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ABSTRACT 
 
 

The Use of Microfluidics and Dielectrophoresis for Separation, Concentration, and  
 

Identification of Bacteria 
 
 

by 
 
 

Cynthia Hanson, Doctor of Philosophy 
 

Utah State University, 2018 
 

 
Major Professor: Dr. Elizabeth Vargis 
Department: Biological Engineering 
 
 

Traditional bacterial analyses take one to two days under favorable conditions 

where the bulk of the time is spent waiting for bacteria to divide and grow until visual 

colonies can be observed for identification. In the case of bacteria with slow doubling 

times, this process can take weeks. This delay in analysis is unacceptable, especially in 

cases of life threatening diseases or emergencies. It is clear that in order to decrease the 

analysis time of the bacteria, the culturing and growth step must be circumvented. The 

goal of this research is to design, build, and test a device that could decrease the analysis 

time of bacteria using label-free methods of dielectrophoresis and Raman spectroscopy. 

Testing for device design was performed with clinical samples in mind, which 

consist of bacteria grown in a variety of environmental conditions (i.e. available food 

sources, growth stage, temperature, etc.) and accompanied by sample debris. Raman 

spectra of bacteria grown in varying media and metabolic stages were collected and 

analyzed. Results indicate that growth phase and media have an impact on Raman spectra 
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and is distinguishable by linear discriminant analysis (LDA). Despite these spectral 

differences, it was found that LDA classification of closely related bacteria remains fairly 

high (90%) regardless of growth phase. Sample debris were also considered in device 

design and accommodated for by dielectrophoresis. Devices were built with the goal to 

isolate bacteria from a mixed sample and simultaneously acquire Raman spectra for 

identification.   

For this dissertation, a device was designed, built, and tested that incorporates 

dielectrophoresis for particle isolation and Raman spectroscopy for identification. The 

device was modeled in COMSOL to ensure that an appropriate electrical field gradient 

could be obtained to isolate bacteria from 5 µm diameter polystyrene spheres. The device 

was built and successfully trapped bacteria away from polystyrene spheres and Raman 

spectra of the bacteria were collected while trapped. These results indicate a clear 

potential for contactless dielectrophoresis-Raman devices to isolate and identify bacteria 

from sample debris, and thereby decrease the analysis time of bacteria. 

 

(157 pages)  
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PUBLIC ABSTRACT 
 
 

The Use of Microfluidics and Dielectrophoresis for Separation,  
 

Concentration and Identification of Bacteria 
 

Cynthia Hanson 
 
 

Typical bacterial analysis involves culturing and visualizing colonies on an array 

of agar plates. The growth patterns and colors among the array are used to identify the 

bacteria. For fast growing bacteria such as Escherichia coli, analysis will take one to two 

days. However, slow growing bacteria such as mycobacteria can take weeks to identify. 

In addition, there are some species of bacteria that are viable but nonculturable. This 

lengthy analysis time is unacceptable for life-threatening infections and emergency 

situations. It is clear that to decrease the analysis of the bacteria, the culturing and growth 

steps must be avoided. The goal of this research is to design, build, and test a device that 

could decrease the analysis time of bacteria. 

Device design accommodates for the varied growth and environmental conditions 

of expected samples for bacterial analysis. Clinical samples containing bacteria come in a 

wide variety of forms including urine, saliva, sputum, blood, etc. Each medium will have 

associated debris and other contaminants that must be isolated from bacteria before 

identification. This process can be challenging as bacteria and debris can range in size 

from a fraction of a micrometer to tens of micrometers. In addition, a device must be 

equipped to accurately identify bacteria regardless of growth conditions. Thus, to 

decrease the analysis time of bacteria, a device must be capable of isolation, 

concentration, and identification at a micron level. 
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In this dissertation, a device was designed, built, and tested that incorporates 

dielectrophoresis for cell sorting and Raman spectroscopy for identification. Using the 

device, bacteria (1 µm in length) were successfully isolated away from 5 µm polystyrene 

spheres and Raman spectra of the trapped bacteria were collected. The simultaneous 

isolation and identification of bacteria from a mixed sample indicates the capability for 

the cDEP-Raman device to decrease the analysis time of bacteria from clinical samples. 
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CHAPTER I 

INTRODUCTION 

1. Format of dissertation 

Chapter 1 of this dissertation is an introduction to the research, covering concepts 

of Raman spectroscopy, dielectrophoresis, and the importance of developing a technique 

to promptly and accurately identify bacteria. Chapter 2 contains a literature review 

covering the use of Raman spectroscopy and dielectrophoresis to identify and isolate 

bacteria. Chapter 3 is an article published in the journal Applied Spectroscopy [1] 

addressing how scaling and centering of spectral data during Principal Component 

Analysis influences classification results of mycobacteria. Chapter 4 is a manuscript in 

preparation for publication in a peer reviewed journal. It covers the influence of growth 

media and phase on Raman spectra of Mycobacterium sp. MCS. Chapter 5 is an article 

published in the journal Sensors [2] demonstrating the use of an alternative cDEP design 

to simultaneously trap and analyze polystyrene spheres. Chapter 6 is a manuscript in 

preparation for publication in a peer reviewed journal. It covers the use of a similar cDEP 

device to simultaneously isolate, trap, and identify a mixed sample of bacteria and 

polystyrene spheres. Chapter 7 is a summary of the work, Chapter 8 is suggestions for 

future work, and Chapter 9 contains all references cited throughout this work. The 

appendices include copyright permission, the author’s curriculum vitae, R-code, 

COMSOL operating parameters, and laser alignment protocol. 

2. Overview 

The goal of this research is to design, build, and test a device for simultaneous 

isolation and identification of cells in order to decrease the time required to identify 
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bacteria in a sample. Current bacterial identification methods require visual confirmation 

of colonies grown on an array of agar plates, taking one to two days for fast growing 

bacteria. This lengthy analysis time is unacceptable especially for slow growing bacteria, 

viable but nonculturable bacteria, or life-threatening infections. In this dissertation, the 

analysis time will be decreased by simultaneously isolating cells using dielectrophoresis 

(DEP) and identifying them using Raman spectroscopy. This unique design provides a 

platform for prompt and accurate bacterial identification. 

2.1 Introduction to Raman spectroscopy 

Raman spectroscopy is a laser spectroscopy technique used to analyze shifts in 

rotational and vibrational energy levels of molecules. A comprehensive explanation of 

Raman spectroscopy can be found throughout literature [3–8]. A brief introduction 

incorporating the classical approach to explaining Raman scattering and the associated 

selection rules are given here. 

When a molecule is exposed to light, the induced dipole moment can be express 

as  

𝐩𝐩 = 𝛼𝛼 ∙ 𝐄𝐄     (1.1) 

where α is the polarizability and E is the electric field caused by a laser (electromagnetic 

radiation). The electric field is expressed as 

𝐄𝐄 = 𝐄𝐄𝑜𝑜 cos(2𝜋𝜋 ∙ 𝜈𝜈𝑜𝑜 ∙ 𝑡𝑡).     (1.2) 

Here, the subscript, o, indicates the initial state while νo is the vibrational frequency of 

the electromagnetic radiation. The polarizability is influenced by how the molecule 
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moves (vibrational and rotational states) and is dependent on Q, the normal coordinate of 

the molecule. Using the Taylor Series, the polarizability is expressed as  

𝛼𝛼 = 𝛼𝛼𝑜𝑜 + ∑ � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑄𝑄𝑘𝑘

�
𝑜𝑜
∙𝑘𝑘 𝑄𝑄𝑘𝑘 + 1

2
∑ � 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑄𝑄𝑘𝑘𝜕𝜕𝑄𝑄𝑙𝑙
�
𝑜𝑜
∙ 𝑄𝑄𝑘𝑘 ∙ 𝑄𝑄𝑙𝑙 + ⋯𝑘𝑘,𝑙𝑙    (1.3) 

with subscripts k and l corresponding to the kth and lth normal vibrations. Assuming the 

different normal vibrations are independent, Equation (1.3) can be simplified to the first 

approximation as follows 

𝛼𝛼𝜐𝜐 = 𝛼𝛼𝑜𝑜 + 𝛼𝛼𝜈𝜈′ ∙ 𝑄𝑄𝜐𝜐     (1.4) 

with the subscript υ representing the υth normal vibration and 𝛼𝛼𝜈𝜈′  represents the derivative 

of the polarizability tensor under equilibrium conditions. In addition, Qυ is expressed as 

𝑄𝑄𝜐𝜐 = 𝑄𝑄𝜈𝜈𝑜𝑜 ∙ cos(2𝜋𝜋 ∙ 𝜈𝜈𝜐𝜐 ∙ 𝑡𝑡 + 𝜑𝜑𝜐𝜐)    (1.5) 

where 𝜑𝜑𝜐𝜐 is the phase angle and 𝑄𝑄𝜈𝜈𝑜𝑜 is the amplitude of the normal vibration. Upon 

substitution of variables expressed in Equations (1.1), (1.2), (1.4), and (1.5), gives:  

𝐩𝐩 = 𝛼𝛼𝑜𝑜𝐄𝐄𝑜𝑜 cos(2𝜋𝜋 ∙ 𝜈𝜈𝑜𝑜 ∙ 𝑡𝑡) + 𝛼𝛼𝜈𝜈′ 𝐄𝐄𝑜𝑜𝑄𝑄𝜈𝜈𝑜𝑜 ∙ cos(2𝜋𝜋 ∙ 𝜈𝜈𝑜𝑜 ∙ 𝑡𝑡) ∙ cos(2𝜋𝜋 ∙ 𝜈𝜈𝜐𝜐 ∙ 𝑡𝑡 + 𝜑𝜑𝜐𝜐) (1.6) 

Using the trigonometrical identity 

cos𝐴𝐴 ∙ cos𝐵𝐵 = 1
2

[cos(𝐴𝐴 + 𝐵𝐵) + cos(𝐴𝐴 − 𝐵𝐵)]   (1.7) 

Equation (1.6) can be rewritten as  

𝐩𝐩 = 𝛼𝛼𝑜𝑜𝐄𝐄𝑜𝑜 cos(2𝜋𝜋 ∙ 𝜈𝜈𝑜𝑜 ∙ 𝑡𝑡) + 1
2
𝛼𝛼𝜈𝜈′ 𝐄𝐄𝑜𝑜𝑄𝑄𝜈𝜈𝑜𝑜 ∙ cos[2𝜋𝜋 ∙ (𝜈𝜈𝑜𝑜 + 𝜈𝜈𝜐𝜐) ∙ 𝑡𝑡 + 𝜑𝜑𝜐𝜐] + 1

2
𝛼𝛼𝜈𝜈′ 𝐄𝐄𝑜𝑜𝑄𝑄𝜈𝜈𝑜𝑜 ∙

cos(2𝜋𝜋 ∙ (𝜈𝜈𝑜𝑜 − 𝜈𝜈𝜐𝜐) ∙ 𝑡𝑡 − 𝜑𝜑𝜐𝜐)     (1.8) 

Assuming the dipole moment is a function of the vibrational frequency of the incident 

radiation (𝜈𝜈𝑜𝑜) and the molecule (𝜈𝜈𝜐𝜐), the dipole moment can be described as  

𝐩𝐩 = 𝐩𝐩(𝜈𝜈𝑜𝑜) + 𝐩𝐩(𝜈𝜈𝑜𝑜 + 𝜈𝜈𝜐𝜐) + 𝐩𝐩(𝜈𝜈𝑜𝑜 − 𝜈𝜈𝜐𝜐)    (1.9) 
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The first term of Equation (1.9) indicates no molecular vibrational change. This means 

the frequency of the light scattering from a molecule is the same as the frequency of light 

incident of the molecule. This is called Rayleigh scattering. The second and third terms of 

Equation (1.9) indicate a change in frequency of the incident and scattered light and is 

referred to as Raman scattering. Increasing of frequency (𝜈𝜈𝑜𝑜 + 𝜈𝜈𝜐𝜐) is referred to as Anti-

Stokes scattering while decreasing of frequency (𝜈𝜈𝑜𝑜 − 𝜈𝜈𝜐𝜐) is referred to as Stokes 

scattering. Figure 1.1 is provided to help illustrate Rayleigh and Raman scattering and 

how each form of scattering influences molecular vibrational energy. 

 

 
Figure 1.1. Energy diagram depicting Rayleigh and Raman scattering with 

dashed lines indicating virtual energy states. So and S1 represent the ground and 

an excited electronic state of the molecule, respectively. Thin black horizontal 

lines represent the vibrational states within their respective electronic state. 

Arrows pointing up represent excitation while arrows pointing down represent 

scattering. 
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The change in molecular energy during Raman scattering is often referred to as 

relative wavenumbers and describes the relationship between frequency and wavelength 

(λ) when considering the equation for energy of a photon. 

𝐸𝐸 = ℎ𝜈𝜈 = ℎ𝑐𝑐
𝜆𝜆

      (1.10) 

Here, h is Planck’s constant and c is the speed of light. Wavenumbers (cm-1) are 

introduced as illustrated in Figure 1.1. 

