Utah State University DigitalCommons@USU

All Graduate Theses and Dissertations

Graduate Studies

5-1984

Unbalanced Analysis of Variance Comparing Standard and Proposed Approximation Techniques for Estimating the Variance Components

James P. Pugsley Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Applied Statistics Commons

Recommended Citation

Pugsley, James P., "Unbalanced Analysis of Variance Comparing Standard and Proposed Approximation Techniques for Estimating the Variance Components" (1984). *All Graduate Theses and Dissertations*. 7007.

https://digitalcommons.usu.edu/etd/7007

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

UNBALANCED ANALYSIS OF VARIANCE COMPARING

STANDARD AND PROPOSED APPROXIMATION

TECHNIQUES FOR ESTIMATING THE

VARIANCE COMPONENTS

by

James P. Pugsley

A thesis submitted in partial fulfillment of the requirements for the degree

> of MASTER OF SCIENCE

> > in

Applied Statistics

UTAH STATE UNIVERSITY Logan, Utah

ACKNOWLEDGMENTS

I give special thanks to Dr. David White, my major professor, for providing the initial idea for this thesis, and for all the help that I received from him while I was working toward completion of this thesis.

Also I give thanks to committee members, Dr. Ronald V. Canfield and Dr. Gregory W. Jones, for their help.

Finally, I express appreciation to the many teachers who have broadened my education, and I express special appreciation to my family, especially my wife, who have always been helpful to me in the accomplishment of this goal.

James Philip Pugsley

TABLE OF CONTENTS

Pa	ige
ACKNOWLEDGMENTS	i i
LIST OF TABLES	iν
LIST OF FIGURES	v
ABSTRACT	vi
Chapter	
I. DESCRIPTION OF PROBLEM	1
II. REVIEW OF THE LITERATURE	З
III. OUTLINE OF PROJECT	5
IV. RESULTS	24
V. CONCLUSIONS	28
REFERENCES	30
APPENDIXES	32
Appendix A. Derivation of Expected Values	33
Appendix B. Main Program	39
Appendix C. Subroutine RANDU	46
Appendix D. Subroutine NCTRI	47
Appendix E. Subroutine DGFREE	48
Appendix F. Subroutine COEFF	49
Appendix G. Subroutine INITAL	50
VITA	51

i i i

LIST OF TABLES

Fable		Page
1.	Unbalanced Nested Design E(MS)	6
2.	Definition of K	10
з.	Simplified Sums of Squares	12
4.	Input Components of Variation	16
5.	MSE Comparisons for the Estimates of σ^2 e	17
6.	MSE Comparisons for the Estimates of σ^2 . B/A	19
7.	MSE Comparisons for the Estimates of σ^2 A	21
8.	Definition of Procedures	26
9.	Results of Wilcoxon Signed Rank Test	27

iν

LIST OF FIGURES

Figure								F	^o age	
1.	Unbalanced	Nested	Design						2	

ABSTRACT

Unbalanced Analysis of Variance Comparing Standard and Proposed Approximation Techniques for Estimating the Variance Components

by:

James Philip Pugsley, Master of Science Utah State University, 1984

Major Professor: Dr. David White Department: Applied Statistics

This paper considers the estimation of the components of variation for a two-factor unbalanced nested design and compares standard techniques with proposed approximation procedures. Current procedures are complicated and assume the unbalanced sample size to be fixed. This paper tests some simpler techniques, assuming sample sizes are random variables. Monte Carlo techniques were used to generate data for testing of these new procedures.

(58 pages)

CHAPTER I

DESCRIPTION OF PROBLEM

Many practical research designs involve the collection of data in which the factors of interest are "nested." A nested design is a concept in which each factor appears in one and only one factor. This is similar to a tree, in that the leaves are nested to branches, and these branches are nested to the tree trunk. For another example, think of a batching process where raw materials are purchased in large, fixed lot sizes. Batches are produced from smaller quantities of this incoming lot and then the individual product is packaged from these batches. This concept is illustrated in Figure 1.

One characteristic of nested designs is that they often involve unequal sample sizes. In industrial situations, this is usually a consequence of the fact that individual products can be defective. If the events "being defective" are independent, they are said to have a binomial distribution, sometimes referred to as a Bernoulli process.

The current methods of analysis for unbalanced nested designs are complicated and computationally difficult.

The current analysis procedures are based on the assumption that the unbalanced sample sizes are fixed, i.e., if the experiment is rerun the same sample sizes will occur. The proposed method relaxes the fixed sample size assumption and assumes that they are random variables.

This thesis investigates the properties of this new method of analysis and compares them with standard methods when sample sizes are random variables.

A two factor unbalanced nested design will be examined utilizing Monte Carlo simulation techniques to generate the data. The generated data will be used to assess new simplified procedures.

Figure 1. Unbalanced Nested Design

CHAPTER II

REVIEW OF THE LITERATURE

Many current activities regarding the computation of variance components from unbalanced designs are summarized by Harville (1976), although his emphasis in this paper are on maximum likelihood estimation approaches. Harville (1967) presents work for an unbalanced one-way design assuming the sample sizes are random variables from a poisson distribution. Harville (1968) expands his prior work to a two-way completely random classification, this again assumed the sample sizes to be random variables from a poisson distribution. The estimates of the components of variation were still complex creating a desire for a more straight forward approach.

Many other papers have been written discussing computation of the component of variations, such as, Olsen, Seely, and Birkes (1976), Harville (1974), Rao (1972), Searle (1971), Thompson (1969), Harville (1969), Klotz, Milton, and Zacks (1969), Russell and Bradley (1958), and Henderson (1953) to name just a few. With exception of the early work of Harville (1967, 1968) none of the above addressed the concept of sample size being a random variable.

The decision was made to use Monte Carlo techniques and develop a much simplier approach, while at the same time relaxing the fixed sample size assumption. The poisson distribution used by Harville (1967, 1968) seems restrictive in applications while assuming sample sizes were random variables form Bernoulli distribution appear to have more general applications.

CHAPTER III

OUTLINE OF PROJECT

The current analysis procedures for analysis of an unbalanced nested design are complicated. The assumption of a fixed sample size does not seem reasonable and should be relaxed. The relaxation of the fixed sample size assumption can also simplify the difficult analysis techniques.

A Monte Carlo study was designed based on the sample size being a Bernoulli (Binomial) random variable. The Bernoulli distribution fits many practical applications. This distribution allows for inclusion or deletion of an observation based on a Known probability. It is reasonable to assume that a Known proportion of the observations or cells in a nested design will be missing, given a specified target or intended sample size. This allows the sample size to be considered a random variable. The example shown in Figure 1 could be one of building rocket motors. It is known and predictable that a certain proportion of the batches of propellant will be lost. It is also known and predictable that a given proportion of the individual product, the test samples,

will be missing.

The above scenario is common and happens frequently in applied work. Models of this type conform to a Bernoulli distribution. Various probabilities for missing cells and missing observations were examined. The expected mean squares (E(MS)) are listed in Table 1, under the assumption that the sample sizes are fixed.

Table 1. Unbalanced Nested Design E(MS)

SOURCE	E D.F.	SS	MS	E(MS)
A	a-1	SS(A)	MS(A)	$\sigma_{e}^{2} + \kappa_{2}\sigma_{B/A}^{2} + \kappa_{3}\sigma_{A}^{2}$
B/A	∑(Б – 1)	SS(B/A)	MS(B/A)	$\sigma_{e}^{2} + \kappa_{1} \sigma_{B/A}^{2}$
C/B/A	$\sum_{i} \sum_{j} \langle c_{i,j} - i \rangle$	SS(C/B/A)	MS(C/B/A)	$\sigma_{_{e}}^{^{2}}$

The components of variation are usually computed utilizing the mean squares (MS) in conjunction with the E(MS) where the various estimates are:

$$\hat{\partial}_{e}^{2} = MS(C/B/A) \qquad \text{eq. 1}$$

$$\hat{\partial}_{B/A}^{2} = [MS(B/A) - \hat{\partial}_{J/k}^{2}]/k \qquad \text{eq. 2}$$

$$\overset{A}{\overset{2}{\mathcal{O}}}_{A}^{2} = [MS(A) - (\overset{A}{\overset{2}{\mathcal{O}}}_{e}^{2} + k \overset{A}{\overset{2}{\mathcal{O}}}_{B/A}^{2})]/k \qquad \text{eq. 3}$$

The K 's are defined for the standard method in Table 2, i

p. 10.

A new method is proposed to estimate the K 's. An i

examination of various methods of computing the sums of squares are explored. There are four ways to compute the overall mean, two ways to compute the cell means and one way to compute the sample averages. The stability of these was unknown so all the estimates were tried. These estimates were only examined with the new method of computing the K 's.

The unbalanced nested design model to be assessed is a two factor model:

$$\times = \delta_{ij} \eta_{ijk} (\mu + a + b + c)$$

where

and

$$\delta_{i,j} = \begin{cases} 1 & \text{if } B & \text{is present} \\ & i,j \\ \emptyset & \text{if it is missing} \end{cases}$$

$$\eta_{i,j,k} = \begin{cases} 1 & \text{if } C & \text{is present} \\ & i,j,k \\ \emptyset & \text{if it is missing} \end{cases}$$

so that

$$p(\delta_{ij} = 0) = \pi_b$$

$$_{\mathsf{p}} < \eta_{\mathsf{i},\mathsf{j},\mathsf{k}} = 0 > = \pi_{\mathsf{c}}$$

The π indicates that a branch is missing from the tree or an entire batch is missing while π designates that a leaf is missing from the branch or a test sample is missing from a batch.

Given that

 $A \sim \text{NID}(0, \sigma^2)$ $B \sim \text{NID}(0, \sigma^2)$ $B \rightarrow \text{NID}(0, \sigma^2)$

 $\delta_{\rm ij}$ from factor B follows a Bernoulli random distribution with the probability of π being equal to zero and $\eta_{_{ijk}}$ follows a Bernoulli random distribution with ${\cal T}$ being

equal to zero. The individual observation follow a random normal distribution with mean zero and variance σ_i^2 . The Analysis of Variance (ANOVA) Table (Table 1) is provided to give a basis for further discussion.

