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ABSTRACT 

Identification of Sperm Chromatin Proteins as Candidate Markers of Stallion Fertility 

by 

Chelsea C. Ketchum, Master of Science 

Utah State University, 2018 

Major Professor: Ralph G. Meyer, Ph.D. 

Department: Animal, Dairy and Veterinary Sciences 

 

 

 During spermatogenesis, histones are largely replaced by transition proteins and 

protamines in normal stallions. Incomplete nucleoprotein exchange results in the 

abnormal retention of histones and transition proteins, which is an indicator of poor 

sperm quality. Equine nucleoprotein exchange has not previously been investigated in 

detail, so that equine sperm chromatin quality problems, which are often responsible for 

poor breeding performance of stallions, are not well understood. In order to characterize 

chromatin remodeling events in stallion spermatogenesis and to identify proteins 

indicative of sperm chromatin defects, such as excessive amounts of histones, we 

identified antibodies that recognize equine testis-specific proteins of interest. 

Immunoblotting of testis and sperm protein lysates and immunofluorescence staining of 

histological tissue sections were used to identify candidate marker proteins of incomplete 

sperm chromatin maturation. Results of the study, which represents the first 

comprehensive characterization of the nucleoprotein exchange during spermatogenesis in 
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the stallion, challenge the paradigm that the main function of histone H4 lysine (hyper-) 

acetylation (concomitant H4K5 and H4K8 acetylation) is to facilitate nucleosome 

ejection during spermatid nuclear elongation to allow for transition protein and protamine 

insertion into the chromatin.  

 That paradigm was based on observations in mice and rats where H4 acetylation 

in several lysine residues occurs just prior to or during nuclear elongation. In contrast, the 

equine data presented here show strong acetylation of H4 in K5, K8 and K12 positions 

immediately after meiosis in round spermatids, independent of nuclear transition protein 

1 deposition. Furthermore, results of H4K16 acetylation analyses underline the 

importance of this mark, which is likely mediated by DNA damage signaling pathways, 

emphasizing the importance of DNA repair processes for the exchange of nucleoprotein 

exchange in spermiogenesis and therefore, in extension, for male fertility. In addition, a 

revised description of the equine spermatogenic cycle is proposed here that is better 

aligned with human, mouse and rat spermatogenesis. Finally, the testis-specific histone 

variant TH2B was identified as a potential quantitative marker of equine sperm quality. 

(71 pages) 
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PUBLIC ABSTRACT 

Identification of Sperm Chromatin Proteins as Candidate Markers of Stallion Fertility 

Chelsea C. Ketchum 

 

During spermatogenesis, histones are largely replaced by transition proteins and 

protamines in normal stallions. Incomplete nucleoprotein exchange results in the 

abnormal retention of histones and transition proteins, which is an indicator of poor 

sperm quality. Equine nucleoprotein exchange has not previously been investigated in 

detail, so that equine sperm chromatin quality problems, which are often responsible for 

poor breeding performance of stallions, are not well understood. In order to characterize 

chromatin remodeling events in stallion spermatogenesis and to identify proteins 

indicative of sperm chromatin defects, such as excessive amounts of histones, we 

identified antibodies that recognize equine testis-specific proteins of interest. 

Immunoblotting of testis and sperm protein lysates and immunofluorescence staining of 

histological tissue sections were used to identify candidate marker proteins of incomplete 

sperm chromatin maturation. Results of the study, which represents the first 

comprehensive characterization of the nucleoprotein exchange during spermatogenesis in 

the stallion, challenge the paradigm that the main function of histone H4 lysine (hyper-) 

acetylation (concomitant H4K5 and H4K8 acetylation) is to facilitate nucleosome 

ejection during spermatid nuclear elongation to allow for transition protein and protamine 

insertion into the chromatin.  

 That paradigm was based on observations in mice and rats where H4 acetylation 
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in several lysine residues occurs just prior to or during nuclear elongation. In contrast, the 

equine data presented here show strong acetylation of H4 in K5, K8 and K12 positions 

immediately after meiosis in round spermatids, independent of nuclear transition protein 

1 deposition. Furthermore, results of H4K16 acetylation analyses underline the 

importance of this mark, which is likely mediated by DNA damage signaling pathways, 

emphasizing the importance of DNA repair processes for the exchange of nucleoprotein 

exchange in spermiogenesis and therefore, in extension, for male fertility. In addition, a 

revised description of the equine spermatogenic cycle is proposed here that is better 

aligned with human, mouse and rat spermatogenesis. Finally, the testis-specific histone 

variant TH2B was identified as a potential quantitative marker of equine sperm quality. 
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CHAPTER I 

INTRODUCTION 

 This study set out to characterize the timing of key events that happen during 

histone-to-protamine nucleoprotein exchange in spermatogenesis and to identify sperm 

chromatin proteins, such as excessively retained histones, as candidate markers for poor 

stallion fertility. Chromatin, which is loosely defined as the functional complex of DNA 

with DNA binding proteins and RNA, is important for the packaging of DNA into a 

compact, dense form. The sperm nucleus has a particularly dense form of chromatin to 

protect the paternal genetic material during transit to the egg. 

 During breeding soundness exams in horses, a semen analysis is performed on 

stallions to check for sperm numbers, sperm motility, and the percentage of 

morphologically normal sperm to determine gross reproductive abnormalities. Stallions 

that receive a normal breeding soundness exam may still contain subfertile semen as a 

result of genetic, environmental and management factors. Casey, Gravance, Davis, 

Chabot, and Liu (1997), found evidence that subfertile stallions produce sperm with 

significantly larger heads when compared to fertile stallions. This study proposes that 

these infertile sperm have less nuclear compaction than normal sperm and confirms that 

achieving a tightly packaged sperm chromatin structure is important for fertility. Sperm 

chromatin is very different from that of somatic cells (Braun, 2001; Rousseaux et al., 

2004). In the archetypal mammalian, nongermline (somatic) cell, chromatin consists of 

nucleosomes complexed with superspiralized DNA, whereas sperm chromatin is 

extremely compact and based on protamine-DNA complexes. The compaction 
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(“condensation”) of chromatin is accomplished by a tightly regulated transition from the 

nucleosomal to a highly condensed chromatin structure that involves several remodeling 

steps in elongating spermatids (haploid male germ cells) during the postmeiotic phase of 

spermatogenesis, termed spermiogenesis. Replacement of most histones by transition 

proteins TP1 and TP2, and then later by protamines, changes the DNA structure from a 

supercoiled nucleosomal form to a relaxed toroid conformation (Grimes, Meistrich, Platz, 

& Hnilica, 1977; Kimmins & Sassone-Corsi, 2005; Zhao et al., 2004). The dramatic 

transition in DNA topology during nucleoprotein exchange requires controlled transient 

DNA double strand breaks (Marcon & Boissonneault, 2004; McPherson & Longo, 1992, 

1993; Meyer-Ficca, Scherthan, Burkle, & Meyer, 2005; Risley, Einheber, & Bumcrot, 

1986). These DNA strand breaks are mediated by topoisomerase 2 beta (TOP2B; 

McPherson & Longo, 1993; Morse-Gaudio & Risley, 1994; Roca & Mezquita, 1989) and 

their formation triggers activation of DNA damage signaling pathways, including those 

mediated by poly(ADP-ribosyl)ation and by ATM (ataxia telangiectasia mutated) 

serine/threonine kinase signaling (Ahmed, de Boer, Philippens, Kal, & de Rooij, 2010; 

Hamer et al., 2003; Leduc, Maquennehan, Nkoma, & Boissonneault, 2008; Meyer-Ficca, 

Lonchar, et al., 2011). We reviewed the currently available evidence for DNA damage-

dependent chromatin remodeling in spermatids in Meyer, Ketchum, and Meyer-Ficca 

(2017). How the necessary DNA relaxation and the nucleoprotein transition from the 

nucleosomal to the protamine-based chromatin structure may be coordinated is not well 

understood, but it has been recognized that completion of spermatid chromatin 

maturation is important for male fertility in several species (de Oliveira et al., 2013; 
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Rathke, Baarends, Awe, & Renkawitz-Pohl, 2014). Not all histones are removed from the 

developing spermatid nucleus and the recent finding that the few histones that remain in 

human and mouse sperm are associated with promoters of specific genes and other 

genomic regions important for embryonic development suggests that retained histones 

may epigenetically regulate gene expression in the early embryo, and has renewed 

interest in the idea that sperm histones may have an important role in regulating gene 

expression in the early embryo (Arpanahi et al., 2009; Brykczynska et al., 2010; Carone 

et al., 2014; Erkek et al., 2013; Hammoud et al., 2011; Ihara et al., 2014; 

Schagdarsurengin, Paradowska, & Steger, 2012). In addition, the tight protamine-based 

sperm chromatin provides a resilient transport form of the paternal chromosome 

complement needed for the maintenance of genetic integrity between generations. 

Development of the final sperm chromatin structure requires multiple chromatin 

remodeling steps during spermatogenesis that involve a large number of specialized, in 

part testis-specific proteins, including non-canonical histone variants, and enzymes that 

impart posttranslational modifications on histones (Bao & Bedford, 2016).  

 Like in humans, cattle and other species, achieving a highly condensed sperm 

chromatin structure should also be important for stallion fertility and low chromatin 

quality should contribute to idiopathic infertility in the horse due to structural and 

epigenetic sperm nuclear defects. The diverse roles of noncanonical histone variants and 

histone modifications in chromatin remodeling processes during spermatogenesis have 

been recognized in mice and humans, but very little is known about them in the stallion. 

In order to evaluate potential causes of chromatin-based idiopathic infertility in stallions 
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as an emerging animal model, we therefore studied hallmark events of nucleoprotein 

transition in equine spermatogenesis using immunofluorescence staining of histological 

sections with the goal of understanding similarities and potential differences in chromatin 

remodeling events during spermatogenesis in mice and horses. To make comparisons 

more tractable, we reviewed the classic stallion spermatogenic cycle definition, and 

propose a revised system of simple tubule developmental stage identification that is more 

comparable to the well-accepted mouse and human stage models. Using predominant 

histological features we identified eight tubular cell association groups and arranged them 

to follow a similar developmental description as the mouse and human models (see 

Figure 7, shown and discussed later in Chapter II). 

 To this end, timing and cell type-specific protein expression of TH2B (histone 

cluster 1 H2B family member a, also known as testis-specific histone H2B and 

HIST1H2BA), TP1 (transition protein 1), PRM1 (protamine 1), and H2AFZ (also known 

as H2AZ and H2A histone family member Z) during spermatogenesis was investigated in 

this study. Because of their known implication with DNA relaxation and histone removal, 

the timing of H2AFX phosphorylation (H2A histone family member X, also known as 

H2AX and in its phosphorylated form as gamma-H2AX, here designated pH2AFX) was 

analyzed for the detection of DNA double strand break signaling, as well as histone H4 

lysine acetylation events (H4K5ac, H4K8ac, H4K12ac and H4K16ac), were 

characterized in equine spermatogenesis and compared to corresponding events in the 

mouse, with unexpected results.  