It should be noted that not all changes in molecular vibrations are Raman active. 

Raman scattering is dependent upon 𝛼𝛼𝜈𝜈′ ≠ 0. Figure 1.2 is provided to illustrate active 

and inactive vibrational modes using carbon dioxide as an example. Vibrational modes of 

symmetric stretching, asymmetric stretching, and bending are represented along with a 

plot of α as a function of Q. For a molecule to be Raman active, the derivative of the 

polarizability with respect to the normal coordinate of the molecule at equilibrium (Qo) 

cannot be equal to zero. In other words, � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑄𝑄𝜐𝜐

�
𝑜𝑜
≠ 0. Therefore, asymmetric stretching 

and bending are Raman inactive vibrational modes, while symmetric stretching is Raman 

active for carbon dioxide. 
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Figure 1.2. Illustration of various vibrational modes for carbon dioxide and 

associated plots of polarizability (α) as a function of the normal coordinates of 

each vibrational mode (Q).  

 
 

For complex structures, multiple Raman active vibrational modes are observed. 

The combination of wavenumbers and their associated intensities are compiled to form a 

spectrum that can be used as a means of identification and is often referred to as a Raman 

signature or fingerprint. Raman spectra of bacteria studied in this research 

(Mycobacterium sp. JLS, Mycobacterium sp. KMS, and Mycobacterium sp. MCS) are 

displayed in Figure 1.3. With the aid of multivariate statistics, minute changes between 

spectra can be detected and used to discriminate between bacteria types, species, and 

strains. 
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Figure 1.3. Raman spectra of Mycobacterium sp. JLS, Mycobacterium sp. KMS, 

and Mycobacterium sp. MCS. 

2.2 Introduction to dielectrophoresis 

Dielectrophoresis is the movement of particles in a non-uniform electric field. The 

movement is due to particles forming dipoles while in the presence of an electric field. 

Figure 1.4 illustrates the concept of electrophoresis and DEP. In electrophoresis (Figure 

1.4a), only charged particles can migrate while neutral particles stay in place as all forces 

are balanced. In DEP (Figure 1.4b), charged and neutral particles will migrate as a net 

force is caused by the dipole formation and gradient of the electrical field. The force 

acting on the particle is a function of several properties including particle shape, size, 

homogeneity, and electrical properties. In addition, the electrical properties of the 

surrounding media and the gradient of the electrical field also contribute to the magnitude 

and direction of dielectric force. 
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Figure 1.4. Illustration of electrophoresis (a) and dielectrophoresis (b). Thin black 

lines indicate electric field lines while the vertical black lines indicate electrodes. 

Blue and green arrows indicate forces acting on particles. 

 

The dielectrophoretic force acting on a spherical, homogenous particle is 

expressed as  

�⃗�𝐹𝐷𝐷𝐷𝐷𝐷𝐷 = 2𝜋𝜋𝑟𝑟3𝜀𝜀𝑚𝑚𝑅𝑅𝑅𝑅[𝑓𝑓𝐶𝐶𝐶𝐶]∇�𝐸𝐸�⃗ 𝑟𝑟𝑚𝑚𝑟𝑟2 �    (1.11) 

where r, ∇�𝐸𝐸�⃗ 𝑟𝑟𝑚𝑚𝑟𝑟2 �, and  εm are the radius of a sphere, gradient of the squared electric field, 

and the electrical permittivity of the media, respectively. The subscript rms stands for 

root mean square and is applicable for electric fields generated by AC power sources. 

𝑅𝑅𝑅𝑅[𝑓𝑓𝐶𝐶𝐶𝐶] is the real part of the Clausius-Mossotti factor, which is expressed as 

[𝑓𝑓𝐶𝐶𝐶𝐶] = 𝜀𝜀𝑝𝑝∗ −𝜀𝜀𝑚𝑚∗

𝜀𝜀𝑝𝑝∗ +2𝜀𝜀𝑚𝑚∗
     (1.12) 

where 𝜀𝜀𝑝𝑝∗  and 𝜀𝜀𝑚𝑚∗  are the complex electrical permittivity of the particle and media 

respectively. The complex permittivity is dependent on the conductivity (𝜎𝜎) and the 

frequency of the applied electric field (𝑓𝑓) and is given by 

𝜀𝜀∗ = 𝜀𝜀 − 𝑗𝑗𝑗𝑗
2𝜋𝜋𝜋𝜋

     (1.13)  
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where j is the square root of negative one.  

The dielectrophoretic force is dependent on factors such as shape and 

heterogeneity of the particle. As the majority of the work in this dissertation deals with 

mycobacteria, equations to determine DEP force on a multilayered, prolate ellipsoid will 

be given in the equations below. Assuming mycobacteria have the shape of a prolate 

ellipsoid, Equation (1.11) changes to  

�⃗�𝐹𝐷𝐷𝐷𝐷𝐷𝐷 = 2𝜋𝜋𝜋𝜋𝑏𝑏2

3
𝜀𝜀𝑚𝑚𝑅𝑅𝑅𝑅[𝑓𝑓𝐶𝐶𝐶𝐶]∇�𝐸𝐸�⃗ 𝑟𝑟𝑚𝑚𝑟𝑟2 �   (1.14) 

where a and b are the major and minor axis of a prolate ellipsoid. The calculation of the 

Clausius-Mossotti factor is expressed as  

[𝑓𝑓𝐶𝐶𝐶𝐶] = 𝜀𝜀𝑝𝑝∗ −𝜀𝜀𝑚𝑚∗

1+�
𝜀𝜀𝑝𝑝
∗ −𝜀𝜀𝑚𝑚

∗

𝜀𝜀𝑚𝑚
∗ �𝐴𝐴

 .    (1.15) 

Here, A is the depolarization factor and is dependent on the respective x, y, and z axes. 

However, in the case of a prolate ellipsoid the depolarization can be expressed by the 

expansion 

𝐴𝐴 = 1
3𝛾𝛾−2

�1 + 3
5

(1 − 𝛾𝛾−2) + 3
7

(1 − 𝛾𝛾−2)2 + ⋯�   (1.16) 

where γ is the major axis (a) of the prolate ellipsoid divided by the minor axis (b) as 

indicated in Figure 1.5a. 

The expression for the Clausius-Mossotti factor is also influenced by 

heterogeneity. For example, bacteria often have several layers. In the case of 

Mycobacterium, a core-shell model can be used with the cytoplasm being considered the 

core (a4, b4, ε5, σ5), the cytoplasmic membrane as the first shell (a3, b3, ε4, σ4), the cell 

wall as the second shell (a2, b2, ε3, σ3), and the lipid layer as the third shell (a1, b1, ε2, σ2) 

as depicted in Figure 1.5a. For core-shell configurations, the overall effective electrical 
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permittivity must be determined and used in place of 𝜀𝜀𝑝𝑝∗  from Equation (1.13) to calculate 

[𝑓𝑓𝐶𝐶𝐶𝐶]. Using Figure 1.5b-d as a guide for notation, the effective electrical permittivity is 

expressed as  

𝜀𝜀(𝑖𝑖)eff
∗ = 𝜀𝜀𝑖𝑖∗ �

𝜀𝜀𝑖𝑖
∗+�𝜀𝜀(𝑖𝑖+1)eff

∗ −𝜀𝜀𝑖𝑖
∗��𝐴𝐴𝑖𝑖+𝑣𝑣𝑖𝑖�1−𝐴𝐴(𝑖𝑖−1)��

𝜀𝜀𝑖𝑖
∗+�𝜀𝜀(𝑖𝑖+1)eff

∗ −𝜀𝜀𝑖𝑖
∗��𝐴𝐴𝑖𝑖+𝑣𝑣𝑖𝑖𝐴𝐴(𝑖𝑖−1)�

�   (1.17) 

with  

𝑣𝑣𝑖𝑖 = 𝜋𝜋𝑖𝑖𝑏𝑏𝑖𝑖
2

𝜋𝜋𝑖𝑖−1
3  [9,10].     (1.18) 

 
 

 
Figure 1.5. Illustration of the shape, axes, and layers associated with 

Mycobacterium with a and b indicating major and minor axes of the bacteria 

respectively. Pairing layers from the core to the outer most layer (b, c, and d) is 

done to determine intermediate and overall effective electrical permittivities (εeff). 
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Calculation of [𝑓𝑓𝐶𝐶𝐶𝐶] is important in determining the direction a particle will 

migrate due to the dielectrophoretic force acting upon it. When it is positive, the 

dielectrophoretic force on the particle will push the particle to a high electric field 

gradient. In contrast, when [𝑓𝑓𝐶𝐶𝐶𝐶] is negative, the dielectrophoretic force will push the 

particle away from a high electric field gradient. Therefore, the direction of the 

dielectrophoretic force is based on the electric field gradient and the [𝑓𝑓𝐶𝐶𝐶𝐶] rather than 

positioning of anode or the cathode. Using these concepts, a particle can be isolated and 

trapped for filtering, purification, or subsequent identification. 

2.3 Forms of dielectrophoresis 

Early DEP devices were typically composed of polydimethylsiloxane (PDMS) 

using photolithography methods to form microfluidic channels with metallic electrodes 

embedded within the PDMS. The PDMS structure was bonded to glass to form a DEP 

microfluidic device. The metallic electrode shape and placement played an important role 

in creating an electric field gradient. Although using metallic electrodes in direct contact 

with the sample successfully accomplished cell sorting at low voltage, problems of 

electrode fouling, increase in sample temperature, and spatial limitation existed. Rise in 

sample temperature is particular concern for biological samples as too high of 

temperatures can lead to cell death. Spatial limitations exist as a cell must come within 

approximately 30 µm of the electrodes to experience the dielectrophoretic force because 

the electric field gradient drops off quickly moving away from the electrodes [11]. Spatial 

problems can be partially ameliorated by patterning electrodes to the top and bottom of 

the sample chamber or along the full height of the channel. However, this complicates 

device fabrication and does not completely resolve the problem as narrowing channels for 
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proximity sake decreases throughput. Alternative designs such as insulator-based DEP 

(iDEP) and contactless DEP (cDEP) among others have been implemented to 

successfully overcome common problems associated with earlier designs. 

In iDEP, platinum electrodes are inserted at the inlet and outlet of the sample 

channel of a microfluidic device. The device is fabricated such that insulator structures at 

the center of the sample channel create a non-uniform electric field. As an electric 

potential is applied across the electrodes, the electric field must bend around the insulator 

structures creating a non-uniform electric field. Popular insulator structures include an 

array of pillars, a sawtooth design with teeth incrementally approaching each other, and 

partial obstructions. iDEP is advantageous over the use early designs as the gradient 

electric field spans from floor to ceiling of the sample channel, eliminating the spatial 

limitation associated with the use of traditional designs stated previously. Unfortunately, 

iDEP devices are still prone to problems such as electrolysis and Joule heating. 

Contactless DEP (cDEP) is another form of DEP that eliminates problems 

commonly associated with DEP (spatial limitations, electrode fouling, Joule heating, and 

electrolysis). In cDEP, the sample and liquid electrode channels are isolated from each 

other by a thin (~20 µm) insulating barrier. At the center of the sample channel, insulator 

structures cause a non-uniform electric field in the same manner as described for iDEP 

devices. Using an AC electric source, the device works by means of capacitive coupling. 

Because cDEP devices have no contact between the electrodes and the sample channel, 

problems of electrode fouling and electrolysis are eliminated, while the gradient of the 

electric field is maintained from floor to ceiling. Due to the benefits of cDEP, it is well 

suited to analyze biological samples. 
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Other forms of DEP exist (carbon-electrode DEP, light-induced DEP, “liquid 

electrode” DEP, reservoir-based DEP) but will not be addressed here as reviews are 

available in literature [11–15]. The DEP forms presented here provide enough context for 

the significance of this dissertation. 

3. Engineering significance 

This study stands apart from previous research of bacterial isolation and 

identification due to the unique contactless dielectrophoretic design and the potential 

impact the device could have on clinical diagnostics. Typical cDEP designs use PDMS to 

form microfluidic channels that leads to several problems in fabrication, operation, and 

reusability. The unique design presented addresses these problems and provides an 

avenue for simultaneous isolation, trapping, and identification of bacteria. As such, this 

unique design improves upon the current cDEP design and has the potential to decrease 

analysis time of bacteria from days to a matter of minutes. 

The fabrication process of typical cDEP devices start with a silicon master mold 

that contains the microfluidic pattern created by deep reactive ion etching. Using this 

mold, PDMS is casted and cured to form the microfluidic channels. This casting process 

is often repeated many times as it is difficult to produce a consistent and strong seal of 

the thin (~20µm) insulating barrier between the sample channel and the liquid electrodes. 

This inconsistency creates issues with repeatability from one device to the next. The use 

of PDMS also creates limitations for cDEP devices due to its dielectric breakdown. The 

thin insulating barrier must be as thin as possible to be able to generate an electric field. 

However, the thinner the barrier, the greater risk of surpassing the threshold for dielectric 

breakdown. 