Expected values were used to obtain a new method of estimating the k 's (see Appendix A for derivation). It i was noted that the following relationships existed:

 $E(c_{ij}) = (1 - \pi_{i})c_{c}$ $E(b_{i}) = (1 - \pi_{i})b_{b}$ $E(c_{i}) = (1 - \pi_{i})(1 - \pi_{i})bc_{c}$ $E(c_{i}) = (1 - \pi_{i})(1 - \pi_{i})abc_{c}$ $E(b_{i}) = (1 - \pi_{i})ab_{b}$

so that

EIMS(A)] =
$$\sigma_{e}^{2}$$
 + (1 - π_{c}) σ_{d}^{2}
+ (1 - π_{b}) (1 - π_{c}) be σ_{A}^{2}
EIMS(B/A)] = σ_{e}^{2} + (1 - π_{c}) σ_{d}^{2}
= σ_{e}^{2} + (1 - π_{c}) σ_{d}^{2}

$$E[MS(C/B/A)] = \sigma_{1}^{2}$$

and

 $\begin{array}{ccc} c & \neq b & \stackrel{\sim}{\longrightarrow} & (1 - \mathcal{T})c \\ c & c \\ c & \neq a \\ \vdots & & = (1 - \mathcal{T})(1 - \mathcal{T})bc \\ \vdots & & b \\ \end{array}$

Using the above results now gives rational for a new method of estimating the k₁'s.

Besides the standard methods of computation for the K i factor (Snedecor and Cochran 1976; Fryer 1966) a new method is being proposed. The two methods are presented in Table 2.

 STANDARD METHOD
 NEW METHOD

 k
 = $\sum_{i=j}^{2} \sum_{i=j}^{2} c_{i=j}^{2} (1/c_{i=j} - 1/c_{i=j})/(b_{i=j} - a)$ k
 = c
 /b

 k
 = $\sum_{i=j}^{2} \sum_{i=j}^{2} c_{i=j}^{2} (1/c_{i=j} - 1/c_{i=j})/(a_{i=j} - 1)$ k
 = c
 /b

 k
 = $\sum_{i=j}^{2} \sum_{i=j}^{2} c_{i=j}^{2} (1/c_{i=j} - 1/c_{i=j})/(a_{i=j} - 1)$ k
 = c
 /b

 k
 = $\sum_{i=j}^{2} c_{i=j}^{2} (1/c_{i=j} - 1/c_{i=j})/(a_{i=j} - 1)$ k
 = c
 /b

 k
 = $\sum_{i=j}^{2} c_{i=j}^{2} (1/c_{i=j} - 1/c_{i=j})/(a_{i=j} - 1)$ k
 = c
 /a

 k
 = $\sum_{i=j}^{2} c_{i=j}^{2} (1/c_{i=j} - 1/c_{i=j})/(a_{i=j} - 1)$ k
 = c
 /a

 3
 i
 i
 i
 i
 i
 i
 i

The new method of estimating the k 's is much simplier and i

it will be shown to provide estimates that are at least as good as those utilizing the computationally difficult standard techniques. Notice that the new method estimating K = K is simply the average number of samples $1 \quad 2$ per non empty cell and that K is the average number of 3non empty cells times the average number of samples per non empty cells. This provides a very simple method of estimating the coefficients necessary to compute the variance components.

In addition to the comparison between methods of computing k a comparison was made of various simplifying methods of i computing the sums of squares. These include all possible ways to estimate sample means, cell means and overall means. The computations of these sums of squares are presented in Table 3.

All combinations of 1 and m were examined for the sums of squares but only the new method of estimating the K 's i were considered in the estimation of the variance components. It was not known which would be the best. The mathematical derivations are not sufficiently tractable so all possible combinations were tried. All are relatively simple and had the potential of being

better estimates.

Table 3. Simplified Sums of Squares

SOURCE OF VARIATION	SUMS OF SQUARES
A	$SS(A) = c /a \sum_{i=1}^{n} (x_{i}^{(1)} - x_{i}^{(m)})^{2}$
B/A	$SS(B/A) = c /a \sum_{i=j}^{n} \sum_{i=j}^{n} (\overline{x}_{i=j} - \overline{x}_{i=j}^{(1)})^{2}$
C/B/A	$SS(C/B/A) = (c - b)/b \sum_{i \neq j} \sum_{i \neq j}^{2}$

where

1 = 1,2m = 1,2,3,4

and

$$\overline{\overline{X}}_{ij} = \sum_{K} \sum_{ijk} \sum_{ijk} z_{c}$$

$$\overline{\overline{X}}_{i..}^{(1)} = \sum_{J} \sum_{K} \sum_{ijk} \sum_{j} z_{c}$$

$$\overline{\overline{X}}_{i..}^{(2)} = \sum_{J} \sum_{K} \sum_{ijk} z_{c}$$

$$\overline{\overline{X}}_{i..}^{(2)} = \sum_{J} \sum_{K} \sum_{ijk} z_{c}$$

$$\overline{\overline{X}}_{i..}^{(1)} = \sum_{i} \sum_{J} \sum_{K} \sum_{ijk} \sum_{ijk} z_{c}$$

$$\overline{\overline{X}}_{i..}^{(1)} = \sum_{i} \sum_{J} \sum_{K} \sum_{ijk} z_{ijk} z_{ij}$$

.

$$\overline{\mathbf{x}}_{\dots}^{(2)} = \sum_{i} \langle \sum_{j \in \mathbf{k}} \mathbf{x}_{ijk} | \mathbf{j} \in \mathbf{j} \rangle / \mathbf{a} = \sum_{i \in \mathbf{k}} \overline{\mathbf{x}}_{ijk} / \mathbf{a}$$

$$\overline{\mathbf{x}}_{\dots}^{(3)} = \sum_{i \in \mathbf{j}} \langle \sum_{k \in \mathbf{k}} \mathbf{x}_{ijk} / \mathbf{c}_{ij} \rangle / \sum_{i \in \mathbf{k}} = \sum_{i \in \mathbf{j}} \sum_{i \in \mathbf{j}} / \mathbf{b}$$

$$\overline{\mathbf{x}}_{\dots}^{(4)} = \sum_{i \in \mathbf{j}} \langle \sum_{k \in \mathbf{k}} \mathbf{x}_{ijk} / \mathbf{c}_{ij} \rangle / \mathbf{b} \rangle / \mathbf{a} = \sum_{i \in \mathbf{j}} \langle \sum_{k \in \mathbf{k}} \mathbf{x}_{ijk} / \mathbf{c}_{ij} \rangle / \mathbf{b} \rangle / \mathbf{a}$$

Notice from Table 3 there are four possible ways to compute the overall mean, two ways to compute the cell means and one way to compute the sample means.

The estimates of the variance components were truncated, that is if $\sigma^2 < 0$ then $\sigma^2 = 0$.

The values for the Bernoulli random variables were:

$$\begin{aligned}
 \pi &= 0.0, \ 0.2, \ 0.4 \\
 c \\
 \pi &= 0.0, \ 0.1, \ 0.2 \\
 b \\
 b
 \end{aligned}$$

The assumption used here was that a sample should have a larger possibility of being missing than that of an entire cell.

We will be interested in certain functions of the variances. These are:

and

$$\phi_{2} = \frac{\sigma_{e}^{2} + c\sigma_{B/A}^{2} + bc\sigma_{A}^{2}}{\sigma_{e}^{2} + c\sigma_{B/A}^{2}}$$

Now, let

$$\theta_i = -\frac{1}{\phi_i}$$

The values of $heta_i$ are the power of the test parameter, $\pi(heta_i)$, as defined by Graybill (1976), i.e.

$$\begin{aligned}
\pi(\theta) &= \int_{i=j}^{\infty} F(\omega; n, n) d\omega \quad \text{for } 0 < \omega < 1 \\
\theta_{i=j} \\
\alpha, n, n \\
i=j
\end{aligned}$$

Thus, these estimates are invariant for constant values of the ϕ . The values used in this study for ϕ_1 and ϕ_2

were:

This now provides a more general examination of the problem and allows the study of ratios. The values considered for the study were based on $\sigma_e^2 = 1$ (see page

6). The various values for the other variance components are computed and given in Table 4 where:

a = 5 = target sample size for factor Ab = 4 = target sample size for factor Bc = 3 = target sample size for factor C

4 This converts to a 3 factorial set of simulation runs with 100 replications at each observation. The comparison criteria will be the mean square errors (MSE) as defined in equation 4.

 $MSE = -\frac{1}{I} \sum_{i=1}^{I} \left(\int_{i,j}^{A_{2}} - \int_{j}^{2} \right)^{2} eq. 4$

The target values are for I = 100. This measures the estimated variance component against its theoretical value. The MSE comparisons are given in Table 5 for σ_e^2 , Table 6 for σ_B^2 and Table 7 for σ_A^2 .

