000

2500

2000

1500

1000

500

Fig. 3.9: Using power ratios with random loss coefficients and 1000 observations.



3.5 Trials on Real Data

The circles algorithm was applied to the real datasets. Below are shown heat maps
representing two dimensional histogram data of circle intersections.

simplified diagrams with observations, the estimated location, and the true transmitter

location marked.

41.7425

41.7424

41.7423

41.7422

41.7421

lat

41.742
41.7419
41.7418
41.7417
41.7416

41.7415
-111.809

Fig. 3.10:
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Table 3.1: Circles algorithm errors for each dataset.

’ Dataset

Error in meters

sant1
sant?2
quad3
upr3
aggrl
aggrd

15.76
7.92
108.94
116.26
164.96
1862.26

santl Circles Method

-111.8086
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sant] circles heat map.
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sant2 circles heat map.
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Fig. 3.11: sant1 circles diagram.
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Fig. 3.13: sant2 circles diagram.
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quad3 Circles Method
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Fig. 3.14: quad3 circles heat map.
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Fig. 3.16: upr3 circles heat map.
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Fig. 3.18: aggrl circles heat map.
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Fig. 3.20: aggr4 circles heat map.
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Fig. 3.15: quad3 circles diagram.
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Fig. 3.17: upr3 circles diagram.
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Fig. 3.19: aggrl circles diagram.
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Fig. 3.21: aggr4 circles diagram.
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3.5.1 Analysis of Real Data Results

The circles method is important because it is conceptually similar to triangulation, a
commonly used technique for geolocation.

The trials on real data gave results that approximated the true locations but never in a
completely convincing manner. The aggrl and quad3 datasets were particularly poor, with

results that were so scattered as to be not useful.

3.5.2 Possible Improvements

Instead of making a histogram of circle intersections, a Gaussian probability could be
extruded along each locus of transmitter locations and then summed to the total probability
grid. This may allow more information from pairs of observations to contribute to the overall
estimate.

The algorithm, as described, first finds circles and then finds the intersections of those
circles. Complexity could be reduced by solving for the circle intersections directly as a

function of the three received powers and their positions.



CHAPTER 4

Binary-decision Cascading Probability (BCP)

In a simulation, let there be two observations, one transmitter, and no additive noise.
Let the loss coefficient for the entire grid (call this term «) be 3. With a known loss
coefficient, a circle of constant power ratio could be drawn between the two observations
that would intersect the transmitter, as in figure 4.1. If the loss coefficient were guessed too

low or too high, the locus circle would miss the transmitter, as in figures 4.2 and 4.3.

20 Guessing loss coefficient of 3

® Observations
L
16[ ™
14 ~
12 X -

10 .

Fig. 4.1: Guessing a loss coefficient of 3.

The most significant assumption above is that the power loss coefficient is the same
everywhere. The only real difference from the free-space model is that it is no longer limited
to just being 2. In fact, this doesn’t change the power-ratio circle equation presented before,

besides needing to use a new value for constant k.

Prl

= k¢
Pr2

It is important to notice that the k in the circle equation is still just k2, and not k.
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Fig. 4.2: Guessing a loss coefficient of 2. Fig. 4.3: Guessing a loss coefficient of 4.

The k relates the received powers. This square in the k2 term then is not the loss coefficient
«, it is just the method of representing a circle of possible transmitter locations. The same

circle equation from before remains as

(o + -0 = (@-0* + G-d?).

Making multiple guesses as to what the loss coefficient was in the grid many circles

could be drawn, as in figure 4.4.

Guessing Different Loss Coefficients

20«
~
\\\ ® Observations
18 ™, AN > Transmitter
b W
S \\‘\
16 Ny
LAY
N ‘\ PN
i - VS
- RS
~ )
12 . A -
PR
LR LY
W=, N vy
- LERY
8 - S Ay,
> LR L™
* AT
6 N LI 3
' Yoty
bohay
4 . b Vo
| ot
2 1 Loiiwm
I 1oiam
0 F) 1 1A
0 5 10 15 20

Fig. 4.4: Guessing loss coefficients as integers 1 through 6.



27

Increasing the guess for the loss coefficients across the grid, eventually approaches a

line. This is depicted in figure 4.5 as the blue line.

Guessing Different Loss Coefficients
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Fig. 4.5: Locus for infinite loss coefficient as the blue line.

In figure 4.5, it can be safely guessed that the receiver is on the left side of the blue
line, where the blue line can be thought of as the loss coefficient being infinity. All finite
loss coeflicients would put the transmitter on the left side. The largest assumption here is
that the loss coefficient is uniform across the entire grid. For now, however, employ this

assumption to begin making statements about transmitter locations.

4.1 BCP Algorithm
Consider an algorithm for geolocation, referred to as the BCP algorithm or method,
where BCP stands for binary-decision cascading probability, that works in the following

manner.

1. Make a grid of probabilities, all equal to begin with, meaning each place is equally

likely to have the transmitter located there.

2. Multiply all probabilities on the left side of the blue line in figure 4.5 by a factor (say

1.01) and divide all the probabilities on the other side of the line by that same factor.
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3. Normalize the probability grid matrix.

4. Tterate through every combination of observations (of which there are (g)), updating

the probability grid each time.

The general idea is that for any given pair of observations, the observation with the
higher power is closer to the receiver most of the time. Step 2 then increases the overall
estimate probability for grid locations closer to the stronger power measurement. If, over
the entire set, this generalization holds true, the grid location containing the transmitter
will have the highest probability of all grid locations.

In simulation, this method proves to be effective; however, improvements can readily
be made.

Rather than using the if-loss-was-infinity line, consider using just the midpoint and
drawing a line perpendicular to the line that connects observations. This concept is illus-

trated in figure 4.6.

Line at Midpoint
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Fig. 4.6: The blue line intersects the midpoint between observations.

The results are similar to using the infinite-loss line, but prove to be a little more
noise-resistant. Using the midpoint also has the benefits of being easier to compute, and of

being conceptually simpler. This method is intuitively understood as asking “which point
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is closer to the transmitter?” With the answer being (under these assumptions and in this

algorithm) “the observation with the highest power.”

With as few as 30 observations strong predictions can be made about transmitter

location in the presence of additive noise. Increasing this to 100 observations can results

in predictions that are exactly correct in simulation as seen in figures 4.7 and 4.9. In these

figures, the brighter coloring suggests a higher likelihood of transmitter location.
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Fig. 4.7: BCP simulation results
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Fig. 4.8: BCP simulation setup with
30 observations.
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Fig. 4.10: BCP simulation setup
with 100 observations.

However, when loss coefficients are not uniform, the estimates degrade in quality. Loss

coeflicients were assigned to observations from a Gaussian distribution with a mean of 3.0
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and a variance of 0.04, and the BCP algorithm results are shown in figures 4.11 and 4.12.

Sometimes the method provides accurate estimates despite the loss coefficient noise, but

other times it estimates are biased.

BCP Simulation, noise o= 0.1, 80 obs.

x Transmitter

20
18
16
14
12

10

Fig. 4.11: BCP simulation results
with random loss coefficients.

BCP Simulation, noise o= 0.1, 80 obs.

20
18
16
14
12

10

Fig. 4.12: BCP simulation results
with random loss coefficients, show-
ing bias.
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4.2 Step-by-Step Visualization

A step-by-step example is provided to explain the BCP algorithm more completely.
Included below are the first 9 iterations of a run of the BCP algorithm. The different
symbols in the charts are significant. The black “X” marks the actual transmitter location.
The two red circles represent the two observations being compared at that step of the
algorithm. The larger red circle is the observation with the higher power measurement of
the two. The dotted black line divides the area of the grid into two regions based on the
midpoint of the two observations.

The color of the background grid represents the likelihood of the transmitter being
located in that region. The more yellow an area is, the more likely that region is believed
to contain the transmitter. The grid of likelihoods is updated from step to step, so that
step 1 initializes the probability grid, step 2 updates that grid, and so on.

The images in figure 4.13 show the first 9 steps of the algorithm applied to the santl
dataset in order to demonstrate the behavior of the BCP algorithm. The completed run

(all steps executed) result can be seen in section 4.3.
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Step 1 Step 2 Step 3

Step 4

Step 7

Fig. 4.13: The BCP Algorithm applied to the santl dataset, showing the first 9 steps of
the algorithm updating the probability grid. Step 7 is the only step which incorrectly
updates the grid of the 9 displayed here. The “X” marks the actual transmitter location,
the red circles are the two observations being compared with the larger circle representing
the observation with a higher power. The dotted line divides the grid along the midpoint
between the two observations. The grid coloring represents the estimate of transmitter
location, with yellow regions representing areas that are believed to be the most likely place
to contain the transmitter.
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4.3 Trials on Real Data
The BCP algorithm was applied to real datasets. Presented below are a table of errors

in meters and heat maps that represent probability mass for transmitter locations.

Table 4.1: BCP algorithm errors for each dataset.

Dataset Error in meters

sant1 2.50
sant2 5.46
quad3 41.46
upr3 181.36
aggrl 345.72
aggrd 841.77

BCP Method, santl

BCP Method, santl 41.7425
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e
B/ a1.742 41.742
41.7419 41.7419 H
41.7418 41.7418
41.7417 41.7417
41.7416
41.7416
41.7415
-111.808 -111.8086 -111.8082 417415
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Fig. 4.14: santl BCP heat map. Fig. 4.15: santl BCP diagram.

BCP Method, sant2
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41.7422 41.7422
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i . .
-
41.7419 41.7419 - ﬂ
L - o o
41.7418 41.7418 e 0. %% *s
41.7417 feeded >
- armr .’ LT —
41.7416
41.7416 j
41.7415 feenee ®
- B B 41.7415
111.809 111 S”SIE 111.8082 -111.809 -111.8088-111.8086-111.8084 -111.8082 -111.808
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Fig. 4.16: sant2 BCP heat map. Fig. 4.17: sant2 BCP diagram.
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Fig. 4.18: quad3 BCP heat map.
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Fig. 4.20: upr3 BCP heat map.
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BCP Method, quad3
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Fig. 4.19: quad3 BCP diagram.
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Fig. 4.21: upr3 BCP diagram.
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Fig. 4.23: aggrl BCP diagram.

41.78

41.775

41.77

41.765

41.76

41.755

41.75

41.745

41.74

41.735

BCP Method, aggrd

® Observations
x Transmitter
© Estimated Location

lon

Fig. 4.24: aggrd BCP heat map.
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Fig. 4.25: aggrd BCP diagram.
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4.3.1 Analysis of Real Data Results

The BCP method is probably the most intuitive among the presented methods. It is
similar to the concept of the “hotter/colder” child’s game.

The BCP algorithm performs well on the datasets that were taken with direct line
of sight (santl, sant2, quad3) but poorly on the datasets without (upr3, aggrl, aggrd).
Another difference between these two groups is that the direct line of sight group was
transmitting from walkie talkies which transmit at different powers and frequencies than
FM radio stations. While it is difficult to say what this method’s weakness is, it is clear

that it performs inconsistently.

4.3.2 Possible Improvements

A more algorithmic step size could be determined in order to give the desired “spread”
in the final probability grid. Alternatively, the ratio of power received between observations
could be used to determine a smarter step size to take. For instance, if the power ratio were
quite large, the comparison would be more certain, and the probabilities could be increased
by a larger scale.

It also may be beneficial to exclude comparisons for observations that are almost co-
located since their received powers may be very similar. The comparison between two very
similar power measurements is more susceptible to additive noise changing the binary result

of the comparison.



CHAPTER 5

3-Parameter Method

Begin again with the Friis transmission equation, with a; as the individual loss coeffi-

cients for each observation to form

2
p_ GG
(an

with d; being defined as the squared distance to the i’th observation, or

di & (2 — 20)* + (i — 0)*.

Here the notation is x; and y; for the location of the i’th observation and xg and yq for
the transmitter location. Now eliminate terms that are not concerns in this model (such as
gains and wavelength) to form

Py Py

Pi = = .
a2 (i — 20)% + (i — yo)?)%i/?

1

Combine the terms on one side of the equation to form a new equation equal to zero.

PdY? — Py =0

Call this new function J;, the cost function for the i’th observation.

Ji(xo, yo, o) = Pz'd?i/Q - P

The next step is to minimize the magnitude of our cost function. It is easier to minimize
the magnitude squared, and every J; term should contribute to the overall cost, so sum Ji2

Vi. The new cost function that includes every individual observation cost is
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J($07y07 PO) = Z Ji2 .
Vi

Seek to minimize our cost function in order to get it as close as possible to zero, the
value it theoretically should be. This model allows for changes in zg, 39, and Py but leaves

the loss coefficients «; as known constants.

argmin J (zo, yo, Po) = > _[Pi((x: — 20)” + (4 — 0)*)*/* — Po)?
zo,y0,F0 Vi

Determine the minimum using Newton’s method. Minimizing or maximizing a function
can be accomplished by looking for areas where the derivative of the function is zero. In
other words, find the roots of the derivative.

For a function of multiple variables, the first derivative, J'(x), turns into a gradient,

and the second derivative, J”(x), turns into a Hessian matrix. The update equation is then

x ) = xl (g2 7(x[n)) g g (x) (5.1)

where V.J(x) is the gradient, and v2.J(x) is the Hessian.
With the current model, three parameters are used to minimize the cost function. This

results in a 3 X 1 gradient and a 3 x 3 Hessian.

oJ
oxg
vJ = | 9L
Yo
oJ
0P
92J 9%J 0%J
0xg0xg 0x00yo 0x00 P,
V2] = | 8% 027 027
Oyodxzo  O0yodyo  OyoOPo
9%J 9%J 9%J

O0Py0zg OPydyg OPyOP,

5.1 Gradient and Hessian

The gradient for the cost function J(xg, yo, Py) consists of three partial derivatives, and
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the Hessian for the cost function J(zg,yo, Pp) consists of nine second-partial derivatives.
Both the gradient and Hessian can be found in appendix A.1.

When the loss coefficients are restricted to 2 (o = 2,Vi), the gradient and Hessian
simplify greatly. This cancels out many of the more complicated terms and leaves the
gradient and Hessian that can be found in appendix A.2. Since initial guesses for the loss
coefficients are not available in the datasets, this initialization, a; = 2, Vi, will be commonly

used in the described algorithms and simulations.