 We also discovered that TH2B is a potential marker protein of poor sperm 
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chromatin quality that is retained in sperm in all horse semen samples we analyzed but 

TH2B levels differ several-fold between individual stallions. We are currently 

investigating to what extent sperm TH2B levels are correlated with stallion fertility. 

  



6 

 

CHAPTER II 

 

REVIEW OF LITERATURE 

 

 

Stallion Reproductive Anatomy and Physiology 

 

 

The Testis 

 Horse testes are ovoid in shape and on average 8-12 cm long, 6-7 cm high and 5 

cm wide (The Stallion: Breeding Soundness Examination & Reproductive Anatomy, 

2007). The general anatomy of a testicle is shown in Figure 1. Seminiferous tubules 

populate the majority of the testis and are where spermatogenesis occurs. The 

seminiferous tubules are encased by connective tissue called the tunica albuginea and are 

reinforced by extensions of the tunica albuginea called septae (Reece, 2009). Sperm from 

the seminiferous tubules feed into the rete testis where they are then deposited into the 

efferent ducts and then into the head (caput) of the epididymis. The epididymis is used 

for storage of sperm and by passing through the ducts of the epididymis the sperm reach 

full maturity and become motile. The epididymis is divided into 3 parts: head (caput) of 

the epididymis, body (corpus) of the epididymis, and tail (cauda) of the epididymis. The 

majority of sperm storage occurs in the cauda of the epididymis. Sperm in the cauda 

epididymis will then flow into the ductus (vas) deferens to the pelvic urethra (Reece, 

2009).  

 

The Sperm 

 Individual equine sperm cells consist of three main segments: the head, mid-

piece, and tail (Figure 2). The head encloses the nucleus, which contains the tightly  
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Figure 1. Anatomy of a testis. Seminiferous tubules occupy the largest area of the testes. 

Once sperm leave the tubules, they are stored in the epididymis. (Wikipedia) 

 

 

 

 
Figure 2. Anatomy of sperm. The head of the sperm contains the nucleus where the 

chromatin is stored. (Wikipedia) 
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condensed sperm chromatin. A cap-like structure called the acrosome covers the anterior 

half of the head and is used to penetrate the outer membrane (zona pellucida) of the 

mare’s ovum. The mid-piece contains a central filamentous core that is surrounded by 

mitochondria. The mitochondria are arranged in a double spiral around these dense fibers 

throughout the length of the mid-piece. Roughly 60 spirals of mitochondria are found in 

the sperm of equids (Brito, 2007). The purpose of sperm mitochondria is to produce 

energy for motility. The tail is used to move and propel the sperm.  

 The average length of an equine spermatozoon is 60 μm (Pesch & Bergmann, 

2006) and the average size of an equine sperm head is 5.33-6.62 μm long and 2.79-3.26 

μm wide (Brito, 2007). Larger sperm head size is seen more frequently in subfertile 

stallions compared to fertile stallions (Casey et al., 1997). This correlation can be due in 

part to disturbances during chromatin condensation resulting in an insufficiently packed 

chromatin structure.  

 

Spermatogenesis and the Spermatogenic Wave  

 

 Spermatogenesis, proliferation of spermatogonial stem cells and their 

development into spermatozoa, is a continuous process that occurs in cyclic pulses that 

“migrate” along the length of the seminiferous tubule (Johnson, Hardy, & Martin, 1990; 

Figure 3). In stallions, and other mammals such as mouse and human, a cross section of a 

seminiferous tubule embodies a predictable “association group” of certain spermatogenic 

cell types, depending on the phase of spermatogenesis that happens to occur in that tubule 

section. These association groups (“stages” of a tubule section) are species-specific and  
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Figure 3. An equine seminiferous tubule segment shows the stages of the spermatogenic 

cycle. Stages are usually observed in consecutive order, however reversal of the order can 

occur (Johnson et al., 1990).  

 

can be used to characterize the cycle of the seminiferous epithelium. Therefore, 

spermatids, which are the postmeiotic haploid cells, during a point in development, or 

stage, will always be associated with the same types of spermatogonia and spermatocytes 

(Clermont, 1963, 1972). These spermatogenic cell types consist of: A-spermatogonia, B-

spermatogonia, spermatocytes (in meiotic prophase: preleptotene, leptotene, zygotene, 

pachytene and diplotene spermatocytes, as well as secondary spermatocytes undergoing 
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reduction cell division), spermatids, and spermatozoa. There are at least two types of A-

spermatogonia, type A (dark) and type A (pale) (Clermont, 1972). Dark type A are 

reserve spermatogonial stem cells, while pale type A are spermatogonial stem cells that 

undergo mitosis and produce type B-spermatogonia. Type B-spermatogonia then divide 

to produce primary spermatocytes. Spermatocytes are the cells that undergo meiosis. 

Preleptotene, leptotene, zygotene, pachytene, and diplotene spermatocytes are all phases 

of prophase I during meiosis and are descriptively named according to the physical 

appearance of their chromosomes (Clermont, 1972). The first phase of prophase I is 

characterized by leptotene cells, in which chromosomes are now visually separate strands 

in the nucleus. The next phase is characterized by zygotene cells, in which one can see 

the homologous chromosome pairs line up together. As the nuclear volume grows, the 

chromosomes become thicker and shorten before entering the third phase, pachytene. 

This third phase of prophase I is where homologous recombination occurs. Succeeding 

the pachytene phase is the diplotene phase where chromosomes slightly split (Clermont, 

1972). Following the diplotene phase, each spermatocyte will go through the two 

subsequent steps of cell division of meiosis resulting in 4 haploid daughter cells termed 

spermatids (Clermont, 1972).  

 The duration of the seminiferous epithelium cycle differs among mammals, as 

does the number of stages or cell association groups that are used to describe it. The 

classic view of the equine seminiferous epithelium cycle contains eight stages based on 

germ cell nuclear shape, bundle formation, luminal alignment, presence of cell types, and 

the release of spermatids (Johnson et al., 1990; Swierstra, Gebauer, & Pickett, 1974). 
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Swierstra et al. was able to map out the duration of the eight stages in stallion 

seminiferous epithelium using the injection of [3H]-labeled thymidine and compare the 

results with other mammalian models. They found that the frequency of each stage in the 

stallion differed from the frequencies of other animal models when using the same 

system to classify stages. That study supports the claim that relative frequencies of the 

seminiferous epithelium stages are species-specific, but also that within a species it is 

rather constant (Swierstra et al., 1974). The total duration of spermatogenesis in the 

stallion is approximately 4.5 seminiferous epithelium cycles of ~12.2 days/cycle or 55 

days total (Amann, 1981).  

 

Previous Equine Spermatogenesis Model  

  The classic seminiferous tubule staging model used for stallions contains eight 

stages based on association groups of spermatogenic cell types (Figure 3). This equine 

staging model was first created by Swierstra et al. (1974) and was based on the presence 

of meiotic division, shape of the spermatid nuclei and the location of elongated 

spermatids. These eight stages were later reviewed and validated by others (Amann, 

1981b; Johnson et al., 1990).  

 Figure 4 shows one cycle of stallion spermatogenesis; each column should be read 

upward from the spermatogenic cell types bordering the basement membrane to the cells 

close to the lumen (Cavalcanti et al., 2009). In stage I, round spermatids are the most 

advanced cell type present. Pachytene spermatocytes, leptotene spermatocytes, and A 

spermatogonia are also present during stage I. Stage II contains slightly elongated 

spermatids, pachtyene cells, leptotene cells, and A spermatogonia. Spermatids in stage III  
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Figure 4. Classic equine stage identification model. This model begins with round 

spermatids (I) and progresses to elongating spermatids, meiosis, and ends with 

spermiation in stage VIII. (rSpd round spermatid; eSpd elongating spermatid; P 

pachytene; Rb residual bodies; pL preleptotene; L leptotene; Z zygotene; M meiotic 

plate, A A-spermatogonia, B B-spermatogonia). (Cavalcanti et al., 2009).  

 

 

are more elongated and appear in clusters or bundles. Stage III contains pachytene cells, 

zygotene cells and A spermatogonia. In stage IV, the elongated spermatids begin to 

condense and secondary spermatocytes, zygotene cells and metaphase plates are present. 

A second generation of (round) spermatids is now present in stages IV through VIII. In 

stage V, elongated spermatids and secondary spermatocytes (spermatocytes after the first 

meiotic division) are present, as well as pachytene cells and A spermatogonia. The main 

difference between stage V and stage VI is the presence of A and B spermatogonia in 

stage VI. In stage VII, elongated spermatids continue to be present and begin to line up 

along the lumen. Round spermatids begin to develop their acrosome from the Golgi 

apparatus. Stage VII also contains pachytene cells, as well as A and B spermatogonia. 
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During stage VIII, fully elongated spermatids have begun to be released into the lumen 

and then into the epididymis (spermiation) and residual bodies are left in their place. 

Primary spermatocytes are present in both pachytene and preleptotene developmental 

steps. B spermatogonia divide during the previous stage, stage 7, and become 

preleptotene cells during stage 8. Additionally, A spermatogonia are present (Cavalcanti 

et al., 2009). 

 

Revised Equine Spermatogenesis Model 

 Stallion spermatogenesis has not been used as a scientific model to the same 

extent human or mouse models are used. The classic equine stage map is set up opposite 

to the order of stages that is established with other commonly studied models, human and 

mice. To ensure a greater level of ease in the future when comparing stallion 

spermatogenesis with other species, a new staging model similar to those in human and 

mice is proposed.  

 Periodic acid-Schiff (PAS) staining was completed on stallion seminiferous 

tubules to evaluate whether an eight-stage model would be correct or a model with more 

stages, like in the mouse (12 stages) was needed. Stages one through eight were 

confirmed using this method (Figure 5, alongside the old stage classification in 

parenthesis). Stage I (V) in the new equine classiifcation model begins after the mitotic 

division and contains A spermatogonia, pachytene cells, as well as round and elongating 

spermatids. Stage II (VI) begins once B spermatogonia are present and the clusters of 

elongating spermatids start to migrate towards the lumen. Stage III (VII) begins once the 

clusters of elongated spermatids have started moving toward the lumen to when they  
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Figure 5. PAS staining showing the landmark cell types that are found during each stage. 

(rSpd round spermatid; eSpd elongating spermatid; P pachytene; Rb residual bodies; pL 

preleptotene; L leptotene; Z zygotene; M meiotic plate). The Roman numerals indicate 

the proposed, revised stage designations (the previous [classic] stage names are in 

parentheses; Ketchum, Larson, McNeil, Meyer-Ficca, & Meyer, 2018). 

 

reach the lumen. Stage III (VII) also contains chromatin dots in the center of the round 

spermatids. Stage IV (VIII) begins once all the clusters of elongated spermatids reach the 

lumen and start to be expelled into the lumen. When elongated spermatids are expelled 

into the lumen during stage IV (VIII), residual bodies will be left in their place. Stage V 

(I) begins after all the elongated spermatids have left the lumen and only round 

spermatids are present. Stage VI (II) begins once the round spermatids start to elongate. 

