
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

12-2018 

Multi-Resolution Analysis Using Wavelet Basis Conditioned on Multi-Resolution Analysis Using Wavelet Basis Conditioned on 

Homogenization Homogenization 

Abibat Adebisi Lasisi 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Lasisi, Abibat Adebisi, "Multi-Resolution Analysis Using Wavelet Basis Conditioned on Homogenization" 
(2018). All Graduate Theses and Dissertations. 7313. 
https://digitalcommons.usu.edu/etd/7313 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/220142387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.usu.edu%2Fetd%2F7313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7313?utm_source=digitalcommons.usu.edu%2Fetd%2F7313&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


MULTI-RESOLUTION ANALYSIS USING WAVELET BASIS CONDITIONED

ON HOMOGENIZATION

by

Abibat Adebisi Lasisi

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Mathematical Sciences

Approved:

Joseph V. Koebbe, Ph.D. James S. Cangelosi, Ph.D.
Major Professor Committee Member

Nghiem Nguyen, Ph.D. Luis Gordillo, Ph.D.
Committee Member Committee Member

Todd Moon, Ph.D.
Committee Member

Laurens H. Smith, Ph.D. 
Interim Vice President for Research and 
Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2018



ii

Copyright c© Abibat Adebisi Lasisi 2018

All Rights Reserved



iii

ABSTRACT

Multi-Resolution Analysis Using Wavelet Basis Conditioned on Homogenization

by

Abibat Adebisi Lasisi, Doctor of Philosophy

Utah State University, 2018

Major Professor: Joseph V. Koebbe, Ph.D.
Department: Mathematics and Statistics

Wavelets and homogenization methods have been used in the development of algo-

rithms for the approximate solution of differential equations. In this dissertation, we pro-

pose a homogenization wavelet reconstruction algorithm for computing the solution of el-

liptic partial differential equations. The proposed algorithm is based on a wavelet charac-

terization of homogenization methods in multi-resolution analysis. We employ orthogonal

decomposition of the problem into two scale problems on nested dyadic grids using wavelet

multi-resolution analysis. The unique aspect of this dissertation is the combination of ho-

mogenization theory with wavelet multi-resolution analysis to provide solutions to elliptic

differential equations. To illustrate the proposed methodology, we first deal with the prob-

lem of the one dimensional case. The problem of fluid flow in a porous medium with con-

ductivity/permeability depending on the spatial variable provides an example in the one

dimensional situation. It is well known in one dimension that if an average value of the

conductivity/permeability is computed, it must be equal to the harmonic average of the

function representing the fine scale parameter values. Our fast transform algorithm also

preserves the harmonic average of the conductivity/permeability. Furthermore, we extend

the proposed methodology to the two dimensional case using homogenization theory. We

developed a fast transform algorithm in two dimensions that gives exactly the same results



iv

as the solutions to the local problems in two dimensions with diagonal tensors. We also

developed Java codes that compute the solution of the elliptic problems in two dimensions,

the results are the same as those computed by hand. Finally, we implement Java codes for

our fast transform and the inverse transform which also give results that are consistent with

the analytical solutions.

(210 pages)



v

PUBLIC ABSTRACT

Multi-Resolution Analysis Using Wavelet Basis Conditioned on Homogenization

Abibat Adebisi Lasisi

This dissertation considers an approximation strategy using a wavelet reconstruction

scheme for solving elliptic problems. The foci of the work are on (1) the approximate solution

of differential equations using multiresolution analysis based on wavelet transforms and (2)

the homogenization process for solving one and two-dimensional problems, to understand

the solutions of second order elliptic problems. We employed homogenization to compute

the average formula for permeability in a porous medium. The structure of the associated

multiresolution analysis allows for the reconstruction of the approximate solution of the

primary variable in the elliptic equation. Using a one-dimensional wavelet reconstruction

algorithm proposed in this work, we are able to numerically compute the approximations

of the pressure variables. This algorithm can directly be applied to elliptic problems with

discontinuous coefficients.We also implemented Java codes to solve the two dimensional

elliptic problems using our methods of solutions. Furthermore, we propose homogenization

wavelet reconstruction algorithm, fast transform and the inverse transform algorithms that

use the results from the solutions of the local problems and the partial derivatives of the

pressure variables to reconstruct the solutions.



vi

ACKNOWLEDGMENTS

My gratitude goes to my major professor, Dr. Joseph V. Koebbe. Thank you for

your advice, feedback, comments, guidance, and for leading me through how to do research

in multiscale analysis using wavelets. I also want to thank other members of my PhD

dissertation committee, Dr. James S. Cangelosi, Dr. Nghiem Nguyen, Dr. Luis Gordillo,

and Dr. Todd Moon, for your comments, feedback, suggestions, and questions.

I would like to thank Dr. James Cangelosi for your invaluable support since the begin-

ning of my master’s program up till now. Thanks for all your support, advice, and assistance

for me and my family.

My profound gratitude also goes to my sweetheart, Dr. Ramoni Lasisi, and my kids for

their support and assistance throughout the course of my studies. Finally, I want to express

my gratitude to my mom, siblings, and in-laws. I pray to Allah to continue to shower his

blessings on my late dad, mother-in-law and father-in-law (Ameen).

Abibat.



vii

CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

PUBLIC ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 8

2 MULTI-SCALE METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Description of Multi-scale Methods . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Multiresolution Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 A Brief Review of Homogenization . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Equivalence of Wavelet Analysis and Two-Cell Homogenization . . . . . . . 17

3 HOMOGENIZATION WAVELET RECONSTRUCTION IN ONE DIMENSION . . 20
3.1 A One Dimensional Fast Transform for Homogenized Coefficient Values . . 20
3.2 Recursive Differencing of Analytic Solutions . . . . . . . . . . . . . . . . . . 29
3.3 Computing Differences of Solutions of n-Cell Problem . . . . . . . . . . . . 29

4 HOMOGENIZATION WAVELET RECONSTRUCTION IN TWO DIMENSIONS
WITH DIAGONAL TENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 The Local Problem in Two Dimensions . . . . . . . . . . . . . . . . . . . . . 46
4.2 The Solution for Diagonal Tensors . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 A Two Dimensional Fast Transform for Homogenized Coefficient Values . . 61
4.4 Homogenization Wavelet Reconstruction in Two Dimensions . . . . . . . . . 70

5 HOMOGENIZATION WAVELET RECONSTRUCTION IN TWO DIMENSIONS
WITH FULL TENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 The Local Problem in Two Dimensions with Full Tensors . . . . . . . . . . 79
5.2 Numerical Computations of the Permeability in Two Dimensions . . . . . . 91
5.3 Weak Solution of the Full Tensor Local Elliptic Problem . . . . . . . . . . . 97



viii

6 SUMMARY OF WORK, CONCLUSIONS AND FUTURE RESEARCH . . . . . . . 103
6.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Future Research Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A Linear Algebra Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B Numerical Solutions in One Dimension for Computing Alphas and Betas . . . . . . . 113

C Numerical Solution of Local Elliptic Problem in Two Dimensions . . . . . . . . . . . . . 127

D Fast Transform in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

E Inverse Transform in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

F Additional Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189



ix

LIST OF TABLES

Table Page

3.1 Example of Recursive Differencing of Analytic Solutions . . . . . . . . . . . 42



x

LIST OF FIGURES

Figure Page

3.1 Illustration of visual description of the procedure . . . . . . . . . . . . . . 23

3.2 Illustration of description of computation of the harmonic average . . . . . 23

3.3 The graph of h1(y1) against y . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 The graph of h2(y1) against y . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 The graph of h3(y1) against y . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 The graph of h1(y1), h2(y1), and h3(y1) against y . . . . . . . . . . . . . . 45

4.1 The graph of h0(x, y) on (0, 1
2)× (0, 1

2) . . . . . . . . . . . . . . . . . . . . 72

4.2 The graph of h1(x, y) on (0, 1
2)× (0, 1

2) . . . . . . . . . . . . . . . . . . . . 73

4.3 The graph of h1(x, y) on (1
2 , 1)× (0, 1

2) . . . . . . . . . . . . . . . . . . . . 74

4.4 The graph of h1(x, y) on (0, 1
2)× (1

2 , 1) . . . . . . . . . . . . . . . . . . . . 75

4.5 The graph of h1(x, y) on (1
2 , 1)× (1

2 , 1) . . . . . . . . . . . . . . . . . . . . 76

4.6 The graph of h1(x, y) on (0, 1)× (0, 1) . . . . . . . . . . . . . . . . . . . . . 77

4.7 The graph of h2(x, y) on (0, 1)× (0, 1) . . . . . . . . . . . . . . . . . . . . . 78

5.1 The Permeability Tensors (K) values . . . . . . . . . . . . . . . . . . . . . 92



CHAPTER 1

INTRODUCTION

1.1 Overview

A vast number of methods have been proposed for the approximate solution of elliptic

partial differential equations (PDEs). Such methods as finite difference methods, finite vol-

ume methods, finite element methods, [1–7] have been applied to determine approximate

solutions at discrete points in domains under consideration. In recent years, researchers have

become interested in the development of multiscale methods [1,2,8–10]. These methods are

used to determine a way to approximate solutions of a given PDE on a coarse scale, while

retaining small scale behaviors in the approximation. Methods like homogenization and

multi-resolution analysis have been employed in a number of ways to compute coarse scale

parameter values from fine scale measurements or realizations for given parameters. It would

certainly be better to approximately solve a problem on the finest mesh possible. However,

computer resources become an obstacle in most complicated problems. The desire is to

use upscaling methods like those mentioned above to produce coarse scale parameters on a

discrete mesh or grid that can be managed in computer simulations.

For this work, we consider elliptic differential equations (DEs) with coefficients that

depend on the spatial variables in the problem. To illustrate the methodology we start

with the one dimensional case. The problem of flow in a porous medium with conductivity

depending on the spatial variable provides an example of this situation. It is well known that

if an average value of the conductivity is computed it must be equal to the harmonic average

of the function representing the fine scale parameter values. Note that homogenization

methods described in the next section in fact, preserve the harmonic average. The method

introduced in this work was built on the idea of creating a fast transform method that

preserves the harmonic average of the conductivity in one dimension. This represents the



2

forward transform algorithm. An algorithm for computing the harmonic average has been

developed that uses a recursive formula on a dyadic mesh in the spatial domain.

Additionally we are interested in approximating the solutions of DEs arising from many

applications in sciences and engineering that exhibit a number of different scales. This can

be done in a fashion similar to the inverse transform algorithm. There are many applications

involving solutions that vary over different scales. Some examples are composite materials

and flows in porous media. The solutions to these problems may be impossible to find

since fine scale grids are needed to resolve important behaviors in the solutions [5, 11,

12]. The results in the DEs which describe the physical phenomenon that occur at different

length and time scales might be difficult or complicated to analyze. Thus, the need to

represent the problem using simpler models. One such simple modeling tool that can be

employed is homogenization. The main goal of homogenization is to represent complex,

rapidly varying media with slowly varying media in which the fine scale structures are

averaged out appropriately.

Homogenization problems are grouped into periodic, where K(x + p) = K(x) for all

x, and aperiodic problems. Periodicity means that the coefficients of a DE that model a

physical phenomenon are repeated at regular intervals. In the case of aperiodic (for instance,

a random permeability or porosity) the coefficients are not periodic [13]. We are concerned

in this dissertation with problems with either aperiodic or periodic structures which are

more realistic and find usefulness in several real-life applications, e.g., composite materials

or porous media.

We consider in this work, elliptic problems of the form shown in Equation 1.1, in one

dimension to illustrate the usefulness of our proposed methods. Let Ω be a periodic bounded

domain and ∂Ω smooth on the boundary.

d

dx
K(x)

dh

dx
= f(x) x ∈ Ω (1.1)

h = g on ∂Ω



3

This DE can be used to model fluid flow in porous media, where K(x) is the per-

meability or conductivity tensor, h is the pressure variable, and f(x) represents a forcing

function. In practice, we need to solve this type of equation where K(x) exhibits rapidly

changing behavior on multiple scales for a small but fixed parameter, ε. In homogenization

K(x) is assumed to vary on two disparate scales, a microscopic scale, ε, 0 < ε << 1, and

a macroscopic scale that captures behavior on a scale that is O(1). Instead of solving the

original problem, we may have to solve the homogenized version of the problem which is

computationally simpler to solve. Some techniques for solving these problems are based on

the assumption that the coefficients are periodic on the fine scale. However, that may not

be the case in many applications. In fact we will assume that the elliptic coefficient tensor

values are obtained by sampling K(x) (e.g. permeability) at some given number of equally

spaced locations in the domain of interest. This will be useful in the development of fast

transform methods.

1.2 Literature Review

Analytical and numerical methods for solving partial differential equations are widely

studied [1–6], and have been applied to solving various problems in science and engineer-

ing. We review the following notable works relevant to the problem considered in this

dissertation. Babuska and Osborn [12] consider a generalized finite element method (FEM)

for problems with rough coefficients in a simple one dimensional case. The concept of a gen-

eralized FEM includes practical FEM using different test and trial functions - methods in

which the shape function is governed by differential equations. Their method offers a larger

freedom in the computational procedures than standard FEMs. The method also offers the

possibility of significant improvement in accuracy when used in conjunction with adaptive

procedures. Furthermore, they show that their method reacts well when the roughness of

a coefficient is reduced and that changing from measurable coefficients to coefficients with

bounded variation improves the rate of convergence.

New methods have recently been developed to solve second order elliptic problems

with heterogeneous and highly varying coefficients. These methods were developed to over-



4

come performance issues of classical FEMs when the diffusion coefficient has discontinuities

and/or high variation. One such method, referred to as the discontinuous Galerkin multi-

scale method (DGMsM) for solving second order elliptic problem is the focus of the work of

Elfverson et al. [7] and Beatrice [14]. Discontinuous Galerkin (DG) methods approximate

solutions of partial differential equations in finite dimensional spaces spanned by piece-

wise polynomial basis functions. DG methods resemble classical FEMs with the exception

of explicitly imposing continuity constraints at inter element interfaces, i.e., they impose

weak continuity on numerical solutions without explicit constraints on the approximation

space. This results in the inclusion of jump terms across interfaces. Some penalty terms

must also be added to control jump terms in the weak formulation of a problem.

Babuska, Caloz, and Osborn [11] consider a class of second order, two dimensional

elliptic problems with rough or highly oscillating coefficients. They present several methods

called special FEMs that were applied to unidirectional composite materials. Their methods

use special shape functions that are chosen to accurately model unknown solutions for this

class of problems. They also show that their methods have the same accuracy as the usual

FEMs for problems with smooth coefficients.

In the work of Hou [8], a multiscale finite element method (MsFEM) for solving a class

of elliptic problems generated from composite materials and flows in porous media which

contain many spatial scales were considered. The method efficiently captures the large scale

behavior of the solution without resolving all the small scale behaviors. They were able to

accomplish this with the construction of multiscale finite element basis functions that adapt

to the local properties of the differential operator. The formation of the basis functions is

fully decoupled from element to element. This makes the method perfectly parallel and

adapted to massively parallel computers, thus having the ability to handle large degrees of

freedom found in highly heterogeneous media.

Arbogast et al. [1] and Arbogast, Tao, and Xiao [2] developed multiscale mortar mixed

FEMs for second order elliptic problems. Their methods impose continuity of flux via a

mortar finite element space on a coarse grid scale, with the equations in coarse elements



5

discretized on a fine grid scale. Their methods achieve approximations that are compara-

ble to the fine scale on their coarse grids by using higher order polynomials. Furthermore,

they derived apriori error estimates, obtained optimal order convergence, and some super-

convergence 1 on the fine scale for both the solution and its flux. Finally, they derived

a posteriori error estimators that were used in an adaptive mesh refinement algorithm to

obtain appropriate subdomain and mortar grids.

Karakashian [9] and Larson [10] propose a variational multiscale method and a discon-

tinuous Galerkin formulation based on a posteriori error estimates which relate the error in

an energy norm to the discretization errors. Becker et al. [15] presented a residual based on

a posteriori error estimate of a natural mesh dependence on an energy norm of the error in

a family as DG approximations of elliptic problems. Dryja [16] analyzed the error bound of

DGMs, and as well designed and analyzed a multilevel additive Schwarz preconditioner for

one of the discrete problems. Dryja found that the preconditioner is not optimal but more

suited for parallel computations. Finally, the author concluded that the rate of convergence

of this method is also independent of the jump in the coefficients.

Wavelet-based numerical homogenization is well studied [13, 17–19]. Mihai and Bjorn

[13] considered a numerical homogenization process for elliptic differential equations that

are based on wavelet decompositions of discrete operators in fine and coarse scale com-

ponents followed by the removal of the fine scale contributions. Per-Olof and Olof [19]

applied wavelet-based numerical homogenization to the simulation of an optical waveguide

filter. They derived a one dimensional model and subgrid models of the filter, and then

presented numerical examples and computational payoffs of their techniques.

In the work of Alina and Doron [18], a wavelet-based method was applied for the sys-

tematic derivation of subgrid scale models in the solution of PDEs. They represented the dis-

crete operator in a wavelet space and projected the fine scales onto a coarser subspace. They

did some modifications to improve the efficiency of the numerical homogenization method

by choosing a different compact representation of the homogenized operator. Furthermore,

1Superconvergence involves finding points where a finite element solution in more accurate than at
location where basis functions are defined. Superconvergence occurs due to the fact that FEM approximation
oscillate around the exact solution.



6

they proposed a natural fine scale correction which they implemented at the final step in

their homogenization process. Brewster and Beylkin [17] presented a multi-resolution anal-

ysis based on homogenization of differential equations. They consider a system of linear

ordinary differential equations (ODEs) with variable coefficients and forcing terms. They

also developed an efficient algorithm from the method of lines discretization of PDEs and

perform homogenization over the variable time scales.

1.3 Main Contributions

Until now, a careful combination of the homogenization theory with wavelet multi-

resolution analysis to provide solutions to elliptic DE of the form introduced in equations

1.1 and 4.1 is yet to be researched. We provide a summary of our main results as follow:

• We perform homogenization process on two-cell problems in a multiscale analysis. In-

stead of using a perturbation parameter, 0 < ε << 1 where ε tends to zero, we set

ε = 1
2 and use more terms in the perturbation series.

• We propose Homogenization Wavelet Reconstruction (HWR) algorithm for the ap-

proximate solution of elliptic differential equations. The approximations are applied

to problems where coefficients vary rapidly.

• We employ orthogonal decomposition using a Haar multiresolution analysis condi-

tioned on homogenization. An analogy between homogenization and the MRA is de-

scribed in one and two spatial dimensions.

• We develop a fast transform method in one and two dimensions for computing the

homogenized value of elliptic coefficients at all scales on a given dyadic mesh. The

transform method honors the ”correct” average value predicted by homogenization

theory.

• We develop the associated inverse fast transform method using simple algebraic steps.

The inverse transform is used to aid in the reconstruction algorithm central to this

dissertation.



7

• A novel aspect of the research in this dissertation involves optimizing the perfor-

mance of the fast transform algorithm by investigating differences in the solution of

local problems at successive scales. The resulting algorithm avoids the computation

of derivatives in the original version of the HWR algorithm.

• We show that the two dimensional extension of the HWR algorithm where the ellip-

tic coefficient is a diagonal tensor amounts to one dimensional problems on dyadic

meshes. The full tensor case is also resolved. The full tensor case requires a more

complicated solution process, but can be done.

• We implement Java codes that compute the pressure variables and came up with a

close form generalization of the differencing formula in our solution in one dimension.

• Finally, we implement Java codes that compute the fast and inverse transform algo-

rithms to verify our results.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 presents prelim-

inaries to provide necessary background in multi-scale methods, including homogenization

and wavelets analysis. In Chapter 3, we develop fast transforms for homogenization, and

give an analogy between the method of homogenization and wavelets in one dimension and

consider reconstruction of solutions of elliptic differential equations using multi-resolution

analysis conditioned on homogenization. In chapter 4 we consider two-dimensional homog-

enization wavelet reconstruction algorithm with diagonal tensors. Chapter 5 discusses two-

dimensional homogenization wavelet reconstruction algorithm with full tensors and presents

numerical results. We conclude in Chapter 6 and as well gives directions for future research.



8

CHAPTER 2

MULTI-SCALE METHODS

2.1 Description of Multi-scale Methods

Multi-scale methods are employed in solving problems that have important features

at multiple time and/or space scales. There are many fundamental and practical prob-

lems involving a wide range of length scales. Examples include highly heterogeneous porous

media and composite materials with fine micro-structures [20–26]. Systems evolving on

widely separated time scales present significant challenges both theoretically and numeri-

cally. Standard computational schemes fail due to the wide separation between the rapidly

varying time/spatial scale in the system one must compute with and the slowest time scales

one is typically interested in analyzing. Thus, it is important to treat such problems ef-

fectively. Multi-scale methods carry fine-scale information throughout simulation, and the

coarse scale equations are generally not expressed analytically, but rather formed and solved

numerically. The discussion in this chapter provides descriptions of two concepts: (a) Mul-

tiresolution Analysis (MRA) and (b) Homogenization for solving multi-scale problems that

we consider in this dissertation.

2.2 Multiresolution Analysis

A wavelet is a wave-like feature that travels for one or more periods and is nonzero only

over a finite interval. Wavelets are building blocks that are designed to model sound signals

with isolated noisy pops that need to be filtered. A wavelet can be translated forward or

backwards in time, and stretched or compressed by scaling to represent low- and high fre-

quency, this concept is called translation invariance. Wavelets are useful in analyzing data,

and are used to remove noise without smoothing out the main features of the data which



9

makes it more effective for data cleaning [27]. Wavelets were first applied in Geophysics to

analyze data from seismic surveys [28].

As a comparison, the Fourier transform is a well-known and useful tool for analyzing

components of signals. However, the main disadvantage of the Fourier expansion is that

it has only frequency resolution with no time resolution. To overcome this problem in the

past decades, several solutions have been developed that were able to represent a signal

in the time and frequency domain at the same time. Wavelet transforms are one such

solution to the problem which can keep track of both the time and frequency information

[28, 29]. Wavelets have advantages over traditional Fourier transform in analyzing physical

situations where signals contain discontinuities, sharp spikes, and signals with compact

support.

The scaling function, φ, and the wavelet function, ψ, are two basic functions that play

important roles in wavelet analysis. φ and ψ are used to generate orthogonal basis functions

that are needed to decompose (i.e., break up) or reconstruct (i.e., combine) signals. The

Haar scaling function is defined as

φ(x) =


1 if 0 ≤ x < 1,

0 elsewhere.

The Haar wavelet can be defined as a linear combination of scaling functions as follows.

ψ(x) = φ(2x)− φ(2x− 1)

It is considered the simplest of all the wavelets. The Haar wavelet scheme depends on the

Haar scaling function and the Haar wavelet which are simple to describe and lead to easy

decomposition algorithms. Haar wavelets are well localized in the time/space domains but

have the disadvantage of not being continuous. Thus, they do not efficiently approximate

continuous signals. Note that in this dissertation, the elliptic coefficient tensor is assumed

to be discontinuous.



10

To provide solutions for this disadvantage of Haar wavelets, Stephane Mallat in 1998 pro-

posed a theory called multiresolution analysis, MRA. MRA is the process of analyzing

signals at different scales with different resolutions. Let the approximation spaces, Vj for

j = . . .− 2,−1, 0, 1, 2, . . . define a sequence of subspaces of functions in L2(R). The collec-

tion of spaces Vj , j ∈ Z is called a multiresolution analysis with scaling function φ if the

following conditions hold.

• Nested: The approximation space, Vj is a subset of Vj+1

• Density: ∪Vj = L2(R). That is the closure of the union of Vj , ∪Vj is defined as

f ∈ ∪Vj if and only of for every ε > 0 one can find j such that there is an fj ∈ Vj for

which ‖ f − fj ‖< ε,. This property means that every f ∈ L2 can be approximated

as closely as one likes by a function in a Vj , provided that j is large enough.

• Separation: ∩Vj = 0. The intersection of the approximation spaces is contains only

zero function.

• Scaling: The function f(x) belongs to Vj if and only if the function f(2−jx) belongs

to V0.

• Orthonormal Basis: The function φ belongs to V0 and the set {φ(x− k), k ∈ Z} is an

orthonormal basis (using the L2 inner product) for V0.

We note some examples of MRA in this section, see [28] for more detail. Linear Splines are

continuous and piecewise linear functions which have infinite support. They decay rapidly

at infinity. Shannon wavelets are very smooth, they extend throughout the whole real line

and they decay slowly at infinity. Daubechies wavelets are continuous but they are not

differentiable. These wavelets are usually characterized by the number of vanishing mo-

ments. The smoothness of the scaling and wavelet function increases with the number of

vanishing moments.