5.2 3-Parameter Method in Simulation

Use Newton’s method to obtain a location and power estimate by choosing an initial
guess somewhere nearby the observations and with an arbitrary power guess. Iterate on the
estimate using (5.1) until the change from iteration to iteration is sufficiently small, or for
some set number of steps.

Using this 3-parameter method in an ideal simulation works well, as can be seen in
figure 5.1, where the blue diamonds represent the location estimate at different steps in the
Newton’s method optimization. For this simulation, ten steps were taken. The generated
observations each had loss coefficients of exactly 2, and their measured powers had no

additive noise. The simulation was, in this way, ideal.

Simplified 3-parameter method, simulation

® Observations
X Transmitter

Fig. 5.1: 3-parameter method simulation with no noise.
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Introducing noise into the simulation causes the final estimate using the Newton’s
method algorithm to not correctly identify the true transmitter location, as seen in figure
5.2. In this simulation, loss coefficients were assigned randomly to be 2.39, 2.61, and 2.47.

Zero mean Gaussian noise was added to each received power with a standard deviation of

0.1.
Simplified 3-parameter method, simulation
® Observations| |
=X Transmitter
X
s 2
¢
-
3
¢
-
¢
o
o
Fig. 5.2: 3-parameter method simulation with noise.
With enough observations, the effects of noise can be somewhat overcome, as seen in
figure 5.3.

In these simulations, the original estimates for individual loss coeflicients were taken
to be 2. This allows for the use of the simplified gradient and Hessian equations and
empirically has had little effect on the overall quality of the final estimate. This version of

the 3-parameter method will be referred to as the simplified 3-parameter method.
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Simplified 3-parameter method, simulation

® Observations| |
* a X Transmitter

Fig. 5.3: 3-parameter method simulation with noise and additional observations.

5.3 Estimating Loss Coefficients

After using the 3-parameter method to make a location estimate it could be useful to
determine which loss coefficients would fit the data to this estimate. The goal here is to
estimate a loss coefficient for each individual observation.

Running the simplified version of the 3-parameter method results in a transmitted
power estimate. If a power estimate is not available, it can be obtained by taking the mean

of the received powers times the distances raised to the loss coefficients as

n

Py = :LZ(Pid?i)-

With the power estimate now available, solve for the individual loss coefficients as

log ];‘?
~ logd;

0%

These loss coefficients can then be used in further analysis or in other algorithms.
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5.4 Trials on Real Data
The simplified 3-parameter (3p) method algorithm was applied to real datasets. Below
are diagrams with the final estimated location displayed alongside the observations and true

transmitter locations.

Table 5.1: Simplified 3-parameter algorithm errors for each dataset.

’ Dataset Error in meters ‘

sant1 5.09
sant2 2.19
quad3 19.47
upr3 128.74
aggrl 107.05
aggrd 188.46

Simplified 3 Parameter Method, sant2

41,7425 Simplified 3 Parameter Method, santl 41,7425

V * 0b @ Observations
41.7424 servatons 41.7424 > Transmitter

7 : gﬁ.",ﬁ':tﬁf[ucam © Estimated Location
41.7423 41.7423
41.7422 41.7422

sssesssesssss susseeetstt S,

a1.7421 o *20ay, .

41.7421 l..f

41742 ('. o 41.742 o %o, }
. o -
B .
- - L)
41.7418 41,7418 S -- ..- .--. - tea
024l >
41.7417 %

41.7417 \ f'--'-

41.7416 41.7416

41.7415 41.7415
-111.809 -111.8088-111.8086-111.8084 1118082 -111.808 111,809 -111.8088 -111.8086 -111.8084 -111.8082 -111.808

Fig. 5.4: santl 3p diagram. Fig. 5.5: sant2 3p diagram.
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Simplified 3 Parameter Method, upr3

“ 74255im|:||i1‘iet‘l 3 Parameter Method, quad3 41.75
B _ & Observations
® Observations 41.749 M Transmitter
I Transmitter  Estimated Location
41.742 € Estimated Location 41.748
41.747
41.7415
41.746
41.741 41.745
41.744
41.7405
41.743
41.74 41.742
41.741
41.7395 474
111814 111813 11812 11811 111812 -111.81 -111.808 -111.806 -111.804
Fig. 5.6: quad3 3p diagram. : . :
g q b diag Fig. 5.7: upr3 3p diagram.
Simplified 3 Parameter Method, aggrl Simplified 3 Parameter Method, aggrd
41.78
41.752 ® Observations f ® Observations
M Transmitter 41.775 M Transmitter
€ Estimated Location B € Estimated Location
41.75
41.77
41.748 41.765
41.746 41.76
41.755
41.744
41.75
41.742
41.745
aLaa 41.74
41.738 41.735
111812 -111.808  -111.804 -111.8 111.85-111.84 -111.83 -111.82 -111.81 -111.8
Fig. 5.8: aggrl 3p diagram. Fig. 5.9: aggrd 3p diagram.

5.4.1 Analysis of Real Data Results

The simplified 3-parameter method algorithm works well for the real datasets. The
estimates are all reasonable, but the estimates for the datasets without direct line of sight
(upr3, aggrl, and aggrd) are of lower quality than the others.

The simplified 3-parameter algorithm is significant because it uses the simplest model
of the problem, ignoring many of the different complications inherent in the setup. It also
runs very quickly and produces a plausible estimate with very few computations, regardless

of starting location (anywhere on the grid of observations).

5.4.2 Possible Improvements
Taking into account more complex models is addressed later in this thesis. Improve-
ments to this algorithm, without changing it fundamentally, can mainly only be made in

regards to the implementation and efficiency.



CHAPTER 6
Subset Method

Returning to the simplified 3-parameter simulation, consider the case with three obser-
vations where loss coefficients are all identically two. The simplified 3-parameter method
produces a location estimate under the assumption that all the loss coefficients are uni-
formly two. In simulation, as seen in the previous section, this produces a perfect location

estimate, as in figure 6.1 when there is no additive power noise.

Simplified Newtons Simulation

@ Observations
W Transmitter
© Estimated Location

Fig. 6.1: Simplified 3-parameter method; loss coefficients are all 2.

Now consider the case where the loss coefficients are not strictly two. The estimates
produced by the simplified 3-parameter method are likely to be close to the true transmitter
location as long as the actual loss coefficients are distributed closely around some mean.
Notice in figures 6.2, 6.3, and 6.4 that the estimated locations are close to the actual
transmitter location, even though the loss coefficients in the simulation were not two, as
assumed by the simplified 3-parameter method. However, if loss coefficients are distributed

distant from each other (highly varied) the resulting estimate is poor, as can be seen in



figure 6.5.
Simplified Newtons Simulation

@ Observations
W Transmitter
£ Estimated Location

o

X

-
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L]

Fig. 6.2: Simplified 3-parameter

method; true loss coefficients are all
3.

Simplified Newtons Simulation
@ Observations

N Transmitter
€ Estimated Location

e

Fig. 6.4: Simplified 3-parameter
method; true loss coefficients are all
5.

6.1 Subset Algorithm

Simplified Newtons Simulation
@ Observations

W Transmitter
£ Estimated Location

&

Fig. 6.3: Simplified 3-parameter
method; true loss coefficients are all
4.

Simplified Newtons Simulation

# Observations
N Transmitter
€ Estimated Location

Fig. 6.5: Simplified 3-parameter
method, true loss coefficients are 2,
3, and 4.
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The general idea of the subset algorithm is to repeat the 3-parameter method using

different subsets of data and save each final estimate. As long as the loss coefficients of each

observation are close to the same mean, the estimate should acceptable. By repeating the

analysis on different subsets, the average quality of the estimates should be good.

A simulation of this method, shown as both individual estimates and a heat map

histogram is shown in figures 6.6 and 6.7. In this simulation, the subset size was 3 samples,
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the minimum amount needed for the cost function to be exactly determined. Also note that

the number of observations was far fewer than what is present in the real datasets, in order

to help visualize the behavior of the algorithm.

20 subsets of 3 samples, subset simulation

® Observations
M Transmitter
* Estimated Locations

Fig. 6.6: Location estimates from
different subsets, using the simplified
3-parameter method.

6.2 Trials on Real Data

20 subsets of 3 samples, subset simulation
41.75

< Observations
41.749 Transmitter
Estimated Location

41.748
41.747
41.746
| 41.745
41.744
41.743
41.742

41.741
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-111.812 -111.81 -111.808 -111.806 -111.804
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Fig. 6.7: Location estimates from
different subsets, using the simplified
3-parameter method.

The subset algorithm was applied to the real datasets. Below are heat maps that

represent two-dimensional histograms of location estimates.

Subset sizes were chosen to be three samples each, the minimum number of samples

needed to exactly determine the cost function, which has 3-parameters.

Table 6.1: Subset algorithm errors for each dataset.

Dataset

Error in meters

sant1
sant?2
quad3
upr3
aggrl
aggrd

13.08
20.45
1.65
30.26
64.92
179.55
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Fig. 6.8: santl subset heat map. Fig. 6.9: santl subset diagram.
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Fig. 6.10: sant2 subset heat map. Fig. 6.11: sant2 subset diagram.
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Fig. 6.12: quad3 subset heat map. Fig. 6.13: quad3 subset diagram.
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Fig. 6.14: upr3 subset heat map. Fig. 6.15: upr3 subset diagram.
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Fig. 6.16: aggrl subset heat map.
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Fig. 6.18: aggrd subset heat map.
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Fig. 6.17: aggrl subset diagram.
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Fig. 6.19: aggrd subset diagram.
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6.2.1 Analysis of Real Data Results

The subset method produces good results on every dataset, with especially impressive
results on the quad3 dataset where it is able to determine the true location as closely as
the histogram quantization allows. It also does surprisingly well on the upr3 dataset, which
did not have direct line of sight for a majority of the measurements in addition to having
frequent shadowing.

The sant datasets still performed reasonably well, but suffered from the quantization
effect of the histogram. While the heat maps appear fine, the error the subset method
produces is somewhat large compared to the relatively small size of the observation grid.

To demonstrate this effect, re-run the algorithm on the sant2 dataset, with a histogram
bin size equal to that of the upr3 dataset. As can be seen in figure 6.20, the true transmitter

location is (correctly) in the highest bin of the histogram.

30000 subsets of 3 samples, Newtons Method on sant2

X Transmitter

41.7426
41.7424
41.7422
" 41742
41.7418
41.7416

41.7414

-111.809 -111.8086  -111.8082 -111.8078
lon

Fig. 6.20: Subset algorithm on the sant2 dataset with 37 meters per bin.

6.2.2 Possible Improvements
The subset method could be improved by developing a more algorithmic way to choose
histogram bin spacing. For example, a scheme that quantized results based on real-world

metrics such as 10 x 10 meter blocks may quantize results in a way that avoids the problems
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inherent in the algorithm for small-scale observation grids.
Another possible improvement would be to avoid choosing as a subset three observa-
tions that are almost exactly co-located. This may eliminate some of the poorer estimates

from the histogram and allow for more of the high-quality estimates to contribute.



CHAPTER 7
Clustering Method

Previous models did not allow for the discovery of the loss coefficients at the same time
a location estimate was being made. By introducing the loss coefficients as parameters in
the cost functions, Newton’s method should be able to adjust the values until they reach
some optimal point.

If each observation had its own individual loss coefficient parameter, the resulting
system of equations would be underdetermined. Instead, assume that the observations
can be clustered into k individual groups, where each group has its own loss coefficient.
Clustering can be done spatially, or by estimating the loss coefficients using a previous

method as discussed in section 5.3.

7.1 K-means clustering

The general approach to clustering in this chapter is to estimate the loss coefficients
as in section 5.3 and then to group the observations using k-means clustering. K-means
clustering iteratively classifies points into k different groups by selecting random centers and
then re-evaluating the centers using the points that are nearest to each center. K-means is

one of the most often used clustering algorithms [16].

7.2 6-parameter Method

For brevity, introduce again a distance squared term as

di & (z; — 20)* + (yi — w0)*
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The new cost function associated with this model has six parameters,

J(x0, yo, Po, a1, a2, a3) = Z(PO _ Pidg(i)/Q)Q
Vi

(20,90, Po, a1, 02,05) = > B + P2l — 2R Pl (7.1)
Vi

where j(i) selects which loss coefficient group is to be used,

,

a; 1€ Group 1
j(i) = as 1 € Group 2

as i € Group 3.

Newton’s method is used to minimize the cost function in (7.1). The corresponding
gradient and Hessian are found in appendix A.3. The entire chain of processing is to estimate
location and power using the simplified 3-parameter method, estimate the loss coefficients,
group the observations using k-means clustering, and finally minimize (7.1) using Newton’s
method.

Running on real data quickly suggests that this approach is not viable in every case.
As seen in figure 7.1, the Newton iterations take the location estimate off the observation
grid.

Rather than presenting the different results on each of the datasets, examine the cost
function 7.1 and evaluate its structure.

As stated earlier, the distances used are pseudo distances obtained by approximating
the latitude and longitudes as a uniformly spaced grid. This results in the squared distance
term, d;, being less than one. The two right terms in (7.1), Pfdz(i) and 2P0Pidg(i)/2, can
be effectively driven to zero by allowing the loss coefficients to grow arbitrarily high. The
leftmost term (POQ) can be driven to zero directly, as it is a free parameter of the system.

This essentially creates a minimum that does not strictly lie near the true transmitter
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Newtons Method, quad3
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Fig. 7.1: 6-parameter method on the quad3 dataset.

location. In simulation and running on real datasets, this results in Newton steps that do
not necessarily approach the true transmitter location.

By switching to an actual Cartesian grid (mapping to a meter grid as discussed in
section 2.6) the distances are all greater than 1 (d; > 1,Vi). In this case, the two right
terms, (Pfdg @ and ZPOP@-dg @/ 2) can be minimized by allowing the loss coefficients to grow

towards negative infinity. The mapping does not address the problems inherent in (7.1).

7.3 6-parameter Method with an Alternative Cost Function
Address the problems of (7.1) by changing the cost function. Starting from the original

model,

P
Pi = dc'kio/27

)

leave the distance term in the denominator, resulting in

F,
a'0/2 - P =0
d;"

]

Building a cost function in the same manner as before, sum the cost of each loss squared,

and allow the loss coefficients to be clustered as
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Vi

J (0,0, Po, a1, 0, 03) = Y PP + Pid; Y — 2py P 7O, (7.2)
Vi

In comparison with (7.1), (7.2) should not be able to drive the leftmost squared term,

Piz, to zero directly, perhaps addressing the issue inherent in the previous model.

