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ABSTRACT

Brun’s 1920 Theorem on Goldbach’s Conjecture

by

James A. Farrugia, Master of Science

Utah State University, 2018

Major Professor: Dr. David E. Brown
Department: Mathematics and Statistics

One form of Goldbach’s Conjecture asserts that every even integer greater than 4
is the sum of two odd primes. In 1920 Viggo Brun proved that every sufficiently large
even number can be written as the sum of two numbers, each having at most nine prime
factors. This thesis explains the overarching principles governing the intricate arguments
Brun used to prove his result.

Though there do exist accounts of Brun’s methods, those accounts seem to miss
the forest for the trees. In contrast, this thesis explains the relatively simple structure
underlying Brun’s arguments, deliberately avoiding most of his elaborate machinery
and idiosyncratic notation. For further details, the curious reader is referred to Brun’s
original paper (in French).

Brun constructs two main sieves. For each of these sieves, he establishes a lower
bound for the number of elements N that fall through the sieve. Then, he uses addi-
tional results by Stirling and Mertens, along with innovative algebraic manipulations to
construct improved lower bounds for N . Subsequently, Brun applies his earlier results,
mutatis mutandis, to Merlin’s double sieve and obtains the result that allows him to
prove his theorem on Goldbach’s Conjecture.

In distilled form, Brun’s arguments run as follows: start with a lower bound of the
form N > M − R, which this thesis calls “the Fundamental Inequality.” Then, bound
M below by A and bound R above by B, to show that M > A−B. Thus, A−B is the
improved lower bound for N .

(95 pages)
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PUBLIC ABSTRACT

Brun’s 1920 Theorem on Goldbach’s Conjecture

James A. Farrugia

One form of Goldbach’s Conjecture asserts that every even integer greater than 4
is the sum of two odd primes. In 1920 Viggo Brun proved that every sufficiently large
even number can be written as the sum of two numbers, each having at most nine prime
factors. This thesis explains the overarching principles governing the intricate arguments
Brun used to prove his result.

Though there do exist accounts of Brun’s methods, those accounts seem to miss
the forest for the trees. In contrast, this thesis explains the relatively simple structure
underlying Brun’s arguments, deliberately avoiding most of his elaborate machinery
and idiosyncratic notation. For further details, the curious reader is referred to Brun’s
original paper (in French).
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CHAPTER 1

INTRODUCTION

1.1 Overview

A conjecture named after Christian Goldbach (1690-1764) asserts that every even

integer greater than four is the sum of two odd primes [53]. This conjecture has not

yet been proved. However, many results related to Goldbach’s Conjecture have been

proved, one of which was published by Viggo Brun in 1920 [3]: every sufficiently large

even number can be written as the sum of two numbers, each of which has at most nine

prime factors. This thesis gives a simplified explanation of how Brun achieved this

result, which we call Brun’s theorem.

Although accounts of Brun’s theorem do exist in the literature, those accounts seem

intended for advanced undergraduates or graduate students [7, 17, 19, 21, 30, 39, 43].

The goal of this thesis is to explain in a simplified but faithful way the methods Brun used

to obtain his result on Goldbach’s Conjecture, and thus make Brun’s original arguments

accessible to a wider audience.

1.1.1 What Brun Did to Achieve his Result

At the risk of oversimplification, Brun

1. modified the sieve of Eratosthenes [40] (see Section 1.2) by

• using a double sieve, based on work by Jean Merlin [22], to provide results

about pairs of numbers whose sum is an even number (see Section 1.9), and

• reducing the size of the largest prime used for sifting, with the result that

certain numbers (those with at most nine primes factors) fall through his

sieve (see Section 1.8)
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2. made and exploited observations about the component calculations used in the

sieve of Eratosthenes-Legendre to develop various lower-bound estimates for the

number of numbers that survive his sifting process (see Sections 1.4, 3.2, 3.3, and

3.4), and

3. used certain asymptotic approximations (formulas by Mertens and Stirling [49])

to show that one of his improved lower-bound estimates allowed him to establish

his result on Goldbach’s Conjecture (see Sections 3.3 - 3.5).

1.1.2 Preview of the Fundamental Inequality: N > M −R

In §3 and §4 of [3], Brun develops two sieves and shows that the number N of

elements that fall through each sieve is bounded below by the difference of a main term

M and a remainder term R. Brun then uses inequalities of the form N > M −R as his

points of departure for calculations that yield an improved lower bound for the number

of elements falling through his sieves.

In each of his two main sieves in §3 and §4 of [3], Brun’s lengthy calculations can be

put into a simple conceptual scheme: he bounds the main term M below by A and the

remainder term R above by B, thus arriving at an improved lower bound N > A−B.

Because Brun starts with lower bounds expressed as inequalities of the form N >

M−R, and because Brun’s subsequent calculations can be put into the simple conceptual

scheme described in the previous paragraph, we refer to the inequality N > M − R as

the Fundamental Inequality (see also Section 1.6). This conceptual scheme is the guiding

thread through Brun’s calculations that can help readers see the forest for the trees.

In §3 and §4 of [3] Brun shows that the two sieves he uses do actually yield lower

bounds for N , the number of elements that fall through the sieve. In Section 3.3.2 we

explain, using an argument different from the one Brun uses, why his first sieve gives a

lower bound for N . In Section 3.4.2 we explain, using more complicated arguments that

follow those used by Brun, why his second sieve gives a lower bound for N .

1.1.3 Plan

The remainder of this chapter deals with the following:

• The sieve of Eratosthenes
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• The sieve of Eratosthenes-Legendre

• The Legendre formula

• The “best” lower bound for N

• The Fundamental Inequality N > M −R

• Sieve integrity when truncating the Legendre formula

• Why some composites fall through Brun’s sieves

• Brun’s use of Merlin’s double sieve

• A contextual overview of Brun’s approach

Notation is introduced along with examples, and the relevant sieve machinery is built

up slowly. Chapter 2 discusses some history and significance of Goldbach’s Conjecture,

Brun’s work, and related results. Chapter 3 provides a discussion of the methods Brun

used to achieve his 1920 result on Goldbach’s Conjecture. The discussion is intended to

provide a perspective from which readers can see Brun’s work as “nothing more” than an

elaborate modification of the fundamental inequality N > M − R. Many details, most

of which tend to obscure the main threads of Brun’s arguments, are left for the reader

to pursue, either in Brun’s original paper in French [3], or in the English translation by

Rui [44] (caveat lector, since much is lost in translation).

1.2 The Sieve of Eratosthenes

In everyday terminology a sieve is a device that separates coarser materials from

finer ones by trapping the coarser material in the sieve and allowing the finer material

to pass through the sieve. Depending on one’s intention, one’s interest may be in the

material that gets trapped (think of panning for gold) or in the material that passes

through (think of sifting flour). In number theory, a sieve is an operation on a sequence

of numbers (often a finite sequence of positive integers) that yields a subset, or an

estimate of the size of a subset, of the original sequence. Interest in the results of

a number-theoretic sieve usually centers on the finer elements (primes or composites

containing only a few prime factors) that fall through the sieve, or the number of such

elements.



4

The sieve of Eratosthenes is a millennia-old technique for finding primes numbers,

given that we already know certain smaller primes. The sieve of Eratosthenes is named

after Eratosthenes, a Greek mathematician from the 3rd century BC, who may be best

known for his estimate of the circumference of the earth (and less well known for his role

as librarian of the ancient library at Alexandria). The earliest known description of the

sieve of Eratosthenes is by Nicomachus (ca. 60 AD - ca. 120 AD) in his Introduction

to Arithmetic [40], though the sieve described by Nicomachus appears to be not quite

the same as modern versions of the sieve of Eratosthenes. (In particular, it sifts the odd

positive integers greater than 1 (see [40], p. 204), whereas modern versions typically sift

consecutive positive integers less than or equal to some number x).

The numbers that fall through the sieve of Eratosthenes are primes and the number

1 (see Example 1.2.0.1). Our chief interest is in the number of elements that fall through

the sieve. However, in certain modifications of the sieve of Eratosthenes, such as that

done by Brun, we are also interested in the nature of the numbers that pass through the

sieve, since in Brun’s modified sieve, not all the numbers that fall through the sieve are

necessarily prime. In Brun’s theorem, these numbers may have up to nine prime factors,

and his “coarser sieve” can be considered to be a byproduct or cost of his technique.

The sieve of Eratosthenes plays an important role in our investigation because

it forms the basis of methods subsequently developed by Legendre (see Sections 1.3

and 1.4), which in turn were extensively manipulated by Brun (though Brun does not

mention Legendre’s work in his 1920 paper).

Example 1.2.0.1. Consider the finite sequence of positive integers 1, 2, 3, . . . , 37. Sup-

pose we want to “sift out” the composite numbers of this sequence to allow only the

primes and the number 1 to fall through the sieve. How might we do that?

The sieving operation we perform on the original sequence can be considered in

two steps. First, we identify the composite numbers in the sequence. Second, we remove

those composite numbers from the original sequence - i.e., we trap them in the sieve – so

that the numbers that fall through the sieve are just the prime numbers from 1 through

37 and the number 1.
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Elaborating on the first step, we might ask, “How can we identify the composite

numbers between 1 and 37 (inclusive)?” Since, by the fundamental theorem of arith-

metic, any composite number can be expressed uniquely (up to rearrangement of factors)

as a product of primes, we can identify composite numbers between 1 and 37 by first

considering which prime numbers can be factors of numbers in that range. Certainly we

need not consider any primes greater than 37, since no such prime can be a factor of 37.

It turns out that we also need not consider any primes greater than
√

37. We prove this

claim below.

So, to identify the composite numbers between 1 and 37, it suffices to form multiples

of the primes less than or equal to
√

37, i.e., multiples of 2, 3, and 5. We can see in

Figure 1.2.0.1 the result of using the sieve of Eratosthenes on the sequence 1, 2, 3, . . . , 37

from Example 1.2.0.1.

Figure 1.2.0.1: Primes and 1 fall through the sieve of Eratosthenes

Lines through numbers in the top row indicate that those numbers, as multiples of

2, 3 or 5, are trapped in the sieve. More than one line through a number indicates that

the number is a multiple of more than one of 2, 3, and 5. As we shall see in Section 1.3,

the number of times a given composite number is crossed out is significant. By keeping

track of how many times a given composite is crossed out, we can develop a formula to

compute, in simple cases, the number of elements that pass through a sieve.

Next we prove the general case of the claim mentioned above, namely, that when

sifting the sequence 1, 2, 3, . . . , 37, we need only consider multiples of primes less than

or equal to
√

37.

Setup: Let x be an arbitrary but fixed positive integer, and consider the sequence

1, 2, 3, . . . , x of consecutive positive integers less than or equal to x. Let p1, p2, . . . pr be

consecutive primes with pr = p(
√
x) the largest prime less than or equal to

√
x. Define

the output of the sifting function S(1, x, p1, p2, . . . , pr) to be the elements of the sequence

1, 2, 3, . . . , x that pass through a sieve that traps multiples of the primes p1, p2, . . . , pr
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that lie between 1 and x inclusive, while allowing the remaining numbers of the sequence

1, 2, 3, . . . , x to pass through.

Claim 1.2.1. When sifting the sequence of consecutive integers from 1 through x by

the consecutive primes p1, p2, . . . , pr, where pr ≤
√
x, we need only consider multiples

of primes less than or equal to
√
x.

Proof. Suppose, to the contrary, that to trap all the composite numbers from 1 through

x in the sieve, we need to sift by at least one prime greater than
√
x. That is, suppose

there exists a composite number c ≤ x that is not trapped in the sieve when sifting by the

primes p1, p2, . . . , pr. That means c is not a multiple of any of the primes p1, p2, . . . , pr,

for if it were, it would be trapped in the sieve. Thus, each of c’s prime factors must

be greater than pr and therefore greater than
√
x. But that would mean that c itself

is greater than x, contradicting the constraint that c ≤ x. Therefore, the original

supposition is false, and the claim is true.

The sifting operation can also be further broken down into different steps that

correspond to trapping multiples of individual primes. Viewing the details of these

steps will allow us to see certain key internal workings of the sieve machinery. An

amplification of the component machinery of the sieve of Eratosthenes, called the sieve

of Eratosthenes-Legendre (see Section 1.3), will show us that various components of

this machinery can be manipulated to achieve certain desired results. In fact, Brun

manipulated these internal components by actually removing some of them, with the

result that his sieve machinery still works, but gives a different kind of result from that

obtained by the operation of the traditional sieve of Eratosthenes.

1.3 The Sieve of Eratosthenes-Legendre

The sieve of Eratosthenes-Legendre refers to the sieve of Eratosthenes from the

perspective of a formula credited to Legendre 1 for calculating the number of elements,

N(1, x, p1, p2, . . . , pr), that pass through a sieve, where N(1, x, p1, p2, . . . , pr) equals the

number of elements that fall through a sieve of positive integers (not necessarily consec-

utive) from 1 through x that are sifted by multiples of the primes p1, . . . , pr. The primes

p1, . . . , pr are called the sifting primes.
1The credit accorded to Legendre for this formula comes from his work in the second edition of his

Essai sur la théorie des nombres in 1808 [34] (pp. 399-401), where he gave a method of counting elements
in a sequence by considering how many times certain prime factors divided those elements.



7

One way to consider the functioning of the formula for N(1, x, p1, p2, . . . , pr) is as

a stepwise procedure that computes a running count of the number of elements trapped

in the sieve and then adjusts that count at each step. See Example 1.4.0.1.

Consider the number of elements that fall through the traditional sieve of Eratos-

thenes. We’ll calculate this number via a sequence of steps that track a running count

of the elements so far trapped in the sieve. We start with a full count of all the inte-

gers in the given sequence, and we adjust this count by considering how many times

an element is trapped in the sieve at each step of the process. In Example 1.2.0.1, for

instance, 6 is trapped twice - once as a multiple of 2 and once again as a multiple of

3. The formula we’ll use adjusts its running count by alternately including or excluding

the number of certain composites that are trapped at a given stage of the sieve process

- hence its usual name, the ‘Principle of Inclusion-Exclusion’ or ‘PIE’ for short [48].

The PIE can be seen as a formulaic distillation of the argument Legendre used. Thus,

when we use the PIE to find N(1, x, p1, p2, . . . , p(
√
x)), the number of elements that

pass through the sieve is equal to the number of elements passing through the tradi-

tional sieve of Eratosthenes. Example 1.4.0.1 discusses an implementation of the PIE

for N(1, 37, p1, p2, . . . , pr), where the r-th sifting prime is pr, which equals in this case

p(
√

37)), the largest prime less than or equal to
√

37, i.e., 5.

Suppose for a moment that we have in hand a formula for the PIE and that

we’ve used it to calculate N(1, x, p1, p2, . . . , pr) for specific values of x and p1, . . . , pr.

That is all well and good. But, just because we have a closed formula for calculating

N(1, x, p1, p2, . . . , pr) in particular cases does not mean we know or can easily determine

the size of N(1, x, p1, p2, . . . , pr) in all cases that may be of interest. In fact, according

to Tenenbaum and Mèndes France,

Brun’s motivation was to make Legendre’s formula for the sieve of Eratos-

thenes usable, for in its basic form it contains too many terms to permit

manageable calculations ([52], p. 25).

The reason we want to know the size of N(1, x, p1, p2, . . . , pr) is to make sure that

for all cases under consideration (i.e., for sufficiently large even numbers) the size of

N(1, x, p1, p2, . . . , pr) is at least large enough to allow some of the “right kind of numbers”
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to fall through the sieve, where by the “right kind of numbers” we mean pairs of numbers

that have at most nine prime factors and whose sum is an even number x.

There are at least two relevant ways of estimating the size of N(1, x, p1, p2, . . . , pr):

through asymptotics (which deal with the eventual size of N(1, x, p1, p2, . . . , pr) as x

becomes large) and through bounds that guarantee that enough of the right kind of

numbers pass through his sieve. Brun obtains his results by a skillful use of both these

ways of estimating N(1, x, p1, p2, . . . , pr).

1.4 The Legendre Formula

The Legendre formula (1.4.0.2) is a method that Legendre used in [34] to calculate

the number of elements passing through a sieve, though he did not use sieve terminol-

ogy per se. Legendre’s method was later recognized to be essentially the Principle of

Inclusion-Exclusion (PIE), and so the Legendre formula as we know it today is just an

implementation of the PIE that allows us to determine the number of elements that

pass through a sieve. Next, we show how to use the Legendre formula on the sequence

1, 2, 3, . . . , 37.

Example 1.4.0.1. Use the Legendre formula to find N(1, 37, p1, p2, . . . , p(
√

37)), where

p(
√

37) = 5, the largest prime less than or equal to
√

37.

This example is the same as Example 1.2.0.1, but now we focus on counting the

number of elements that fall through the sieve, and we pay attention to the number of

times certain composite numbers are “crossed out” in the sifting process.

Figure 1.4.0.1: Finding N(1, 37, 2, 3, 5)

Each strike-through in the top row of numbers in Figure 1.4.0.1 tracks one step of

our running count. To count the number of multiples of a given number d that are in

the sequence 1, 2, 3, 4, . . . , 37, we divide 37 by d and then take the greatest integer part

of the result, denoted
⌊37
d

⌋
. We start our running count at 37, because at this step we

trap no numbers, so they all fall through. Next we subtract from 37 the number of all



9

the multiples of 2, 3, and 5 that are in the top row of Figure 1.4.0.1. Since this last

steps overcounts the number of times we trap multiples of 2, 3, and 5, we then adjust

the running count by adding back the appropriate multiples of pairs of primes less than
√

37. Finally, since at this point we have added to our count the product 2 · 3 · 5 one

time too many, we subtract it back out.

N(1, 37, p1, p2, . . . , p(
√

37)) = b37c

−
⌊37

2

⌋
−
⌊37

3

⌋
−
⌊37

5

⌋
+
⌊ 37

2 · 3

⌋
+
⌊ 37

2 · 5

⌋
+
⌊ 37

3 · 5

⌋
−
⌊ 37

2 · 3 · 5

⌋
= 10

(1.4.0.1)

In general, the pattern of the Legendre formula for N(1, x, p1, p2, . . . , pr), where

pr = p(
√
x) is the largest prime less than or equal to

√
x, is:

N(1, x, p1, p2, . . . , pr) = bxc

−
∑
p≤
√
x

⌊
x

p

⌋

+
∑∑

p1<p2≤
√
x

⌊
x

p1p2

⌋

−
∑∑∑
p1<p2<p3≤

√
x

⌊
x

p1p2p3

⌋

+ . . .+ (−1)r
∑∑

. . .
∑

p1<...<pr≤
√
x

⌊
x

p1p2 . . . pr

⌋

(1.4.0.2)

With two additional notations, we can represent the Legendre formula differently,

in a way that will provide certain insights into the value of N(1, x, p1, p2, . . . , pr) (see

Section 1.4.1)2.