11

2.3 A Brief Review of Homogenization

It is common in science and engineering to deal with problems formed from multiple

components. Solving a mathematical problem with rapidly varying coefficients in the struc-

ture can be difficult, even numerically. It is therefore ideal to find simpler equations that will

effectively smooth the coarse structures of the constituents that may arise with spatially

heterogeneous materials [30,31].

Homogenization deals with derivation of equations for averaging of solutions of equa-

tions with rapidly varying coefficients. In a homogenization process, we begin with a problem

that includes structural variations, and derive a simpler problem that serves as a first-order

approximation of the original problem. The method of homogenization is a type of mul-

tiscale analysis. In a multidimensional case, it might be very difficult to find the correct

secularity condition. Thus many researchers assume that the substructure is periodic. In

this dissertation the substructure need not be periodic.

2.3.1 Standard Homogenization Applied to Elliptic Differential Equation

We consider the following elliptic differential equation (DE) (i.e., Equation 2.1) in one

dimension to model the flow of fluid in porous media, where K(x) is the permeability or

conductivity tensor that is periodic on the domain, h is the pressure variable, and f(x) is

some forcing function:

d

dx
K(x)

dh

dx
= f(x). (2.1)

We employ a perturbation analysis that produces a system of equations at various scales

based on power series representation in terms of a small parameter,0 < ε << 1. Using ho-

mogenization methods, we assume that the primary variables can be expanded in a pertur-

bation series in this parameter. The homogenized solution converges to a weak solution [32]

of the original problem as the parameter ε tends to zero.



12

First we define the associated first order system:

v(x) = −K(x)
dh

dx
(2.2)

−dv
dx

= f (2.3)

where v(x) can be thought of as the fluid velocity or Darcy velocity.

In a standard two-scale homogenization, we define

y =
x

ε

and expand h and v as

h(x, y) = h0(x, y) + εh1(x, y) + ε2h2(x, y) + · · · (2.4)

v(x, y) = v0(x, y) + εv1(x, y) + ε2v2(x, y) + · · · (2.5)

The dependence of h and v on x and y will be suppressed to simplify notation in the sequel.

The differential operator d
dx becomes

d

dx
=

d

dx
+

1

ε

d

dy
+

1

ε2
d

dz
+ · · · (2.6)

For a standard presentation of mathematical homogenization, the differential operator

is restricted to

d

dx
=

d

dy0
+

1

ε

d

dy1
. (2.7)

Next, substitute these definitions into the first order system of DEs for v and h. The

result is,

v = v0 + εv1 + ε2v2 + · · · = −K
(

d

dy0
+

1

ε

d

dy1

)
(h0 + εh1 + ε2h2 + · · · )

−
(

d

dy0
+

1

ε

d

dy1

)
(v0 + εv1 + ε2v2 + · · · ) = f.



13

The next step is to compare terms involving like powers of ε. In this process, we will

neglect all the terms that are multiplied by a power of ε greater than zero. We are interested

in the first two sets of equations for εn, n = −1, 0. This is because the functions hi and

vi, i = 0, 1, 2, · · · are assumed to be bounded. Also, note that in standard homogenization,

the limit as ε tends to zero is used. Finally, We make an assumption that allows the equation

to be balanced on both sides.

For ε−1

0 = −Kdh0

dy1
(2.8)

0 = −dv0

dy1
. (2.9)

For ε0

v0 = −K
(
dh0

dy0
+
dh1

dy1

)
(2.10)

f0 = −
(
dv0

dy0
+
dv1

dy1

)
. (2.11)

For ε1

v1 = −K
(
dh1

dy0
+
dh2

dy1

)
(2.12)

f1 = −
(
dv1

dy0
+
dv2

dy1

)
. (2.13)

Note that the last equation 2.12 is not needed in a standard application of homoge-

nization. From equation 2.8 and 2.9, we found out that since K is not zero, then
dh0

dy1
= 0

and as a result, h0 is a function of y0. Also, −dv0

dy1
= 0 implies that v0 is a function of y0.

To finish the analysis, it is assumed that

h1 = w0(y1)
dh0

dy0
.



14

From equation 2.10, we have:

v0 = −K
(
dh0

dy0
+
dh1

dy1

)
(2.14)

= −K
(
dh0

dy0
+

d

dy1
(w0(y1)

dh0

dy0
)

)
(2.15)

= −K
(
dh0

dy0
+
dw0(y1)

dy1

dh0

dy0

)
(2.16)

= −K
(

1 +
dw0(y1)

dy1

)
dh0

dy0
. (2.17)

Differentiating both sides of equation 2.17 with respect to y1, we obtain:

dv0

dy1
= − d

dy1
K

(
1 +

dw0(y1)

dy1

)
dh0

dy0
(2.18)

or

0 = − d

dy1
K

(
1 +

dw0(y1)

dy1

)
dh0

dy0
. (2.19)

Since v0 is a function of y0, equation 2.19 defines the local problem for w0(y1).

2.3.2 Direct Computation of the Average Coefficient

Using equation 2.10, we can compute the average velocity v0, by integrating both sides

of the equation. So, integrating the left hand side

∫ 1

0
v0(y0)dy1 = v0(y0)

∫ 1

0
dy1 (2.20)

= v0(y0)(1) (2.21)

= v̄0. (2.22)



15

The right side of 2.10 can be integrated as follows

∫ 1

0
K(y1)

(
dh0

dy0
+
dh1

dy1

)
= −

∫ 1

0
K(y1)

(
dh0

dy0
+

d

dy1

(
w0(y1)

dh0

dy0

))
dy1

= −
∫ 1

0
K(y1)

(
1 +

d

dy1
(w0(y1))

)
dh0

dy0
dy1

= −
(∫ 1

0
K(y1)

(
1 +

d

dy1
(w0(y1))

)
dy1

)
dh0

dy0
.

Since h0 = h0(y0) and d
dy1
h0 = 0, so h0 is a constant with respect to y1.

So, if we set

K] =

∫ 1

0
K(y1)

(
1 +

dw0

dy1

)
dy1

Then the averaged equation is

v̄0 = −K]dh0

dy0

where v̄0 = average velocity. This works provided the integral can be computed on a

microscopic cell.

Note: For the work in this dissertation, the averaging will be performed recursively over

multiple scales. In one-dimension, the theory behind homogenization guarantees K] is the

harmonic average.

2.3.3 The Homogenized Average Coefficient in a Two-Cell Problem

A formula for computing the homogenized parameter value, K], which agrees with the

harmonic average is given below. Suppose that the coefficient, K is defined as follows:

K =


K0 y1 ∈

[
0,

1

2

)
K1 y1 ∈

[
1

2
, 1

]



16

then

K] =

∫ 1

0
K

(
1 +

dw0

dy1

)
dy1 (2.23)

=

∫ 1

0
Kdy1 +

∫ 1

0
K

(
dw0

dy1

)
dy1 (2.24)

=
2K0K1

K0 +K1
(2.25)

where

K̄ =

∫ 1

0
Kdy1

is the arithmetic average, and

∆K =

∫ 1

0
K

(
dw0

dy1

)
dy1

is a perturbation needed to produce the harmonic average. The homogenization method

produces the harmonic average of the signals by summing these two values.

The function w0(y1) is the solution of the associated local problem with appropriate

boundary conditions, and it satisfies the local problem in a weak sense [32] since we have

assumed that the permeability is discontinuous. The local problem is defined by the equation

d

dy1
K(y1)

d

dy1
w0(y1) = − d

dy1
K(y1) for 0 < y1 < 1 (2.26)

with

w0(1) = w0(0) = 0

2.4 Equivalence of Wavelet Analysis and Two-Cell Homogenization

The analogy between the method of homogenization and wavelets can be seen in the

computation of the harmonic average i.e., the averaging formula for computing the perme-

ability coefficients 2.25. Homogenization methods give the harmonic average of the perme-

ability field and the wavelet characterization lets us compute the harmonic average using



17

a wavelet transform. The wavelet transform decomposes a function into a weighted sum of

its various space/frequency components.

In the one dimensional case, the homogenized coefficient is the harmonic average defined

by

K] =
2K0K1

K0 +K1

The average formula from the homogenization process is given by 2.23 and 2.24:

From equation 2.23 w0 satisfies the ordinary differential equation as stated in 2.26. Note

that
∫ 1

0 Kdy1 is the arithmetic average of K and
∫ 1

0 K
dw0

dy1
dy1 is the perturbation needed to

produce harmonic average. The detail in the wavelet transform is exactly the perturbation

in the homogenization formula as seen below. To determine w0, we define the scaled local

problem:

d

dy1
K

d

dy1
w0 = − d

dy1
K

with

K =


K0 y1 ∈

[
0,

1

2

)
K1 y1 ∈

[
1

2
, 1

]
where K is the elliptic coefficient. With this definition of the permeability, we find a weak

solution of w0(y1) as:

w0(y1) =
K1 −K0

K1 +K0


2y1, y1 ∈

[
0,

1

2

)
2− 2y1, y1 ∈

[
1

2
, 1

] (2.27)

In the development of the fast transform for computing the average and reconstruction

of the solution, the coefficient of w0(y1) in 2.27 is the same as the wavelet coefficient needed

in the reconstruction.



18

With this solution of the average formula, we have the following:

K] =

∫ 1

0
K

(
1 +

dw0

dy1

)
dy1

=

∫ 1

0
K(1 + w0,0ψ(y1))dy1

=

∫ 1

0
Kdy1 + w0,0

∫ 1

0
Kψ(y1))dy1

=

∫ 1

2

0
K0dy1 +

∫ 1

1

2

K1dy1 + w0,0

∫ 1

2

0
K0dy1 +

∫ 1

1

2

K1(−1)dy1


=

1

2
K0 +

1

2
K1 + w0,0

(
1

2
K0 −

1

2
K1

)
=

1

2
(K0 +K1) +

w0,0

2
(K0 −K1)

=
2K0K1

K0 +K1
.

Thus, we can conclude that there is a clear analogy between wavelet transform and the

homogenization process for computing the permeability coefficient.



19

CHAPTER 3

HOMOGENIZATION WAVELET RECONSTRUCTION IN ONE

DIMENSION

3.1 A One Dimensional Fast Transform for Homogenized Coefficient Values

There are large number of methods that have been developed for the approximate

solution of elliptic DEs [8, 13, 33, 34]. In this section, the first step in the Homogenization-

Wavelet-Reconstruction (HWR) algorithm is presented. The first step in the HWR method

defines a fast transform method that preserves the harmonic average of the coefficient,K(x).

3.1.1 A Fast Transform Method that Preserves the Harmonic Average

The correct averaged/upscaled value of K(x) in one dimension is the harmonic average.

That is, if two values are given, say K0 and K1, then

K] =
2K0K1

K0 +K1

or if K(x) is a continuous function of x

K] =

(∫
1

K(x)
d(x)

)−1

.

A more typical setting is to be given a sequence of values,
{
K1,0,K1,1,K1,2, . . . ,K1,2m−1

}
with the idea of computing an average value of all samples written as:

K] =

 2m∑
j=0

1

Ki,j

−1

.



20

If these methods are used, all intermediate scale information will be lost. The result of these

computations is a single homogenized value, K], for the entire microscopic scale.

Yet, another method for computing this average is to define a transform method that will

define averages at all intermediate scales. Suppose we are given the discrete sequence as

above. We consider using pairs of values to compute local averages. For example, using two

values from a sequence of samples, Km,0 and Km,1, we can define

K] =
2Km,0Km,1

Km,0 +Km,1
.

To recast the averaging process in a form that can be used in a fast transform algorithm,

the simple computation could be rewritten in the following three steps.

K̄ =
(Km,0 +Km,1)

2
; (3.1)

∆K = − (Km,1 −Km,0)2

2(Km,1 +Km,0)
; (3.2)

K] = K +4K =
2Km,0Km,1

Km,0 +Km,1
. (3.3)

Now, we consider the sequence

Km =
{
Km,0,Km,1,Km,2, . . . ,Km,2m−1

}
and apply the process above to pairs of the sequence elements as follows:

Km−1,j =
(Km,2j+1 +Km,2j)

2
; (3.4)

∆Km−1,j = − (Km,2j+1 −Km,2j)
2

2(Km,2j+1 +Km,2j)
; (3.5)

K] = Km−1,j + ∆Km−1,j =
2Km,2j Km,2j+1

Km,2j +Km,2j+1
. (3.6)

The algorithm for the fast transform is given as follows. (See also Figures 3.1 and 3.2

for illustrations of visual descriptions of the procedure).



21

Fast Transform Algorithm

• Assume that the permeability tensor Km,j represents samples of K(x) at 2m equally

spaced points in each spatial dimension.

• Compute K, the arithmetic average of the two neighboring values of permeability ten-

sor as in 3.4.

• Compute 4K, the detail involving the difference of the two neighboring values of the

permeability tensor as in 3.5.

• Then, add the arithmetic average and detail to obtain K], the harmonic average of

the original signals 3.6.

The output from this algorithm is a sequence arithmetic averages and the details needed to

compute K]. Now, suppose we apply this idea to a sequence as defined above. We can use

pairs of samples to define two cell problems where the harmonic average is computed and

the detail is also retained. In this way, the details are available for later use.

The pairwise average values form a sequence of averages with 2m−1 values and a se-

quence of details, also of length 2m−1. For example, if we have a sequence of 2m values

and their details, we use the pairwise samples to compute the harmonic average and their

details, this will reduce the sequence to a sequence of 2m−1. Recursively applying the al-

gorithm will produce 22, then 21 averages and the details. The end result is the harmonic

average of the original values and the details associated with all the dyadic scales.

The transform method not only computes the correct values at coarse scales but also

stores the details at all scales. Computationally, the details can be stored using the original

array by overwriting half the values at each level. The details in the signals allow a fast

method for the computation of the average of the elliptic coefficient at all scales. The details

can be used to reconstruct the original signal or to reconstruct the approximate pressure

variable for the original DE. Keeping the details along with the average values at all scales

provides the data necessary for a fast inverse transform. The inverse transform will also be



22

Figure 3.1. Illustration of visual description of the procedure

Figure 3.2. Illustration of description of computation of the harmonic average

used to aid in the reconstruction of the primary variable, h, in the original elliptic differential

equation.

3.1.2 The Analogy between Homogenization and the Fast Transform Method

The analogy between the method of homogenization and wavelets can be seen in the

fast transform method presented in the last section that preserves the harmonic average, i.e.,

the averaging formula for computing the permeability coefficients. Homogenization methods

give the harmonic average of the permeability and a wavelet characterization that can be

used to compute the harmonic average using a wavelet transform.



23

The average formula from homogenization given by:

K] =

∫ 1

0
K

(
1 +

dw0

dy1

)
dy1 (3.7)

=

∫ 1

0
Kdy1 +

∫ 1

0
K
dw0

dy1
dy1 (3.8)

will be used.

From Equation 3.8,

K =

∫ 1

0
Kdy1

is the arithmetic average, and

4K =

∫ 1

0
K
dw0

dy1
dy1

is the perturbation needed to produce harmonic average.

3.1.3 Generation of Wavelets Conditioned on Homogenization

The fast transform method motivates the development of a multi-resolution analysis

using homogenization to condition the wavelet basis.

For the local problem

d

dy1
K(y1)

d

dy1
w0(y1) = − d

dy1
K(y1),

with

K =


K0 y1 ∈

[
0,

1

2

)
K1 y1 ∈

[
1

2
, 1

]
,

w0(y1) =

(
K1 −K0

K0 +K1

)
y1, y1 ∈

[
0,

1

2

)
1− y1, y1 ∈

[
1

2
, 1

]
.

The weak derivative of w0(y1) is given by



24

dw0

dy1
=

(
K1 −K0

K0 +K1

)
1, y1 ∈

[
0,

1

2

)
−1, y1 ∈

[
1

2
, 1

]
.

In addition, if we define

w0,0 =
K1 −K0

K1 +K0

and

ψ(y1) =


1, y1 ∈

[
0,

1

2

)
−1, y1 ∈

[
1

2
, 1

]
then

dw0

dy1
= w0,0ψ(y1)

The weak derivative of w0(y1) is a constant multiple w0,0 of a Haar wavelet, ψ(y1). Alterna-

tively, one can think of the constant multiplier, w0,0, as being conditioned by the solution

of the local problem obtained in the homogenization process.

We can rewrite Equation 3.7 as follow

K] =

∫ 1

0
K

(
1 +

dw0

dy1

)
dy1

=

∫ 1

0
K(1 + w0,0ψ(y1))dy1

=

∫ 1

0
Kdy1 + w0,0

∫ 1

0
Kψ(y1)dy1

where, K = Kχ[0,1] = scaling function and ψ = wavelet function.

With this solution the second integral in the average formula becomes:

∫ 1

0
K
dw0

dy1
dy1 = ∆K = − (Ki,j+1 − ki,j)2

2(Ki,j+1 + ki,j)
. (3.9)



25

The detail in the wavelet transform integrates to exactly the perturbation in the ho-

mogenization formula as seen in Equation 3.9. Thus, it is clear that there is a relationship

between the wavelet transform that preserves the harmonic average and the homogenization

process for computing the permeability coefficient.

3.1.4 The Inverse Transform

The inverse transform can be obtained by reversing the order of the steps given above

as long as the details are kept at all scales. The algorithms are as follows:

The Inverse Transform Algorithm

• Given K] = K̄ + ∆K, where K] is the harmonic average of the original signals, K̄ is

the arithmetic average of K, and ∆K = − (Km,1−Km,0)2

2(Km,1+Km,0) = − (Km,1−K̄)2

K̄
is the details

needed to compute the average.

• Compute K̄ = K] −∆K

• Since K̄ =
(Km,0+Km,1)

2 , then we have 2K̄ = Km,0 +Km,1.

K] = K̄ + ∆K,

∆K = − (Km,1 −Km,0)2

2(Km,1 +Km,0)
= −(Km,1 − K̄)2

K̄
,

K̄ = K] −∆K,

Km,1 = (−∆K · K̄)
1
2 + K̄,

2K̄ = Km,0 +Km,1,

Km,0 = 2K̄ −Km,1.

The inverse transform results can be recursively apply to homogenization wavelet recon-

struction algorithm to compute successively finer scale values from the coarse scale values.



26

3.1.5 Reconstruction of Solutions of Elliptic Differential Equations Using Multi-

resolution Analysis Conditioned on Homogenization

We propose the one-dimensional Homogenization-Wavelet Reconstruction (HWR) algo-

rithm in this section. Knowing the signal at successive fine scales, we can actually compute

the wavelet coefficients needed to move from coarser scales to finer scales using the inverse

of the wavelet transform. Thus, a reconstruction can be done at desired scale as long as the

fine scales information are available.

The reconstruction formula is based on the fundamental assumption that must be made in

the homogenization process. The homogenization process assumes that the primary vari-

ables h and v from the original problem can be expanded in a perturbation series of the

form:

h = h0 + εh1 + ε2h2 + · · ·+ εmhm + . . .

where ε is a small parameter, 0<ε<<1. In this process, we make the assumption

h1 = w0
dh0

dy0
.

The next step is to assume that the same type of relationship occurs between successive

dyadic scales in the equation 3.12. Using this assumption we can write:

h ≈ h0,

h ≈ h0 + εh1 = h0 + εw0
dh0

dy0
,

...

h ≈ h0 + εh1 + ε2h2 + · · ·+ εmhm = h0 + εw0
dh0

dy0
+ ε2w1

dh1

dy1
+ · · ·+ εmwm−1

dhm−1

dym−1
.

Once we have determined the value of hi, then we can use this to compute the next

term in the perturbation expansion by computing the derivative of hi with respect to y1.

So, to reconstruct the pressure variable, h, we consider the following algorithm referred to



27

as Homogenization-Wavelet Reconstruction algorithm. The algorithm is as follow:

Homogenization Wavelet Reconstruction Algorithm

• Given the finest scale permeability samples Km,j, on a finest scale,where m refers to

the finite levels and the number of samples is 2m, and j refers to the jth sample at

the given level. Compute the details at all scales.

• Compute the solution of the DE for the coarsest level homogenized problem on the

entire domain, that is compute the solution of

v = −KOh, (3.10)

d

dx
K0,0

dh

dx
= f, (3.11)

where K0,0 = K] is the harmonic average of the permeability.

• Then use

h = h0 + εh1 + ε2h2 + · · ·+ εmhm, (3.12)

v = v0 + εv1 + ε2v2 + · · ·+ εmvm, (3.13)

and the ansatz

h1 = w0
dh0

dy0
.

In our work we use an extension of this ansatz of the form

hl+1 = wl(yl+1)
dhl
dyl

.

This means

h = h0 + εw0
dh0

dy0
+ ε2w1

dh1

dy1
+ · · ·+ εmwm−1

dhm−1

dym−1

with ε = 1
2 .



28

3.2 Recursive Differencing of Analytic Solutions

One novel aspect of the work in this dissertation is described in this section. In the

development of the Fast Fourier Transform (FFT) over the past decades, many research

papers have been written about improving the speed/efficiency of the FFT. The work in

this section is analogous in the following sense. The brute force transform first proposed [35]

was not efficient relative to the wavelet transform. By investigating the difference in analytic

solution between dyadic scales, a more efficient algorithm for the fast wavelet transform has

been created. We use another approach to compute the solution of the problem, using the

information about the boundary conditions and the wavelet coefficients (α’s and β’s) where

β =
Ki,j

Ki,j−1+Ki,j
and α =

Ki,j−1

Ki,j−1+Ki,j
. This process is a sort of a brute force verification of

the HWR method. The process is used to derive solutions to the zero-scale, two-cell, and

four-cell local elliptic problems. We compute the differences of the solutions and provide a

Java implementation of the algorithm that can generate recursive formulas of the differences

for values of n = 1, 2, · · · .

Given the elliptic equation, we are required to compute the solution to the problem. We

derived the solutions to one-scale, two-scale, and three-scale elliptic problems in terms of α

and β using the properties of wavelets multi-resolution analysis (MRA).

3.3 Computing Differences of Solutions of n-Cell Problem

In this section, we compute the differences in the analytical solution of the local 2−

cell problems. In addition, simpler formula are obtained for the HWR algorithm.

3.3.1 Zeroth Scale Analytic Solution

We provide a step-by-step derivation of the solution of the coarsest scale problem

− d

dx
K(x)

dh

dx
= 0, (3.14)



29

with the boundary conditions:

h(0) = BL,

h

(
1

2

)
= BR.

Integrate equation (3.14) with K(x) = K0,0. We obtain

−K0,0
dh

dx
= c0,0,

dh

dx
= − c0,0

K0,0
.

Integrating the above equation, we have

h(x) = − c0,0

K0,0
x+ b0,0, (3.15)

h(x) = − c0,0

K0,0
x+BL. (3.16)

Next, we compute the value of c0,0 given that,

h(0) = BL = b0,0,

h

(
1

2

)
= BR = − c0,0

K0,0
(
1

2
) +BL,

we obtain

c0,0 = 2(BR −BL)K0,0.

Putting the value of c0,0 back into equation (3.16) , we have

h(x) =
2K0,0(BR −BL)

K0,0
x+BL,

= 2(BR −BL)x+BL.

h0(y0) = 2(BR −BL)y0 +BL.



30

3.3.2 Two-Cell Analytic Solution

Given an elliptic equation, we are required to compute the solution to the problem:

− d

dx
K(x)

dh

dx
= 0, (3.17)

with the boundary conditions:

h(0) = BL,

h(1) = BR,

where,

K(x) =


K1,0, x ∈

[
0,

1

2

)
,

K1,1, x ∈
[

1

2
, 1

]
.

Integrating the given equation, we obtain

−K(x)
dh

dx
=


c1,0, x ∈

[
0,

1

2

)
,

c1,1, x ∈
[

1

2
, 1

]
.

Dividing both sides by −K(x), we have

dh

dx
= −


c1,0

K1,0
, x ∈

[
0,

1

2

)
,

c1,1

K1,1
, x ∈

[
1

2
, 1

]
.

Integrate this with respect to x, we have

h(x) = −


c1,0

K1,0
x+ b1,0, x ∈

[
0,

1

2

)
,

c1,1

K1,1
(x− 1) + b1,1, x ∈

[
1

2
, 1

]
.



31

Again, the boundary conditions are:

h(0) = BL = b1,0,

h(1) = BR = b1,1.

Assuming continuity of K∇h at x = 1
2 , so c1,0 = c0,0,

c1,0

K1,0
x+BL =

c1,0

K1,1
(x− 1) +BR,

c1,0

K1,0

(
1

2

)
+BL =

c1,0

K1,1

(
−1

2

)
+BR.

We next solve for the value of c1,0 as follows:

c1,0

2K1,0
+

c1,0

2K1,1
= BR −BL,

c1,0

(
K1,1 +K1,0

2K1,0K1,1

)
= BR −BL,

c1,0 =

(
2K1,0K1,1

K1,1 +K1,0

)
(BR −BL),

c1,0 = K]
0,0(BR −BL).