Again, optimization is done using Newton’s method, and the relevant gradient and

Hessian can be found in appendix A.4. Running on real data quickly demonstrates that

this method diverges as well,

as in figure 7.2. The Newton steps begin close to the true

location (due to using the simplified 3-parameter estimate as a starting location) but quickly

leave the observation grid.

41.75
41.749
41.748
41.747
41.746
41.745
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41.74

Newtons Method, upr3
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-111.812 -111.81 -111.808 -111.806 -111.804

Fig. 7.2: 6-parameter method on the upr3 dataset, alternative cost function.

The largest problem immediately obvious with this method is that singularities in the

cost function are created at every observation. Since the distance term is in the denom-

inator, any location near the observation will have a cost function approaching infinity.

Projecting the cost function onto a 2-dimensional plane of location, these singularities are
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easily visualized for the datasets, as in figure 7.3. The logical conclusion to draw is that the
singularities create regions that corrupt the cost function anywhere near an observation,

making it difficult to find the transmitter location.

Log Cost Function
41.7425

x Transmitter

41.742

41.7415

| 41741

41.7405

41.74

41.7395
-111.814 -111.8135 -111.813 -111.8125 -111.812 -111.8115 -111.811

lon

Fig. 7.3: 6-parameter log cost function on the quad3 dataset, alternative cost function.

7.4 T-parameter Newton’s Alternative Cost Function

Consider another cost function, one that models the possibility of a constant noise floor,
adding a 7th parameter to (7.2). The new cost function in (7.3) allows for an additive noise
floor term to be added to each observation. This parameter models the electromagnetic

interference present in every measurement from other transmitters and radiating bodies.

J(x(]vyﬂa P07 N07a1aa2aa3) = Z(B — POdZ_](’l)/Q . N0)2
Vi

J=Y P?+ N2+ P2’ — 2PNy — 2R P.d; VP (N — Py) (7.3)
Vi

The performance of this method is similar to that of the 6-parameter method with
the alternative cost function. Singularities caused by the distance term in the denominator

again corrupt the cost function and result in diverging steps, as in figure 7.4.
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Newtons Method, aggrl
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Fig. 7.4: 7-parameter method on the aggrl dataset, alternative cost function.

The cost function, projected onto the location plane, is again plotted in order to visu-

alize the singularities in figure 7.5.
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Fig. 7.5: 7T-parameter log cost function on the aggrl dataset, alternative cost function.

The constant noise term does little to correct any flaws in the previous cost functions
and behaves similarly to the cost function in (7.2). Using a Cartesian mapping to produce
distances greater than one does not affect the overall performance of this method. Rather,

it changes the ending state of the parameters being estimated and changes the visualization
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of the cost function. The resulting estimate is no better than when using the latitude and

longitude as a uniform grid.

7.5 Backtracking Line Search and Log Barriers

The model in (7.2) imposes no restriction on the loss coefficients or the power transmit-
ted. In the physical world, the transmitted power is always positive and the loss coefficients
should also be positive. Incorporate these restrictions using a log barrier in the cost func-
tion. As practical values for loss coefficients, restrict them to the range 1.5 < «; < 4.5 and
restrict the power merely to be positive Py > 0.

The log-barrier method adds a finite amount to the cost function as the parameters
approach the barrier, which then increases quickly to infinity as the barrier is approached.

Practically, this is implemented by appending terms to the cost function in (7.2) to form

(7.4) as

J(x07 Yo, PO) ar, G, Oé3) =

i e —1
Z Pi2 + P02d7, O 2P0P1d2 i@)/2 + T[log(Po)
Vi

+ log(—a1 + 4.5) + log(a1 — 1.5)
+ log(—ag + 4.5) + log(ag — 1.5)

+ log(—as +4.5) + log(as — 1.5)], (7.4)

where t is a value that determines how steep the approach towards infinity is as the barrier
is approached. In practice, it is common to start ¢ at a low value to allow for easy avoidance
of the barrier, and to increase it in successive iterations in order to make it more closely
match the ideal barrier, a step function.

Since Newton’s method can take large steps, it is imperative to prevent a step being
taken outside of the log barrier due to the step size being too large. The preventative

method employed here is the backtracking line search, which finds the largest step size that
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can be used in an iterative method which still minimizes the given cost function.

Using both the log barrier and the backtracking line search, the cost function in (7.4)
is minimized using Newton’s method. The resulting behavior is an iterative method that is
too “timid” to take any steps. The initial estimate is generally the final estimate, and for

this reason this approach was abandoned.

7.6 Possible Improvements

None of the clustering methods presented in this chapter proved to work well empiri-
cally. The conclusion drawn is that the more complex models allowed too much freedom to
the loss coefficients to be useful. Other combinations of clustering with different methods
may prove to be beneficial, or even loss coefficient estimation based on satellite imaging

data. Such avenues are not explored further in this paper.



CHAPTER 8

Comparison of Methods and Results

The table below summarizes the results from the four methods evaluated.

Table 8.1: Errors in meters for each method and dataset.

Dataset/Method H circles BCP simplified 3p subset
sant1 15.76 2.50 5.09 13.08
sant2 7.92 5.46 2.19 20.45
quad3 108.94 41.46 19.47 1.65
upr3 116.26 181.36 128.74 30.26
aggrl 164.96 345.72 107.05 64.92
aggrd 1862.26 841.77 188.46 179.55

Overall, the subset method algorithm performs the best. In cases where observation
location is known to be very close to the transmitter (within 25 meters) the simplified 3-
parameter method outperforms the subset method. The direct comparison between methods
can be found in figure 8.1 as a direct visualization of the data in table 8.1. The errors in the
aggrd dataset cannot be represented accurately on the chosen scale for the circles method
and the BCP method, so those values have been excluded from figure 8.1.

It may also be useful to view the average error for each method. Taking into account
only this average error it seems that the subset method is the best overall, as in figure 8.2.
As before, the aggrd dataset was excluded from this average since it is on a much larger

scale than the other datasets.
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However, the approximate size of the observation grid should be accounted for. Mea-
suring by the diagonal of the region with observations, the approximate dataset sizes are

as listed in table 8.2.

Table 8.2: Dataset size by diagonals in meters.

Dataset Diagonal length
in meters

sant1 92

sant2 92

quad3 195

upr3 1040

aggrl 1562

aggrd 7071

Dividing each error by the diagonal dataset size, a feel for how significant each error is

can be obtained. The average normalized errors for each method are shown in figure 8.3.

Average Normalized Error
0.250
0.200
0.150
0.100

0.050

average normalized error

0.000
Circles BCP Mewton’s Subset

Method

Fig. 8.3: Average error comparison by method and dataset, normalized.

The subset method now seems to perform slightly worse than the simplified 3-parameter
method. However, both perform far better than the circles method or the BCP method in
terms of both error in meters as well as normalized error.

Previously, a brief discussion of the problems with the subset method on the sant
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datasets was presented. Removing these datasets from the average errors using the justifi-

cation that they are too small, the normalized error is shown in figure 8.4.

Average Error without sant Datasets

_ D300
e
@
g o200
m
E
2 o100
@ 0.026
m
]
= D.0oo
Circles BCP Mewton’s Subset
Method

Fig. 8.4: Average error comparison by method and dataset, normalized, and excluding the
sant datasets.

Using this interpretation of average errors, the subset method produced the best results.
As another means of comparison, group the errors in meters by dataset. This representation
can be seen in figure 8.5 and gives scale to the errors in each estimate. The subset method

produces the best results for a majority of the datasets.
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Fig. 8.5: Error comparison by dataset in meters.

8.1 Ending Location Estimate Representation

Another consideration in evaluating each method is the type of resulting final estimate
for each method. If fusion of this data with other methods of geolocation is desired, a prob-
abilistic representation of the location estimate would be necessary. Of the four methods
compared above, the circles, BCP and subset methods all provide this. Since these three
methods all produce heat maps, an easy visual comparison of the methods can be made as

seen in figures 8.6 and 8.7.

30000 subsets of 3 samples, subset method on quad3
41.7425

quad3 Circles Method BCP Method, quad3

41.7425

h 417415

B a7a B am o B aga

a.742

a1.7415

41.7405 41.7405

417305 417305
-111.814 111813 -111.812 -111.811 11813 lon 1812 e -111.814 111813 -111.812 -111.811

lon lon

Fig. 8.6: The quad3 heat maps. From left to right: circles, BCP, subset.

The 3-parameter method estimate is, in this research, strictly a single best-fit estimate

for all observations. Because of this, representing the estimate in a probabilistic manner is
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Fig. 8.7: The upr3 heat maps. From left to right: circles, BCP, subset.

difficult. Ellipses could be drawn using the final resulting Hessian matrix, but in practice
the scale of these ellipses proved too inconsistent to be used in an algorithmic manner to

represent the certainty of the estimates.

8.2 Error Analysis vs Number of Observations Used

A natural question to ask about the given analysis would be how many samples are
needed in order to make an accurate location estimate. While many factors influence the
answer to this question, insight can be gained by running these algorithms on subsets of
the datasets and observing the quality of the estimates.

The simplified 3-parameter algorithm was applied to the datasets, taking different
numbers of observations from the entire set each time. Using 25 trials of each observation
amount, an average error term was made in order to analyze the effect that the number of
observations has on the transmitter location estimate. The plots of these results is shown
in figure 8.8. It is evident that the general behavior is as expected: the error of the estimate
decreases as the number of observations used increases.

Similar analysis was done for the other algorithms and the results for the quad3 dataset
are shown in figure 8.9. Trend lines have been fitted where appropriate. The circles algo-
rithm does not necessarily produce better estimates with more observations available. The
BCP method improves its estimate with more observations used, with diminishing returns
around the 300 observation mark. Similarly, the 3-parameter method has diminishing re-
turns, but it reaches this point far faster, around the 100 observation mark. The subset

algorithm appears to plateau rapidly at the 100 observation mark but the error drops again
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Fig. 8.8: Location estimate error as a function of number of observations used with the
simplified 3-parameter method.

around the 300 sample mark until it reaches it’s almost perfect location estimate.
Further analysis could be done on the number of observations needed in order to pro-

duce estimates of a sufficient quality.
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Fig. 8.9: Location estimate error as a function of number of number of observations used
on the quad3 dataset. From left to right and top to bottom: circles, BCP, 3 Parameter,
subset.

8.3 Estimating Environmental Features

Using the location estimates obtained by any of the methods above, it is possible to
then estimate the loss coefficients for each observation, as described in section 5.3. The loss
coefficient at a specific location may give insight into the geography or features in a region.
For instance, a region with large loss coeflicients may be shadowed by a building while a
region with loss coefficients around 2 may have direct line of sight to the receiver.

Figure 8.10 depicts this type of analysis done for the aggrl dataset. In this figure,
the darker points mark areas where the loss coefficient is estimated to be very low. The
brighter, more blue observations are locations with higher loss coefficients. For reference,
figure 8.11 depicts the satellite image of the aggrl dataset again. The brighter sections of

observations suggest that some kind of shadowing or null in the antenna pattern might be
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at that location.
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Fig. 8.10: The aggrl loss coefficient groups. Fig. 8.11: The aggrl dataset for comparison.

Further development of these types of estimation might prove useful for analyzing the

radio propagation characteristics of regions, but is not discussed further here.

8.4 Alternative Power Measurements

In the processing chain shown in figure 2.1, a max operation is used over one second
of data in order to output a final RSS measurement for the observation. An alternative
approach would be to instead average the power over that second.

The GNURadio script responsible for power measurements was modified with a custom
block that allowed for this averaging to be done in an efficient manner. The maximum
powers were computed alongside the averages, resulting in a processing chain as seen in

figure 8.12.
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Fig. 8.12: Modified data collection scheme.

A new dataset was taken using this new collection scheme. The dataset is referred to
as the aggr8 dataset and was taken around USU campus on a local FM radio channel. A

satellite image with the observations marked can be seen in figure 8.13.

Fig. 8.13: The aggr8 dataset.

The algorithms were applied to the aggr8 dataset using both the average power and
the maximum power data. The resulting errors in meters can be seen in table 8.3.

In all the cases except for using 3-parameter method, the ending location estimate
ended up having the same error, and was also in the same location for the average power

and maximum power measurements. The errors match in these cases exactly (to two decimal
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Table 8.3: Errors in meters for each method on the aggr8 dataset using average power
compared to maximum power.

Dataset /Method H circles ‘ BCP simplified 3p subset
aggr8 power average | 158.09 279.84 162.87 134.83
aggr8 power max 158.09 279.84 147.41 134.83

places) because the Circles, BCP, and Subset methods all quantize the estimates into a finite
number of bins (for these results, a grid of 30 x 30 bins was used).

For the 3-parameter method, the average power measurements actually produced a
worse location estimate than the maximum power measurements, but only by about 15
meters. The aggr8 dataset covers a 900 x 900 meter region, so normalizing this error
difference by the diagonal length of 1273 meters means that the 15 meter difference is only
about 1 percent of the span of the region. The two location estimates are effectively the
same.

Taking the average power rather than the maximum power has no significant effect on
the quality of the location estimate. Since the maximum operation is supported natively
in GNURadio, the original data collection scheme is used as the default method in this

research.

8.5 Notes on Non-Stationary Transmitters

The analysis presented assumes that the transmitter is stationary. If finding a moving
transmitter is desired, a number of options are available for fitting these algorithms to this
situation and are possible areas of further research.

Given a scenario where it is desired to find a unmanned aerial vehicle pilot, a number of
searching drones could be deployed to take RSS measurements. These measurements would
be reported into a central node to be processed using one of the discussed algorithms.
The observations would be set to decay, or expire after a set amount of time, allowing
for the possibility that the transmitter has moved. In this way, a constantly updating
location estimate could be provided using multiple moving measurement nodes. A similar

configuration, though not using the algorithms presented in this paper, is discussed in [9)].
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Conclusion

9.1 Contributions

The research presented provides algorithms that locate a transmitter based on RSSI.
Models for differing loss coefficients and noise were analyzed, and real world data was used
to test the assumptions made. The work presented provides a stepping stone for future
work in geolocation and modeling of RSS power loss as well as providing a viable method

for performing geolocation.