Stage VII (III) occurs during spermatid elongation and contains zygotene cells. Stage 

VIII (IV) contains meiotic divisions and zygotene cells (Swierstra et al., 1974; Amann, 

1981).  

 The new proposed equine spermatogenesis stage classification map shown in 
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Figure 6 confirms the basic observations of the previous equine spermatogenesis map, 

however moving around the order of these eight stages makes the new proposed model 

easier to compare with commonly studied models, mouse and human.  

 This proposed change to the current equine staging model appeared feasible and 

would be beneficial for future scientists looking to compare stallion spermatogenesis with 

more commonly used animal models, such as mouse and human. Currently, mouse and 

human seminiferous epithelium staging is set up where the cycle starts directly after 

meiotic division when secondary spermatocytes appear and progresses to mid-cycle  

 

Figure 6. Proposed revised equine spermatogenesis map with stage intervals (days). The 

new classification model begins directly after meiotic divisions with secondary round 

spermatids during stage I and spermiation, i.e. the release of mature spermatids into the 

epididymis, leaving residual plasma bodies (Rb) behind, occurs during stage IV. The 

cycle ends with the meiotic division during stage VIII. This order of stages follows the 

murine spermatogenesis staging system, which has 12 stages (I-XII). In the new system, 

spermatids (Sd) are designated according to their developmental steps (Sd1-Sd12). Type 

A and B spermatogonia are located closest to the basal membrane (bottom). 

Spermatocytes are labeled according to their developmental stage in the meiotic 

prophase: P, pachytene; PL, preleptotene; Z, zygotene; L, leptotene; m2°m, secondary 

spermatocytes in meiotic division (Ketchum et al., 2018). 
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where spermiation occurs then progresses to the end of the cycle when meiotic division 

happens. The proposed equine staging model would mirror these landmark developments 

to create ease when comparing species (Figure 7). 

 

 

Figure 7. A comparison of new proposed equine staging model and the current mouse 

model showing landmark events during the seminiferous epithelium cycle. The horse 

model is on top and the mouse model is on bottom (Hess R. & Renato de Franca, L., 

2008). Green box: spermatid nuclear elongation, red circle: meiotic division, blue circle: 

appearance of preleptotene spermatocyte concurrent with spermiation. 
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 The classic view of the equine staging system is not as universally accepted as the 

one used in the mouse (Hess & Renato de Franca, 2008) and human (Clermont, 1966), 

where stage designations have been widely accepted in the scientific community. A 

recent study on equine spermatogonial stem cell markers used a new classification model 

that differs from the classic eight-stage model shown in Figure 4 (Costa et al., 2012). The 

group characterized the stages of the seminiferous epithelium using a system based on 

acrosome formation, morphology of developing spermatid nuclei and associations of the 

germ cells (Costa et al., 2012). Using this approach to stage identification, they came up 

with a 12-stage model that is similar in design to the mouse model. This 12-stage equine 

model is analogous to the mouse model, which also has 12 stages, and the cycle also 

begins with secondary spermatocytes directly after the meiotic division and ends with the 

meiotic division. The revised system by Costa et al. addresses the need to create an 

equine staging model more comparable to the mouse and human models. However, 

although this model is more comparable to mouse and human models, the equine 

seminiferous epithelium cycle cannot be easily divided into 12 stages. The reason is that 

stallion spermatogenesis does not appear to be as strictly synchronized as the mouse (12 

stages) but it is more synchronized than human spermatogenesis (6 stages), resulting in 

fewer clearly recognizable association groups (8 stages as proposed here).  

 

Chromatin Quality 

 

 In the eukaryotic cell, chromatin consists of a large variety of basic (positively 

charged) nucleoproteins that exist as a complex with DNA (negatively charged). The 
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smallest unit of chromatin is the nucleosome, which consists of DNA that is wrapped 

around an octamer of core histone dimers of H2A, H2B, H3, H4 and the linker histone 

H1 (Figure 8; Kornberg, 1974). In its simplest form this beads-on-a-string fiber of 

approximately 15 nm is superspiralized and H1 and other proteins can form a larger coil 

of inactive (not transcribed) chromatin, the 30 nm fiber. Higher chromatin orders into 

loops, coils and domains are formed by the binding of other chromatin binding proteins. 

Higher complex chromatin is constantly remodeled to allow accessibility to a multitude 

of protein factors involved in replication, transcription and repair of the DNA. The N-

terminal domains (“tails”) of core histones protrude from the nucleosome and are 

typically marked by post-translational modifications, such as acetylation, methylation or 

phosphorylation. The core histone proteins are also called “canonical” histones because 

they are encoded by gene clusters that are transcribed all at the same time, resulting in  

 
Figure 8. A nucleosome comprises an octamer of core histones (H2A, H2B, H3, and H4 

and linker histone H1) that has DNA wrapped around it. (Wikipedia) 
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polycistronic RNA that is translated to give the individual 4 core histone proteins in 

equimolar quantities. There are also noncanonical histone variants that are encoded by 

individual genes scattered over the genome and that can be expressed in a tissue specific 

manner. Many of these histone variants and particularly several testis-specific histones 

are involved in chromatin regulation and transcription regulation during spermatogenesis 

(Montellier et al., 2013). Posttranslational modifications of canonical and non-canonical 

histones are currently subject to intense research because of their various structural and 

epigenetic functions. During spermatogenesis, histone variants including TH2A, TH2B, 

H2AX, H2AZ, MacroH2A, H3.3, H3t, and H1t appear to play important roles (Govin, 

Caron, Lestrat, Rousseaux, & Khochbin, 2004). In the testis, the acetylation of histone 

H4, the phosphorylation of H2AX, the presence of H2AZ in transcription start sites of 

genes, and insertion of testis-specific histones such as TH2B into the chromatin appear to 

have important, but not well-understood, roles during gene transcription, DNA damage 

signaling, and the exchange of histones for transition proteins and protamines during 

spermiogenesis (reviewed in Meyer et al, 2017). During spermatogenesis, core canonical 

histones are partly exchanged with histone variant counterparts by unknown mechanisms 

that may involve transcriptional gene activity (Maze, Noh, Soshnev, & Allis, 2014).  

 The majority of histone H2B is replaced with histone testis variant TH2B prior to 

its transition to protamines. The main alteration between canonical histone H2B and 

histone variant TH2B is in the N-terminal tail region, which may enable TH2B to 

destabilize nucleosomes and regulate gene activity. TH2B is important for normal 

spermatogenesis. When the genes for TH2A and TH2B are knocked out in the mouse, 
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males are sterile (Shinagawa et al., 2015). The absence of TH2B in these mutant mouse 

testes was countered by an overexpression of canonical histone H2B, but the absence of 

TH2A was not countered by an overexpression of canonical histone H2A.  

 In addition to TH2A, there are two main, nontestis specific histone variants that 

are expressed during spermatogenesis: H2AX and H2AZ. The phosphorylation of H2AX 

by the ATM/ATR kinase pathway is triggered by DNA double strand breaks and is 

essential for efficient DNA repair (Govin et al., 2004). During spermatogenesis DNA 

strand breaks occur endogenously to facilitate genetic recombination in spermatocytes 

and to allow relaxation of the DNA in elongating spermatids. When these controlled 

DNA double DNA strand breaks occur during spermatogenesis, prominent H2AX 

phosphorylation takes place. When H2AX was knocked out in mice, they became 

radiation-sensitive, immune-deficient, and infertile. Because phosphorylated H2AX 

(H2AX) is needed for DNA repair, these mice had chromosomal instability and repair 

defects (Celeste et al., 2002). H2AZ has two isoforms, H2AZ.1 and H2AZ.2, that are 

encoded by independent genes and the resulting proteins differ by only three amino acids 

(Maze et al., 2014). Early embryonic death is associated with H2AZ.1 knockout in mice, 

which indicated that H2AZ.2 is not able to compensate for the removal of H2AZ.1 (Faast 

et al., 2001).  

 The acetylation of the N-terminal region of histone H4 reduces its positive charge 

and is believed to play a role in the removal of histones from the DNA and the insertion 

of transition proteins and protamines in their place. Acetylation of histone H4 occurs on 

four lysine residues, K5, K8, K12, and K16 (Zhang et al., 2002). These four acetylation 
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points can be present in various isoforms. Random acetylation can produce four mono-

acetylated isoforms, six di-acetylated isoforms, four tri-acetylated isoforms, and one 

tetra-acetylated isoform that would include all four lysine residues to be acetylated. Each 

isoform may play a different role (Zhang et al., 2002). Elongating spermatids undergo 

genome-wide histone removal and the addition of transition proteins and subsequently 

protamines that will replace the majority of the histones (Wouters-Tyrou, Martinage, 

Chevaillier, & Sautiére, 1998). 

 In mice and humans, two transition proteins are expressed, transition protein 1 

(TP1) and transition protein 2 (TP2). These proteins are only present during a short 

developmental time window when histones are being removed and protamines are being 

added. TP1 is a highly conserved protein across all mammals, while TP2 is only found in 

certain mammals, such as mouse and human (Bao & Bedford, 2016). When TP1 and TP2 

were knocked out independently in mice, the two proteins would compensate for each 

other, while when both TP1 and TP2 were knocked out sperm saw a significant decrease 

in normal morphology, motility, and condensation of the chromatin.  

 Protamine also has two forms, protamine 1 (Prm1) and protamine 2 (Prm2). 

Horses and most other mammals only contain the Prm1 gene, while mice and human 

contain both Prm1 and Prm2 (Bao & Bedford, 2016). Unlike transition proteins, when 

either Prm1 or Prm2 gets knocked out, the mouse will become sterile (Cho et al., 2001).  

The normal process of histone replacement by protamines leaves only 3-5% and 10-15% 

of histones in place in mice and humans, respectively. It is not known what the exact 

percentage of retained sperm histones is in stallions. If more than the normal number of 
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histones are retained in sperm, infertility occurs with reduced implantation rates and 

elevated pregnancy loss but sperm maintain normal motility and fertilization capacity.  

 Excess histone retention in sperm can be detrimental to the fertility of the stallion 

and can cause low breeding cover rates. The foundation of this study was to identify 

chromatin proteins that can be detected in sperm, such as testis-specific histones, that will 

assist in identifying subfertile stallions. Stallion nucleoprotein exchange first needed to be 

investigated to locate suitable marker proteins present in sperm.  
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CHAPTER III 

 

MATERIALS AND METHODS 

 

 

Materials 

A list of materials that were used during this research and what each material was 

used for is shown in Table 1. An antibody list is shown in Table 2, alongside where the 

antibodies were purchased, the type of antibody and the dilution factor for 

immunofluorescence and western blot assays.  