Substituting the value of c1,0 into h we obtain:

h1(y1) =


K]

0,0

K1,0
(BR −BL)(y1) +BL, y1 ∈

[
0,

1

2

)
K]

0,0

K1,1
(BR −BL)(y1 − 1) +BR, y1 ∈

[
1

2
, 1

]
.

Simplifying the above equation results in:

K]
0,0

K1,0
=

2K1,0K1,1

K1,1+K1,0

K1,0

=
2K1,1

K1,0 +K1,1

= 2β0,0,



32

K]
0,0

K1,1
=

2K1,0K1,1

K1,1+K1,0

K1,1

=
2K1,0

K1,0 +K1,1

= 2α0,0,

where α0,0 =
K1,0

K1,0+K1,1
and β0,0 =

K1,1

K1,0+K1,1
. Note that α0,0 + β0,0 = 1.

The solution now becomes:

h1(y1) =


2β0,0(BR −BL)(y1) +BL, y1 ∈

[
0,

1

2

)
2α0,0(BR −BL)(y1 − 1) +BR, y1 ∈

[
1

2
, 1

]
.

3.3.3 Four-cell Analytic Solution

Given the same equation as before, we compute the solution to the problem using the

same steps as above:

− d

dx
K(x)

dh

dx
= 0, (3.18)

with the boundary conditions

h(0) = BL,

h(2) = BR,



33

where,

K(x) =



K2,0 x ∈
[
0,

1

2

)
K2,1 x ∈

[
1

2
, 1

]
K2,2 x ∈

[
1,

3

2

]
K2,3 x ∈

[
3

2
, 2

]
.

Integrating the given equation, we obtain

−K(x)
dh

dx
=



c2,0 x ∈
[
0,

1

2

)
c2,1 x ∈

[
1

2
, 1

]
c2,2 x ∈

[
1,

3

2

]
c2,3 x ∈

[
3

2
, 2

]
.

Dividing both sides by −K(x), we have

dh

dx
= −



c2,0

K2,0
x ∈

[
0,

1

2

)
c2,1

K2,1
x ∈

[
1

2
, 1

]
c2,2

K2,2
x ∈

[
1,

3

2

]
c2,3

K2,3
x ∈

[
3

2
, 2

]
.



34

Integrating this with respect to x, we obtain

h(x) = −



c2,0

K2,0
x+ b2,0 x ∈

[
0,

1

2

)
c2,1

K2,1
(x− 1) + b2,1 x ∈

[
1

2
, 1

]
c2,2

K2,2
(x− 1) + b2,2 x ∈

[
1,

3

2

]
c2,3

K2,3
(x− 2) + b2,3 x ∈

[
3

2
, 2

]
.

Again, the boundary conditions are:

h(0) = BL = b2,0,

h (2) = BR = b2,3.

We let

b2,1 = b2,2 = B.

Again, assume continuity at x = 1
2 , x = 3

2 , so c2,0 = c2,1 = c2,2 = c2,3, and

c2,0

K2,0
y2 +BL =

c2,0

K2,1
(y2 − 1) +B,

c2,0

K2,0

(
1

2

)
+BL =

c2,0

K2,1

(
−1

2

)
+B.

We next solve for the value of c2,0

c2,0

2K2,0
+

c2,0

2K2,1
= B −BL,

c2,0

(
K2,1 +K2,0

2K2,0K2,1

)
= B −BL,

c2,0 =

(
2K2,0K2,1

K2,1 +K2,0

)
(B −BL),

c2,0 = K]
1,0(B −BL),

B −BL =
c2,0

K]
1,0

.



35

Also,

c2,0

K2,2
(y2 − 1) +B =

c2,0

K2,3
(y2 − 2) +BR,

c2,0

K2,2

(
1

2

)
+B =

c2,0

K2,3

(
−1

2

)
+BR.

We again solve for the value of c2,0

c2,0

2K2,2
+

c2,0

2K2,3
= BR −B, (3.19)

c2,0

(
K2,2 +K2,3

2K2,2K2,3

)
= BR −B, (3.20)

c2,0 =

(
2K2,2K2,3

K2,2 +K2,3

)
(BR −B), (3.21)

c2,0 = K]
1,1(BR −B), (3.22)

BR −B =
c2,0

K]
1,1

. (3.23)

Add equations 3.19 and 3.23:

c2,0

K]
1,0

+
c2,0

K]
1,1

= BR −BL,

2c2,0

2K]
1,0

+
2c2,0

2K]
1,1

= BR −BL,

2c2,0 =

(
2K]

1,0K
]
1,1

K]
1,1 +K]

1,0

)
(BR −BL),

2c2,0 = K]
0,0(BR −BL),

c2,0 =
1

2
K]

0,0(BR −BL).



36

Substituting the value of c2,0 into the equation above, we obtain:

h2(y2) =



1
2K

]
0,0

K2,0
(BR −BL)(y2) +BL, y2 ∈

[
0,

1

2

)
1
2K

]
0,0

K2,1
(BR −BL)(y2 − 1) + β0,0(BR −BL) +BL, y2 ∈

[
1

2
, 1

]
1
2K

]
0,0

K2,2
(BR −BL)(y2 − 1)− α0,0(BR −BL) +BR, y2 ∈

[
1,

3

2

]
1
2K

]
0,0

K2,3
(BR −BL)(y2 − 2) +BR, y2 ∈

[
3

2
, 2

]
.

Simplifying the equation above as follows:

1
2K

]
0,0

K2,0
=

1
2

2K]
1,0K

]
1,1

K]
1,1+K]

1,0

K2,0
,

=

(
K]

1,1

K]
1,0 +K]

1,1

)
K]

1,0

K2, 0
,

= β0,0

 2K2,0K2,1

K2,0+K2,1

K2,0

 ,

= 2β0,0β1,0,

1
2K

]
0,0

K2,1
=

1
2

2K]
1,0K

]
1,1

K]
1,1+K]

1,0

K2,1
,

=

(
K]

1,1

K]
1,0 +K]

1,1

)
K]

1,0

K2, 1
,

= β0,0

 2K2,0K2,1

K2,0+K2,1

K2,1

 ,

= 2β0,0α1,0,



37

1
2K

]
0,0

K2,2
=

1
2

2K]
1,0K

]
1,1

K]
1,1+K]

1,0

K2,2
,

=

(
K]

1,0

K]
1,0 +K]

1,1

)
K]

1,1

K2, 2
,

= α0,0

 2K2,2K2,3

K2,2+K2,3

K2,2

 ,

= 2α0,0β1,1,

and

1
2K

]
0,0

K2,3
=

1
2

2K]
1,0K

]
1,1

K]
1,1+K]

1,0

K2,3
,

=

(
K]

1,0

K]
1,0 +K]

1,1

)
K]

1,1

K2, 3
,

= α0,0

 2K2,2K2,3

K2,2+K2,3

K2,3

 ,

= 2α0,0α1,1.

where α1,1 =
K2,2

K2,2+K2,3
and β1,1 =

K2,3

K2,2+K2,3
. Also note that α1,1 + β1,1 = 1.

The solution becomes:

h2(y2) =



2β0,0β1,0(BR −BL)(y2) +BL, y2 ∈
[
0,

1

2

)
2β0,0α1,0(BR −BL)(y2 − 1) + β0,0BR + (1− β0,0)BL, y2 ∈

[
1

2
, 1

]
2α0,0β1,1(BR −BL)(y2 − 1) + (1− α0,0)BR + α0,0BL, y2 ∈

[
1,

3

2

]
2α0,0α1,1(BR −BL)(y2 − 2) +BR, y2 ∈

[
3

2
, 2

]
.

After performing some mathematical analysis on the elliptic equations, we summarize

the results as follows. We denote the solutions to zeroth scale, two-cell, and four-cell as

h0(y0), h1(y1), and h2(y2), respectively.



38

h0(y0) = 2(BR −BL)y0 +BL. (3.24)

h1(y1) =


2β0,0(BR −BL)(y1) +BL, y1 ∈

[
0,

1

2

)
,

2α0,0(BR −BL)(y1 − 1) +BR, y1 ∈
[

1

2
, 1

]
.

(3.25)

h2(y2) =



2β0,0β1,0(BR −BL)(y2) +BL, y2 ∈
[
0,

1

2

)
,

2β0,0α1,0(BR −BL)(y2 − 1) + β0,0BR + (1− β0,0)BL, y2 ∈
[

1

2
, 1

]
,

2α0,0β1,1(BR −BL)(y2 − 1) + (1− α0,0)BR + α0,0BL, y2 ∈
[
1,

3

2

]
,

2α0,0α1,1(BR −BL)(y2 − 2) +BR, y2 ∈
[

3

2
, 2

]
.

(3.26)

3.3.4 Difference in the Homogenization Wavelet Reconstruction Approxima-

tion Between Scales

We derived closed form formulae for the solutions and now compute the differences

hn(yn)− hn−1(yn−1), between hn(yn) and hn−1(yn−1). The results are as follows:

h1(y1)− h0(y0) = (BR −BL)


(β0,0 − α0,0)y1, y1 ∈

[
0,

1

2

)
(β0,0 − α0,0)(1− y1), y1 ∈

[
1

2
, 1

]
.

h2(y2)− h1(y1) = (BR −BL)



β0,0(β1,0 − α1,0)y2, y2 ∈
[
0,

1

2

)
β0,0(β1,0 − α1,0)(1− y2), y2 ∈

[
1

2
, 1

]
α0,0(β1,1 − α1,1)(y2 − 1), y2 ∈

[
1,

3

2

]
α0,0(β1,1 − α1,1)(2− y2), y2 ∈

[
3

2
, 2

]
.



39

h3(y3)− h2(y2) = (BR −BL)



β0,0β1,0(β2,0 − α2,0)y3, y3 ∈
[
0,

1

2

)
β0,0β1,0(β2,0 − α2,0)(1− y3), y3 ∈

[
1

2
, 1

]
β0,0α1,0(β2,1 − α2,1)(y3 − 1), y3 ∈

[
1,

3

2

]
β0,0α1,0(β2,1 − α2,1)(2− y3), y3 ∈

[
3

2
, 2

]
α0,0β1,1(β2,2 − α2,2)(y3 − 2), y3 ∈

[
2,

5

2

]
α0,0β1,1(β2,2 − α2,2)(3− y3), y3 ∈

[
5

2
, 3

]
α0,0α1,1(β2,3 − α2,3)(y3 − 3), y3 ∈

[
3,

7

2

]
α0,0α1,1(β2,3 − α2,3)(4− y3), y3 ∈

[
7

2
, 4

]
.

Simplifying the above differences, we let γi,j = (βi,j − αi,j) and ϕ = (BR −BL), so we

obtain the following:

h1(y1)− h0(y0) = ϕ


γ0,0y1

γ0,0(1− y1)

= ϕ · γ0,0


y1

(1− y1)

h2(y2)− h1(y1) = ϕ



β0,0γ1,0y2

β0,0γ1,0(1− y2)

α0,0γ1,1(y2 − 1)

α0,0γ1,1(2− y2)

= ϕ



β0,0γ1,0


y2

(1− y2)

α0,0γ1,1


(y2 − 1)

(2− y2)



40

h3(y3)− h2(y2) = ϕ



β0,0β1,0γ2,0y3

β0,0β1,0γ2,0(1− y3)

β0,0α1,0γ2,1(y3 − 1)

β0,0α1,0γ2,1(2− y3)

α0,0β1,1γ2,2(y3 − 2)

α0,0β1,1γ2,2(3− y3)

α0,0α1,1γ2,3(y3 − 3)

α0,0α1,1γ2,3(4− y3

= ϕ



β0,0β1,0γ2,0


y3

(1− y3)

β0,0α1,0γ2,1


(y3 − 1)

(2− y3)

α0,0β1,1γ2,2


(y3 − 2)

(3− y3)

α0,0α1,1γ2,3


(y3 − 3)

(4− y3)

Another method for the computation of the harmonic average is to use the algebraic

formula, K] =
2Ki,jki,j+1

Ki,j+ki,j+1
. The algorithm for the procedure is given below.

Steps for Computing Harmonic Average Using Algebraic formula

• First, we assume that the permeability tensor is sampled on a number that is a power

of two in each spatial dimension.

• Randomly generate the real permeability tensor from 0.1 to 1.0 defined at 2m samples

from 0, 1, 2, ..., 2m − 1.

• Compute the harmonic average which generate the next level of the permeability ten-

sors.

• Then, we compute the α′s and β′s.



41

3.3.5 Some Numerical Results for One-Dimension

We implement a Java code for the above algorithm and using the results generated, we

compute the values of the pressure variables and the results are shown in Table 3.1 below. We

also plot the graph of the pressure variable against the length, y. Figures 3.1, 3.2, and 3.3

shows the individual graph of h1(y1), h2(y1), and h3(y1). Figure 3.4 combines the three

graphs drawn together in a single graph.

Table 3.1. Example of Recursive Differencing of Analytic Solutions

y h1(y1) h2(y1) h3(y1)

0.00000 0.00000 0.00000 0.00000

0.12500 0.11827

0.25000 0.18753 0.18753

0.37500 0.28649

0.50000 0.37370 0.37370 0.37370

0.62500 0.42591

0.75000 0..57192 0.57192

0.87500 0.840414

1.00000 1.00000 1.00000 1.00000



42

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.50 1.00

A
p
p
ro

xi
m

at
e
 p

re
ss

u
re

 

Lengthsh1(y1)

Figure 3.3. The graph of h1(y1) against y



43

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.25 0.50 0.75 1.00

A
p
p
ro

xi
m

at
e
 P

re
ss

u
re

Lengths

h2(y1)

Figure 3.4. The graph of h2(y1) against y

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.13 0.25 0.38 0.50 0.63 0.75 0.88 1.00

A
p
p
ro

xi
m

at
e
 P

re
ss

u
re

Lengths

h3(y1)

Figure 3.5. The graph of h3(y1) against y



44

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.13 0.25 0.38 0.50 0.63 0.75 0.88 1.00

A
p
p
ro

xi
m

at
e
 P

re
ss

u
re

Lengths

h1(y1) h2(y1) h3(y1)

Figure 3.6. The graph of h1(y1), h2(y1), and h3(y1) against y



45

CHAPTER 4

HOMOGENIZATION WAVELET RECONSTRUCTION IN TWO

DIMENSIONS WITH DIAGONAL TENSORS

In this chapter, we consider two dimensional elliptic problem of the form:


∇·K∇h(x, y) = 0 (x, y) ∈ Ω

h = 0 (x, y) on ∂Ω

(4.1)

where K is a 2× 2 permeability or conductivity tensor and h is the pressure head variable

in two dimensions. The porous medium is contained in a smooth bounded domain, Ω in R2

that is covered by a regular mesh of size n× n.

We use the results from the one dimensional case to develop solutions to the local prob-

lems in two dimensions. We then develop a fast transform method using homogenization

theory over the brute force method. Furthermore, we reverse the fast transform process to

obtain the inverse transform. The results of the reverse process are then used in the recon-

struction algorithm in the two dimensions.

4.1 The Local Problem in Two Dimensions

We define the local problem in two dimensions by the system of elliptic equations as

follows:

∇·K∇wi = −∇·K~ei (4.2)

for i = 1, 2, where wi is the Jacobian matrix of the functions, and ~ei is the unit vector in

R2 with the following permeability definitions



46

K(y1, y2) =



KI (y1, y2) ∈
[
0,

1

2

]
×
[
0,

1

2

]
KII (y1, y2) ∈

[
1

2
, 1

]
×
[
0,

1

2

]
KIII (y1, y2) ∈

[
0,

1

2

]
×
[

1

2
, 1

]
KIV (y1, y2) ∈

[
1

2
, 1

]
×
[

1

2
, 1

]
,

and let K and K−1 be 2× 2 matrices of the form :

Ks =

Ks
xx Ks

xy

Ks
yx Ks

yy

 ,

(K−1)s =

as11 as12

as21 as22

 ,
where s = I, II, III, IV and note that Kxy = Kyx and a12 = a21.

4.1.1 The Weak Solution of the Elliptic Local Problems

The Jacobian matrix J , contains the solution of the system of elliptic problems. We

need to write out appropriate formula to compute the details of the solutions and do the

necessary integration. We provide approximate solutions to the systems of elliptic partial

differential equations in two cell problem as described below.

Given the local problem in two dimension:

∇·K∇wi = −∇·K~ei.

Rewriting the equation as a homogeneous equation, we have for i = 1

∇·K∇w1 +∇·K~e1 = 0. (4.3)



47

Integrating the above equation, we have

K(∇w1 + ~e1) =



c1 (y1, y2) ∈
[
0,

1

2

]
×
[
0,

1

2

]
c2 (y1, y2) ∈

[
1

2
, 1

]
×
[
0,

1

2

]
c3 (y1, y2) ∈

[
0,

1

2

]
×
[

1

2
, 1

]
c4 (y1, y2) ∈

[
1

2
, 1

]
×
[

1

2
, 1

]

where c1, c2, c3, c4 ∈ R2 and are defined by : c1 =

c11

c12

 , c2 =

c21

c22

 , c3 =

c31

c32

 and

c4 =

c41

c42

.

Then, multiply both sides by K−1,

∇w1 + ~e1 =



K−1
I c1 (y1, y2) ∈

[
0,

1

2

]
×
[
0,

1

2

]
K−1

II c2 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
K−1

IIIc3 (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
K−1

IV c4 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]
.

Solving for ∇w1, we see that

∇w1 =



K−1
I c1 − ~e1 (y1, y2) ∈

[
0,

1

2

]
×
[
0,

1

2

]
K−1

II c2 − ~e1 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
K−1

IIIc3 − ~e1 (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
K−1

IV c4 − ~e1 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]



48

where ~e1 =

1

0

 and ~e2 =

0

1

.

Integrate the above equation with respect to y, we obtain

w1 =



(K−1
I c1 − ~e1) · [y1, y2] (y1, y2) ∈

[
0,

1

2

]
×
[
0,

1

2

]
(K−1

II c2 − ~e1) · [y1 − 1, y2] (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
(K−1

IIIc3 − ~e1) · [y1, y2 − 1] (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
(K−1

IV c4 − ~e1) · [y1 − 1, y2 − 1] (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]

and then we make assumptions on the continuity of K∇w on the 2×2 cell boundaries. This

allows us to reduce the problem with eight unknowns to four equations with four un-

knowns. We set the following four conditions on each of the step functions with c11 =

c21, c12 = c32, c22 = c42, and c31 = c41 :

(K−1
I c1 − ~e1)(y1, y2) = (K−1

II c2 − ~e1)(y1 − 1, y2),

(K−1
I c1 − ~e1)(y1, y2) = (K−1

II c2 − ~e1)(y1 − 1, y2),

(K−1
IIIc3 − ~e1)(y1, y2 − 1) = (K−1

IV c4 − ~e1)(y1 − 1, y2 − 1),

(K−1
IIIc3 − ~e1)(y1, y2 − 1) = (K−1

IV c4 − ~e1)(y1 − 1, y2 − 1).

Solving this system of equations with the following points : (y1, y2) = (1
2 , 0), (y1, y2) =

(1
2 ,

1
2), (y1, y2) = (1, 1

2), we obtain the system of equations:



49

1

2
(aI11 + aII11)c11 +

1

2
aI12c12 +

1

2
aII12c22 = 1, (4.4)

1

2
(aI12 − aII12)c11 +

1

2
aI22c12 −

1

2
aII22c22 = 0, (4.5)

1

2
(aIV12 − aIII12 )c31 −

1

2
aIII22 c12 +

1

2
aIV22 c22 = 0, (4.6)

1

2
(aIII11 + aIV11 )c31 +

1

2
aIII12 c12 +

1

2
aIV12 c22 = 1. (4.7)

These equations in matrix form are as follow:



1
2(aI11 + aII11) 1

2a
I
12

1
2a

II
12 0

1
2(aI12 − aII12) 1

2a
I
22 −1

2a
II
22 0

0 −1
2a

III
22

1
2a

IV
22

1
2(aIV12 − aIII12 )

0 1
2a

III
12

1
2a

IV
12

1
2(aIII11 + aIV11 )


·



c11

c12

c22

c31


=



1

0

0

1


.

Since this is a diagonal tensor, a12 = 0, and solving the system we obtain the following

solutions:



1
2(aI11 + aII11) 0 0 0

0 1
2a

I
22 −1

2a
II
22 0

0 −1
2a

III
22

1
2a

IV
22 0

0 0 0 1
2(aIII11 + aIV11 )


·



c11

c12

c22

c31


=



1

0

0

1


,



c11

c12

c22

c31


=



2
aI11+aII11

0

0

2
aIII11 +aIV11


.



50

We then put the values of c11 − c31 into w1(y1, y2)

w1 =



(K−1
I c1 − ~e1)(y1, y2)

(K−1
II c2 − ~e1)(y1 − 1, y2)

(K−1
IIIc3 − ~e1)(y1, y2 − 1)

(K−1
IV c4 − ~e1)(y1 − 1, y2 − 1),

which implies that

w1 =



(2aI11(aI11 + aII11)−1 − 1)(y1) + (2aI12(aI11 + aII11)−1)(y2)

(2aII11(aI11 + aII11)−1 − 1)(y1 − 1) + (2aII12(aI11 + aII11)−1)(y2)

(2aIII11 (aIII11 + aIV11 )−1 − 1)(y1) + (2aIII12 (aIII11 + aIV11 )−1)(y2 − 1)

(2aIV11 (aIII11 + aIV11 )−1 − 1)(y1 − 1) + (2aIV12 (aIII11 + aIV11 )−1)(y2 − 1).

Since a12 is equal to zero then,

w1 =



(2aI11(aI11 + aII11)−1 − 1)(y1)

(2aII11(aI11 + aII11)−1 − 1)(y1 − 1)

(2aIII11 (aIII11 + aIV11 )−1 − 1)(y1)

(2aIV11 (aIII11 + aIV11 )−1 − 1)(y1 − 1)

=



(
aI11 − aII11

aI11 + aII11

)
(y1)(

aII11 − aI11

aI11 + aII11

)
(y1 − 1)(

aIII11 − aIV11

aIII11 + aIV11

)
(y1)(

aIV11 − aIII11

aIII11 + aIV11

)
(y1 − 1)



51

=



(
aI11 − aII11

aI11 + aII11

)
(y1)(

aI11 − aII11

aI11 + aII11

)
(1− y1)(

aIII11 − aIV11

aIII11 + aIV11

)
(y1)(

aIII11 − aIV11

aIII11 + aIV11

)
(1− y1).

Now for i = 2, the homogeneous equation becomes

∇·K∇w2 +∇·K~e2 = 0. (4.8)

Integrating the above equation, we have

K(∇w2 + ~e2) =



c1 (y1, y2) ∈
[
0,

1

2

]
×
[
0,

1

2

]
c2 (y1, y2) ∈

[
1

2
, 1

]
×
[
0,

1

2

]
c3 (y1, y2) ∈

[
0,

1

2

]
×
[

1

2
, 1

]
c4 (y1, y2) ∈

[
1

2
, 1

]
×
[

1

2
, 1

]
.

Then, multiply both sides by K−1,

∇w2 + ~e2 =



K−1
I c1 (y1, y2) ∈

[
0,

1

2

]
×
[
0,

1

2

]
K−1

II c2 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
K−1

IIIc3 (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
K−1

IV c4 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]



52

∇w2 =



K−1
I c1 − ~e2 (y1, y2) ∈

[
0,

1

2

]
×
[
0,

1

2

]
K−1

II c2 − ~e2 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
K−1

IIIc3 − ~e2 (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
K−1

IV c4 − ~e2 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]
.

Integrate the later, we arrive at

w2 =



(K−1
I c1 − ~e2) · [y1, y2] (y1, y2) ∈

[
0,

1

2

]
×
[
0,

1

2

]
(K−1

II c2 − ~e2) · [y1 − 1, y2] (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
(K−1

IIIc3 − ~e2) · [y1, y2 − 1] (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
(K−1

IV c4 − ~e2) · [y1 − 1, y2 − 1] (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]

and again we make assumptions on continuity at some points. This again allows us to

reduce the problem with eight unknowns to four equations with four unknowns. We set the

following four conditions on each of the step functions with c11 = c21, c12 = c32, c22 = c42,

and c31 = c41 :

(K−1
I c1 − ~e2)(y1, y2) = (K−1

II c2 − ~e2)(y1 − 1, y2),

(K−1
I c1 − ~e2)(y1, y2) = (K−1

II c2 − ~e2)(y1 − 1, y2),

(K−1
IIIc3 − ~e2)(y1, y2 − 1) = (K−1

IV c4 − ~e2)(y1 − 1, y2 − 1),

(K−1
IIIc3 − ~e2)(y1, y2 − 1) = (K−1

IV c4 − ~e2)(y1 − 1, y2 − 1).