Table 4. Input Components of Variation

φ.	ϕ_{2}	σ^2	$\sigma^2_{\rm prop}$	σ^2
		e 	B/A	H
1	1	1	0	0.00
1	4	1	0	0.25
1	16	1	0	1.25
4	1	1	1	0
4	4	1	1	1
4	16	1	1	5
16	1	1	5	0
13	4	1	5	4
16	16	1	5	20

The definition of terms in Tables 5, 6 and 7 are as follows: S indicates the standard method of computing the i sums of squares and the standard method of computing the k 's, the SN indicates the standard method of computing i i the sums of squares and the new method of computing the k 's, and N indicates the various simplifying methods i i,j of computing the sums of squares and the new method of computing the k 's. The methods of computing the i i Estimates of σ_{e}^{2}

π	π	Φ	Φ	σ	σ	S	N
ь	c	1	^r 2	B/A	Ā	1	1,1
6		1	1			0.0450	8.8450
0	9	1	4	0	0.25	0.0560	8.0560
0	θ	1	16	0	1.25	0.0508	0.0508
0	0	4	1	1	8	0.0597	0.0597
9	0	4	4	1	1.00	8.8621	0.0621
8	9	4	18	1	5.00	0.0012	0.0512
0	õ	16	4	5	4.98	8.8423	8.8423
0	0	16	16	5	20.00	0.0541	8.8541
	0.2	1	1	0		0.0837	0.0954
0	0.2	1	4	9	0.25	0.0662	0.0755
0	0.2	1	16	9	1.25	0.0798	0.0884
8	0.2	4	1	1	0	0.0643	0.0735
0 9	0.2	4	4	1	1.00	0.0033	0.0940
6	0.2	16	10	5	J.00	0.0000	0.0/34
9	0.2	16	4	5	4.88	0.0626	8.8724
8	0.2	16	16	5	20.00	0.0787	0.0825
	0.4	1	1			0.1524	0.1631
0	0.4	1	4	0	0.25	0.1179	0.1902
0	0.4	1	16	0	1.25	0.0950	8.1743
8	0.4	4	1	1	8	0.1618	0.2098
9	0.4	4	1.5	1	1.00	0.13/3	0.1631
0	0.4	16	10	5	0.00 A	0.1449	8.1755
8	0.4	16	4	5	4.00	0.1502	0.1577
8	0.4	16	16	5	20.00	0.1476	0.2058
0.1	8	1	1	0		0.0746	8.8746
0.1	0	1	4	0	0.25	8.8549	0.0549
0.1	0	1	16	0	1.25	0.0631	0.0631
9.1	9	4	1	1	1 99	0.0567	0.0567
8.1	P P	4	16	1	5 88	0.000/	0.000/
0.1	0	16	1	5	0.00	0.0598	0.0598
0.1	9	16	4	5	4.00	0.0589	0.0589
0.1		16	16	5	20.00	0.0571	0.0571
0.1	0.2	1	1	0	0	0.1841	0.1136
0.1	0.2	. 1	4	0	0.25	0.0735	8.0773
0.1	8.2	1	10	1	1.25	0.0718	0.0834
0.1	0.2	4	4	1	1.00	0.0720 0 1002	0.0700
0.1	8.2	4	16	1	5.00	0.0701	8.8778
0.1	0.2	16	1	5	0	0.1203	0.1164
0.1	0.2	16	4	5	4.00	0.0719	0.0825
0.1	0.2	16	16	5	20.00	0.0621	0.0773
0.1	0.4	1	1	0	0	0.1614	0.1972
0.1	0.4	1	4	0	0.25	0.1410	0.1771
0.1 A 1	0.4	1	16	0	1.25	0.1607	0.1873
0.1	0.4	4	1	1	1 99	0.1049	0.1905
0.1	8.4	4	16	1	5.00	0.0703	B. 1729
0.1	0.4	16	1	5	0	0.1208	0.1450
0.1	0.4	16	4	5	4.00	0.1741	0.1521
0.1	8.4	16	16	5	20.00	0.1516	0.1707

Est	imates	of	d
			ę

$\pi_{_{b}}$	π	$\phi_{_1}$	ϕ_{2}	σ _{B/A}	σ	S 1	N 1 1
0.2	0	1	1	9	. A	A A717	9 9717
8.2	0	1	4	8	0.25	8.8682	9 9492
0.2	9	1	16	0	1.25	0.0718	A 9710
0.2	0	4	1	1	<u>.</u> 0	9.9452	0.0/10
0.2	0	4	4	1	1.00	9.9529	A 9520
9.2	0	4	16	1	5.00	8.8589	A 4580
0.2	0	16	1	5	9	8 8751	A 9751
0.2	0	16	4	5	4.00	0.0701	0.07.01
0.2	0	16	16	5	28.00	0.0774	8 9774
							0.0//4
0.2	0.2	1	1	0	9	0.1021	0 1145
0.2	0.2	1	4	0	0.25	8.8899	A.1139
0.2	0.2	1	16	0	1.25	0.0686	0 1050
0.2	0.2	4	1	1	0	0.1058	0.1277
0.2	0.2	4	4	1	1.00	0.0593	8.8784
8.2	0.2	4	16	-1	5.00	8.8825	0.0981
0.2	0.2	16	1	5	0	0.0999	A A919
0.2	0.2	16	4	5	4.00	0.0705	9.9895
0.2	0.2	16	16	5	20.00	0.0612	0.0774
0.2	8.4	1	1	0	9	0.1614	0.1882
0.2	0.4	1	4	0	0.25	8.1877	0.1618
0.2	0.4	1	16	0	1.25	0.1489	0.1936
0.2	8.4	4	1	1	0	0.1435	0.1978
0.2	0.4	4	4	1	1.00	0.1543	8.1869
0.2	0.4	4	16	1	5.00	0.1606	0.1877
0.2	0.4	16	1	5	0	0.1714	0.1973
0.2	0.4	16	4	5	4.00	0.1871	0.1676
0.2	0.4	16	16	5	20.00	0.1604	0.1544

Table 6. MSE Comparisons for the

Estimates of $\sigma_{
m B/A}^2$

	77		4	٦	2	_2				
	// h	11	Ψ.	φ	0	Ø	S	SN	N	N
					B/A	A	2	2	2,1	2,2
	0	9	1	1	A					
	0	0	ī	4	Â	A 2	6.0118	0.0118	. 0.0118	8 0.0118
	9	0	1	16	Ä	1.25	0.0120	0.0128	0.0128	0.0128
	8	0	4	1	1	1.120	0.0107	0.0107	0.010	0.0109
	0	0	4	4	ī	1.99	A 2232	0.3047	0.3047	0.3049
	0	0	4	16	1	5.00	A.2812	0.2232	8 2012	0.2232
	0	0	16	1	5	0	3.5178	3.5178	3.5179	3 5170
	8	0	16	4	5	4.00	4.4060	4.4868	4.4848	4 4949
		0	16	16	5	20.00	3.9510	3.9510	3.9518	3.9519
	я Я	A 2								
	ě	Ø.2	1	1	9		0.0181	0.0173	0.0541	0.0476
	0	0.2	1	16		0.25	0.0135	0.0130	0.0451	0.0389
	0	0.2	4	1	1	1.25	0.01/9	0.0172	0.0428	0.0352
	9	0.2	4	4	;	1 99	0.2321	0.2223	.2636	0.2432
	0	0.2	4	16	1	5.00	0.3700 A 207A	0.34/9	0.4498	8.4848
	0	0.2	16	1	5	0.00	5.2149	5 9449	0.3288	0.3117
	0	0.2	16	4	5	4.00	4.5249	4 3700	5 3530	5.1000
	0	0.2	16	16	5	20.00	5.0840	4.9720	4.8828	4.7720
	9	0.4	1	1	0	0	0.0360	0.0332	0.1555	0.1358
	8	0.4	1	4	0	0.25	0.0393	0.0356	0.1986	0.1639
	â	9 4	1	16	0	1.25	0.0376	0.0338	0.1568	0.1356
	Ø	8.4	4	1	1	8	0.3762	0.3499	0.6548	0.5537
	0	0.4	4	14	1	1.00	0.4454	0.4122	0.8052	0.6868
	0	0.4	16	1	5	5.00	0.4736	0.4367	0.5972	0.5094
	0	0.4	16	4	5	4 99	0.7400	6.0330	6.5260	5.7360
	0	0.4	16	16	5	28.00	3.9439	4.2000	5.0380	4.4990
-								3.0/70	4.7988	4.2160
	0.1	0	1	1	0	0	0.0523	0.0523	0.0523	8 8522
	0.1	0	1	4	0	0.25	0.0109	0.0109	8.8199	0.0J23
	0.1 0.1	8	1	16	0	1.25	0.0108	0.0108	8.0108	0.0108
	0.1		4	1	1	0	0.2903	0.2903	0.2903	0.2903
	0.1	A	4	4	1	1.00	0.2304	0.2304	0.2304	0.2304
	0.1	· 9	14	10	1	5.00	6.2330	0.2330	0.2330	0.2330
	e.1	ē	16	4	5	1 00	3.9330	3.9330	3,9330	3.9330
	0.1	0	16	16	5	4.00	4.0490	4.0490	4.0490	4.0490
						20.00	4.0460	4.0460	4.0460	4.0460
	0.1	0.2	1	1	0	A	A A859	A 9934	B 1140	
	0.1	0.2	1	4	0	0.25	8.8197	0.0034 0.0105	0.1148	0.1037
	0.1	0.2	1	16	8	1.25	0.0270	0.0254	9 9754	0.04/1
	0.1	0.2	4	1	1	0	0.3152	0.2989	0.3070	0.0030
	0.1	0.2	4	4	1	1.00	8.2917	0.2785	0.3003	B 2812
	0.1	0.2	4	16	1	5.00	9.3782	0.3559	0.3614	A 3300
	0.1	0.2	16	1	5	0	5.3600	5.1550	5.0440	4.7238
	0.1	0.2	16	4	5	4.00	6.4100	6.1680	6.1638	5.7190
				10	5	20.00	4.1500	3.8490	4.5660	4.2169
	0.1	0.4	1	1	a					
	0.1	0.4	1	4	9	A 25	0.1131	0.1044	0.2646	0.2297
	0.1	0.4	1	16	A	1.25	0.0303	0.0461	0.1642	0.1432
	0.1	0.4	4	1	1	A	0.0320 0.4345	0.0469	0.1890	0.1656
	0.1	0.4	4	4	1	1.00	0.4520	8.4115	0.3699	0.4962
	9.1	0.4	4	16	1	5.00	8.4544	9 4134	0.8331	0.7123
	0.1	0.4	16	1	5	0	6.1580	5.7869	6 . 3Y22	0.4818
	0.1	0.4	16	4	5	4.00	4.7648	4.6098	5.3149	0.1/50
	····	0.4	16	16	5	20.00	4.8140	4.5510	4.5800	3.8549