First, we combine the different summations in 1.4.0.2 into just one summation. We

do this by first setting P =
∏
p≤
√
x

p, the product of all the sifting primes. Then, a number

d divides P iff d = 1, or d is prime, or d is the product of unique primes in P . With this
2I follow fairly closely the presentation of [43], though I elaborate on some details omitted there.
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new notation 1.4.0.2 becomes

N(1, x, p1, p2, . . . , pr) =
∑
d|P

(−1)k
⌊
x

d

⌋
, (1.4.0.3)

where r equals the number of primes less than or equal to
√
x, and k equals the number

of distinct prime factors in d.

Second, we consolidate the alternating + and − signs by defining a function that

keeps track of these signs. As it happens, there is a well-known function in number

theory that does precisely what we want: the Möbius µ function, defined in 1.4.0.4

below. This function has deep connections with other areas of number theory (see, for

example [31]), but we consider it here simply as a way to express the Legendre formula

in a form that allows for more detailed analysis:

µ(n) =


1 if n = 1

0 if a2|n for some a > 1

(−1)k if n has k distinct prime factors.

(1.4.0.4)

With the definitions of P =
∏
p≤
√
x

p and the Möbius function in hand, we can express

the Legendre formula succinctly as

N(1, x, p1, p2, . . . , pr) =
∑
d|P

µ(d)
⌊
x

d

⌋
. (1.4.0.5)

Next, we re-write 1.4.0.5 in order to show a major limitation of the sieve of

Eratosthenes-Legendre as it is implemented via the Legendre formula.

1.4.1 Chief Limitation of the Legendre Formula

The chief limitation of the Legendre formula for Brun’s purposes is that without

further modification it yields an “error term” that is too large, which in turn makes

difficult the estimation of a lower bound for N(1, x, p1, p2, . . . , pr), the number of ele-

ments passing through a sieve. (Recall that Brun wants a lower bound estimate for

N(1, x, p1, p2, . . . , pr) so that he can be sure enough of the “right kind” of numbers pass

through his sieve, where the “right kind” of numbers are such that they contain at most

nine prime factors and there are pairs of them whose sum is an even number.)

What do we mean by the “error term” in the Legendre formula, why is it too
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large, and how does a large error term cause problems in finding adequate lower-bound

estimates for N(1, x, p1, p2, . . . , pr)? We answer these questions in turn.

1.4.1.1 What is the Error Term in the Legendre Formula?

The error term in the Legendre formula is the second term on the right-hand side

of 1.4.1.2 below, namely, ∑d|P µ(d)
(⌊

x

d

⌋
− x

d

)
.

Recall the succinct form of the Legendre function given in 1.4.0.5:

N(1, x, p1, p2, . . . , pr) =
∑
d|P

µ(d)
⌊
x

d

⌋
. (1.4.1.1)

We can re-write the integer part of x
d as the quotient minus the remainder term

⌊
x

d

⌋
= x

d
−
(
x

d
−
⌊
x

d

⌋)
,

which on substituting into 1.4.1.1 and rearranging terms, yields

N(1, x, p1, p2, . . . , pr) = x
∑
d|P

µ(d)
d

+
∑
d|P

µ(d)
(⌊

x

d

⌋
− x

d

)
(1.4.1.2)

since

N(1, x, p1, p2, . . . , pr) =
∑
d|P

µ(d)
⌊
x

d

⌋

=
∑
d|P

µ(d)
(
x

d
−
(
x

d
−
⌊
x

d

⌋))

=
∑
d|P

µ(d)x
d
−
∑
d|P

µ(d)
(
x

d
−
⌊
x

d

⌋)

= x
∑
d|P

µ(d)
d

+
∑
d|P

µ(d)
(⌊

x

d

⌋
− x

d

)
.

(1.4.1.3)

There are at least two ways of understanding why the error term has the name

that it does. First, it describes the amount left over after dividing P by the numbers

d. Second, the term x
∑
d|P

µ(d)
d

, often called the main term, contains the bulk of the

expression in the last line of 1.4.1.3, because of the presence of x (which is assumed to

be large) as a factor. One often considers using this main term to estimate the size of

N(1, x, p1, p2, . . . , pr), provided that what is left over (i.e., the error term) is not too
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large. As we shall see, the problem of a potentially large error term is a major limitation

of the Legendre formula.

Brun manipulated the Legendre formula by removing terms from the main term

and the error term. Thus, he was able to find a better (i.e., larger) lower bound for the

value of N(1, x, p1, p2, . . . , pr).

Because Brun modified the Legendre formula by limiting the primes that go into the

Legendre formula, and because the Legendre formula can be expressed via the Möbius

µ function, it can be and is often said that Brun achieved his results by “truncating the

Möbius function.”

1.4.1.2 What is Meant by Saying “the Error Term is Too Large”?

Saying “the error term is too large” means that as x grows large the error term

could swamp the value of the main term in the Legendre expansion.

Explaining exactly why the error term could swamp the value of the main term

requires a bit of development. We begin by developing the main term for Example

1.4.0.1, where we used the Legendre formula to find N(1, 37, p1, p2, . . . , p(
√

37)), where

p(
√

37) = 5.

Example 1.4.1.1. Let A = 1, 2, 3, . . . 37. Use the Legendre formula in the form of

1.4.1.2 to calculate N(1, x, p1, p2, . . . , pr).

We already know thatN(1, x, p1, p2, . . . , pr) = #{1, 7, 11, 13, 17, 19, 23, 29, 31, 37} =

10. Let’s see how Equation 1.4.1.2 allows us to generate that result. The main term

works out to be 913
15 :

x
∑
d|P

µ(d)
d

= 37
∑
d|2·3·5

µ(d)
d

= 37
(
µ(1)

1 − µ(2)
2 − µ(3)

3 − µ(5)
5

+ µ(2 · 3)
2 · 3 + µ(2 · 5)

2 · 5 + µ(3 · 5)
3 · 5

+ µ(2 · 3 · 5)
2 · 3 · 5

)
= 37(1− 1

2 −
1
3 −

1
5 + 1

2 · 3 + 1
2 · 5 + 1

3 · 5 −
1

2 · 3 · 5)

= 913
15 .

(1.4.1.4)
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It is important to point out that the sum ∑
d|2·3·5

µ(d)
d

in 1.4.1.4 can be written in two

different but equivalent ways (1.4.1.5 and 1.4.1.6 below), both of which Brun regularly

uses in his paper (see Figure 3.2.1.1 for one of these). The equivalence of these expres-

sions is significant, because Brun uses one or the other to suit the purpose at hand, and

it is through these expressions that we can see how Brun manipulates the terms in the

Legendre formula to achieve his result on Goldbach’s Conjecture. We have the following

equivalent expressions for ∑d|2·3·5
µ(d)
d

:

∑
d|2·3·5

µ(d)
d

= 1− 1
2 −

1
3 −

1
5

+ 1
3 · 2

+ 1
5 · 2 + 1

5 · 3(1− 1
2)

(1.4.1.5)

and ∑
d|2·3·5

µ(d)
d

= (1− 1
2)(1− 1

3)(1− 1
5). (1.4.1.6)

The reader can easily verify the equivalence of these two expansions.
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The error term works out to be, as it must, 2
15 :

∑
d|P

µ(d)
(⌊

x

d

⌋
− x

d

)
= µ(1)

(⌊37
1

⌋
− 37

1

)

+ µ(2)
(⌊37

2

⌋
− 37

2

)
+ µ(3)

(⌊37
3

⌋
− 37

3

)
+ µ(5)

(⌊37
5

⌋
− 37

5

)
+ µ(2 · 3)

(⌊ 37
2 · 3

⌋
− 37

2 · 3

)
+ µ(2 · 5)

(⌊ 37
2 · 5

⌋
− 37

2 · 5

)
+ µ(3 · 5)

(⌊ 37
3 · 5

⌋
− 37

3 · 5

)
+ µ(2 · 3 · 5)

(⌊ 37
2 · 3 · 5

⌋
− 37

2 · 3 · 5

)
= 0− 1(−1

2)− 1(−1
3)− 1(−2

5)

+ 1(−1
6) + 1(− 7

10) + 1(− 7
15)

− 1(− 7
30)

= 1
2 + 1

3 + 2
5 −

1
6 −

7
10 + 1

30
= 2

15 .

(1.4.1.7)

Although in this example we are able to calculate both the main term and error

term exactly, the issue is that as x becomes large, the magnitude of the error term could

dwarf the magnitude of the main term. Why? Because the error term will include 2r

terms (where r is the number of sifting primes), each of which is bounded in absolute

value by 1. In other words, the bound on the error is exponential in the number of

sifting primes used in the sieve3.

Thus, even though we can’t say much at this point that is useful about a lower

bound for N , we do know this much:

N(1, x, p1, p2, . . . , pr) > x
∑

d|p1p2...pr

µ(d)
d
− 2r. (1.4.1.8)

3This fact suggests that one way to reduce the error term is to use fewer sifting primes than are
used in the traditional sieve of Eratosthenes. Indeed, Brun does reduce the number of sifting primes
(by choosing a smaller maximum sifting prime), though at the cost of allowing some composite numbers
through the sieve (see Section 1.8).
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We’ll call the right side of this inequality the default, or “worst” lower bound for N

based on the Legendre formula.

In the above example, notice that there are eight terms in the sum involved in

the error term. Each of these eight terms has a maximum value bounded in absolute

value by 1, because each of these terms is a remainder of the form (bxdc −
x
d ). For

smaller values of x, such as x = 37 in example 1.4.1.1, none of these terms is very

near its theoretical maximum value, and so the error term itself ( 2
15) is smaller than

the theoretical maximum bound of 23. However, certain theoretical results discussed

in Section 1.4.1.3 show that as x becomes large, the error term is of the same order of

magnitude as the main term, which makes estimating the value of N(1, x, p1, p2, . . . , pr)

problematic.

1.4.1.3 Why is a Large Error Term Problematic?

A large error term is problematic because its value hinders our ability to estimate

the value of N(1, x, p1, p2, . . . , pr).

To see why a large error term causes problems in estimating lower bounds for

N(1, x, p1, p2, . . . , pr), consider the alternate formulation of the Legendre formula, al-

luded to above, which is given by substituting the equivalent value ∏
p|P

(1− 1/p) for the

main term ∑
d|P

µ(d)
d

. 4 Thus we obtain from 1.4.1.2

N(1, x, p1, p2, . . . , pr) = x
∏
p|P

(1− 1/p) +
∑
d|P

µ(d)
(⌊

x

d

⌋
− x

d

)
(1.4.1.9)

This form of the Legendre formula is seen often in the modern literature on sieves, and

the particular form of the main term is also one that Brun uses in §3 and §4 of his paper,

which are discussed in more detail in Chapter 3.

As we saw earlier, the value of N(1, x, p1, p2, . . . , p(
√
x)) equals the number of

primes between
√
x and x, plus one. The standard notation for the number of primes

4To see these two expressions are equivalent, consider the terms in the expansion of
∏
p|P

(1 − 1/p).

Specifically, consider which terms are in the expansion of
∏
p|P

(1 − 1/p), how many terms of each kind

there are, and the sign of each term. In the expansion of the product there is only one 1 and it has a
positive sign, corresponding to µ(1). There are

(
P
1

)
= P terms of the form 1

p
, each with a negative sign,

yielding (−1)1∑
p|P

1
p
, corresponding to

∑
p

µ(p)
p

for individual primes p. Similarly, there are
(
P
r

)
terms

of the form 1
p1p2...pr

, which are counted by the summation and given the appropriate sign (negative or
positive according to whether r is odd or even) by the µ function.



16

less than or equal to a positive number x is π(x). So, N(1, x, p1, p2, . . . , pr) = π(x) −

π(
√
x) + 1. Thus, substituting π(x) − π(

√
x) + 1 into the left-hand side of Equation

1.4.1.9, we obtain

π(x)− π(
√
x) + 1 = x

∏
p|P

(1− 1/p) +
∑
d|P

µ(d)
(⌊

x

d

⌋
− x

d

)
. (1.4.1.10)

As mentioned above, each term in the sum that forms the error term is less than 1.

Further, by the nature of the alternating signs of the terms in that sum, we can expect

some reduction from the value of 2r. However, as x increases the error term will still be

too large to make the Legendre formula useful for computing π(x)− π(
√
x) + 1.

There are well-known asymptotic estimates for both π(x)− π(
√
x) + 1 and ∏

p|P
(1−

1/p), which when taken together show that the error term ∑
d|P µ(d)(bxdc −

x
d ) has an

asymptotic value proportional to the main term ∏
p|P

(1− 1/p). The first estimate comes

from the Prime Number Theorem [37], which shows that limx→∞
π(x)
x

log x
= 1 and hence

(with some additional work) that π(x)−π(
√
x)+1 ∼ x

log x . Additionally, a formula from

Mertens [52] shows that x ∏
p|P

(1 − 1/p) ∼ C x
log x , for a constant C. These two results

taken together show that what we have been calling the error term is also asymptotic

to a constant times x
log x and thus (asymptotically) of the same order of magnitude as

the main term. For additional details, see [43].

1.4.2 Of What Use, then, is the Legendre Formula?

The above considerations show us that as x gets large, the error term is of an order

of magnitude that should not be ignored or discounted when estimating the main term.

The previous discussion shows that the sieve of Eratosthenes, by itself, sheds no

more light on the value of N(1, x, p1, p2, . . . , pr) than does the Prime Number Theorem.

At the moment we are in the rather depressing position of having a method

which fails to give us good estimates for the number π(x) of primes up to x,

but worse yet, the only reason we even know that it must inevitably fail is

because of other techniques, coming from analytic number theory, succeed

(in proving the Prime Number Theorem), thereby telling us so. ([17], p. 3).
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However, the Legendre formula nevertheless serves an essential purpose for Brun,

because

• it is from the Legendre formula that the inequality for the default (“worst”) lower

bound is derived;

• the inequality for the “worst” lower bound has the form of the Fundamental In-

equality N > M −R;

• Brun’s two main sieves (in §3 and §4 of his paper) have initial lower bounds of the

same form, N > M −R; and

• Brun’s subsequent calculations for his two main sieves show that he bounds the

main term M below and the remainder term R above, which results, taken to-

gether allow him to improve the lower bounds of each of his sieves (subject to the

assumptions he makes and the additional results he uses to obtain his results).

Thus, the Legendre formula can be seen as the genesis of the default lower bound,

which, having the same form (N > M−R) as Brun’s initial lower bounds, sets the stage

for Brun’s subsequent calculations that improve the lower bounds for his two sieves in a

way that is, at least conceptually, quite straightforward. So, far from being a roadblock,

the Legendre formula opens up the possibility for Brun to create a path that, albeit full

of switchbacks, eventually leads him to his result.

1.5 The “Best” Lower Bound for N

Recall from the discussion after 1.4.1.8 that the default or “worst” lower bound for

N based on the Legendre formula is N(1, x, p1, p2, . . . , pr) > x
∑
d|p1p2...pr

µ(d)
d
− 2r.

It’s natural to ask how or whether that lower bound can be improved. In particular,

if we look at the terms in the expansion of the first term of that lower bound, a natural

question is, “Can we manipulate terms in the expansion to find the best lower bound

possible for N(1, x, p1, p2, . . . , pr)?”

To answer this question, consider the following example.

Example 1.5.0.1. Find the default lower bound for N(1, 37, 2, 3, 5) and then remove

terms from the expansion formula to give an improved (increased) lower bound.
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The default lower bound is just the main term minus the worst-case bound on the

error term (which equals 2r, where r is the number of sifting primes used). This lower

bound is shown using the first form of the equivalent main-term expansions in 1.4.1.5

and previous results.

N(1, 37, 2, 3, 5) > 37
(
1− 1

2 −
1
3 −

1
5

+ 1
3 · 2

+ 1
5 · 2 + 1

5 · 3(1− 1
2)
)
− 23

= 913
15 − 8

= 113
15

(1.5.0.1)

To increase the difference 37
(
1− 1

2 −
1
3 −

1
5 + 1

3·2 + 1
5·2 + 1

5·3(1− 1
2)
)
−8 by removing

positive terms from the outermost parentheses, we must decrease the first term, 37
(
1−

1
2 −

1
3 −

1
5 + 1

3·2 + 1
5·2 + 1

5·3(1 − 1
2)
)
, by an amount less than the amount by which we

decrease the second term, 8.

Thus we’ll increase this difference if the terms we remove from the outermost paren-

theses are such that when multiplied by 37 they yield a value less than the number of

terms removed (since that number is then subtracted from 8).

From the expansion in the above example, the only terms that can be removed to

increase the lower bound for N(1, 37, 2, 3, 5) are the two terms 1
5·3 and 1

5·3·2 in the tail

end of the expansion of the main term, since only for those terms is 37 times the terms

removed less than the number of terms removed. Specifically, 37( 1
5·3(1 − 1

2)) = 37
30 < 2.

Thus we reduce the main term by 1 7
30 and the error term by 2 (since there are now

only 6 terms in the expansion), so the increased lower bound is now N(1, 37, 2, 3, 5) >

(913
15 − 1 7

30)− (8− 2) = 819
30 − 6 = 219

30 .

The above example illustrates the method to find the best lower bound estimate

for N(1, x, p1, . . . , pr) by removing terms from the expansion of N(1, x, p1, p2, . . . , pr).

Brun discusses similar examples in §2, where he removes terms from an expansion to

increase the lower bound for N(1, x, p1, p2, . . . , pr). However, his examples seem more
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complicated than they need to be to support the point he makes that in other examples

he will compute the lower bound in a simpler way (p. 107, bottom).

Why wouldn’t Brun continue to work with this method for obtaining “la meilleure

limite inférieure” ([3], p. 9) for N(1, x, p1, p2, . . . , pr), even though it may be somewhat

complicated? One plausible answer is that, because as r (the number of sifting primes)

grows large, each of 2r terms would need to be checked with increasingly long calculations

to see whether its removal would increase the lower bound.