Solving this system of equations with the following points : (y1 = 0, y2 = 1
2), (y1 =

1
2 , y2 = 1

2), (y1 = 1
2 , y2 = 1

2), and (y1 = 1, y2 = 1
2), we obtain the system of equations:



53

1

2
(aI22 + aIII22 )c12 +

1

2
aI12c11 +

1

2
aIII12 c31 = 1, (4.9)

1

2
(aI12 − aIII12 )c12 +

1

2
aI11c11 −

1

2
aIII11 c31 = 0, (4.10)

1

2
(aIV12 − aII12)c22 −

1

2
aII11c11 +

1

2
aIV11 c31 = 0, (4.11)

1

2
(aII22 + aIV22 )c22 +

1

2
aII12c11 +

1

2
aIV12 c31 = 1. (4.12)

These equations in matrix form are as follows:



1
2a

I
12

1
2(aI22 + aIII22 ) 0 1

2a
III
12

1
2a

I
11

1
2(aI12 − aIII12 ) 0 −1

2a
III
11

−1
2a

II
11 0 1

2(aIV12 − aII12) 1
2a

IV
11

1
2a

II
12 0 1

2(aII22 + aIV22 ) 1
2a

IV
12


·



c11

c12

c22

c31


=



1

0

0

1


.

Putting a12 = 0, and solving the system, we obtain the following solutions:



0 1
2(aI22 + aIII22 ) 0 0

1
2a

I
11 0 0 −1

2a
III
11

−1
2a

II
11 0 0 1

2a
IV
11

0 0 1
2(aII22 + aIV22 ) 0


·



c11

c12

c22

c31


=



1

0

0

1


,



c11

c12

c22

c31


=



0

2
aI22+aIII22

2
aII22+aIV22

0


.



54

We then put the values of c11 − c31 into w2(y1, y2)

w2 =



(K−1
I c1 − ~e2)(y1, y2)

(K−1
II c2 − ~e2)(y1 − 1, y2)

(K−1
IIIc3 − ~e2)(y1, y2 − 1)

(K−1
IV c4 − ~e2)(y1 − 1, y2 − 1)

=



(2aI12(aI22 + aIII22 )−1)(y1) + (2aI22(aI22 + aIII22 )−1 − 1)(y2)

(2aII12(aII22 + aIV22 )−1)(y1 − 1) + (2aII22(aII22 + aIV22 )−1 − 1)(y2)

(2aIII12 (aI22 + aIII22 )−1)(y1) + (2aIII22 (aI22 + aIII22 )−1 − 1)(y2 − 1)

(2aIV12 (aII22 + aIV22 )−1)(y1 − 1) + (2aIV22 (aII22 + aIV22 )−1 − 1)(y2 − 1).

Since a12 is equal to zero then,

w2 =



(2aI22(aI22 + aIII22 )−1 − 1)(y2)

(2aII22(aII22 + aIV22 )−1 − 1)(y2)

(2aIII22 (aI22 + aIII22 )−1 − 1)(y2−1)

(2aIV22 (aII22 + aIV22 )−1 − 1)(y2 − 1)

=



(
aI22 − aIII22

aI22 + aIII22

)
(y2)(

aII22 − aIV22

aII22 + aIV22

)
(y2)(

aIII22 − aI22

aI22 + aIII22

)
(y2 − 1)(

aIV22 − aII22

aII22 + aIV22

)
(y2 − 1)



55

w2 =



(
aI22 − aIII22

aI22 + aIII22

)
(y2)(

aII22 − aIV22

aII22 + aIV22

)
(y2)(

aI22 − aIII22

aI22 + aIII22

)
(1− y2)(

aII22 − aIV22

aII22 + aIV22

)
(1− y2).

Putting all the calculations above together, we can compute the averaging formula, K]

as follows:

K] =

∫
K(I + JT )dΩ,

where

JT = ∇wi =

∂w1
∂y1

∂w2
∂y1

∂w1
∂y2

∂w2
∂y2

 .
4.2 The Solution for Diagonal Tensors

In solving this problem, we apply the method in section 4.1.1 to the diagonal matrix,

and solve the problem the same way. The results provide the average of the harmonic mean

in both x and y directions.

4.2.1 A Symbolic Example of Computing K] for Constant Diagonal Tensors

Let

KI =

a 0

0 a

 ,KII =

b 0

0 b

 ,KIII =

c 0

0 c

 ,KIV =

d 0

0 d


,

So that,

K−1
I =

 1
a 0

0 1
a

 ,K−1
II =

1
b 0

0 1
b

 ,K−1
III =

1
c 0

0 1
c

 ,K−1
IV =

1
d 0

0 1
d





56

. Then, we compute the Jacobian of w1, ∇w1, we get

∇w1 =



a−b
a+b

0

 (y1, y2) ∈
[
0,

1

2

]
×
[
0,

1

2

]
 b−a

a+b

0

 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
 c−d

c+d

0

 (y1, y2) ∈
[
0,

1

2

]
×
[
1,

1

2

]
d−c

c+d

0

 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]
,

and

∇w2 =



 0

a−c
a+c

 (y1, y2) ∈
[
0,

1

2

]
×
[
0,

1

2

]
 0

b−d
b+d

 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
 0

c−a
a+c

 (y1, y2) ∈
[
0,

1

2

]
×
[
1,

1

2

]
 0

d−b
b+d

 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]
.

We then compute the product of the tensors and the transpose of the Jacobian,

KI · JT =

a(a−bb+a) 0

0 a(a−ca+c)

 , KII · JT =

b( b−ab+a) 0

0 b( b−db+d)

 ,

KIII · JT =

c( c−dc+d) 0

0 c( c−aa+c)

 , KIV · JT =

d(d−cc+d) 0

0 d(d−bb+d)

 .



57

The next step is to compute the K] on the entire domain,

K] =

∫
K(I + JT )dΩ

=

∫
KdΩ +

∫
KJTdΩ,

where ∫
KdΩ =

1

4

a+ b+ c+ d 0

0 a+ b+ c+ d

 ,
and

∫
KJTdΩ = −1

4

 (a−b)2
a+b + (c−d)2

c+d 0

0 (a−c)2
a+c + (b−d)2

b+d

 .
So,

K] =
1

4

a+ b+ c+ d 0

0 a+ b+ c+ d

− 1

4

 (a−b)2
a+b + (c−d)2

c+d 0

0 (a−c)2
a+c + (b−d)2

b+d



K] =
1

4

−
(

(a−b)2
a+b + (c−d)2

c+d

)
+ (a+ b+ c+ d) 0

0 −
(

(a−c)2
a+c + (b−d)2

b+d

)
+ (a+ b+ c+ d)



K] =


(

ab
a+b + cd

c+d

)
0

0
(

ac
a+c + bd

b+d

)
 .

4.2.2 A Numerical Example of Solution for Stratified Diagonal Tensors

In solving this problem, we apply the method in section 4.1.1 to the diagonal matrix,

and solve the problem the same way. We obtain the harmonic average of the tensors in the

x direction and the y direction gives the arithmetic average of the tensors.



58

4.2.3 An Example of Computing K] for Stratified Diagonal Tensors

Let

KI =

1 0

0 1

 , KII =

10 0

0 10

 , KIII =

1 0

0 1

 , KIV =

10 0

0 10

 .
So that,

K−1
I =

1 0

0 1

 , K−1
II =

0.1 0

0 0.1

 , K−1
III =

1 0

0 1

 , K−1
IV =

0.1 0

0 0.1

 .
Then, we compute the Jacobian of w1, ∇w1, we get

∇w1 =



0.82

0

 (y1, y2) ∈
[
0,

1

2

]
×
[
0,

1

2

]
−0.82

0

 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
0.82

0

 (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
−0.82

0

 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]
,



59

and

∇w2 =



0

0

 (y1, y2) ∈
[
0,

1

2

]
×
[
0,

1

2

]
0

0

 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
0

0

 (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
0

0

 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]
.

We then compute the product of the tensors and the transpose of the Jacobian,

KI · JT =

0.82 0

0 0

 , KII · JT =

−8.2 0

0 0

 ,

KIII · JT =

0.82 0

0 0

 , KIV · JT =

−8.2 0

0 0

 .
The next step is to compute the K], on the entire domain,

K] =

∫
K(I + JT )dΩ

=

∫
KdΩ +

∫
KJTdΩ,

where ∫
KdΩ =

5.5 0

0 5.5

 ,
and

∫
KJTdΩ =

−3.69 0

0 0

 .



60

So,

K] =

5.5 0

0 5.5

+

−3.69 0

0 0

 =

1.81 0

0 5.5

 .
4.2.4 Analogy between Homogenization and Wavelets in Two Dimensions

In line with the one dimensional case, we present an analogy between homogenization

and wavelets in two dimensions. The averaging formula in this case can be written as:

K] =

∫∫
Ω
K(I + JT )∂Ω (4.13)

=

∫∫
Ω
KdΩ +

∫∫
Ω
KJT∂Ω (4.14)

The first term is again the arithmetic average of the permeability tensors and the

second term is the perturbation needed to compute an appropriate equivalent permeability

tensors, where JT is the Jacobian matrix of the function wi with respect to y1, y2:

JT =

∂w1
∂y1

∂w2
∂y1

∂w1
∂y2

∂w2
∂y2

 .
From Equation 4.14,

K =

∫∫
K∂Ω

is the arithmetic average, and

∆K =

∫∫
KJT∂Ω

is the perturbation needed to produce the mean of harmonic average.

4.3 A Two Dimensional Fast Transform for Homogenized Coefficient Values

The correct averaged/upscaled value of K(xy) in two dimensions is the average of the

sum of harmonic averages in both x and y directions. That is, if we are given four 2 × 2



61

tensors of the form

KI =

a 0

0 a

 , KII =

b 0

0 b

 , KIII =

c 0

0 c

 , KIV =

d 0

0 d

 ,
then,

K] =


(

ab
a+b + cd

c+d

)
0

0
(

ac
a+c + bd

b+d

)
.


Yet, another method for computing this average is to define a transform method that will

define averages at all intermediate scales. This process is similar to the procedure in one

dimension. We decompose the problem into two sets, one in the x direction and the other

one in the y direction as follows:

K]
12 = K̄1 +

∫∫ Kxx
∂w1
∂y1

0

0 0

 ∂Ω,

and

K]
34 = K̄2 +

∫∫ 0 0

0 Kyy
∂w1
∂y1

 ∂Ω.

Suppose we are given 2×2 tensors as before. We consider using pairs of tensors to compute

local averages. For example, using the pair of 2× 2 tensors from a sequence of samples, KI

and KII , together with KIII and KIV , we can define

K] = K]
12 +K]

34,

K] =


(

ab
a+b + cd

c+d

)
0

0
(

ac
a+c + bd

b+d

)
 ,



62

where

K]
12 =


(

ab
a+b + cd

c+d

)
0

0 0

 ,

K]
34 =

0 0

0
(

ac
a+c + bd

b+d

)
 .

To recast the averaging process in a form that can be used in a fast transform algo-

rithm, the simple computation could be rewritten in the following three steps.

Fast Transform Algorithm in Two Dimensions

Let

KI =

a 0

0 0

 , KII =

b 0

0 0

 , KIII =

c 0

0 0

 , KIV =

d 0

0 0

 ,
be 2× 2 tensors then

• Step 1: Compute the average of KI , and KII

K̄ = K0 =
1

2
(KI +KII) =

a+b
2 0

0 a+b
2

 ,
so,

K−1
0 =

 2
a+b 0

0 2
a+b

 .

• Step 2: Compute ∆K = K1 using results from step 1 and KII −K0 =

 b−a
2 0

0 b−a
2



K1 = −

 b−a
2 0

0 b−a
2

 ·
a+b

2 0

0 a+b
2

 ·
 b−a

2 0

0 b−a
2

 = −

 (b−a)2

2(a+b) 0

0 (b−a)2

2(a+b)

 .



63

• Step 3: Add the results from step 1 and 2 together to get K]
1

K]
1 = K̄ + ∆K = K0 +K1

=

a+b
2 0

0 a+b
2

−
 (b−a)2

2(a+b) 0

0 (b−a)2

2(a+b)


=

 2ab
a+b 0

0 2ab
a+b

 .

Let K]
1 be 2× 2 tensors in the x direction, we have

K]
1 =

 2ab
a+b 0

0 0

 .
Repeat step 1 through 3 for tensors KIII and KIV , we get

K]
2 = K̄ + ∆K = K0 +K1

=

 c+d
2 0

0 c+d
2

−
 (d−c)2

2(c+d) 0

0 (d−c)2
2(c+d)


=

 2cd
c+d 0

0 2cd
c+d

 .
Again, we let K]

2 be 2× 2 tensors in the x direction, we have

K]
2 =

 2cd
c+d 0

0 0

 .



64

Then, we compute the average of the two results in the x direction to obtain:

K]
12 =

1

2
(K]

1 +K]
2)

=

 ab
a+b + cd

c+d 0

0 0

 .
Also using the 2× 2 tensors in the y direction, then we perform the same process as in the

steps above in the following way:

• Step 4: Compute the average of KI , and KIII

K̄ = K0 =
1

2
(KI +KIII) =

a+c
2 0

0 a+c
2


so,

K−1
0 =

 2
a+c 0

0 2
a+c

 .

• Step 5: Compute ∆K = K1 using results from step 1 and KIII −K0 =

 c−a
2 0

0 c−a
2



K1 = −

 c−a
2 0

0 c−a
2

 ·
a+c

2 0

0 a+c
2

 ·
 c−a

2 0

0 c−a
2

 = −

 (c−a)2

2(a+c) 0

0 (c−a)2

2(a+c)

 .



65

• Step 6: Add the results from step 4 and 5 together to get K]
3

K]
3 = K̄ + ∆K = K0 +K1

=

a+c
2 0

0 a+c
2

−
 (c−a)2

2(a+c) 0

0 (c−a)2

2(a+c)


=

 2ac
a+c 0

0 2ac
a+c

 ,

we let K]
3 be 2× 2 tensors in the y direction, so we have

K]
3 =

0 0

0 2ac
a+c

 .
Repeat step 4 through 6 for tensors KII and KIV , we get

K]
4 = K̄ + ∆K = K0 +K1

=

 2ac
a+c 0

0 b+d
2

−
 (d−b)2

2(b+d) 0

0 (d−b)2
2(b+d)


=

 2bd
b+d 0

0 2bd
b+d

 ,
again we let K]

4 be 2× 2 tensors in the y direction, so we have

K]
3 =

0 0

0 2bd
b+d

 ,



66

then, we compute the average of the two results in the y direction to obtain:

K]
34 =

1

2
(K]

3 +K]
4)

=

0 0

0 ac
a+c + bd

b+d

 ,
we then add K]

12 and K]
34 to get K],

K] = K]
12 +K]

34

=

 ab
a+b + cd

c+d 0

0 0

+

0 0

0 ac
a+c + bd

b+d


=

 ab
a+b + cd

c+d 0

0 ac
a+c + bd

b+d

 .
If the given tensors represent a stratified medium, the average K] is the harmonic average

in the x direction and the y direction gives the arithmetic average. For instance, suppose

we are given four 2× 2 tensors of the form

KI =

a 0

0 a

 , KII =

b 0

0 b

 , KIII =

a 0

0 a

 , KIV =

b 0

0 b

 .
We propose the fast transform for this special case by taking the same steps as in the pre-

vious case. The procedure are as follows:

Fast Transform Algorithm

• Step 1: Compute the average of KI ,KII ,KIII , and KIV

K̄ = K0 =
1

4
(KI +KII +KIII +KIV ) =

2a+2b
4 0

0 2a+2b
4





67

K̄ = K0 =

a+b
2 0

0 a+b
2


so,

K−1
0 =

 2
a+b 0

0 2
a+b

 .

• Step 2: Compute ∆K = K1 using results from step 1 and KI −K0 =

 b−a
2 0

0 b−a
2



K1 = −

 b−a
2 0

0 b−a
2

 ·
a+b

2 0

0 a+b
2

 ·
 b−a

2 0

0 b−a
2

 = −

 (b−a)2

2(a+b) 0

0 (b−a)2

2(a+b)


So, we have

K1 = −

 (b−a)2

2(a+b) 0

0 0

 .
• Step 3: Add the results from step 1 and 2 together to get K]

K] = K̄ + ∆K = K0 +K1

=

a+b
2 0

0 a+b
2

−
 (b−a)2

2(a+b) 0

0 0


=

 2ab
a+b 0

0 a+b
2

 .

4.3.1 The Inverse Fast Transform for Homogenized Coefficient Values

We can back calculate the tensors from the results of K] and the details. With this in

mind we can rewrite the fast transform in the following ways.



68

The Inverse Fast Transform Algorithm in Two Dimensions

• Step1: Given that K] is the sum of the average of the tensors and the details needed

to compute K], i.e. K] = K̄ + ∆K, then, we can say that ∆K = K] − K̄

• Step 2: Compute the difference between the average and KII by finding the square root

of the diagonal entries in the product of details and average, then store the results in

K1.

• Step 3: From the above results, since the difference K1 = KII − K̄, then KII =

K1 + K̄. So this gives us the second 2× 2 tensors.

• Step 4: Since the tensors are of the form, KI = KIII and KII = KIV then we can

obtain the first tensor by using the average formula,

K̄ =
1

4
(KI +KII +KIII +KIV )

=
1

4
(KI +KII +KI +KII)

=
1

4
(2KI + 2KII)

=
1

2
(KI +KII).

This implies 2K̄ = KI +KII and from this we get KI = 2K̄ −KII

On the other hand, if the tensors contain constant diagonals, we can also get back the

tensors by rewriting the fast transform in the following ways.

• Step 1: Given that K] is the average of two different K] i.e. K] = K]
12 +K]

34, then,

we can say that 2K] −K]
34 = K]

12.

• Step 2: Next we can now decompose K]
12 as follows, K]

12 = K]
1 +K]

2.

• Step 3: Given K]
1 = K̄+∆K, we can now perform the same process as in the previous

section to recover two of the four tensors.



69

• Step 4: Compute the difference between the average and KII by finding the square root

of the diagonal entries in the product of details and average, then store the results in

K1.

• Step 5: From the above results, since the difference K1 = KII − K̄, then KII =

K1 + K̄. So this gives us the second 2× 2 tensors.

• Step 6: Since the tensors are non-stratified, KI 6= KIII and KII 6= KIV then we can

obtain the first tensor by using the average formula, K̄ = 1
2(KI +KII) so, this implies

2K̄ = KI +KII and from this we get KI = 2K̄ −KII .

• Step 7: Repeat step 4 through step 6 for K]
2, from this we get the remaining two

tensors, KIII and KIV respectively.

4.4 Homogenization Wavelet Reconstruction in Two Dimensions

We develop the two dimensional Homogenization Wavelet Reconstruction in this sec-

tion. We follow the same process as in one dimensional case. We therefore base the recon-

struction formula on the fundamental assumption that needs to be made in homogenization

process. The homogenization process assumes that the primary variables h, from the original

problem can be expanded in a perturbation series of the form:

h = h0 + εh1 + ε2h2 + · · ·+ εmhm + . . . (4.15)

where ε is a small parameter, 0<ε<<1. We assumed that

h1 = wT
0,i · ∇h0

in two dimensions. Using this assumption we can write:



70

h ≈ h0

h ≈ h0 + εh1 = h0 + εwT
0,i · ∇h0

...

h ≈ h0 + εh1 + ε2h2 + · · ·+ εmhm = h0 + εwT
0,i · ∇h0 + ε2wT

1,i · ∇h1 + . . .

+ εmwm−1,i · ∇hm−1

where i = 1, 2.

Once we have determined the value of hi, then we can use this to compute the next term

in the perturbation expansion by computing the partial derivative of hi with respect to x

and y.

So, to reconstruct the pressure variable, h, we consider the following algorithm referred to

as Homogenization-Wavelet Reconstruction algorithm in two dimensions. The algorithm is

as follow:

HWR algorithm in two dimensions

• Compute the solution of the DE for the coarsest level homogenized problem on the

entire domain, that is compute the solution of

∇ ·K]∇h = 0

v = −K]∇h

where K] is the 2 × 2 matrix with harmonic average of the permeability in the x

direction and the arithmetic average in the y direction.

• Then use 4.15 and the ansatz

h1 = w0,1
∂h0

dy0,1
+ w0,2

∂h0

dy0,2
.



71

In two dimensional case, we use the extension of this ansatz of the form

hl+1 = wT
l (yl+1) · ∇hl.

So, we have

h = h0 + ε
(
w0,1

∂h0
dy0,1

+ w0,2
∂h0
dy0,2

)
+ ε2

(
w1,1

∂h1
dy1,1

+ w1,2
∂h1
dy1,2

)
+ . . .

+ εm
(
wm−1,1

∂hm−1

∂ym−1,1
+ wm−1,2

∂hm−1

∂ym−1,2

)
where ε = 1

2 .

Figure 4.1. The graph of h0(x, y) on (0, 1
2)× (0, 1

2)



72

Figure 4.2. The graph of h1(x, y) on (0, 1
2)× (0, 1

2)

4.4.1 Some Numerical Results for HWR in Two Dimensions

We generate three dimensional figures that show the reconstruction of the pressure

variable at various scales. We compute

h0(x, y) = axy + bx+ cy + d

where a = 4(B11 +B00 −B10 −B01); b = 2(B10 −B00); c = 2(B01 −B00); and d = B00.

And,

h1 = h0 + εh1

for

h1 = w0,1
∂h0

dx
+ w0,2

∂h0

dy
.



73

Figure 4.3. The graph of h1(x, y) on (1
2 , 1)× (0, 1

2)

The values of wT
0,i are obtained from the solution of the local problems. Figure 4.1 shows

the reconstruction of the pressure variable, h0 on interval (0, 1
2) × (0, 1

2). Also, figures 4.2,

4.3,4.4 and 4.5 show the reconstruction of the pressure variable, h1 on various intervals

h1(x, y) on (0, 1
2)× (0, 1

2), h1(x, y) on (0, 1
2)× (1

2 , 1), h1(x, y) on (0, 1)× (0, 1
2), and h1(x, y)

on (1
2 , 1) × (1

2 , 1) respectively. In figure 4.6, we have h1 that combine all the figures on

various intervals together on interval (0, 1)× (0, 1).



74

Figure 4.4. The graph of h1(x, y) on (0, 1
2)× (1

2 , 1)



75

Figure 4.5. The graph of h1(x, y) on (1
2 , 1)× (1

2 , 1)



76

Figure 4.6. The graph of h1(x, y) on (0, 1)× (0, 1)



77

Figure 4.7. The graph of h2(x, y) on (0, 1)× (0, 1)



78

CHAPTER 5

HOMOGENIZATION WAVELET RECONSTRUCTION IN TWO

DIMENSIONS WITH FULL TENSORS

In this chapter, we return to the general problem of elliptic DE with full tensor. We

outline symbolic solution of the local problem in two dimensions using full tensor and

compute numerical example to illustrate the solution. Finally, we give numerical results

from the implementation of our method of solutions.

5.1 The Local Problem in Two Dimensions with Full Tensors

We define the local problem in two dimensions by the system of elliptic equations as

follows:

∇·K∇wi = −∇·K~ei (5.1)

for i = 1, 2, where wi is the Jacobian matrix of the functions, and ~ei is the unit vector in

R2 with the following permeability definitions

K(y1,y2) =



KI (y1, y2) ∈
[
0,

1

2

]
×
[
0,

1

2

]
KII (y1, y2) ∈

[
1

2
, 1

]
×
[
0,

1

2

]
KIII (y1, y2) ∈

[
0,

1

2

]
×
[

1

2
, 1

]
KIV (y1, y2) ∈

[
1

2
, 1

]
×
[

1

2
, 1

]
,

and let K and K−1 be 2× 2 matrices of the form with entries Kxy = Kyx and a12 = a21:

K =

Kxx Kxy

Kxy Kyy

 ,



79

K−1 =

a11 a12

a12 a22

 .
5.1.1 The Solution of the Elliptic Problems with Full Tensors

The Jacobian matrix, J , contains the solution of the system of elliptic problems. We

need to write out appropriate formula to compute the details of the solutions and do the

necessary integration. We provide approximate solutions to the systems of elliptic partial

differential equations in two cell problem as described below.

Given the local problem in two dimension:

∇·K∇wi = −∇·K~~ei.

Rewriting the equation as a homogeneous equation, we have: for i = 1

∇·K∇w1 +∇·K~e1 = 0. (5.2)

Integrating the above equation, we have

K(∇w1 + ~e1) =



c1 (y1, y2) ∈
[
0,

1

2

]
×
[
0,

1

2

]
c2 (y1, y2) ∈

[
1

2
, 1

]
×
[
0,

1

2

]
c3 (y1, y2) ∈

[
0,

1

2

]
×
[

1

2
, 1

]
c4 (y1, y2) ∈

[
1

2
, 1

]
×
[

1

2
, 1

]
.