Table 6. (Continued) MSE Comparisons for the

Estimates of σ^{-2} B/A

				2	2				
π	Π	Ø	Ø	σ	σ	S	SN	N	N
Ъ	c	r_1	r 2	B/A	A	2	2	2,1	2,2
0.2	8	1	1	0	0	0.0591	0.0591	0.0591	0.0591
0.2	8	1	4	0	8.25	0.0210	0.0210	0.0210	0.0210
0.2	8	1	16	0	1.25	0.0129	0.0129	0.0129	0.0129
8.2	8	4	1	1	8	0.2424	8.2424	0.2424	0.2424
0.2	8	4	4	1	1.00	0.2912	0.2912	0.2912	0.2912
0.2	0	4	16	1	5.00	8.4196	0.4196	8.4196	8.4196
0.2	0	16	1	5	0	3.8580	3.8580	3.8580	3.8580
0.2	0	16	4	5	4.00	5.9020	5.9020	5.9020	5.9020
8.2	0	16	16	5	20.00	5.3510	5.3510	5.3510	5.3510
a.2	θ.2	1		0		0.0757	0.0709	0.1282	0.1147
8.2	0.2	1	4	0	0.25	0.0232	0.0217	0.0594	0.0521
8.2	8.2	1	16	0	1.25	0.0230	0.0218	0.0566	0.0473
8.2	8.2	4	1	1	0	0.5064	0.4785	8.5989	0.5355
0.2	8.2	4	4	1	1.00	0.3300	0.3158	0.3975	0.3625
0.2	8.2	4	16	1	5.00	0.3917	0.3697	8.5398	0.4762
8.2	0.2	16	1	5	0	6.5680	6.2500	6.4380	6.1900
0.2	0.2	16	4	5	4.00	4.9228	4.7160	6.3360	5.6670
0.2	0.2	16	16	5	28.08	5.9920	5.7000	5.8150	5.4160
8.2	0.4	1	1		0	0.1411	0.1305	0.3123	0.2638
8.2	0.4	1	4	0	0.25	0.0485	0.0443	0.1795	0.1501
0.2	8.4	1	16	0	1.25	0.0471	0.0425	8.1771	0.1478
0.2	0.4	4	1	1	0	0.5603	0.5096	0.8100	0.6724
8.2	0.4	4	4	1	1.00	0.4885	0.4389	0.6652	0.5630
0.2	0.4	4	16	1	5.00	8.5969	0.5463	0.7920	0.6570
0.2	8.4	16	1	5	0	7.9560	7.1968	8.0540	6.9580
0.2	0.4	16	4	5	4.00	9.7130	8.3670	18.3900	8.9500
0.2	0.4	16	16	5	20.00	5.7400	5.2420	7.9820	6.5840

z	6.66 6.0 6.0 6.0 6.0 6.0 6.0 6.0	6.662 6.6330 6.7330 6.7330 6.7330 6.7330 16.7330 16.7330 12.53300 12.53300 12.533000 12.533000 12.53300000000000000000000000000000000000	0.9127 0.9127 0.9717 0.9758 0.1144 0.1144 0.624 21.6489 0.9771 15.9280
z	6.6815 6.6815 6.9386 6.9386 6.6555 6.6755 6.6755 6.6755 6.6236 6.6236 7.728 6.6336 7.728 7.738 6.6336 7.738 7.7487 7.7487 7.748 7.7487 7.7487 7.7487 7.7487 7.7487 7.7487 7.7487 7.74787 7.74787 7.74787 7.74787 7.74787 7.74787 7.74787 7.74787 7.74787 7.74787 7.747777 7.74787777777777	9.9929 9.99242 9.95423 9.95423 9.95542 9.9773 19.773 19.7739 10.7799 10.7799 15.37999 1.53.37999	9.0138 9.9873 9.9843 9.1151 9.1151 9.1151 9.9669 0.9968 0.9968
z	6.6915 6.6915 6.69396 6.6336 6.6533 6.6553 6.6553 6.6553 6.6553 12.7369 12.436	9.8939 9.9485 9.9525 9.9525 9.9524 9.9524 9.9529 19.5579 12.5579	9.8134 9.8134 9.8756 9.9769 9.1184 9.6786 1.9188 1.9188 1.9188
z	6.6915 6.6915 6.69366 6.63366 6.6333 6.6333 6.53396 12.43986 12.43986 12.43088 12.43088	6.6030 6.60330 6.9552 6.9552 6.9575 6.6576 6.9739 12.6556 12.6556	9.0147 9.0147 0.9889 0.9889 0.1183 0.1183 0.6751 1.0310 1.0310 1.0310 1.0310 261.4000
z e	6.63966 6.63966 6.63966 6.635366 6.635366 6.635373 6.635373 6.73766 6.73766 7.237666 7.237666 7.237666	6.9476 6.9476 6.9394 6.9394 6.9394 6.9394 1.05596 1.352696 1.352696	0.000 0.0000 0.0000 0.0000 0.000000
z	9.6915 9.6915 9.6915 9.6753 9.6753 9.6753 9.6739 6.6739 6.6369 1.2.73396 9.6369 2.2289	6.6966 6.9967 6.9397 6.9397 6.9397 6.9397 6.9397 6.9397 1.93996 1.339696 1.339696	8.9897 8.9897 8.9737 8.1093 9.1093 9.1093 8.6897 23.3286 23.3286 16.7286 17.7286 16.7286 17.7286 16.7286 17.7286 16.7286 17.72866 17.72866 17.7286 17.7286 17.7286 17.7286 17.
л Э,2	9.9353 9.9353 9.9353 9.9353 9.9353 9.9353 9.9369 9.9369 9.9369 228.7998	6 9 9 2 4 9 2 4 9 2 4 9 2 4 9 2 4 9 2 4 9 2 4 9 2 4 9 2 9 2	2 2 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5
z e	6 6 6 1 5 6 6 6 1 5 6 6 6 1 5 6 6 6 6 6 6 6 6 5 5 6 6 6 6 6 6 6 7 5 5 6 6 6 6 7 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 6 6 6 7 6 6 6 6 7 6 6 6 6 7 6 6 6 6 7 6 7	6.6626 6.73626 6.74273 6.74273 6.74273 6.7573 6.7573 1.3.34273 1.3.3426 1.3.3426 1.3.3426 1.3.3426 6.636 1.3.3426 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.64776 6.64777 6.64777 6.64777 6.647776 6.647776 6.6477776 6.6477776 6.647777777777	8.8788 8.8784 8.8784 8.1865 8.1865 8.6928 23.9968 23.9968 23.7968 23.7968 23.9968 17.23888 267.15888
8	6.6915 6.6915 6.6169 6.6169 6.6169 6.6353 6.6353 6.6353 6.6353 6.6353 6.6353 6.6353 6.6353 6.6353 7.2397 7.2397 7.2397 7.2397 7.2397 7.2397 7.2397 7.2397 7.2397 7.2397 7.2397 7.2397 7.2397 7.2397 7.2397 7.2397 7.2397 7.239	6.9927 9.9914 9.9814 8.9593 8.8593 19.7299 19.7299 13.25999 13.25999 1.3.25999	8.8871 6.9788 6.9789 8.1152 8.1152 8.1152 8.2428 24528 24528 24528 8.1152 24528 8.1152 24528 8.1152 1.11998 8.1152 1.11998 8.1152 1.11528 8.11528 1.11
υE	6.6915 6.9386 1.0166 8.9353 8.9353 8.9353 8.9353 8.9353 8.9353 8.9353 12.4389 12.4389 12.4389 8.222 12.4389 12.4389 8.5489 8.5499 8.5489 8.549	8.8927 8.9461 8.9894 8.9894 8.9632 9.8479 19.39999 1.91.27799 1.91.27799	0.0070 0.07030 0.07030 0.07030 0.1101 0.1101 0.11070 0.111700 1.11770 0.111700 1.11770 0.000 0.000 0.0000
d 2	2000 10 10 10 10 10 10 10 10 10 10 10 10		9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 2 8/4	©©©∽⊸⊸nnnn	©©©⊶⊸∽សស្ស 	©©©⊣⊸⊷nnnni ! !
φ2	- 4 0 - 4 0 - 4 0		- 4 0 - 4 0 - 4 0
φ_			
F		~~~~~~	
F			

Table 7. MSE Comparisons for the

Estimates of $ilde{O}_{A}^{2}$

z	3.8	2.2900	9.9671	6.9712	0.0364	.7985	14.8868	1.6528	19.7888	283.8008		1.000	9.8484	1.8918	9.1082	. 6800	17.4688	9447	21.6588	312.7060		2.5410	8.8845	.7573	0.1181	8 2 6 2 1	13.4488	1.2510	22.9488	174.2098
z	3.7	2.2900	6.9673	8.9811	9260.0	.7123	14.1898	1.7818	20.2468	288.6888		ACCO . 1	6.8783	1.1298	0.1186	0.7012	17.9788	9.9719	21.8388	318.0980		2.5668	0.8867	.7724	1211.0	4530	15.6200	1.3780	25.7300	181.7888
z	9'e	2.2986	1730.0	0.9712	9.9364	2862.0	14.0000	1.6528	19.7886	283.8966		ACC0 . 1	6.9684	1.0938	9.1856	E149.0	17.4688	9.9619	21.7200	312.6989		2.5410	8.9848	0.7589	0.1129	1.4828	15.5888	1.2930	22.9488	174.2888
z	з'г	2.2988	8.0673	8.9811	0.0376	.7123	14.1988	1.7818	28.2488	288.6888		A 400 . 1	8.8718	1.1398	0.1123	8.7948	17.9688	1.8258	22.3988	321.1888		2.6418	8.8988	9.7868	0.1260	1.4858	16.89989	1.4898	25.2988	186.2966
z	3,4	2.2900	8.8671	9.9712	8.8364	2882.9	14.0000	1.6528	19.7888	203.8000		1100.1	0.8620	1.6366	0.1177	0.7052	16.6308	1.8688	28.7488	317.5480		2.4840	9.9868	0.7679	0.1057	1.3760	15.3286	1.5018	28.5788	180.6008
z	Э,Э	2.2900	6.0673	0.9811	0.0376	6212.8	14.1888	1.7018	20.2488	288.6999			EE98 .	9699.1	0.1287	9.7129	17.1208	1.6988	20.8368	321.9688		2.6270	0.0887	8.7775	0.1123	1.4258	15.4408	1.6918	23.3860	187.5008
z	3,2	2.2986	8.8671	9.9712	9364	8.7885	14.8888	1.6528	19.7888	283.8666			8.8621	1.0288	8.1167	8.7835	16.6308	1.8510	28.6988	317.6888		2.6648	9.8867	0.7672	6.1937	1.3670	15.2688	1.4528	28.5768	188.6888
z	3,1	2.2988	E198.9	0.9811	8.8376	0.7123	14.1888	1.7018	20.2400	288.6666			1000.0	1.8628	0.1201	0.7161	17.1288	1.8978	21.8488	324.8888	1	2.7128	8.8914	8.7946	0.1159	1.4388	15.7888	1.6618	22.9588	192.4888
3	e	2.2898	0.0672	1.0120	0.0323	8.7287	14.8788	1.6158	17.8568	297.2008			6/CA.A	8.9372	0.1255	8.6949	14.1988	1.0148	21.6800	334.9868		2.2548	0.0834	8.7172	9.9899	1.4558	13.7868	9485.1	17.1500	175.2866
s	e	2.2898	8.8675	8528.1	0.0327	8.7375	15.0208	1.6428	18.1788	399.1999			FACA .	8.9559	0.1212	8.7116	14.6188	8.9522	21.7898	341.8066		2.3068	6988.8	8.7327	1299.9	1.4688	16.1788	1.2770	18.0100	183.5888
¢ ^م	٩	-	0.25	1.25		1.08	5.00	•	4.88	20.00			C7 . A	1.23	•	1.00	5.08	•	4.98	20.00			0.25	1.25	•	1.88	5.80	•	4.88	28.88
°,0	B/A	-	•	•	-	-	-	n	n	n		•		•	-	-	-	n	n	n		•	8	8	-	-	-	n	n	n
0	2	-	•	16	-	•	16	-	•	16		. •	•	16	-	4	16	-	4	16		-	•	16	-	4	16	-	•	16
0	-	-	-	-	•	4	•	16	16	16		•••		-	•	4	4	16	16	16		-	-	1	4	•	•	16	16	16
π	5	•	•	•	•	•	•	•	•	6				2.9	8.2	9.2	9.2	0.2	0.2	8.2		4.9	4.8	4.9	6.4	9.4	6.4	9.4	4.8	4.0
Ħ	م	•.•	6.1	e.1	0.1	e.1	6.1	1.9	•	9.1	-				1.0	9.1	• •	0.1		0.1			•.1	9.1		9.1	•	9.1	•.1	•