9.2 Future Work

Areas of further research and improvement have been noted in sections above. In
summary, each of the algorithms presented could be improved in a variety of ways. The
BCP algorithm could be changed to deal with close comparisons more logically and the
circles algorithm could extrude probabilities along the resulting loci in a way that represents
the uncertainty of the measurements. The cost functions presented represent only a few of
the possibilities that could be used in an optimization problem, and other models of the
system could be developed to more closely model the complexities of the problem.

Further work could also be done to implement these algorithms in a way that could
track a moving transmitter. Observations could be time-expiring, and a Kalman filter could

be used to improve the estimations over time.

9.3 Conclusion
Geolocation using RSS measurements can help solve common geolocation problems
when high degrees of synchronization are unavailable or impractical. In addition, geoloca-

tion based on RSS measurements can combine well with networks of distributed receivers
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working together to locate a source since there is no time-dependent feature of the data.

Many different algorithms were proposed and presented in this text, four of which were
presented in depth. The methods in section 7 were presented and developed in pursuit
of a more complete model, but since none of those methods proved viable in the end, the
complete results of their development and experiments were not included. It should suffice
to say that the more complex models that allow more freedom in the estimation of loss
coefficients demonstrated inconsistencies that made them impractical in regular use.

The best method for the datasets considered in this research was the subset method
presented in section 6. It resulted in the smallest average error in meters and qualitatively
produced the most useful and accurate histogram heat maps. As the purpose of this thesis
was to develop and compare methods for geolocation based on RSS measurements, the

objective was achieved.
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APPENDIX A

Gradients and Hessians

A.1 3-parameter Method

The 3-parameter Newton’s iterations require a 3 x 1 gradient and a 3 x 3 Hessian, which

are listed below as partial derivatives.
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A.2 Simplified 3-Parameter Method

Restricting all loss coefficients to be 2, the gradient and Hessian simplify as follows.
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A.3 6-Parameter Method

The 6-parameter Newton’s iterations require a 6 x 1 gradient and a 6 x 6 Hessian,
which are listed below as partial derivatives. Note that the obviously symmetric partials

have been assumed to be understood as their partial pair.
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A.4 6-Parameter Method with Alternative Cost Function
The 6-parameter Newton’s iterations with the alternative cost function also require a
6 x 1 gradient and a 6 x 6 Hessian, which are listed below as partial derivatives. Note that

the obviously symmetric partials have been assumed to be understood as their partial pair.

Cost Function
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A.5 7-Parameter Method with Alternative Cost Function
The 7-parameter Newton’s iterations require a 7 x 1 gradient and a 7 x 7 Hessian,
which are listed below as partial derivatives. Note that the obviously symmetric partials

have been assumed to be understood as their partial pair.

Cost Function
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APPENDIX B
Code

B.1 Circles

The circles method is included below as a Matlab script.

Listing B.1: The circles method.
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% Sam Whiting Nov 2017
% Performs the circles algorithm on a dataset
clear;clc;close all;

%% pick which data set to run on
% original datasets

% dataset = 'santl';
% dataset = 'sant2';
% dataset = 'quad3';
dataset = 'upr3';

% dataset = 'aggrl';

% new datasets

% dataset = 'uprd';

% dataset = 'aggr2';

% dataset = 'aggr2_trunc ';

% dataset = 'aggrd4'; % large dataset

% dataset = 'aggr6'; % average powers here

% dataset = 'aggr8'; % mixed power/averages (see read_rss_data.m)

% simulated dataset
dataset = 'sim';

%% some controls/parameters to change
% path loss (can be a range)
% n_range = 3.1 : .1 : 3.3;

n_range = 2;

% downsample amount
n_downsamp = 1;

% data truncation (what range of points to use)

truncate = 0; % flag to signal truncation or not
start = 1; % starting index
n_observations = 100; % how many points to use

% toggle plots
plot_heat_map = 1;
plot_heat_with_diagram = 0;
plot_diagram = 1;
diagram_draw_circles = 0;
plot_errors_vs_n = 0;

% bins in the heat map (along one axis)
nbins = 30;
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%% open the file
[rx_location , rx_power, n._rx, tx_location]| =

read_rss_data( dataset , n_-downsamp, truncate, start, n_observations, 0,0);

%% determine dimensions/edges

[lon0, lonl, latO0, latl] = get_dimensions(dataset);
x_edges = linspace (lon0,lonl,nbins);
y-edges = linspace(lat0 ,latl ,nbins);

%% run for each path loss coefficient guess

save_errors = []; save.n = [];
for z = 1:length(n_range)
n = n_range(z);

fprintf('Running with path loss n = %.2f...\n',n);

%% circles of constant radii ratio

combs = combnk(1l:n_rx,2); % all the different pairs of receivers

n_combs = length (combs);
u = zeros (n_combs,1);v = zeros(n_-combs,1);w = zeros(n_combs,1);
for q = 1l:n_combs

k = combs(q,1);

m = combs(q,2);

[u(q),v(q),w2(q)] = power_ratio(rx_location(k,1), rx_location (
rx_location (m,1), rx_-location (m,

nthroot( (rx-power(k)/rx_power (m)

), .
), ..
), n) )

k,2

m, 2

end

if (w2 <= 0)
fprintf ( 'ERROR: negative radius\n');
return ;

end

%% find circle intersections
w = sqrt (w2);
ix = zeros(n_combs,2,2);
for q = l:n_combs
k = combs(q,1);
m = combs(q,2);
l[ix(q,1,:), ix(q,2,:)] = circcirc(u(k),v(k),w(k), ..
w(m) v (m) wim) )
end
%% histogram

[N, x_edges ,y_edges]| = histcounts2 (ix (:,1,:),ix(:,2,:),x_edges,y_edges);

% find the middle of the max bin in the histogram
[T, indl] = max(N(:)); % stack and find argmax
[x-guess_bin, y_guess_bin] = ind2sub(size(N),indl); % turn a linear argmax into a

2d one

bin_width = x_edges(2) — x_edges(1);

x_guess = x_edges(x_-guess_bin) 4+ .5xbin_width; % longitude guess (middle of max
bin)

y_guess = y_edges(y-guess_bin) 4+ .5xbin_width; % latitude guess (middle of max
bin)

%% error term

error-m = lldistance (x-guess,y_guess ,tx_-location(1),tx_-location (2));
fprintf('TX Actual: Lat %.8f\n',tx_-location (2));

fprintf (' Lon %.8f\n',tx_location (1));

fprintf ('TX Estimate: Lat %.8f\n',y_guess);

fprintf (' Lon %.8f\n',x_guess);

fprintf('Error: %.2f meters\n',error-m);

%% heatmaps
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if plot_heat_-map — 1
heat_data = rot90 (N);
figure;
imagesc ([lon0,lonl] ,[lat0,latl], flip (heat_data, 1));
% title ([dataset , ' with loss coeff n = ' num2str(n)]);
title ([dataset, ' Circles Method']);
hold on;
tx_plot = scatter(tx-location(1),tx-location (2),200,'w', 'LineWidth',5,"'Marker
Yx )y
lgnd = legend (tx-plot , ' Transmitter');
xlabel('lon');ylabel('lat');
axis('xy');pbaspect ([1,1,1]);

% set (lgnd ,'color ',[157,163,173]/255);
end
if plot_heat_with_diagram = 1
heat_data = rot90 (N);
figure;
imagesc ([lon0,lonl] ,[lat0 ,latl], flip (heat_data, 1));
% title ([dataset , ' with loss coeff n = ',num2str(n)]);
title ([dataset, ' Circles Method']) ;
hold on;

tx_plot = scatter (tx-location (1) ,tx-location (2),200,'w','LineWidth', 5, 'Marker
L)

rx_plot = scatter(rx_location (:,1),rx_location (:,2),'r","filled ');

guess_plot = scatter (x_guess,y-guess, 200, 'k"', 'LineWidth',3,'Marker','o");

legend ([rx-plot ,tx_plot, guess_plot],'Observations',' Transmitter', 'Estimated
Location');
xlabel ('lon');ylabel('lat');
axis('xy');pbaspect ([1,1,1]);
end
%% diagram
if plot_diagram =— 1
figure;
rx_plot = scatter(rx_location (:,1),rx_location (:,2),'r","filled ');

1

hold on; set(gca,'ydir', 'normal');

% adding circles to the plot can slow things down a lot ...

if diagram_draw_circles = 1
for k = l:n_combs
draw_circle (u(k) ,v(k) ,w(k),'r—"',2);
end
end

tx_plot = scatter (tx-location (1),tx-location (2),200,'k"','LineWidth', 5, 'Marker
1 , IXV) ;

guess_plot = scatter (x_guess,y_guess ,200,'k', 'LineWidth',3, 'Marker','o"');

% title ([dataset , ' with loss coeff n = ', num2str(n)]);

title ([dataset, ' Circles Method']);

legend ([rx-plot ,tx_plot, guess_plot],'Observations
Location');

axis ([lon0 ,lonl,lat0 ,latl]);pbaspect([1,1,1]);

end

1 1

,'Transmitter ', 'Estimated

save_errors = [save_errors ,error_m|];
fprintf('\n');
end

%% error vs loss coefficient plot

if plot_errors_vs.n — 1
figure;
plot (n_-range ,save_errors);
title ([ 'Error vs Loss Coefficient , ',dataset]);

xlabel ('loss coefficient n');
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ylabel('error in meters');
end

88

B.2 BCP

The BCP method is included below as a Matlab script.

Listing B.2: The BCP method.

% Sam Whiting Nov 2017
% Performs the BCP algorithm on a dataset
clear;clc;close all;

%% pick which data set to run on
% original datasets

% dataset = 'santl';

% dataset = 'sant2';

% dataset = 'quad3';

% dataset = 'upr3';

% dataset = 'aggrl ';

% new datasets

% dataset = 'uprd';

% dataset = 'aggr2';

% dataset = 'aggr2_trunc ';

% dataset = 'aggrd'; % large dataset

% dataset = 'aggr6'; % average powers here
% dataset = 'aggr8'; % mixed power/averages (see read_rss_data.m)

% simulated dataset
dataset = 'sim';

%% some controls/parameters to change

% downsample amount
n_downsamp = 1;

% data truncation (what range of points to use)

truncate = 0; % flag to signal truncation or not
start = 1; % starting index
n_observations = 100; % how many points to use

% toggle plots
plot_heat_map = 1;
plot_heat_with_diagram = 0;
plot_diagram = 1;

% toggle debugging steps (very verbose)
debug_steps = 0;

auto_step = 0; % how many seconds to pause, or 0 for key prompt

% seed random number generator if desired
rng (1234);

% how close is too close for observations? Will skip these pairs
too_close_distance = 0;

% bins in the heat map (along one axis)
n_bins = 30;

% bayesian step (multiplicative factor)




step-size = 1.001;
% step.size = 1.1;

% use the midpoint or the k—weighted midpoint
use_midpoint = 1; % 1 is true (use real midpoint)
n_estimate = 4; %doesn't matter if we're just using the midpoint...

%% open the file
[rx_-location , rx_power, n_rx, tx-location] = ...
read_rss_data( dataset , n.downsamp, truncate, start, n_observations, 0,0);

%% determine dimensions/edges

[lon0, lonl, latO0, latl] = get_dimensions(dataset);
x_edges = linspace (lon0,lonl,n_bins);

y-edges = linspace(lat0,latl ,n_bins);

%% the BCP algorithm
prior = ones(n_bins,n_bins)/(n_bins"2); % grid of probabilities

combs = combnk(1l:n_rx ,2);
n_combs = length (combs) ;

% randomly mix up the combinations of observations order
combs = combs(randperm (length (combs)) ,:);

skip_total = 0;

for z = 1l:n_combs
% which combination of points do we use?
indexl = combs(z,1);
index2 = combs(z,2);
pointl = rx_location (indexl ,:) ;
powerl = rx_power (indexl);
point2 = rx_location (index2 ,:) ;
power2 = rx_power (index2);

% ignore the comparison if the observations are too close (testing)

if lldistance (pointl(1l),pointl(2),point2(1),point2(2)) < too_close_distance
skip_total = skip_total +1;
continue;

end

% k is the power ratio
k = nthroot(powerl/power2,n_estimate);

% k_middle is the weighted midpoint
k-middle = [(k*pointl (1) + point2(1))/(k+1), (kxpointl(2) + point2(2))/(k+1)];

% true midpoint
real_middle = [(pointl (1) + point2(1))/2, (pointl(2) + point2(2))/2];

% k_slope is the orthogonal slope of the line between the two points
k_slope = —( pointl(1l) — point2(1) ) / ( pointl(2) — point2(2) );

% k_intercept is the y intercept of the orthogonal line through the
% k_middle point
if use_midpoint =1
k_intercept = real_middle(2) — (real_middle(1)*k_slope); % try using actual
midpoint instead
else
k_intercept = k_middle(2) — (k-middle(1l)x*k_slope);
end
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% Which point is it closest to?
if (k> 1) % k>1 means it was closer to point 1

above = (pointl(2) > pointl(1)xk_slope 4+ k_intercept);
else % else it was closer to point 2

above = (point2(2) > point2(1)xk_slope + k_intercept);

end
% % % % k_x axis
% % % kx = 0:.1:20;
% % % % points on the k—line
% % % k_locus = (k-x .x k_slope) + k_intercept;

% update every grid point
for a = 1l:n_bins
for b = 1l:n_bins

x0 = x-edges(b); % the x coordinate in degrees
y0 = y-edges(a); % y coordinate
if (above = 1) % use the space above the line

if (y0 > (x0xk_slope + k_intercept) )
prior (a,b) = prior(a,b)*step_size;

else
prior(a,b) = prior(a,b)/step_size;
end
else % else use below the line
if (y0 < (xOxk_slope + k_intercept) )
prior (a,b) = prior(a,b)xstep_size;
else
prior (a,b) = prior(a,b)/step_size;
end
end

end
end

% normalize the prior
prior = prior /(sum(sum(prior)));