 

Methods 

 

 

Tissue Collection 

 Testis samples from three normal, mature stallions that were 3, 4, and 22 years of 

age, as well as from three immature, pubertal, yearling stallions were obtained as 

byproducts from routine castration procedures performed by veterinarians in a clinical 

setting, and immediately dissected into tissue samples of 1 cm3 in size. These samples 

were quickly frozen in liquid nitrogen or on dry ice for biochemical analyses, or fixed in 

10% formaldehyde or Bouin’s solution for paraffin embedding and histological 

sectioning. 

 Mouse testes were obtained from wild-type 129SVE and BL6 mice that were 

housed, used and cared for as reviewed and approved by the Utah State University 

Institutional Animal Care and Use Committee (IACUC). In accordance with the current 

guidelines by the NIH Office of Laboratory Animal Welfare (OLAW), animals were 
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Table 1  

 

List of Materials Used 

 

Material name Vendor Cat. # Uses 

Acrylamide solution, 30% Bio-Rad 161-0156 Western Blot 

Ammonium persulfate (APS), 10% Sigma-Aldrich A3678-100G Western Blot 

-mercaptoethanol  Sigma-Aldrich M6250-100ML Western Blot 

Citric Acid, monohydrate Sigma-Aldrich C0706-500G CMA3 

CMA3 stock solution   CMA3 

DAPI Sigma-Aldrich D8417-5MG CMA3, Immunofluorescence  

Donkey serum Sigma D9663-10ML Immunofluorescence 

Ethanol, 190 proof Pharmco-Aaper 111000190 Immunofluorescence, PAS 

Staining 

Glycine VWR Life Science 0167-1KG Western Blot 

Hematoxylin solution Sigma  PAS Staining 

2x Laemmli buffer Bio-Rad 161-0737 Western Blot 

Methanol Pharmco-Aaper  CMA3, Western Blot 

MgCl2 Sigma-Aldrich M2670-500G CMA3 

Na2HPO4   CMA3 

Nitrocellulose membrane    Western Blot 

Odyssey blocking buffer   Western Blot 

Periodic Acid solution Electron Microscopy 

Science 

26853-02 PAS Staining 

Phosphate Buffered Saline tablets Sigma-Aldrich 

 

P-4417 

 

Immunofluorescence, 

Western Blot 

Ponceau S staining solution   Western Blot 

RIPA buffer   Western Blot 

Schiff’s Reagent Electron Microscopy 

Science 

26853-01 PAS Staining 

Sodium dodecyl sulfate (SDS) Sigma-Aldrich 

 

L4390-500G 

 

Western Blot 

Separating Gel Buffer (1.5 M Tris-

HCl) 

  Western Blot 

Stacking Gel Buffer (0.5 M Tris-

HCl) 

  Western Blot 

Target Unmasking fluid (TUF)    Immunofluorescence 

TEMED Sigma-Aldrich T9281-50ML Western Blot 

Tris VWR 97061-794 Western Blot 

Tris Buffered Saline (TBS)   Western Blot 

Tween 20 Sigma-Aldrich 

 

P7949-500ML 

 

Immunofluorescence 

Vectashield    CMA3, Immunofluorescence 

Xylene   Immunofluorescence, PAS 

Staining 
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humanely euthanized for necropsy using carbon dioxide asphyxiation followed by 

cervical dislocation as recommended by the American Veterinary Medical Association 

(AVMA). Testes were either snap frozen or fixed in 10% formaldehyde similar to the 

horse testis samples, and further processed as described above for the equine tissue 

samples. 

 

Sperm Collection and Preparation 

 Equine sperm samples were leftover material from artificial insemination 

procedures obtained as anonymized samples from different veterinary clinics and Select 

Breeding Service (Chesapeake City, MD). Raw semen samples were shipped either 

frozen or cooled and frozen upon arrival. Semen were thawed and stored on ice. One 

milliliter of raw semen combined with 9 ml of precooled PBS. It was then centrifuged for 

5 minutes at 1000 x g and the supernatant was carefully removed. The pellet was 

suspended again in fresh precooled PBS. After resuspension, 10 mcl was removed and 

diluted with 90 mcl of PBS. Ten microliters of sample were then used for cell count using 

an improved Neubauer counting chamber (Fuchs-Rosenthal system). After counting, 

aliquots of each sample were made and spun down in a centrifuge for 2 min at 10,000 x 

g. The supernatant was carefully removed and the remaining sample was aliquotted and 

frozen at -80°C. One aliquot was resuspended in Laemmli buffer (98°C) for SDS 

polyacrylamide electrophoresis and subsequent immunoblot analyses. Sperm smears 

were generated on glass slides to confirm normal sperm morphology. 
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CMA3 Assay 

 Positive and negative control mouse sperm smear slides were used in addition to 

the stallion sperm smear slides to ensure the procedure worked. Sperm smear slides were 

fixed in methanol for 20 minutes at -20°C. Slides were then air-dried and incubated with 

100l of CMA3 working solution in the dark for 30 minutes at room temperature. When 

adding the CMA3 working solution, the start time was staggered to guarantee each slide 

was incubated for exactly 30 minutes. After the 30-minute incubation time, the slides 

were briefly dipped in Mcllvaine buffer and the excess liquid was removed. Slides were 

then mounted with 50l of Vectashield/DAPI and a glass slide cover was added. Images 

were taken using a Zeiss Axioscope microscope at 63x magnification with oil immersion.  

 

Periodic Acid-Schiff Staining 

 Testis tissue samples were taken from mature stallions and mice and were 

embedded in paraffin on slides for periodic acid-Schiff (PAS) staining. Testes slides were 

first dewaxed in vertical slide staining jars with 5-minute incubation periods with 100% 

xylene, 100% ethanol, 80% ethanol, 50% ethanol, and 20% ethanol then hydrated with 

deionized water. Slides were then immersed in Periodic Acid Solution for five minutes at 

room temperature. Slides were rinsed in several changes of distilled water then were 

immersed in Schiff’s Reagent for 15 minutes at room temperature. Slides were washed in 

running tap water for 5 minutes then were counterstained using Hematoxylin solution for 

two minutes. Slides were rinsed in running tap water then dehydrated, cleared, and 

mounted using 15μl of xylene based mounting media. Testes slides were imaged using a 

Zeiss AxioVision epifluorescence microscope at 63x magnification.  
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Immunofluorescence 

 Testes tissue sections were dewaxed in vertical slide staining jars with five-

minute incubation periods with 100% xylene, 100% ethanol, 80% ethanol, 50% ethanol, 

20% ethanol, and 100% PBS buffer. Slides were incubated in hot antigen retrieval 

solution (~10% citrate buffer) for ten minutes, and then washed in PBS for five minutes. 

Slides were incubated in 100μl of 3% donkey serum in a humidity chamber for one hour. 

After blocking with the 3% donkey serum, slides were washed in PBS for five minutes. 

Slides were blocked using using 3% donkey serum in PBS prior to overnight incubation 

(4°C) with primary antibody. The next day, slides were washed in PBS three times for 

five minutes each and incubated with secondary antibody for 45 minutes at 37°C, which 

was either a donkey anti-mouse (1:200), or a donkey anti-rabbit antibody (1:200, both 

Jackson ImmunoResearch), which were either labeled with CY3 or Alexa Fluor 488 

fluorescent dyes to detect each primary antibody. Slides were washed in PBS three times 

for ten minutes each and mounted with coverslips and anti-fade mounting medium 

(Vectashield) containing 1 g/mL 4, 6-diamidino-2-phenylindole (DAPI) to stain nuclear 

DNA. Slides were also incubated with fluorescent labeled secondary antibodies in 

absence of primary antibodies in the experiments to control for secondary antibody 

unspecific binding and tissue autofluorescence. Images were taken using an 

epifluorescence microscope (Zeiss AX10 scope.A1) equipped with LED illumination 

(Xcite 120) and oil immersion objectives including a 63x magnification lens (Zeiss Plan 

Apochromat 63/1.4). A computer-controlled charge coupled device (CCD) black-and-

white camera (Zeiss Axiocam) was used for microphotography of fluorescent images. In 
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order to create merged images of DAPI- and antibody-labeled structures, individual 

microphotographs were false-colored using Adobe Creative Cloud Photoshop (version 

7.1) that were only processed by adjusting brightness and contrast. Overlays (merged 

images) were created using the “Exclusion” function of the software. Images were 

imported into Microsoft PowerPoint and cropped to size where appropriate. In 

PowerPoint, some images were adjusted for brightness and contrast as well. Criteria for 

positive labeling of a given cell type by a certain antibody were established as nuclear 

fluorescence visibly above background and not present in a secondary-antibody-only 

negative control and present in testis sections of at least two of the three mature stallions 

(not shown, see Ketchum et al., 2018). Stallion spermatogenesis stage identification from 

immunofluorescence was performed according to Johnson et al. (1990). 

 

Western Blot 

 Testes and semen samples were separated on a 15% SDS-PAGE 1.5mm gel. The 

gel was then blotted onto a nitrocellulose membrane. The membrane was stained using 

Ponceau S and destained using PBS. The membrane was incubated in primary antibody 

solution overnight on a rocker at 4°C. Alpha-Tubulin was used as a control. The next 

day, the membranes were incubated on a rocker for 30 minutes at room temperature. 

Membranes were removed from sealed packs and washed in TBS/ 0.1% Tween20 for 5 

minutes for three times. Appropriate secondary antibody solution was applied, and 

incubated in the dark at room temperature on a rocker for 30-60 minutes. The membranes 

were then washed in TBS/ 0.1% Tween20 for 10 minutes for 3 times. Images were then 

scanned using a fluorescence imaging and quantification system (Typhoon Scanner).   
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CHAPTER IV 

RESULTS 

 

Stallion Testes 

 

Testis-Specific Histone H2B (TH2B) 

 To explore the potential of using testis-specific histone H2B (TH2B) as a 

chromatin marker we studied its expression pattern in stallion testis using 

immunofluorescence and its presence in immature and mature testis and sperm using 

western blot analysis. Based on previous work done by Johnson et al. (1990), eight stages 

of stallion spermatogenesis were observed for TH2B antibody detection in 

immunofluorescence. As shown in Figure 9, TH2B is detected in cells throughout meiotic 

prophase in meiosis and in round and elongating spermatids. During spermatid elongation 

in stages VI and VII, histones are being removed and transition proteins and protamines 

are being added. This event leads to the predominant eviction of TH2B from the nucleus 

and consequently a decrease of the fluorescence staining during stage VII in elongating 

spermatids. Throughout the later stages, stages VIII, I, II, III and IV, TH2B is present in 

the round spermatids and pachytene spermatocytes.  

 In order to validate the antibodies, Western blot analysis was completed using 

protein extracts prepared from mature and immature stallion testes. As shown in Figure 

16, TH2B was detected at approximately 14 kDa in mature testis, confirming that a 

protein of the correct size was recognized by the antibody in a mature but much less in a 

prepubertal testis lysate. Normal stallions will naturally retain some of their histones, but  
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Figure 9. Immunofluorescence of testis-specific histone TH2B. The noncanonical histone 

variant TH2B was expressed in stallion pachytene spermatocytes and began to become 

undetectable as elongating spermatid chromatin condense (stages VIII-II, Sd8 –Sd10). 