80

Then, multiply both sides by K−1,

∇w1 + ~e1 =



K−1
I c1 (y1, y2) ∈

[
0,

1

2

]
×
[
0,

1

2

]
K−1

II c2 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
K−1

IIIc3 (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
K−1

IV c4 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]

∇w1 =



K−1
I c1 − ~e1 (y1, y2) ∈

[
0,

1

2

]
×
[
0,

1

2

]
K−1

II c2 − ~e1 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
K−1

IIIc3 − ~e1 (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
K−1

IV c4 − ~e1 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]
.

(5.3)

Integrating the above equation with respect to y, we obtain

w1 =



(K−1
I c1 − ~e1) · [y1, y2] (y1, y2) ∈

[
0,

1

2

]
×
[
0,

1

2

]
(K−1

II c2 − ~e1) · [y1 − 1, y2] (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
(K−1

IIIc3 − ~e1) · [y1, y2 − 1] (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
(K−1

IV c4 − ~e1) · [y1 − 1, y2 − 1] (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]

and then make assumptions on the continuity at some points. This allows us to reduce the

problem with eight unknowns to four equations with four unknowns. We set the following

four conditions on each of the step functions with c11 = c21, c12 = c32, c22 = c42, and

c31 = c41.



81

To solve this system of equations, we let y1 = 1
2 , and y2 ∈ (0, y2],

w1 =



(aI11c11 + aI12c12 − 1)y1 + (aI12c11 + aI22c12)y2

(aII11c21 + aII12c22 − 1)(y1 − 1) + (aII12c21 + aII22c22)y2

(aII11c31 + aIII12 c32 − 1)y1 + (aIII12 c31 + aIII22 c32)(y2 − 1)

(aIV11 c41 + aIV12 c42 − 1)(y1 − 1) + (aIV12 c41 + aIV22 c42)(y2 − 1).

From this, we obtain the following system of equations:

(aI11c11 + aI12c12 − 1)(
1

2
) = (aII11c21 + aII12c22 − 1)(−1

2
)

(aI12c11 + aI22c12) = (aII12c21 + aII22c22)

(aII11c31 + aIII12 c32 − 1)(
1

2
) = (aIV11 c41 + aIV12 c42 − 1)(−1

2
)

(aIII12 c31 + aIII22 c32)(y2 − 1) = (aIV12 c41 + aIV22 c42).

Then, we solve for c11 and c31 in terms of c12 and c22

c11 =
2

aI11 + aII11

− aI12c12

aI11 + aII11

− aII12c22

aI11 + aII11

(5.4)

c11 =
aII22c22

aI12 − aII12

− aI22c12

aI12 − aII12

(5.5)

c31 =
2

aIII11 + aIV11

− aIII12 c12

aIII11 + aIV11

− aIV12 c22

aIII11 + aIV11

(5.6)

c31 =
aIV22 c22

aIII12 − aIV12

− aIII22 c12

aIII12 − aIV12

. (5.7)

Simplifying these equations, we get

(
aII22

aI12 − aII12

+
aII12

aI11 + aII11

)
c22 +

(
aI12

aI11 + aII11

− aI22

aI12 − aII12

)
c12 =

2

aI11 + aII11(
aIV22

aIII12 − aIV12

+
aIV12

aIII11 + aIV11

)
c22 +

(
aIII12

aIII11 + aIV11

− aIII22

aIII12 − aIV12

)
c12 =

2

aIII11 + aIV11

.

These equations in matrix form are as follow:



82


(

aI12
aI11+aII11

− aI22
aI12−aII12

) (
aII12

aI11+aII11
+

aII22
aI12−aII12

)
(

aIII12

aIII11 +aIV11
− aIII22

aIII12 −aIV12

) (
aIV12

aIII11 +aIV11
+

aIV22
aIII12 −aIV12

)
 ·
c12

c22

 =

 2
aI11+aII11

2
aIII11 +aIV11

 .
We then solve the 2× 2 system of equations to get c12 and c22. These results are used

to obtain the values for c11 and c31 using Equations 5.5 and 5.7. So we substitute these

values into Equation 5.3, to get the value of
`
w1.

For i = 2

∇·K∇w2 +∇·K~e2 = 0. (5.8)

Integrating the above equation, we have

K(∇w2 + ~e2) =



c1 (y1, y2) ∈
[
0,

1

2

]
×
[
0,

1

2

]
c2 (y1, y2) ∈

[
1

2
, 1

]
×
[
0,

1

2

]
c3 (y1, y2) ∈

[
0,

1

2

]
×
[

1

2
, 1

]
c4 (y1, y2) ∈

[
1

2
, 1

]
×
[

1

2
, 1

]
.

Then, we multiply both sides by K−1,

∇w2 + ~e2 =



K−1
I c1 (y1, y2) ∈

[
0,

1

2

]
×
[
0,

1

2

]
K−1

II c2 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
K−1

IIIc3 (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
K−1

IV c4 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]
,



83

∇w2 =



K−1
I c1 − ~e2 (y1, y2) ∈

[
0,

1

2

]
×
[
0,

1

2

]
K−1

II c2 − ~e2 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
K−1

IIIc3 − ~e2 (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
K−1

IV c4 − ~e2 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]
.

(5.9)

Integrating the above equation with respect to y, we obtain

w2 =



(K−1
I c1 − ~e2)(y1, y2) (y1, y2) ∈

[
0,

1

2

]
×
[
0,

1

2

]
(K−1

II c2 − ~e2)(y1 − 1, y2) (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
(K−1

IIIc3 − ~e2)(y1, y2 − 1) (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
(K−1

IV c4 − ~e2)(y1 − 1, y2 − 1) (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]

and then make assumptions on the continuity at some points as we did in computing

w1. This allows us to reduce the problem with eight unknowns to four equations with

four unknowns. We set the following four conditions on each of the step functions with

c11 = c21, c12 = c32, c22 = c42, and c31 = c41.

To solve this system of equations, we let y2 = 1
2 , and y1 ∈ (0, y1],

w2 =



(aI11c11 + aI12c12)y1 + (aI12c11 + aI22c12 − 1)y2

(aII11c21 + aII12c22)(y1 − 1) + (aII12c21 + aII22c22 − 1)y2

(aII11c31 + aIII12 c32)y1 + (aIII12 c31 + aIII22 c32 − 1)(y2 − 1)

(aIV11 c41 + aIV12 c42)(y1 − 1) + (aIV12 c41 + aIV22 c42 − 1)(y2 − 1).

From this, we obtain the following system of equations:



84

(aI12c11 + aI22c12 − 1)

(
1

2

)
= (aIII12 c31 + aIII22 c12 − 1)

(
−1

2

)
(aI11c11 + aI12c12) = (aIII11 c31 + aIII12 c12)

(aII12c11 + aII22c212 − 1)

(
1

2

)
= (aIV12 c31 + aIV22 c22 − 1)

(
−1

2

)
(aII11c11 + aII12c22) = (aIV11 c31 + aIV12 c22).

Then, we solve for c12 and c22 in terms of c11 and c31

c12 =
2

aI22 + aIII22

− aI12c11

aI22 + aIII22

− aIII12 c31

aI22 + aIII22

; (5.10)

c12 =
aIII11 c31

aI12 − aIII12

− aI11c11

aI12 − aIII12

; (5.11)

c22 =
2

aII22 + aIV22

− aIV12 c31

aII22 + aIV22

− aII12c11

aII22 + aIV22

; (5.12)

c22 =
aIV11 c31

aII12 − aIV12

− aII11c11

aII12 − aIV12

. (5.13)

Simplifying these equations, we obtain

(
aIII11

aI12 − aIII12

+
aIII12

aI22 + aIII22

)
c31 +

(
aI12

aI22 + aIII22

− aI11

aI12 − aIV12

)
c11 =

2

aI22 + aIII22

,(
aIV11

aII12 − aIV12

+
aIV12

aII22 + aIV22

)
c31 +

(
aII12

aII22 + aIV22

− aII11

aII12 − aIV12

)
c11 =

2

aII22 + aIV22

.

These equations in matrix form are as follow:


(

aI12
aI22+aIII22

− aI11
aI12−aIV12

) (
aIII12

aI22+aIII22
+

aIII11

aI12−aIII12

)
(

aII12
aII22+aIV22

− aII11
aII12−aIV12

) (
aIV12

aII22+aIV22
+

aIV11
aII12−aIV12

)
 ·
c11

c31

 =

 2
aI22+aIII22

2
aII22+aIV22

 .
We then solve the 2 × 2 system of equations to obtain c11 and c31. These results are



85

used to obtain the values of c12 and c22 using Equations 5.11 and 5.13. So we substitute

these values into Equation 5.9, to get the
`
w2.

With this, we can compute the averaging formula, K]

K] =

∫
K(I + JT )dΩ,

where

JT = ∇wi =

∂w1
∂y1

∂w2
∂y1

∂w1
∂y2

∂w2
∂y2

 .
5.1.2 An Example of Computing K] for Full Tensors

Given that

KI =

1 1

1 10

 , KII =

1 2

2 1

 , KIII =

2 1

1 2

 , KIV =

10 1

1 1

 .
We compute their inverses and get:

K−1
I =

 10
9 −1

9

−1
9

1
9

 , K−1
II =

−1
3

2
3

2
3 −1

3

 , K−1
III =

 2
3 −1

3

−1
3

2
3

 , K−1
IV =

 1
9 −1

9

−1
9

10
9

 .
Using the result of the inverse matrix, we compute the values of the constants c11 to c42 by

solving the system of equations:

 0 9
7

18
7 −36

7

 ·
c12

c22

 =

18
7

18
7

 .
From this, we obtain

c12 = c32 = 2,



86

c22 = c42 = 5,

c11 = c21 = 2.43,

c31 = c41 = −19.

Then, we compute the Jacobian of w1, ∇w1, using the following equation

∇w1 =



K−1
I c1 − ~e1 (y1, y2) ∈

[
0,

1

2

]
×
[
0,

1

2

]
K−1

II c2 − ~e1 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
K−1

IIIc3 − ~e1 (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
K−1

IV c4 − ~e1 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]
(5.14)

we get

∇w1 =



 1.48

−0.05

 (y1, y2) ∈
[
0,

1

2

]
×
[
0,

1

2

]

 1.52

−0.05

 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]

−14.33

7.67

 (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]

−3.67

7.67

 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]

and to compute ∇w2 we compute the values of the constants as in above and we change

the unit vector ~e1 to ~e2



87

18
7 −36

7

0 9
7

 ·
c31

c11

 =

18
7

18
7

 .
Solving this system of equations, we get

c12 = c32 = 5,

c22 = c42 =
11

7
,

c11 = c21 = 2,

c31 = c41 = 5

.

We then put these results back into the equation:

∇w2 =



(K−1
I c1 − ~e2) (y1, y2) ∈

[
0,

1

2

]
×
[
0,

1

2

]
(K−1

II c2 − ~e2) (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]
(K−1

IIIc3 − ~e2) (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]
(K−1

IV c4 − ~e2) (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]
,



88

so we have:

∇w2 =



 1.67

−0.67

 (y1, y2) ∈
[
0,

1

2

]
×
[
0,

1

2

]

 0.38

−0.19

 (y1, y2) ∈
[

1

2
, 1

]
×
[
0,

1

2

]

1.67

0.67

 (y1, y2) ∈
[
0,

1

2

]
×
[

1

2
, 1

]

0.38

0.19

 (y1, y2) ∈
[

1

2
, 1

]
×
[

1

2
, 1

]
.

We then compute the product of the tensors and the transpose of the Jacobian,

KI · JT =

1.43 1

0.98 −5.03

 , KII · JT =

1.27 0

2.99 0.57

 ,

KIII · JT =

−20.99 4.01

1.01 3.01

 , KIV · JT =

−29.03 3.99

4 0.57

 .
The next steep is to compute the K], on the entire domain,

K] =

∫
K(I + JT )dΩ

=

∫
KdΩ +

∫
KJTdΩ,

where ∫
KdΩ =

 3.5 1.25

1.25 3.5

 ,



89

and ∫
KJTdΩ =

−11.83 2.25

2.25 −0.22

 .
Therefore,

K] =

 3.5 1.25

1.25 3.5

+

−11.83 2.25

2.25 −0.22

 =

−8.33 3.5

3.5 3.28

 .
5.1.3 The Local Problem in Two Dimensions with Diagonal Tensors

In order to diagonalize a real symmetric tensor, we begin by building an orthogonal

matrix from an orthonormal basis of eigenvectors, as in the procedure below. The symmetric

matrix:

K =

Kxx Kxy

Kxy Kyy


has eigenvalues

λ1 =
Kxx +Kyy

2
+

√
(Kxx −Kyy)2 + 4K2

xy

2

and

λ2 =
Kxx +Kyy

2
−

√
(Kxx −Kyy)2 + 4K2

xy

2

with eigenvectors

u =

 −2Kxy

(Kxx−Kyy)−
√

(Kxx−Kyy)2+4K2
xy

1


and

v =

 −2Kxy

(Kxx−Kyy)+
√

(Kxx−Kyy)2+4K2
xy

1


respectively. After normalizing these eigenvectors, we build the orthogonal matrix, P such

that P TP = I. So D = P TKP , where D is the diagonalized form of K and P the associated



90

change-of-basis matrix from the standard basis to the basis of eigenvectors:

D =

Kxx+Kyy

2 +

√
(Kxx−Kyy)2+4K2

xy

2 0

0
Kxx+Kyy

2 −
√

(Kxx−Kyy)2+4K2
xy

2

 .
So

D−1 =

 2

(Kxx+Kyy)+
√

(Kxx−Kyy)2+4K2
xy

0

0 2

(Kxx+Kyy)−
√

(Kxx−Kyy)2+4K2
xy

 .
5.2 Numerical Computations of the Permeability in Two Dimensions

This section is devoted to numerical examples illustrating the above methods. We

simulate a fluid flow in a porous media, such as oil reservoir, and solve the problem using

the brute force method. This method approximates the unique solution of partial differential

equation. The numerical results provide the same results as the solutions computed with

hand. The homogenized results in the x direction is the harmonic average and the results

in the y direction is the arithmetic average.

5.2.1 Numerical Example 1

We consider the local problem in two dimensions:

∇·K∇wi = −∇·K~ei

with the permeability tensors of the form (stratified matrix):

KI =

 2 0

0 2

 , KII =

 1 0

0 1

 , KIII =

 2 0

0 2

 , KIV =

 1 0

0 1

 .
We solve the problem numerically using the method we explained in the previous

section,the results obtain from the Java code are as follows:

run:



91

K
III

K
IV

K
I

K
II

Figure 5.1. The Permeability Tensors (K) values

K-Pound Matrix - Diagonal Tensor

1.3333333333333333 0.0

0.0 1.5

BUILD SUCCESSFUL (total time: 1 second)

The result produced is the same with the analytical solution.

5.2.2 Numerical Example 2

We also implement a Java code for a simple example, we as well have the same result

as the solution computed with hand. The result is as follow: Given



92

KI =

1 0

0 1

 , KII =

10 0

0 10

 , KIII =

1 0

0 1

 , KIV =

10 0

0 10

 .
run:

K-Pound Matrix - Diagonal Tensor

1.8181818181818183 0.0

0.0 5.5

BUILD SUCCESSFUL (total time: 1 second)

5.2.3 Numerical Example 3

Using a full tensor with

KI =

1 1

1 10

 , KII =

1 2

2 1

 , KIII =

2 1

1 2

 , KIV =

10 1

1 1

 .
We then apply our method of computation, the results still behave well and we have

the same results as the one we computed by hand.

run:

K-Pound Matrix-Full Tensor

-8.28571428571429 3.5

3.5000000000000004 3.285714285714287

BUILD SUCCESSFUL (total time: 1 second)



93

5.2.4 Numerical Example 4

In the fast transform algorithm presented in 4, we implement a Java code for the

procedure solving the examples as those presented in 5.2.1 and 5.2.2. The code produce the

same results as in the previous examples. The results are as follows:

run:

Input Matrix - Diagonal Tensor

2.0 0.0 1.0 0.0

0.0 2.0 0.0 1.0

2.0 0.0 1.0 0.0

0.0 2.0 0.0 1.0

Result Matrix - Fast Transform Algorithm

1.3333333333333333 0.0

0.0 1.5

BUILD SUCCESSFUL (total time: 0 seconds)

run:

Input Matrix - Diagonal Tensor

1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0

1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0



94

Result Matrix - Fast Transform Algorithm

1.818181818181818 0.0

0.0 5.5

BUILD SUCCESSFUL (total time: 1 second)

5.2.5 Numerical Example 5

This example numerically generates the inverse transform of the fast transform algo-

rithm in two dimensions. We start with K] and regenerate the permeability tensors. We

use the same examples to be consistent with our computation, the results generated in this

procedure are given below.

run:

Result - k0

1.0 0.0

0.0 1.0

Result - k1

2.0 0.0

0.0 2.0

Result - k2

1.0 0.0

0.0 1.0

Result - k3

2.0 0.0

0.0 2.0



95

Inverse Transform Result Matrix - Diagonal Tensor

1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0

1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0

BUILD SUCCESSFUL (total time: 1 second)

run:

Result - k0

1.0 0.0

0.0 1.0

Result - k1

10.0 0.0

0.0 10.0

Result - k0

1.0 0.0

0.0 1.0

Result - k1

10.0 0.0

0.0 10.0



96

Inverse Transform Result Matrix - Diagonal Tensor

1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0

1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0

BUILD SUCCESSFUL (total time: 0 seconds)

5.3 Weak Solution of the Full Tensor Local Elliptic Problem

In this section, we provide another method for computing the solution of the local

elliptic problem with full tensors. The solution obtain in this process is then used in the

reconstruction algorithm to compute the pressure variable. Required to compute the solution

of the following elliptic problem

∇·K]∇h = 0

with some linear boundary conditions.

Using the idea of [36], we will decompose the tensor as follows:

K] =

K]
xx 0

0 K]
yy

+

 0 K]
xy

K]
xy 0

 = K]
d +K]

n.

Also, we need to write the PDE as a system of two first order PDEs using the Darcy

velocity. The reduced order system of equations is as follows:

v = −K]∇h,

−∇v = 0.



97

Using the decomposed tensor, the Darcy velocity can be written as:

v = −(K]
d +K]

n)∇h

= −K]
d∇h−K]

n∇h

= vd + vn

where vd = −K]
d∇h and vn = −K]

n∇h.

Now, let us look at K]
n, we can write

−

 0 K]
xy

K]
xy 0

 ·
∂h

∂x

∂h
∂y

 = −

K]
xy

∂h
∂y

K]
xy

∂h
∂x

 = −

K]
xy

K]
yy
K]

yy
∂h
∂y

K]
xy

K]
xx
K]

xx
∂h
∂x

 .
From this equation, we let

vx = K]
xx

∂h

∂x
,

and

vy = K]
yy

∂h

∂y
.

So, we can rewrite the above equation as follows:

−

K]
xy

K]
yy
vy

K]
xy

K]
xx
vx

 = −

 0
K]

xy

K]
yy

K]
xy

K]
xx

0

 ·
vx
vy


and write  0

K]
xy

K]
yy

K]
xy

K]
xx

0

 = Tn.

So, the system can be rewritten as

v = vd + vn = vd + Tnvd = (I + Tn)vd



98

with

vd = −K]
d∇h = −

K]
xx 0

0 K]
yy

∇h.
So, with this definition, we can rewrite the system as

−∇· (I + Tn)vd = 0,

vd = −K]
d∇h,

and have an equivalent system that includes the off diagonal entries in the original tensor. So,

we can solve for vd more easily and then we use the divergence property to complete the

computation as follows:

vd = −K]
d∇h,

(K]
d)−1vd = ∇h,

 1

K]
xx

0

0 1

K]
yy

 ·
vx
vy

 =

 vx
K]

xx

vy

K]
yy

 =

∂h
∂x

∂h
∂y

 .
This allows us to get a relationship between K, vx, and vy. So,

∂h

∂x
= − vx

Kxx
,

h(x, y) = − vx
Kxx

x+ f(y),

∂h

∂y
= 0 + f ′(y) = − vy

Kyy
,

f(y) = − vy
Kyy

y + C1,

and we can write

h(x, y) = − vx
Kxx

x− vy
Kyy

y + C1.

This approach produces a representation with only three constants. So we try another

approach. If we consider the diagonal velocity, we can consider a projection idea, so if we



99

assume the solution:

h(x, y) = axy + bx+ cy + d

. Note that,

∇ ·K]
d · ∇h = ∇ ·K]

d · ∇(axy + bx+ cy + d)

= ∇ ·

K]
xx 0

0 K]
yy

 ·
ay + b

ax+ c

 = ∇ ·

K]
xx(ay + b)

K]
yy(ax+ c)


= [

∂

∂x
,
∂

∂y
] ·

K]
xx(ay + b)

K]
yy(ax+ c)

 = 0.

The end result is that

h(x, y) = axy + bx+ cy + d

is in the null space of our operator. The next step for this is to fit the corner values to the

polynomial. That is,

h(x, y) = axy + bx+ cy + d

h(0, 0) = a(0)(0) + b(0) + c(0) + d = d

⇒ h(0, 0) = d

h(1, 0) = a(1)(0) + b(1) + c(0) + d = b+ d

⇒ b = h(1, 0)− d = h(1, 0)− h(0, 0)

h(0, 1) = a(0)(1) + b(0) + c(1) + d

⇒ c = h(0, 1)− d = h(0, 1)− h(0, 0)

h(1, 1) = a(1)(1) + b(1) + c(1) + d

⇒ h(1, 1)− h(0, 0) = a+ (h(1, 0)− h(0, 0)) + (h(0, 1)− h(0, 0))

⇒ a = (h(1, 1)− h(0, 0))− (h(1, 0)− h(0, 0))− (h(0, 1)− h(0, 0))



100

So, we can write the formula out for this set of polynomial:

d = h(0, 0),

b = h(1, 0)− d,

c = h(0, 1)− d,

a = h(1, 1)− d− b− c.

Then, we can evaluate this at any given (x, y)

h(x, y) = axy + bx+ cy + d.

Now that we have a solution, we need to incorporate this into the diagonal matrix prob-

lem. Again, the system is

vd = −K]
d∇h, (5.15)

−∇· (I + Tn)vd = 0. (5.16)

So,

∇h = ∇(axy + bx+ cy + d)

=

ay + b

ax+ c


vd = −K]

d ·

ay + b

ax+ c


−

K]
xx 0

0 K]
yy

 ·
ay + b

ax+ c

 = −∇ ·

K]
xx(ay + b)

K]
yy(ax+ c)





101

and then, equation 5.3 gives:

−∇ ·

vx + (
K]

xy

K]
yy

)vy

vy + (
K]

xy

K]
xx

)vx

 = 0.

Integrating the above equation gives:

vx + (
K]

xy

K]
yy

)vy

vy + (
K]

xy

K]
xx

)vx

 =

v1

v2

 = ~v.

This is the original Darcy velocity.



102

CHAPTER 6

SUMMARY OF WORK, CONCLUSIONS AND FUTURE

RESEARCH

6.1 Summary and Conclusions

In this work, we propose a fast transform algorithm in one dimension for computing

harmonic average of functions representing the fine scale parameter values that uses a dyadic

mesh in the spatial domain. The fast transform algorithm introduced is built on the idea of

wavelet multi-resolution that preserves the harmonic average of the permeability. We also

provide a process that computes the solution of the pressure variable using wavelet multi-

resolution analysis. Furthermore, we implemented Java codes that compute the pressure

variables and came up with a close form generalization of the formula in our solution.

We also extend the proposed methodology to the two dimensional case. We presented

a methodology for the construction of solutions of elliptic differential equations in two

dimensions with piecewise coefficients using diagonal tensors. This methods are effective

in computing the approximate solutions for the elliptic problems in two dimensions. We

developed fast transform algorithm in two dimensions that computes the correct average

using homogenization theory. Furthermore, we develop Java codes that compute the fast

transform and the inverse transform algorithm. The results obtained are consistent with the

result of the local problems solutions. Lastly, we provide the reconstruction algorithm in two

dimensions using the results of the local problems, this methods allow the reconstruction

of the solution to any desired scale.



103

6.2 Future Research Direction

I plan to investigate the convergence of our proposed homogenization wavelet recon-

struction method using ideas employed in [37]. The approach involves showing the equiv-

alency of their proposed block-centered finite differences to a mixed finite element method

whose convergence is known to be of second-order accuracy. The authors then conclude that

their method also converges to the same accuracy as the mixed finite element method since

both methods behave the same way.