1.6 Revisiting the Fundamental Inequality: N > M −R

Again, recall from 1.4.1.8 the default lower bound for N :

N(1, x, p1, p2, . . . , pr) > x
∑

d|p1p2...pr

µ(d)
d
− 2r. (1.6.0.1)

Section 1.4.1.3 showed that this default lower bound is of limited direct use, since as x

gets large, the error or remainder term in the Legendre expansion is of the same order

of magnitude as the main term, thus rendering it difficult to estimate the value of N .

Further, Section 1.5 showed that computing a “best” lower bound (by starting with the

default lower bound and manipulating the main and remainder terms) is computationally

prohibitive for large x.

At least two methods can be used to manipulate the right-hand side of the above

inequality (or similar inequalities that Brun uses as points of departure for his calcu-

lations in §3 and §4 - see 3.3.2 and 3.4.2) to ensure that N is still greater than the

manipulated right-hand side, i.e., that we still have a lower bound for N .

One method would subtract a positive amount from the right-hand side of 1.6.0.1.

This could be done by dropping some positive terms from the expansion of the main term

and then adjusting the remainder term so that the net result is either a decrease in the

right-hand side of 1.6.0.1, or an increase that still yields a lower bound for N . But this

approach is unsatisfactory for two reasons: 1) it would involve complex computations

that would be prohibitive to carry out for a general case, and 2) if it decreases the lower

bound for N , it moves the bound in the wrong direction: Brun wants to be sure that N

is large enough, so that enough of the right kind of numbers fall through the sieve.
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The second method is much simpler conceptually: just bound appropriately the

main term and the error term of the right-hand side of 1.6.0.1. This can be done by

rewriting 1.6.0.1 as N > M −R, and then bounding M below by some number, say, A

and bounding R above by some number, say, B. The result will be N > A−B, showing

that we still have a lower bound for N . Brun’s complicated derivations in §3 and §4 can

be cast in this simple conceptual scheme, as noted in 1.1.2.

Notice, however, that if we are given no further information, although we can be

sure that the new inequality N > A−B does still give a lower bound for N , we cannot

know much about that new lower bound for N unless we incorporate other information.

Brun does incorporate other information, particularly in §4 of his paper, to show that

the lower bound thus achieved for N is large enough for his purposes.

1.7 Sieve Integrity when Truncating the Legendre Formula

An important unanswered question remains: How do we know that by dropping

certain terms from the main term of the Legendre formula Brun is not in effect calculating

results for a different sieve that would give results different from those of the original

sieve that uses the non-truncated formula for N(1, x, p1, p2, . . . , pr)?

That is, why is it legitimate to truncate the Legendre formula (1.4.0.2) - which we

know gives the true result for the number of elements falling through the sieve - and make

claims based on the truncated Legendre formula about the results of the full formula (i.e.,

the results of the original sieve)? Aren’t Brun’s modifications to the Legendre formula

effectively creating a different sieve that gives different results for N(1, x, p1, p2, . . . , pr)?

We use a familiar example to answer these questions.

Figure 1.7.0.1: Finding N(1, 37, 2, 3, 5)

We can see in Figure 1.7.0.1 that the operation of the sieve (i.e., the trapping of

multiples of 2, 3, and 5) is represented graphically by the number of strike-throughs of

composite numbers. The sieve’s operation can also be displayed arithmetically by the

expansion of the Legendre formula. Indeed, the Legendre formula was introduced above
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1.4.0.2 as a method of accounting to track the number of times composite numbers were

trapped in the sieve.

N(1, 37, 2, 3, 5) >
(
1− 1

2 −
1
3 −

1
5

+ 1
3 · 2

+ 1
5 · 2 + 1

5 · 3(1− 1
2)
)
− 23.

(1.7.0.1)

Now consider the following observations. The number 30 is trapped in the sieve

three times, once as a multiple of 2, once as a multiple of 3, and once as a multiple of

5; but it needs to be trapped only once for the sieve to work correctly (by not letting 30

fall through). The term 37( 1
5·3·(−2)) is the term in the expansion that corresponds to

trapping 30 three times. We can remove this term from from the expansion and still

be faithful to the operation of the sieve, provided that we keep in the expansion some

terms that correspond to the trapping of 2, 3, and 5.

Note that 37( 1
5·3(1− 1

2)) deals not only with the trapping of 30 (by the component

− 1
5·3·2), but also with the trapping of 15 (by the the component 1

5·3), and the trapping

of 15 has already been reflected by including the terms 37(1
5) and 37(1

3). So, provided

that those terms (or other terms that deal with the trapping of 3 and 5) remain in the

expansion, we can remove the term 37 1
5·3 from the expansion and still be faithful to the

operation of the sieve.

Not only can we remove 37( 1
5·3(1 − 1

2)) from the expansion of the main term, but

by removing it we also achieve the “best” lower bound for N , as was shown in Example

1.5.0.1.

Further, because other terms that deal with the trapping of 30 and 15 remain in the

formula, we are remaining faithful to the operation of the original sieve: those elements

that were trapped in the original sieve are also trapped when we use the truncated

formula; and, the truncated formula introduces no new trapped numbers, because it is

a subformula of the original formula. Therefore, the improved lower bound achieved in

the truncated formula is indeed a lower bound, which (in this case) happens to be the

“best” lower bound (obtained by adjusting values in the main term and remainder terms

of the default lower bound), for N(1, x, p1, p2, . . . , pr), the number of elements that fall

through the original sieve.



22

1.8 Why Some Composites Fall Through Brun’s Sieves

Our work with N(1, x, p1, p2, . . . , pr) so far has considered that our largest sifting

prime is the largest prime less than or equal to
√
x. In that case, all the numbers except

1 that fall through the sieve are primes. However, it may be that with a smaller value

of pr some composite numbers also fall through the sieve.

Example 1.8.0.1. Let the sequence to be sifted be the sequence of consecutive inte-

gers 1, 2, 3, . . . , 37. Sift this sequence by multiples of 2 and 3, but not also by multiples

of 5 (unless they were already sifted out as multiples of 2 or 3). That is, compute

N(1, 2, 3, . . . , 37).

Figure 1.8.0.1: Finding N(1, 37, 2, 3): the 2-primes 25 and 35 fall through

Observe that now, because 5 is not used as a sifting prime, any multiple of 5 in the

given sequence that is not also a multiple of the sifting primes 2 or 3 will fall through

the sieve. In this example, two such multiples of 5 are 25 and 35.

The properties of 25 and 35 that allow those to numbers to pass through the sieve

can also be considered more generally. Consider a composite number c in the sequence of

consecutive integers from 1 through x. Let that sequence be sifted by the sifting primes

p1, p2, . . . , pr, where the largest sifting prime pr = p(x
1
k+1 ), for some nonnegative integer

k. If c has up to k (not necessarily distinct) prime factors, each of which is greater than

p(x
1
k+1 ), then c will fall through the sieve. The reason is simply that the sifting primes

p1, p2, . . . pr “never reach” c, because none of c’s prime factors is a multiple of a sifting

prime.

A composite number with up to k (not necessarily distinct) prime factors is called

a k-prime. Recall that Brun’s theorem deals with 9-primes. The reason his sieve allows

9-primes to fall through is that his largest sifting prime is p(x 1
10 ).
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1.9 Brun’s Use of Merlin’s Double Sieve

Another aspect of Brun’s theorem is that the sum of certain pairs of numbers

falling through his sieve is an even number. This section shows how the traditional sieve

of Eratosthenes can be modified to create a sieve such that there are certain pairs of

numbers falling through the sieve whose sum is an even number. First, we give a simple

example of the way that Brun views the sifting process.

Example 1.9.0.1. Let the sequence to be sifted be the sequence of consecutive integers

1, 2, 3, . . . , 37. Sift this sequence by multiples of 2, 3, and 5 to find N(1, 37, 2, 3, 5).

Figure 1.9.0.1: Brun’s way of showing a sieve

Here Brun lists the sequence to be sifted on the top row. The bottom row shows

the output of the sieve5. The rows in between show the composite numbers - multiples

of 2, 3, and 5 - that are trapped in the sieve. With this setup, Brun asks, essentially,

“How many numbers of the top row do not appear in any of the intermediate rows?”

Specifically, he asks, “How many terms different from all the terms of the other lines

does the first line contain?” (p. 101). That number is exactly the number of elements

that fall through the sieve; those elements are shown in the bottom row.

Brun uses a similar way of picturing a sieve when he modifies his sieve so that some

of the numbers that fall through his double sieve come in pairs that add up to an even

number. Brun credits Merlin ([22]) with this idea, which he calls an “emploi double”

or “double use” of the sieve of Eratosthenes. We’ll refer to this kind of sieve simply as

“Brun’s double sieve.” An example follows.

Example 1.9.0.2. Let the sequence to be sifted be 1, 2, 3, . . . , 38. Use a double sieve,

with sifting primes 2, 3, and 5, to sift this sequence.
5Brun did not use a bottom row; it is used here to convey the sense of primes “falling through” the

sieve.
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Figure 1.9.0.2: Brun’s way of showing his double sieve

The idea is that by sifting the sequence twice – once starting at 0 and moving from

left to right, and once starting at 38 and moving from right to left – the sieve yields

numbers such that certain pairs of them add up to 38. To see why this claim is true, we

think of the first sieve as operating from left to right in the usual way, and the second

operating from right to left by subtracting from 38 multiples of 2, 3, and 5.

Claim 1.9.1. In Example 1.9.0.2, if a number p passes through both sieves, then p is

prime, 38− p is prime,
√

38 ≤ p < 38, and
√

38 ≤ 38− p < 38.

Proof. Suppose p passes through both sieves. Since p passes through the first sieve, p is

either 1 or a prime in [
√

38, 38), by the operation of the traditional sieve of Eratosthenes.

Without loss of generality 6 assume that p 6= 1; hence, we suppose p is a prime that lies

in [
√

38, 38). It remains to show that 38− p is prime and that it also lies in [
√

38, 38).

Since p falls through both sieves, it falls through the second sieve. Therefore, p

is not of the form 38 − 2k1, or 38 − 3k2, or 38 − 5k3, since those elements are exactly

the ones trapped by the second sieve (assume sensible bounds on k1, k2, k3). Therefore,

38− p is not of the form 2k1, and 38− p is not of the form 3k2, and 38− p is not of the

form 5k3 (again with sensible bounds on k1, k2, k3). Thus, 38 − p is not a composite

number that has 2, 3, or 5 as a factor. This means that 38 − p is a prime that lies in

[
√

38, 38).

Next we consider a double sieve operating on a sequence of odd numbers (in effect,

“pre-sifting” a sequence of consecutive integers by 2). Here is what that sieve looks like.
6The reason has to do with Brun’s context of “sufficiently large even numbers.” Although for a given

even number, e.g., 36, the number 1 may fall through both sieves and be outside the range [
√

36, 36),
we can always find a larger even number (e.g., 40) for which the second-row sieve traps the number 1,
thus preventing 1 from passing through both sieves.
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Figure 1.9.0.3: Double sieve starting with sequence of consecutive odd numbers

Naturally, the results are the same as in the previous example. But something more

interesting happens when we sift the same odd sequence using only 3 as the sole sifting

prime.

Figure 1.9.0.4: Double sieve allowing the 2-prime 25 to fall through

The results are still such that certain pairs of the numbers that fall through the

sieve add up to 38, but now the 2-prime 25 is among them. This result follows by

the same logic we discussed in the previous section, i.e., if the largest sifting prime is

p(x
1
k+1 ), then some k-primes can pass through the sieve.

This last example, where the sifting sequence is a sequence of consecutive odd

numbers and the largest sifting prime allows some k-primes to fall through the sieve is

very much like an example that Brun uses on p. 127 in §6 of his paper, right before he

begins to pull together his results to prove his famous theorem.

1.10 Contextual View of Brun’s Approach

Based on the details of the discussion thus far, we are able to appreciate Brun’s

approach in a somewhat fuller context.

• We have seen how the traditional sieve of Eratosthenes can be used to find certain

prime numbers if we know other smaller prime numbers.
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• We have shown how the Legendre formula uses the Principle of Inclusion/Exclusion

(PIE) to calculate N(1, x, p1, p2, . . . , pr), where the sequence of consecutive integers

1, 2, 3, . . . , x is sifted by the sifting primes 2, 3, 5, . . . , pr, where pr = p(
√
x) is the

largest prime less than or equal to x.

• We re-formulated the Legendre formula as a main term plus an error term, showing

that a certain “default” error term (2r) was too large for the Legendre formula to

be useful in estimating the size of N(1, x, p1, p2, . . . , pr).

• We also argued that even if the default error term can be improved, it is still, as

x grows large, of the same order of magnitude as the main term; hence, it will be

of little help in estimating the size of N(1, x, p1, p2, . . . , pr).

• We mentioned the importance to Brun of finding a suitable lower-bound estimate

for the Legendre formula: he wants to make sure enough numbers “of the right

kind” fall through his sieve, so that there are at least some pairs of numbers

having at most nine prime factors each falling through his sieve whose sum is an

even number.

• We gave a simple conceptual framework for Brun’s work based on the Fundamental

Inequality N > M − R: Brun essentially just bounds M below and R above to

achieve his improved lower bounds for N .

• We mentioned that Brun’s manipulations demonstrate that not only do his two

sieves in §3 and §4 provide lower bounds for N , but they also give definite im-

provements that work under certain conditions.

• We saw that when the largest sifting prime is reduced from p(x 1
2 ), as in the tradi-

tional sieve of Eratosthenes, to p(x
1
k+1 ), where k > 1, certain composite numbers

(that have at most k prime factors) can also fall through the sieve.

• We showed how Brun used ideas from Merlin ([22]) to create a double sieve with

pairs of numbers falling through whose sum is an even number.

It turns out that Brun investigates three different methods for determining a lower bound

for N(1, x, p1, p2, . . . , pr), each of which is an improvement on the default (“worst”) lower

bound (which has an error or remainder term of 2r). All three methods involve discarding

particular terms from both the main term and the error term of the Legendre formula.
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The first method, which gives “la meilleure limite inférieure” ([3], p. 9), discards

terms using a particular process that calculates certain properties of the discarded terms.

This lower bound was discussed in the example in Section 1.5. See also Section 3.2.1.1

below. Brun says that later in his paper he wants to select the discarded terms in simpler

ways.

The second method, which discards terms “in small print” (this mysterious phrase

is explained in Chapter 3) specifies a way of truncating the main term of the Legendre

formula at a certain point of its expansion. Brun shows that by this method he can

reduce the error term in the Legendre formula from 2r to rm+1, where m is an odd

number less than r. But, he says without explanation, the growth of the error term is

still “too great for our purpose” ([44], p. 114). Chapter 3 of this thesis gives one reason

why this improved error term is still problematic.

The third method that Brun uses to discard terms is to remove certain terms “on

the right of the vertical lines” ([44], p. 110); this cryptic phrase is also explained in

Chapter 3. This method is similar to the second method, but in addition to truncating

the main term of the Legendre formula at a certain point of its expansion, he also

eliminates certain terms from the terms that remain after the initial truncation. In

other words, his third method does what his second method does, and then some.

In his third method Brun also uses certain asymptotic results (theorems from Stir-

ling and Mertens) to show how his estimates of a lower bound for his modified Legendre

expansion behave for large enough x.

Brun develops these latter two methods for a single sieve, i.e., a sieve that is

not a double sieve. Later, in §6 of his paper he applies his previous results, with the

necessary modifications, to the case of a double sieve, finally achieving his theorem about

Goldbach’s Conjecture.
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CHAPTER 2

GOLDBACH’S CONJECTURE AND RELATED RESULTS

2.1 Goldbach’s Conjecture

The first recorded mention of Goldbach’s Conjecture is evidently the statement by

Euler in his letter to Goldbach dated June 30, 1742. Euler says, possibly in reply to

a remark by Goldbach, “That . . . every even number is the sum of two primes I feel is

a quite certain theorem, although I cannot demonstrate it” ([18], my translation). For

Euler and Goldbach this conjecture would have applied to the even number 2, since in

those days the number 1 was commonly considered to be a prime. It would also have

applied to the even number 4, though in many modern formulations of the conjecture,

4 is omitted for the sake of simplicity, with the result that the conjecture is often stated

as “every even number greater than 4 is the sum of two odd primes.”

It is difficult to say with any certainty when this conjecture began to be generally

noticed by mathematicians. It was evidently first published by Waring - without at-

tribution, comment, or proof - in his Meditationes Algebraicae in 1770 (see p. 217 of

[54]). The relevant correspondence of Goldbach and Euler was published later, in the

mid-nineteenth century [18]. Although Goldbach’s Conjecture was known to mathemati-

cians in the nineteenth century, the following questions by Poincaré indicate that as late

as 1894 the source of the conjecture and the existing support for it were not common

knowledge among mathematicians: “Where has Goldbach published his famous empiri-

cal theorem: every even number is the sum of two primes? ... What confirmations have

been found for it?”(cited in [8], my translation).

Since the time early work began on Goldbach’s Conjecture, simple calculations

have been part of the historical accumulation of evidence in support of Goldbach’s

Conjecture [14]. But other kinds of arguments - based on theoretical results, related

conjectures, or heuristic considerations - have been employed as well. Some of these other
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arguments are described in the next section. In his 1920 paper, Brun used arguments

based both on counting techniques and on theoretical considerations to establish his

result on Goldbach’s Conjecture.

Several recent results are “close” to Goldbach’s Conjecture, one of which has ap-

parently proved what is known as “Golbach’s Ternary Conjecture”’: that every odd

number greater than 5 is the sum of three primes [27]1. Additionally, in [13] Goldbach’s

Conjecture is verified up to 4 · 1018. A strong theoretical result remarkably “close” to

Goldbach’s Conjecture was published in 1973 by Chen and showed that every sufficiently

large even number is the sum of a prime and a number with at most 2 prime factors [6].

2.2 Some Evidence that Goldbach’s Conjecture is True

2.2.1 Empirical Evidence

One of the first things you may observe if you set out to test Goldbach’s Conjecture

is that even numbers greater than 4 do indeed seem to be expressible as the sum of two

primes. What is more, the even numbers greater than 20 seem to be expressible as the

sum of two primes in more than one way. For instance, 22 = 11 + 11 = 19 + 3.