 

 

 

excess histone retention may be used as a marker for poor fertility. The two immature 

horse testes show a distinctly faint band compared with the mature testis, which was 

expected due to immature testis having not entirely complete spermatogenesis.  

 

Acetylation of histone H4 

 To study the role of hyperacetylated H4 during histone eviction, we looked at its 

expression pattern in stallion testis using immunofluorescence and its presence in 

immature and mature testis and sperm using western blot analysis. As shown in Figure 

10, hyperacetylated H4 is present in round spermatids during stage V and slightly 

elongating spermatids during stage VI. During stages VII and VIII, the presence of  
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Figure 10. Immunofluorescence of hyperacetylated H4. Sd: spermatid steps, PL: 

preleptotene spermatocyte. Note that round Sd8 spermatids show H4 acetylation 

immediately after their formation through meiotic division in stage VIII (arrow). 

 

 

hyperacetylated H4 slowly decreases and it is no longer present in elongated step 9 

spermatids (Sd9) during stage I. Immediately after meiosis, hyperacetylated H4 is found 

in round spermatids and in preleptotene cells during stage IV. Importantly, this finding 

differs to the current paradigm that hyperacetylated H4 is only present in early elongating 

spermatids during the early stages and preleptotene cells, which was based on findings in 

mice, rats (Meistrich, Trostle-Weige, Lin, Bhatnagar, & Allis, 1992) and humans, which 

is thought to facilitate histone removal. Hyperacetylated H4 was also found in 

preleptotene spermatocytes, confirming findings in the mouse and in humans, and 

confirming validity of the antibody used in the present study. 

 To verify that the H4 hyperacetylation antibody truly recognizes the correct 
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target, we repeated the procedure with wild type mouse testis and confirmed the 

expression pattern results with the results found by Govin et al. (2004). The 

“hyperacetylation” recognized by the antibody refers to the acetylation of H4K5 and 

H4K8, but not K16, lysine residues. These H4K5 and H4K8 acetylation marks are of 

significance because they are recognized by the bromodomain protein BRDT, which has 

been implicated in the removal of nucleosomes from the DNA to allow for TP1 and 

protamine deposition. The unexpected result we found in equine, that H4K5 and H4K8 

are acetylated a whole week prior to the histone-to-protamine exchange, raises the 

question to what extent H4 hyperacetylation, i.e. the acetylation of H4 in K5 and K8 

position is the true signal for nucleosome eviction in elongating spermatids, which is the 

current understanding based on findings in mouse and human. To further exclude that the 

antibody we used gave incorrect results, separate antibodies recognizing H4K5ac, 

H4K8ac, H4K12ac and H4K16ac were used individually to corroborate our findings 

regarding the hyperacetylation of H4. These four main acetylation marks have been 

believed to make up hyperacetylation of histone H4 (Zhang et al., 2002). All antibodies 

used in the present study were also used in immunofluorescence and western blot 

analyses to compare their expression patterns with hyperacetylated H4 to validate the 

paradigm-shifting results.  

 H4K5ac was present in round spermatids from after meiosis in stage VIII through 

the mid-late, elongating spermatids of stages VI through VIII (Figure 11). H4K5ac was 

also present in preleptotene cells during stage IV. These results were similar to the results 

found for hyperacetylated H4.  
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Figure 11. Immunofluorescence of H4K5ac, H4K8ac, H4K12ac, H4K16ac, and 

hyperacetylated H4 (H4ac penta) in the stallion. Spermatid elongation occurs during 

stage six and spermiation occurs during stage four.  

 

 

 Immunofluorescence analyses using H4K8ac antibodies gave exactly the same 

results as with the H4K5ac antibodies, staining the same cell types, which were again 

identical to the findings using the hyperacetylated H4 antibody (Figure 11). 

 H4K12ac was detected in all spermatids up to step Sd10 (Figure 11), and in 

addition in pachytene cells of all stages. Based on these data, H4K12 acetylation is an 

unrelated event to H4 hyperacetylation and not recognized by the “hyperacetylated H4” 

antibody. 

 H4K16ac was only expressed in elongating Sd6 spermatids during stage 6, 
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(Figure 11). These results are different to what was found in H4K5ac, H4K8ac, and 

hyperacetylated H4 in equine, but they are in line with the current paradigm that H4K16 

acetylation only occurs during histone removal.  

 Western blot analysis was completed on immature and mature testes lysates using 

the antibodies for H4 hyperacetylation, H4K5ac, H4K8ac, H4K12ac and H4K16ac. As 

shown in Figure 16, hyperacetylated H4 was detected at approximately 11 kDa in both 

immature and mature testes. H4K5ac, H4K8ac, H4K12 and H4K16 were detected 

separately at approximately 11 kDa in immature and mature testes.  

 

H2AX and H2AZ 

 The expression pattern of the histone H2A variant H2AZ was studied using 

immunofluorescence and western blot, along with the phosphorylation of H2AX. As 

shown in Figure 12, H2AX is expressed in elongating spermatids during stages VI 

through I. Gamma-H2AX is also present in leptotene cells during stages V and VI and in 

zygotene cells during stages VII, VIII, and I. XY bodies on pachytene cells during all 

stages have strong H2AX staining.  

 As shown in Figure 13, H2AZ is expressed in round spermatids during stage 5 

and in elongating spermatids during stages 6 through 8. H2AZ is present during all steps 

of prophase I during meiosis, leptotene cells, zygotene cells, pachytene cells, and 

diplotene cells. Expression of H2AZ is also found in secondary round spermatids during 

stages 1 through 4.  

 Western blot analysis was completed on immature and mature testes (Figure 16, 

shown later in this chapter).  

VI

I 
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Figure 12. Immunofluorescence of H2AX. Antibodies specific to phosphorylated H2AX 

confirm localization of the modified protein similar to the mouse in XY-bodies of 

spermatocytes (stages V, VI, arrow), leptotene, zygotene and early pachytene 

spermatocytes (stages V-VIII, I), and elongating spermatids (stages VI-VIII, I, arrows).  

 

Gamma H2AX was not found in immature or mature testes, if present it would have been 

detected at approximately 16 kDa. H2AZ was detected in both the immature and mature 

testes at approximately 14 kDa. 

 

Transition Protein 1 and Protamine 1 

 Expression patterns of transition protein 1 and protamine 1 were assessed to 

examine stallion nucleoprotein exchange using immunofluorescence and western blot 

analysis. The appearance of TP1 marks the beginning of the nucleoprotein exchange in 

elongating spermatids. As shown in Figure 14, transition protein 1 is present in round 
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Figure 13. Immunofluorescence of H2AZ. H2AZ was expressed in pachytene 

spermatocytes and began to become undetectable as elongating spermatid chromatin 

condensed (stages VIII-II, Sd8 –Sd10). 

 

 

spermatids during stage 5 and in elongating spermatids during stages 6 through 1. 

Throughout its presence in elongating spermatids, the expression intensity decreases,  

with just a small amount present in stage 2. During stage 3 after complete transition 

protein removal, a haze could be observed around the lumen. As shown in Figure 15, 

protamine 1 is present in elongating spermatids during stages 8 through 4. 

 Western blot analysis was completed on immature and mature testes for transition 

protein 1 (Figure 16). Transition protein 1 was detected in mature testes at approximately 

10 kDa. There was no transition protein 1 detected in immature testes. 

 

III

III IV

V VI

VII VIII

DAPIH2AZ DAPIH2AZ
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Figure 14. Immunofluorescence of transition protein 1. Transition protein 1 (TP1) began 

to be inserted into nuclear chromatin in Sd5 spermatids (stage V) of the stallion and was 

never detectable in nuclei of cell types other than elongating spermatids. The dotted white 

lines indicate the position of the tubular basal membrane for orientation. Scale bar, 20m. 

(Ketchum et al., 2018) 

 

 

Stallion Sperm  

 Semen samples were collected for artificial insemination purposes from Select 

Breeders Services in Maryland and one of their affiliates Four Sixes Ranch in Texas. 

Thirty-two stallion semen samples were donated to our lab with no history or fertility 

data included, creating a blind study.  
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Figure 15. Immunofluorescence of protamine 1. Protamine 1 (PRM1) appeared in 

elongating spermatids, beginning in Sd7 spermatids and persisted afterwards (stage VII) 

until spermiation, as expected. (Ketchum et al., 2018) 

 

 Stallion sperm samples were evaluated using two different experimental 

procedures: western blot analysis and CMA3 staining. The western blot model, examined 

the amount of testis specific histone H2B (TH2B) in an allotment of sperm from each 

stallion. This model provided us a statistical amount of TH2B present, less TH2B 

indicating good fertility and more TH2B indicating bad fertility. The CMA3 model, 

detected packaging errors based upon protamine deficiency in individual sperm. This 

model provided us a percentage of the sperm that were not packaged correctly. These two 

models examine differing factors associated to fertility and thus gave differing results 

when predicting each stallion’s fertility.  
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Figure 16. Western blot results using antibodies against candidate proteins. I1, I2: 

Immature horse testis lysates (two different animals) with incomplete spermatogenesis, 

M1, M2: Mature horse testes with full spermatogenesis (2 different animals). TUBA: 

alpha tubulin (marker protein used as quantitative loading control) 
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Figure 17. Overview scheme summarizing the results of the immunofluorescence 

analyses. Each column shows a specific protein expression. Thin columns divided by 

dotted lines separate each stage indicated at the bottom of each column. The progression 

from A-spermatogonia to elongated spermatids is shown using arrows. The left margin of 

the figure shows where in the tubule these cell types are found, starting at the basal 

membrane, blood testis barrier (BTB), adluminal, and the cells found directly next to the 

lumen.  
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Western Blot analyses 

 Raw semen samples from 32 stallions were assessed for TH2B levels using 

western blot analyses (Figure 18). Alpha-tubulin was used as a loading control. ImageJ 

computer analysis was used to calculate the TH2B intensity of each band (Table 3). 

Stallions with higher TH2B levels are predicted to have poorer fertility results than those 

stallions with lower TH2B levels.  