% a debugging step (very verbose)
if debug_steps = 1
figure;
imagesc ([lon0,lonl] ,[lat0,latl], prior);
set (gca, 'xtick ' |[])
set (gea, 'xticklabel ' [])
set (gca, 'ytick ' ,[])
set (gea, 'yticklabel ' [])
axis('xy'); hold on;
pbaspect ([1,1,1]);
title ([ 'Step ', num2str(z)]);
tx_plot = scatter(tx_location(1),tx_location (2),200,'k"', 'LineWidth',5,"'Marker

L)

szl = 50; sz2 = 50;

if (k> 1) szl = 250; % closer to pl

else sz2 = 250; % closer to p2

end

scatter (pointl (1), pointl(2),szl,'r"','filled');
scatter (point2 (1), point2(2),sz2,'r', " "filled ');

% k_x axis

k_x = linspace (lon0,lonl);

% points on the k—line

k_locus = (k-x .* k_slope) + k_intercept;
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% plot k line

plot (k_x,k_locus , 'k— ", 'LineWidth ', 2);
if auto_step =— 0
pause;
else
pause (auto_step);
end

end
end

%% find the middle of the max bin in the histogram
prior_flip = prior ';
[T, indl] = max(prior_flip (:)); % stack and find argmax

[x_guess_bin, y_guess_bin] = ind2sub(size(prior),indl); % turn a linear argmax into a
2d one

bin_width = x_edges(2) — x_edges(1);

% x_-guess = x_edges(x_guess_bin) + .5+xbin_width; % longitude guess (middle of max bin

)
% y-guess = y_edges(y_-guess_bin) + .5xbin_width; % latitude guess (middle of max bin)
x_guess = x-edges(x_guess_bin); % longitude guess
y_guess = y_edges(y-guess_bin); % latitude guess

%% generate an error term

error.m = lldistance (x_guess,y_guess,tx_location (1),tx_location(2));
fprintf ('"TX Actual: Lat %.8f\n',tx_location (2));

fprintf (' Lon %.8f\n',tx_location(1));

fprintf ('TX Estimate: Lat %.8f\n',y_guess);

fprintf (' Lon %.8f\n',x_guess);

fprintf('Error: %.2f meters\n',error_m);

fprintf('\n'");
fprintf ( 'Number of pairs skipped: %d\n',skip_total);
fprintf('Percentage of pairs skipped: %.2f percent\n',100xskip_total/nchoosek(n_rx,2)

)

%% plot the heat map

if plot_heat_map — 1
figure;
imagesc ([lon0,lonl] ,[lat0 ,latl], prior);
hold on;

tx_plot = scatter(tx-location (1),tx-location (2),200,'w', 'LineWidth',5,'Marker', 'x
)
% guess_plot = scatter (x_-guess,y_guess,200,'k','LineWidth',3,'Marker','o");
% legend ([tx_plot , guess_plot],'Transmitter', 'Estimated Location');
legend ([ tx_plot], 'Transmitter');
xlabel ('lon");ylabel('lat');
% colorbar;
axis('xy');
title ([ 'BCP Method, ', dataset ]);
axis('xy');pbaspect ([1,1,1]);

end

%% plot the heat map with diagram

if plot_heat_with_diagram =— 1
figure;
imagesc ([lon0,lonl],[lat0,latl], prior);
hold on;

tx_plot = scatter(tx-location (1),tx-location (2),200,'k"', 'LineWidth',5,"'Marker', 'x
1

)

rx_-plot = scatter(rx_-location (:,1),rx_location (:,2),'r"');
guess_plot = scatter (x-guess,y-guess, 200, 'k','LineWidth',3,"Marker','o");
legend ([rx_plot ,tx_plot, guess_plot],'Observations',' Transmitter', 'Estimated

Location');
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xlabel ('lon");ylabel('lat');

% colorbar;
axis('xy');
title ([ 'BCP, ',dataset]);
xlabel ('lon");ylabel('lat');
axis('xy');pbaspect ([1,1,1]);
end

%% plot the diagram

if plot_diagram =— 1
figure;
rx_-plot = scatter(rx_-location (:,1),rx_-location (:,2),'r","'filled');
hold on;

!

set (gca, 'ydir', 'normal');

tx_plot = scatter (tx_-location(1l),tx_location(2),200,'k"', 'LineWidth',5, 'Marker', 'x
l).

rx_plot = scatter(rx_location (:,1),rx_location (:,2),'r", " filled ');

guess_plot = scatter (x-guess,y-guess, 200, 'k','LineWidth',3,"Marker','o");

legend ([rx_plot ,tx_plot, guess_plot],'Observations',' Transmitter', 'Estimated
Location');

title ([ 'BCP Method, ', dataset ]);

axis ([lon0, lonl, lat0, latl]);

pbaspect ([1,1,1]);

end

B.3 3-parameter

The 3-parameter method is included below as a Matlab script.

Listing B.3: The 3-parameter method

% Sam Whiting Nov 2017

%

Performs the 3—parameter method on a dataset

clear;clc;close all;

Yo

%% pick which data set to run on
0;

original datasets

% dataset = 'santl';

% dataset = 'sant2';

% dataset = 'quad3';

% dataset = 'upr3';

% dataset = 'aggrl ';

% new datasets

% dataset = 'uprd';

% dataset = 'aggr2';

% dataset = 'aggr2_trunc ';

% dataset = 'aggrd'; % large dataset

% dataset = 'aggr6'; % average powers here
% dataset = 'aggr8'; % mixed power/averages (see read_rss_data.m)
% simulated dataset

dataset = 'sim';

%% some controls/parameters to change

% downsample amount
n_downsamp = 1;
% data truncation (what range of points to use)
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truncate = 0; % flag to signal truncation or not
start = 1; % starting index
n_observations = 100; % how many points to use

% toggle plots
plot_diagram = 1;
plot_newton = 0;

plot_ellipses 0;

% pausing

pause_each_step = 0;

auto_step = .5; % how many seconds to pause, or 0 for key prompt

% mnewtons method iterations
n_iter = 10;

%% open the file
[rx_location , rx_power, n._rx, tx_location] = ..
read_rss_data( dataset, n_-downsamp, truncate, start, n_observations, 0,0);

%% determine dimensions/edges
[lon0, lonl, lat0, latl] = get_dimensions(dataset);

%% newton's method
x_data = rx_location (:,1); y_data = rx_location (:,2);
newton_vector = [lonl; latO; 0]; % step values. initial conditions go here

grad = zeros(3,1);
hess = zeros (3,3);

if plot_newton — 1
figure;
plot (newton_vector (1) ,newton_vector(2),'bd"', " 'LineWidth',2);
hold on;
title ([ 'Newtons Method, ', dataset ]);

tx_plot = scatter(tx_location (1),tx_location (2),200,'k"', 'LineWidth',5,'Marker','x
)

rx_plot = scatter(rx_location (:,1),rx_location (:,2),'r","'filled ");

axis ([lon0, lonl, lat0, latl]);

pbaspect ([1,1,1]);

ylabel('Lat');

xlabel ('Lon');

end

fprintf('init: %.4f %.4f %.4f\n', newton_vector(l), newton_vector(2), newton_vector
(3));

for z = 1l:n_iter

% squared distance metric to be used for grad/hess
d2 = (newton_vector(1l)—x_data(:))."2 4+ (newton_vector(2) — y_data(:))."2;

% compute the gradient

grad (1) = 4xsum( rx_power .* (newton_vector(l)—x_data(:)) .x (rx_power.*xd2 —
newton_vector (3)) );

grad (2) = 4xsum( rx_power .* (newton_vector(2)—y_data(:)) .x (rx_power.xd2 —
newton_vector (3)) );

grad (3) = 2xsum( newton_vector (3) — rx_power.xd2 );

% compute the Hessian

hess(1,1) = 4xsum( rx_power .* (rx_power.*d2 — newton_vector(3)) + 2xrx_power." 2
.#(newton_vector (1)—x_data(:))."2 );
hess (1,2) = 8xsum( rx_power. 2 .x (newton_vector(l)—x_-data(:)) .* (newton_vector

(2) — y-data(:)));
hess (2,1) = hess(1,2);
hess (1,3) = —4xsum(rx_power .x (newton_vector(l)—x_-data(:)) );
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hess (3,1) = hess(1,3);

hess(2,2) = 4xsum( rx_-power .* (rx-power.xd2—newton_vector(3)) + 2*rx_power." 2
.#(newton_vector (2)—y_data(:))."2 );
hess (2,3) = —4xsum(rx_power .x (newton_vector(2)—y-data(:)) );

hess (3,2) = hess(2,3);
hess (3,3) = 2%n_rx;

% do one newton step

newton_vector = newton._vector — hess\grad; % xstep — inv(hess) * grad

fprintf('step %d: %.4f %.4f %.4f\n', z, newton_vector(1l), newton_vector (2),
newton_vector (3));

if plot_newton — 1
if pause_each_step = 1
pause (auto_step);
end
plot (newton_vector (1) ,newton_vector(2),'bd"', 'LineWidth',2);
end
end
x_guess = newton_vector (1);
y-guess = newton_vector (2);

fprintf('\n'");

if plot_.newton =1
guess_plot = scatter (x-guess,y_guess,200, 'k','LineWidth',3,"Marker','o");
legend ([rx_plot ,tx_plot , guess_plot],'Observations','Transmitter', 'Estimated
Location ") ;
end

%% Generate an error term

error.m = lldistance (x_guess,y_guess,tx_location (1),tx_location (2));
fprintf ('TX Actual: Lat %.8f\n',tx_location (2));

fprintf (' Lon %.8f\n',tx_location(1));

fprintf ('TX Estimate: Lat %.12f\n',y_guess);

fprintf (' Lon %.12f\n',x_guess);

fprintf('Error: %.2f meters\n',error_m);

%% diagram plot

if plot_diagram =— 1
figure;
rx_plot = scatter(rx_location (:,1),rx_location (:,2),'r","'filled ');
hold on;

set (gca, 'ydir', 'normal');

tx_plot = scatter (tx_-location (1) ,tx_location(2),200,'k"', 'LineWidth',5, 'Marker','x
')

rx_plot = scatter(rx_location (:,1),rx_location (:,2),'r","filled ');

guess_plot = scatter (x-guess,y_guess, 200, 'k"','LineWidth',3,"'Marker','o");

legend ([rx_plot ,tx_plot , guess_plot],'Observations','Transmitter', 'Estimated
Location ") ;

title ([ 'Simplified 3 Parameter Method, ', dataset ]);

axis ([lon0, lonl, lat0, latl]);

pbaspect ([1,1,1]);

end

%% ellipses plot

if plot_ellipses =— 1
figure;
rx_-plot = scatter(rx_-location (:,1),rx_-location (:,2),'r","'filled');
hold on;

!

set (gca, 'ydir', 'normal');
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% plot the major and minor axis

mu = [xX_guess;y-guess |;

partials = hess (1:2,1:2);

[u,v] = eig(inv(partials));

vi'= (1) /sart (v(1,1));

v2 = u(:.2) /sart (v(2.2));

plot ([mu(1) mu(1)+vi (1)] ) [mu(2) ma(2)4+v1(2)]) ;

plot ([mu(1) jmu(1)+v2(1) ] | [mu(2) mu(2)4v2(2)]) ;

% plot contours

for k = [.01,.1,1,10,100]
[y] = plotellipse (inv(partials) ,mu,k);
plot (y(1,:),y(2,:));

end

tx_plot = scatter(tx-location (1),tx-location (2),200,'k"', 'LineWidth',5,'Marker', 'x
)

rx_-plot = scatter(rx_-location (:,1),rx_-location (:,2),'r","'filled ");

guess_plot = scatter (x_guess,y_guess, 200, 'k','LineWidth' 3, "Marker','o");

legend ([rx-plot ,tx_plot, guess_plot],'Observations',' Transmitter', 'Estimated
Location');

title ([ 'Level Curves, ', dataset ]);

axis ([lon0, lonl, lat0, latl]);

pbaspect ([1,1,1]);

end

%% functions

% plot an ellipse

function [x] = plotellipse (A,x0,c)

% determine the points to plot an ellispe in two dimensions,
% described by (x—x0) 's«Ax(x—x0) = ¢, where A is symmetric

d = inv(sqrt(d));

for theta = 0:dtheta:2x%pi
w = sqrt(c)x[cos(theta); sin(theta)];
z = dxw;

x = [x uxz + x0];
end
x = [x x(:,1)];
end
B.4 Subset

The subset method is included below as a Matlab script.

Listing B.4: The subset method.

% Sam Whiting Nov 2017
% Performs the subset method on a dataset
clear;clc;close all;

%% pick which data set to run on
% original datasets

% dataset = 'santl';
% dataset = 'sant2';
% dataset = 'quad3';
% dataset = 'upr3d';




11
12
14
15
17
18
19

[N )
DU W= O

0 =1

W W WWWWWwhoNoNnNNDNDND N
QU s W N = co C C

SR R W oW W
S © 0D

[\

61

63
64
65
66
67
68
69

N =

IR IS IR IS PN

Ut W

% dataset = 'aggrl';

% new datasets

% dataset = 'uprd';

% dataset = 'aggr2';

% dataset = 'aggr2_trunc ';

% dataset = 'aggrd'; % large dataset

% dataset = 'aggr6'; % average powers here

% dataset = 'aggr8'; % mixed power/averages (see read_rss_data.m)

% simulated dataset
dataset = 'sim';

%% some controls/parameters to change

% downsample amount
n_downsamp = 1;

% data truncation (what range of points to use)

truncate = 0; % flag to signal truncation or not
start = 10; % starting index
n_observations = 250; % how many points to use

% how many times to do newton's method on a different subset
n_subsets = 3 % 10000;
% size of each subset can be set as a percentage or in samples

subset_size = .2; % set as a percentage

subset_samples = 3; % if this is not 0, this will override the percentage
different_size_subsets = 0; % do we want to go through a list of subset sizes?
subset_sizes_list = [3,6]; % the list of subset sizes to use

% toggle plots
plot_diagram = 1;
plot_newton = 0;
plot_heat_map = 1;
plot_heat_with_diagram = 0;

% estimate loss coefficients?

estimate_loss_cfs = 0;

n_classes = 3; % only 5 colors so far
plot_classes = 0; % plot the diagram?
plot_loss_cfs = 0; % observations vs loss cfs

%heatmap bins
n_bins = 30;

% psuedo inverse or normal
use_pinv = 0;

% verbose—ness
print_each_error = 0;

% newtons method iterations
n_iter = 10;

%% open the file
[rx_-location , rx_power, n_rx, tx-location] = ..
read_rss_data( dataset, n.downsamp, truncate, start, n_observations, 0,0);

%% determine dimensions/edges

[lon0, lonl, lat0, latl] = get_dimensions(dataset);
x_edges = linspace (lon0,lonl,n_bins+1);

y-edges = linspace (lat0,latl ,n_bins+1);
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%% newton's method loop

if plot_newton — 1
figure;
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tx_plot = scatter(tx-location (1),tx-location (2),200,'k"', 'LineWidth',5,'Marker', 'x
!