Illustrations of this observation are given in Figures 2.2.1.1 and 2.2.1.2, where n on

the horizontal access denotes an even number and r(n) on the vertical access denotes the

number of distinct representations of n as the sum of two primes. (Two representations

like 10 = 3 + 7 and 10 = 7 + 3 are not considered distinct and so are counted as a single

representation.) The graphs in Figures 2.2.1.1, 2.2.1.2, 2.2.2.3, and 2.2.2.4 were created

by the author using SageMath [11], after generating the needed primes with primegen

[12].

The above observation is not new. It was made at least as far back as 1855, and

in 1896 Sylvester [51] appears to credit Euler himself with the observation. In 1855,

Desboves asserted that he verified this observation up to 10, 000 [10]. In one sense, this

result seems to have come early in the set of results that support Goldbach’s Conjecture,

since most of the progress in addressing Goldbach’s Conjecture has come in the twentieth

century. In another sense, though, when one considers that the work of Desboves was

published more than a century after Goldbach’s Conjecture was formulated by Euler, it

seems to arrive late.
1This has been published in the ArXiv (arXiv:1501.05438 [math.NT]).
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Figure 2.2.1.1: r(n): number of distinct representations of n as sum of two odd
primes

Figure 2.2.1.2: As n increases, r(n) reveals its signature pattern
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But considering that Goldbach’s Conjecture evidently did not find its way into

print until Waring published it in 1770 (without attribution, proof, or comment) in his

Meditationes Algebraicae (see p. 217 of [54]), it is understandably difficult to assess

how much empirical work was done on Goldbach’s Conjecture in the hundred years or

so after it first appeared in Euler’s letter. Indeed, as mentioned above, as late as 1894

Poincaré was asking where Goldbach’s Conjecture had been published [8].

The pattern shown in Figures 2.2.1.1 and 2.2.1.2, which is part of the pattern

of an infinite sequence of numbers, has been called ‘Goldbach’s Comet’ and is further

described in entry A002375 from The On-Line Encyclopedia of Integer Sequences [47].

Two nineteenth-century works that provide empirical support of Goldbach’s Con-

jecture are those by Desboves in 1855 [10] (already mentioned) and Cantor in 1894 [5],

whose table gave the decompositions of even numbers up to 1000 as the sum of two

primes. Other empirical work, along with some theoretical work, was done by Haufsner

in 1892 ([25]) and Haussner in 1897 ([26]).

Recent empirical support for Goldbach’s Conjecture comes from a number of com-

putational studies that establish that all even numbers up to a certain point can be

expressed as the sum of two primes. Most recently (as of 2014) the largest number for

which Goldbach’s Conjecture has been computationally verified is 4 · 1018 [13].

Although the graphs in Figures 2.2.1.1 and 2.2.1.2 show a pattern that seems to

hold for all large even n, and although Goldbach’s Conjecture has been verified for even

numbers greater than a billion billion, such evidence does not a proof make. Indeed,

particularly suggestive patterns dealing with prime numbers have been known to break

down as the numbers under consideration become very large (far larger than a mere

billion billion). For discussion of a famous counterexample, see Derbyshire’s account of

the Skewes number in [9].

Because simple tests of Goldbach’s Conjecture for small even numbers are easy

to carry out by hand, it is quite plausible that the first investigations into Goldbach’s

Conjecture were done empirically, rather than theoretically. Indeed, Goldbach himself

made simple empirical calculations to support a related conjecture he made to Euler,

namely, that every integer that can be written as the sum of two primes can also be

written as the sum of as many primes as one wishes, until all terms are units [18].
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Arguments based on counting also played a fundamental role in asserting another

famous conjecture about prime numbers, to which we now turn.

2.2.2 The Prime Number Theorem and Heuristics

In the 1790s, both Legendre and Gauss used counting arguments to support their

versions of a conjecture, which was not proved until 1896 and is now called the Prime

Number Theorem [37].

The Prime Number Theorem (PNT) asserts an asymptotic value for the number

of primes less than or equal to a positive number x, typically denoted π(x). In one

formulation (there are several), the Prime Number Theorem says that limx→∞
π(x)
x

log x
= 1.

In other words, the larger x gets, the closer π(x) is to x
log x .

Thus, the PNT gives an asymptotic approximation for π(x), which for particular

finite values of x can also be used as an estimate of π(x), the number of primes less than

or equal to x. But the PNT by itself does not give us specific details about the nature

of the primes or how they’re distributed. So, the PNT seemingly could offer little or no

support for Goldbach’s Conjecture.

For example, consider Figure 2.2.2.1, which depicts the primes from 3 to 50 and

also shows how certain pairs of those primes align to give a sum of 50, indicated by the

lines connecting the primes in the top and bottom rows. Shorter lines from the top or

bottom row indicate primes in one row or the other, but not both.

Figure 2.2.2.1: Consider r(50): with “matching pairs of primes” connected

From Figure 2.2.2.1 we can see that in order for two primes to sum to an even

number n there must be at least one prime between n/2 and n, because if there were

no prime between those numbers (25 and 50 in Figure 2.2.2.1), there would be no way

to find a pair of primes that add up to n. (Fortunately, a result known as Bertrand’s

Postulate, proved by Chebychev (and later by Ramanujan and Erdös among others),
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assures us that this is the case). But, in order for Goldbach’s Conjecture to hold, not

only does there need to be at least one prime p between n/2 and n, this prime also needs

to be a ‘matching’ prime for some prime between between 3 and n/2. In terms of Figure

2.2.2.1, what this means is that not only do we need to have a prime in the bottom half

of the diagram, but we also need a ‘matching’ prime in the top half of the diagram such

that the sum of those two primes is 50.

Because the Prime Number Theorem doesn’t address the distribution of primes

with the kind of detail just discussed, it seems that it would have little application to

Goldbach’s Conjecture. Yet, it does.

In particular, in 1871 Sylvester used certain assertions related to the Prime Number

Theorem to offer a theoretical argument, supplemented with heuristic notions from

probability, to highlight the role of the ratio x
log x in the context of Goldbach’s Conjecture

[50]. Actually, the ratio mentioned in the Sylvester paper was x
(log x)2 , which is just the

product of 1
log x and x

log x , the latter ratio being, by the PNT, the approximate number

of primes less than or equal to x.

Sylvester’s work was mentioned by Hardy and Littlewood in a paper from 1923

[24], where they gave a conjecture (called ‘Conjecture A’) for the asymptotic value of

the number of representations of an even number as the sum of two primes (what we

call r(n) in Figure 2.2.2.2).

The asymptotic estimate for r(n) given by Hardy and Littlewood in ‘Conjecture A’

contains three factors: an initial constant, a term involving n
(logn)2 , (with its echoes of

the Prime Number Theorem), and a product term credited to Sylvester, which according

to Hardy and Littlewood in some manner accounts for the irregularity in the distribution

of primes.

To see the significance of the ratio n
(logn)2 in the calculation of r(n), consider Figures

2.2.2.2 and 2.2.2.3, where n
(logn)2 is plotted in red against the dusty blue bands of r(n).

Notice that the plot of n
(logn)2 tracks the arc of the data quite well, though we can

see that it is too high to provide a lower bound for r(n). (An easily conjectured lower

bound for r(n) is
√

2
2

n
(log n)2 − 4, which Figure 2.2.2.4 illustrates for even numbers up to

1, 000, 000).
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Figure 2.2.2.2: Red line n
(log n)2 tracks the data but is too high for a lower bound

The discussion in this section thus suggests that theoretical considerations based

in part on the Prime Number Theorem can be combined with empirical data to create

a compelling case for the truth of Goldbach’s Conjecture.

Figure 2.2.2.3: Red line n
(log n)2 tracks the data but is too high for a lower bound
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Figure 2.2.2.4: Red line
√

2
2

n
(log n)2 − 4, a plausible lower bound for r(n)

2.2.3 Sieve Methods

As mentioned in Chapter 1, sieve methods in number theory are operations on

sequences of integers that yield a subsequence or an estimate of the size of a subsequence

of the original sequence. Other writers have explained the purpose of sieves: “The basic

purpose for which the sieve was invented was the successful estimation of the number

of primes in interesting integer sequences” [16], and “The aim of sieve theory is to

construct estimates for the number of integers remaining in a set after members of

certain arithmetic progressions have been discarded” [36].

Sieves in mathematics also have applications to areas other than the theory of prime

numbers “ranging from a topic as old as squarefree numbers to one as new as quantum

ergodicity” ([17], p. 305). For examples of these other applications the interested reader

is referred to [17] and [32].

Number-theoretic sieves were also used recently to establish three of the “closest”

results to Goldbach’s Conjecture mentioned earlier: Chen’s result that every sufficiently

large even number can be written as the sum of a prime and a number with at most

two prime factors [6]; Helfgott’s result on the Ternary Goldbach Conjecture [27], and

Oliveira e Silva’s empirical result that establishes the truth of Goldbach’s Conjecture up

through 4 · 1018 [13].
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Between 1920 and 1973 numerous other results related to Goldbach’s Conjecture

have been published. See [53] for some of the most significant of these.

2.2.4 The Circle Method

Hardy and Littlewood’s ‘Conjecture A’ was mentioned in Section 1.2.2. To justify

this conjecture they used a method called the ‘circle method’, which had its genesis in

joint work by Hardy and Ramanujan. This method uses complex analysis to estimate

the number of ways to decompose a positive integer into the sum of other positive

integers. Discussion of this method is out of the scope of this thesis. The reader can

find an account of this method in Nathanson [39]. In 2015, the circle method was used

along with sieve methods and exponential sums to prove Goldbach’s Ternary Conjecture:

every number greater than 5 is the sum of three primes [27].

2.2.5 Evidence Based on the Density of Primes

A third important strand in the theoretical fabric supporting the truth of Gold-

bach’s Conjecture has to do with so-called ‘density arguments,’ an early and significant

example of which was given by Schnirelman in 1933 [45]: There is a constant C with the

property that every integer greater than or equal to 4 is the sum of at most C primes

[38]. Discussion of this area of research is also out of the scope of this thesis. The

interested reader is referred to [38].

2.2.6 Lower Bounds, Upper Bounds, and Asymptotic Estimates

On the one hand, the above discussion shows that the empirical results concerning

Goldbach’s Conjecture are exact and suggestive, as far as they go. But they don’t go

far enough. The theoretical support for Goldbach’s Conjecture, though exact in its

foundations and its reach, seems frustratingly approximate in its ability to specify the

kind of fine-grained understanding of the distribution of primes that would appear to be

needed to prove Goldbach’s Conjecture. The reader may well conclude that somewhere,

somehow, certain fundamental facts about the prime numbers remain elusive.

2.3 Significance: Goldbach’s Conjecture, Sieve Methods, Brun’s Work

2.3.1 Significance of Goldbach’s Conjecture

Goldbach’s Conjecture is important less for its namesake, Christian Goldbach [41]

- who is today chiefly remembered for this conjecture [20] - than for the mathematics
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and the mathematicians involved in addressing the conjecture. In particular, Goldbach’s

Conjecture is significant for at least four reasons: the nature of the problem itself, related

problems, the mathematics that has been used to address it, and the fact that it has

engaged the attention of some prominent mathematicians [14, 42, 53].

Goldbach’s Conjecture is a simple statement about primes that remains unproved

more than a quarter millennium after it was first written down in Euler’s letter of 1742.

Although it is a simple statement about primes - certainly simpler than the statement

of the Riemann Hypothesis - the primes themselves are both frustratingly irregular and

yet curiously regular in their distribution [55]. The conjecture would seem to depend on

the distribution of prime numbers, because unless the primes are distributed in a certain

way, the conjecture is false. The fact that it hasn’t been proved yet, along with the fact

that researchers believe the current techniques do not suffice to prove it, suggests that

some new mathematics (or a new combination of existing mathematics) is needed to

prove it, assuming that it can, indeed, be either proved or disproved. These facts alone

can provide sufficient motivation for mathematicians to address the conjecture.

Goldbach’s Conjecture is related to another well-known conjecture that has not

yet been proved, the Twin Primes Conjecture, which contends that there are infinitely

pairs of primes that differ by two. Both the Twin Primes Conjecture and Goldbach’s

Conjecture were mentioned by Landau in 1912 as examples of problems he considered

“unassailable” [33]. One way to see that these two problems are related is to note that

Brun uses (in his papers of 1915 and 1920) similar sieve machinery to discuss both prob-

lems [1, 3]. Additionally, although it is not wise to claim that either of these problems is

related to any formulas or hypotheses of Riemann, when Hilbert gave his 1900 address

to the International Congress of Mathematicians he said (in the problem where he dis-

cussed the Riemann Hypothesis), “After an exhaustive discussion of Riemann’s prime

number formula, perhaps we may sometime be in a position to attempt the rigorous

solution of Goldbach’s problem” [28]. The fact that Goldbach’s Conjecture, along with

the Twin Primes Conjecture, was mentioned by Hilbert in the context of the Riemann’s

1859 paper is not insignificant.

Since the early twentieth century Goldbach’s Conjecture has been investigated using

new mathematics that includes sieve methods and the circle method. Subsequently,

sieves have been used in areas as diverse as probability and discrete groups, where in
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the latter case “[t]he basic motivation is that any discrete set with interesting structure

can be investigated by ideas that are related to sieve [sic]” [32].

Finally, Goldbach’s Conjecture has received attention and serious study by well-

known mathematicians. Among the names of the mathematicians who have considered

various aspects of Goldbach’s Conjecture are Euler, Cantor, Brun, Hardy and Little-

wood, and Landau.

2.3.2 Significance of Sieve Methods

Brun’s early work in sieves marked the beginning of much work on sieves in the

twentieth century. Sieves have also been used to address other conjectures about primes

(e.g., the Twin Primes Conjecture and the conjecture that there are infinitely many

primes of the form n2 + 1 [35]). They have also, as mentioned above, been applied

in other areas and problems of mathematics [17, 32]. One reason for the versatility of

sieve methods is that they can be given very general specifications [32] and can produce

general results [23].

2.3.3 Significance of Brun’s Sieve Methods

Brun’s work on sieves is widely acknowledged and highly regarded by researchers

in number theory (e.g., [17, 21, 23]). Three of his papers are of particular interest. In

1915 Brun introduced a sieve method that enabled him to prove that the infinite sum

of the reciprocals of the twin primes is finite or converges [1]. In 1919 he announced the

result concerning Goldbach’s Conjecture ([2]) that he would later prove in his paper of

[3], which is examined in some detail in Chapter 3.

One indication of high regard researchers have for Brun’s work comes from an

address on sieve methods to the International Congress of Mathematicians 2 in 1978

(the year Brun died), which was dedicated to the memory of Vigo Brun and which

begins as follows: “In the early twenties of this century Viggo Brun . . . introduced a

method which proved to be one of the most fruitful tools in elementary number theory”

[29].

Some other recognition given to Brun’s work includes:
2The International Congress of Mathematicians is the same conference where, in 1912, Landau gave

an address in which he spoke of the Goldbach conjecture as “unangreifbar,” i.e., “unassailable,” [33].
Also, in a 1966 address to this congress, Vigo Brun himself delivered his “Reflections on the Sieve of
Eratosthenes” [4].
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• “The first to devise an effective sieve mechanism that goes substantially beyond

the sieve of Eratosthenes was Viggo Brun . . . ” [23].

• The study of Brun’s later work on his sieve method “is essential as a viable tool

in sieve theory that cannot be ignored” [7].

• “Sieve Methods in Number Theory have roots which can be traced back to an-

tiquity, but the modern era may be said to have begun with the papers of Viggo

Brun, in particular with his article ‘Le Crible d’Eratosthène et le Théorème de

Goldbach’ in 1920” [21].

• “The sieve of Eratosthenes lay virtually ignored for some two thousand years.

Despite the few touches applied by Legendre, the modern subject of sieve methods

really begins with Viggo Brun” [17].

• In reference to two results from Brun’s 1920 paper, “Brun had obtained these

powerful results by means of skillful improvements of a sieve method that goes

substantially beyond his historic source: the sieve of Eratosthenes (3rd century

B.C.)” [46].

• Although improvements to Brun’s methods were made by other authors, “. . . the

authors had to employ other arithmetical devices; this shows how fruitful Brun’s

ideas have been and still are since they have found access into the repertoire of

methods of number theory” [46].

• “Brun’s [sieve] method is perhaps our most powerful elementary tool in number

theory” [15].
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CHAPTER 3

BRUN’S THEOREM ON GOLDBACH’S CONJECTURE

3.1 Overview of “Le Crible d’Eratosthène et le Théorème de Goldbach”

In “Le Crible d’Eratosthène et le Théorème de Goldbach” [3] Brun developed a

new sieve method. His sieve employed Merlin’s double application of the sieve of Er-

atosthenes, exploited certain asymptotic results, and manipulated the terms of the Leg-

endre formula to establish a lower bound for the number of elements that fall through

his sieve - all of which taken together enabled him to prove that every sufficiently large

even number can be written as the sum of two 9-primes (positive integers with at most

nine prime factors each).

“Le Crible d’Eratosthène et le Théorème de Goldbach” [3] contains seven sections,

four of which (Sections 2, 3, 4, and 6) are discussed in some detail later in this chapter.

The rest of this section provides a brief overview of the seven sections in Brun’s

paper, with a focus on the results that are most germane to this thesis. (Brun has several

notable results in his paper, in addition to his theorem on Goldbach’s Conjecture, but

those results are not treated in this thesis.) All page numbers given below refer to the

English translation by Rui [44], except when the context makes clear that the original

French version is being discussed, which is necessary to do from time to time to shed

light on certain issues of language and typography.

In §1 (pp. 99-100) Brun states Goldbach’s Conjecture, mentions the Twin Primes

Conjecture1, and says that one now (in 1920) has a starting point for addressing these

problems. According to Brun, the first to draw attention to this fact was Jean Merlin

(see [22], which was submitted by Hadamard on behalf of Merlin, who died in WWI).

The double sieve was discussed in Section 1.9; it will be discussed again in Section 3.5

where we discuss §6 of Brun’s paper.
1The Twin Prime Conjecture asserts that there are infinitely many pairs of primes with difference 2.
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Section 2 of Brun’s paper (pp. 100-110) introduces Brun’s notational framework,

as well as several examples of truncating the Legendre formula, en route to a method

that will allow Brun to obtain a useful lower bound for the number of items that fall

through his sieve. In this section Brun uses two different but equivalent notations for

the expansion of the main term in his lower bound formula (see 1.4.1.5 and 1.4.1.6),

which allow him some flexibility as he derives certain results in §3 and §4 of his paper.