32 
 

The alternative cDEP design presented in this work addresses the problems 

commonly associated with cDEP devices. Instead of using PDMS, microfluidic channels 

are etched into a fused silica plate and PDMS is only used to seal the channels. Using 

fused silica eliminates the repeated PDMS casting and allows for a higher dielectric 

breakdown threshold. Using fused silica in lieu of PDMS also allows reproducibility in 

tests as well as reusability as the fused silica plate can be autoclaved between tests. 

Therefore, the unique design presented here overcomes problems of fabrication, 

operation, and reusability of cDEP devices. 

The design presented here also allows for simultaneous isolation, trapping and 

identification of bacteria. As mentioned previously, the microfluidic channels are formed 

in fused silica. This material allows for acquisition of Raman spectra with minimal 

interference in wavenumber ranges of interest. This work presents the first cDEP-Raman 

device which isolates, traps, and identifies bacteria at the same time. Therefore, the 

unique cDEP-Raman design has great potential to decrease the analysis time of bacteria 

in a label-free way.  
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CHAPTER II 

LITERATURE REVIEW 

1. Raman spectroscopy for bacterial analysis 

A variety of label-free methods have been implemented to identify bacteria 

including laser-induced breakdown spectroscopy [16–18], Fourier transform infrared 

(FT-IR) spectroscopy [19,20], Raman spectroscopy [1,21], autofluorescence [22,23], and 

many others. Although each have their advantages, the use of Raman spectroscopy will 

be the focus of this research as it is a label-free technique, requires minimal sample 

preparation, is non-destructive, and is well suited for biological samples as water does not 

significantly impact Raman signatures. 

The use of Raman spectroscopy to analyze whole bacteria started in the 1970s to 

address theories concerning vibrational states in biological membranes [24–28]. Over 

time, emphasis changed from theory to identification for medical applications. When 

considering spectral identification of bacteria, the differences in laboratory conditions to 

real world conditions must be accounted for. For example, culturing bacteria in 

laboratory settings is done with growth media favorable for the bacteria. In contrast, 

culture conditions of the human body vary from person to person. Researchers are aware 

of the discrepancy and have investigated the changes in Raman spectra due to factors 

such as temperature [29,30], growth phase [29–38], and growth media [29,30,33,38]. For 

the sake of this review, emphasis will be placed on the influence of growth media and 

phase on Raman spectra. The factor of temperature is ignored as temperature in the 

human body has a narrow range of values. 
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1.1 Influence of growth media on Raman spectra 

The influence of growth media on Raman spectra of bacteria has been 

investigated by a number of researchers [29,30,33,39,40] with varied results. The 

majority of findings indicated differences in spectra due to growth media. For example, 

Mlynàrikovà et al. [39] compared Raman spectra of bacteria and yeast cultured in various 

growth media to identify a media that resulted in the least amount of spectral variance. 

Raman spectra were collected directly from colonies on agar plates. Using PCA 

groupings, the authors indicated spectral differences in bacteria according to growth 

media but did not study if those variations impacted bacteria classification.  

In contrast, Premasiri et al. [41] found no differences as long as samples were 

properly washed. Sample preparation consisted of taking an aliquot of a liquid culture, 

centrifuging the sample to a small pellet, removing the supernatant, and adding fresh 

saline. Centrifuging and rinsing steps were repeated several times. Using PCA groupings, 

the authors showed how rinsing steps were required as media residue would influence 

spectral variance. Once media was removed after three washes, bacteria of the same 

species grown in different media were in the same PCA grouping. 

1.2 Influence of culture time on Raman spectra 

The influence of growth time or growth phase (metabolic state) on Raman spectra 

of bacteria has been studied by a number of researchers [29–38]. For example, Espagnon 

et al. [32] performed a classification study of 80 strains of bacteria and yeast using 

Raman spectra and multivariate statistical methods. Spectra were collected directly from 

colonies on agar plates after 6 and 24 hours of incubation to represent the exponential and 

stationary growth stages, respectively. Authors reported greater intensity of DNA and 
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RNA related wavenumbers (664, 781, 808, 1095, and 1569 cm-1) for the log phase in 

comparison to the stationary phase.  

Other articles have collected and compared Raman spectra of bacteria from 

different growth times, but have not specified growth stage. Choo-Smith et al. [34] 

collected and compared Raman spectra of bacterial colonies grown on agar plates for 6, 

12, and 24 hours at various colony depths using a confocal Raman microscope. The 

authors reported greater spectral variation in colonies cultured for 12 to 24 hours as 

opposed to 6 hours. They concluded that shorter culturing times should be used for 

bacterial identification as these colonies were more homogenous.  

Moritz et al. [36] investigated changes in the Raman spectra according to growth 

phase/metabolic state of the bacteria. Samples were grown in Luria-Bertani broth and 

growth state was identified by optical density (OD) measurements. Results indicated that 

within the log and transition phases, Raman peaks that are associated with RNA and 

DNA (668, 784, 812, 1100, 1477, and 1575 cm-1) generally decrease over the lifespan of 

the bacteria, while peaks associated with proteins (852, 897, 934, 963, 1003, 1032, 1550 

cm-1) increase. These trends are attributed to protein synthesis as bacteria experience a 

depletion of nutrients.  Several protein peaks (1126, 1452, 1605, and 1660 cm-1) 

remained relatively consistent regardless of metabolic state. In the stationary phase, DNA 

and protein synthesis stops and is reflected in bacterial Raman signatures as peaks 

associated with RNA, DNA, and proteins generally remain consistent over time. The 

authors demonstrated discrimination of bacterial growth phase based on associated 

Raman spectra. 
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1.3 Influence of growth media and phase on classification of bacteria 

Although researchers have found differences in Raman spectra among culturing 

conditions, previous work demonstrates that bacteria can still be successfully identified 

by multivariate classification or chemometric methods [29,30,33,38]. For example, Harz 

et al. [30] found that varying culturing conditions such as media nutrients, temperature 

(30-37 ℃), and culture age (6-72 hours) indeed influenced the resulting spectra. Older 

samples were reported to have a smaller signal-to-noise ratio for single cell analysis. In 

addition, wavenumbers in the 1575 cm-1 region, tentatively assigned to the deformation 

vibration of an amide, decreased over time. These changes had minimal effect on the 

classification of bacteria.  

Huang et al. [38] also found variations in Raman spectra according to growth 

phase, reporting that wavenumbers associated with RNA to protein (783-785, 1230-1295 

cm-1), lipids (1062 cm-1) and carbohydrates (544-553 cm-1) were higher at the log phase 

than at stationary phase. In contrast, amides among wavenumbers 1650-1680 cm-1 were 

higher in the stationary phase than in the log phase and are attributed to growth-phase 

related changes in membrane compounds, polysaccharides, proteins, lipids, and nucleic 

acids. The differences between growth phases did not hinder the overall species 

discrimination.  

Hutsebaut et al. [29] studied how growth media, time (24-48 hours), and 

temperature (30-37 ℃) influenced the classification of 30 bacillus strains using Raman 

spectra, linear discriminant analysis, and principal component analysis. Colonies were 

grown on various agar media (brain heart infusion, tryptone soya agar, and gelatin agar) 

and smeared directly onto a CaF2 substrate for Raman analysis. The authors reported a 
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species classification accuracy of 92.34% when varying all parameters. Although growth 

time ranged from 1-2 days, it is unclear what growth phases were included in the study. 

Xie et al. [35] used confocal laser tweezers Raman spectroscopy (LTRS) to 

determine the effects of bacterial synchronization and growth phase on discrimination 

between six different species of bacteria. Bacteria were cultured in LB liquid media and 

harvested at various stages of growth for analysis, with growth stages being identified 

according to OD measurements. Authors reported that bands 783, 811, 1099, and 1578 

cm-1 increase between lag and log phase suggesting DNA and RNA synthesis, while 

bands 723, 783, and 1578 cm-1 associated with RNA are larger at the log phase than in 

the stationary phase. However, high discrimination was still achieved between species 

even for unsynchronized and randomly assigned growth phases with the use of general 

discrimination analysis. 

Research has also been conducted on bacteria to determine Raman spectral 

differences due to growth phase, media, and excitation wavelength. Kunapareddy et al. 

[33] studied several different Gram-positive and Gram-negative bacteria using excitation 

wavelengths between 200-260 nm to develop two-dimensional Raman signatures. They 

found slight changes in two-dimensional spectra due to culture medium and growth phase 

with greater variations due to growth phase. A common change regardless of whether the 

bacteria were Gram-positive of Gram-negative was the peak intensity ratio between 1485 

cm-1 (adenine and guanine bases) and 1616 cm-1 (tyrosine and tryptophan). The ratio was 

larger for bacteria in the log phase or when using an excitation wavelength of 248 nm as 

opposed to 232 nm. The increase in nucleic acids is expected during the log phase as the 

bacteria are actively dividing. The higher peak ratio of 1485 cm-1/1616 cm-1 when 
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varying laser excitation is attributed to the resonant Raman response where certain 

molecules experience increased Raman scattering when excitation wavelengths approach 

their electronic transitions. For example, Raman spectra from laser wavelengths in the 

ultraviolet region like 244 nm and 229 nm will primarily be rich in information about 

nucleic acids and aromatic amino acids, respectively [42]. Despite the spectral variations, 

Kunapareddy et al. [33] found that bacteria could be distinguished regardless of growth 

phase or culture medium. 

1.4 Raman studies of Mycobacterium 

Very few studies have investigated changes in Raman spectra of Mycobacterium 

due to culture conditions and growth stage. Some related research has been conducted 

using other methods. For example, varying the culture conditions of Mycobacterium 

paratuberculosis has been shown to influence acid resistance and protein expression [43]. 

Another study used matrix-assisted laser desorption/ionization-time of flight mass 

spectrometry (MALDI-TOF MS) to find differences in Mycobacterium phlei and 

Mycobacterium smegmatis [44]. It should be noted that MALDI-TOF MS requires a 

considerable amount of sample preparation including rupturing bacteria cell walls. 

Stöckel et al. [37] studied the differences in Raman spectra of Mycobacterium 

aurum (pigmented) and M. smegmatis (non-pigmented) according to growth phase. For 

the case of M. aurum, the Raman spectrum is heavily influenced by carotenoids, a class 

of hydrocarbons (terpenes) responsible for its pigmentation. Associated peaks appear at 

1518, 1189-1127, and 1005 cm-1. In the stationary and death phases, band position and 

relative band intensity for carotenoid-related peaks change. For example, the 1127 cm-1 

band increases in intensity in comparison to the 1158 cm-1 band as the bacteria matures. 
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For the non-pigmented M. smegmatis, peaks associated with mycolic acids from 

mycobacteria’s cell envelope are more prominent (1081, 1305, 1446, and 1748 cm-1) 

especially upon reaching the stationary phase. 

Kumar et al. [45] found that varying carbon sources among glucose, glycerol, and 

acetate for M. smegmatis resulted in varied Raman intensities for carotenoid-related 

peaks during the exponential phase. Specifically, glucose sources increased carotenoid 

peaks with wavenumbers 1156 and 1524 cm-1.  

Literature contains plenty of articles concerning Raman spectroscopy and 

Mycobacterium. However, most of the research is focused on identification [1,46–49] and 

characterization of physical properties [50], cellular extracts [51], enzymes [52,53], and 

proteins [54]. However, only few articles [37,45] focus on how culture conditions for 

Mycobacterium influence variations in Raman spectra and resulting classification. 

Although many research articles are available concerning Raman spectroscopy and 

Mycobacterium, there is still a need for research concerning the influence of culture 

conditions of Mycobacterium on Raman spectra. 

2. DEP and Raman Spectroscopy for Bacterial Analysis 

Raman spectroscopy of clinical samples (blood, saliva, sputum, urine, etc.) 

require an isolation step. As such, samples must be pretreated prior to analysis to remove 

debris. Most label-free techniques to isolate and concentrate bacteria according to species 

involve the use of microfluidic devices. Within these devices, several mechanisms of 

sorting can be employed such as hydrodynamic and electrical methods. Of these 

techniques, DEP stands apart as a label free technique which isolates cells by capitalizing 

on physical and electrical characteristics of target cells.  
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Dielectrophoresis is the use of non-uniform electric fields to cause motion in 

particles due to the magnitude of the applied electric field, gradient of the electric field, 

and properties of the particle (shape, size, homogeneity, electrical permittivity, etc.). 

Although dielectrophoresis was introduced in the early 1950s [55], its use in various 

research fields remained fairly dormant until the 1990s when techniques such as 

photolithography assisted in the fabrication of minute structures like microfluidic devices 

[11]. This advancement in fabrication techniques was crucial for DEP as it drastically 

dropped voltage requirements due to proximity of electrodes to cells within a sample, 

thus creating a much more realistic means for sample sorting. As a result, the use of DEP 

in microfluidic devices as well as the methods of implementation have significantly 

increased. 

Many articles concerning isolation, trapping, and concentration of bacteria using 

DEP exist. For example, DEP has been used to separate bacteria from water [56–58], 

erythrocytes [59–61], yeast [62–67], and sample debris [68–74]. Bacteria has also been 

separated from other bacteria based on differing genera [61,62,71,72,75,76], species [57], 

and serotypes [77]. Other researchers have used DEP as a means to separate or identify 

bacteria according to viability [68,78,79] and antibiotic resistance [80–84]. In some 

cases, DEP has been used to concentrate bacteria to a specific area for subsequent 

analysis or identification [60,61,71,85–87]. 