)

hold on;
title ([num2str(n_subsets),' subsets of ' num2str(subset_samples),' samples,
Newtons Method on ',dataset]);
rx_-plot = scatter(rx_-location (:,1),rx_-location (:,2),'r","'filled ');
% legend ([rx_plot ,tx_plot],'Observations',' Transmitter ') ;

axis ([lon0, lonl, lat0, latl]);
pbaspect ([1,1,1]);
end

% arrays for holding results
X_GUESS = zeros(n_subsets ,1);

Y_GUESS = zeros(n_subsets ,1);
% find out how many samples are in each subset
if subset_samples =— 0

subset_samples = floor (subset_size*n_rx);
end

% if there is a list , find it's length
if different_size_subsets =1
divisor = n_subsets/length(subset_sizes_list) +1; % how many subsets for each
size in the list
idx = floor ((l:n_subsets)/divisor) + 1; % [11111 2222222 33333] % indexes for
size to use
end

for q = l:n_subsets

% combinations of different size subsets

if different_size_subsets =1
subset_samples = subset_sizes_list (idx(q));
% fprintf('%d ',subset_sizes_list (idx(q)));
end

% pick out our random subset of data
subset_indexes = randperm( n_rx, subset_samples );
x-data = rx_location (subset_indexes ,1);

y_data = rx-location (subset_indexes ,2);
power_data = rx_power (subset_indexes);

x_step = [lonl; lat0; O0]; % step values. initial conditions go here

grad = zeros(3,1);

hess = zeros (3,3);
% fprintf ('init: %.4f %.4f %.4f\n', x_step(l), x-step(2), x_step(3));
for z = l:n_iter

% squared distance metric to be used for grad/hess

d2 = (x_step(l)—x-data(:))."2 + (x-step(2) — y-data(:))."2;

% compute the gradient

grad (1) = 4xsum( power_data .x (x_step(l)—x_data(:)) .x (power_data.xd2 —
x_step (3)) )

grad (2) = 4xsum(
x_step (3)) );

grad (3) = 2xsum(

)

power_data .% (x_step(2)—y.-data(:)) .x (power_data.xd2 —
x_step (3) — power_data.xd2 );

% compute the Hessian
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hess(1,1) = 4xsum( power_data .x (power.-data.xd2 — x_step(3)) + 2#«power_data
.72 x(x_step(l)—x_data(:))."2 );
hess(1,2) = 8xsum( power_-data.”2 .x (x_step(l)—x-data(:)) .* (x_step(2) —

y-data (:)));
hess(2,1) = hess(1,2);
hess(1,3) = —4xsum(power_data .x (x.step(l)—x_data(:)) );

hess(3,1) = hess(1,3);

hess (2,2) = 4xsum( power_data .x (power.data.xd2—x_step(3)) + 2xpower_data. 2
.k (x-step (2)—y-data(:))."2 );
hess (2,3) = —4xsum(power_data .x (x_step(2)—y-data(:)) );

hess(3,2) = hess(2,3);
hess (3,3) = 2xn_rx;

% do one newton step

if use_pinv = 0
x_step = x_step — hess\grad; % xstep — inv(hess) % grad
else
x_step = x_step — pinv (hess)*grad; % xstep — inv(hess) * grad
end
% fprintf('step %d: %.4f %.4f %.4f\n', z, x_step(l), x_step(2), x_step(3));
end
% fprintf('\n');

x_guess = x_step (1);
y-guess = x_step(2);

if plot_newton =— 1
% guess_plot = scatter (x_guess,y_guess,200,'k','LineWidth' 3 ,'Marker','o"');
% legend ([rx_plot ,tx_plot , guess_plot],'Observations',' Transmitter', '
Estimated Locations');
scatter (x_guess ,y-guess ,50,'b' 'Marker','.");
end
% Generate an error term
if print_each_error =— 1
error.m = lldistance (x_guess,y_guess,tx_location(1),tx_location (2));
fprintf('For subset number %d, the error is %.2f meters\n',q,error_m);
end
% SAVE information for plotting later
X_GUESS(q) = x_guess;
Y_-GUESS(q) = y-guess;
end
if plot_newton — 1
legend (' Transmitter ', 'Observations','Newtons Method Estimates');
end

%% histogram
% make the 2d histogram
[hist_-data ,x-edges ,y_edges] = histcounts2 (X_-GUESS,Y_GUESS, x_edges ,y-edges);

% find the middle of the max bin in the histogram

[T, indl] = max(hist_data (:)); % stack and find argmax

[x_-guess_bin, y_guess_bin] = ind2sub(size (hist_data),indl); % turn a linear argmax
into a 2d one

bin_width = x_edges(2) — x_edges(1);

x_guess = x-edges(x_guess_bin) + .5xbin_width; % longitude guess (middle of max bin)

y-guess = y_edges(y_guess_bin) + .5xbin_width; % latitude guess (middle of max bin)

%% heatmaps
if plot_heat_map = 1
heat_data = rot90(hist_data);
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figure;
imagesc ([lon0 ,lonl] ,[lat0,latl], flip (heat_data, 1));

% title ([num2str(n_subsets),' subsets of size ',num2str(subset_size=x100),'%,
Newtons Method on ',dataset]);

1 1

title ([num2str(n_subsets),' subsets of ' ,num2str(subset_samples),' samples,
subset method on ' ,dataset]);

hold on;

tx_plot = scatter(tx-location (1),tx-location (2),200,'k"', 'LineWidth',5,'Marker', 'x
)

legend (tx_plot , ' Transmitter');

xlabel ('lon");ylabel('lat');

axis('xy');pbaspect ([1,1,1]);

end

if plot_heat_with_diagram = 1
heat_data = rot90 (hist_-data);
figure;

imagesc ([lon0 ,lonl] ,[lat0,latl], flip (heat_data, 1));
title ([num2str(n_subsets),' subsets of ' num2str(subset_samples),' samples,
subset method on ',dataset]);
hold on;
tx_plot = scatter(tx_location (1),tx_location (2),200,'k"', 'LineWidth',5,'Marker','x
)
% rx-plot = scatter (rx_location (:,1),rx-location (:,2) ,'r','filled ');
rx_plot = scatter(rx_location (:,1),rx_location (:,2),'r"');
guess_plot = scatter (x-guess,y_guess, 200, 'k','LineWidth',3,"Marker','o");
legend ([rx_plot ,tx_plot, guess_plot],'Observations','Transmitter', 'Estimated
Location');
% legend ([rx_plot ,tx_plot],'Observations',' Transmitter ') ;
xlabel('lon');ylabel('lat');
axis('xy');pbaspect ([1,1,1]);
end

%% diagram plot

if plot_diagram =— 1
figure;
rx_plot = scatter(rx_location (:,1),rx_location (:,2),'r","'filled');
hold on;
set (gca, 'ydir', 'normal');

tx_plot = scatter (tx_-location (1) ,tx-location (2),200,'k', 'LineWidth"',5, 'Marker', 'x
l)‘

rx_plot = scatter(rx_location (:,1),rx_location (:,2),'r","filled ");

guess_plot = scatter (x-guess,y_guess, 200, 'k','LineWidth',3,"Marker','o");

legend ([rx_plot ,tx_plot, guess_plot],'Observations','Transmitter', 'Estimated
Location ") ;

title ([num2str(n_subsets),' subsets of ' num2str(subset_samples),' samples,
subset method on ',dataset]);
axis ([lon0, lonl, lat0, latl]);
pbaspect ([1,1,1]);
end
%% generate a final error term
error.m = lldistance (x_guess,y_guess,tx_location(1),tx_location (2));
fprintf('TX Actual: Lat %.8f\n',tx_-location (2));
fprintf (' Lon %.8f\n',tx_location (1));
fprintf ('TX Estimate: Lat %.8f\n',y_guess);
fprintf (' Lon %.8f\n',x_guess);

fprintf('Error: %.2f meters\n',error_m);

%% estimate power and loss_cfs
if estimate_loss_cfs =1
loss_guess = 2;
% distances = lldistance (repmat(x-step(1l),n.rx,1) ,repmat(x_step(2),n._rx,1),
rx_-location (:,1) ,rx_location (:,2));
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end
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distances = sqrt( (x-step(l)—rx-location(:,1))."2 + (x-step(2)—rx_-location (:,2))
205

p-estimate = sum(rx_power .x distances.” loss_guess)/n_rx; % power transmitted if
loss coefficient=2

% we have our estimate of power, now let's find loss coefficients for each

% point

ratios = p-estimate./rx_power;
loss_cfs = log(ratios (:))./log(distances (:));

if plot_loss_cfs =1
figure; plot(loss_cfs);title('Loss Coefficients');

end

% kmeans clustering of points

n_classes = 5;
[IDX, centers] = kmeans(loss_cfs ,n_classes); % cluster [1,2,3,2,3,2,1,1,1]
grp = zeros(n._rx,n_classes); % for binary indexing
for z = 1l:n_classes
grp(:,z) = (IDX = z); % make an indexing variable
end

% define some colors
color (1,:) = [232, 42, 13]/256; % red
color (2,:) = [237, 140, 37]/256; % orange
color (3,:) = [237, 233, 36]/256; % yellow
color (4,:) = [26, 219, 29]/256; % green
color (5,:) = [19, 19, 196]/256; % blue

% centers are now from 0 to 1

centers_norm = (centers—min(centers))/max(centers—min(centers));
color = [centers_.norm.”.5%86+170, centers_norm." 2200, centers_.norm=x*.1%13]/256;
% red
color = [centers_.norm.x0+10, centers_.norm.*x80+10, centers_.norm.x200+56]/256; %
red

% darker means lower loss cf

if plot_classes — 1
figure;
tx_plot = scatter(tx-location (1),tx-location (2),200,'k"', 'LineWidth',5,"'Marker
1 'X‘);

hold on;

title ([ 'observations by loss coefficients , ', dataset ]);
for z = l:n_classes
% grp-tmp = grp(:,z);

grp = (IDX = z);
rx-plot(z) = scatter (rx-location(grp,1),rx-location (grp,2) ,[],color(z,:),

"filled ');
% rx_plot(z) = scatter(rx_-location(grp(:,z),1),rx_location(grp(:,z),2)
J[],color(z,:) ,'filled ");

end
legend (' Transmitter ') ;
axis ([lon0, lonl, lat0, latl]);
pbaspect ([1,1,1]);
end
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B.5 T7-parameter

The 7-parameter method is included below as a Matlab script.

Listing B.5: The 7-parameter method.

101

% Sam Whiting Jan 2018

% Performs the 7—parameter method on a dataset

% Uses the model with J(x0,yo,po,no,al,a2,a3) and kmeans clustering
clear;clc;close all;

%% pick which data set to run on
% original datasets

% dataset = 'santl';
% dataset = 'sant2';
% dataset = 'quad3';
% dataset = 'upr3';

% dataset = 'aggrl';

% new datasets

% dataset = 'uprd';

% dataset = 'aggr2';

% dataset = 'aggr2_trunc ';

% dataset = 'aggrd'; % large dataset

% dataset = 'aggr6'; % average powers here

% dataset = 'aggr8'; % mixed power/averages (see read_rss_data.m)

% simulated dataset
dataset = 'sim';

%% some controls/parameters to change

% downsample amount
n_downsamp = 1;

% data truncation (what range of points to use)

truncate = 0; % flag to signal truncation or not
start = 100; % starting index
n_observations = 10; % how many points to use

% toggle plots
plot_diagram = 0;
plot_newton = 1;
plot_classes = 1;
plot_cost = 1;

% pausing
pause_each_step = 0;
auto_step = .5; % how many seconds to pause, or 0 for key prompt

% cartesian or lat/lon for newton's
use_cartesian = 0;

% psuedo inverse or dangerous inverse
use_pinv = 1;

% newtons method iterations
n_iter = 100;

%% open the file
[rx_-location , rx_power, n._rx, tx_location] = ..

read_rss_data( dataset, n.downsamp, truncate, start, n_observations,

%% determine dimensions/edges

0,0);
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[lon0, lonl, lat0, latl] = get_dimensions(dataset);

% % % %% convert from lat lon to a cartesian grid
% % % % (:,1) is to access the longitudes
% % % % (:,2) is the latitudes

% % % mean_latitude = mean(rx_location (:,2)); % what latitude are we working at
% % % warp_factor = cos(mean_latitudexpi/180); % away from the equator means scale us
back

% % % meters_per_deg = 111111; % meters per degree at the equator
% % %

% % % rx_location_cartesian = zeros(size(rx_location));

% % % rx_-location_cartesian(:,1) = rx_-location (:,1) % meters_per_.deg x warp_-factor; %
longitudes need warping

% % % rx_-location_cartesian (:,2) = rx_-location (:,2) % meters_per_.deg ; % latitudes
are ok

%% simplified 3 parameter newton's method

x_data = rx_location (:,1); y_data = rx_location (:,2);
x_step = [lonl; latO0; 0]; % step values. initial conditions go here
% % % x_-data = rx_location_cartesian (:,1); y-data = rx_location_cartesian (:,2);
% % % mean_location = mean(rx_location_cartesian);
% % % x-step = [mean_location'; 0]; % step values. initial conditions go here
grad = zeros(3,1);
hess = zeros (3,3);
if plot_newton — 1
figure;
plot (x_step (1) ,x_step(2),'d', 'LineWidth',2);
hold on;

title ([ 'Newtons Method, ', dataset ]);

tx_-plot = scatter(tx-location (1),tx-location (2),200,'k"', 'LineWidth',5,'Marker', 'x
)

rx_-plot = scatter(rx_-location (:,1),rx_-location (:,2),'r","'filled ");

axis ([lon0, lonl, lat0, latl]);

pbaspect ([1,1,1]);

end
fprintf('init: %.41 %.4f %.4f\n', x_step(1l), x-step(2), x-step(3));
for z = 1l:n_iter