Table 7. (Continued) MSE Comparisons for the

Estimates of \int_{A}^{2}

z	2.8460	55/1.	0.1760	8694.0	18.2900	1.4918	10.8000		3.1366	6.1875	0.7721	0.1078	1.8578	13.3600	1.4980	18.7488	233.1000		1.7530	0.1414	1.4750	E47E	1.0220	12.2708	2.7660	18.6788	192.9888
z, e	2.8950		2641.8	9.9189	19.5288	1.5988	11.2800		3.1930	0.1136	E162.8	0.1239	1.1870	15.9788	1.6600	19.5388	241.4888		1.8290	0.1500	1.5290	8664.8	1.1610	12.8200	3.1110	19.3160	197.4888
и 9.6	2.8460	25/8·8	0.1760	9.9938	18.2988	1.4910	10.8999		3.1386	0.1881	9.77.9	8.1894	1.0580	15.5788	1.5268	18.8400	233.5066		1.7530	0.1422	1.4888	8.3848	1.0270	12.2689	2.8136	18.8988	9882.241
х 9.5	2.8958	2532	6.1932	6.9189	19.5260	1.5800	11.2890		3.2240	8.1178	6.888.9	0.1282	1.1768	16.3000	1.6160	19.8496	247.2888		1.8778	4CC 1 . 8	1.5460	8.4718	1.1420	13.3608	3.4130	20.5700	201.6000
z	2.8468	9982.0	8.1768	8.9838	18.2900	1.4918	19.8086		3.1960	8.1839	2967.9	0.1942	1.8698	16.1780	1.4116	18.1669	99965.757		1.8168	4E71.	1.2350	E145.8	1.8548	12.4188	3.2368	17.0580	88
v e.e	2.8950	2652.0	8.1932	6.9189	19.5208	1.5800	366.3966		9.2326	9.1897	8.7487	0.1219	1.2078	16.6188	1.6348	18.9466			1.0075	C151.	BR/C.I	1684.8	1.1050	12.9288	3.6689	17.2886	8886.241
л 3,2	2.8458	9.7366	8.1768	8.9938	18.2988	1.4918	296.8988		3.1870	SE91.9	21E2.8	1947	ARCA.I	8901.01	A0/5.1	8888 . BI		1 01 40		2077.0	B100.1	474F.A	1929.1	8864.71	3.1798	10.7598	88. Z888
2'E	2.8958	6.7532	9.1932	9.9189	19.5286	BAAC. 1	304.3060		3.2686	6111.9	E40/ .	9571.9		8804.01				BAFO. I	2451 0			1874.4	AC+1.1	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8447 DI	
۶°	2.9748	8.6989	8.1289	6928.8	1918.CI		286.3866		3.3598	6881.8	0100.0	2412 0	17. 2848	BECE I	8002 YI	151.2988		1.7379	8.1984	AF AR I	0100				141408	027 4000	
S	3.8838 9.8734	197.37	8.1266	94/6.9	8885.01	11 41949	294.9868		3.4288	C+A1.A	0 0 7 7 0	8.7441	18.1200	1.2480	14.9488	69.69.69		1.8410	0.1869	1.9388	A PARA	8.8745		1110	14 6166		
•	9 .25	1.25	•			4.89	20.06		•	1 2 2 C		1.80	0.00	•	4.80	20.001		•	0.25	1.25	•	1.80		-	4.8	28.88	
8/9		•			- •	o no	n n			• •		·	-	n	n	n		•	•	•	-	1	-	an	n	n no	
÷"	4	<u>9</u> -	- 4	1	2 -	. 4	16	1 -	- 4	16	:-	4	16	-	•	16		-	4	16	-	4	16	1	4	16	
ə-		• •	•	4	16	16	16		• -	•	•	•	•	16	16	16		-	-	-	•	•	•	16	16	16	
	• • •	• 0	••	•		•		C	2.9	0.2	9.2	8.2	9.2	8.2	0.2	8.2			4.9	4.0	4.9	4.9	4.0	*.	4.9	•	
۵		2.0	9.2	9.2	8.2		0.2	0.2	2.0	9.2	6.2	8.2	9.2	9.2	9.2	9.2			2.	2.9			•.2	•.2			

Table 7. (Continued) MSE Comparisons for the

Estimates of σ_A^2

CHAPTER IV

RESULTS

The analysis was broken into three parts, these were the various methods of estimating (1) σ^2 , (2) σ^2 and (3) $\sigma_{\rm e}^2$ and assessing which estimating methods provide the better estimates. The criteria to assess the estimates was based on the smallest mean square errors. The Wilcoxon signed rank test [Ostle,(1966)] was used in all cases to make the above assessment as to which procedures had the smallest MSE, with an lpha = 0.05. Two methods of estimating $\sigma_{_{\!\!\!\!2}}^2$ were examined, the standard method of computing the sums of squares, S , and the simplifying method of computing the sums of squares, N 1.1 Table 3, page 12, defines the simplying method. The standard procedure had MSE's significantly smaller than the simplifying method.

Four methods of estimating the component of variation $\mathcal{O}_{\mathrm{B/A}}^2$ were examined, these methods are given in Table 8.

The "1" methods of computing the simplified sums of squares are given in Table 3. The results of the test of hypothesis are given in Table 9, with the standard method of estimating the sums of squares paired with the new method of estimating the k 's being superior to the other i

methods.

There were ten ways of estimating the component of variation \int_{A}^{2} , these methods are summarized in Table 8. The "1" and "m" methods of computing the simplified sums of squares are given in Table 3. An examination of Table 9 clearly shows that the standard method of estimating the sums of squares with the new method of estimating the K is at least as good as any method tried and significantly

better than the current standard procedure.

		SUMS O	= sQ	UARES	K COE i	FFICIENTS
			SIMPI	LIFYING		
COMPONENT	TERM	STANDARD	1 =	m =	STANDARD	NEW METHOD
σ_{e}^{2}	S 1	×				
2	N 1,1		-	× -		
$\sigma_{\rm BZA}$	s	×			×	
0	SN	X				Х
	N		1	-		Х
	N 2,1		2	-		×
σ^2	s	×			×	
A	з SN З	×				×
	N 3.1		1	1		×
	N 3.2		1	2		×
	N 33		1	З		×
	N 3 4		1	4		×
	N 3.5		2	1		×
	N 3.4		2	2		X
	N 3 7		2	3		×
	N 2 0		2	4		Х

Table 8. Definition of Procedures

HYPOTHESIS	* RESULTS
S = N $1 1, 1$	S < N 1 1,1
S = SN $2 2$ $SN = N$ $2 2,1$ $SN = N$ $2 2,2$	SN < S 2 2 SN < N 2 2,1 SN < N 2 2,2
S = SN 3 3 SN = N 3 3,1 SN = N 3 3,2 SN = N 3 3,3 SN = N 3 3,4	SN K S 3 3 SN K N 3 3,1 no difference SN K N 3 3,3 no difference
SN = N 3 3,5 SN = N 3 3,6 SN = N 3 3,7 SN = N 3 3,8	SN (N 3 3,5 no difference SN (N 3 3,7 no difference

Table 9. Results of Wilcoxon Signed Rank Test

* At α = 0.05

CHAPTER V

CONCLUSIONS

The standard method of computing σ_{1}^{2} is significantly better than the simplified method. The standard method of computing the sums of squares with the new method of computing the K coefficients is superior to any other method for estimating ${\cal O}_{
m B/A}^2$. The standard method of computing the sums of squares paired with the new method of computing the K coefficients are at least as good as any simplifying methods of computing $\sigma_{_{\rm A}}^{2}$ and better than the current standard method. These lead to the overall conclusion that the standard method of computing the sums of squares with the new method of computing the k's should be used in computing the components of variation. This method is not only simplier to use but allows for the consideration of the sample size to be a random variable, as it should be considered.