To meet the need for isolation and identification, DEP is coupled with other 

techniques such as impedance analysis (DEPIA) or Raman spectroscopy (DEP–Raman 

spectroscopy). DEPIA has been used to concentrate and quantify bacteria [88–91]. The 

device can also be equipped with immunoglobulins for detection and identification as a 
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bacteria binds to an associated immunoglobulin resulting in a change in impendence [89]. 

This identification scheme is prone to false positives due to non-specific binding. In 

addition, the method requires the use of metallic electrodes, which exposes the technique 

to common problems associated with DEP as mentioned previously. 

An example of a DEP-Raman involves the use of a quadruple electrode 

arrangement to concentrate bacteria by negative DEP for Raman analysis [92–94]. 

Although successful, the design appears impractical as it is meant for small sample 

volumes (~200 μL) with some of the studies injecting even smaller volumes (10 μL) of 

concentrated bacteria at the DEP site for successful demonstration [92,93]. Not only is 

the sample size problematic, but the design is prone to common DEP-related issues of 

electrode fouling, electrolysis, and Joule heating. In addition, the quadruple electrode 

design is ill-suited to analyze samples containing debris or more than one bacteria at a 

time. Other examples of DEP–Raman spectroscopy include sample labeling using Raman 

reporters or antibodies [95,96]. The use of labels increases costs, limits shelf life, and 

may result in wasted materials due to the broad range of bacteria strains that can be 

present in a sample. Label-free identification methods are appealing to cut costs, increase 

simplicity, and reduce the risk of false positives. In previous cases where DEP–Raman 

spectroscopy systems did not use labels or tags, the device was made using traditional 

metallic electrodes in contact with the sample channel [61,97], exposing the device to 

standard DEP problems of electrode fouling and electrolysis. 

DEP has great potential for trapping of bacteria for subsequent or simultaneous 

identification. Currently, DEP devices that provide simultaneous trapping and 

identification of bacteria fall short of clinical application due to practicality, shelf life, or 
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potential sample damage during operation. There is a need to develop a prompt bacterial 

identification method that is accurate, reliable, and applicable for clinical settings. 

Although DEP has great potential, there are still hurdles to overcome such as electrode 

fouling, electrolysis, and sample size limitations. In this dissertation, a contactless DEP-

Raman device is proposed, fabricated, and tested to meet the need of simultaneous 

trapping and identification of bacteria while avoiding common issues associated with 

DEP devices.  

3. Motivation and Goals 

Traditional bacterial analysis methods rely on visual identification of large 

bacteria colonies requiring one to two days for fast growing bacteria. In the case of slow 

growing bacteria such as mycobacteria, this process can take weeks. This lengthy 

identification time is problematic and many researchers have worked on solving this 

problem as documented in the previous sections. To analyze bacteria in a clinical sample 

faster than traditional methods, bacteria need to be isolated from other sample debris 

prior to identification.  

The goal of this work is to decrease the analysis time of bacteria by designing, 

building, and fabricating a device for simultaneous isolation and identification. It is 

hypothesized that a cDEP-Raman device can isolate bacteria from debris and identify 

bacteria on the same platform. To this end, the following specific aims, categorized under 

identification and isolation, were addressed: 

1. Identification 

a. Determine if Raman spectra of bacteria changes according to 

growth media and phase 
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b. Evaluate the best multivariate statistical method for classification 

c. Determine the best way to implement PCA centering and scaling 

d. Assess the best PC selection method 

2. Isolation 

a.  Develop a cDEP design to eliminate common problems associated 

with the technique and allow for simultaneous identification 

b. Model cDEP design to isolate debris from bacteria 

c. Build and test cDEP-Raman device to separate bacteria from 

debris and collect Raman spectra of trapped bacteria 

This dissertation documents the development of a cDEP-Raman spectroscopy 

device that improves operating parameters, addresses fabrication issues associated with 

cDEP, and allows for simultaneous DEP trapping and identification by Raman 

spectroscopy. Thus, the design offers label-free sorting and simultaneous identification 

that may lead to a decrease in the analysis time of bacteria. 
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CHAPTER III 

EFFECT OF PRINCIPAL COMPONENT ANALYSIS CENTERING AND SCALING 

ON CLASSIFICATION OF MYCOBACTERIA FROM RAMAN SPECTRA1 [14] 

1. Abstract  

Raman spectroscopy has been used for decades to detect and identify biological 

substances as it provides specific molecular information. Spectra collected from 

biological samples are often complex, requiring the aid of data truncation techniques such 

as principal component analysis (PCA) and multivariate classification methods. 

Classification results depend on the proper selection of principal components (PCs) and 

how PCA is performed (scaling and/or centering). There are also guidelines for choosing 

the optimal number of PCs such as a scree plot, Kaiser criterion, or cumulative percent 

variance. The goal of this research is to evaluate these methods for best implementation 

of PCA and PC selection to classify Raman spectra of bacteria. Raman spectra of three 

different isolates of mycobacteria (Mycobacterium sp. JLS, Mycobacterium sp. KMS, 

Mycobacterium sp. MCS) were collected and then passed through PCA and linear 

discriminant analysis for classification. Principal component analysis implementation as 

well as PC selection was evaluated by comparing the highest possible classification 

accuracies against accuracies determined by PC selection methods for each centering and 

scaling option. Centered and unscaled data provided the best results when selecting PCs 

based on cumulative percent variance. 

  

                                                 
1 This paper was published in Applied Spectroscopy and coauthored by Elizabeth Vargis and Michael 
Sieverts. 
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2. Introduction 

Standard methods to detect and identify bacteria take one to two days for fast-

growing bacteria. In the case of slow-growing bacteria such as Mycobacterium, the 

analysis process can take weeks to complete. This lengthy analysis time increases costs to 

patients and hospitals especially when the patient must be quarantined until lab results are 

available. In order to decrease bacterial analysis time and the expenses associated with it, 

researchers have turned to a variety of laser spectroscopy methods to identify bacteria. 

Raman spectroscopy is well suited for bacterial analysis as there is very little 

sample preparation resulting in a decreased analysis time for detection. In addition, it 

provides a rich amount of information concerning molecular structure. The spectral result 

is often referred to as a Raman signature and can be used to identify bacteria. However, 

spectra of bacteria are complex, making it difficult to distinguish between species and 

strains when examining the spectra alone. Along with Raman spectroscopy, other 

methods generate complex spectra such as Fourier transform infrared spectroscopy (FT-

IR) [34,98,99] and surface-enhanced Raman spectroscopy [61,71,94,100]. Due to the 

complex nature of the spectra, many researchers ease data processing by truncating data 

using principal component analysis (PCA) prior to classifying bacteria [34,92,101–106]. 

A detailed description of PCA is omitted here as many sources provide a thorough 

explanation of PCA and its associated mathematical reasoning [107,108]. Briefly, PCA 

truncates data by rotational reorientation to maximize variance along the new axis while 

preserving the relationship and order among the data points. The axis with the greatest 

amount of variance becomes the first principal component (PC). The second PC is 

orthogonal to the first and maximizes the remaining variance. Each subsequent 
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component is orthogonal to the previous PCs, accounting for incrementally less variance 

of the data. The PCs can be used for further classification as they retain the information 

from the original data. While forming the PCs, there are a number of ways in which data 

are treated: scaled and centered, scaled and not centered, centered and not scaled, or not 

centered or scaled. Scaling is typically used for data sets which have drastically different 

values or units from one variable to the next. During scaling, the correlation matrix is 

used rather than the covariant matrix. Centering means shifting the coordinates such that 

the center of the data lies at zero. The process of scaling and centering is referred to as 

normalizing the data. It distributes the weight of each variable equally and can influence 

the selection of PCs and resulting classification. Another factor that affects classification 

is PC selection such as a scree plot, the Kaiser criterion, or cumulative percent variance 

(CPV) [107–109]. Here, these guidelines and the effect of PCA centering and scaling 

were evaluated based on the resulting spectral classification accuracy when identifying 

Mycobacterium sp. JLS [110], Mycobacterium sp. KMS [111], and Mycobacterium sp. 

MCS [112] with Raman spectroscopy. 

3. Materials and Methods 

3.1 Bacteria growth and sample preparation 

Mycobacterium sp. JLS, Mycobacterium sp. KMS, and Mycobacterium sp. MCS 

were taken from stock solutions preserved in 15% glycerol and 85% Lysogeny broth 

(LB) at -80 °C. From the stock, bacteria was inoculated in sterilized LB composed of 

Bacto Tryptone (BD Biosciences, San Jose, CA, USA), Bacto Yeast Extract (BD 

Biosciences, San Jose, CA, USA), and sodium chloride (Thermo Fisher Scientific, 

Chicago, IL, USA) in a 2:1:2 ratio, respectively, with 10 g of Bacto Tryptone per liter of 
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water. Bacteria were grown in LB media at 36 °C under constant shaking of 220 

rotations/min. Growth times were in the range of 4-8 days to incorporate differences in 

cell membrane composition during the lifetime of the bacteria as other studies have 

indicated spectral variations due to the age of the bacteria [31,34,102,113]. Samples were 

prepared such that there were four biological replicates for each species. Three of the 

biological repetitions were used to create technical replicates (3, 2, and 2 for each 

species). The technical replicates were used to capture spectral variance due to culture 

age, independent of inoculation concentration. 

Samples were prepared from the LB media by placing 1 mL of inoculated broth 

into a sterile 1.5 mL centrifuge tube. The solution was centrifuged for 2min at 6000 rpm 

using a Thermo Scientific Heraeus Pico 21 microcentrifuge. The supernatant was then 

discarded and the bacteria pellet formed at the bottom was resuspended in a sterile 0.85% 

saline solution and vortexed to ensure proper mixing. This centrifuging process was 

performed three times. From the final solution, 5 µL was extracted for Raman analysis. 

To avoid interference from glass microscope slides, aluminum tape was placed on a glass 

microscope slide to create a platform for the sample. Upon adding the sample, a quartz 

coverslip was placed on top of the bacteria solution to prevent contact between the 

sample and the microscope objective. 

3.2 Raman spectroscopy 

Raman spectra of the mycobacteria were collected using a Renishaw inVia 

Raman microscope equipped with a 633 nm laser. Using a 50× Leica objective, a group 

of bacteria was identified and put into focus. As the laser spot size is approximately 2 

µm, each spectra was acquired from 1-6 bacteria cells. Spectra were collected using a 
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laser power of approximately 7 mW, 50 µm spectrometer slit, and an 1,800 groove/mm 

grating. Each spectrum was accumulated from six scans, each with a 10-s acquisition 

time over a wavenumber range of 900-1800 cm-1. Renishaw Wire 4.1 software was used 

for cosmic ray removal and baseline correction. Spectra smoothing and normalization 

was performed using Spekwin32 [114], an open source software. Normalization set the 

highest peak within the wavenumber range equal to 1 and scaled all other intensities 

accordingly. Therefore, some Raman intensity values were negative after normalization. 

3.3 Statistical methods 

The software, R, was used to perform PCA and linear discriminant analysis 

(LDA). Spectral data were prepared for analysis by converting data to comma-separated 

values (csv) files and compiling all data into a master data set from which the training 

and test data sets were formed. The variables for the master data set were wavenumbers 

in the range of 900-1800 cm-1 with step sizes in the range of 0.85-0.90 cm-1 totaling 979 

variables. In total, there were 237 spectra with 79 spectra representing each 

Mycobacterium strain. Spectra were organized according to biological and technical 

repetitions. Two of the four biological repetitions were assigned to the test and training 

data set. Therefore, the training and test data sets were selected to be independent of each 

other. Pairing the four biological repetitions creates six possible combinations. All 

combinations were formed and analyzed. The distribution of each Mycobacterium strain 

to the test and training data sets is displayed in Table 3.1. It should be noted that LDA 

was the only classification method used for subsequent analysis as it consistently 

provided better results in preliminary testing when compared against quadratic  
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Table 3.1. Assignment of spectra from each mycobacteria (Mycobacterium sp. 

JLS, Mycobacterium sp. KMS, and Mycobacterium sp. MCS) to form the test and 

training data sets. 

 JLS KMS MCS Total 
Data set Train Test Train Test Train Test Train Test 

1 50 29 49 30 50 29 149 88 
2 49 30 49 30 49 30 147 90 
3 40 39 39 40 40 39 119 118 
4 39 40 40 39 39 40 118 119 
5 30 49 30 49 30 49 90 147 
6 29 50 30 49 29 50 88 149 

 
discriminant analysis, classification trees, random forests, support vector machines, 

gradient boosted trees, and k-nearest neighbor (data not shown). 