 

Figure 18. TH2B western blot results from 32 stallions’ raw semen samples donated by 

Select Breeders Service (Chesapeake City, MD). Alpha-tubulin (TUBA) was used as a 

loading control and is found at 55 kDa. TH2B is located at 14 kDa. 
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Table 3 

 

TH2B Levels Formulated from the Intensity of the Western Blot 

Bands for Each Stallion Using ImageJ Computer Analysis 

 

Horse ID TH2B level 

SBS HT-001 2621.0 

SBS HT-002 3069.0 

SBS HT-003 3283.8 

SBS HT-004 7184.4 

SBS HT-005 3648.3 

SBS HT-006 6902.2 

SBS HT-007 5174.9 

SBS HT-008 5343.6 

SBS HT-009 3510.5 

SBS HT-010 2944.5 

SBS HT-011 8571.0 

SBS HT-012 7180.7 

SBS-001 4912.3 

SBS-002 4973.7 

SBS-003 3817.4 

SBS-004 2387.5 

SBS-005 4464.3 

SBS-006 2024.6 

SBS-007 8312.0 

SBS-008 3055.2 

SBS-009 2418.5 

BTF 987.8 

BHC 551.7 

GCL 2404.9 

OFE 6903.0 

WR 1971.8 

SP 1692.0 

CC 2699.8 

SC 3629.5 

JT 6183.9 

RW 2718.6 

HOS 3640.2 

Note. Stallions with higher TH2B levels are predicted to have 

poorer fertility results then those stallions with lower TH2B levels. 



44 

 

CMA3 Assays 

 Sperm smear slides were prepared using the 32 stallion semen samples donated by 

Select Breeders Services. Positive and negative control mouse sperm smear slides were 

used in addition to the stallion sperm smear slides to ensure the procedure worked (Figure 

19). Two CMA3 experiments were completed to increase statistical accuracy. Higher 

staining intensity of CMA3 indicates that a particular sperm cell is not packaged 

properly.  

 
Figure 19. CMA3 positive and negative control slides were used to verify that the 

experiment worked properly. Sperm from a transgenic Parg-/- mouse (Meyer lab) was 

used as a positive control (green fluorescence of the chromomycin A3 dye intercalated 

into the DNA), while a wild-type mouse was used as a negative control. 
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 Four parameters were examined for each of the two CMA3 experiments. The 

mean density (intensity) of each sperm cell that was imaged was used to calculate each of 

the four parameters. The first parameter, the percentage of outliers away from one 

standard deviation of the mean, was used to find what percentage of each stallion’s sperm 

sample was CMA3 positive within one standard deviation from the mean (Table 4). The 

second parameter, the percentage of outliers away from two standard deviations from the 

mean, was used to find a more conservative percentage of each stallion’s sperm sample 

was CMA3 positive. The third and forth parameters, mean and median, were used to 

assess if the mean and median of the overall sperm intensity levels skewed to the positive 

or negative side of the spectrum (Table 4). Fertility rankings based on these four 

parameters differs slightly between experiments and between parameters.  

 

Stallion Breeding Data 

 

Actual breeding data from Select Breeders Services on the breeding performance 

of the stallions were obtained after the conclusion of the analyses performed at USU 

(Table 5). If correlations between the predictive results of these analyses and the actual 

field data exist, they are likely weak and require more in-depth statistical analyses. It is 

likely that the inclusion of additional parameters, such as testes circumference and motile 

sperm concentration, are needed to make a more accurate prediction of stallion fertility. 

 

 



 

 

Table 4 

 

CMA3 Results 

 

Horse ID 

1st CMA3: 

1SD % 
Outliers 

2nd CMA3: 

1SD % 
Outliers 

Combined: 

1SD % 
Outliers 

1st CMA3: 

2SD % 
Outliers 

2nd CMA3: 

2SD % 
Outliers 

Combined: 

2SD % 
Outliers 

1st CMA3: 
Mean 

2nd CMA3: 
Mean 

Combined: 
Mean 

1st CMA3: 
Median 

2nd CMA3: 
Median 

Combined: 
Median 

SBS HT-001 2.75 4.88 3.815 1.57 3.90 2.74 8.69 12.79 10.74 8.18 10.84 9.51 

SBS HT-002 6.77 6.95 6.86 4.09 4.17 4.13 13.60 20.28 16.94 11.17 17.29 14.23 

SBS HT-003 8.60 4.03 6.315 1.79 2.49 2.14 9.90 16.00 12.95 9.48 14.66 12.07 

SBS HT-004 4.41 6.70 5.555 2.41 3.25 2.83 11.64 24.34 17.99 11.19 23.28 17.24 

SBS HT-005 7.56 11.44 9.50 4.74 7.00 5.87 16.70 30.29 23.50 13.51 25.59 19.55 

SBS HT-006 5.72 8.02 6.87 4.32 4.77 4.55 11.36 24.82 18.09 9.15 21.79 15.47 

SBS HT-007 5.56 4.98 5.27 2.40 2.33 2.37 13.25 17.51 15.38 12.66 17.09 14.88 

SBS HT-008 8.93 12.79 10.86 2.74 3.52 3.13 15.58 18.03 16.81 14.34 16.58 15.46 

SBS HT-010 15.00 15.05 15.025 4.09 3.00 3.55 11.37 26.12 18.75 10.88 25.37 18.13 

SBS HT-011 4.33 5.96 5.145 2.07 3.26 2.67 9.24 22.01 15.63 8.88 20.92 14.90 

SBS HT-012 4.54 13.31 8.925 2.55 5.47 4.01 11.93 26.49 19.21 10.44 23.59 17.02 

SBS-001 5.48 8.21 6.845 2.53 1.93 2.23 18.95 17.06 18.01 18.00 16.56 17.28 

SBS-002 2.68 7.61 5.145 1.39 2.01 1.70 11.22 18.93 15.08 10.62 18.42 14.52 

SBS-003 4.42 8.14 6.28 2.34 3.82 3.08 14.44 22.33 18.39 13.52 21.45 17.49 

SBS-004 5.40 7.92 6.66 2.79 3.42 3.11 16.13 22.33 19.23 14.50 21.50 18.00 

SBS-005 5.15 4.70 4.925 2.72 2.25 2.49 12.00 14.33 13.17 11.25 13.76 12.51 

SBS-006 3.01 3.98 3.495 1.92 1.84 1.88 11.79 18.80 15.30 11.23 18.07 14.65 

(table continues) 
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Table 5 

 

Breeding Data from Select Breeders Services 

 

Horse ID 

Total # of mares 

bred 

First cycle 

conception rate (%) 

End of season 

pregnancy rate (%) 

SBS HT-001 8 63 63 

SBS HT-002 13 69 85 

SBS HT-003 36 58 72 

SBS HT-004 28 70 78 

SBS HT-005 39 70 74 

SBS HT-006 14 57 79 

SBS HT-007 9 70 90 

SBS HT-008 10 40 50 

SBS HT-010 21 52 71 

SBS HT-011 10 40 60 

SBS HT-012 30 60 80 

SBS-001 11 27 82 

SBS-002 21 52 81 

SBS-003 18 56 72 

SBS-004 8 38 38 

SBS-005 4 25 25 

SBS-006 17 65 76 

SBS-007 3 67 100 

SBS-008 2 0 50 

SBS-009 30 40 73 

BTF 22 55 77 

BHC 281 48 75 

OFE 124 55 78 

WR 65 46 72 

SP 50 66 88 

CC 20 35 50 

SC 7 71 71 

JT 67 72 88 

RW 74 45 77 

HOS 71 45 65 
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CHAPTER V 

DISCUSSION 

 

 This study presents the first comprehensive characterization of equine 

nucleoprotein exchange studying TH2B, H2AX, H2AZ, TP1, Prm1, hyper-acetylated 

H4, H4K5ac, H4K8ac, H4K1ac, and H4K16ac in testis. We described the equine 

nucleoprotein exchange during spermatogenesis to identify candidate marker proteins of 

incomplete sperm chromatin maturation. When comparing the nucleoprotein exchange in 

horse to the foremost studied models, mouse and human, it is apparent that there are 

differences in the stallion that encourage rethinking of the current paradigms for how 

histones are exchanged for protamines during spermiogenesis. A review of the literature 

was conducted and the findings were published within the framework of the present 

project (Meyer et al., 2017). 

  The finding that in the stallion H4 acetylation in positions K5, K8 and K12 

occurs immediately after meiosis was unexpected because in mice these events are 

prevalent only at the onset of spermatid nuclear elongation (Shirakata, Hiradate, Inoue, 

Sato, & Tanemura, 2014). Using the same experimental conditions and antibodies, we 

confirmed the puzzling difference in H4 lysine acetylation between the species by 

analyzing mouse and stallion tissue side by side (Figure 20). Most of the mouse data that 

I generated for this project are not shown in this thesis, but they are published (Ketchum 

et al., 2018). Several studies conducted in mice, rats and Drosophila reported highly 

acetylated H4 to be present in elongating spermatids and associated with histone 

displacement in (Dhar, Thota, & Rao, 2012; Goudarzi, Shiota, Rousseaux, & Khochbin,  



50 

 

 

Figure 20. Summary image: Similarities and differences between equine and murine 

chromatin remodeling during spermatogenesis. When aligning cell types and timelines of 

equine (top) and murine (bottom) spermatogenesis in this overview over the data 

obtained in this study, time intervals between key events in spermatogenesis were 

calculated using known cycle length data and expressed as fractions of total cycle lengths 

(in %) in stallion and mouse. Comparing these intervals revealed that timing of events in 

spermatogenesis of the two animals is relatively similar. Developmental germ cell stages 

(using the stallion in the graphic), where the denoted proteins and posttranslational 

protein modifications were detectable, are indicated by the horizontal bars. The main 

difference between the two species was in the timing of H4 acetylation events which is 

highlighted by the red circle. The pale bars in the red circle indicate that some studies 

have previously shown the possibility of some weak H4 acetylation in spermatid steps 

Sd1-8 of the mouse. Mouse immunofluorescence data were obtained using the same 

antibodies that were used for the analyses of the stallion), except for H2AFZ. The 

H2AFZ antibody that was used in stallion testis sections did not recognize the mouse 

protein, and published data obtained with a custom antiserum in mice were used for the 

comparison (Ketchum et al., 2018). 
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2014; Hazzouri et al., 2000; Meistrich et al., 1992; Shirakata et al., 2014). A study in the 

human demonstrated H4 hyperacetylation during all developmental steps of round and 

elongated spermatids utilizing an antiserum raised against hyperacetylated (penta) H4 

histones (Sonnack, Failing, Bergmann, & Steger, 2002). This is reminiscent of our data in 

the stallion, supporting the view that the timing of histone hyperacetylation may be a 

species-specific event. Progressive acetylation of H4 in lysine residues K5, K8, K12 and 

K16 adds a negative charge to the histone and thus, in addition to the acetylation of other 

critical lysine residues in other histones, such as H3K122 and H3K64, which destabilizes 

the nucleosome and weakens its binding to the DNA (Goudarzi et al., 2014). H4K5ac and 

H4K8ac are collectively bound by the first bromodomain (BD1) of BRDT (Miller et al., 

2016; Morinière et al., 2009; Pivot-Pajot et al., 2003). Binding of BRDT to acetylated H4 

is essential for successful histone removal and sperm development because deletion of 

BD1 results in deformed sperm with excessive histone retention, teratozoospermia 

(sperm with abnormal morphology) and male infertility (Shang, Nickerson, Wen, Wang, 

& Wolgemuth, 2007). The precise function of BRDT in histone eviction from spermatid 

chromatin is not well understood and different models have been proposed such as direct 

mechanical ‘squeezing’ of chromatin fibers by polymerizing BRDT proteins (Gaucher et 

al., 2012). This process likely involves binding of other proteins including beta actin and 

SMARCE1 (Dhar et al., 2012). SMARCE1 is a subunit of the SWI/SNF family of ATP-

dependent chromatin remodelers and its recruitment by BRDT in the presence of 

hyperacetylated H4 provides a possible mechanism by which H4 hyperacetylation results 

in nucleosome removal (Dhar et al., 2012). The data presented here raises the question 
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whether BRDT binding to H4K5ac and H4K8ac, and possibly H4K12ac, is sufficient to 

recruit SMARCE1 and elicit nucleosome eviction, because if that was the case, the early 

arrival of these marks in round spermatids immediately after meiosis would likely result 

in nucleosome eviction in the resulting Sd1 spermatids. However, this does not seem to 

be the case as we find the deposition of TP1 to occur approximately 1 week after meiosis 

in elongating spermatids (Sd6 and Figure 14). Acetylation of H4K16 in elongating 

spermatids occurs across all species of mammals. Since all other pertinent H4 acetylation 

marks are present during early spermiogenesis, data suggests that H4K16 acetylation may 

be of importance to histone eviction. H4K16 acetylation may provide the last negative 

charge needed to tip the balance towards the binding of a remodeling complex via BRDT 

or another bromodomain protein. It is likely that other bromodomain proteins, such as 

BRD4 (Bryant et al., 2015) and other protein factors may also play a role in the removal 

of nucleosomes from spermatid chromatin, but details are not yet well understood.  