It is interesting to note from Table 9 that a pattern emerges with respect to computing σ_{2}^{2} , that is the

(2) (4)
X and X methods of computing the simplified sums of
... ...

squares appear to give better estimates of the components

(1) (3) of variation than X and X . This is true regardless

of the method of computing imes .

The conclusions reached here suggest that further analysis involving other designs should be examined to determine if similar estimates of the components of variation are universal. Another positive aspect of the new method of computing the k coefficients is the ability to compute i

exact F test, this needs to be examined.

REFERENCES

- FRYER, H. D., (1966) Concepts and Methods of Experimental Statistics, Boston: Allyn and Bacon, 356-365.
- GRAYBILL, F. A., (1976) <u>Theory and Application of the</u> Linear_Model, North Scituate: Duxbury Press, 623-624.
- , HARVILLE, D. A., (1967) "Statistical Dependence Between Random Effects and the Number of Observations on the Effects for the Unbalanced One-Way Random Classification", Journal_of_the_American_Statistical Association, 62, 1375-1386.
- -----, (1968) "Statistical Dependence Between Subclass Means and the Numbers of Observations in the Subclasses for the Two-Way Complete Random Classification", Journal of_the_American_Statistical_Association, 63, 1484-1494.
 - Components for the One-Way Classification", <u>Biometrika</u>, 56, 313-326.
- -----, (1974) "Bayesian Inference for Variance Component Estimation and to Related Problems", <u>Biometrika</u>, 61, 383-385.
 - -----, (1976) "Maximum Likelihood Approaches to Variance Component Estimation and Related Problems", <u>Journal_of</u> <u>the American Statistical Association</u>, 72, 320-340.

HENDERSON, CHARLES R., (1953) "Estimation of Variance and Covariance Components", <u>Biometrics</u>, 9, 226-252.

- KLOTZ, J. H., MILTON, R. C., and ZACKS S., (1969) "Mean Square Efficiency of Estimators of Variance Components", Journal_of_the__American__Statistical__Association, 64, 1383-1402.
- OLSEN, ANTHONY, SEELY, JUSTUS, and BIRKES, DAVID, (1976) "Invariant Quadratic Unbiased Estimation for Two Variance Components", <u>Annals of Statistics</u>, 4, 878-890. OSTLE, BERNARD, (1966) <u>Statistics in Research</u>, Iowa: Iowa

State University Press, 468.

- RAO, C. R., (1972) "Estimation of Variance and Covariance Components in Linear Models", <u>Journal_of_the_American</u> <u>Statistical_Association</u>, 67, 112-115.
- RUSSELL, THOMAS S. and BRADLEY, RALPH A. (1958) "One-Way Variances in a Two-Way Classification", <u>Biometrika</u>, 45, 111-129.
- SEARLE, S. R., (1971) "Topics in Variance Component Estimation", <u>Biometrics</u>, 27, 1-76.

SNEDECOR, G. W. and COCHRAN, W. G., (1976) Statistical Methods, Iowa: Iowa State University Press, 289-294.

THOMPSON, ROBIN, (1969) "Iterative Estimation of Variance Components for Nonorthogonal Data", <u>Biometrics</u>, 25, 767-773. APPENDIXES

Appendix A.

Derivation of Expected Values

The expected values for the cell and observation sample sizes were computed. The following assumptions were made:

- Sample sizes are independent binomial random variables
- 2. π = probability of missing cell or observation 3. $0 \leq b \leq b$
- ł
- 4. 0 <u>4</u> c <u>4</u> c ij

$$E[b] = \sum_{i=0}^{b} b_{i} {b \choose b_{i}} (1 - \pi)^{i} \pi^{i}$$

$$= \sum_{\substack{b=1 \ i \ i}}^{b} \frac{b!}{(b-b)!} (1 - \pi) \prod_{\substack{i=1 \ b}}^{b} \pi$$

$$= b(1 - \pi) \sum_{b=1}^{b-1} {b-1 \choose b-1} (1 - \pi) \sum_{i=1}^{b-1} \pi$$

let y = b - 1 and m = b - 1

$$E[b]_{i} = b(1 - \pi) \sum_{b=y=0}^{m} {\binom{y}{m}} (1 - \pi) \frac{y}{b} \pi^{m-y}$$

noting that

$$(c + d) = \sum_{i=0}^{K} {K \choose i} \cdot c d$$

so that

$$\sum_{y=0}^{m} {m \choose y} \langle 1 - \pi \rangle \frac{\pi}{b} \frac{\pi}{b}$$
$$= [\langle 1 - \pi \rangle + \pi] \frac{\pi}{b} = 1$$

and

$$E[b] = (1 - \pi)b$$

Similary

$$E[c_{ij}] = \sum_{c=0}^{c} c_{ij} \begin{pmatrix} c \\ c_{ij} \end{pmatrix} (1 - \pi_{c})^{ij} \pi_{c}^{ij}$$

$$= (1 - \pi_{c})c$$

$$E[b_{ij}] = E[b_{ij} + b_{ij} + \dots + b_{ij}]$$

$$= [(1 - \pi_{c})b_{ij} + (1 - \pi_{c})b_{ij} + \dots + (1 - \pi_{c})b_{ij}]$$

$$= (1 - \pi_{c})ab$$

$$E[c_{ij}] = E[c_{ij} + c_{ij} + \dots + c_{ij}]$$

$$= (1 - \pi_{c})c_{ij} + (1 - \pi_{c})c_{ij} + \dots + (1 - \pi_{c})c_{ij}$$

襑

$$= \operatorname{E[c]}_{ij} \operatorname{E[b]}_{ij}$$

$$= (1 - \pi_{b})(1 - \pi_{c})bc$$

$$= (1 - \pi_{b})(1 - \pi_{c})bc$$

$$= \operatorname{E[c]}_{11} \operatorname{E[c]}_{10} + \ldots + c + c + \ldots + c + \ldots$$

It should now be observed that the expected values for the k 's for a balanced nested design are:

k = k = c $1 \quad 2$ k = bc 3

By substituting the expected values for b and c in the i ij unbalanced mested design for b and c in the balanced mested design the values of the expected mean squares listed on page 9 are obtained. The expected values for the new method of estimating the k coefficients listed on i

page 10 are now derived.

$$E\begin{bmatrix} c\\ -\frac{1}{a}\end{bmatrix} = \frac{1}{a} E[c]]$$

$$= \frac{1}{a} (1 - \pi)(1 - \pi) abc$$

$$= (1 - \pi)(1 - \pi)bc$$

$$b = (1 - \pi)(1 - \pi)bc$$

$$E\begin{bmatrix} c\\ -\frac{1}{b}\end{bmatrix} = E(c) E\begin{bmatrix} -1\\ b\\ -\end{bmatrix}$$

$$= (1 - \pi)(1 - \pi) abc (E\begin{bmatrix} -1\\ -\frac{1}{b}\end{bmatrix}$$

The evaluation of
$$E\begin{bmatrix} 1\\ --\\ b\\ \end{bmatrix}$$
 is as follows:

$$E\begin{bmatrix}1\\-\\-\\b\\-\end{bmatrix} = \sum_{b=1}^{b} \frac{1}{b+b+b+\dots+b} \begin{pmatrix} b\\-\\b\\-\end{bmatrix} (1 - \pi)^{b} \prod_{b=1}^{i} \pi^{i}$$

$$= -\frac{1}{a} \sum_{b=1}^{b} \frac{1}{b-b} \begin{pmatrix} b\\-\\b\\-\end{bmatrix} (1 - \pi)^{b} \prod_{b=1}^{i} \pi^{i}$$

)

this provides a reasonable approximation for

and

Ь > 1

so that

$$E\left[\frac{1}{b}\right] = \left[\frac{1}{ab(1 - \pi)}\sum_{b=0}^{b+1} \frac{(b+1)!}{(b+1)!(b-b)!}\right]$$
$$\left[\frac{b+1}{ab(1 - \pi)}\sum_{b=0}^{b+1} \frac{(b+1)!(b-b)!}{(b+1)!(b-b)!}\right]$$

$$= \frac{1}{ab(1 - \pi)} \sum_{b=0}^{b+1} {b+1 \choose b+1} (1 - \pi)^{b-b} i^{i} \pi^{i}$$

$$= \frac{1}{ab(1 - \pi)}$$

this now gives

$$E\begin{bmatrix} c \\ \vdots \\ b \end{bmatrix} \xrightarrow{(1 - \pi)(1 - \pi)abc}_{(1 - \pi)ab}$$

$$= (1 - \pi)_{c}$$

```
Main Program
       DIMENSION X(9,9,9),SC(9,9),SSC(9,9),SB(9)
       DIMENSION NC(9,9),XK(2,3),NB(9),XMSA(9),XMSB(3)
       DIMENSION XMSC(2), XMEAN(24), SIGM(24), XMSE(24)
       DIMENSION XBARB(9), XBARC(9,9), XBDDD(4), B(9), SIGA(18)
       DIMENSION SIGB(4)
       DIMENSION SIGMA(9,9),PC1(3),PB1(3),VBB1(3),VAA1(9)
       DATA PC1/0.,.2,.4/
       DATA PB1/0.,.1,.2/
       DATA VBB1/0.,1.,5./
      DATA VAA1/0.,.25,1.25,0.,1.,5.,0.,4.,20./
      VCC=1.
      II=5
      JJ=4
      KK=3
      DATA ZM/280000000/
C
C
   RANDUM SEED 0<IXX<100000 MUST BE ODD INTEGER
C
      IIX=48193
C
C
   SETS NUMBER OF CASES TO BE RUN AT ONE TIME
C
      DO 2000 MN1=1,3
      DO 2000 MN2=1.3
      MN5=0
      DO 2000 MN3=1.3
      DO 2000 MN4=1.3
      MMM=0
      IXX=IIX
      MN5=MN5+1
      VBB=VBB1(MN3)
      PB=PB1(MN2)
      PC=PC1(MN1)
      VAA=VAA1(MN5)
C
С
  NUMBER OF TIMES FOR EACH CASE SET AT 100
С
      DO 1000 IJKLMN=1,100
С
   INITIALIZE ALL VARIABLES TO ZERO
C
C
      CALL INITAL(SC,SSC,SB,NC,NB,XK,XMSA,XMSB,XMSC,SIG,
```