I plan to continue my research in multi-resolution analysis with applications in higher

dimensions of the current elliptical problems. Current results of the extension of the elliptical

problems from the one-dimensional to the two-dimensional case will form the basis of the

generalization of the solutions to the multi-dimensional case. The case of a regular full

tensor will also be looked into in the near future. I also plan to continue the analysis of

solution differences to two and three dimensional cases as well as look into the is efficiency

of my codes. Work is underway for the application to real life problems like Cahn Hilliard

Equation.

I also plan at investigating construction of wavelet bases conditioned on differential

equations for modeling nonlinear conservation laws. In this problem, a combination of the

lifting method of Sweldons and a polynomial framework for defining finite difference ap-

proximations for nonlinear hyperbolic conservation laws may be used to define shape func-

tions, and thus wavelet basis functions conditioned on the discrete formula. The polynomial

framework can then be used as an interpolation operator in the lifting method. In applying

lifting methods, the polynomial framework defines shape functions that are conditioned on

a discrete version of the hyperbolic differential operator. Examples of bases conditioned on

upwind, Lax-Wendroff, TVD, and other discrete operators can be computed. One main ap-

plication of interest involves the definition of Entropy Satisfying Multi Resolution Analyses.



104

REFERENCES

[1] T. Arbogast, G. Pencheva, M. Wheeler, and I. Yotov, “A multiscale mortar mixed

finite element method,” Multiscale Model. Simul.,, vol. 6, pp. 319–346, 2007.

[2] T. Arbogast, Z. Tao, and H. Xiao, “Multiscale mortar mixed methods for heterogeneous

elliptic problems,” Contemporary Mathematics, vol. 586, pp. 9–21, 2013.

[3] D. N. Arnold, “An interior penalty finite element method with discontinuous elements,”

SIAM Journal on Numerical Analysis, vol. 19, pp. 742 – 760, 1982.

[4] I. Babuska and R. Lipton, “Optimal local approximation spaces for generalized finite

element methods with application to multiscale problems,” Multiscale Model. Simul.,

vol. 9, pp. 373–406, 2011.

[5] L. Berlyand and H. Owhadi, “Flux norm approach to finite dimensional homogenization

approximations with non-separated scales and high contrast,” Arch. Ration. Mech.

Anal., vol. 198, pp. 677–721, 2010.

[6] Y. Efendiev, J. Galvis, and T. Y. Hou, “Generalized multiscale finite element methods

(gmsfem),” Journal of Computational Physics, vol. 251, pp. 116 – 135, 2013.

[7] D. Elfverson, E. H. Geogoulis, A. Malqvist, and D. Peterseim, “Convergence of a dis-

continuous galerkin multiscale method,” SIAM Journal on Numerical Analysis, vol. 51,

pp. 3351–3372, 2013.

[8] T. Y. Hou and X.-H. Wu, “A multiscale finite element method for elliptic problems in

composite materials and porous media,” Journal of Computational Physics, vol. 134,

pp. 169 – 189, 1997.



105

[9] O. A. Karakashian and F. Pascal, “A posteriori error estimates for a discontinuous

galerkin approximation of second-order elliptic problems,” SIAM Journal on Numerical

Analysis, vol. 41, pp. 2374 – 2399, 2003.

[10] M. G. Larson and A. Malqvist, “Adaptive variational multiscale methods based on

a posteriori error estimatimation,” Computational Methods in Applied Sciences and

Engineering, vol. 196, pp. 2313 – 2324, 2007.

[11] I. Babuska, G. Caloz, and J. E. Osborn, “Special finite element methods for a class of

second order elliptic problems with rough coefficients,” SIAM Journal on Numerical

Analysis, vol. 31, pp. 945 – 981, 1994.

[12] I. Babuska and J. E. Osborn, “Generalized finite element methods: Their performance

and their relation to mixed methods,” SIAM Journal on Numerical Analysis, vol. 20,

pp. 510– 536, 1983.

[13] M. Dorobantu and B. Engquist, “Wavelet-based numerical homogenization,” SIAM J.

NUMER. ANAL., vol. 35, pp. 540–559, 1998.

[14] B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic

Equatons-Theory and Implementation, 2008.

[15] R. Becker, P. Hansbo, and M. G. Larson, “Energy norm a posteriori error estimation

for discontinuous galerkin methods,” Computer Methods in Applied Mechanics and

Engineering, vol. 192, pp. 723–733, 2003.

[16] M. Dryja, “On discontinuous galerkin methods for elliptic problems with discontinuous

coefficients,” Computational Methods in Applied Mathematics, vol. 3, pp. 76– 85, 2003.

[17] M. Brewster and G. Beylkin, “A multiresolution strategy for numerical homogeniza-

tion,” Applied and Computational Harmonic Analysis, vol. 2, pp. 327–349, 1995.

[18] A. Chertock and D. Levy, “On wavelet-based numerical homogenization,” Multiscale

Model Simulation, vol. 3, pp. 65–88, 2004.



106

[19] P.-O. Persson and O. Runborg, “Simulation of a waveguide filter using wavelet-based

numerical homogenization,” Journal of Computational Physics, vol. 166, pp. 361–382,

2001.

[20] Y. Efendiev, T. Hou, and V. Ginting, “Multiscale finite element methods for nonlinear

problems and their applications,” Comm. Math. Sci., vol. 2, pp. 553–589, 2004.

[21] L. Jiang, D. Copeland, and J. Moultons, “Mixed multiscale finite element methods

and their applications for flows in porous media,” Multiscale Analysis, vol. 2, pp. 1–33,

2012.

[22] A. C. Gilbert, “Multiscale analysis and data networks,” Applied and Computational

Harmonic Analysis, vol. 10, pp. 185–202, 2001.

[23] L. Zhang, L. Cao, and J. Luo, “Multiscale analysis and computation for a stationary

schrodinger-poisson system in heterogeneous nanostructures,” Multiscale Model Simu-

lations, vol. 4, pp. 1561–1591, 2014.

[24] D. Elfverson and A. Malqvist, “Discontinuous galerkin multiscale methods for convec-

tion dominated problems,” Tech. report 2013 -011, Department of Information Tech-

nology, Uppsala University, Sweden, 2013.

[25] D. Elfverson, E. H. Geogoulis, and A. Malqvist, “An adaptive discontinuous galerkin

multiscale method for elliptic problems,” Multiscale Model. Simul., vol. 11, pp. 747–765,

2013.

[26] Y. Efendiev, J. Galvis, R. Lazarov, M. Moon, and M. Sarkis, “Generalized multiscale

finite element method. symmetric interior penalty coupling,” Journal of Computational

Physics, vol. 255, pp. 1 – 15, 2013.

[27] J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques, 2012.

[28] A. Boggess and F. J. Narcowich, A First Course in Wavelets with Fourier Analysis,

2009.



107

[29] C. M. Leavey, M. N. James, J. Summerscales, and R. Sutton, “An introduction to

wavelets transforms: A tutorial approach,” Insight, vol. 45, pp. 344–353, 2003.

[30] K. Dalyand and T. Roose, “Homogenization of two fluid flow in porous media,”

rspa.royalsocietypublishing.org, vol. A, pp. 1–20, 2015.

[31] H. Douanla and J. L. Woukeng, “Homogenization of reaction-diffusion equations in

fractured porous media,” Math.AP, vol. 1, pp. 1–19, 2015.

[32] A. Braides and A. Defranceschi, Homogenization of Multiple Integrals (Oxford Lecture

Series in Mathematics and its Applications), 1999.

[33] P. Henning, A. Malqvist, and D. Peterseim, “A localized orthogonal decomposition

method for semi-linear elliptic problems,” ESAIM: Mathematical Modelling and Nu-

merical Analysis, vol. 48, pp. 1331–1349, 2014.

[34] P. Henning and D. Peterseim, “Oversampling for the multiscale finite element method,”

Multiscale Model. Simul., vol. 11, pp. 1149–1175, 2013.

[35] J. V. Koebbe, “Homogenization-wavelet reconstruction methods for elliptic differential

equations,” Manuscript for Review Purpose, pp. 1–12, 2017.

[36] ——, “A computationally efficient modification of mixed finite element methods for flow

problems with full transmissivity tensors,” Numerical Methods for Partial Differential

Equations, vol. 9, pp. 339–355, 1993.

[37] A. Weiser and M. F. Wheeler, “On convergence of block-centered finite differences for

elliptic problems,” SIAM Journal on Numerical Analysis, vol. 25, pp. 351 – 375, 1988.

[38] D. Cherney, T. Denton, R. Thomas, and A. Waldron, Linear Algebra, 2013.

[39] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equa-

tions, 2007.



108

APPENDICES



109

Appendix A

Linear Algebra Basics

We outline some important properties of matrices and theorems that support our meth-

ods of computation in this dissertation. The following theorems and definitions can be found

in [38] and [39].

Theorem 1. (The Fundamental Theorem of Algebra) Any polynomial can be factored into

a product of first order polynomials.

Let A be an m ×m matrix with m eigenvalues, λ1, λ2, . . . , λm, that are the roots of

the characteristic polynomial, PA(λ) = det(A− λI). Theorem 1 implies that there exists a

collection of n complex numbers λi (possibly with repetition) such that

PA(λ) = (x− λ1), (xλ2), . . . , (x− λm)

which implies that

PA(λ) = det(A− λI).

The polynomial of degree m will always have m roots, but there may be multiple

roots. If there are no repeated roots, then we have distinct roots. The set of m eigenvalues

is known as the spectrum of the matrix. The spectral radius of A is the maximum magnitude

of any eigenvalue (ρ(A) = max | λp |). If the characteristic polynomial has a factor (x−λ)s,

the eigenvalue has algebraic multiplicity of s, (ma(λ) = s). The space of all vectors with

eigenvalue λ is called an eigenspace.

Also, any vector u in the eigenspace satisfies the equation Au = λu. The dimension

of this eigenspace is known as the geometric multiplicity mg(λ), of the eigenvalue, λ. If

mg(λ) = ma(λ), then A has a complete set of eigenvectors for this eigenvalue, otherwise

this eigenvalue is defective. If A has one or more defective eigenvalues, then A is called a



110

defective matrix. If the eigenvalues of A are all distinct, then mg(λ) = ma(λ) = 1 for every

eigenvalue and the matrix is not defective. A diagonal matrix cannot be defective. The

eigenvalues are simply the diagonal elements, and the unit vectors ej form a complete set

of eigenvectors.

Similarity Transformation

Definition 1. A matrix A is diagonalizable if there exists an invertible matrix P and a

diagonal matrix D such that

D = P−1AP

.

This can be summarized as follows:

• Change of basis rearranges the components of a vector by the change of basis matrix

P, to give components in the new basis.

• To get the matrix of a linear transformation in the new basis, we conjugate the matrix

of A by the change of basis matrix:

A = P−1AP.

Corollary 1. A square matrix A is diagonalizable if and only if there exists a basis of

eigenvectors for A. Moreover, these eigenvectors are the columns of a change of basis matrix

P which diagonalizes A.

Diagonalizing Symmetric Matrices

Definition 2. A matrix A is symmetric if AT = A.

One nice property of symmetric matrices is that they always have real eigenvalues.

Theorem 2. Eigenvectors of a symmetric matrix with distinct eigenvalues are orthogonal.



111

This means that

P−1 = P T ,

or

PP T = I = P TP.

Theorem 3. Every symmetric matrix is similar to a diagonal matrix of its eigenvalues.

In other words,

A = AT ⇔ A = PDP T

where P is an orthogonal matrix andD is a diagonal matrix whose entries are the eigenvalues

of A.



112

Appendix B

Numerical Solutions in One Dimension for Computing Alphas and

Betas

This appendix contains Java codes that randomly generates permeability tensors K in

one dimension and computes α’s and β’s using our method of solutions. The results of α’s

and β’s are then used in the reconstruction of the solutions. The next Java class, Formula

compute the close form recursive formula for the differences of solution of the local problem

in one dimension.

package HomogenizationProject;

/**

*

* @author Abibat Lasisi

*/

public class RandomHomo {

public static int ALPHA = 1;

public static int BETA = 2;

// assign value of n

public static int N = 4;

//static double [] waveCoeff =



113

{0.1, 0.3, 0.2, 0.4, 0.6, 0.5, 0.8, 0.7};

static int numPartitions = (int) Math.pow(2, N);

static double waveCoeff[] = new double[numPartitions];

public static double [] kOfN(int n){

double [] newWaveCoeff = new double [waveCoeff.length / 2];

if(n == N ) {

// only for the first time, randomly generate the indices

System.out.println("--------------------------------");

// compute the starting indices randomly

for(int i = 0; i < waveCoeff.length; i++) {

double random = 0.1 + Math.random();

waveCoeff[i] = random < 1.0 ? random : 1.0;

System.out.println("k" + N + "," + i +

" = " + waveCoeff[i]);

}

System.out.println("--------------------------------");

return waveCoeff;

}

//subsequently generate new indices from the previous



114

int j = 0; // starting from the first even position

for(int i = 0; i < newWaveCoeff.length; i++) {

newWaveCoeff[i] =

(2.0*waveCoeff[j]*waveCoeff[j+1])/((waveCoeff[j]+waveCoeff[j+1]));

j += 2;

}

//update the waveCoeff

waveCoeff = newWaveCoeff;

return newWaveCoeff;

}

//compute alpha values using the k’s

public static double [] alphaValues(int n) {

int aLevel = n - 1;

double [] waveCoeffAve = kOfN(n);

double [] alphas = new double [waveCoeffAve.length / 2];

int j = 0; // starting from the first even position

for(int i = 0; i < alphas.length; i++) {

alphas[i] = waveCoeffAve[j] /

(waveCoeffAve[j] + waveCoeffAve[j + 1]);

j += 2;

}



115

// for display

//for(int i = 0; i < x.length; i++)

// System.out.println("a" + aLevel + "," + i + " = " + x[i]);

return alphas;

}

// compute the beta values using 1 - alphaValues

public static double [] betaValues(double [] x) {

int bLevel = N - 1;

double [] betas = new double [x.length];

for(int i = 0; i < betas.length; i++)

betas[i] = 1 - x[i];

// for display

// for(int i = 0; i < betas.length; i++)

// System.out.println("b" + bLevel + "," + i + " = " + betas[i]);

return betas;

}

//compute all alphas and betas from n = N down to n = 0

public static double [] allAphasOrBetas(int n, int type) {



116

//get how many alpha or beta values for this n

int arraySize = 0;

for(int i = 0; i < n; i++) {

int numPartitions = (int) Math.pow(2, i);

arraySize += numPartitions;

}

double [] alphas = new double[arraySize];

double [] betas = new double[arraySize];

int arrayIndex = 0;

// all beta values for n

for(int i = n; i >= 0; i--) {

// compute the alpha and beta values for n = i

double [] x = alphaValues(i);

for(int j = 0; j < x.length; j++) {

alphas[arrayIndex] = x[j];

betas[arrayIndex] = 1 - x[j];

double result = (int)(alphas[arrayIndex++] * 10000) / 10000.0;

// for display

System.out.println("a" + (i - 1) + "," + j + " = " + result);

System.out.println("b" + (i - 1) + "," + j + " = " + (1 - result));

}



117

System.out.println();

}

if(type == ALPHA)

return alphas;

else

return betas;

}

public static void main(String [] args) {

allAphasOrBetas(N, ALPHA);

}

}



118

Recursive Differencing Formula of Analytic Solution

This program computes the close form recursive formula for the differences of solution

of the local problem in one dimension.

package HomogenizationProject;

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

/**

*

* @author Abibat Lasisi

*/

public class Formula {

public static final String ALPHA = "\u03B1";

public static final String BETA = "\u03B2";

public static final String DOT = "\u00B7";

public static final String PHI = "\u03A6";

public static final String PSI = "\u03A8";

public static String buildString(int n){

int power = (int) Math.pow(2, n);



119

int midValue = power - 2;

StringBuilder string = new StringBuilder();

String result = "y" + n + ",";

string.append(result);

int counter = 0;

for(int i = 1; i <= midValue / 2; i++) {

counter++;

for(int j = 0; j < 2; j ++) {

if(j % 2 == 0)

result = "(" + counter + " - " + "y" + n + "),";

else

result = "(y" + n + " - " + counter + "),";

string.append(result);

}

}

if(midValue >= 0) {

result = "(" + power / 2 + " - " + "y" + n + ")";

string.append(result);

}

result = ",";

string.append(result);

return string.toString();

}

private static String getTruthTable(int n) {

int rows = (int) Math.pow(2,n);



120

String binary = "";

for (int i = 0; i < rows; i++) {

for (int j = n - 1; j > 0; j--)

binary += i / (int) Math.pow(2, j) % 2 + " ";

binary += ","; // comma to seperate the items

}

return binary;

}

// generate alpha and beta indices

public static String [] generateIndices(int n) {

int power = (int) Math.pow(2, n);

int [][] matrix = new int[power][n - 1];

int incValue = 10;

String [] string = new String[power];

for(int i = 0; i < string.length; i++)

string[i] = "00,";

//intialize the first row of matrix to 0, 10, 20, etc

for(int i = 1; i < matrix[0].length; i++) {

matrix[0][i] += incValue;

incValue += 10;



121

}

//determine the number of columns

int cols = matrix[0].length;

int divider = matrix.length;

//now compute the rest values for matrix, skipping row 1

for(int j = 1; j < cols; j++) {

divider /= 2;

int counter = 1;

for(int i = 1; i < matrix.length; i++){

if(counter < divider){

matrix[i][j] = matrix[i - 1][j];

counter++;

}

else {

matrix[i][j] = matrix[i - 1][j] + 1;

counter = 1;

}

}

}

//create a string array

for(int i = 0; i < matrix.length; i++) {

for(int j = 0; j < matrix[i].length; j++) {

if(matrix[i][j] != 0)

string[i] += matrix[i][j] + ",";

}



122

}

return string;

}

public static String getAlphaBeta(String binary, String indices) {

String binaryArray [] = binary.split(" ");

String indicesArray [] = indices.split(",");

String characters = "";

for(int i = 0; i < binaryArray.length; i++) {

if(binaryArray[i].equals("0"))

characters += BETA + "_" + indicesArray[i];

else if(binaryArray[i].equals("1"))

characters += ALPHA + "_" + indicesArray[i];

characters += " "+ DOT + " ";

}

return characters;

}

public static void generateFormula(int n) {



123

// get string for the expressions

String string = buildString(n);

String expr [] = string.split(",");

int expCount = 0;

//get truth table to generate the beta and alpha coefficients

String table = getTruthTable(n);

String truthTable [] = table.split(",");

//get indices to generate the beta and alpha indices

String indices [] = generateIndices(n);

int midPower = (int) Math.pow(2, n) / 2;

int index = n - 1;

int j = 0;

int k = 0;

//print upper

for(int i = 0; i < midPower; i++) {

if(j > 1) {

k++;

j = 0;

}

if(n > 1) {

String coeff =



124

getAlphaBeta(truthTable[expCount], indices[expCount]);

System.out.println(coeff + PSI+ "_" + index + "," + k + " "

+ DOT +" " + PHI + " " + DOT + " " + expr[expCount++]);

}

else

System.out.println(PSI+ "_" + index + "," + k + " "

+ DOT + " " + PHI + " " + DOT + " " + expr[expCount++]);

j++;

}

// print lower

for(int i = 0; i < midPower; i++) {

if(j > 1) {

k++;

j = 0;

}

if(n > 1) {

String coeff =

getAlphaBeta(truthTable[expCount], indices[expCount]);

System.out.println(coeff + PSI+ "_" + index + ","

+ k + " " + DOT + " " + PHI + " " + DOT + " "

+ expr[expCount++]);

}

else

System.out.println(PSI+ "_" + index + "," + k + " "+

DOT + " " + PHI + " " + DOT + " " + expr[expCount++]);

j++;

}



125

}

public static void main(String [] args) {

int n = 2;

System.out.println("n = " + n);

generateFormula(n);

}

}



126

Appendix C

Numerical Solution of Local Elliptic Problem in Two Dimensions

In this appendix, we provide Java codes that compute the numerical solution of local

elliptic problem in two dimensions. In the first class in this package, we use Gaussian

Elimination method to solve system of linear equations generated from the solution of the

local problems. We create a method that performs the elimination operation using matrix

and vector. We compute the multipliers and then create a method that performs back

substitution operation on the final matrix to determine the solutions. The next classes,

Matrix and Vector are used to manage the matrices and vectors permeability tensors, for

easy accessibility. We create a class called MatrixComputation which computes the inverse

of a matrix, matrix coefficients, perform vector and matrix multiplication, computes product

of vector and matrix. We then create a method that computes the gradient of w and finally

perform the operation that computes K]. The last class, Generalization is used to generalize

the procedure to manage n× n matrices.

package HomogenizationProject;

/**

*

* @author Abibat Lasisi

*/

import java.util.Scanner;

public class GaussElimination {



127

//this is the matrix size, row and column

private static final int MATRIX_SIZE = 2;

private boolean rowInterchanged = false;

private int interchangedRow = 0;

// This method performs the elimination operation using

// a matrix and vector

public void eliminationProcedure(double matrix[][], double b[]){

//interchange row if matrix[0][0] is zero

if(Math.abs(0 - matrix[0][0]) < 0.00000000001 ){

int row = 1;

while(matrix[row][0] == 0 && row < matrix.length)

row++;

double temp [] = new double[matrix[0].length];

//matrix

for(int i = 0; i < matrix[0].length; i++) {

temp[i] = matrix[0][i];

matrix[0][i] = matrix[row][i];

matrix[row][i] = temp[i];

}

// b vector

double t = b[0];

b[0] = b[row];



128

b[row] = t;

rowInterchanged = true;

interchangedRow = row;

}

//double multiplier

for(int k = 0; k < MATRIX_SIZE - 1; k++){

for(int i = k + 1; i < MATRIX_SIZE; i++) {

double multiplier = matrix[i][k] / matrix[k][k];

b[i] = b[i] - multiplier * b[k];

for(int j = k; j < MATRIX_SIZE; j++){

matrix[i][j] = matrix[i][j] - (multiplier * matrix[k][j]);

}

}

}

}

//this method performs back substitution operation on the final matrix to

//determine the solutions

public double [] backSubstitution(double matrix[][], double b[]) {

//int i, j;

double x[] = new double[MATRIX_SIZE];

x[MATRIX_SIZE - 1] = b[MATRIX_SIZE - 1] /



129

matrix[MATRIX_SIZE - 1][MATRIX_SIZE - 1];

for(int i = MATRIX_SIZE - 2; i >= 0; i--){

x[i] = b[i];

for(int j = MATRIX_SIZE - 1; j >= i + 1; j--){

x[i] = x[i] - matrix[i][j] * x[j];

}

x[i] = x[i] / matrix[i][i];

}

if(rowInterchanged) {

// b vector

double t = x[0];

x[0] = x[interchangedRow];

x[interchangedRow] = t;

rowInterchanged = false;

}

return x;

}

//method to print the content of a matrix

public void printMatrix(double a[][]) {

//int i, j;

for(int i = 0; i < MATRIX_SIZE; i++) {

for(int j = 0; j < MATRIX_SIZE; j++) {



130

System.out.print(a[i][j] + " ");

}

System.out.println();

}

System.out.println();

}

//method to print the content of vectors

public void printVector(double a[]) {

//int i;

for(int i = 0; i < MATRIX_SIZE; i++) {

System.out.print(a[i] + " ");

}

System.out.println("\n");

}

public static void main(String[] args) {

// TODO code application logic here

int i, j;

//read matrices from the console

Scanner in = new Scanner(System.in);

//create the object of the class GaussElimination

GaussElimination gauss = new GaussElimination();

System.out.println("Input the matrix size");//a from console\n");



131

// gauss.MATRIX_SIZE = in.nextInt();

// double a[][] = new double[MATRIX_SIZE][MATRIX_SIZE];

// double b[] = new double[MATRIX_SIZE];

/*

System.out.println("Input matrix a from console\n");

for(i = 0; i < gauss.MATRIX_SIZE; i++){

for(j = 0; j < gauss.MATRIX_SIZE; j++){

System.out.print((i+1)+","+(j+1) +":");

a[i][j] = in.nextDouble(); //in.nextInt();

}

//System.out.println();

}

System.out.println();

System.out.println("Input vector b from console\n");

for(i = 0; i < gauss.MATRIX_SIZE; i++){

System.out.print((i+1)+":");

b[i] = in.nextInt();

}

in.close();

System.out.println();

*/



132

double a [][] = {

{0, 9 / 7.0},

{18 / 7.0, -36 / 7.0}

};

double b [] = {18 / 7.0, 18 / 7.0};

//double a [][] = null;

//double b [] = null;

System.out.println("Original Coefficient Matrix a");

gauss.printMatrix(a); // call the printMatrix method to print matrx a

System.out.println("Original Vector b");

gauss.printVector(b); //// call the printVector method to print vector

System.out.println("Solutions");

//call elimination procedure

gauss.eliminationProcedure(a, b);

//call backSubstitution

gauss.backSubstitution(a, b);