In Section 3 (pp. 110-114) Brun develops in more detail the method of his second

example from §2. By using Stirling’s formula, he improves his initial lower-bound esti-

mate for the number of elements that fall through his sieve, though he says at the end

of this section that the remainder term in this newer estimate is “still too great for our

purpose” (p. 114).

In Section 4 (pp. 114-123) Brun develops in more detail the method of his third

example in §2. This method is perhaps best seen as an elaborate extension of the

method he illustrated in §3: it provides Brun with a useful lower bound for the number

of elements that fall through his sieve. In elaborating this method Brun exploits Stirling’s

formula again, as well as two theorems from Mertens. This section creates the machinery

that is later applied to the double sieve in §6 to prove his theorem.

Section 5 (pp. 123-125) deals with a generalization of his developments from §1-4.

This generalization appears to be not directly relevant to the establishment of Brun’s

theorem; therefore, it is not covered further in this chapter.

In Section 6 (pp. 125-131) Brun pulls together the results from earlier in his paper

to prove his famous result on Goldbach’s Conjecture:

One can write [every] even number x, greater than x0, as a sum of two

numbers, whose numbers of prime factors do not exceed nine. x0 denotes a

determinable number and the prime factors can be different or not (p. 131).

Section 7 (pp. 131-136) contains additional results, which, since they occur after

the proof of Brun’s theorem in Section 6, are not discussed in this thesis.
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3.2 Different Lower Bounds and Brun’s Generalized Notation

In §2 of his paper, Brun develops his notation (see Section 3.2.2 below), discusses

the best2 lower bound for the Legendre formula N(1, x, p1, p2, . . . , pr) (see 1.4.0.2), and

gives three examples of how to calculate three other lower bounds for the Legendre

formula. Next we discuss the different lower bounds. Then, we describe some of Brun’s

general notation.

3.2.1 Different Lower Bounds for the Legendre Formula

As Brun works to establish different lower bounds for the number of terms that

fall through a sieve, he contrasts his results with what we have been calling the “worst”

lower bound for the Legendre formula, given in 1.4.1.8 and repeated for convenience

below.

N(1, x, p1, p2, . . . , pr) > x
∑

d|p1p2...pr

µ(d)
d
− 2r (3.2.1.1)

Note that instead of using 2r to refer to the number of terms in the expansion of the

sum, Brun more often uses R to refer to this number (which can vary as the sum he is

considering varies), as in

N(1, x, p1, p2, . . . , pr) > x
∑

d|p1p2...pr

µ(d)
d
−R. (3.2.1.2)

The different lower bounds he constructs are all improvements, in particular ways, on

this default lower bound.

3.2.1.1 Searching for Improved Lower Bounds

The method Brun uses to calculate the “la meilleure limite inférieure” ([3], p. 9)

for N(1, x, p1, p2, . . . , pr) is discussed, along with several examples, on pp. 106 and 107.

Since we have already discussed this method in Section 1.5, and since Brun does not

deal with it again in sections 3, 4, or 6, we do not discuss it further.

Although we have also already discussed the method underlying the first of his three

examples (Example 1 on p. 108), we will look at it again below, because considering

it in the context of Brun’s §2 helps us see the progression of Brun’s examples, which

develop lower bounds that are increasingly better, and such that the last of which
2That is, he describes the best lower bound obtainable via operations on the default lower bound

formula that remove certain terms from its expansion.
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is sufficient, along with the double sieve, to allow him to establish his theorem on

Goldbach’s Conjecture.

3.2.1.2 The Default (“Worst”) Lower Bound, Revisited

In Chapter 1, Section 1.4.1.8, we discussed the worst-case lower bound for the

number of items that fall through a sieve. That lower bound is obtained by dropping no

terms from the main-term expansion and using 2r, the number of terms in the expansion

of the Legendre formula, as the bound on the maximum absolute value of the error term

in the Legendre formula, where r is the number of sifting primes. The example Brun

gives for this default lower bound on page 108, and is reproduced from the original in

Figure 3.2.1.1.

Figure 3.2.1.1: Default lower bound for N(1, x, 2, 3, 5, 7): dropping no terms from
the expansion of the main term

Note the two equivalent forms that Brun uses for the expansion of the main term,

which follow the pattern established in formulas 1.4.1.5 and 1.4.1.6, the equivalence of

which the reader has no doubt previously verified. The reason that N(1, x, 2, 3, 5, 7) is

greater than rather than equal to the right-hand expression is that Brun is considering the

worst-case scenario in making this particular lower-bound estimate: the lower bound for

N(1, x, 2, 3, 5, 7) is greater than the main term minus the worst-case value for remainder

R, which is bounded in magnitude by 24. That is, the absolute value of each summand of
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the remainder term ∑
d|2·4·5·7 µ(d)

(⌊
x

d

⌋
− x

d

)
in the expansion of the Legendre formula

is bounded by 1, and there are 16 terms in its expansion. (Brun’s examples do not show

any details of the error term; they simply give a value for R, which equals the number

of terms in the main-term expansion of whichever example Brun happens to be dealing

with.)

3.2.1.3 Discarding Terms in “Small Print”

In the second of the three examples on pp. 108 - 110 (see Figure 3.2.1.2) Brun

shows that a lower bound for N(1, x, p1, p2, . . . , pr) is obtained by dropping particular

terms from the Legendre expansion, in particular, those terms “in small print.”

Figure 3.2.1.2: Lower bound for N(1, x, 2, 3, 5, 7, 11) obtained by dropping terms “in
small print”
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The typography and language of the original French are key to understanding what

Brun means here. Notice that in Figure 3.2.1.2 some terms in the right-hand side of the

inequality are in smaller typeface than other terms are. This typography works hand

in glove with Brun’s language - “les termes écartés sont ajoutés en petit” - to show the

reader which terms he is talking about: the terms that are in small print!

By contrast, Rui’s translation and its associated typography obscure rather than

illuminate which terms are being set aside (Figure 3.2.1.3).

Figure 3.2.1.3: Rui’s version of Brun’s Example 2

The language Rui uses to describe the terms that are set aside is that they “are

added on a small scale” ([44], p. 108). What does “small scale” mean in this context?

The typography of Rui’s version as published in Wang [53] is of little help in making

sense of this phrase, because it makes no distinction between the terms that are kept

in the expansion and the discarded terms, i.e., those that are “ajoutés en petit,” which
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might be better translated as “added in small print” or “in small typeface,” although

without a corresponding typographical change to indicate which terms are meant, a

better translation by itself would be of little use.

But by studying Brun’s original version we can, with just a little effort, come to

see what he means. In particular, we can understand why he describes the discarded

terms as having the form 1
papbpcpd

and 1
papbpcpdpe

. In the original French we can see

that the terms in small print, when multiplied by the terms outside the parentheses in

which they live, yield terms of the form 1
papbpcpd

and 1
papbpcpdpe

, exactly the forms that

Brun is referring to.

The formula obtained by dropping the terms “in small print” from the Legendre

expansion can be specified unambiguously. This formula is used in Brun’s §3 along with

Stirling’s formula to construct a lower-bound estimate that is better than the default

lower-bound estimate (see Section 3.3). Brun ends §3 by saying (p. 114, formula (12))

that the lower bound thus achieved, where the remainder term increases as a power of

the number of terms used in the expansion, is better than the lower bound developed

earlier (p. 113, formula (9), which shows the default lower bound), but that it is still

not good enough “for our purpose.” Thus, at the end of §3 Brun sets the stage for §4,

where he invents an improved lower-bound formula by dropping terms “to the right of

vertical lines.”

3.2.1.4 Discarding Terms “to the Right of Vertical Lines”

Brun’s third example (pp. 109 and 110 of Rui’s translation) illustrates the third

method he describes for finding a lower bound for the Legendre formula, one that he’ll

develop in §4 and which, along with appropriate changes for use in his double sieve, will

allow him to prove his theorem on Goldbach’s Conjecture in §6 of his paper.

The typography of the original French in Brun’s third example also makes evident

what he means by dropping terms “to the right of vertical lines.” Here, as it turns out,

Rui’s translation and the typography he uses are rather faithful to the original French,

even surpassing it in one regard (Rui presents this example on a single page (p. 109)),

though falling short in another (the English translation does not display the rightmost

vertical line that appears (albeit faintly) in the original French publication).
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In Figure 3.2.1.4 below, I have re-constructed the French version of Brun’s third

example so that it fits in a single page, to emphasize the structure of his expansion and

the visual effects of the, admittedly faint, vertical lines. Although this figure allows us

to understand the result of dropping terms “to the right of vertical lines,” the figure

itself reveals little of the algorithm that generated these effects.

Figure 3.2.1.4: Lower bound for N(1, x, 2, 3, 5, . . . , 19): dropping terms “to the right
of vertical lines”
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As we saw in the previous section, it is straightforward to understand the algorithm

underlying Brun’s second example (see Sections 3.2.1.3 and 3.3) where he discards terms

“in small print.” That algorithm discards terms “in the tail” of the expansion of the

main term (when that expansion has the form shown in 1.4.1.4), i.e., the Σ-terms with

the largest denominators.

However, the algorithm behind Brun’s third example, which discards terms “to the

right of vertical lines,” is more intricate. In addition to discarding terms in the tail of

the expansion of the main term when it is expressed as in 1.4.1.4, this algorithm also

reduces the number of terms of the expansion, both positive and negative terms in a

precisely specified way (see Section 3.4.1).

Consider for instance the full summation of the form ∑∑
p1<p2

1
p1p2

. In this case, if

there are r sifting primes total, then there are
(r

2
)

summands in that full summation.

However, using Brun’s algorithm for discarding terms “to the right of vertical lines,” not

all such summands are included in the expansion of the main term. See Section 3.4.2.

Next we briefly discuss Brun’s notation from §2 and note that only some of his

notation is needed to trace the main thread of his later developments in §3, §4, and §6.

3.2.2 Brun’s Notation in §2 for his Generalized Sieve

The notation that Brun develops in §2 is for a more general sieve than the kind

we have been considering up to this point. Our presentation has not yet discussed this

notation because it hasn’t so far been needed to convey the main ideas. Later, when we

consider the double sieve again in Section 3.5, we will have occasion to mention some of

the notation from Brun’s more generalized sieve.

Brun’s sieve operates on a sequence that is not necessarily a sequence of consecutive

integers from 1 to x. The first element of the sifting sequence can be an arbitrary positive

integer, which he calls ∆. Also, he considers generalized arithmetic sequences with

common difference D, where D is greater than or equal to 1 and relatively prime to each

of the sifting primes p1, p2, . . . pr. Further, Brun’s sieve does not necessarily operate by

trapping multiples of the sifting primes per se, but rather by trapping certain sequences

that have a common difference of p1, or of p2, ..., or of pr. So, Brun’s sieve would allow

us to sieve the sequence of consecutive odd integers 3, 5, . . . x by the sifting sequence

2, 7, 12, 17, ..., 37. In that case, ∆ = 3, and D = 5. Here, the sifting sequence starts with
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2, and we sift by a sequence with common different 5 (a prime). In general, the sifting

sequences can start with any positive integer.

Brun’s original formulation for N(1, x, p1, p2, . . . , pr) is different from the Legendre

formula we have used in Chapter 1 for N(1, x, p1, p2, . . . , pr). Brun later derives the

Legendre formula and various lower bounds for it. Indeed, his examples 1, 2, and 3 on

pp. 108-110 look very much like examples we’ve seen already in Chapter 1.

Later, in Section 3.5, we’ll consider two main pieces of Brun’s generalized notation

in his §6. First, in dealing with the double sieve, he sifts by “double rows” like those we

exhibited in Figure 1.9.0.2. Second, in his example on p. 127 the sequence to be sifted

has common difference D = 2, and starts at 1, even though his general notation allows

for other ∆ and D values. The result is just a double sieve that operates on a sequence

of consecutive odd numbers beginning at 1, very much like the simple example shown

in Figure 1.9.0.3.

3.3 Discarding Terms in “Small Print”

In §3 Brun extends and generalizes computations like those from his second example

on p. 108 to show that the sieve method of discarding terms “in small print” yields an

improved lower bound estimate for N(1, x, p1, p2, . . . , pr). Brun first establishes that the

operation of this sieve – where the main-term expansion is truncated at an “m-indexed

Σ-term” (where m is odd; see Section 3.3.2) – yields a formula that does indeed give a

lower bound for N , the number of numbers that fall through his sieve3. That formula has

the form N > M−R. Brun then uses algebra to establish recursive relationships among

certain terms in the expansion of his sieve. Then he invokes Stirling’s formula to show in

a simple form one particular relationship among certain terms of the expansion. He uses

these results to establish a lower bound A for M . Then he uses a counting argument

to find an upper bound B for R. The bounds A and B, applied to the fundamental

inequality N > M −R, give Brun his final result of this section – a lower bound for N

which holds for the mild condition that m+ 2 is greater than the sum of the reciprocals

of the sifting primes p1, p2, . . . , pr (see the end of Section 3.3.4 for why this condition

exists).

So, in effect, “all” that Brun does is start with a particular form (3.3.2.2) of the

fundamental inequality N > M − R, and then proceed to bound M below by A and
3An argument for why this sieve does in fact give a lower bound for N is given in 3.3.2.
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R above by B, thus establishing a new inequality of the form N > A − B, which gives

an improved lower bound for N (in the sense that it reduces the size of the remainder

term). Thus, with σ = 1
p1

+ 1
p2

+ . . .+ 1
pr

:

N(1, x, p1, p2, . . . , pr) > x
[
(1− 1

p1
)(1− 1

p2
) . . . (1− 1

pr
)−( eσ

m+ 1)m+1)
]
−rm+1. (3.3.0.1)

3.3.1 Algorithm for Discarding Terms in “Small Print”

Recall Brun’s second example from page 108, which is shown again below in Figure

3.3.1.1. Although it may not be immediately obvious how to algorithmically drop terms

“in small print” from a sieve, Brun shows for his example that removing terms in small

print means removing those terms of the expansion that are of the form 1
papbpcpd

and
1

papbpcpdpe
. Thus, discarding terms in “small print” means removed terms from the tail

end of the expansion of the main term in the Legendre expansion.

Figure 3.3.1.1: Rui’s version of Brun’s Example 2
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Thus, the truncation of the expansion of the main term is such that we keep an

odd number (m = 3 in the example above) of “Σ” terms in the expansion and discard

the rest. That is, from the full expansion of the main term

x
[
1−∑

p

1
p +∑∑

p1<p2

1
p1p2
−
∑∑∑
p1<p2<p3

1
p1p2p3

+ . . .+ (−1)r∑∑
. . .
∑

p1<...<pr

1
p1p2...pr

]
,

we keep only x
[
1−∑

p

1
p +∑∑

p1<p2

1
p1p2
−
∑∑∑
p1<p2<p3

1
p1p2p3

]
.

At this point, we have not shown that by truncating the expansion of the main term

in this manner and adjusting the remainder term appropriately, the resulting expression

of a main term minus a remainder term does give a lower bound for N . The next section

addresses this issue by giving an overview of how Brun’s calculations for this sieve do

yield a lower bound for N . The details of Brun’s calculations follow in subsequent

sections.

3.3.2 Brun’s Sieve in §3 Does Give a Lower Bound for N

Recall from Section 1.5 the inequality that gives the “worst” lower bound for N :

N(1, x, p1, p2, . . . , pr) > x
∑

d|p1p2...pr

µ(d)
d
−R, (3.3.2.1)

where R = 2r, with r equal to the number of sifting primes used in the sieve. This

inequality can also be written

N > x
[
1−∑

p

1
p +∑∑

p1<p2

1
p1p2
−
∑∑∑
p1<p2<p3

1
p1p2p3

+ . . .+ (−1)r∑∑
. . .
∑

p1<...<pr

1
p1p2...pr

]
−R.

Brun basically takes as his point of departure an inequality similar to the one

above, but with a truncated expansion of the main term and a correspondingly adjusted

remainder term R. This inequality (essentially formula (8) on p. 112) is

N >
[
x−

∑
p

x

p
+
∑∑
p1<p2

x

p1p2
− . . .−

∑∑
. . .
∑

p1<p2<...<pm

x

p1p2 . . . pm

]
−R, (3.3.2.2)

where m is an odd number less than r. (Note that the values of R in these last two in-

equalities, although they refer to the number of terms in the expansion of their respective

main terms, will in general not be the same.)

It is not immediately clear why, even though the fully expanded right-hand side in

3.3.2.1 gives a lower bound for N , so, too, does the truncated right-hand side given in
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3.3.2.2. Because Brun arrives at this fact by an argument that is not discussed in this

thesis, it is useful to come at this result through a different argument, given next.

Observe that the expansion of the main term in 3.3.2.2 is truncated after subtracting

an “odd-numbered Σ-term” (since m is odd). Recall that the Principle of Inclusion-

Exclusion (PIE) operates by alternatingly overcounting and undercounting the number

of elements that fall through the sieve (see Example 1.4.0.1). These overcounts and

undercounts are tracked, respectively, by the addition and subtraction of the Σ-terms

in the expansion. So, truncating the expansion of the PIE at an “odd-numbered Σ-

term” (i.e., right after subtracting a group of Σ-terms from the expansion), results in an

undercount of the number of terms that fall through the sieve, i.e., a lower bound for

N . So far, so good.

Now compare 3.3.2.2 to the inequality below, which, based on how the PIE operates,

we know holds:

N > x−
∑
p

⌊
x

p

⌋
+
∑∑
p1<p2

⌊
x

p1p2

⌋
− . . .−

∑∑
. . .
∑

p1<p2<...<pm

⌊
x

p1p2 . . . pm

⌋
. (3.3.2.3)

Each summand on the right-hand side of 3.3.2.3 of the form
⌊
x
d

⌋
(where d is a prime or a

product of primes) can also be written in the form x
d − (xd −

⌊
x
d

⌋
). And, of course, there

are as many expressions of the form x
d − (xd −

⌊
x
d

⌋
) as there are summands of the form⌊

x
d

⌋
. Designate the number of such expressions by R.

Further, each expression of the form (xd −
⌊
x
d

⌋
) is a positive number less than 1,

and since there are R such expressions, the sum of all such expressions is at most R.