Appendix B.

```
1SIGMA, XBARC, XBARB, B, XBDDD, II, JJ)
       SA=0.
       NA=0
       XBARA=0.
       VA=SQRT(VAA)
       VB=SQRT(VBB)
       VC=SQRT(VCC)
       DO 10 I=1,II
 C
 C
    CALL RANDOM NUMBER GENERATOR FOR RANDOM
 C
    RECTANGULAR 0 TO 1
 C
       CALL RANDU(IIX, IY, YFL)
 C
 C
    CALL NOTRI TO COMPUTE NORMAL RANDOM NUMBER
C
       CALL NCTRI(YFL,X1,C,IER)
       DO 10 J=1.JJ
       CALL RANDU(IIX, IY, YFL)
       CALL NCTRI(YFL,X2,C,IER)
       DO 10 K=1,KK
       CALL RANDU(IIX, IY, YFL)
       CALL NCTRI(YFL,X3,C,IER)
      X(I,J,K)=X1*VA+X2*VB+X3*VC
    10 CONTINUE
      DO 50 I=1,II
       DO 50 J=1,JJ
C
С
   DETERMINE IF CELL OR OBSERVATION IS TO BE INCLUDED BY
С
   USING BERNOULLI PROBABILITIES
C
      CALL RANDU(IIX, IY, YFL)
      IF(YFL.LT.PB)GO TO 30
      DO 20 K=1,KK
      CALL RANDU(IIX, IY, YFL)
      IF(YFL.LT.PC)X(I,J,K)=ZM
   20 CONTINUE
      GO TO 50
   30 CONTINUE
   40 X(I,J,K)=ZM
   50 CONTINUE
      DO 80 I=1,II
      DO 70 J=1,JJ
      DO 60 K=1,KK
      IF(X(I,J,K).EQ.ZM)GO TO 60
C
C
   COMPUTE CELL AND SAMPLE SIZES
С
   COMPUTE SUMS AND SUMS OF SQUARES
C
      NC(I, J) = NC(I, J) + 1
```

```
SC(I,J)=SC(I,J)+X(I,J,K)
      SSC(I,J)=SSC(I,J)+X(I,J,K)*X(I,J,K)
   60 CONTINUE
      SB(I)=SB(I)+SC(I,J)
   70 CONTINUE
      SA=SA+SB(I)
   80 CONTINUE
C
   COMPUTE DEGREES OF FREEDOM
C
C
      DFA=0.
      DFB=0.
      DFC=0.
      CALL DGFREE(NC,NB,NA,DFA,DFB,DFC,A,B,II,JJ)
C
C
   COMPUTE THE K(I) COEFFICIENTS
C
      CALL COEFF(XK, DFA, DFB, DFC, NC, NB, NA, II, JJ)
      ST1=0.
      DO 110 I=1,II
      IF(NB(I).EQ.0)GO TO 110
C
C
   COMPUTE MEANS SQUARES
C
      XMSA(1)=XMSA(1)+SB(I)*SB(I)/NB(I)
      DO 100 J=1,JJ
      IF(NB(I,J).EQ.0)GO TO 100
     XMSB(1)=XMSB(1)+SC(I,J)*SC(I,J)/NC(I,J)
      DO 90 K=1.KK
      IF(X(I,J,K).EQ.ZM)GO TO 90
      XMSC(1)=XMSC(1)+X(I,J,K)*X(I,J,K)
      ST1=ST1+X(I,J,K)
  90 CONTINUE
 100 CONTINUE
 110 CONTINUE
     XMSC(1)=(XMSC(1)-XMSB(1))/DFC
     XMSB(1) = (XMSB(1) - XMSA(1)) / DFB
     IF(NA.EQ.0)GO TO 1000
     XMSA(1)=(XMSA(1)-ST1*ST1/NA)/DFA
     XBDDD(1)=SA/NA
     DO 200 I=1.II
     IF(NB(I).EQ.0)GO TO 200
     XBDDD(2)=XBDDD(2)+SB(I)/NB(I)
 200 CONTINUE
     XBDDD(2)=SBDDD(2)/A
     DO 215 I=1.II
     DO 210 J=1,JJ
     IF(NC(I,J).EQ.0)GO TO 210
     XBDDD(3)=XBDDD(3)+SC(I,J)/NC(I,J)
 210 CONTINUE
```

```
215 CONTINUE
     XBDDD(3)=XBDDD(3)/(DFA+DFB+1.)
     DO 225 I=1.II
     IF(B(I).LE.0.)GO TO 225
     DO 220 J=1.JJ
     IF(NC(I,J).EQ.0)GO TO 220
     XBDDD(4)=XBDDD(4)+SC(I,J)/NC(I,J)/B(I)
 220 CONTINUE
 225 CONTINUE
     XBDDD(4)=XBDDD(4)/A
    MMM=MMM+1
     L1 = 1
     DO 235 LL=1,4
     L1 = L1 + 1
     DO 230 I=1.II
    IF(NB(I).EQ.0)60 TO 230
    XMSA(L1)=XMSA(L1)+(SB(I)/NB(I)-XBDDD(LL))*(SB(I)
    1/NB(I)-XBDDD(LL)
230 CONTINUE
235 CONTINUE
    DO 255 LL=1.4
    L1 = L1 + 1
    DO 250 I=1,II
    IF(B(I).LE.0.)GO TO 250
    SC1=0.
    DO 240 J=1.JJ
    IF(NC(I,J).EQ.0)GO TO 240
    SC1=SC1+(SC(I,J)/NC(I,J))/B(I)
240 CONTINUE
    XMSA(L1)=XMSA(L1)+(SC1-XBDDD(LL))*(SC1-XBDDD(LL))
250 CONTINUE
255 CONTINUE
    DO 260 I=2.9
260 XMSA(I)=XMSA(I)*(DFA+DFB+DFC+1.)/A/DFA
    DO 280 I=1,II
    IF(NB(I).EQ.0)GO TO 280
    DO 270 J=1.JJ
    IF(NC(I,J).EQ.0)GO TO 270
    XMSB(2)=XMSB(2)+(SC(I,J)/NC(I,J)-SB(I)/NB(I))
   1(SC(I,J)/NC(I,J)-SB(I)/NB(I))
270 CONTINUE
280 CONTINUE
    DO 310 I=1,II
    SC1=0.
    IF(B(I).LE.0.)GO TO 310
    DO 290 J=1,JJ
    IF(NC(I,J).EQ.0)GO TO 290
    SC1=SC1+(SC(I,J)/NC(I,J))/B(I)
290 CONTINUE
    DO 300 J1=1,JJ
```

```
IF(NC(I,J1).EQ.0)GO TO 300
       XBSB(3)=XMSB(3)+(SC1-SC(I,J1)/NC(I,J1))*
      1(SC1-SC(I,J1)/NC(I,J1))
   300 CONTINUE
   310 CONTINUE
       XMSB(2)=XMSB(2)*(DFA+DFB+DFC+1.)/(DFA+DFB+1.)/DFB
       XMSB(3)=XMSB(3)*(DFA+DFB+DFC+1.)/(DFA+DFB+1.)/DFB
       NN=0
       DO 330 I=1,II
       DO 330 J=1,JJ
       IF(NC(I,J).EQ.0)GO TO 330
       IF(NC(I,J).EQ.1)GO TO 320
       SIGMA(I,J) = (SSC(I,J) - SC(I,J) + SC(I,J) / NC(I,J)) /
      1(NC(I,J)-1)
  320 NN=NN+1
       XMSC(2)=XMSC(2)+SIGMA(I,J)
  330 CONTINUE
      XMSC(2)=XMSC(2)/NN
      M=0
C
С
   COMPUTE COMPONENTS OF VARIATION
C
      SIGB(1)=(XMSB(1)-XMSC(1))/XK(1.1)
      IF(SIGB(1).LT.0.)SIGB(1)=0.
      SIGB(2)=(XMSB(1)-XMSC(1))/XK(2,1)
      IF(SIGB(2).LT.0.)SIGB(2)=0.
      SIGB(3)=(XMSB(2)-XMSC(2))/XK(2,1)
      IF(SIGB(3).LT.0.)SIGB(3)=0.
      SIGB(4)=(XMSB(3)-XMSC(2))/XK(2.1)
      IF(SIGB(4), LT.0.)SIGB(4)=0.
      SIGA(1)=(XMSA(1)-XMSC(1)-XK(1,2)*SIGB(1))/XK(1,3)
      IF(SIGA(1).LT.0.)SIGA(1)=0.
      SIGA(2)=(XMSA(1)-XMSC(1)-XK(2,2)*SIGB(2))/XK(2,3)
      IF(SIGA(2).LT.0.)SIGA(2)=0.
      DO 340 J=2,9
      I = J + 1
      SIGA(I)=(XMSA(J)-XMSC(2)-XK(2,2)*SIGB(3))/XK(2,3)
      IF(SIGA(I),LT.0.)SIGA(I)=0.
  340 CONTINUE
      DO 350 J=2,9
      I = I + 1
      SIGA(I)=(XMSA(J)-XMSC(2)-XK(2,2)*SIGB(4))/XK(2,3)
      IF(SIGA(I).LT.0.)SIGA(I)=0.
  350 CONTINUE
      DO 360 I=1,18
C
C
  COMPUTE AVERAGE COMPONENT OF VARIANCE
C
   COMPUTE THE VARIANCE OF THE AVERAGE
C
   COMPUTE THE MEAN SQUARE ERROR
```

```
С
```

```
XMEAN(I) = XMEAN(I) + SIGA(I)
       SIGM(I) = SIGM(I) + SIGA(I) + SIGA(I)
       XMSE(I) = XMSE(I) + (SIGA(I) - VAA) + (SIGA(I) - VAA)
  360 CONTINUE
       J=0
       DO 370 I=19,22
       J=J+1
       XMEAN(I) = XMEAN(I) + SIGB(J)
       SIGM(I) = SIGM(I) + SIGB(J) + SIGB(J)
       XMSE(I)=XMSE(I)+(SIGB(J)-VBB)*(SIGB(J)-VBB)
  370 CONTINUE
       J=0
       DO 380 I=23,24
       J = J + 1
      XMEAN(I) = XMEAN(I) + XMSC(J)
       SIGM(I) = SIGM(I) + XMSC(J) + XMSC(J)
      XMSE(I)=XMSE(I)+(XMSC(J)-VCC)*(XMSC(J)-VCC)
  380 CONTINUE
 1000 CONTINUE
      DO 390 I=1.24
      SIGM(I) = (SIGM(I) - XMEAN(I) * XMEAN(I) / MMM) / (MMM-1)
      XMEAN(I) = XMEAN(I) / MMM
      XMSE(I)=XMSE(I)/MMM
  390 CONTINUE
C
C
  PROVIDE PRINT OUT OF INFORMATION
C
      WRITE(7,9000)
9000 FORMAT(11,,//,21X,'XBAR',16X,'COMPONENT',/,17X,
     1'CALCULATION',17X,'OF',31X,'MEAN SQUARE',/,5X,
     2'ANALYSIS',4X,'...',1X,'I..',1X,'IJ.',1X,
3'COEFFICIENT,1X,'VARIATION',7X,'MEAN',6X,
     4'VARIANCE', 6X, 'ERROR', /)
      WRITE(7,9001)XMEAN(1),SIGM(1),XMSE(1)
9001 FORMAT(5X, 'STANDARD', 16X, 'STANDARD', 8X, 'A', 6X,
     13F12.6)
      WRITE(7,9002)XMEAN(2),SIGM(2),XMSE(2)
9002 FORMAT(5X,'STANDARD',16X,'APPROXIMATE',5X,'A',6X,
     13F12.6)
      L = 2
      DO 410 I=1,2
      DO 410 J=1.2
      DO 410 K=1.4
      L=L+1
      WRITE(7,9003)K,J,I,XMEAN(L).SIGM(L),XMSE(L)
 410 CONTINUE
9003 FORMAT(5X, 'APPROXIMATE ', 12, 14, 14, 2X, 'APPROXIMATE',
     15X, 'A', 6X, 3F12.6)
     WRITE(7,9014)
     WRITE(7,9004)XMEAN(19),SIGM(19),XMSE(19)
```

```
9004 FORMAT(5X,1STANDARD1,16X,1STANDARD1,8X,1B1,6X,)
     13F12.6)
     WRITE(7,9010)XMEAN(20),SIGM(20),XMSE(20)
9010 FORMAT(5X,'STANDARD',16X,'APPROXIMATE',5X,'B',6X,
     13F12.6)
     J=20
     DO 420 I=1,2
     J=J+1
     WRITE(7,9011)I,XMEAN(J),SIGM(J),XMSE(J)
 420 CONTINUE
9011 FORMAT(5X, 'APPROXIMATE - -', I4, 2X, 'APPROXIMATE',
    15X, 'B', 6X, 3F12.6)
     WRITE(7,9014)
     WRITE(7,9012)XMEAN(23),SIGM(23),XMSE(23)
9012 FORMAT(5X, 'STANDARD', 32X, 'C', 6X, 3F12, 6)
     WRITE(7,9013)XMEAN(24),SIGM(24),XMSE(24)
9013 FORMAT(5X, 'APPROXIMATE', 29X, 'C', 6X, 3F12.6)
     WRITE(7,9005)VAA,VBB,VCC
     WRITE(7,9009)PB,PC
     WRITE(7,9006)MMM
     WRITE(7,9008)IXX
     WRITE(7,9015) II.JJ.KK
9005 FORMAT(/,5X,'INPUT VARIANCE OF A = ',F10.5
            /,5X,'INPUT VARIANCE OF B = ',F10.5
    1
    2
            /,5X,'INPUT VARIANCE OF C = ',F10.5)
9006 FORMAT(//,5X,'NOTE:',14,' REPLICATIONS WERE USED')
9007 FORMAT(/)
9008 FORMAT(//,5X,'NOTE: RANDOM NUMBER GENERATOR SEED =
   14.18)
9009 FORMAT(//,5X,'PROBABILITY OF B MISSING = ',F10.5
             /,5X,'PROBABILITY OF C MISSING = ',F10.5)
   1
9014 FORMAT(/)
9015 FORMAT(//,5X,'TARGET SAMPLE SIZES: A = ',12,3X,
    1'B= (,12,3X,'C = (,12))
2000 CONTINUE
     STOP
     END
```