4. Results and Discussion 

4.1 Raman spectroscopy 

The quality of spectra collected depends on several factors including the number 

of bacteria present and image resolution. As spectra were collected using a non-

motorized stage, focusing differed from one sample to the next. In addition, the 

concentration of the bacteria also varied but was approximately 0.1 mg/µL. To eliminate 

spectral differences due to focusing, concentration, and background noise, spectra 

underwent post-processing. Figure 3.1 illustrates the process, including the original (a), 

baseline corrected (b), and normalized (c) spectra. Figure 3.1d is composed of a spectrum 

from each bacteria overlaid on top of each other. 
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Figure 3.1. Examples of the original spectra (a), baseline corrected spectra (b), 

normalized spectra (c), and spectra from each mycobacteria collected with a 10s 

acquisition time and six accumulations (d). Spectra were taken of Mycobacterium 

sp. JLS, Mycobacterium sp. KMS, and Mycobacterium sp. MCS. 

4.2 Influence of Centering and Scaling of PCA on Classification Results 

Scaling the data in R is equivalent to using the correlation matrix to perform PCA. 

The correlation matrix is typically used when the variables are expressed in different 

units and this discrepancy between variables needs to be minimized. Thus, the values 

need to be scaled such that the variables have equal weight. The covariance matrix is 

used when the data are not scaled, typically the case for variables that are of comparable 

units. The data sets used in this study are in units of Raman intensity (Figure 3.1). As 
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such, the use of the covariance matrix (not scaling) is expected to produce better results 

as opposed to the correlation matrix. 

Unlike scaling, centering does not change the variance. Instead, the data are 

shifted such that the mean lies at zero while retaining the variance. The choice of 

centering will affect the scores for each associated PC and will also influence the total 

number of PCs. In general, it is advised to center the data when performing PCA [115]. It 

is anticipated that centering will not significantly change classification results for data 

sets that are not scaled. 

To determine the effect of centering and scaling on high dimensional, collinear 

data sets with more variables than observations, the highest bacterial classification 

accuracies were found for each centering and scaling combination. This was done by 

determining the classification accuracy resulting from each PC and then identifying the 

highest classification accuracy. This accuracy was used as a benchmark for each method 

and is referred to as the highest or maximum classification accuracy throughout the text. 

To ensure the trends in accuracies are not a result of the spectra selection, all six data set 

combinations were used as a means of cross-validation. The highest classification 

accuracies for each PC, scaling and centering option, and data set was determined. The 

results are displayed in Figure 3.2. Data which were scaled and uncentered during PCA 

resulted in the lowest classification accuracies for almost all data sets. Centering and 

scaling the data typically provided results between the lowest and highest for all data sets. 

Data sets which were not scaled performed almost identical to each other. For further 

analysis of PC selection methods, data set 3 was used as it provided the highest 

classification accuracy with the most common trend among the data sets: scaled and  
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Figure 3.2. The highest classification accuracies possible for data which were 

centered and scaled, uncentered and scaled, centered and unscaled, and 

uncentered and unscaled during PCA. 

uncentered data had the lowest accuracy while data which were unscaled had equivalent 

or highest accuracies. 

4.3 Selection of PCs 

Figure 3.2 illustrates the classification accuracies before and after performing 

PCA. In most cases, the classification accuracy improved. Literature also provides 

examples of PCA improving classification accuracies of high dimensional data sets [116]. 

Although performing PCA can improve results, finding the appropriate number of PCs to 

incorporate can be difficult especially for data sets involving Raman spectra. Typically, 

optimal PCs are identified using a scree plot, the Kaiser criterion, or cumulative percent 

variance (CPV). Each method was explored and resulting accuracies were compared to 

each other. 
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4.3.1 Selection of PCs based on the scree plot 

Scree plots graph the variance (eigenvalues) of the data according to PCs and are 

commonly used to identify the number of principal components to implement for future 

classification. The suggested number of PCs is identified by a sudden break or change in 

variance from one PC to the next. For simplicity, the break will be referred to as the 

elbow. Figure 3.3 shows scree plots from data set 3 according to the four different ways 

in which PCA was implemented: scaled and centered, scaled and uncentered, centered 

and unscaled, and uncentered and unscaled. Three of the four have much more 

pronounced elbows at either two or three PCs. The centered and unscaled data set had the 

most unique trend in shape, scale of variance, and suggested number of PCs. Scree plots 

were constructed for all data sets to identify the suggested number of PCs to use. 

 

Figure 3.3. Examples of scree plots from data set 3 which were scaled and 

centered, scaled and uncentered, unscaled and centered, and unscaled and 

uncentered during PCA. Note the varying scales of variances in the y-axis for 

each condition. 



54 
 

Using the scree plot method, PCs were identified for classification and the 

resulting classification accuracies were compared to the maximum classification 

accuracies for each data set (previously identified, Figure 3.2). The average drop in 

classification accuracy using the scree plot method can be found in Figure 3.4 with error 

bars indicating standard deviation. It is evident that the scree plot method is the worst 

method of the three to select PCs for classification. The secondary axis of Figure 3.4 

includes the best classification accuracies and their associated standard deviation for each 

centering and scaling option. 

 

 
Figure 3.4. Average drop in classification accuracy from the maximum accuracy 

possible for choosing PCs based on the scree plot method, Kaiser method, and 

cumulative percent variance (CPV) covered by the PCs. The secondary axis in red 

indicate the best classification accuracies (averaged over six data sets) with error 

bars indicating standard deviation. 
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4.3.2 Selection of PCs based on the Kaiser method 

The Kaiser (also known as Guttman-Kaiser) criterion suggests using PCs that 

have associated eigenvalues which are greater than the average eigenvalue. The Jolliffe 

rule is a modification to the Kaiser criterion which suggests a lower cutoff value of 0.7 

times the average eigenvalue [107,109]. Suggested PCs were identified by the Kaiser and 

Joliffe rules and their associated accuracies were determined. This classification accuracy 

was compared to the maximum classification accuracy for each data set and scaling and 

centering option to determine the drop in classification accuracy, which is displayed in 

Figure 3.4 with error bars indicating the standard deviation. Figure 3.4 indicates that in 

comparison to the scree plot method, the Kaiser method improved classification results 

for all scaling and centering options. 

4.3.3 Selection of PCs based on cumulative percent variance 

Another method to determine which PCs to use is by choosing PCs based on their 

associated CPV. For example, a common method for PC selection is to use the PCs 

which account for 95% of the variance. However, this method has its disadvantages. 

Previous studies [116] have shown how the number of PCs used affects classification 

error among several different classification methods for high dimensional data such as 

Raman spectra. For all classification methods studied in the article, the classification 

error initially decreased. The subsequent behavior was dependent on the classification 

method, but the methods either remained at roughly the same error rate or increased in 

error with the use of more PCs. A similar behavior was found by plotting classification 

accuracy for data set 3 as a function of PCs, as illustrated in Figure 3.5. The classification 
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accuracies have a sharp increase at approximately five PCs and a sharp decrease in 

accuracy with the last few PCs. 

Overall, data sets which were scaled resulted in lower classification accuracies as 

illustrated by Figure 3.4, indicating that not all variables should have equal weight in 

classification. Centering did not have a significant influence on the highest classification 

results as long as data were not scaled. The scree plot method for PC selection performed 

better for unscaled data, while the Kaiser method performed better for centered data came 

closer to the best accuracy. The cumulative percent variance did not appear to be 

influenced by either scaling or centering. 

 

 
Figure 3.5. Linear discriminant analysis classification accuracy as a function of 

PCs for all centering and scaling options from data set 3. 
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One question that may arise is whether these classification accuracies are 

applicable to a larger range of conditions such as differing growth times and introducing 

more species. In this study, different growth times were accounted for by using bacteria 

grown for 4-8 days with a series of biological and technical repetitions. For pigmented 

bacteria, as is the case for the Mycobacterium isolates (JLS, MCS, and KMS), researchers 

have used peaks assigned to carotenoids (1150 and 1520 cm-1) to identify different 

species of mycobacteria from each other [46]. However, it has been found that carotenoid 

levels of mycobacteria can vary depending on the growth stage, with the stationary phase 

providing a reproducible trend in Raman signatures over time [37]. Future studies will 

need to take this into account. 

When Raman spectra from additional classes are included, a drop in classification 

accuracy is expected. The classification accuracies presented here are obtained using 

Raman spectra from three very similar strains. The genomic makeup for Mycobacterium 

sp. MCS is 97% symmetrically identical to Mycobacterium sp. KMS [117]. As illustrated 

in Figure 3.6, plotting three PCs against each other indicates that the three strains can be 

distinguished. However, the differences are slight. Adding more strains, species, or 

genera could change the classification accuracies by lumping the data of the three strains 

into one area. As such, spectra of bacteria would need to go through a series of 

classification stages to allow for both broad and specific identification. 



58 
 

 
Figure 3.6. Plot of PCs 1, 3, and 5 from data set 3 which was centered and 

unscaled. Blue, green, and red dots represent Mycobacterium sp. JLS, 

Mycobacterium sp. MCS, and Mycobacterium sp. KMS respectively. 

5. Conclusions 

In an effort to streamline and reduce bacterial analysis time, PCA and LDA is 

being used to spectrally classify mycobacteria. In this study, Raman spectra of three 

different strains of Mycobacterium were passed through LDA to determine the effect of 

classification accuracies before and after PCA. In almost all cases, PCA improved 

classification accuracies by tens of percentage points. Centering and scaling options 

during PCA were investigated to determine how future data sets should be treated. 

Investigating these methods was done by comparing classification accuracies after 

performing PCA and LDA and selecting PCs based on the scree plot method, Kaiser 
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method, and cumulative percent variance. Scaled and uncentered data provided the worst 

classification accuracies, while unscaling the data provided the highest accuracy at 90%. 

The Kaiser and Jolliffe rules were superior to the scree plot method for all scaling and 

centering options. When comparing accuracy results using the Kaiser and Jolliffe rules as 

well as the CPV, centering and scaling the data has the smallest drop in accuracy from 

the best classification accuracy. However, centering and scaling did not provide the 

highest classification accuracies. Centered and unscaled data had the highest 

classification accuracy with all PC selection methods providing reasonable results. Future 

studies will use centered and unscaled data when performing PCA and select PCs that 

cover 94.4% of the variance. 
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CHAPTER IV 

INFLUENCE OF GROWTH MEDIA AND PHASE ON RAMAN SPECTRA OF 

MYCOBACTERIA 

1. Abstract 

When developing a Raman spectral library to identify bacteria, differences 

between laboratory conditions and real-world conditions must be considered. For 

example, culturing bacteria in laboratory settings is performed with specific conditions 

tailored to the bacteria such as nutrient content, pH, agitation, or growth temperature. In 

contrast, culture conditions in the human body may not have the ideal set of 

circumstances for bacteria to grow. To address these differences, the effect of 

environmental conditions such as temperature, pH, growth media, and growth phase on 

Raman spectra has been tested. However, the majority of the research has focused on 

Gram-positive or Gram-negative bacteria. This article focuses on the influence of growth 

media and phase on Raman spectra of Mycobacterium sp. MCS, an acid-fast bacteria. 

Results showed that spectral differences in growth phase and media can be distinguished 

by direct spectral observation and multivariate analysis. Results were comparable to those 

found in literature for other types of bacteria, such as Gram-positive, Gram-negative, and 

acid-fast bacteria. The results confirmed the need for spectral libraries to account for an 

array of culture conditions. 

2. Introduction 

A variety of label-free methods have been implemented to identify bacteria 

including laser-induced breakdown spectroscopy [16–18], Fourier transform infrared 
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spectroscopy [19,20], Raman spectroscopy [1,21], and autofluorescence [22,23]. 

Although each have their advantages, the use of Raman spectroscopy will be the focus of 

this research as it is a non-destructive, label-free technique that requires minimal sample 

preparation. Plus, it is well suited for biological samples as water does not significantly 

impact Raman signatures. 

Raman spectroscopy is sensitive to small changes in bacteria cells due to growth 

media [29,30,33,39,40,45]. For example, Mlynàrikovà et al. [39] compared Raman 

spectra of bacteria and yeast cultured in various growth media to identify a media which 

lead to the least amount of spectral variance. Raman spectra were collected directly from 

colonies on agar plates. Using principal component analysis (PCA), spectral differences 

in bacteria were found according to growth media.  

Other researchers have seen no differences in Raman spectra according to media 

as long as the bacteria are properly washed [41]. Sample preparation consisted of taking 

an aliquot of a liquid culture, centrifuging the sample to a small pellet, removing the 

supernatant, and adding fresh saline. Centrifuging and rinsing steps were repeated several 

times. Using PCA groupings, the authors showed how rinsing steps were required as 

media residue would influence spectral variance. Once media was removed after three 

washes, bacteria of the same species grown in different media were in the same PCA 

grouping. 

The influence of growth phase on Raman spectra has also been researched and 

includes direct spectral observation as well as statistical discriminatory methods [29–

38,118,119]. Cell phases include lag, log, transition, stationary, and death phase. During 

the lag phase, the bacteria adjust to their surroundings and little growth occurs. The log 
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phase is characterized by cells that are actively growing and dividing at a consistent rate. 