% squared distance metric to be used for grad/hess
d2 = (x_step(l)—x_-data(:))."2 + (x-step(2) — y-data(:))."2;
% d2 = lldistance (x_step (1), x_step(2), x-data(:), y-data(:) );

% compute the gradient

gra = 4xsum( rx_power .x (x_step —x_data (: % (rx_power .x* — x_step
d(1 4 1 d d2 3
)3

grad (2) = 4xsum( rx_power .* (x_step(2)—y-data(:)) .x* (rx_power.xd2 — x_step(3))
)3

grad (3) = 2xsum( x_step (3) — rx_power.xd2 );

% compute the Hessian

hess (1,1) = 4xsum( rx_power .x (rx.power.xd2 — x_step(3)) + 2*rx_power. 2 .x(
x_step (1)—x-data(:))."2 );

hess (1,2) = 8xsum( rx_power. 2 .x (x_step(l)—x_data(:)) .* (x_step(2) — y-data(:)
)

hess (2,1) hess (1,2);

hess(1,3) = —4xsum(rx_-power .* (x.step(l)—x_-data(:)) );

hess (3,1) = hess(1,3);

hess(2,2) = 4xsum( rx_-power .* (rx-power.xd2—x_step(3)) + 2xrx_power. 2 .x(x_step
(2)-y_data(:))."2 );
hess (2,3) = —4xsum(rx_-power .*x (x-step(2)—y-data(:)) );
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hess (3,2) = hess(2,3);
hess(3,3) = 2%n_rx;
% do one newton step

x_step = x_step — hess\grad; % xstep — inv(hess) % grad
fprintf('step %d: %.4f %.4f %.4f\n', z, x_step(l), x_step(2), x_step(3));

if plot_newton = 1
if pause_each_step — 1
pause (auto_step);
end
plot (x_step (1) ,x_step(2),'d", 'LineWidth',2);
end
end
fprintf('\n');
x_guess = x_step (1);

y-guess = x_step (2);

% % % % let's change back to lat lon here
% % % x_guess = x_step(l) / meters_per_deg / warp_factor;
% % % y-guess = x_step(2) / meters_per_deg;

if plot_.newton =— 1

guess_plot = scatter (x-guess,y_guess, 200, 'k','LineWidth',3,"Marker','o");
legend ([rx_plot ,tx_plot, guess_plot],'Observations','Transmitter', 'Estimated
Location');
end

%% generate an error term

error.m = lldistance (x_-guess,y_guess,tx_location (1),tx_location(2));
fprintf ('"TX Actual: Lat %.8f\n',tx_location (2));

fprintf (' Lon %.8f\n',tx_location(1));

fprintf ('TX Estimate: Lat %.8f\n',y_guess);

fprintf (' Lon %.8f\n',x_guess);

fprintf('Error: %.2f meters\n',error_m);

%% diagram plot

if plot_-diagram = 1
figure;
rx_-plot = scatter(rx_-location (:,1),rx_-location (:,2),'r","'filled");
hold on;

1

set (gca, 'ydir', 'normal');
tx_plot = scatter (tx_-location(1l),tx_location(2),200,'k"', 'LineWidth',5, 'Marker', 'x
)
rx_plot = scatter(rx_location (:,1),rx_location (:,2),'r", " filled ');
guess_plot = scatter (x-guess,y-guess, 200, 'k','LineWidth',3,"Marker','o");
legend ([rx_plot ,tx_plot, guess_plot],'Observations',' Transmitter', 'Estimated
Location');
title ([ 'Bayes Method, ', dataset ]);
axis ([lon0, lonl, lat0, latl]);
pbaspect ([1,1,1]);
end

%% estimate power and loss_cfs

loss_guess = 2;

% distances = lldistance (repmat(x_step(l),n.rx,1) ,repmat(x_step(2),n_rx,1),
rx_location (:,1) ,rx_location (:,2));

distances = sqrt( (x-step(l)—rx_-location(:,1))."2 + (x_step(2)—rx_location(:,2)).72 )

K
p-estimate = sum(rx-power .x distances.” loss_guess)/n_rx; % power transmitted if loss
coefficient=2
% we have our estimate of power, now let's find loss coefficients for each
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% point

ratios = p-estimate./rx_power;

loss_cfs = log(ratios(:))./log(distances (:));
figure; plot(loss_cfs);title('Loss Coefficients');

% kmeans clustering of points

n_classes = 5;
[IDX, centers] = kmeans(loss_cfs ,n_classes); % cluster [1,2,3,2,3,2,1,1,1]
grp = zeros (n-rx,n-classes); % for binary indexing
for z = 1l:n_classes
grp(:,2z) = (IDX = z); % make an indexing variable
end

% define some colors

color (1,:) = [232, 42, 13]/256; % red
color (2,:) = [237, 140, 37]/256; % orange
color (3,:) = [237, 233, 36]/256; % yellow
color (4,:) = [26, 219, 29]/256; % green
color (5,:) = [19, 19, 196]/256; % blue

if plot_classes = 1
figure;

tx_-plot = scatter(tx-location (1),tx-location (2),200,'k"', 'LineWidth',5,'Marker', 'x

")

hold on;
title ([ 'observations by loss coefficients , ', dataset ]);
for z = 1l:n_classes

% grp_tmp = grp (:,z);

grp = (IDX == z);
rx_plot(z) = scatter (rx_location(grp,1),rx_location (grp,2) ,[],color(z,:),"'

filled ");
% rx_-plot(z) = scatter(rx_location(grp(:,z),1),rx_location(grp(:,z),2),[],
color (z,:) ,'filled ") ;

end
legend (' Transmitter ') ;
axis ([lon0, lonl, lat0, latl]);
pbaspect ([1,1,1]);
end
return ;

%% T parameter newton's method
x_data = rx_location (:,1); y-data = rx_-location (:,2);

% starting location / initial conditions
% from the simplified model newtons method run

newton_start = [x_guess; y._guess];

% newton_vector = [x0 y0O p0 n0 al a2 a3]

newton_vector = [newton_start; 5; 4; 2.1; 2.2; 2.3]; % step values. initial
conditions go here

newton_vector = [newton_start; 5; 4; centers]; % step values. initial conditions go
here

grad = zeros(7,1);

hess = zeros (7,7);
if plot_.newton =1
figure;
plot (newton_vector (1) ,newton_vector(2),'d"', 'LineWidth',2);
hold on;
title ([ 'Newtons Method, ', dataset ]);

tx_plot = scatter (tx_-location (1) ,tx_location (2),200,'k', 'LineWidth',5, 'Marker', 'x
1

)




rx_-plot = scatter(rx_-location (:,1),rx_-location (:,2),'r","'filled ');
axis ([lon0, lonl, lat0, latl]);
pbaspect ([1,1,1]);

end

Y%rename a few things
xi = x_data (:);

yi = y-data(:);

p-i = rx_power (:);

% % % ctf = IDX(:);

% % % al = zeros (3,1);

% variable to store cost function values
SAVE_.]J = zeros(n_iter ,1);

fprintf('init: %.4f %.4f %At %.4f %.2f %.2f %.2f\n', newton_vector (1),
newton_vector (2), ..

newton_vector (3), newton_vector(4), newton_vector(5), newton_vector (6),
newton_vector (7)) ;

for z = 1l:n_iter
% newton_vector = [x0,y0,p0,n0,al(1),al(2),al(3)];
x0 = newton_vector(1);
y0 = newton_vector (2);
p0 = newton_vector (3);
n0 = newton_vector (4);
% % % al(1l) = newton_vector (5);
% % % al (2) = newton_vector (6);
% % % al(3) = newton_vector (7);

al = newton_vector (IDX + 4); % [all all al2 al3 al3 al2 al2 all...]

% squared distance metric to be used for grad/hess
d2 = (xi—x0)."2 + (yi—y0)."2;
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% % % % DEBUG output our cost function to see if it really is minimized
J =sum( p-i."2 4+ n0"2 + p0°2.%xd2."(—al) — 2xp_i*n0 + 2xp0.xd2."(—al/2).x(n0—p-i
) )
SAVE_J(z) = J;
% % % % fprintf('J at step %d: %.8f\n',z,J);
% compute the gradient
grad (1) = —2xsum( al .x (x0—xi) .* pO.x( p0xd2."(—al—1) + (n0—p-i).xd2."(—al/2-1)
) )5
grad (2) = —2xsum( al .x (yO—yi) .* p0.x( pO0*xd2."(—al—1) + (n0—p_-i).xd2."(—al/2-1)
) )

grad (3) = 2ssum( pO0xd2.”"(—al) + (n0—p-i).*xd2."(—al/2) );
grad (4) = 2xsum( n0 — p_i + p0.xd2."(—al/2) );

idx5 = (al = newton_vector (5));
idx6 = (al = newton_vector (6));
idx7 = (al == newton_vector (7));

grad (5) = sum( idx5.%( p0°2xd2.”"(—al).*xlog(d2."(—1)) + 2%pO0x(n0—p_i).*xd2."(—al/2)

xlog(d2.7(=1/2)) ));

grad (6) = sum( idx6.%( p0°2xd2.”"(—al).xlog(d2."(—1)) + 2%pO0x(n0—p-i).*xd2."(—al/2)

xlog(d2.7(=1/2)) ));

grad (7) = sum( idx7.%( p0°2«d2.”"(—al).*xlog(d2."(—1)) + 2%p0x(n0—p-i).*xd2."(—al/2)

xlog(d2.7(—=1/2)) ));

% compute the Hessian
Yo xx
hess(1,1) = —2xsum( al*p0.x(p0*xd2."(—al—1) + (n0—p-i).xd2."(—al/2-1))
+2xal . % (x0—x1)."2.%p0.x( pOx(—al—1).%xd2."(—al—2) + (n0—p_i).x*(
d2."(—al/2-2) ) );

Cal/2-1).x
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%Jyy
hess (2,2) = —2xsum( al*p0.x(p0xd2."(—al—1) + (n0—p-_i).xd2."(—al/2-1)) ..
+2%al.*(y0—yi). 2.xp0.%( pOx(—al—1).%xd2."(—al—2) + (n0—p_-i).x(—al/2—1).x
d2."(—al/2-2) ) );
%Jxy

hess(1,2) = 4xsum( al.*(xi—x0).*(yi—y0).*p0.%( pOx(al+1l).xd2."(—al—2) + (n0—p-i)
cx(al/241).xd2.7(—al/2-2) ) );
hess (2,1) = hess(1,2);

%Jxp
hess(1,3) = —2xsum( al.*x(x0—xi).*( 2*%p0xd2.”"(—al—1) + (n0—p-i).xd2."(—al/2-1) ) )

hess(3,1) = hess(1,3);

7Jyp
hess(2,3) = —2xsum( al.x(yO0—yi).*( 2*xp0xd2.”"(—al—-1) + (n0—p-i).xd2."(—al/2-1) ) )

,
hess(3,2) = hess(2,3);

%Jpp
hess (3,3) = 2xsum( d2."(—al) );
%Jnn
hess (4,4) = 2xn_rx;
%Jxn
hess(1,4) = —2xsum( al.*(x0—xi).*p0.xd2."(—al/2—-1) );
hess(4,1) = hess(1,4);
%Jyn
hess (2,4) = —2xsum( al.*(y0O—yi).*p0.xd2."(—al/2—1) );
hess(4,2) = hess(2,4);
%Jpn
hess(3,4) = 2xsum(d2."(—al/2));
hess(4,3) = hess(3,4);
%J aa
hess (5,5) = sum( idx5.%( p0°2xd2.”"(—al).x(log(d2."(—=1)))."2 + 2%xpO0*(n0—p-i).*xd2
S(Cal/2).x(log (d2.(~1/2))) "2 ));
hess (6,6) = sum( idx6.%( p0°2xd2."(—al).x(log(d2."(—=1)))."2 + 2%pO0*(n0—p-i).*xd2
C(—al/2).x(log(d2.7(=1/2))).72 ));
hess (7,7) = sum( idx7.%( p0°2xd2.”"(—al).x(log(d2."(—=1)))."2 + 2%pO0*(n0—p-i).*xd2
S(—al/2).x(log(d2.7(=1/2))).72 ));
%I xa
hess (5,1) = —2xsum( idx5.%( (x0—xi).*p0.x( p0xd2."(—al—1) + (n0—p-i).xd2."(—al
/2-1) ) ..
+al.x(x0—xi).#p0.*x( p0xd2."(—al—1).xlog(d2."(—1)) + (n0—p-i).*xd2
S(—al/2—1).xlog(d2.7(=1/2)) ) ));
hess (6,1) = —2«sum( idx6.%( (x0—xi).*p0.*( p0O*xd2."(—al—1) + (n0—p-i).*d2."(—al
j21) )
+al.x(x0—xi).*p0.x( p0xd2."(—al—1).xlog(d2."(—1)) + (n0—p-_i).*d2
“(—al/2-1).xlog (d2.°(~1/2)) ) ));
hess (7,1) = —2«sum( idx7.%( (x0—xi).*p0.x( p0xd2."(—al—1) + (n0—p-i).*xd2."(—al
j221) )
+al.*(x0—xi).*p0.%( p0Oxd2."(—al—1).xlog(d2."(—-1)) + (n0—p-i).*xd2
(—al/2-1).xlog (d2.7(~1/2)) ) ));
hess(1,5) = hess(5,1);
hess(1,6) = hess(6,1);
hess (1,7) = hess(7,1);

ToJya
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hess (5,2) = —2«sum( idx5.%( (yO—yi).*p0.%( p0Oxd2."(—al—1) + (n0—p.i).*d2."(—al
/2-1) )
+al.*(y0—yi).*p0.%( pOxd2."(—al—1).xlog(d2."(—-1)) + (n0—p-i).*xd2
(—al/2—1).xlog(d2.7(=1/2)) ) ));
hess (6,2) = —2«sum( idx6.%( (yO—yi).*p0.x( p0xd2."(—al—1) + (n0—p-i).*d2."(—al
/2=1) )
+al . % (y0—yi).*p0.x( p0%d2."(—al—1).xlog(d2."(—1)) 4+ (n0—p_i).*d2
(—al/2-1).xlog (2.7 (~1/2)) ) )
hess (7,2) = —2«sum( idx7.%( (yO—yi).*p0.%( pO*xd2."(—al—1) + (n0—p-i).*d2."(—al
/2=1) )
+al.#(y0—yi).*p0.x( pOxd2."(—al—-1).xlog(d2."(—-1)) + (n0—p-i).*xd2
(—al/2-1).xlog(d2."(—=1/2)) ) ));
hess (2,5) = hess(5,2);
hess(2,6) = hess(6,2);
hess (2,7) = hess(7,2);