System.out.println("Modified Coefficient Matrix a");

gauss.printMatrix(a); // call the printMatrix method to print matrx a



133

System.out.println("Modified Vector b");

gauss.printVector(b); //// call the printVector method to print vector

}

}



134

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package HomogenizationProject;

/**

*

* @author Abibat Lasisi

*/

//Matrix class to manage matrices

public class Matrix {

private double [][] matrix;

public Matrix(){

}

public Matrix(double [] v1, double [] v2){

this.matrix = new double[v1.length][v1.length];

for(int i = 0; i < matrix.length; i++) {

this.matrix[i][0] = v1[i];

this.matrix[i][1] = v2[i];



135

}

}

public Matrix(double [][] matrix){

this.matrix = new double[matrix.length][matrix[0].length];

for(int i = 0; i < matrix.length; i++)

for(int j = 0; j < matrix[i].length; j++)

this.matrix[i][j] = matrix[i][j];

}

// 4 x 4 matrix from 4 2 x 2 matrices

public Matrix(double [][] m1, double [][] m2,

double [][] m3, double [][] m4){

int matrixSize = m1.length * m1.length;

this.matrix = new double[matrixSize][matrixSize];

for(int i = 0; i < m1.length; i++) {

for(int j = 0; j < m1[i].length; j++) {

this.matrix[i][j] = m1[i][j];

this.matrix[i][j + 2] = m2[i][j];

this.matrix[i + 2][j] = m3[i][j];

this.matrix[i + 2][j + 2] = m4[i][j];

}

}

}



136

public void setMatrix(double [][] matrix) {

this.matrix = new double[matrix.length][matrix[0].length];

for(int i = 0; i < matrix.length; i++)

for(int j = 0; j < matrix[i].length; j++)

this.matrix[i][j] = matrix[i][j];

}

public double [][] getMatrix(){

return this.matrix;

}

public void printMatrix() {

for(int i = 0; i < matrix.length; i++) {

for(int j = 0; j < matrix[i].length; j++) {

System.out.print(matrix[i][j] + " ");

}

System.out.println();

}

}

public Matrix matrixInverse() {

double [][] matrix_ = {

{matrix[1][1], -1.0 * matrix[0][1]},

{-1.0 * matrix[1][0], matrix[0][0]}



137

};

double determinant = matrix[0][0] * matrix[1][1] -

matrix[0][1] * matrix[1][0];

for(int i = 0; i < matrix.length; i++)

for(int j = 0; j < matrix[i].length; j++) {

if(matrix[i][j] == 0)

matrix_[i][j] = 0;

matrix_[i][j] = matrix_[i][j] / determinant;

}

return new Matrix(matrix_);

}

}



138

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package HomogenizationProject;

/**

*

* @author Abibat Lasisi

*/

// Vector class to manage vectors

public class Vector {

private double [] vector;

public Vector(){

}

public Vector(double [] vector){

this.vector = new double[vector.length];

for(int i = 0; i < vector.length; i++)

this.vector[i] = vector[i];

}



139

public void setVector(double [] vector) {

this.vector = new double[vector.length];

for(int i = 0; i < vector.length; i++)

this.vector[i] = vector[i];

}

public double [] getVector(){

return this.vector;

}

public void printVector() {

for(int i = 0; i < vector.length; i++)

System.out.println(vector[i]);

}

}



140

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package HomogenizationProject;

/**

*

* @author Abibat Lasisi

*/

public class MatrixComputation {

public static final int M = 2;

public static final int W_1 = 1;

public static final int W_2 = 2;

// compute inverses of the list of the 2 x 2 matrices

public static Matrix [] computeInverses (Matrix [] matrixList) {

Matrix [] inverseList = new Matrix[matrixList.length];

for(int i = 0; i < matrixList.length; i++) {

inverseList[i] = new Matrix();

inverseList[i] = matrixList[i].matrixInverse();

}



141

return inverseList;

}

// compute other coefficient

public static double [] computeOtherCoefficients(Matrix [] matrixList,

double [] cVector, int type) {

double [] vector = new double[M];

double [] result = new double[M];

int i = 0;

int j = 0;

if(type == W_1) {

double [][] m = matrixList[i].getMatrix();

double [][] m_ = matrixList[i + 1].getMatrix();

vector[j] = (-1 * m[1][1]) / (m[0][1] - m_[0][1]);

vector[j + 1] = m_[1][1] / (m[0][1] - m_[0][1]);

//compute product of cVector and vector

for(int k = 0; k < vector.length; k++)

result[0] += vector[k] * cVector[k];

//

i += 2;

m = matrixList[i].getMatrix();

m_ = matrixList[i + 1].getMatrix();



142

j = 0;

vector[j] = -1 * m[1][1] / (m[0][1] - m_[0][1]);

vector[j + 1] = m_[1][1] / (m[0][1] - m_[0][1]);

for(int k = 0; k < vector.length; k++)

result[1] += vector[k] * cVector[k];

}

else if(type == W_2) {

double [][] m = matrixList[i].getMatrix();

double [][] m_ = matrixList[i + 2].getMatrix();

vector[j] = m_[0][0] / (m[0][1] - m_[0][1]);

vector[j + 1] = (-1 * m[0][0]) / (m[0][1] - m_[0][1]);

//compute product of cVector and vector

for(int k = 0; k < vector.length; k++)

result[0] += vector[k] * cVector[k];

//

i++;

m = matrixList[i].getMatrix();

m_ = matrixList[i + 2].getMatrix();

j = 0;

vector[j] = m_[0][0] / (m[0][1] - m_[0][1]);

vector[j + 1] = (-1 * m[0][0]) / (m[0][1] - m_[0][1]);



143

for(int k = 0; k < vector.length; k++)

result[1] += vector[k] * cVector[k];

}

return result;

}

public static double [] computeBVector(Matrix [] matrixList, int type) {

double [] vector = new double[M];

int j = 0;

if(type == W_1) {

for(int i = 0; i < matrixList.length; i += 2){

double [][] m = matrixList[i].getMatrix();

double [][] m_ = matrixList[i + 1].getMatrix();

vector[j++] = 2 / (m[0][0] + m_[0][0]);

}

}

else if(type == W_2) {

for(int i = 0; i < matrixList.length - 2; i++){

double [][] m = matrixList[i].getMatrix();

double [][] m_ = matrixList[i + 2].getMatrix();



144

vector[j++] = 2 / (m[1][1] + m_[1][1]);

}

}

return vector;

}

public static double [][] computeCoefficientMatrix

(Matrix [] matrixList, int type) {

double [][] matrix = new double[M][M];

if(type == W_1) {

for(int i = 0; i < matrixList.length; i += 2){

int row = i / 2;

int col = i % 2;

double [][] m = matrixList[i].getMatrix();

double [][] m_ = matrixList[i + 1].getMatrix();

matrix[row][col] = m[0][1] / (m[0][0] + m_[0][0]) -

(m[1][1] / (m[0][1] - m_[0][1]));

col = (i + 1) % 2;

matrix[row][col] = m_[0][1] / (m[0][0] + m_[0][0]) +

(m_[1][1] / (m[0][1] - m_[0][1]));



145

}

}

else if(type == W_2) {

for(int i = 0; i < matrixList.length - 2; i++){

int row = i;

int col = 0;

double [][] m = matrixList[i].getMatrix();

double [][] m_ = matrixList[i + 2].getMatrix();

matrix[row][col] = m_[0][0] / (m[0][1] - m_[0][1]) +

(m_[0][1] / (m[1][1] + m_[1][1]));

col = 1; //(i + 1) % 2;

matrix[row][col] = m[0][1] / (m[1][1] + m_[1][1]) -

(m[0][0] / (m[0][1] - m_[0][1]));

}

}

return matrix;

}

//compute the product of a matrix and a matrix

public static double [][] matrixByMatrix(double a[][],

double [][] b) {

double sum = 0;

double product[][] = new double [a.length][a.length];



146

//compute matrix product

for(int i = 0; i < product.length; i++) {

for(int k = 0; k < product.length; k++) {

sum = 0;

for(int j = 0; j < product.length; j++) {

sum = sum + (a[i][j] * b[j][k]);

}

product[i][k] = sum;

}

}

return product; //return the product matrix

}

//compute the product of a matrix and a vector

public static double [] matrixByVector(double a[][],

double [] b, int type) {

double [] product = new double [M];

double [] unitVector = new double [M];

if(type == W_1)

unitVector[0] = 1.0;

else

unitVector[1] = 1.0;

//compute matrix product



147

for(int i = 0; i < a.length; i++) {

double sum = 0;

for(int j = 0; j < a.length; j++) {

sum = sum + (a[i][j] * b[j]);

}

product[i] = sum;

}

//subtract unit vector from the product

for(int i = 0; i < product.length; i++)

product[i] = product[i] - unitVector[i];

return product;

}

// compute gradient of W

public static Vector [] gradientOfW(Matrix [] matricesInverse,

Vector [] v, int type) {

Vector [] vectorsList = new Vector[v.length];

int counter = 0;

for(int i = 0; i < matricesInverse.length; i++) {

double [] a = matrixByVector(matricesInverse[i].getMatrix(),

v[i].getVector(), type);

vectorsList[i] = new Vector(a);

}



148

return vectorsList;

}

public static Vector [] createDiagCVectors(double [] cVector, int type){

// construct array of c vectors

Vector [] cVectors = new Vector[4];

if(type == W_1) {

double [] c = {cVector[0], cVector[1]};

// construct the individual c vector

double [] v1 = {c[0], 0};

double [] v2 = {c[0], 0};

double [] v3 = {c[1], 0};

double [] v4 = {c[1], 0};

cVectors[0] = new Vector(v1);

cVectors[1] = new Vector(v2);

cVectors[2] = new Vector(v3);

cVectors[3] = new Vector(v4);

}

else {

double [] c = {cVector[0], cVector[1]};

// construct the individual c vector

double [] v1 = {0, c[0]};

double [] v2 = {0, c[1]};

double [] v3 = {0, c[0]};



149

double [] v4 = {0, c[1]};

cVectors[0] = new Vector(v1);

cVectors[1] = new Vector(v2);

cVectors[2] = new Vector(v3);

cVectors[3] = new Vector(v4);

}

return cVectors;

}

public static Vector [] createCVectors(double [] cVector,

double [] cVector1, int type){

// construct array of c vectors

Vector [] cVectors = new Vector[4];

if(type == W_1) {

double [] c = {cVector1[0], cVector[0],

cVector[1], cVector1[1]};

// construct the individual c vector

double [] v1 = {c[0], c[1]};

double [] v2 = {c[0], c[2]};

double [] v3 = {c[3], c[1]};

double [] v4 = {c[3], c[2]};

cVectors[0] = new Vector(v1);

cVectors[1] = new Vector(v2);



150

cVectors[2] = new Vector(v3);

cVectors[3] = new Vector(v4);

}

else {

double [] c = {cVector[0], cVector[1],

cVector1[0], cVector1[1]};

// construct the individual c vector

double [] v1 = {c[1], c[0]};

double [] v2 = {c[1], c[3]};

double [] v3 = {c[0], c[2]};

double [] v4 = {c[0], c[3]};

cVectors[0] = new Vector(v1);

cVectors[1] = new Vector(v2);

cVectors[2] = new Vector(v3);

cVectors[3] = new Vector(v4);

}

return cVectors;

}

public static double [][] sumOfKs(Matrix [] matricesList) {

double [][] sumOfK = new double[M][M];

for(Matrix m : matricesList) {

double [][] matrix = m.getMatrix();



151

for(int i = 0; i < sumOfK.length; i++) {

for(int j = 0; j < sumOfK.length; j++) {

sumOfK[i][j] += matrix[i][j];

}

}

}

//now multiply the result by 0.25

for(int i = 0; i < sumOfK.length; i++) {

for(int j = 0; j < sumOfK.length; j++) {

sumOfK[i][j] *= 0.25;

}

}

return sumOfK;

}

public static double [][] computeJacobianProduct(Matrix [] matricesList,

Vector [] w1Gradient, Vector [] w2Gradient) {

double [][] jacobianProduct = new double[M][M];

int count = 0;

for(Matrix m : matricesList) {

// from matricesList

double [][] matrix1 = m.getMatrix();

Matrix m_ = new Matrix(w1Gradient[count].getVector(),

// from w1 and w2 gradients



152

w2Gradient[count].getVector());

double [][] matrix2 = m_.getMatrix();

double [][] product = matrixByMatrix(matrix1, matrix2);

// sum the resulting matrices

for(int i = 0; i < jacobianProduct.length; i++) {

for(int j = 0; j < jacobianProduct.length; j++) {

jacobianProduct[i][j] += product[i][j];

}

}

count++;

}

//now multiply the result by 0.25

for(int i = 0; i < jacobianProduct.length; i++) {

for(int j = 0; j < jacobianProduct.length; j++) {

jacobianProduct[i][j] *= 0.25;

}

}

return jacobianProduct;

}

public static double [][]

computeKPoundsDiagTensor(double [][] matrix) {



153

// reduce the original matrix to list of 2 x 2 matrices

Matrix [] matricesList = reduceMatrixTo2By2(matrix, M);

// compute a list of the inverses of the 2 x 2 matrices

Matrix [] matricesInverse = computeInverses(matricesList);

double [] cVector = computeBVector(matricesInverse, W_1);

// construct array of c vectors

Vector [] cVectors = createDiagCVectors(cVector, W_1);

Vector [] w1Gradient = gradientOfW(matricesInverse, cVectors, W_1);

cVector = computeBVector(matricesInverse, W_2);

// construct array of c vectors

cVectors = createDiagCVectors(cVector, W_2);

Vector [] w2Gradient = gradientOfW(matricesInverse, cVectors, W_2);

// compute sum of K’s i.e., sum of the list of matrices

double [][] sumOfK = sumOfKs(matricesList);

// compute Jacobian of K products

double [][] jacobianProduct = computeJacobianProduct(matricesList,

w1Gradient, w2Gradient);



154

// now compute kPounds

double [][] kPounds = new double[M][M];

for(int i = 0; i < kPounds.length; i++) {

for(int j = 0; j < kPounds.length; j++) {

kPounds[i][j] = sumOfK[i][j] + jacobianProduct[i][j];

}

}

return kPounds;

}

public static double [][] computeKPounds(double [][] matrix) {

//create instance of Gauss Elimination

GaussElimination gauss = new GaussElimination();

// reduce the original matrix to list of 2 x 2 matrices

Matrix [] matricesList = reduceMatrixTo2By2(matrix, M);

// compute a list of the inverses of the 2 x 2 matrices

Matrix [] matricesInverse = computeInverses(matricesList);

// compute coefficient of w1 and w1 gradient

double [][] coeff = computeCoefficientMatrix(matricesInverse, W_1);

double [] bVector = computeBVector(matricesInverse, W_1);



155

//call elimination procedure

gauss.eliminationProcedure(coeff, bVector);

//call backSubstitution

double [] cVector = gauss.backSubstitution(coeff, bVector);

double [] cVector1 = computeOtherCoefficients(matricesInverse, cVector, W_1);

// construct array of c vectors

Vector [] cVectors = createCVectors(cVector, cVector1, W_1);

Vector [] w1Gradient = gradientOfW(matricesInverse, cVectors, W_1);

// coefficient of w2 and w2 gradient

coeff = computeCoefficientMatrix(matricesInverse, W_2);

bVector = computeBVector(matricesInverse, W_2);

//call elimination procedure

gauss.eliminationProcedure(coeff, bVector);

//call backSubstitution

cVector = gauss.backSubstitution(coeff, bVector);

cVector1 = computeOtherCoefficients(matricesInverse, cVector, W_2);

// construct array of c vectors

cVectors = createCVectors(cVector, cVector1, W_2);

Vector [] w2Gradient = gradientOfW(matricesInverse, cVectors, W_2);

// compute sum of K’s i.e., sum of the list of matrices

double [][] sumOfK = sumOfKs(matricesList);



156

// compute Jacobian of K products

double [][] jacobianProduct = computeJacobianProduct(matricesList,

w1Gradient, w2Gradient);

// now compute kPounds

double [][] kPounds = new double[M][M];

for(int i = 0; i < kPounds.length; i++) {

for(int j = 0; j < kPounds.length; j++) {

kPounds[i][j] = sumOfK[i][j] + jacobianProduct[i][j];

}

}

return kPounds;

}

// reduce the original large matrix to list of 2 x 2 matrices

public static Matrix [] reduceMatrixTo2By2(double [][] matrix,

int reductionSize) {

Matrix [] matricesList = new Matrix[matrix.length * matrix.length /

(reductionSize * reductionSize)];

int listCount = 0;

for(int i = 0; i < matrix.length; i += reductionSize) {

// make new matrix



157

double [][] m = new double[reductionSize][reductionSize];

// break down matrix into sub matrices of size reductionSize

for(int j = 0; j < matrix[i].length; j += reductionSize) {

for(int x = i; x < i + reductionSize; x++) {

for(int y = j; y < j + reductionSize; y++) {

m[x % reductionSize][y % reductionSize] = matrix[x][y];

}

}

//System.out.println("index = " + index);

matricesList[listCount++] = new Matrix(m);

}

}

return matricesList;

}

public static void printMatrices(Matrix [] matricesList) {

for(Matrix m : matricesList) {

printMatrix(m.getMatrix());

System.out.println();

}

}



158

// print a matrix

public static void printMatrix(double[][] matrix) {

for(int i = 0; i < matrix.length; i++) {

for(int j = 0; j < matrix[i].length; j++) {

System.out.print(matrix[i][j] + "\t");

}

System.out.println();

}

}

// print a vector

public static void printVector(double [] vector) {

for(int i = 0; i < vector.length; i++)

System.out.println(vector[i]);

}

public static void main(String [] args) {

// tensor computation

double [][] K = {

{1, 1, 1, 2},

{1, 10, 2, 1},

{2, 1, 10, 1},

{1, 2, 1, 1},

};



159

System.out.println("Input Matrix");

printMatrix(K);

System.out.println();

double [][] kPounds = computeKPounds(K);

System.out.println("\nResult Matrix");

printMatrix(kPounds);

/*

// diagonal tensor computation

double [][] K_DiagTensor = {

{1, 0, 10, 0},

{0, 1, 0, 10},

{1, 0, 10, 0},

{0, 1, 0, 10},

};

System.out.println("Input Matrix - Diagonal Tensor");

printMatrix(K_DiagTensor);

System.out.println();

double [][] kPounds = computeKPoundsDiagTensor(K_DiagTensor);

System.out.println("\nResult Matrix - Diagonal Tensor");

printMatrix(kPounds);



160

*/

}

}



161

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package HomogenizationProject;

import static HomogenizationProject.MatrixComputation.*;

/**

*

* @author Abibat Lasisi

*/

public class Generalization {

public static final int M = 2;

public static final int REGULAR_TENSOR = 1;

public static final int DIAGONAL_TENSOR = 2;

// print a matrix

public static void printMatrix(double[][] matrix) {

for(int i = 0; i < matrix.length; i++) {

for(int j = 0; j < matrix[i].length; j++) {

System.out.print(matrix[i][j] + "\t");

}



162

System.out.println();

}

}

public static void printMatrices(Matrix [] matricesList) {

for(Matrix m : matricesList) {

printMatrix(m.getMatrix());

System.out.println();

}

}

// generate matrix

public static double [][] generateMatrix(int n) {

// change this matrix using random number generation based on some pattern

/* double [][] K = {

{1, 1, 1, 2},

{1, 10, 2, 1},

{2, 1, 10, 1},

{1, 2, 1, 1}

};

*/

double [][] K = {

{1, 0, 10, 0},

{0, 1, 0, 10},



163

{1, 0, 10, 0},

{0, 1, 0, 10},

};

int matrixSize = (int) Math.pow(2, n);

if(matrixSize <= K.length)

return K;

double [][] matrix = new double[matrixSize][matrixSize];

int row = -1;

for(int i = 0; i < matrix.length; i++) {

row++;

int col = -1;

for(int j = 0; j < matrix.length; j++) {

col++;

matrix[i][j] = K[row][col];

col = col == 3 ? -1 : col;

}

row = row == 3 ? -1 : row;

}

return matrix;



164

}

// split matrix and store all the possible 2 x 2

// sub matrices generated from matrix

public static Matrix [] splitMatrix(double [][] matrix) {

Matrix [] matricesList = new Matrix[matrix.length * matrix.length / 4];

int matrixCount = 0;

for(int i = 0; i < matrix.length; i += M) {

// make new matrix

double [][] m = new double[M][M];

// break down matrix into sub matrices of size reductionSize

for(int j = 0; j < matrix[i].length; j += M) {

for(int x = i; x < i + M; x++) {

for(int y = j; y < j + M; y++) {

m[x % M][y % M] = matrix[x][y];

}

}

matricesList[matrixCount++] = new Matrix(m);

}

}

return matricesList;



165

}

public static double [][] mergeMatrices

(Matrix [] reducedMatricesList,int matrixSize) {

if(reducedMatricesList == null)

return null;

int reductionSize = M;

double [][] matrix = new double[matrixSize][matrixSize];

int listCount = 0;

for(int i = 0; i < matrix.length; i += reductionSize) {

// make new matrix

double [][] m = reducedMatricesList[listCount].getMatrix();

// break down matrix into sub matrices of size reductionSize

for(int j = 0; j < matrix[i].length; j += reductionSize) {

for(int x = i; x < i + reductionSize; x++) {

for(int y = j; y < j + reductionSize; y++) {

matrix[x][y] = m[x % reductionSize][y % reductionSize];

}

}

}



166

listCount++;

}

return matrix;

}

// reduce a matrix of reductionSize x reductionSize to a matrix of

// reductionSize / 2 x reductionSize / 2

public static double [][] reduceMatrix(double [][] matrix, int type) {

int reductionSize = matrix.length / 2;

// store all the possible 2 x 2 sub matrices generated from matrix

Matrix [] matricesList = splitMatrix(matrix);

// reduce the sub matrices in matricesList from

// matricesList.length to matricesList.length / 4

Matrix [] reducedMatricesList = new Matrix[matricesList.length / 4];

int matrixCount = 0;

int i = 0;

int j = 1;

int deadline = matrix.length;

for(int count = 0; count < matricesList.length / 2; count += 2) {

double [][] m1 = matricesList[i].getMatrix();

double [][] m2 = matricesList[j].getMatrix();

double [][] m3 = matricesList[i + reductionSize].getMatrix();



167

double [][] m4 = matricesList[j + reductionSize].getMatrix();

Matrix m = new Matrix(m1, m2, m3, m4); // make a 4 x 4 Matrix object

double [][] m_ = null;

if(type == REGULAR_TENSOR)

// reduce the matrix of the object to 2 x 2

m_ = computeKPounds(m.getMatrix());

else

m_ = computeKPoundsDiagTensor(m.getMatrix());

// make a 2 x 2 matrix object

reducedMatricesList[matrixCount++] = new Matrix(m_);

if(j + reductionSize + 1 < deadline) {

i += 2;

j += 2;

}

else{

i = j + reductionSize + 1;

j = i + 1;

deadline += matrix.length;

}

}

return mergeMatrices(reducedMatricesList, reductionSize);

}



168

public static void main(String [] args) {

double [][] matrix = generateMatrix(6);

System.out.println("Matrix size = " + matrix.length);

printMatrix(matrix);

while(matrix.length > 2) {

matrix = reduceMatrix(matrix, DIAGONAL_TENSOR);

System.out.println("Matrix size = " + matrix.length);

printMatrix(matrix);

}

}

}



169

Appendix D

Fast Transform in Two Dimensions

This appendix illustrate the Fast Transform algorithm in two dimensions. We provide

Java codes that implement the Fast Transform Algorithm presented in Chapter 4. We

compute the arithmetic average, the details and the inverse of the average to generate K],

the harmonic average and the arithmetic average of the permeability tensors.