During the transition phase, cell growth slows down but is greater than the rate of cell 

death. The stationary phase occurs when the rates of cell growth and death are equal, and 

the death phase is where the rate of cell death is greater than cell growth.  

Moritz et al. [36] investigated the changes in Raman spectra according to the 

metabolic state of bacteria. Samples were grown in Luria-Bertani broth and growth phase 

was identified by optical density (OD) measurements. The majority of Raman peaks 

associated with RNA and DNA decreased as bacteria aged from the log to the stationary 

phase, which has been seen by many groups [30–33,35,38,118,119]. Moritz et al.[36] 

also found that protein-related peaks increase or stay the same over the same timeframe. 

Other sources concerning Raman spectra of protein peaks for bacteria indicate mixed 

results [33,38,118,119]. Regardless of the specific result, literature indicates differences 

in Raman spectra of bacteria according to growth phase whether by observation or by 

statistical analysis. 

Of the studies cited above, only two have investigated changes in Raman spectra 

of mycobacteria due to culture conditions and growth phase [37,45]. Stöckel et al. [37] 

studied the differences in Raman spectra of Mycobacterium aurum (pigmented) and M. 

smegmatis (non-pigmented) according to growth stage. For M. aurum, Raman spectra are 

heavily influenced by carotenoids, an organic pigment containing eight isoprene 

molecules. Peaks associated with carotenoids appear at 1005, 1127-1189, and 1518 cm-1. 

In stationary and death phases, band position and relative band intensity for carotenoid-

related peaks change. In Stöckel’s article, the 1127 cm-1 band increased in intensity 

compared to the 1158 cm-1 band as the bacteria matured. In addition, band position of 
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carotenoid peaks ranging from 1500-1550 cm-1 varied depending on the conjugated chain 

length of the carotenoid. For M. smegmatis, Raman spectra are dominated by peaks 

associated with mycolic acids from the cell envelope (1081, 1305, 1446, and 1748 cm-1) 

especially upon reaching the stationary phase. Mycobacteria respond similarly to changes 

in growth media. Kumar et al. [45] found that varying carbon sources among glucose, 

glycerol, and acetate for M. smegmatis resulted in varied Raman intensities for 

carotenoid-related peaks during the exponential phase.  

There are many articles documenting the effects of growth media and phase on 

Raman spectra of Gram-positive and Gram-negative bacteria. In comparison, there are 

very few articles concerning the effect of growth media and phase on Raman spectra of 

acid-fast bacteria, like mycobacteria. The prompt and accurate diagnosis of mycobacteria 

is of interest globally, especially Mycobacterium tuberculosis, one of the bacterial species 

responsible for tuberculosis. According to the 2017 Global Tuberculosis report from the 

World Health Organization [120], tuberculosis is one of the top ten causes of death 

worldwide. Despite the need to research mycobacteria, there are only a few articles that 

cover the influence of growth media and phase on Raman spectra of mycobacteria. 

The purpose of this article is to identify how growth media and phase influence 

Raman spectra of Mycobacterium sp. MCS. Using linear discriminant analysis (LDA), 

spectral differences were found according to phase (log and stationary) and culture media 

(Lysogeny broth, Brain Heart Infusion, Middlebrook, and Kirchner). Results are in 

general agreement with literature, where peaks associated with carotenoids increase and 

peaks associated with DNA/RNA and mycolic acids decrease as bacteria ages from the 

log phase to the stationary phase.  
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3. Materials and Methods 

3.1 Bacteria Culturing 

Mycobacterium sp. MCS was taken from a stock solution preserved in 15% 

glycerol and 85% Lysogeny broth (LB) at -80 ℃ until cultured in sterilized liquid media. 

The four culture media used were LB, Brain Heart Infusion (BHI), Middlebrook, and 

Kirchner media. Middlebrook and Kirchner media were used as they are nutrient specific 

for mycobacteria, while BHI and LB are not. Thereby, data could be collected from 

bacteria grown in ideal and nonideal conditions.  

Table 4.1 indicates the composition of all media added to water to make 1 liter of 

media. Ingredients for LB and BHI media were dissolved directly in 1 liter of media, 

separated into 125 mL Erlenmeyer flasks with approximately 50 mL aliquots, and 

sterilized by autoclaving. Middlebrook and Kirchner were made by adding all 

components, except for enrichment media and serum, to water to make 900 mLs of 

solution. After dissolving, the solution was divided into 40 mL aliquots in 125 mL 

Erlenmeyer flasks and autoclaved. Before inoculating the media with mycobacteria, 10 

mLs of enrichment or serum was aseptically added to each Erlenmeyer flask. Bacteria 

were grown in each liquid media at 36 ℃ under constant shaking of 220 rotations/min. 

The log, transition, and stationary growth phases were identified using optical density 

(OD) measurements at 580 nm. OD measurements were taken using a BioTek (Winooski, 

VT, USA) Synergy 2 Multi Mode Reader and Gen 5.1.11 software.  
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Table 4.1. Ingredient list for Lysogeny Broth, Brain Heart Infusion, Middlebrook, and 

Kirchner media. Contents are mixed with distilled water to make 1 liter of media.  

 
 

Samples were prepared from culture media by placing 1 mL of inoculated broth 

into a microcentrifuge tube. The broth was centrifuged for 2 min at 6000 rpm using a 

Heraeus Pico 21 microcentrifuge (Thermo Fisher Scientific, Waltham, MA, USA). The 

supernatant was removed and the bacteria pellet was resuspended in 0.85% saline 

solution and vortexed for proper mixing. This rinsing procedure was performed three 

times to remove media residue. From the final solution, 5 µL was extracted, and dried on 

top of an aluminum-covered microscope slide. Upon drying, Raman spectra were 

collected. 

3.2 Raman spectra 

Raman spectra of Mycobacterium sp. MCS were collected using an inVia Raman 

microscope (Renishaw, Wotton-under-Edge, United Kingdom) with a 633 nm laser, 50 x 

Leica objective, and an 1800 groove/mm grating. Spectra were acquired using a laser 

power of 14 mW with a 10-s exposure time and three accumulations. Collected spectra 
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had a wavenumber range of 200-3200 cm-1. Renishaw Wire 4.1 software was used for 

baseline correction and cosmic ray removal. Spekwin32 was used for normalization. 

3.3 Statistical methods 

The open access software, R, was used to perform linear discriminant analysis 

(LDA) on spectral data to determine if differences in growth phase (log and stationary) 

and growth media (LB, BHI, Middlebrook, and Kirchner) could be distinguished. Three 

biological samples for each media were prepared and four spectra (technical replicates) 

were collected at each phase for a total of 96 spectra. Wavenumbers ranged from 200-

3200 cm-1 with step sizes ranging from 0.852–0.853 cm-1 totaling 3522 variables.  

4. Results and Discussion 

4.1 Discrimination based on growth phase 

Mycobacterium sp. MCS was grown in LB, BHI, Middlebrook, and Kirchner 

media with growth phase identified by plotting OD measurements as indicated by Figure 

4.1. Raman spectra were acquired from bacteria in the log and stationary phases. Twelve 

spectra for each phase and media were collected, formatted, and discriminated based on 

growth phase using LDA. The resulting confusion matrix and LDA plot is presented in 

Table 4.2 and Figure 4.2, respectively. Classification results were 94.8% accurate with 

only 5 spectra out of 96 being misclassified. These results indicate that there are indeed 

discernable spectral differences between the three growth phases regardless of culture 

media.  
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Figure 4.1. Growth curve for Mycobacterium sp. MCS in LB media based on 

optical density measurements at 580 nm. Error bars at each point represent the 

standard deviation among seven technical replicates. 

 

Table 4.2. Confusion matrix for LDA classification of Mycobacterium sp. MCS 

according to growth phase (log and stationary) and cultured in LB, BHI, 

Middlebrook, and Kirchner media. Classification results in 94.8% accuracy. 
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Figure 4.2. Linear discriminant analysis plot of spectra from Mycobacterium sp. 

MCS at the stationary (index 1-48) and log (index 49-96) phases. Blue and green 

text indicates the predicted stationary and log phases, respectively. Classification 

results in 94.8% accuracy. 

4.2 Discrimination based on growth media 

Mycobacterium sp. MCS colonies were cultured in LB, BHI, Middlebrook, and 

Kirchner media and the growth phase was monitored by performing OD measurements. 

Upon reaching the log and stationary phases, Raman spectra were collected. Twelve 

spectra were collected for each phase and media combination. The spectra were analyzed 

using LDA and classified according to culture media. The resulting confusion matrices 

are presented in Table 4.3 and the LDA plots for the log and stationary phases are 

displayed in Figure 4.3 and 4.4, respectively. Classification accuracies were 85.4% for 

the log phase and 93.8% for the stationary phases. As observed in Figure 4.4, spectra 
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collected from bacteria in the stationary phase had the clearest separation according to 

media. Discrimination of media was more difficult in the log phase as seen in Figure 4.3. 

These results indicate that there are indeed discernable spectral differences between 

bacteria grown in different media and is in agreement with many literature sources 

[29,30,33,39,40]. 

The classifications documented in Table 4.3 are more easily understood when 

observing Figure 4.3 and Figure 4.4. For example, Table 4.3 indicates there was one 

spectrum from Kirchner media that was classified as Middlebrook in the log phase. This 

can be seen in Figure 4.3 by the blue diamond. It is clearly far removed from the rest of 

the Kirchner data points (blue circles). Likewise, in the stationary phase, there was one 

Middlebrook spectrum that was classified Kirchner. This spectrum can be identified in 

Figure 4.4 by the black circle grouped closely by all the Kirchner data points (blue 

circles). 

Table 4.3. Confusion matrices for LDA classification Mycobacterium sp. MCS 

grown in Lysogeny Broth (LB), Brain Heart Infusion (BHI), Kirchner (K), and 

Middlebrook (M) media. Matrices are grouped according to log and stationary 

phases, which have classification accuracies of 85.4% and 93.8%, respectively. 
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Figure 4.3. Plot of linear discriminants of Raman spectra of Mycobacterium sp. 

MCS at the log phase according to culture media. Media included Brain Heart 

Infusion (BHI), Lysogeny broth (LB), Middlebrook (M), and Kirchner (K). The 

plot displays the actual media by color and the predicted media by shape as 

indicated by the legend. Classification resulted in 85.4% accuracy. 

 
Figure 4.4. Plot of linear discriminants of Raman spectra of Mycobacterium sp. 

MCS at the stationary phase according to culture media. Media included Brain 

Heart Infusion (BHI), Lysogeny broth (LB), Middlebrook (M), and Kirchner (K). 

The plot indicates the actual media by color and the predicted media by shape as 

indicated by the legend. Classification resulted in 93.8% accuracy. 
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4.3 Spectral differences due to culture conditions 

Spectra of Mycobacterium sp. MCS were collected at the log and stationary 

phases for all media (Figure 4.5 and Figure 4.6) to identify trends and compare the results 

to literature. Literature indicates that the majority of Raman peaks associated with DNA 

and RNA decrease as bacteria age from the log to the stationary phase for Gram-positive 

or Gram-negative bacteria [30,32,33,35,36,38,100,118,119] while the majority of protein 

peaks increase or remain unchanged [36]. These results are supported by the work of 

Talukder et al. [121] who used a quantitative Western immunoblot to determine 

concentrations of DNA and proteins of E. coli cells through the log and stationary phases. 

They found that protein to DNA ratio increased as E. coli (Gram-negative) aged.  

This trend in DNA was compared to spectra collected from Mycobacterium sp. 

MCS. Of the DNA peaks observed from Mycobacterium sp. MCS, the 782 cm-1 peak was 

the most intense and clearly distinguishable. The peak generally followed the expected 

trend of decreasing as the bacteria aged from the log to the stationary phase. The only 

exception was for bacteria grown in BHI media where it had a minimal increase in peak 

intensity. 

The spectral differences may be attributed to varying DNA/RNA associated with 

the specific functions of cells during log and stationary phases. During log phase, cells 

are actively dividing by binary fission. Prior to division, the cells have twice as much 

DNA. The concentration of DNA/RNA-regulating proteins also varies depending on 

growth phase. For example, Fis (factor for inversion) is a DNA-binding protein that plays 

a role in DNA recombination and replication. Hfq (host factor for phage Qβ) protein 

regulates specific mRNA translation [122,123] and DNA repairs [123]. HU proteins 
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influence DNA replication, recombination, transposition, and repair [124–128]. During 

the exponential phase, Fis, Hfq, and HU are at their highest concentrations and are most 

prominent among nucleoid proteins [121,129]. In contrast, the role of the stationary phase 

becomes that of survival and is characterized by elevated levels of Dps [121,129], a 

starvation-induced DNA-binding protein. Dps causes the DNA to become more compact 

forming a biocrystal to protect chromosomal DNA and aides in survival during long-term 

stressors [130]. It should be noted that Dps concentration in the late stationary phase is 

higher than Fis, Hfq, and HU combined in the log phase. Log and stationary phases are 

characterized by specific cell functions and physical characteristics. These changes in cell 

function and physiology provide an explanation for the trends seen in Raman spectra 

where DNA/RNA- and protein-related peaks decrease and increase respectively as 

bacteria age from the log to stationary phase. 