%Jpa
hegs(5,3) = 2xsum( idx5.x( p0xd2."(—al).xlog(d2."(—=1)) 4+ (n0—p_i).*xd2."(—al/2).x
log (d2."(~1/2)) ));
hess (6,3) = 2xsum( idx6.x( p0*d2.”"(—al).xlog(d2."(—1)) + (n0—p-i).*xd2."(—al/2).x
log (d2.7(=1/2)) ));
hess (7,3) = 2xsum( idx7.x( p0+d2.”"(—al).xlog(d2."(—1)) + (n0—p-i).*xd2."(—al/2).x
log (d2.7(=1/2)) ));
5,
6
7

hess (3,5) = hess( )

3

hess (3,6) = hess(6,3);

hess(3,7) = hess(7,3);

%Jna

hess (5,4) = 2xsum( idx5.x( p0xd2."(—al/2).xlog(d2.7(—=1/2)) ));
hess (6,4) = 2+sum( idx6.x( p0xd2."(—al/2).xlog(d2.7(=1/2)) ));
hess (7,4) = 2xsum( idx7.x( p0xd2."(—al/2). *log(d2 “(=1/2)) ));
hess (4,5) = hess(5.,4);

hess(4,6) = hess(6,4);

hess (4,7) = hess(7.,4);

% jala2 (zeros)
hess(5 6) = 0;
hess (6,5)
hess (5,7)
hess (7,5) =
)
)

)

hess (6,7
hess (7,6

(=Nl Nl

Rl
)
,
- )
% do one newton step
if use_pinv = 0
newton_vector = newton_vector — hess\grad; % xstep — inv(hess) * grad
else
newton_vector = newton_vector — pinv (hess)*grad; % xstep — inv(hess) * grad
end
% % % % Try clipping
% % % for s = 4:6
% % % if newton_vector(s) <
% % % newton_vector (s) =
% % % elseif newton_vector(s
% %0 % newton_vector(s) = 4; %(lip at 4
% % % end

% % % end

1.
1. ;% clip at 1.5
)

V o o

fprintf('step: %.4f %At %4t %4t %.2f %.2f %.2f\n', newton_vector (1),
newton_vector (2),
newton_vector (3), newton_vector (4), newton_vector (5), newton_vector (6),
newton_vector (7)) ;

if plot_.newton =—= 1
if pause_each_step — 1
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pause (auto_step);
end
plot (newton_vector (1) ,newton_vector(2),'d', 'LineWidth',2);
end

end

x_guess = newton_vector (1) ;
y-guess = newton_vector (2);
fprintf('\n'");

if plot_newton =— 1
guess_plot = scatter (x-guess,y_guess, 200, 'k','LineWidth',3,"Marker','o");
legend ([rx_plot ,tx_plot , guess_plot],'Observations','Transmitter', 'Estimated
Location');
end

if plot_cost =— 1

figure;

plot (SAVE.]) ;

title ('Cost Function J');

% axis ([0,n_iter ,—10,1el5]);
end

% shut down if the cost function is ever negative
if (sum(SAVE.J < 0) > 0)
fprintf ('\n\nWARNING: J was once negative!l\n');
fprintf('ending execution...\n');
return;
end

%% generate an error term the second time

error.m = lldistance (x_-guess,y_guess,tx_location (1),tx_location(2));
fprintf ('"TX Actual: Lat %.8f\n',tx_location (2));

fprintf (' Lon %.8f\n',tx_location(1));

fprintf ('TX Estimate: Lat %.8f\n',y_guess);

fprintf (' Lon %.8f\n',x_guess);

fprintf('Error: %.2f meters\n',error_m);

B.6 Generating simulated data
This script generates simulated RSSI data which is placed into a .csv file. The .csv file

can then be processed using the algorithm scripts above.

Listing B.6: Script to generate simulated RSSI data.

% Sam Whiting 2018
% generate simulated data and save it in ../sim/merged.csv
clear;clc;close all;

%% some controls/parameters to change

% filename
H — ! r ~Q .
filename = 'merged.csv';

% number of observations to simulate
n_rx = 30;

% random seed for consistincy if desired

rng(123);
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% loss coefficient characteristics
mean_loss_cf = 2;
std_dev_loss_cf = 0;

% additive power noise characteristics (will be rectified to be >=0)
std_dev_noise = .1;

% define dimensions/edges
bigset = 1; % 1 for a bigger area lat/lon

if bigset =1
lon0 = —111.813; lonl = —111.803; % upr3 size
lat0 = 41.74; latl = 41.75;

elseif bigset =— 0
lon0 = —111.814; lonl = —111.811; % quad3 size
lat0 = 41.7395; latl = 41.7425;

end

%% generate data (lat/lon here)

% transmitter

tmp = rand (2);

tx_location = [lonO*tmp(1l) + (I1—tmp(1))=*lonl, latO*tmp(2) + (1—tmp(2))=*latl]; %
random location in the region

tx_power = 10;

clear tmp;

% receivers / observastions
tmp(:,1) = rand(n_rx,1);
tmp(:72) :l—tmp(:,l);
tmp(:,3) = rand(n.rx,1);
tmp (:,4) = 1—tmp(:,3);

lon_region = [lon0;lonl;]; % random point between longitude limits

lat_region = [lat0;latl;]; % random point between latitiude limits

rx_location = [tmp(:,1:2)x*lon_region, tmp(:,3:4)=*lat_region]; % random points in the
region

rx_distance = sqrt((tx-location (1) — rx_location (:,1))."2 + (tx_-location (2) —
rx-location (:,2)).72);

loss_cfs_init = mean_loss_cf + std_dev_loss_cfxrandn(size(rx_distance)); % loss
coefficients

% loss_cfs_init = [2.39;2.61;2.47]; % hard code some values

rx_power = tx_power./(rx_distance.” loss_cfs_init);

rx_-power = rx_power + abs(std-dev_noisesrandn(size(rx_distance))); % don't allow

negative power noise
rx_powerdb = 10xloglO (rx_power);
dataset = 'Simulation'; % fake dataset for plot titles

%% generate data (cartesian)
% removed

%% write data out to file

% lon lat elev powerdb

full_filename = ['../sim/', filename |;
data = [rx_location , zeros(size(rx_power)) ,rx_powerdb];
data = [[tx_location, 0, tx_power]|; data]; % add tx info as the first row

% csvwrite (full_filename ,data) % 5 digit, too low precision
dlmwrite (full_filename ,data, 'precision' ;16) % 16 digits should be plenty
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B.7 Functions used in scripts
The read_rss_data function opens a .csv file of RSSI data and returns the relevant data

in vectors.

Listing B.7: Read RSSI data from a .csv file.

function [ rx_location, rx_power, n.rx, tx_-location ]| = read_rss_data( dataset_string
, n_downsamp ,
truncate , start, n_observations,

random_selection ,
n_samples_less_than_total)

% returns the RSSI data

% rx_location contains lat/lon coordinates for each observation

% rx_power contains the power received (mot in db) for each observation

% n_rx is number of observations

% tx_location is the true transmitter location for the dataset (for error

% checking)

if strcmp(dataset_string , 'sim')

filename = ['../',dataset_string ,'/merged.csv']; % construct file name
data = csvread (filename);

tx_-location = data(1l,:); % first row is tx location for sim

data = data(2:end,:); % throw away first row now

rx_-location = data(:,1:2); % first two columns are coordinates
rx_powerdb = data(:,4); % fourth column is power (db)

rx_power = 10." (rx_powerdb/10);

n_rx = length (rx_power);

return

end

%% open the file

% assumes directory structure of ../dataset/merged.csv

filename = ['../',dataset_string ,'/merged.csv']; % construct file name
data = csvread(filename);

data = downsample(data ,n_.downsamp) ;

total_n_rx = length(data(:,1));

if truncate = 1
data = data(start:start+n_observations ,:) ;
end
if random_selection =— 1
n_samples_desired = total_n_rx — n_samples_less_than_total;
data = data(randperm(total_-n_rx ,n_samples_desired) ,:); % randomly select n rows
end
rx_location = data(:,1:2); % first two columns are coordinates
n_rx = length(rx_location);
rx_powerdb = data(:,4); % fourth column is power in db

% for the special dataset (aggr8 so far) averages and maxes
% are both included, with avg in 4th col and maxs in 5th col
% rx_powerdb = data(:,5); % fifth column (optional for avg/max)

rx-power = 10." (rx_powerdb /10);

%% also return the true transmitter location for error checking
if strcmp(dataset_string ,'santl')
tx_-location = [—111.8086, 41.74189];
end
if strcmp(dataset_string , 'sant2')
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tx_location = [—111.8086, 41.74189];
end
if strcmp(dataset_string , 'quad3")
tx_location = [—111.812753, 41.740911];
end
if strcmp(dataset_string ,'upr3')
tx_-location = [—111.805308,41.745314];
end
if strcmp(dataset_string ,'aggrl')
tx_location = [—111.805308,41.745314];
end

% new datasets
if strcmp(dataset_string ,'aggr2') || strcmp(dataset_string ,'aggr2_trunc')

tx_-location = [—111.805308,41.745314];
end
if strcmp(dataset_string , 'uprd')

tx_-location = [—111.805308,41.745314];

end
if strcmp(dataset_string ,'aggrd"')

tx_location = [—111.805308,41.745314];
end
if strcmp(dataset_string ,'aggr6"')

tx_location = [—111.805308,41.745314];
end
if strcmp(dataset_string ,'aggr8")

tx_location = [—111.805308,41.745314];
end

end

The get_dimensions() function returns latitude and longitude dimensions for each dataset.

Listing B.8: Get dimensions of a specific dataset.

function [ lonO, lonl, lat0, latl | = get_dimensions( dataset_string )
% get_dimensions () returns the corners (bottom left and top right)
% that contain all observatios of the dataset of interest

lon0 0; lonl 0;
lat0 = 0; latl = O0;

%% determine dimensions/edges

if strcmp(dataset_string , 'sim')
lon0 = —111.813; lonl = —111.803; % upr3 size simulation
lat0 = 41.74; latl = 41.75;

end

if strcmp(dataset_string ,'santl')

lon0 = —111.809; lonl = —111.808;
lat0 = 41.7415; latl = 41.7425;
end
if strcmp(dataset_string ,'sant2")
lon0 = —111.809; lonl = —111.808;
lat0 = 41.7415; latl = 41.7425;
% % % lon0 = —111.809; lonl = —111.806;
% % % lat0 = 41.7415; latl = 41.7445;
end
if strecmp(dataset_string , 'quad3')
lon0 = —111.814; lonl = —111.811;
lat0 = 41.7395; latl = 41.7425;
end

if strcmp(dataset_string ,'upr3')
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lon0 = —111.813; lonl = —111.803;
lat0 = 41.74; latl = 41.75;
end
if strcmp(dataset_string ,'aggrl')
lon0 = —111.814; lonl = —111.799;
lat0 = 41.738; latl = 41.753;
end
% new datasets
if strcmp(dataset_string ,'aggr2') || strcmp(dataset_string ,'aggr2_trunc')
lon0 = —111.854790; lonl = —111.790018;
lat0 = 41.727532; latl = 41.780853;
end
if strcmp(dataset_string , 'uprd')
lon0 = —111.854790; lonl = —111.790018;
lat0 = 41.727532; latl = 41.780853;
end
if strcmp(dataset_string ,'aggrd"')
lon0 = —111.853744; lonl = —111.790018;
lat0 = 41.734865; latl = 41.780853;
end

if strcmp(dataset_string ,'aggr6"')
lon0 = —111.813; lonl = —111.803;
lat0 = 41.74; latl = 41.75;

end
if strcmp(dataset_string ,'aggr8")
lon0 = —111.812390; lonl = —111.800378;
lat0 = 41.741021; latl = 41.749668;
end
end

The lldistance() function returns the distance in meters between two latitude/longitude

coordinate pairs.

Listing B.9: Return distance between latitude and longitude points.

function dist = lldistance(latl, lonl, lat2, lon2)
% return distance in meters between lat and lon points
% based on the haversine formula
% https://www.movable—type.co.uk/scripts/latlong.html
DEG.TORAD = pi / 180;
RAD.TODEG = 180 / pi;
theta = lonl — lon2;
dist = sin (DEG.TORAD«=latl) .* sin(DEGTORADx*lat2) + cos(DEG.TORADxlatl) .* cos
(DEG.TORAD#1at2) .x cos(DEG.TORADxtheta);
dist = acos(dist) .x RADTODEG;
dist = dist * 60 * 1.1515 % 1.609344 % 1000;
end
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The power_ratio() function is used in the circles algorithm to find the loci of possible

transmitter locations.

Listing B.10: Find a circle given a power ratio and observation locations

function [u,v,w] = power_ratio(a,b,c,d, k)

% Sam Whiting 2017

% returns a circle centered at (u,v) with radius sqrt(w).

% circle 1 at (a,b); circle 2 at (c,d)

% constant ratio of radii, circle 1 radius / circle 2 radius = k
u= (axk — ¢) / (k—=1);
v (bxk — d) / (k—1);
w=u2+v2 - (kx(a"2 + b"2) — c¢c"2 —d"2 )/ (k-1);

end

The draw_circle() function is used in the circles algorithm to draw individual loci.

Listing B.11: Plot a circle given a center and radius.

function h = draw_circle(x,y,r,string ,width)
% draw a circle at point (x,y) with radius r
% based on mathworks support team answer:
% https://www.mathworks.com/matlabcentral /answers /98665 —how—do—i—plot—a—circle —with—a

—given—radius —and—center

hold on;

th = 0:pi/50:2xpi;

x0 = r % cos(th) + x;

y0 = r % sin(th) + y;

h = plot(x0, y0,string ,'LineWidth', width);
end
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