But, because of the alternating signs in 3.3.2.3, not all expressions (xd −
⌊
x
d

⌋
) contribute

a positive amount to the right-hand side. This means that the total contribution of all

the expressions of the form (xd −
⌊
x
d

⌋
) is a number, say k, whose magnitude is less than

R. So, since
⌊
x
d

⌋
= x

d − (xd −
⌊
x
d

⌋
) and since k collects the total contribution of the terms

(xd −
⌊
x
d

⌋
), the formula in 3.3.2.3 can be written

N >
[
x−

∑
p

x

p
+
∑∑
p1<p2

x

p1p2
− . . .−

∑∑
. . .
∑

p1<p2<...<pm

x

p1p2 . . . pm

]
+ k, (3.3.2.4)

where k (since its magnitude is less than R) is less than the number of summands in the

brackets.
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Now, since |k| < R, we still maintain the inequality if we write

N >
[
x−

∑
p

x

p
+
∑∑
p1<p2

x

p1p2
− . . .−

∑∑
. . .
∑

p1<p2<...<pm

x

p1p2 . . . pm

]
−R, (3.3.2.5)

where R is the number of terms inside the brackets. This last inequality is the same as

that in 3.3.2.2, which is what we set out to show holds.

Note, however, that although Brun’s manipulations do result in a lower-bound

inequality for N that changes the size of the remainder term for the better by reducing

it from 2r to rm+1, it is still possible (as shown in Section 3.3.7) that this lower bound

for N is negative. Nonetheless, the technique Brun uses in §3, specifically his result that

uses Stirling’s formula to bound the size of the mth term of the expansion, forms a key

part of Brun’s complex manipulations in §4 of his paper, in which he does establish that

for sufficiently large numbers x, the lower bound for N(1, x, p1, p2, . . . , pr) is positive.

3.3.3 Stirling’s Formula is Used to Bound Part of the Expansion

To bound the mth term in the expansion of the main term, Brun uses a recursive

relationship among certain terms in the expansion of the main term; he then employs

Stirling’s formula to arrive at an upper bound on the m-indexed Σ-term (pp. 13-16 in the

original [3] give more details than the corresponding pages 111-116 in Rui’s translation

[44]).

Brun defines σ as the sum of the reciprocals of the sifting primes; that is, σ =
1
p1

+ 1
p2

+ . . .+ 1
pr

. Next, he defines Σ1 = ∑
p

1
p = σ, Σ2 = ∑∑

p1<p2

1
p1p2

, Σ3 = ∑∑∑
p1<p2<p3

1
p1p2p3

,

etc.

With this notation, the expansion

x
[
1−∑

p

1
p +∑∑

p1<p2

1
p1p2
−
∑∑∑
p1<p2<p3

1
p1p2p3

+ . . .+ (−1)r∑∑
. . .
∑

p1<...<pr

1
p1p2...pr

]
,

can be written as

x
[
(1− Σ1 + Σ2 − Σ3 + . . . (−1)rΣr)

]
.

Then, using the definitions of σ, Σ1, and Σ2, Brun shows that

σ · Σ1 = σ · σ = σ2 = ( 1
p1

)2 + ( 1
p2

)2 + . . .+ ( 1
pr

)2 + 2Σ2 > 2Σ2.

That is, σ · Σ1 > 2Σ2. Brun continues, in a similar manner:
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σ · Σ2 > 3Σ3,

σ · Σ3 > 4Σ3,

. . .

σ · Σm−1 > mΣm,

and therefore, on dividing through by m, also that

Σm <
σ

m
Σm−1, (3.3.3.1)

from which it follows that

Σm <
σm

m! , (3.3.3.2)

which upon using Stirling’s formula (n! = (ne )n(
√

2πn+ θ),−1 < θ < 1), yields

Σm <
(eσ
m

)m
. (3.3.3.3)

That is, Σm is bounded above by
(
eσ
m

)m
. Next, we’ll see that this upper bound on Σm

allows Brun to find a lower bound for the main term of the expansion M = x
[
(1−Σ1 +

Σ2 − . . . (−1)mΣm

]

3.3.4 Bounding the Main Term

Brun next reformulates the expansion of the truncated main term, beginning with

an add-and-subtract argument. He expresses

N(1, x, p1, p2, . . . , pr) > x
[
(1−Σ1 +Σ2−· · ·−Σm+Σm+1− . . .+ . . . (−1)rΣr)

]
−R.

as

N(1, x, p1, p2, . . . , pr) >

x
[
(1− Σ1 + Σ2 − · · · − Σm + Σm+1 − . . .+ . . . (−1)rΣr)

− (Σm+1 − Σm+2 + ...(−1)rΣr)
]
−R,

(3.3.4.1)

where R is the number of terms in the expansion.
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Brun remarks that we know the value of the terms in the first set of parentheses

of 3.3.4.1. That value is just [(1− 1
p1

)(1− 1
p2

) . . . (1− 1
pr

)], using the equivalence of the

expansion of the main term that we already showed in 1.4.1.5 and 1.4.1.6.

Next, Brun says, the terms of 3.3.4.1 in the second pair of parentheses are decreasing

(in absolute value) when m+ 2 > σ = 1
p1

+ 1
p2

+ . . .+ 1
pr

(see below); therefore, the value

of all the terms in the second set of parentheses is less than Σm+1, which, in turn, by

3.3.3.3 is less than
( eσ

m+ 1
)m+1

. Combining the above observations, which is a matter

of algebra, gives Brun his result, that

N(1, x, p1, p2, . . . , pr) > x
[
(1− 1

p1
)(1− 1

p2
) . . . (1− 1

pr
)− ( eσ

m+ 1)m+1
]
−R, (3.3.4.2)

where m is odd and less than r, m + 2 > σ, and R is the number of terms in the

expansion.

By subtracting ( eσ
m+1)m+1 from the main term in the expansion, Brun gives a lower

bound for the main term (in effect giving M > A). Next, he will find an upper bound

for R (in effect giving R < B). Then he will be able to combine the information in these

two inequalities to arrive at his final result in §3.

It still remains to show that the terms involving Σj , j > m are decreasing in mag-

nitude when m + 2 > σ = 1
p1

+ 1
p2

+ . . . + 1
pr

, i.e., when σ
m+2 < 1. This result follows

from the recursive relationships Brun developed earlier.

Recall that Brun established that Σm < σ
mΣm−1. Therefore, Σm+2 <

σ
m+2Σm+1,

which is sufficient to show that the terms involving Σj , j > m are decreasing in magni-

tude when m+ 2 > σ = 1
p1

+ 1
p2

+ . . .+ 1
pr

.

3.3.5 Bounding the Remainder Term

Consider again the inequality

N(1, x, p1, p2, . . . , pr) > x
[
(1− 1

p1
)(1− 1

p2
) . . . (1− 1

pr
)− ( eσ

m+ 1)m+1
]
−R. (3.3.5.1)
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We observe that R, the number terms in the resulting expansion of the main term,

can be most easily determined by using the form of the main term given below:

N > x
[
1−

∑
p

(1
p

) +
∑∑
p1<p2

( 1
p1p2

)− . . .−
∑∑

· · ·
∑

p1<p2<...<pm

( 1
p1p2 . . . pm

))
]
−R, (3.3.5.2)

Thus, R = 1+
(r

1
)
+
(r

2
)
+. . .+

( r
m

)
, which, as Brun indicates, is less than 1+r+r2+. . .+rm,

which in turn is less than rm+1. Thus, this sieve shrinks the remainder term from 2r,

which was the remainder term in the default lower bound, to rm+1.

3.3.6 Combining Results Yields a New Lower Bound for N

Thus, combining the bounds we found in the previous two sections we at last obtain

N(1, x, p1, p2, . . . , pr) > x
[
(1− 1

p1
)(1− 1

p2
) . . . (1− 1

pr
)−( eσ

m+ 1)m+1)
]
−rm+1, (3.3.6.1)

where m is odd and such that m+ 2 > σ = 1
p1

+ 1
p2

+ . . .+ 1
pr

.

But why does Brun say at the end of §3 (p. 114) that the increase of the error

term in this lower bound “is still too great for our purpose”? One possibility is that

he knew that his formula in 3.3.6.1 could still result in a negative lower bound for

N(1, x, p1, p2, . . . , pr).

3.3.7 Problem: the Improved Lower Bound Could Still be Negative

Using 3.3.6.1, we can calculate the improved lower bound for N(1, x, 2, . . . 19) and

m = 3. We get

N(1, x, 2, 3, . . . , 19) >

x
[
(1− 1

2) + . . .+ (1− 1
19)− (e · 1.455

4 )4
]
− 84

≈ x[0.171− (0.9888)4]− 4096 ≈ x[−0.785]− 4096

(3.3.7.1)

Thus, even with this improved lower bound formula, depending on the particular values

x, r, and m, we could still end up with a negative lower bound. Note that in this

example even if x is “sufficiently large” the lower bound will still be negative.

3.4 Discarding Terms “to the Right of Vertical Lines”

Brun’s Example 3, shown above in Figure 3.2.1.4, shows what he means by dis-

carding terms “to the right of vertical lines.” As in the previous sieve where we “discard
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terms in small print,” there does exist an algorithm to identify such terms, though Brun’s

complicated presentation of that algorithm is rather difficult to understand. Adding to

that difficulty are the challenges in understanding the calculations Brun subsequently

makes and the additional results he exploits (theorems from Stirling and Mertens) to

arrive at his chief results in this section.

Notwithstanding these difficulties and challenges, though, some definite markers

can be laid down to help readers find their way through Brun’s arguments. In particular,

the steps Brun takes in §4 are broadly similar to the steps he takes in §3: beginning

with a form of the fundamental inequality N > M − R for his sieve, Brun bounds M

below by A and bounds R above by B, thus yielding a new lower bound N > A−B.

There are three main differences between the steps Brun takes in §3 and the steps he

takes in §4. First, Brun uses theorems from Mertens to establish certain relationships

among his sifting primes when the first sifting prime p1 is sufficiently large. (These

relationships involve the use of constants α > 0 and α0 > α, to which Brun later gives

on p. 120 the specific values of 1.5 and 1.51, respectively.) Second, the route that

Brun takes to establish a lower bound for M is much more convoluted in §4 than the

corresponding route in §3. This is because Brun makes use of many more auxiliary

terms and inequalities, which incorporate previous results from Mertens and Stirling in

ways that are not blindingly obvious. Third, Brun’s calculation of the bound on the

remainder term R in §4 uses auxiliary terms and an argument that is more complicated

than the counting argument he used to bound the remainder term in §3.

3.4.1 Algorithm for Discarding Terms “to the Right of Vertical Lines”

In this section we describe the basic idea behind the algorithm for the sieve Brun

uses in §4, and we sketch the correspondence between the notation Brun uses for this

sieve and the idea behind the sieve. In Section 3.4.2 we give an argument for why this

sieve does give a lower bound for N .

3.4.1.1 The Basic Idea Behind the Algorithm

Brun begins §4 by presenting an algorithm that gives a lower bound for N when

discarding terms “to the right of vertical lines.” Brun’s development of this algorithm

uses notation not discussed yet in this thesis, so we need a separate argument (Section

3.4.2) for why this algorithm does in fact provide a lower bound for N . Nonetheless,
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here we can pick up Brun’s thread in his formula 14′ on p. 115, which is shown as 3.4.1.1

below.

N(D,x, p1, . . . , pr) >
x

D

[
1− S1 + S2 − . . .− S2n−1

]
−R. (3.4.1.1)

One notes immediately the similarity of this formula with formula (8) from §3 (p. 112):

N(D,x, p1, . . . , pr) >
x

D

[
1− Σ1 + Σ2 − . . .− Σm

]
−R. (3.4.1.2)

(In both formulas, R is the number of terms in the main-term expansion, and for our

purposes, we can take D = 1 and assume that we’re sifting a sequence of consecutive

integers that start at 1.)

The similarity of 3.4.1.1 and 3.4.1.2 is twofold: the S-terms and the Σ-terms are

constructed as the sums of products of reciprocals of primes, and in each formula the

truncation of the expansion is done at an odd-indexed term (2n − 1 in the case of the

S-terms, and m in the case of the Σ-terms, which, recall from Section 3.3.2, is assumed

to be odd).

The key difference between the two formulas lies in how the S-terms and Σ-terms are

constructed: each even-indexed S-term contain fewer summands than the corresponding

even-indexed Σ-term, as can be seen by comparing the diagrams Brun uses to describe

how the S-terms (p. 117) and the Σ-terms (pp. 111-112) are constructed. Example

3.4.1.1 below uses Brun’s notation to describe a particular case where the number of

terms in S2 is less than the number of terms in Σ2. The significance of the differences

between S-terms and Σ-terms comes into play in the consequences Brun derives on pp.

118-120 based on certain additional assumptions and other results he provides on pp.

116-117 (see Section 3.4.4).

Later in §4, Brun uses certain initial assumptions about the distribution of the

sifting primes, along with particular results by Stirling and Mertens, to find a lower

bound A for the main term of the expansion and an upper bound B for the remainder

term, which, taken together, allow him to show that N > A−B. The computations for

the lower bound for N that Brun establishes in §4 are then modified as appropriate in

§6 to yield a lower bound for N that allows Brun to establish his theorem on Goldbach’s

Conjecture.
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3.4.1.2 Brun’s Notation for the Algorithm

Recall from Section 3.4.1.1 this algorithm results in fewer summands being included

in the S-terms that remain after we truncate the main-term expansion at an odd number

(than there were in the corresponding Σ-terms resulting from the previous sieve). The

notation Brun uses (in formula (14) on p. 115) to indicate which summands remain in

S2 is ∑
a≤r

∑
b<a
b<t

1
papb

.

We can make some immediate sense of this notation by recalling that r is the index of

the rth sifting prime pr and noting that the index a of pa and the index b of pb are to

be less than r in some specified way.

In particular, when sifting by primes 2, 3, 5, 7, . . . , pr, the above notation is intended

to specify that the index a can range over the set {2, 3, 4, . . . , r}, corresponding to the

fact that pa can range over the set of primes {3, 5, 7, 11, . . . , pr}. Thus, when a = 2,

pa = 3; when a = 3, pa = 5; when a = 4; pa = 7, and so forth. Similarly, the index

b on pb can range over the set {1, 2, 3, . . . , t− 1}, corresponding to the fact that pb can

range over the set {2, 3, . . . , pt−1}, where t < a (which Brun assumes but does not state

explicitly).

To better understand how Brun’s notation for this algorithm corresponds to the

idea behind the algorithm, consider the following example, which shows that Brun’s

notation does indeed reduce the number of terms in the S-terms remaining after the

main-term expansion is truncated at an odd-indexed S-term.

Example 3.4.1.1. Suppose we sift the consecutive numbers 1, 2, 3, . . . , 170 by the six

primes 2, 3, 5, 7, 11, and 13, where pr = p6 = 13, the sixth sifting prime, and suppose

that we truncate the main-term expansion at S5. Show that the application of Brun’s al-

gorithm with t = 4 results in a smaller number of summands of the form ∑
a≤r

∑
b<a
b<t

1
papb

(these are the summands in S2) compared to the “full” number of summands of the form∑∑
b<a≤r

1
papb

from the previous algorithm (these are the summands in Σ2 for the sieve that

discarded terms “in small print”).

The “full” number of summands in Σ2 in the expansion of the main term, according

to the specification ∑∑
b<a≤r

1
papb

for the previous algorithm, is 15, since there are
(6

2
)

ways

of choosing pa and pb according to this specification.
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Now, apply Brun’s algorithm, truncating the expansion at S5 according to the

specification ∑a≤r
∑
b<a
b<t

1
papb

, with t equal to 4. Then there are only 12 summands of

the specified form, because the index b must be less than t, which equals 4. That is, the

indices for b range over the set {1, 2, 3}, which means that the primes pb in the summands
1

papb
range over the set {2, 3, 5}. Therefore, the primes 7 and 11 are not allowable values

for pb, and so the three terms 1
13·11 , 1

13·7 , and 1
11·7 are not in the summands of the

form 1
papb

according to the specification ∑a≤r
∑
b<a
b<t

1
papb

. Thus, three positive terms are

removed from what was, in the sieve that discarded terms“in small print,” the sum of

fifteen terms of the form 1
papb

.

Brun’s notation for this sieve also specifies how the number of odd-indexed S-terms

is reduced, as the next example shows, which considers summands of the form 1
papbpc

according to the specification ∑a≤r
∑
b<a
b<t

∑
c<b
c<t

1
papbpc

.

Example 3.4.1.2. Suppose we sift the consecutive numbers 1, 2, 3, . . . , 170 by the six

primes 2, 3, 5, 7, 11, and 13, where pr = p6 = 13, the sixth sifting prime, and suppose

that we truncate the main-term expansion at S5. Show that the application of Brun’s

algorithm with t = 4 results in a smaller number of summands in S3, i.e., summands

of the form ∑
a≤r

∑
b<a
b<t

∑
c<b
c<t

1
papbpc

, compared to the “full” number of summands of the

form ∑∑∑
c<b<a≤r

1
papb

from the previous algorithm (these are the summands in Σ3 for the

sieve that discarded terms “in small print”).

The “full” number of summands in Σ3 in the expansion of the main term, according

to the specification ∑∑∑
c<b<a≤r

1
papb

for the previous algorithm, is 20, since there are
(6

3
)

ways

of choosing pa, pb, and pc according to this specification.

Now, applying Brun’s specification (as was done in Example 3.4.1.1), we see that

b < t = 4 as before, and now we have also that c < b. Thus, the indices c range only over

the set {1, 2}, and therefore, the primes pc range only over the set {2, 3}. Therefore, the

following summands are in Σ3 in the sieve that discards terms in “small print,” but are

not in S3: 1
13·11·7 , 1

13·11·5 , 1
13·7·5 , and 1

11·7·5 . Thus, S3 contains only sixteen summands,

whereas Σ3 contains twenty summands.

Consider again Brun’s Example 3, as presented in Figures 3.2.1.4 and 3.4.1.2 (from

p. 110), below.
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Figure 3.4.1.1: Lower bound for N(1, x, 2, 3, 5, . . . , 19): dropping terms “to the right
of vertical lines”
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Figure 3.4.1.2: Specification for dropping terms “to the right of vertical lines”

There are two issues to point out with this example. First, although the truncation

of the main-term stops after adding rather than subtracting a group of terms, it turns out

that, numerically, the lower bound achieved in this example is indeed an improvement

on the default lower bound. Specifically, for this example the default lower bound for

N works out to be 0.171x − 256, and Brun’s new lower bound for N is 0.163x − 72.