As described, changes in Raman DNA-related peaks for Mycobacterium appear to 

follow the same trend. However, DNA-related peaks are not prominent in spectra 

collected for Mycobacterium sp. MCS. The peaks observed in Figures 4.5 and 4.6 are 

heavily influenced by carotenoids and mycolic acids specific to Mycobacterium sp. MCS. 

Therefore, discussion of spectral trends over the lifetime of the bacteria should also 

include carotenoids and mycolic acids specific to mycobacteria.  
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Figure 4.5. Raman spectra of Mycobacterium sp. MCS grown in Lysogeny Broth 

(LB), Middlebrook (M), Kircher (K), and Brain Heart Infusion (BHI) media for 

the log and stationary phases represented by blue and orange lines, respectively. 
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Figure 4.6. Raman spectra of Mycobacterium sp. MCS from 750-1600 cm-1 for 

Lysogeny broth LB, Middlebrook (M), Kircher (K), and Brain Heart Infusion 

(BHI) media for the log (blue) and stationary (orange) phases. Peaks highlighted 

in red, gray, and green mark peaks associated with DNA, carotenoids, and 

mycolic acids, respectively.  

 

Stockel et al. [37] observed the changes in Raman spectra for M. aurum and M. 

smegmatis throughout the different growth phases. Although not explicitly stated in the 

article, the spectral figures indicate that Raman peaks for mycolic acids become dwarfed 

by carotenoid-related peaks as pigmented mycobacteria age. This trend was also found to 

be the case for Mycobacterium sp. MCS with the 1449 cm-1 mycolic acid peak and the 
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carotenoid-related peaks (1156, 1188, and 1524 cm-1). The carotenoid peaks all had 

distinct increases while the mycolic acid peak decreased from log to stationary phases as 

seen in Figure 4.6. Overall, spectra of Mycobacterium sp. MCS followed the general 

trends found in literature of increasing carotenoids and decreasing DNA-related Raman 

intensities when transitioning from the log to the stationary phase. 

5. Conclusions 

In this study, colonies of Mycobacterium sp. MCS were grown in LB, Kirchner, 

Middlebrook, and Brain Heart Infusion broth. The influence of culture media and growth 

phase on Raman spectra of Mycobacterium sp. MCS was investigated. Using LDA, the 

log and stationary growth phases could be classified regardless of media with 94.8% 

accuracy. Grouping spectra according to growth phase, media could be classified at 

85.4% and 93.8% accuracy for the log and stationary phases, respectively. LDA results 

indicate spectral differentiation according to media with greatest accuracy in the 

stationary phase. Trends among the log and stationary growth phases were also identified 

by spectral observation. Generally, carotenoid peaks increased while DNA/RNA-related 

peaks decreased as the bacteria aged from the log to the stationary phase, which is 

consistent with previous findings [36,37]. In addition, the peak assigned to mycolic acid 

decreased as the bacteria aged. These spectral changes are attributed to cell function and 

physiology associated with each phase. 

Results indicate the need to account for spectral variances due to growth media 

and phase when building a spectral library for bacterial identification. The high 

classification accuracy (85.4%-94.8%) indicates detectable differences according to 

growth phase and growth media. As such, bacterial classification methods that 
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incorporate Raman spectroscopy must account for these variations when developing a 

spectral library. Ideally, a Raman spectral library will include all growth phases and a 

wide range of culture media. Accounting for these variances will allow for greater 

accuracy in bacterial identification by Raman spectroscopy.
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CHAPTER V 

ALTERNATIVE CDEP DESIGN TO FACILITATE CELL ISOLATION FOR 

IDENTIFICATION BY RAMAN SPECTROSCOPY2 

1. Abstract 

Dielectrophoresis (DEP) uses non-uniform electric fields to cause motion in 

particles due to the particles’ intrinsic properties. As such, DEP is a well-suited label-free 

means for cell sorting. Of the various methods of implementing DEP, contactless 

dielectrophoresis (cDEP) is advantageous as it avoids common problems associated with 

DEP, such as electrode fouling and electrolysis. Unfortunately, cDEP devices can be 

difficult to fabricate, replicate, and reuse. In addition, the operating parameters are 

limited by the dielectric breakdown of polydimethylsiloxane (PDMS). This study 

presents an alternative way to fabricate a cDEP device allowing for higher operating 

voltages, improved replication, and the opportunity for analysis using Raman 

spectroscopy. In this device, channels were formed in fused silica rather than PDMS. The 

device successfully trapped 3.3 μm polystyrene spheres for analysis by Raman 

spectroscopy. The successful implementation indicates the potential to use cDEP to 

isolate and identify biological samples on a single device. 

2. Introduction 

The use of label-free cell sorting, isolation, and identification techniques is 

becoming increasingly popular for analyzing biological samples. These techniques take 

advantage of cells’ intrinsic properties such as size, shape, or electrical polarizability to 

                                                 
2 This paper was published in Sensors and coauthored by Elizabeth Vargis. 
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perform the required analyses. One label-free method of identification is Raman 

spectroscopy, which correlates inelastic light scattering with specific vibrational and 

rotational modes of the target molecule or cell. One common method for cell sorting and 

isolation prior to acquiring Raman spectra is dielectrophoresis (DEP), which is the 

phenomenon where a non-uniform electric field causes motion of a particle. When using 

DEP, the manipulation of particles is based on the applied electric field and the particles’ 

size, shape, and electrical properties. 

There are several ways to implement DEP. A review of the mathematics of DEP 

and the various ways to implement DEP is beyond the scope of this article. However, 

several reviews and sources are available [9,11,13,14,131]. Briefly, in the early 1990s, 

DEP devices were made by embedding metallic electrodes within a sample chamber with 

a specific orientation or shape to create the non-uniform electric field. Unfortunately, 

these designs were prone to problems such as electrode fouling, electrolysis, Joule 

heating, and spatial limitations or how close the cells must be to the electrodes to be 

influenced by the electric field (approximately 30 μm). This limitation affects device 

efficiency and throughput. An alternative method to avoid common issues associated 

with DEP is insulator-based DEP (iDEP). In iDEP, electrodes are placed on opposite 

ends of a microfluidic device in direct contact with the sample solution. Insulating 

structures such as channel constrictions, sawtooth patterns, or an array of posts are placed 

within the channel between the electrodes. This arrangement forces the electric field to 

move around the structures, creating a non-uniform electric field required for DEP. 

Insulator-based DEP devices require high voltages to operate and are prone to 
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electrolysis. Another DEP-based method that may address these drawbacks is contactless 

DEP (cDEP). 

Contactless DEP creates a non-uniform electric field by insulating barriers within 

the sample channel as seen with iDEP. However, the electrodes in cDEP devices do not 

have physical contact with the sample channel. Instead, a thin insulating barrier separates 

liquid electrodes from the sample channel. This method is well-suited for biological 

samples as it minimizes the negative effects of electrolysis, electrode fouling, and Joule 

heating experienced by other common forms of DEP [11,132,133]. Fabricating a typical 

cDEP device involves polydimethylsiloxane (PDMS) casting on a silicon master mold 

(made previously using dry etching processes), removing the PDMS from the mold, and 

bonding the PDMS to glass [11]. The final structure requires a good seal of a thin PDMS 

membrane (~20 μm thick) to a glass substrate over 1–2 cm in length with typical channel 

depths of 50 μm. The device can be difficult to fabricate and replicate consistently as 

small defects during casting, de-molding, and bonding can occur, requiring many casts to 

produce one that will function properly. 

Regardless of the way DEP is implemented, it is a powerful label-free tool to sort 

biological samples without tags, fluorescent markers, or specific DNA sequences for 

subsequent identification. It should be noted that DEP is not the only technique available 

for label-free means to sort and analyze cells. For example, laser tweezers Raman 

spectroscopy (LTRS) can trap, identify, and sort single cells [134–136]. Cells are targeted 

under a microscope and optically trapped using a laser. While trapped, a Raman spectrum 

is acquired to identify the cell. The cell can then be moved to another area based on the 

Raman spectra acquired. This technique is successful, but cannot meet the demands of 
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high throughput as a Raman spectrum is acquired from each individual cell. In contrast, 

DEP can be used to automatically sort cells based on the cells’ intrinsic properties 

allowing for higher throughput. 

To meet the need for isolation and identification, DEP is coupled with other 

techniques such as Raman spectroscopy (DEP–Raman spectroscopy) to isolate and 

identify biological samples. For example, several researchers have used a quadruple 

electrode arrangement to concentrate bacteria by negative DEP for Raman analysis [92–

94]. Although successful, the design appears impractical as it is meant for small sample 

volumes (~200 μL) with some of the studies injecting even smaller volumes (10 μL) of 

concentrated bacteria at the DEP site for successful demonstration [92,93]. Not only is 

the sample size problematic, but the design is prone to common DEP-related issues as 

stated previously and is ill-suited to analyze samples containing more than one bacteria at 

a time. Other examples of DEP–Raman spectroscopy include sample labeling using 

Raman reporters or antibodies [95,96]. The use of labels increases costs, limits shelf life, 

and may result in wasted materials due to the broad range of bacteria strains that can be 

present in a sample. Label-free identification methods are appealing to cut costs, increase 

simplicity, and reduce the risk of false positives. In previous cases where DEP–Raman 

spectroscopy systems did not use labels or tags, the device was made using traditional 

metallic electrodes in contact with the sample channel [61,97], exposing the device to 

standard DEP problems of electrode fouling and electrolysis. 

This article proposes a new design to improve operating parameters, address 

fabrication issues associated with cDEP, and allow for simultaneous acquisition of 

Raman spectra without interference from PDMS. Thus, the design offers label-free 
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sorting and identification of a sample at the same time. The design was tested with 

polystyrene spheres as a proof of concept. Results indicate successful application of 

cDEP to trap particles for acquiring the Raman spectra. To the authors’ best knowledge, 

this is the first demonstration of using Raman spectroscopy and cDEP simultaneously. 

3. Materials and Methods 

3.1 Device fabrication 

The microfluidic device was constructed in a layered structure as illustrated in 

Figure 5.1. Outer plates were made using Stratasys VeraClear photopolymer and 

Objet260 Connex3 printer (Eden Prairie, MN, USA). The outer plates accommodate #8-

32 screws to provide proper sealing of the device, as PDMS and fused silica do not bond 

easily. 

The PDMS layer was made from Dow Corning 184 Sylgard (Auburn, MI, USA) silicone 

elastomer. A 10:1 ratio of PDMS monomer to curing agent was mixed, degassed, and 

poured onto a silicon wafer to provide a flat surface. The PDMS was cured at 100 °C for 

35 min. After curing, the PDMS structure was carefully removed and trimmed. Holes 

were punched out using Miltex (Integra LifeSciences, York, PA, USA) 1.5 mm and 5 mm 

biopsy punches. The PDMS structure was aligned with the 3D printed plates and fastened 

to the fused silica microfluidic plate using #8-32 screws. 
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Figure 5.1. Illustration of the layered microfluidic device. Top and bottom plates 

were 3D printed with holes to accommodate #8-32 screws. The bottom plate is 

equipped with a viewing port for an inverted microscope. The second layer from 

the top is made of PDMS. The second plate from the bottom is the fused silica 

microfluidic plate. 

 

The fused silica microfluidic chip was fabricated by Translume (Ann Arbor, MI, 

USA). Figure 5.2a is an illustration of the microfluidic chip and Figure 5.2b is a 

microscope image of the sample channel with a square (100 μm by 100 μm) pillar array. 

The barriers between the liquid electrode and sample channels are 30 μm. The sample 

channel depth and width are 150 μm and 500 μm, respectively, with 20 μm set between 

each pillar in the array. 
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Figure 5.2. (a) Illustration of the fused silica microfluidic chip. Liquid electrodes 

and the sample channels are indicated by blue and red lines, respectively. The 

array of 4 by 15 square pillars act as insulating barriers in the middle of the 

sample channel. (b) Microscope image of the middle of the microfluidic sample 

channel showing the array of pillars in the middle of the sample channel. Pillar 

dimensions are 100 μm by 100 μm. 

3.2 Sample preparation 

Polytetrafluoroethylene (PTFE #20 AWG) tubing (Cole Parmer, Vernon Hills, IL, 

USA) was used to fill the sample and electrode channels. Two hundred microliter 

(Thermo Fisher Scientific, Waltham, MA, USA) pipette tips were trimmed to provide 

space for the microscope condenser and inserted through the PDMS to act as reservoirs 

for the liquid electrode channels. The sample consisted of 0.005× PBS (ScyTek, Logan, 

UT, USA), 0.1% TWEEN 20 (ScyTek), and 3.3 μm polystyrene fluorescent spheres 

(Thermo Fisher Scientific) at a concentration of approximately 2 × 107 particles per 

milliliter. The sample had a conductivity of 40 μS/cm. Liquid electrodes were filled with 

1× PBS with a conductivity of 15 mS/cm. Dilute 3,3′-diethylthiatricarbocyanine iodide 

(DTTC) dye (Sigma-Aldrich, St. Louis, MO, USA) at a 250 μM concentration in 1× PBS 

(a) (b)
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was added to the liquid electrodes to aid in visualizing during priming of the channels. 