 H4K16 acetylation occurs independently from H4K5 and H4K8 acetylation (Sin 

et al., 2012) and is mediated by the acetyltransferase KAT8 (also known as MYST1, 

MOF). KAT8 is a necessary component of DNA strand break repair where it is 

phosphorylated by ATM in response to DNA double strand breaks. KAT8 colocalizes 

with phosphorylated H2AFX in the vicinity of DNA strand breaks in somatic cells 

(Gupta et al., 2014). Intriguingly, elongating spermatids undergo genome-wide DNA 

torsional relaxation during a short time window when topoisomerase II beta (TOP2B) 

activity introduces controlled DNA double-strand breaks in a decatenation reaction 

(Laberge & Boissonneault, 2005; Macron & Boissonneault, 2004; Smith & Haaf, 1998). 
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TOP2B-mediated DNA decatenation activates DNA strand break-dependent DNA 

damage signaling pathways mediated by the ATM- and poly(ADP-ribose) polymerase- 

(PARP) pathways in mouse elongating spermatids (Meyer-Ficca et al., 2005, Meyer-

Ficca, Ihara, et al., 2011). PARP activity negatively regulates the activities of TOP2B 

(Meyer-Ficca, Lonchar, et al., 2011) and ATM (Haince et al., 2007; Watanabe et al., 

2004), supporting the importance of DNA damage response pathways in the chromatin 

remodeling process that takes place in elongating spermatids. 

 In conclusion, data obtained in the stallion show a temporal separation between 

acetylation of H4K5, H4K8 and H4K12 acetylation (H4 hyperacetylation) and the 

insertion of TP1 as an indicator of beginning histone eviction. The results support the 

hypothesis that H4K16ac is the key acetylation mark that initiates the nucleoprotein 

transition from the histone- to a protamine-based chromatin structure and therefore 

provides another link between histone eviction and DNA strand break repair pathways 

elicited by TOP2B activity in the elongating spermatid. The stallion may be a better-

suited model, over the mouse, for the epigenetic regulation of chromatin regulation of 

chromatin remodeling events in human because of the strong acetylation of H4K5, H4K8 

and H4K12 in all spermatids, while round and elongated spermatids are also observed in 

humans (Sonnack et al., 2002). We identified TH2B as a potential marker of poor sperm 

chromatin quality in the stallion but its predictive value could not be conclusively 

demonstrated. It is likely that additional parameters, such as testis circumference or the 

number and concentration of motile sperm in the fresh ejaculate, are needed to effectively 

predict stallion breeding performance.  



54 

 

REFERENCES 

 

 

Ahmed, E. A., de Boer, P., Philippens, M. E. P., Kal, H. B., & de Rooij, D. G. (2010). 

Parp1-XRCC1 and the repair of DNA double strand breaks in mouse round 

spermatids. Mutation Research, 683(1-2), 84-90. 

Amann, R. P. (1981a). A review of anatomy and physiology of the stallion. Equine 

Veterinary Science, May/June, 83-105. 

Amann, R. P. (1981b). Spermatogenesis in the stallion: a review. Equine Veterinary 

Science, July/August, 131-139. 

Arpanahi, A., Brinkworth, M., Iles, D., Krawetz, S. A., Paradowska, A., Platts, A. E., … 

Miller, D. (2009). Endonuclease-sensitive regions of human spermatozoal 

chromatin are highly enriched in promoter and CTCF binding sequences. Genome 

Research. 19(8), 1338-1349. 

Bao, J., & Bedford, M. T. (2016). Epigenetic regulation of the histone-to-protamine 

transtition during spermiogenesis. Reproduction, 151(5), 55-R70. 

Braun, R. E. (2001). Packaging paternal chromosomes with protamine. Nature Genetics. 

28(1), 10-12. 

Brito, L. (2007). Evaluation of stallion sperm morphology. Clinical Techniques Equine 

Practice. 6, 249-264. 

Bryant, J. M., Donahue, G., Wang, X., Meyer-Ficca, M., Luense, L. J., Weller, A. H., … 

Berger, S. L. (2015). Characterization of BRD4 during mammalian postmeiotic 

sperm development. Molecular Cell Biology. 35(8), 1433-1448. 

Brykczynska, U., Hisano, M., Erkek, S., Ramos, L., Oakeley, E. J., Roloff, T. C., … 

Peters, A. H. (2010). Repressive and active histone methylation mark distinct 

promoters in human and mouse spermatozoa. Nature Structural & Molecular 

Biology. 17(6), 679-687. 

Carone, B. R., Hung, J. H., Hainer, S. J., Chou, M. T., Carone, D. M., Weng, Z., … 

Rando, O. J. (2014). High-resolution mapping of chromatin packaging in mouse 

embryonic stem cells and sperm. Developmental Cell. 30(1), 11-22. 

Casey, P. J., Gravance, C. G., Davis, R. O., Chabot, D. D., & Liu, I. K. (1997). 

Morphmetric differences in sperm head dimensions of fertile and subfertile 

stallions. Theriogenology, 47, 575-582. 

  



55 

 

Cavalcanti, M. C. O., Rizgalla, M., Geyer, J., Failing, K., Litzke, L. F., & Bergmann, M. 

(2009). Expression of histone 1 (H1) and testis-specific histone 1 (H1t) genes 

during stallion spermatogenesis. Animal Reproduction Science, 111, 220-234. 

Celeste, A., Peterson, S., Romanienko, P. J., Fernandez-Capetillo, O., Chen, H. T., 

Sedelnikova, O. A., … Nussenzweig, A. (2002). Genomic instability in mice 

lacking histon H2AX. Science, 296, 922-927. 

Cho, C., Willis, W. D., Goulding, E. H., Jung-Ha, H., Choi, Y. C., Hecht, N. B., & Eddy, 

E. M. (2001). Haploinsufficiency of protamine-1 or −2 causes infertility in mice. 

Nature Genetics., 28, 82-86. 

Clermont, Y. (1963). The cycle of the seminiferous epithelium in man. American Journal 

of Anatomy, 112, 35-51. 

Clermont, Y. (1966). Renewal of spermatogonia in man. American Journal of Anatomy, 

118(2), 509-524. 

Clermont, Y. (1972). Kinetics of spermatogenesis in mammals: seminiferous epithelium 

cycle and spermatogonial renewal. Physiological Reviews., 52, 198-236. 

Costa, G. M. J., Avelar, G. F., Rezende-Neto, J. V., Campos-Junior, P. H. A., Lacerda, S. 

M. S. N., Andrade, B. S. C., … Franca, L. R. (2012). Spermatogonial stem cell 

markers and niche in equids. PLOS ONE, 7(8), 1-13. 

de Oliveira, R. V., Dogan, S., Belser, L. E., Kaya, A., Topper, E., Moura, A., … Memili, 

E. (2013). Molecular morphology and function of bull spermatozoa linked to 

histones and associated with fertility. Reproduction, 146(3), 263-272. 

Dhar, S., Thota, A., & Rao, M. R. S. (2012). Insights into role of bromodomain, testis-

specific (Brdt) in acetylated histone H4-dependent chromatin remodeling in 

mammalian spermiogenesis. The Journal of Biological Chemistry, 287, 6387-

6405. 

Erkek, S., Hisano, M., Liang, C. Y., Gill, M., Murr, R., Dieker, J., & Peters, A. H. (2013). 

Molecular determinants of nucleosome retention at CpG-rich sequences in mouse 

spermatozoa. Nature Structural Molecular Biology. 20(7), 868-875. 

Faast, R., Thonglairoam, V., Schulz, T. C., Beall, J., Wells, J. R., Taylor, H., … Lyons, I.  

(2001). Histone variant H2A.Z is required for early mammalian development. 

Current Biology, 11, 1183-1187. 

Gaucher, J., Boussouar, F., Montellier, E., Curtet, S., Buchou, T., Bertrand, S., … 

Khochbin, S. (2012). Bromodomain-dependent stage-specific male genome 

programming by Brdt. The EMBO Journal. 31, 3809-3820. 



56 

 

Goudarzi, A., Shiota, H., Rousseaux, S., & Khochbin, S. (2014). Genome-scale 

acetylation-dependent histone eviction during spermatogenesis. Journal of 

Molecular Biology, 426, 3342-3349. 

Govin, J., Caron, C., Lestrat, C., Rousseaux, S., & Khochbin, S. (2004). The role of 

histones in chromatin remodeling during mammalian spermiogenesis. European 

Journal of Biochemistry, 271, 3459-3469. 

Grimes, S. R., Meistrich, M. L., Platz, R. D., & Hnilica, L.S. (1997). Nuclear protein 

transitions in rat testis spermatids. Experimental Cell Research. 110(1), 31-39. 

Gupta, A., Hunt, C. R., Hegde, M. L., Chakraborty, S., Chakraborty, S., Udayakumar, D., 

… Pandita, T. K. (2014). MOF phosphorylation by ATM regulates 53BP1-

mediated double-strand break repair pathway choice. Cell Reports, 8(1). 177-189. 

Haince, J. F., Kozlov, S., Dawson, V. L., Dawson, T. M., Hendzel, M. J., Lavin, M. F., & 

Poirier, G. G. (2007). Ataxia telangiectasia mutated (ATM) signaling network is 

modulated by a novel poly(ADP-ribose)-dependent pathway in the early response 

to DNA-damaging agents. The Journal of Biological Chemistry, 282, 16441-

16453. 