This increase in the lower bound for N speaks to the power of this sieve, since by PIE

considerations alone, we might be tempted to conclude that when we truncate the main-

term expansion after adding some terms, the result will be an overcount of the number

of elements that fall through the sieve, i.e., an upper bound for N . Yet, in this case,

because the reduction in the number of the even-indexed S-terms is so great, this sieve

does indeed give a lower bound for N , as Brun’s calculations show.

Second, Brun indicates that the subscripts a, b, c, and d on the primes are related as

follows: a > b > c > d. This is true enough, although when Brun presents this example

on pages 109 and 110 of §2, he has not yet supplied the general notation for this sieve

that he gives in §4. Thus, it is difficult to understand the significance of a > b > c > d

in this example.

However, with the description given above of Brun’s notation and with Brun’s ex-

ample 3.4.1.1 at hand, we can understand the indices a, b, c, d to be ranging over the sets

{1, 2, 3, 4, 5, 6, 7, 8}, {1, 2, 3, 4}, {1, 2, 3, 4}, and {1}, respectively, and the requirement
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that a > b > c > d to be specifying the allowable values of the indices on the primes pa,

pb, pc, and pd when constructing the products of the reciprocals of those primes.

3.4.2 Brun’s Sieve in §4 Does Give a Lower Bound for N

Recall that Brun’s second sieve discards terms “to the right of a vertical line.” This

means that the full expansion of N is truncated by removing certain terms from the

expansion. In this section, we revert to Brun’s original notation and explain how he

uses subscripts on the summations of the expansion of N to discard terms “to the right

of a vertical line.” In particular, we show why the following inequality, which is Brun’s

formula (14) on p. 115 of Rui’s translation, holds:

N(D, x, p1, . . . , pr) >
x

D

[
1−
∑
a≤r

1
pa

+
∑
a≤r

∑
b<a
b<t

1
papb

−
∑
a≤r

∑
b<a
b<t

∑
c<b
c<t

1
papbpc

+
∑
a≤r

∑
b<a
b<t

∑
c<b
c<t

∑
d<c
d<u

1
papbpcpd

− . . .
]
− R,

(3.4.2.1)

where D is the common difference between terms (and is relatively prime to the sifting

primes p1, p2, . . . , pn), t is a whole number less than r, u is a whole number less than t,

and R is the total number of terms inside the brackets. (Note that in Rui’s version there

is a typo in the first summation inside the brackets: he has 1
pr

instead of 1
pa

.) En route

to showing why formula (14) holds, we discuss Brun’s formulas (1), (2), (3), (3′), (4), and

(13).

The key point is that when Brun speaks of “discarding terms to the right of a

vertical line” he means discarding positive terms from the right-hand side of an equation

for N . The result, after those terms are dropped, is an inequality, which gives a lower

bound for N .

This point is brought out most clearly through examples that sift a sequence of

consecutive integers from 1 through x, i.e., examples that are arithmetic sequences that

start at 1 and that have common difference D = 1. This kind of example should be

familiar from earlier sections of the thesis 4.
4In Brun’s early formulas and derivations he mentions that the starting point of the sequences he

considers is some positive ∆ such that ∆ ≤ D (Rui, p. 103). In other, simplified formulas he omits the
starting value ∆ but keeps the common difference D.
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3.4.2.1 Examples Illustrating Key Formulas from Brun’s §2

Brun’s formula (1) (p. 102) is:

N(D,x, p1, . . . , pr) = N(D,x, p1, . . . , pr−1)−N(D · pr, x, p1, . . . , pr−1), (3.4.2.2)

where N(D,x, p1, . . . , pr) is the number of numbers that fall through a sieve operating on

an arithmetic sequence with common difference D relatively prime to each of the sifting

primes p1, p2, . . . , pr (pp. 100-102). Brun uses an implicit starting point of ∆ ∈ Z+ in

his notation, which has not been particularly relevant to our discussion so far.

Up to this point in this thesis, we have been using the 1 inN(1, 37, 2, 3, 5) to indicate

that the sequence to be sifted begins at 1, rather than that its common difference is 1.

In what follows, we still use the same notation but now we let 1 be the “D” in Brun’s

notation, and we make the background assumption that the numbers to be sifted also

start at 1. Thus, the number 1 does double duty in our notation: it indicates both the

common difference D of the arithmetic sequence to be sifted and also the starting point

of that sequence (which in Brun’s most general notation is ∆).

3.4.2.2 Deriving Brun’s Formula (2) from his Formula (1)

We use an example to show how Brun’s formula (2) follows from successive appli-

cations of his formula (1). Consider a sieve that sifts the consecutive integers from 1

through 37 by the primes 2, 3, and 5. To find N(1, 37, 2, 3, 5) we can use Brun’s formula

(1) to obtain:

N(1, 37, 2, 3, 5) = N(1, 37, 2, 3)−N(1 · 5, 37, 2, 3). (3.4.2.3)

In words, the number of numbers falling through a sieve that sifts all integers from 1

through 37 by the primes 2, 3, and 5 equals the number of numbers falling through a

sieve that sifts the integers from 1 through 37 by the primes 2 and 3 minus the number

of numbers that fall through a sieve that sifts multiples of 5 in the sequence 1, 2, 3, . . . , 37

by the primes 2 and 3. Using # to indicate cardinality gives

#{1, 7, 11, 13, 17, 19, 23, 29, 31, 37} =

#{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37} −#{5, 25, 35}, or 10 = 13− 3.
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Applying Brun’s formula (1) again to expand the term N(1, 37, 2, 3) in 3.4.2.3 gives

N(1, 37, 2, 3) = N(1, 37, 2)−N(1 · 3, 37, 2). (3.4.2.4)

In words, the number of numbers falling through a sieve that sifts the integers from 1

through 37 by 2 and 3 equals the number of numbers falling through a sieve that sifts

the integers from 1 through 37 by 2 minus the number of numbers falling through a

sieve that sifts multiples of 3 in the sequence 1, 2, 3, . . . , 37 by 2.

In other words, the number of integers from 1 through 37 that are not multiples

of 2 or 3 equals the number of integers from 1 through 37 that are not multiples of 2

(i.e., the odd numbers from 1 through 37) minus the number of multiples of 3 in the

sequence 1, 2, 3, . . . , 37 that are not multiples of 2. Using # to indicate cardinality gives

#{1,5,7,11,13,17,19,23,25,29,31,35,37} =

#{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37} - #{3,9,15,21,27,33}.

That is, 13 = 19− 6.

We can also decompose the term N(1, 37, 2) in 3.4.2.4 to obtain

N(1, 37, 2) = N(1, 37)−N(1 · 2, 37). (3.4.2.5)

In 3.4.2.5, N(1, 37) equals the number of integers from 1 through 37 that are multiples

of the common difference 1, i.e., just the number of integers from 1 through 37. And

N(1 · 2, 37) is the number of multiples of 2 in the range 1, 2, 3, . . . , 37 (i.e., the even

numbers from 1 through 37). Thus, 3.4.2.5 can be read as “the number of odd numbers

from 1 through 37 equals 37 minus the number of even numbers from 1 through 37.”

Putting together the decompositions so far, we have that

N(1, 37, 2, 3, 5) = N(1, 37)−N(1 · 2, 37)−N(1 · 3, 37, 2)−N(1 · 5, 37, 2, 3) 5, which is a

specific example of Brun’s formula (2) at the bottom of p. 103:

N(D,x, p1, . . . , pr) = N(D,x)−N(D·p1, x)−N(D·p2, x, p1)− . . .−N(D·pr, x, p1, . . . , pr).

3.4.2.3 From Brun’s Formula (2) to Formula (3)

Examples of Brun’s equations (2) and (3), respectively, are:

N(1, 37, 2, 3, 5) = N(1, 37)−N(1 · 2, 37)−N(1 · 3, 37, 2)−N(1 · 5, 37, 2, 3), and
5We can verify this by seeing that 10 = 37− 18− 6− 3.
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N(1, 37, 2, 3, 5) = N(1, 37)−N(1 · 2, 37)−N(1 · 3, 37)−N(1 · 5, 37)
+N(1 · 3 · 2, 37) +N(1 · 5 · 2, 37) +N(1 · 5 · 3, 37, 2).

The second equation should look familiar from earlier discussions of the PIE.

To show that these two equations give the same value for N(1, 37, 2, 3, 5), we show

that the right-hand sides of two equations are equal. We show that the right-hand sides

of these equations are equal by showing that the terms following N(1, 37)−N(1 ·2, 37) in

the first equation evaluate to the same number as the terms folowingN(1, 37)−N(1·2, 37)

in the second equation.

In the first equation, the value of N(1·3, 37, 2) is 6, which is the number of multiples

of 3 in the sequence 1, 2, 3, 4, . . . , 37 that are not multiples of 2, i.e., the cardinality of

{3, 9, 15, 21, 27, 33}. Also in the first equation, the value of N(1 · 5, 37, 2, 3) is 3, the

number of multiples of 5 in the sequence 1, 2, 3, 4, . . . , 37 that are not also multiples of

2, is 3, i.e., the cardinality of {5, 25, 35}. So, from the difference N(1, 37)−N(1 · 2, 37)

on the right-hand side of the first equation we are subtracting a total of 9.

In the second equation, the value of N(1 · 3, 37) is 12, which is the number of

multiples of 3 in the sequence 1, 2, 3, 4, . . . , 37. Also, N(1 · 5, 37) in the second equation

equals 7. Finally in the second equation, N(1 ·3 ·2, 37) = 6, N(1 ·5 ·2, 37) = 3, and N(1 ·

5 · 3, 37, 2) = 1. Thus, in the second equation the terms following N(1, 37)−N(1 · 2, 37)

evaluate to −12− 7 + 6 + 3 + 1 = −9, which matches the amount in the first equation

that is subtracted from N(1, 37)−N(1 · 2, 37).

Next, we re-format the second equation (which is of the form of Brun’s formula (3)),

so the reader can better see how discarding positive terms to the right of an appropriate

vertical line would give a lower bound for N . Thus reformatted, our particular example

looks like

N(1, 37, 2, 3, 5) = N(1, 37)

−N(1 · 2, 37)

−N(1 · 3, 37)

−N(1 · 5, 37)

+N(1 · 3 · 2, 37)

+N(1 · 5 · 2, 37) +N(1 · 5 · 3, 37, 2).

(3.4.2.6)
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Studying this newly formatted equation, we can see why discarding terms “to the right

of a vertical line” (judiciously placed) would be the same as discarding certain terms

after that follow a plus sign. (We’ll call all terms in this equation and in Brun’s formula

(3), “N-terms.”)

Notice in the above equation that the N-term N(1 ·5 ·3, 37, 2), which can be seen to

lie “to the right of a vertical line,” is positive. Also positive are the N-terms N(1·3·2, 37)

and N(1 · 5 · 2, 37), which, along with the N-term N(1 · 5 · 3, 37, 2), lie “to the right of a

(different) vertical line.” Thus, discarding terms from the equation that lie to the right

of either of those vertical lines will yield a lower bound for N(1, 37, 2, 3, 5).

The next section explains why, in general, dropping N-terms that “lie to the right

of a vertical lines” from Brun’s formula (3) yields a lower bound for N .

3.4.2.4 The “N-terms” in Formula (3)

Recall that the value of each N-term is the number of terms that fall through a

particular sieve, which is described by that N-term. Although that number cannot be

negative, it seems at first glance that it could be zero.

Brun handles this possibility in two ways. First, his definitions of the N-terms are

such that each defined N-term is positive. Second, Brun uses circumspect language when

talking about dropping terms to the right of a vertical line.

The result is that dropping terms to the right of a vertical line in formula (3) means

dropping terms that are either positive or undefined (and so essentially have a value of

zero in the arithmetic on the right-hand side of (3)).

In Rui’s translation, Brun defines N(D,x) as the “numbers [sic] of the terms be-

tween 0 and x of the progression ∆ ∆ + D ∆ + 2D . . . ∆ + λD, where 0 < ∆ ≤

D, ∆ + λD ≤ x < ∆ + (λ+ 1)D” (Rui, p. 103).

Note the last inequality, which gives bounds on x. That inequality shows that x

must be at least as large as some multiple of D plus some offset. Given the context of

Brun’s notation in §2, it is reasonable to suppose that λ, the multiple of D, is a positive

integer. It is also reasonable to suppose that the D in the definition of N(D,x) on p.

103 can just as well refer to a Dpi value such as those found in the first line of formula

(3) at the top of p. 104. A further reasonable supposition is that both the D in N(D,x)
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and N(D,x) itself can also just as well refer to any of the N-terms in formula (3) or in

subsequent expansions based on (3), such as the un-numbered formula between formulas

(13) and (14).

Based on these three reasonable suppositions, we are led to conclude that each N-

term is defined only when the value of x is at least as large as positive integral multiple

of its corresponding “D-component”, e.g., Dprpr−1.

Thus, it is reasonable to say that all the N-terms on the right-hand side of (3) are

either positive or undefined (in which case they “count for zero” as far as arithmetic is

concerned).

Also note that Brun never makes the claim that all the terms to the right of a

vertical line in formula (3) are positive. His language is rather more delicate.

Brun’s first mention of discarding terms “to the right of a vertical line” is in §2,

where he says:

When the question is to determine a lower bound for N(D,x, p1, . . . , pr)

we can set aside as many positive terms as we want in the formula (3). One

can choose these terms in several different ways ... for example, the terms

which lie on the right of a vertical line. (Rui, p. 104, emphasis added)

Later, in the second paragraph of §4, Brun says, “At first we set aside in the formula

(3) all positive terms on the right on (sic) a vertical line” (Rui, p. 114). The result is

formula (13), which gives a lower bound for N .

So, based on Brun’s definitions of the N-terms and his circumspect language on

pages 104 and 114 about discarding positive terms “to the right of a vertical line,” the

fact that some of the N-terms may count for naught simply doesn’t matter in his second

sieve’s procedure for creating a lower bound for N .
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3.4.2.5 An Example Illustrating Brun’s Formula (13)

Brun’s formula (13) is an inequality giving a lower bound for N :

N(D,x, p1, p2, . . . , pr) > N(D,x)−
∑
a≤r

N(D · pa, x)

+
∑
a≤r

∑
b<a
b<t

N(D · pa · pb, x, p1, . . . , pb−1)
(3.4.2.7)

This section describes in more detail how the subscripts in formula (13) work.

Consider the subscript b in formula (13) below, and notice that b < t, where t is

a whole number less than r. Thus, Brun’s notational device operates, in effect, to drop

one or more positive terms from the right-hand side of his formula (3). Let’s see how.

Now expand N(D, 1, p1, p2, p3, p4, p5) according to Brun’s formula (13), with r = 5

and t = 4. Since t = 4 and b < a, the subscript b can run through only the values 1, 2,

and 3, which means that the primes pb can run through only the values p1, p2, and p3.

Thus, Brun’s formula (13) in this case yields

N(D,x, p1, . . . , pr)

> N(D,x)

−N(D · p1, x)

−N(D · p2, x)

−N(D · p3, x)

−N(D · p4, x)

−N(D · p5, x)

+N(D · p2 · p1, x)

+N(D · p3 · p1, x) +N(D · p3 · p2, x, p1)

+N(D · p4 · p1, x) +N(D · p4 · p2, x, p1) +N(D · p4 · p3, x, p1, p2)

+N(D · p5 · p1, x) +N(D · p5 · p2, x, p1) +N(D · p5 · p3, x, p1, p2)

(3.4.2.8)
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where the sole positive term that has been dropped to the right of a vertical line is

N(D · p5 · p4, x, p1, p2, p3), which would have been the last term included in the equality

for Brun’s formula (3).

So, instead of using in the expansion of the right-hand side of the above inequality

all
(5

2
)

= 10 terms for the different combinations of pa pb, as we would do for the first

sieve if we didn’t truncate its expansion (see the terms in the “triangular array” of pairs

of terms papb that Brun’s gives on the bottom of p. 104 of Rui), we truncate that full

group of ten terms by eliminating that one term to the right of a particular vertical line

that truncates the expansion before the last (positive) term can be added.6

Now let’s see how the numbers in the above inequality work in a specific example.

Concretely, let’s consider

N(1, 125, 2, 3, 5, 7, 11)

> N(1, 125)

−N(1 · 2, 125)

−N(1 · 3, 125)

−N(1 · 5, 125) −N(1 · 7, 125) −N(1 · 11, 125)

+N(1 · 3 · 2, 125)

+N(1 · 5 · 2, 125) +N(1 · 11 · 3, 125, 2)

+N(1 · 7 · 2, 125) +N(1 · 7 · 3, 125, 2) +N(1 · 7 · 5, 125, 2, 3)

+N(1 · 11 · 2, 125) +N(1 · 5 · 3, 125, 2) +N(1 · 11 · 5, 125, 2, 3),

(3.4.2.9)

where the sole positive term that has been dropped to the right of a vertical line is

N(1 · 11 · 7, 125, 2, 3, 5).

The result is that N(1, 125, 2, 3, 5, 7, 11)

> 125

−64

−41
6 Note that, as Brun himself says, the terms dropped are positive: “D’abord nous écartons dans la

formule (3) tous terms positifs à droite d’une ligne verticale“ (Brun, p. 17, emphasis added).
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−25

−17

−11
+ 20

+ 12 + 2

+ 8 + 3 + 1

+ 5 + 4 + 1.

(3.4.2.10)

Simplifying, we have N(1, 125, 2, 3, 5, 7, 11) > 25. Now, the value of the term discarded

“to the right of a vertical line” is N(1 ·11 ·7, 125, 2, 3, 5), which equals 1. So, adding 1 to

25 gives 26, which should be the exact value of N(1, 125, 2, 3, 5, 7, 11). Is it? Recall that

N(1, 125, 2, 3, 5, 7, 11) is the number of numbers that pass through a sieve of consecutive

integers from 1 to 125 when sifting by the primes 2, 3, 5, 7, and 11. That number is just

π(125)− π(
√

125) + 1, which is 26 since π(125) = 30, and π(
√

125) = 5.

3.4.2.6 Brun’s Formula (14) follows from his Formula (13)

Brun applies formula (13) twice to give this intermediate result, which is not num-

bered:

N(D,x, p1, p2, . . . , pr) > N(D,x)

−
∑
a≤r

N(D · pa, x)

+
∑
a≤r

∑
b<a
b<t

N(D · pa · pb, x)

−
∑
a≤r

∑
b<a
b<t

∑
c<b
c<t

N(D · pa · pb · pc, x)

+
∑
a≤r

∑
b<a
b<t

∑
c<b
c<t

∑
d<c
d<u

N(D · pa · pb · pc · pd, x, p1, . . . , pd−1)

(3.4.2.11)

where u is a whole number less than t (p. 115 of [44]).