Appendix C.

Subroutine RANDU

SUBROUTINE RANDU(IX,IY,YFL) C C COMPUTES RANDOM RECTANGULAR NUMBERS C IY=IX*65539 IF*IY)5,6,6 5 IY=IY+2147483647+1 6 YFL=IY YFL=YFL*.4656613E-9 IX=XY RETURN END Appendix D. Subroutine NCTRI SUBROUTINE NCTRI(P,X,C,IE) С С COMPUTES RANDOM NORMAL NUMBERS С IE=0 X=.99999E+74 C=X IF(P)1,4,2 1 I E = -1GO TO 12 2 IF(P-1.0)7.5.1 4 X=-.999999E+74 5 C=0.0 GO TO 12 7 C=P IF(C-.5)9,9,8

IF(C-.5)9,9,8
8 C=1.0-C
9 T2=ALOG(1.0/(C*C))
T=SQRT(T2)
X=T-(2.515517+0.802853*T+.010328*T2)/(1.0+1.432788*T
1+0.189269*T2+0.001308*T*T2)
IF(P-0.5)10,10,11
10 X=-X
11 C=0.3989423*EXP(-X*X/2.0)

12 RETURN END

Appendix E.

Subroutine DGFREE

```
SUBROUTINE DGFREE(NC,NB,NA,DFA,DFB,DFC,A,B,II,JJ)
С
С
  COMPUTES DEGREES OF FREEDOM
С
      DIMENSION NC(9,9),NB(9),B(9)
      D0 2 I=1.II
      DO 1 J=1,JJ
     NB(I)=NB(I)+NC(I,J)
     IF(NC(I,J).EQ.0)60 TO 1
     DFC=DFC+NC(I,J)-1
     DFB=DFB+1
     B(I)=B(I)+1.
    1 CONTINUE
     NA=NA+NB(I)
     IF(NB(I).EQ.0)GO TO 2
     DFA=DFA+1
   2 CONTINUE
     A=DFA
     BI=DFB
     CIJ=DFC+BI
     DFB=DFB-DFA
     DFA=DFA-1
     RETURN
     END
```

Appendix F.

Subroutine COEFF

```
SUBROUTINE COEFF(XK, DFA, DFB, DFC, NC, NB, NA, II, JJ)
C
С
   COMPUTES THE K(I) COEFFICIENTS
C
      DIMENSION XK(2,3),NC(9,9),NB(9)
      DO 2 I=1,II
      DO 1 J=1,JJ
      IF(NC(I,J).EQ.0.OR.NB(I).EQ.0.OR.NA.EQ.0)
     1GO TO 1
     XK(1,1)=XK(1,1)+NC(I,J)*NC(I,J)*(1./NC(I,J)-1./
     1NB(I))/DFB
     XK(1,2)=XK(1,2)+NC(I,J)*NC(I,J)*(1./NB(I)-1./NA)
    1/DFA
    1 CONTINUE
      IF(NB(I).EQ.0.OR.NA.EQ.0)GO TO 2
     XK(1,3)=XK(1,3)+NB(I)*NB(I)*(1./NB(I)-1./NA)/DFA
   2 CONTINUE
     DF=DFA+DFB+DFC+1
     XK(2,1)=DF/(DFA+DFB+1)
     XK(2,2) = XK(2,1)
     XK(2,3)=DF/(DFA+1)
     RETURN
     END
```

Appendix G.

Subroutine INITAL

```
SUBROUTINE INITAL(SC,SSC,SB,NC,NB,XK,XMSA,XMSB,XMSC,
     1SIG,SIGMA,XBARC,XBARB,B,XBDDD,II,JJ)
C
C
   INITIALIZES THE VARIABLES
C
      DIMENSION SC(9,9),SSC(9,9),SB(9),XBDDD(4)
      DIMENSION NC(9,9),NB(9),XK(2,3),XMSA(9),XMSB(3)
      DIMENSION SIG(4,4), SIGMA(9,9), XBARB(9), XBARC(9,9)
      DIMENSION XMSC(2), B(9)
      DO 2 I=1,II
      DO 1 J=1,JJ
      SC(I,J)=0.
      SSC(I,J)=0.
      SIGMA(I,J)=0.
     NC(I,J)=0
     XBARC(I,J)=0.
    1 CONTINUE
      B(I)=0.
     SB(I)=0.
     NB(I)=0
     XBARB(I)=0.
   2 CONTINUE
     DO 3 I=1,2
     DO 3 J=1.3
     XK(I,J)=0.
   3 CONTINUE
     DO 4 I=1,2
     XMSC(I)=0.
   4 CONTINUE
     DO 5 I=1.3
     DO 5 J=1,4
     SIG(I,J)=0.
   5 CONTINUE
     DO 6 I=1,3
   6 XMSB(I)=0.
     DO 7 I=1,9
   7 XMSA(I)=0.
     DO 8 I=1,4
   8 XBDDD(I)=0.
     RETURN
```

VITA

James Philip Pugsley Candidate for the Degree of Master of Science

THESIS: Unbalanced Analysis of Variance Comparing Standard and Proposed Approximation Techniques for Estimating the Variance Components.

MAJOR FIELD: Applied Statistics.

BIOGRAPHICAL INFORMATION:

PERSONAL DATA: Born in Logan, Utah May 2, 1939, son of Philip A. Pugsley and Elinore Mandry; married Janiece Hill November 18 1960; children--Brian and Christine

EDUCATION: Graduated from Bear River High School, Garland, Utah in 1957; received the Bachelor of Science Degree in Mathematics and Applied Statistics from Utah State University in 1968; completed requirements for the Degree of Master of Science in 1984.

PROFESSIONAL EXPERIENCE: A Statistician with 15 years experience in statistical analysis, data presentation and extensive consulting with all engineering disciplines. Four years experience supervising the implimentation of statistical quality control procedures and techniques.