Hamer, G., Roepers-Gajadien, H. L., van Duyn-Goedhart, A., Gademan, I. S., Kal, H. B., 

van Buul, P. P., & de Rooij, D. G. (2003). DNA double-strand breaks and 

gamma-H2AX signaling in the testis. Biology of Reproduction, 68(2), 628-634. 

Hammoud, S. S., Nix, D. A., Hammoud, A. O., Gibson, M., Cairns, B. R., & Carrell, D. 

T. (2011). Genome-wide analysis identifies changes in histone retention and 

epigenetic modifications at developmental and imprinted gene loci in the sperm of 

infertile men. Human Reproduction Oxford England, 26, 2558-2569. 

Hazzouri, M., Pivot-Pajot, C., Faure, A. K., Usson, Y., Pelletier, R., Sèle, B., Khochbin, 

S., & Rousseaux, S. (2000). Regulated hyperacetylation of core histones during 

mouse spermatogenesis: involvement of histone deacetylases. European Journal 

of Cell Biology, 79, 950-960. 

Hess, R. A., & Renato de France, L. (2008). Spermatogenesis and cycle of the 

seminiferous epithelium. Advances in Experimental Medicine and Biology, 636, 

1-15. 

Ihara, M., Meyer-Ficca, M. L., Leu, N. A., Rao, S., Li, F., Gregory, B. D., … Meyer, R. 

G. (2014). Paternal poly (ADP-ribose) metabolism modulates retention of 

inheritable sperm histones and early embryonic gene expression. PLoS Genetics. 

10(5), e1004317. 

  



57 

 

Johnson, L., Hardy, V. B., & Martin, M. T. (1990). Staging equine seminiferous tubules 

by nomarski optics in unstained histologic sections and in tubules mounted in toto 

to reveal the spermatogenic wave. The Anatomical Record, 227, 167-174. 

Ketchum, C., Larson, C., McNeil, A., Meyer-Ficca, M. L., & Meyer, R. G. (2018). 

Histone H4 acetylation and chromatin remodeling events in equine 

spermatogenesis. Bioogy of Reproduction, 98(1), 115-129. 

Kimmins, S., & Sassone-Corsi, P. (2005). Chromatin remodelling and epigenetic features 

of germ cells. Nature, 434, 583-589. 

Kornberg, R. D. (1974). Chromatin structure: a repeating unit of histones and DNA. 

Science, 184, 868-871. 

Laberge, R. M., & Boissonneault, G. (2005). On the nature and origin of DNA strand 

breaks in elongating spermatids. Biology of Reproduction, 73(2), 289-296. 

Leduc, F., Maquennehan, V., Nkoma, G. B., & Boissonneault, G. (2008). DNA damage 

response during chromatin remodeling in elongating spermatids of mice. Biology 

of Reproduction, 78, 324-332. 

Marcon, L., Boissonneault, G. (2004). Transient DNA strand breaks during mouse and 

human spermiogenesis new insights in stage specificity and link to chromatin 

remodeling. Biology of Reproduction, 70, 910-918. 

Maze, I., Noh, K., Soshnev, A. A., & Allis, C. D. (2014). Every amino acid matters: 

essential contributions of histone variants to mammalian development and 

disease. Nature Reviews. Genetics, 15, 259-271. 

McPherson, S. M., & Longo, F. J. (1992). Localization of DNase I-hypersensitive regions 

during rat spermatogenesis: Stage-dependent patterns and unique sensitivity of 

elongating spermatids. Molecular Reproduction and Development, 31, 268-279. 

McPherson, S. M., & Longo, F. J. (1993). Nicking of rat spermatid and spermatozoa 

DNA: possible involvement of DNA topoisomerase II. Developmental Biology, 

158(1), 122-130. 

Meistrich, M. L., Trostle-Weige, P. K., Lin, R., Bhatnagar, Y. M., & Allis, C. D. (1992). 

Highly acetylated H4 is associated with histone displacement in rat spermatids. 

Molecular Reproduction and Development, 31(3), 170-181. 

Meyer, R. G., Ketchum, C. C., & Meyer-Ficca, M. L. (2017). Heritable sperm chromatin 

epigenetics: a break to remember. Biology of Reproduction, 97, 784-797. 

  



58 

 

Meyer-Ficca, M. L., Ihara, M., Lonchar, J. D., Meistrich, M. L., Austin, C. A., Min, W., 

… Meyer, R. G. (2011). Poly(ADP-ribose) metabolism is essential for proper 

nucleoprotein exchange during mouse spermiogenesis. Biology of Reproduction, 

84(2), 218-228. 

Meyer-Ficca, M. L., Lonchar, J. D., Ihara, M., Meistrich, M. L., Austin, C. A., & Meyer, 

R.G. (2011). Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate 

topoisomerase II beta (TOP2B) function during chromatin condensation in mouse 

spermiogenesis. Biology of Reproduction, 84, 900-909. 

Meyer-Ficca, M. L., Scherthan, H., Burkle, A., & Meyer, R.G. (2005). Poly(ADP-

ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. 

Chromosoma., 114(1), 67-74. 

Miller, T. C., Simon, B., Rybin, V., Grötsch, H., Curtet, S., Khochbin, S., … Müller, C. 

W. (2016). A bromodomain-DNA interaction facilitates acetylation-dependent 

bivalent nucleosome recognition by the BET protein BRDT. Nature 

Communications, 7, article number 13855. 

Montellier, E., Boussouar, F., Rousseaux, S., Zhang, K., Buchou, T., Fenaille, F., … 

Khochbin, S. (2013). Chromatin-to-nucleoprotamine transition is controlled by 

the histone H2B variant TH2B. Genes & Development, 27, 1680-1692. 

Morinière, J., Rousseaux, S., Steuerwald, U., Soler-López, M., Curtet, S., Vitte, A. L., … 

Petosa, C. (2009). Cooperative binding of two acetylation marks on a histone tail 

by a single bromodomain. Nature, 461, 664-668. 

Morse-Gaudio, M., & Risley, M. S. (1994). Topoisomerase II expression and VM-26 

induction of DNA breaks during spermatogenesis in Xenopus laevis. Journal of 

Cell Science, 107, 2887-2898. 

Pesch S., & Bergmann M. (2006). Structure of mammalian spermatozoa in respect to 

viability, fertility and cryopreservation. Micron, 37, 597-612. 

Pivot-Pajot, C., Caron, C., Govin, J., Vion, A., Rousseaux, S., & Khochbin, S. (2003). 

Acetylation-dependent chromatin reorganization by BRDT, a testis-specific 

bromodomain-containing protein. Molecular and Cellular Biology., 23, 5354-

5365. 

Rathke, C., Baarends, W. M., Awe, S., & Renkawitz-Pohl, R. (2014). Chromatin 

dynamics during spermiogenesis. Biochimica et Biophysica Acta., 1839(3), 155-

168. 

Reece, W. (2009). Functional anatomy and physiology of domestic animals (4th ed.). 

Ames, IA: Wiley-Blackwell 



59 

 

Risley, M. S., Einheber, S., & Bumcrot, D. A. (1986). Changes in DNA topology during 

spermatogenesis. Chromosoma, 94(3), 217-227. 

Roca, J., & Mezquita, C. (1989). DNA topoisomerase II activity in nonreplicating, 

transcriptionally inactive, chicken late spermatids. The EMBO Journal, 8, 1855-

1860. 

Rousseaux, S., Faure, A. K., Caron, C., Lestrat, C., Govin, J., Hennebicq, S., … 

Khochbin, S. (2004). Organizing the sperm nucleus. Gynecologie, Obstetrique & 

Fertilite, 32, 785-791. 

Schagdarsurengin, U., Paradowska, A., & Steger, K. (2012). Analyzing the sperm 

epigenome: Roles in early embryogenesis and assisted reproduction. Nature 

Reviews. Urology, 9, 609-619. 

Shang, E., Nickerson, H. D., Wen, D., Wang, X., & Wolgemuth, D. J. (2007). The first 

bromodomain of Brdt, a testis-specific member of the BET sub-family of double-

bromodomain-containing proteins, is essential for male germ cell differentiation. 

Development Cambridge England, 134, 3507-3515. 

Shinagawa, T., Huynh, L. M., Takagi, T., Tsukamoto, D., Tomaru, C., Kwak, H., … 

Ishii, S. (2015). Disruption of Th2a and Th2b genes causes defects in 

spermatogenesis. Development Cambridge England, 142, 1287-1292. 

Shirakata, Y., Hiradate, Y., Inoue, H., Sato, E., & Tanemura, K. (2014). Histone h4 

modification during mouse spermatogenesis. The Journal of Reproduction and 

Development, 60(5), 383-387. 

Sin, H. S., Barski, A., Zhang, F., Kartashov, A. V., Nussenzweig, A., Chen, J., … 

Namekawa, S. H. (2012). RNF8 regulates active epigenetic modifications and 

escape gene activation from inactive sex chromosomes in post-meiotic 

spermatids. Genes & Development, 26, 2737-2748. 

Smith, A., & Haaf, T. (1998). DNA nicks and increased sensitivity of DNA to 

fluorescence in situ end labeling during functional spermiogenesis. 

BioTechniques, 25(3), 496-502. 

Sonnack, V., Failing, K., Bergmann, M., & Steger, K. (2002). Expression of 

hyperacetylated histone H4 during normal and impaired human spermatogenesis. 

Andrologia., 34(6), 384-390. 

Swierstra, E. E., Gebauer, M. R., & Pickett, B. W. (1974). Reproductive physiology of 

the stallion. Journal of Reproduction and Fertility, 40, 113-123. 

“The Stallion: Breeding Soundness Examination & Reproductive Anatomy.” (2007) 

University of Wisconsin-Madison. Archived from the original on 2007-07-16. 



60 

 

Watanabe, F., Fukazawa, H., Masutani, M., Suzuki, H., Teraoka, H., Mizutani, S., & 

Uehara, Y. (2004). Poly(ADP-ribose) polymerase-1 inhibits ATM kinase activity 

in DNA damage response. Biochemical and Biophysical Research 

Communications, 319(2), 596-602. 

Wouters-Tyrou, D., Martinage, A., Chevaillier, P., & Sautiére, P. (1998). Nuclear basic 

proteins in spermiogenesis. Biochimie, 80(2), 117-128. 

Zhang, K., Williams, K. E., Huang, L., Yau, P., Siino, J. S., Bradbury, E. M., … 

Burlingame, A. L. (2002). Histone acetylation and deacetylation. Molecular & 

Cellular Proteomics, 1(7), 500-508. 

Zhao, M., Shirley, C. R., Hayashi, S., Marcon, L., Mohapatra, B., Suganuma, R., … 

Meistrich, M. L. (2004). Transition nuclear proteins are required for normal 

chromatin condensation and functional sperm development. Genesis, 38(4), 200-

213. 

 


	Identification of Sperm Chromatin Proteins as Candidate Markers of Stallion Fertility
	Recommended Citation

	tmp.1539723752.pdf.Usugm