From the above inequality, using the information that N(d, x) = x
d + θ, where

−1 ≤ θ < 1, Brun derives his formula (14):
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N(D, x, p1, . . . , pr) >
x

D

[
1−
∑
a≤r

1
pa

+
∑
a≤r

∑
b<a
b<t

1
papb

−
∑
a≤r

∑
b<a
b<t

∑
c<b
c<t

1
papbpc

+
∑
a≤r

∑
b<a
b<t

∑
c<b
c<t

∑
d<c
d<u

1
papbpcpd

− . . .
]
− R,

(3.4.2.12)

where D is the common difference between terms (and is relatively prime to the sifting

primes p1, p2, . . . , pn), t is a whole number less than r, u is a whole number less than

t, and R is the total number of terms inside the brackets. (Note that in Rui’s version

there is a typo in the first summation inside the brackets: he has 1
pr

instead of 1
pa

.)

To arrive at (14) from the intermediate result above, Brun essentially factors out
x
D from each term on the right-hand side of the intermediate formula, and then, since

each remainder θ has absolute value less than or equal to 1, he maintains the inequality

by subtracting the cumulative worst-case θ values (collected in the R, the number of

terms in the expansion) from the expression inside the brackets. Finally, note that Brun

uses the ellipsis not to indicate infinitely many additions and subtractions, but rather to

indicate some finite number of PIE-like terms in the expansion. (Evidently, because of

the way Brun uses subscripts, he cannot specify precisely the last term in the expansion.)

3.4.3 Overview of Brun’s Steps in §4

Brun begins with inequality (14′) on p. 115, which upon substituting En for 1 −

S1 + S2 − . . .− S2n−1, becomes

N(D,x, p1, . . . , pr) >
x

D
[En]−R. (3.4.3.1)

Using results of Stirling and Mertens, Brun determines a lower bound for En. (Section

3.4.6 gives an overview of the steps Brun uses to derive a lower bound for En.) Denote

that lower bound of En by A. Thus, En > A, and so by 3.4.3.1

N(D,x, p1, . . . , pr) >
x

D
[A]−R. (3.4.3.2)

Next, Brun determines an upper bound for R, the number of terms in his expansion of

the main term. Call that upper bound B. Thus, B > R, and so by 3.4.3.2

N(D,x, p1, . . . , pr) >
x

D
[A]−B. (3.4.3.3)
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This last result (formula (20) on p. 121) “is valid for all successive prime numbers

p1, . . . , pr with p1 ≥ pe, where pe denotes a determinable prime number” (p. 121). In

other words, the result holds when the smallest sifting prime p1 is “sufficiently large,”

which implies that it holds for x sufficiently large, since by assumption of how the sieve

operates, if the smallest sifting prime is “sufficiently large” so, too, must x be, since all

the sifting primes are less than x. See the discussion in 3.4.4.

Once Brun has a lower bound for N(D,x, p1, . . . , pr) where p1 is a sufficiently large

prime he then extends his methods to determine a lower bound for N(D,x, 2, 3, . . . , pr),

where the smallest sifting prime is 2 and the largest sifting prime pr is sufficiently large

(p. 122, inequality (22)). The lower bound for N(D,x, 2, 3, . . . , pr) allows Brun to obtain

the following result near the end of §4 (p. 122):

N(D,x, 2, 3, . . . , p(x1/6)) > 1.008x
log x , (3.4.3.4)

which allows him to state that when sifting x consecutive numbers by the primes

2, 3, . . . , p(x1/6) there remain more than x
log x terms, provided x > x0, where x0 “de-

notes a determinable number” (p. 122).

This last result, suitably adapted in §6 for his double sieve, will allow Brun to prove

his theorem on Goldbach’s Conjecture.

Below we provide some additional details on how Brun establishes his lower bound

for En and his upper bound for R. But first we back up a little in §4 and look at Brun’s

choice of the sifting primes, his choice of a particular constant (α > 1) that he uses in

his calculations, and his use of key results from Mertens.

3.4.4 Assumptions Used by Brun for his Sieve in §4

On p. 116,

1. Brun decomposes the overall sum of the reciprocals of sifting primes (designated

simply by σ in §3) into several component sums σ1, σ2, . . . σn (Figure 3.4.4.1);
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Figure 3.4.4.1: Brun’s initial choice of sifting primes in §4

2. then, he sets bounds on the sizes of the sifting primes, based on a constant α > 1.

See Figure 3.4.4.2, which is taken from the French version since Rui’s translation

has a typographical error in the corresponding figure. (Figures 3.4.4.1 and 3.4.4.2

taken together indicate that each sum σi, i = 1, . . . , n of reciprocals of sifting

primes lies within an interval whose endpoints are certain fractional powers of pr);

and

Figure 3.4.4.2: The sifting primes are constrained to lie within certain intervals

3. then he gives the formulas from Mertens (3.4.4.1 and 3.4.4.2) that he will use on

pp. 117-120

x∑
2

1
p

= log log(x) + 0.261... + +θ 5
log x,−1 < θ < 1, (3.4.4.1)

and
x∏
2

(1− 1
p

) = e
7Θ

log x
0.561...
log x ,−1 < Θ < 1. (3.4.4.2)

On p. 117 (Figure 3.4.4.3) Brun uses these last two formulas to show that, for sufficiently

large p1 each of the σi is bounded above and that each product πi is bounded below.

Both these bounds are used on p. 119 to help establish a lower bound for En and hence

for the main term M = xEn.
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Figure 3.4.4.3: Results that hold when p1 (and hence x) is sufficiently large

Brun uses his constraints on the sifting primes in three principal ways. First, he

uses them on p. 117 (Figure 3.4.4.3) to show that he can bound the sums σi above by

a small number logα0) and bound the products πi below by a small number 1
α0

(small,

because he supposes that α0 > α > 1 and that logα0 < 1).

Second, once Brun has bounds on the σi and the πi, he uses those bounds at various

points in his detailed calculations on pp. 118-120 to arrive, finally, at a lower bound for

N .

Third, Brun uses the constraints on the sifting primes, along with an auxiliary

expression (near the bottom of p. 120) to give an upper bound for R.

Then, using his lower bound for M and his upper bound for R, Brun exploits the

fundamental inequality N > M − R to arrive arrive at a lower bound for N (formula

(20), p. 121) that holds for all successive prime numbers p1, . . . , pr, with p1 ≥ pe, where

pe denotes a “determinable prime number.”

Note that Brun uses the phrase “sufficiently large” (p. 117 of [44]) or “suffisamment

grand” (p. 19 of [3]) only once in his paper. The English phrase “sufficiently large”
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occurs often in English paraphrases of Brun’s theorem, as in “every sufficiently large even

number can be represented as the sum of two 9-primes,” but Brun in his original French

version of the theorem does not use the corresponding French phrase “suffisamment

grand” when stating his theorem. Instead, he speaks of all even numbers x, greater than

x0, where x0 is a determinable number (“x0 désigne un nombre déterminable”, [3], p.

32).

One can write [every] even number x, greater than x0, as a sum of two

numbers, whose numbers of prime factors do not exceed nine. x0 denotes a

determinable number and the prime factors can be different or not.

3.4.5 The Values of Particular Determinable Numbers is Never at Issue

The exact value of any “determinable number” that Brun refers to is never at issue

in his derivations. The reason is that such a number could, in principle, always be

determined by tracing computations forwards from Brun’s first statement concerning

“sufficiently large” numbers on p. 117 (Figure 3.4.4.3). Note particularly the phrase,

“But in that case, we can choose p1 sufficiently large ...”

But since in these formulas the first sifting prime p1 is, by the design of the sieve,

less than x, this also means that x, too, has to be sufficiently large.

In his subsequent intermediate results in §4, Brun uses a chain of reasoning for

other “determinable numbers” that ultimately leads back to this first sifting prime p1

being able to be chosen sufficiently large to bound the above sums and products.

In other words, the fact that we can pick the smallest sifting prime to be sufficiently

large for certain purposes - i.e., so that the bounds in Figure 3.4.4.3 hold - underlies

several subsequent calculations that, in the end, give rise to the wording in his theorem

on p. 131.

3.4.6 Bounding the Main Term

To establish a lower bound for En, Brun

1. Creates a recurrence relation among the terms in the expansion of the main term,

which we can formulate as Em+1 > FEm −G.
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2. Determines, via results of Stirling and Mertens, an upper bound for the term G,

which we can call H. So, H > G.

3. Determines a lower bound for Em+1. Since H > G and Em+1 > FEm − G, we

have that Em+1 > FE −H.

4. Uses results from Mertens and the fact that Em+1 > FEm−H to obtain his lower

bound for En. As in Section 3.4.3, we call this lower bound by A. It is a function

of the sifting primes and the constants α and α0 that were introduced on p. 117,

where he obtains results based on his use of theorems from Mertens.

3.4.7 Bounding the Remainder Term

On p. 120 Brun uses the bounds on the individual pi, which he had set on p. 116,

along with specific values for his constants α and α0 (see pp. 116 and 117 where Brun

introduces α and α0) to show at the bottom of p. 120 that the number of terms in the

expansion is

R < pr · p2/α
r · . . . · p

α+1
α−1 = p5

r .

Then, with this bound on R, he concludes in inequality (20) on p.121 that

N(D,x, p1, . . . , pr) >
1.008x
D

0.3(1− 1
p1

) . . . (1− 1
pr

)− (p5
r), (3.4.7.1)

which “is valid for all successive prime numbers p1, . . . pr, with p1 ≥ pe, where pe denotes

a determinable prime number.”

Note that now, instead of saying that p1 can be chosen sufficiently large, he says

that p1 ≥ pe, where pe denotes a “determinable” prime number.

So, here is the transition in language from a number being able to be chosen “suf-

ficiently large” to that number being specified as larger than some other “determinable”

number.

These two different types of expression point to the same underlying reality: that

is, there exists some number (i.e., a number that can in principle be determined) such

that a given property holds for all numbers exceeding that number.
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From this last inequality (3.4.7.1) Brun next extends his results to find a lower

bound for N(D,x, 2, 3, . . . , pr), that is, a lower bound for the sieve when the sifting

primes start with 2 rather than a sufficiently large p1.

3.4.8 Combining and Extending Results

Brun uses the lower bound for En obtained earlier (inequality (19) on p. 120) to

determine the inequality (21) on p. 122:

N(D,x, 2, 3, . . . , pr) >
x

D
0.3(1− 1

p1
) . . . (1− 1

pr
)− 2e(p5

r), (3.4.8.1)

which is “valid for all r > e, where e denotes a determinable number, ...” (p. 122).

Note that here and in the next two inequalities the e being referred to is not the e

that is the base of the natural logarithm.

This lower bound for N(D,x, 2, 3, . . . , pr) can be further simplified by applying a

formula from Mertens dealing with products like π1 = (1− 1
pt

) . . . (1− 1
pr

) to determine

a number c such that

N(D,x, 2, 3, . . . , pr) >
0.168x
Dlogpr

− 2e(p5
r), (3.4.8.2)

“for all r > c where c denotes a determinable number (c ≥ e)” (p. 122).

Brun makes use of this formula in his next example, where he chooses D = 1 and

pr = p( 6
√
x) to state that for all x > x0:

N(1, x, 2, 3, . . . , p( 6√x)) > 1.008x
x

− 2ex5/6 >
x

logx,

which allows him to state, as Rui’s translation has it:

When we efface from x consecutive numbers the terms from two to two,

then from three to three, etc; finally from p( 6
√
x) to p( 6

√
x), there remain

always more than x
log x terms, provided x > x0.

That is, when we sift x consecutive numbers by the primes 2, 3, . . . , p(x1/6) there remain

more than x
log x terms, provided x > x0.
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This last result, suitably adapted in §6 for Brun’s double sieve, allows Brun to prove

his theorem on Goldbach’s Conjecture.

3.5 Brun Proves his Theorem on Goldbach’s Conjecture

In §6 of his paper, Brun develops formulas using a method “completely analogous”

(p. 128) to the one he developed formulas in §4. As a result, we can see that Brun

follows the same conceptual scheme that he did in §4. That is, he begins with an initial

lower bound N > M −R for his double sieve (Section 3.5.2), and then bounds M below

by A and R above by B (see Section 3.5.3), to give a lower bound N > A − B that is

large enough to allow him to prove his result.

3.5.1 Overview

In §6 when Brun derives the consequences of his initial lower bound, he takes advan-

tage of the assumptions, results, and calculations that he made in §4, so his arguments

in §6 follow very closely the arguments he makes in §4. The main changes are that

for the double sieve: 1) he sets α to 1.25 and α0 to 1.2501 instead of to 1.5 and 1.51,

respectively, as he did in §4; and 2) his initial developments in §6 make the assumption

that “none of the double effacements are reduced to a single one” (p. 130), i.e., that

there aren’t duplicates within corresponding pairs of sifting primes (see, e.g., Figure

3.5.1.1), though he subsequently shows (pp. 130-131) that even if there are duplicate

effacements, he still obtains the same lower bound for N , which is large enough to allow

him to prove his result on Goldbach’s Conjecture.

Figure 3.5.1.1: Brun’s way of showing his double sieve

3.5.2 Initial Lower Bound for the Double Sieve

After Brun sets out the notation for his double sieve, he gives the initial lower

bound for that sieve in formula (24) on p. 126 (Figure 3.5.2.1).
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Figure 3.5.2.1: Brun’s initial lower bound for his double sieve

Note the similarity of this formula to the inequality in 3.5.2.1 below, which is the

lower bound for the sieve from §4 that discards terms “to the right of vertical lines.” The

chief difference 7 between the two initial lower bounds is that powers of 2 now appear in

the numerators of the summands in the inequality for the double sieve. This difference

reflects the fact that 3.5.2.1 is dealing with Brun’s double sieve, where there are double

rows of sifting primes (as shown in Figure 3.5.1.1 and described in 1.9) rather than single

rows of sifting primes single in the sieve from §4 (as in Figure 1.9.0.1 and described in

Section 3.4).

N > x−
∑
a≤r

x

pa
+
∑
b<a
b<t

x

papb
− . . .−

∑∑
. . .
∑

pa<pb<...<pm

x

papb . . . pm
−R. (3.5.2.1)

Then, as he did in §3 and §4 when deriving improved lower bounds for N , Brun carries

out calculations based on certain assumptions to bound the main term M below by A

and the remainder term above by B, eventually showing that the lower bound for N in

his double sieve suffices to allow him to prove his result on Goldbach’s Conjecture.

3.5.3 Bounding the Main Term and the Remainder

Brun uses arguments on pp. 128-129, which parallel similar arguments in §4, to

establish a lower bound for En, when α is set to 1.25 and α0 is set to 1.2501. This lower

bound for En is given in formula (26) on p. 129 and in the formula 3.5.3.1 below:

En > 0.05(1− 2
p1

) . . . (1− 2
pr

). (3.5.3.1)

7Other differences between the two lower-bound formulas are due to Brun’s general notation (e.g.,
his use of D for the common difference of the elements in the sequence to be sifted, his use of ω1 and
ω to indicate sets over which sets the subscripts a, b, c, d, . . . can range,and his final RD

x
to indicate the

more general remainder term. Note that the “+” sign in front of this last fraction is another typo in
Rui’s translation; a “−” sign used in the original French version (p. 27).
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Next, Brun introduces auxiliary formulas on p. 129 to establish an upper bound of p9
r

for the remainder the remainder R:

In particular, he gives the following result (formula (29) on p. 130):

P (D,x, 3, 5, . . . , pr) >
x

D
· 0.041

(logpr)2 − 3e(pr)9, (3.5.3.2)

which holds “for all r > c, where c ≥ e.” (Note there is a typo in Rui’s version, which

has ee instead of 3e in the last term.

The formula 3.5.3.2 is the analog, for the case of the double sieve, of formula (22)

from §4:

N(D,x, 2, 3, . . . , pr) >
0.168x
D log pr

− 2e(pr)5, (3.5.3.3)

which holds “for all r > c where c denotes a determinable number (c ≥ e)” (p. 122).

3.5.4 Combining and Extending Results

Combining the above bounds for the main term and the remainder yields formula

(27) on p. 130:

En > 0.05(1− 2
p1) . . . (1− 2

pr
)− p9

r , (3.5.4.1)

which is valid “for all successive prime numbers p1, . . . , pr whenever p1 ≥ pe, where pe
denotes a determinable prime number.

The similarity of the above language and reasoning with that given for formula (20)

on p. 121 is unmistakable.

Then, after giving additional results analogous to results in §4, Brun gives on p.

130 the following result (analogous to yet another formula in §4):

N(D,x, 3, 3, . . . , p(x1/10)) > 0.41x
D(logx)2 − 3ex9/10 >

0.4x
D(logx)2 ,

which holds “for all x > x0.” This last result is the one that, with D = 2, eventually

carries him through to the statement of his theorem, announced on p. 131.

One can write [every] even number x, greater than x0, as a sum of two

numbers, whose numbers of prime factors do not exceed nine. x0 denotes a

determinable number and the prime factors can be different or not.
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3.6 Summary

Having gone through some of the details of Brun’s paper, we now have a fuller

context for appreciating what he accomplished and how he did it.

Brun shows that for sufficiently large even x enough of the “right kinds” of numbers

fall through his double sieve, where the “right kinds” of numbers are 9-primes such that

certain pairs of which sum to the even number x.

• Brun evidently noticed that what we have called “the default lower bound” for the

Legendre expansion needs to be improved, at least enough so that we can be sure

it is positive.

• He manipulated the expansion of the main term in the Legendre formula and used

Stirling’s formula to show that under a mild condition when the truncation of the

expansion stops at the mth Σ-term, the error term in the Legendre formula can be

reduced from 2r to rm+1. (The mild condition is that m+2 > σ = 1/p1+. . .+1/pr.)

• He then used particular versions of formulas from Mertens, along with Stirling’s

formula, to show via complicated combinatorial and asymptotic arguments that

he could manipulate both the expansion of the main term in the Legendre formula

and the error term to arrive at a positive lower bound for N(1, x, 2, 3, . . . , p( 6
√
x))

when x is sufficiently large.

• He carried over in §6 his analysis from §4 to handle the case of the double sieve,

making a few slight needed modifications, which eventually allowed him to estab-

lish his theorem on Goldbach’s Conjecture.
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