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package HomogenizationProject;

/**

* @author Abibat Lasisi

*

*/

import static HomogenizationProject.MatrixComputation.*;

public class FastTransform {

public static final int X_DIRECTION = 0;

public static final int Y_DIRECTION = 1;



170

// diagonal tensor computation

/* public static double [][] K_DiagTensor = {

{1, 0, 10, 0},

{0, 1, 0, 10},

{1, 0, 10, 0},

{0, 1, 0, 10},

};

*/

public static double [][] K_DiagTensor = {

{2, 0, 1, 0},

{0, 2, 0, 1},

{2, 0, 1, 0},

{0, 2, 0, 1},

};

// diagonal tensor computation

/* public static double [][] K_DiagTensor = {

{1, 0, 2, 0},

{0, 1, 0, 2},

{3, 0, 4, 0},

{0, 3, 0, 4},

};

*/



171

public static double [][] kPound = null;

//public static double [][] matrixAverage = null;

public static double [][] k1Pound = null;

public static double [][] k2Pound = null;

public static double [][] computeAverage(double [][] m, double [][] m_) {

double [][] matrix = new double[m.length][m.length];

for(int i = 0; i < m_.length; i++){

for(int j = 0; j < m_.length; j++){

matrix[i][j] = (m[i][j] + m_[i][j]) / 2.0;

}

}

return matrix;

}

public static double [][] computeAverage(Matrix [] matricesList) {

double [][] matrix = new double[M][M];

for(Matrix m : matricesList) {

double m_[][] = m.getMatrix();

for(int i = 0; i < m_.length; i++){

for(int j = 0; j < m_.length; j++){



172

matrix[i][j] += m_[i][j];

}

}

}

for(int i = 0; i < matrix.length; i++){

for(int j = 0; j < matrix.length; j++){

matrix[i][j] = matrix[i][j] / 4.0;

}

}

return matrix;

}

// k1 - avg

public static double [][] computeDifference(double [][] k1, double [][] avg) {

double [][] matrix = new double[k1.length][k1.length];

for(int i = 0; i < matrix.length; i++) {

for(int j = 0; j < matrix.length; j++) {

matrix[i][j] = k1[i][j] - avg[i][j];

}

}

return matrix;



173

}

// m + m_

public static double [][] computeSum(double [][] m, double [][] m_) {

double [][] matrix = new double[m.length][m.length];

for(int i = 0; i < matrix.length; i++) {

for(int j = 0; j < matrix.length; j++) {

matrix[i][j] = m[i][j] + m_[i][j];

}

}

return matrix;

}

//multiply product by -1

public static double [][] multiplyProdByNegOne(double [][] prod) {

for(int i = 0; i < prod.length; i++) {

for(int j = 0; j < prod.length; j++) {

prod[i][j] = prod[i][j] == 0 ? 0 : prod[i][j] * -1;

}

}

return prod;

}



174

// computeDetail

public static double [][] computeDetail(double [][] diff,

double [][] inv, int direction) {

double [][] prod = matrixByMatrix(diff, inv);

prod = matrixByMatrix(prod, diff);

prod = multiplyProdByNegOne(prod);

//set prod[0][0] or prod[1][1] to 0 depending on direction

if(direction == X_DIRECTION) prod[1][1] = 0;

else prod[0][0] = 0;

return prod;

}

//

public static double [][] computeKPoundStratified(double [][] k1,

double [][] avg) {

double [][] matrix = new double[k1.length][k1.length];

for(int i = 0; i < matrix.length; i++) {

for(int j = 0; j < matrix.length; j++) {

matrix[i][j] = k1[i][j] + avg[i][j];



175

}

}

return matrix;

}

public static double [][] stratifiedProcedure(double [][] matrix,

double [][] matrixAverage, int direction) {

double [][] diff = computeDifference(matrix, matrixAverage);

// compute inverse matrix of the average

Matrix m = new Matrix(matrixAverage);

double matrixInverse [][] = m.matrixInverse().getMatrix();

// compute detail

double [][] detail = computeDetail(diff, matrixInverse, direction);

// compute kPounds

return computeKPoundStratified(matrixAverage, detail);

}

public static double [][] fastTransStratifiedCase(double [][] K_DiagTensor) {

// reduce the original matrix to list of 2 x 2 matrices

Matrix [] matricesList = reduceMatrixTo2By2(K_DiagTensor, M);



176

// compute average

double [][] matrixAverage = computeAverage(matricesList);

double [][] kPound = stratifiedProcedure(matricesList[1].getMatrix(),

matrixAverage, X_DIRECTION);

return kPound;

}

public static double [][] fastTransNonStratifiedCase

(double [][] K_DiagTensor) {

// reduce the original matrix to list of 2 x 2 matrices

Matrix [] matricesList = reduceMatrixTo2By2(K_DiagTensor, M);

// first part

double [][] k0 = matricesList[0].getMatrix();

double [][] k1 = matricesList[1].getMatrix();

/******************/

double [][] matrixAverage = computeAverage(k0, k1);

k1Pound = stratifiedProcedure(k1, matrixAverage, X_DIRECTION);

double [][] k2 = matricesList[2].getMatrix();

double [][] k3 = matricesList[3].getMatrix();

matrixAverage = computeAverage(k2, k3);



177

k2Pound = stratifiedProcedure(k3, matrixAverage, X_DIRECTION);

double [][] k_12_Pound = computeAverage(k1Pound, k2Pound);

//set k_12_Pound[1][1] to 0 for X_DIRECTION

k_12_Pound[1][1] = 0;

// second part

matrixAverage = computeAverage(k0, k2);

double [][] k3Pound = stratifiedProcedure(k2, matrixAverage, Y_DIRECTION);

matrixAverage = computeAverage(k1, k3);

double [][] k4Pound = stratifiedProcedure(k3, matrixAverage, Y_DIRECTION);

double [][] k_34_Pound = computeAverage(k3Pound, k4Pound);

//set k_34_Pound[1][1] to 0 for Y_DIRECTION

k_34_Pound[0][0] = 0;

return computeSum(k_12_Pound, k_34_Pound);

}

public static void main(String [] args) {

System.out.println("Input Matrix - Diagonal Tensor");

printMatrix(K_DiagTensor);



178

// stratifiedCase

kPound = fastTransStratifiedCase(K_DiagTensor);

// non stratifiedCase

kPound = fastTransNonStratifiedCase(K_DiagTensor);

System.out.println("\nResult Matrix - Fast Transform Algorithm");

printMatrix(kPound);

}

}



179

Appendix E

Inverse Transform in Two Dimensions

We provide the implementation of the inverse transform algorithm presented in Chapter

4. The program generates the permeability tensors, K ′s values from the average formula,

K]. This procedure takes as input the K] and the details, ∆K, to produce the K values.

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package HomogenizationProject;

/**

* @author Abibat Lasisi

*

*

*/

import static HomogenizationProject.FastTransform.*;

import static HomogenizationProject.MatrixComputation.*;

import static HomogenizationProject.Generalization.mergeMatrices;

public class InverseTransform {

public static final int STRATIFIED_CASE = 0;



180

public static final int NON_STRATIFIED_CASE = 1;

//multiply product by -1

public static double [][] computeSquareRoot(double [][] matrix) {

for(int i = 0; i < matrix.length; i++) {

for(int j = 0; j < matrix.length; j++) {

matrix[i][j] = Math.sqrt(matrix[i][j]);

}

}

return matrix;

}

//multiply product by -1

public static double [][] setEqual(double [][] m) {

double [][] m_ = new double[m.length][m.length];

for(int i = 0; i < m.length; i++) {

for(int j = 0; j < m.length; j++) {

m_[i][j] = m[i][j];

}

}



181

return m_;

}

// do inverse transform for both cases

public static Matrix [] inverseTransform(double [][] matrixAverage,

int caseType) {

double [][] detail = new double[kPound.length][kPound.length];

for(int i = 0; i < kPound.length; i++) {

for(int j = 0; j < kPound.length; j++) {

detail[i][j] = kPound[i][j] - matrixAverage[i][j];

}

}

// multiply matrices

double [][] diff_squared = matrixByMatrix(detail, matrixAverage);

//multiply result by negative one

diff_squared = multiplyProdByNegOne(diff_squared);

//compute square root of the result

double [][] diff = computeSquareRoot(diff_squared);

//set diff[1][1] to diff[0][0]

diff[1][1] = diff[0][0];

double [][] k1 = computeSum(diff, matrixAverage);



182

double [][] k0 = matrixByScalar(matrixAverage, 2);

k0 = computeDifference(k0, k1);

Matrix [] matricesList;

if(caseType == STRATIFIED_CASE) {

// set matrices equal to one another

double [][] k2 = setEqual(k0);

double [][] k3 = setEqual(k1);

System.out.println("\nResult - k0");

printMatrix(k0);

System.out.println("\nResult - k1");

printMatrix(k1);

System.out.println("\nResult - k2");

printMatrix(k2);

System.out.println("\nResult - k3");

printMatrix(k3);

matricesList = new Matrix[4];

matricesList[0] = new Matrix(k0);

matricesList[1] = new Matrix(k1);



183

matricesList[2] = new Matrix(k2);

matricesList[3] = new Matrix(k3);

return matricesList; //mergeMatrices(matricesList, 4);

}

else{

matricesList = new Matrix[2];

System.out.println("\nResult - k0");

printMatrix(k0);

System.out.println("\nResult - k1");

printMatrix(k1);

matricesList[0] = new Matrix(k0);

matricesList[1] = new Matrix(k1);

return matricesList;

}

}

public static double [][] inverseTransStratifiedCase() {

// stratifiedCase - called to obtain kpound

kPound = fastTransStratifiedCase(K_DiagTensor);



184

// recover the arithmetic average

double [][] matrixAverage = { {kPound[1][1], 0},

{0, kPound[1][1]}

};

Matrix [] matricesList = inverseTransform(matrixAverage,

STRATIFIED_CASE);

Matrix m = new Matrix(matricesList[0].getMatrix(),

matricesList[1].getMatrix(),

matricesList[2].getMatrix(),

matricesList[3].getMatrix());

return m.getMatrix();

}

// recover average

public static double [][] recoverAverage() {

return null;

}

public static void recoverKpounds(double [][] k_12_Pound,

double [][] k_34_Pound) {



185

k_12_Pound[0][0] = kPound[0][0];

k_34_Pound[1][1] = kPound[1][1];

}

public static void updateKPound(double [][] pound) {

for(int i = 0; i < kPound.length; i++) {

for(int j = 0; j < kPound.length; j++) {

kPound[i][j] = pound[i][j];

}

}

}

public static double [][] inverseTransNonStratifiedCase() {

// non stratifiedCase - called to obtain kpound

kPound = fastTransNonStratifiedCase(K_DiagTensor);

// recover k_12_Pound and k_34_Pound from kPound

//// double [][] k_12_Pound = new double[kPound.length][kPound.length];

//// double [][] k_34_Pound = new double[kPound.length][kPound.length];

////

//// recoverKpounds(k_12_Pound, k_34_Pound);

////

//// System.out.println("\nResult Matrix - k_12_Pound");

//// printMatrix(k_12_Pound);

////



186

//// System.out.println("\nResult Matrix - k_34_Pound");

//// printMatrix(k_34_Pound);

// recover the arithmetic average **********

double [][] matrixAverage = { {k1Pound[1][1], 0},

{0, k1Pound[1][1]}

};

//update kPound

kPound = k1Pound;

//updateKPound(k1Pound);

Matrix [] matricesList1 = inverseTransform(matrixAverage,

NON_STRATIFIED_CASE);

// recover the arithmetic average **********

double [][] matrixAverage1 = { {k2Pound[1][1], 0},

{0, k2Pound[1][1]}

};

//update kPound

kPound = k2Pound;

//updateKPound(k2Pound);

Matrix [] matricesList2 = inverseTransform(matrixAverage1,

NON_STRATIFIED_CASE);

Matrix m = new Matrix(matricesList1[0].getMatrix(),



187

matricesList1[1].getMatrix(),

matricesList2[0].getMatrix(),

matricesList2[1].getMatrix());

return m.getMatrix();

}

public static void main(String [] args) {

// inverse Transform for Stratified Case

double [][] K_DiagTensor = inverseTransStratifiedCase();

// inverse Transform for NonStratified Case

//double [][] K_DiagTensor = inverseTransNonStratifiedCase();

System.out.println("\nInverse Transform Result Matrix - Diagonal Tensor");

printMatrix(K_DiagTensor);

}

}



188

Appendix F

Additional Numerical Examples

Here, we provide more examples of the numerical results obtained from the implemen-

tation of the codes.

Example 1

run:

Matrix size = 4

1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0

1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0

Matrix size = 2

1.8181818181818183 0.0

0.0 5.5

BUILD SUCCESSFUL (total time: 1 second)



189

run:

Matrix size = 8

1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0

1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0

1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0

1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0

Matrix size = 4

1.8181818181818183 0.0 1.8181818181818183 0.0

0.0 5.5 0.0 5.5

1.8181818181818183 0.0 1.8181818181818183 0.0

0.0 5.5 0.0 5.5

Matrix size = 2

1.8181818181818183 0.0

0.0 5.5

BUILD SUCCESSFUL (total time: 1 second)



190

run:

Matrix size = 16

1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0

1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0

1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0

1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0

1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0

1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0

1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0

1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0

0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0 0.0 1.0 0.0 10.0

Matrix size = 8

1.8181818181818183 0.0 1.8181818181818183 0.0 1.8181818181818183

0.0 1.8181818181818183 0.0

0.0 5.5 0.0 5.5 0.0 5.5 0.0 5.5

1.8181818181818183 0.0 1.8181818181818183 0.0 1.8181818181818183

0.0 1.8181818181818183 0.0

0.0 5.5 0.0 5.5 0.0 5.5 0.0 5.5

1.8181818181818183 0.0 1.8181818181818183 0.0 1.8181818181818183

0.0 1.8181818181818183 0.0

0.0 5.5 0.0 5.5 0.0 5.5 0.0 5.5



191

1.8181818181818183 0.0 1.8181818181818183 0.0 1.8181818181818183

0.0 1.8181818181818183 0.0

0.0 5.5 0.0 5.5 0.0 5.5 0.0 5.5

Matrix size = 4

1.8181818181818183 0.0 1.8181818181818183 0.0

0.0 5.5 0.0 5.5

1.8181818181818183 0.0 1.8181818181818183 0.0

0.0 5.5 0.0 5.5

Matrix size = 2

1.8181818181818183 0.0

0.0 5.5

BUILD SUCCESSFUL (total time: 1 second)



192

Example 2

run:

Matrix size = 4

1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0

1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0

Matrix size = 2

1.3333333333333333 0.0

0.0 1.5

BUILD SUCCESSFUL (total time: 1 second)



193

run:

Matrix size = 8

1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0

1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0

1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0

1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0

Matrix size = 4

1.3333333333333333 0.0 1.3333333333333333 0.0

0.0 1.5 0.0 1.5

1.3333333333333333 0.0 1.3333333333333333 0.0

0.0 1.5 0.0 1.5

Matrix size = 2

1.3333333333333333 0.0

0.0 1.5

BUILD SUCCESSFUL (total time: 1 second)



194

run:

Matrix size = 16

1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0

1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0

1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0

1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0

1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0

1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0

1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0

1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0

0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0 0.0 1.0 0.0 2.0

Matrix size = 8

1.3333333333333333 0.0 1.3333333333333333 0.0

1.3333333333333333 0.0 1.3333333333333333 0.0

0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5

1.3333333333333333 0.0 1.3333333333333333 0.0

1.3333333333333333 0.0 1.3333333333333333 0.0

0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5

1.3333333333333333 0.0 1.3333333333333333 0.0

1.3333333333333333 0.0 1.3333333333333333 0.0

0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5



195

1.3333333333333333 0.0 1.3333333333333333 0.0

1.3333333333333333 0.0 1.3333333333333333 0.0

0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5

Matrix size = 4

1.3333333333333333 0.0 1.3333333333333333 0.0

0.0 1.5 0.0 1.5

1.3333333333333333 0.0 1.3333333333333333 0.0

0.0 1.5 0.0 1.5

Matrix size = 2

1.3333333333333333 0.0

0.0 1.5

BUILD SUCCESSFUL (total time: 1 second)



Abibat A. Lasisi

Department of Mathematics and Statistics 435-890-6569

Utah State University abibat.lasisi@aggiemail.usu.edu

Logan, UT 84341, USA

Employment

• Graduate Instructor Aug. 2013 – June 2018

Department of Mathematics and Statistics, Utah State University

• Teaching Assistant Aug. 2010 – May 2012

Department of Mathematics and Statistics, Utah State University

Education

• Ph.D., Applied Mathematics, Utah State University, USA Aug. 2013 –July 2018

GPA: 4.0/4.0

Dissertation: Multi-resolution Analysis Using Wavelet Basis Conditioned on Homogenization

Advisor: Dr. Joseph Koebbie

• MMath, Mathematics, Utah State University, USA Aug. 2010 – Aug. 2012

GPA: 3.88/4.0

Report: Validation Study : A Case Study of Calculus 1 (MATH 1210)

• M.Sc., Computer Science, University of Lagos, Nigeria Sept. 2006 – Jan. 2008

Thesis: Implicit Numerical Methods for Solving Initial Value Problem of Ordinary Differential Equations

• B.Sc., Mathematical Sciences, Federal University of Agric., Abeokuta, Nigeria Apr. 1999 - May 2003

Project: Numerical Solutions of Rational Functions Via Pade and Msehly’s Methods of Approximation

Research Interests

Computational and applied mathematics with emphasis on:

• multi-resolution analysis (MRA) using wavelet basis conditioned on homogenization

• wavelet construction/reconstruction and analysis of numerical schemes

Teaching Interests

• Undergraduate and graduate algebra, calculus, trigonometry, geometry, numerical analysis, ODE, PDE,

and numerical optimization courses

Technical Skills

• SAS (proficient), R (good), MATLAB (good), and LATEX (proficient)

Awards and Honors

• 2013–Present : Graduate Tuition Award, Utah State University

• 2012–Present : Honoree, Golden Key International Honor Society

• 2011– 2012 : Joseph Reuel Harris Scholarship, College of Science, Utah State University

• 2011 : Mathematics and Statistics department’s Scholarship, Utah State University

Professional Affiliation

• Member, Golden Key International Honor Society 2012 - present

• Member, Society for Industrial and Applied Mathematics (SIAM) 2014 - present

• Member, American Mathematical Society (AMS) 2014 - present

1

196



Abibat A. Lasisi

Refereed Publications

• Joseph V. Koebbe and Abibat A. Lasisi. Homogenization-Wavelet Reconstruction Methods for Elliptic

Differential Equations [In Preparation].

• Joseph V. Koebbe, Abibat A. Lasisi, and Ju Yi. Construction of Wavelet Bases Conditioned on Elliptic

PDE and Hyperbolic Conservation Laws. Rocky Mountain Partial Differential Equations Conference,

Brigham Young University, May 18 – 19, 2017 [Abstract].

• Ramoni O. Lasisi and Abibat A. Lasisi. Improved Heuristic for Manipulation of Second-order Copeland

Elections. In proceedings of the 3rd Global Conference on Artificial Intelligence (GCAI 2017), Miami,

Florida, USA, 18–22 October 2017, pp. 162 –174.

• Ramoni O. Lasisi and Abibat A. Lasisi. Bounds on Manipulation by Merging in Weighted Voting Games.

In the 6th International Workshop on Computational Social Choice, Toulouse, France, June 22 - 24, 2016.

• Ramoni O. Lasisi and Abibat A. Lasisi. The Shapley Value in Voting Games: Computing Single Large

Party’s Power and Bounds for Manipulation by Merging. In proceedings of the 28th International Florida

Artificial Intelligence Research Society Conference, Florida, USA, May 18 - 20, 2015, pp. 55 – 60.

• Ramoni O. Lasisi and Abibat A. Lasisi. Manipulation of Second-Order Copeland Elections Using

Branch-and-Bound Heuristic. In proceedings of the 28th International Florida Artificial Intelligence Re-

search Society Conference, Hollywood, Florida, USA, May 18 - 20, 2015. [Poster abstract].

Teaching Experience

• Summer 2018 : Graduate Instructor, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching a section of Pre-Calculus course, MATH 1060 - Trigonometry.

• Spring 2018 : Graduate Instructor, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching two sections of Pre-Calculus course, MATH 1060 - Trigonometry.

• Fall 2017 : (1) Teaching Assistant, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching assistant for MATH 2250 - Differential Equations and Linear Algebra. My duties

include teaching one section of recitation class, proctoring tests, grading, providing valuable feedbacks on

quizzes and holding office hours. (2) Grader: Grader for STAT 5200 - Design of Experiments.

• Summer 2017 : Graduate Instructor, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching a section of Pre-Calculus course, MATH 1050 - College Algebra.

• Spring 2017 : Teaching Assistant, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching assistant for MATH 0995 - College Mathematics Preparation. My duties include

teaching three sections of recitation classes, proctoring tests, grading, providing valuable feedbacks on

quizzes and holding office hours.

• Summer 2016 : Graduate Instructor, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching a section of Pre-Calculus course, MATH 1050 - College Algebra.

• Spring 2016 : Teaching Assistant, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching assistant for MATH 1210 - Calculus I. My duties include teaching two sections of

recitation classes, proctoring tests, grading, providing valuable feedbacks on quizzes and holding office

hours.

• Fall 2015 : Graduate Instructor, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching two sections of Pre-Calculus course, MATH 1060 - Trigonometry.

2

197



Abibat A. Lasisi

• Summer 2015 : Graduate Instructor, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching two sections of Pre-Calculus course, MATH 1060 - Trigonometry.

• Spring 2015 : Teaching Assistant, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching Assistant for Math 1050 - College Algebra. My duties include teaching three recita-

tion classes, proctoring tests, grading, providing valuable feedbacks on quizzes, and holding tutor hours.

• Fall 2014 : Graduate Instructor, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching a lower level mathematics course, MATH 1010 - Intermediate Algebra.

• Summer 2014 : Graduate Instructor, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching a lower level mathematics course, MATH 0990 - Beginning Algebra.

• Spring 2014 : Graduate Instructor, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching a lower level mathematics course, MATH 0990 - Beginning Algebra.

• Fall 2013 : Graduate Instructor, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching a lower level mathematics course, MATH 0990 - Beginning Algebra.

• Spring 2012 : Graduate Instructor, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching a lower level mathematics course, MATH 0990 - Beginning Algebra.

• Fall 2011 : Graduate Instructor, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching a lower level mathematics course, MATH 0990 - Beginning Algebra.

My duties as a Graduate Instructor from Fall 2011 to Falll 2014 included teaching the assigned

courses, grading, providing valuable feedbacks (on tests, homework, exams), and holding office hours.

• Spring 2011 : Teaching Assistant, Department of Mathematics and Statistics, Utah State Univer-

sity. Teaching Assistant for MATH 2210 - Multivariate Calculus. My duties included grading, pro-

viding valuable feedbacks on homework, and holding office hours.

• Fall 2010 : Teaching Assistant, Department of Mathematics and Statistics, Utah State University. Teach-

ing Assistant for MATH 1100 - Calculus Techniques. My duties included teaching three recitation

classes, grading, providing valuable feedbacks on homeworks, and holding office hours.

• August 2010 : Completed and passed the International Teaching Assistants’ Workshop Pre-Fall

2010. Evaluation of the workshop is based on participant’s comprehensibility in a teaching role using the

following factors: pronunciation, fluency, organization, and classroom interaction.

References and Contact Information

1. Dr. Joseph V. Koebbe

Associate Professor and Ph.D. Advisor

Department of Mathematics & Statistics

Utah State University

Phone: 435-797-2825

Email : joe.koebbe@usu.edu

2. Dr. James S. Cangelosi

Professor

Department of Mathematics & Statistics

Utah State University

Phone: 435-797-1415

Email : jim.cangelosi@usu.edu

3

198



Abibat A. Lasisi

3. Dr. Nghiem Nguyen

Associate Professor

Department of Mathematics & Statistics

Utah State University

Phone: 435-797-2819

Email : nghiem.nguyen@usu.edu

4

199


	Multi-Resolution Analysis Using Wavelet Basis Conditioned on Homogenization
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Overview
	Literature Review
	Main Contributions
	Organization of the Dissertation

	MULTI-SCALE METHODS
	Description of Multi-scale Methods
	Multiresolution Analysis
	A Brief Review of Homogenization
	Equivalence of Wavelet Analysis and Two-Cell Homogenization

	HOMOGENIZATION WAVELET RECONSTRUCTION IN ONE DIMENSION
	A One Dimensional Fast Transform for Homogenized Coefficient Values
	Recursive Differencing of Analytic Solutions
	Computing Differences of Solutions of n-Cell Problem

	HOMOGENIZATION WAVELET RECONSTRUCTION IN TWO DIMENSIONS WITH DIAGONAL TENSORS
	The Local Problem in Two Dimensions
	The Solution for Diagonal Tensors
	A Two Dimensional Fast Transform for Homogenized Coefficient Values
	Homogenization Wavelet Reconstruction in Two Dimensions

	HOMOGENIZATION WAVELET RECONSTRUCTION IN TWO DIMENSIONS WITH FULL TENSORS
	The Local Problem in Two Dimensions with Full Tensors
	Numerical Computations of the Permeability in Two Dimensions
	Weak Solution of the Full Tensor Local Elliptic Problem

	SUMMARY OF WORK, CONCLUSIONS AND FUTURE RESEARCH
	Summary and Conclusions
	Future Research Direction

	APPENDICES
	 Linear Algebra Basics
	Numerical Solutions in One Dimension for Computing Alphas and Betas 
	Numerical Solution of Local Elliptic Problem in Two Dimensions
	Fast Transform in Two Dimensions
	Inverse Transform in Two Dimensions
	Additional Numerical Examples