The final concentration of DTTC in the channels was approximately 1 μM after inserting 

the pipettes filled with 1× PBS. Copper wires (28 gauge) were used to connect the 

electrodes spanning over the sample channel as shown in Figure 5.3. 

3.3 Experimental setup 

A sinusoid wave was generated by an OWON AG1022 waveform generator 

(Industry, CA, USA). The signal was passed through a Trek Model 2205 high-voltage 

amplifier (Lockport, NY, USA) and monitored using an EZ Digital OS-5030 oscilloscope 

(Gyeonggi-do, Korea). The applied AC field (350 VRMS at 100 Hz) was delivered to the 

device using alligator clips. The sample flow was controlled by a New Era Pump 

Systems, Inc. NE-300 syringe pump (Farmingdale, NY, USA) operating at 5 μL/h during 

analysis. 

 

 
Figure 5.3. Image of the layered microfluidic device in operation set a-top an 

inverted microscope for analysis. 
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Raman spectra were collected using an in-house built Raman microscope unit as 

described and used previously [137,138]. The unit consists of an inverted Nikon Eclipse 

TE2000-S (Melville, NY, USA), a 785 nm single-mode laser (Innovative Photonic 

Solutions, Monmouth, NJ, USA), an IsoPlane 160 spectrometer equipped with a 1200 

g/mm grating (Princeton Instruments, Trenton, NJ, USA), and a Pixis-400 CCD 

(Princeton Instruments). A 25 s integration time was used to acquire one spectrum. 

Spectra were processed using LightField (Princeton Instruments) and Renishaw Wire 4.1 

(Gloucestershire, United Kingdom). 

4. Results 

4.1 Contactless dielectrophoresis 

The cDEP device was used to demonstrate trapping of a sample containing 

fluorescent polystyrene spheres (~2 × 107 particles/mL, PSS). Figure 5.4 is a 20× 

magnification of the device under operation. The applied AC field consisted of 350 VRMS 

and 100 Hz, while the flow rate through the device was 5 μL/h. Particles were primarily 

trapped at the beginning of the pillar array. Trapping of the particles is necessary for 

subsequent evaluation using Raman spectroscopy. A video of the trapping process is 

included in the Supplementary Materials. 



86 
 

 
Figure 5.4. Image of cDEP device under operation (350 VRMS, 100 Hz, 5 μL/h), 

trapping polystyrene spheres with a diameter of 3.3 μm. Square pillars are 100 μm 

by 100 μm. 

4.2 Raman spectroscopy 

While the particles were trapped at the first set of pillars in the DEP device, a Raman 

spectrum was collected using a 785 nm wavelength laser at 15 mW for 25 s through a 

40× objective lens. The resulting spectra were collected using LightField with a single 

25-second acquisition and analyzed using Renishaw Wire 4.1. The spectrum of PSS 

trapped in the device was compared to positive and negative controls displayed in Figure 

5.5 with a y-axis offset. From top to bottom, the spectra consist of PSS trapped under 

DEP, PSS on a quartz cover slip, PDMS, and the quartz coverslip with 0.005× PBS. 
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Figure 5.5. Raman spectra of 3.3 μm PSS trapped within the cDEP device 

(black), PSS on quartz coverslip (blue), PDMS (green), and the quartz coverslip 

with 0.005× PBS (red). The spectrum of PSS on a quartz coverslip (blue) is the 

positive control. The spectra of PDMS (green) and the quartz coverslip without 

PSS (red) are negative controls. 

5. Discussion 

This study successfully demonstrates a unique form of implementing cDEP, 

which provides several advantages over traditional cDEP fabrication methods. The 

microfluidic channels of a traditional cDEP device are in the PDMS structure itself, 

where the barriers between the liquid electrode and sample are composed of PDMS. In 

addition, traditional cDEP devices use PDMS structures or channel wall constrictions to 

form the non-uniform electric fields. This study used fused silica to form the barriers and 

insulating structures, while PDMS was used to seal the device. This design provides a 

greater voltage operating range and enhanced reusability. 
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Traditional cDEP devices are limited according to the dielectric breakdown of 

PDMS. Literature provides a wide range of dielectric breakdown values from 129 to 635 

V/μm for thin membranes (2–20 μm) depending on PDMS thickness and electrode shape 

[139,140]. Yet, research articles concerning cDEP experiments report much lower 

dielectric breakdown values such as 20 V/μm [141] or 14 V/μm [142]. Table 5.1 lists 

publications that implemented cDEP for cell manipulations and includes the associated 

voltages, frequencies, and flow rates used. Most cDEP research articles do not use more 

than 250 V. To the authors’ knowledge, only one other research article has reported using 

350 V during operation [143]. In [143], the device had a channel depth of 50 μm with 

microfluidic structures composed of PDMS at a 10:1 ratio. The barrier between the liquid 

electrodes and sample channel was made of PDMS with a 5:1 ratio 13 μm thick. The 

device was designed to prevent pearl chain formation, where particles are attracted to 

each other due to dipole–dipole interactions and are affected by particle size and 

concentration. They found that reducing pillars to sizes similar to target cells improved 

trapping efficiency and reduced pearl chaining. While the device from Čemažar et al. 

[143] has a high trapping efficiency and selectivity, it is only meant for isolation and 

enrichment before further off-chip analysis. The cDEP device presented here adds the 

advantage of on-chip isolation, enrichment, and analysis. 
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Table 5.1. List of cDEP publications and their associated operating parameters. 

As the list consists of alternating current sources, voltage is expressed in root 

mean square (VRMS). 

Source Voltage (VRMS) Frequency (kHz) Flow Rate (μL/h) 
[144] 200 5–50 5 
[145] 200 5–70 5 
[146] 250 500 Not reported 1 
[141] 250 600 1000 
[147] 227–250 50–100 10 
[148] 20–50 120–320 20 
[142] 70–190 300 20 
[149] 20–150 140–500 20 
[132] 250 85 10–15 
[150] 200–300 10–70 5 
[151] 50–200 200–600 20 
[143] 250–350 30 1200–2160 

Current article 350 0.1 5 
1 Rate driven by electrokinetic flow. 

 

The applied voltage used in this paper was limited by the available equipment. 

With the aid of a step-up transformer or other equipment modifications as suggested in 

[152], higher voltages can be obtained without approaching the dielectric breakdown of 

fused silica (950 V/μm [153]) while maintaining a range of optimal and commonly used 

frequencies (1–1000 kHz [147]). Future work will make use of such equipment to 

demonstrate how fused silica can provide a higher range of applied voltage due to the 

dielectric breakdown. In addition to improved voltage range, the use of fused silica 

allows for acquisition of Raman spectra without interference of a PDMS signature as 

demonstrated in Figure 5.5. The device can be reused and therefore provide more reliable 

results. 

It should be noted that the relationship between voltage and frequency 

requirements varies with cDEP device. Sano et al. [147] demonstrated that, for cDEP 

devices, voltage drop and associated electric field gradients can vary according to 
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geometric configuration and applied frequency. Low frequencies cause a smaller 

percentage of the voltage drop to occur across the sample channel and therefore generate 

smaller DEP force vectors. In contrast, the use of higher frequencies causes a higher 

percentage of the voltage drop to occur within the sample channel, therefore lowering the 

voltage demand. Our study used a very low frequency (100 Hz) to demonstrate separation 

of particles due to negative DEP (particles drawn to areas with a low electric field 

gradient). Although the frequency used in this study was considerably lower than what is 

used for typical separations, it demonstrated that DEP separation can be achieved even 

under unfavorable conditions. 

Future work will address issues raised from the current design. For example, the 

flow rate used for this study was the same or slower than other research articles, as listed 

in Table 5.1. To be competitive at providing rapid analyses, a faster flow rate will need to 

be achieved. Device features such as pillar size, shape, and spacing will also be changed 

to accommodate 1-μm-sized particles, as the end goal is to trap bacteria and prevent pearl 

chain formation. The current setup primarily traps particles at the first column of pillars 

with secondary trapping within the array likely due to pearl chain formations. As the 

design was created as a proof of concept to perform cDEP and Raman spectroscopy 

simultaneously, the authors acknowledge that the arrangement has not been optimized for 

trapping efficiency. To improve trapping efficiency and selectivity, smaller pillar sizes 

will be incorporated with columns of pillars spaced further away from each other in 

future devices. In addition, structures will need to be arranged for simultaneous 

separation of multiple particles in a sample as demonstrated in other studies [77,154]. 
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6. Conclusions 

A cDEP device was successfully fabricated which demonstrated simultaneous 

trapping and Raman analysis of 3.3 μm polystyrene spheres. The device is constructed 

with microfluidic channels etched into fused silica, allowing for a greater voltage 

operating range and improved reusability compared to typical cDEP designs. To the 

authors’ knowledge, this article presents the first demonstration where Raman 

spectroscopy was performed on a cDEP device. 
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CHAPTER VI 

SEPARATION OF A MIXED SAMPLE USING CDEP 

1. Abstract 

Bacterial cell isolation and identification are two major factors contributing to the 

high analysis time of bacteria. One way to decrease analysis times is by using 

dielectrophoresis (DEP), a common technique used for cell sorting and isolation, in 

conjunction with Raman spectroscopy for cell identification. DEP-Raman devices have 

been used for bacterial analysis; however these devices have a number of drawbacks 

whether it be sample heating, cell-to-electrode proximity, electrode fouling, or inability to 

address sample debris. We propose a cDEP-Raman device to simultaneously isolate and 

identify particles from a mixed sample. The device successfully separated a mixed 

sample of bacteria and 5 µm polystyrene spheres, thereby providing a platform to 

decrease the analysis time of bacteria. 

2. Introduction 

Dielectrophoresis (DEP) is a technique that is often used for cell sorting, isolating, 

and trapping. It involves the manipulation of particles in a non-uniform electric field 

based on the physical and electrical properties of the particle. DEP has been used for 

sorting of many biological samples such as bacteria [68,83,84], DNA [155–157], and red 

blood cells [158–160]. Although DEP is effective for cell isolation, it is often coupled 

with other techniques to provide quantitative and qualitative information. For example, 

DEP has been integrated with impedance analysis (DEPIA) for bacterial concentration 

and quantification [88–91]. The device can also be equipped with immunoglobulins for 
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detection and identification as a bacteria binds to an associated immunoglobulin and 

results in a change in impendence [89]. This identification scheme is limited to antibiotic 

labels and is prone to false positives due to non-specific binding. In addition, the methods 

require the use of metallic electrodes, which exposes the technique to common problems 

associated with DEP such as electrode fouling, electrolysis, and Joule heating. 

Coupling DEP with other techniques such as Raman spectroscopy (DEP-Raman 

spectroscopy) has been useful for concentrating and then identifying bacteria, but it has 

limitations due to design, scalability, or labeling. For example, several researchers have 

used a quadruple electrode arrangement to concentrate bacteria by negative DEP for 

Raman analysis [92–94]. Although successful, the design appears limited as it is meant 

for small sample volumes (~200 µL), and some of the studies used only 10 µL of 

concentrated bacteria at the DEP site for successful demonstration [92,93]. Not only is 

the sample volume problematic, but the design is prone to common DEP-related issues as 

stated previously and is not suited to analyze mixed samples. Some DEP-Raman 

spectroscopy devices include the use of labels in the form of Raman reporters and/or 

antibiotics [95,96]. The use of labels increases costs, limits shelf life, and may result in 

wasted materials due to the broad range of bacteria strains that can be present in a 

sample. Label-free identification methods are appealing to cut costs, increase simplicity, 

and reduce the risk of false positives. In cases where DEP-Raman spectroscopy systems 

did not use labels or tags, the device was made using the traditional metallic electrodes in 

contact with the sample channel [61,97], exposing the device to typical DEP problems of 

electrode fouling and electrolysis. 
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Construction of DEP devices has changed to eliminate or reduce problems 

associated with the DEP method. Early DEP devices used planar metallic electrodes and 

were prone to electrode fouling, such as bubble formation on the surface of the electrode. 

In addition, dielectrophoretic forces drop off quickly with increased distance from the 

electrode. These issues were addressed by the development of insulator-based DEP 

(iDEP). iDEP devices have electrodes on either end of the device with insulating 

structures at the center, which force non-uniformities in the electric field spanning from 

the bottom to the ceiling of the sample channel. Thus, the dielectrophoretic force is not 

dependent on proximity to electrodes, eliminating electrode fouling. Although 

electrolysis still occurs in iDEP devices, it does not occur at the site of DEP sorting or 

trapping. Contactless DEP (cDEP) is yet another form of DEP that eliminates common 

issues with DEP by the use of capacitive coupling. Like iDEP, cDEP incorporates 

insulator barriers at the DEP-active site to create the non-uniform electric field. cDEP 

differs from iDEP as electrodes are isolated from the sample channel by an insulated 

barrier, eliminating issues of electrode fouling and electrolysis. As such, cDEP is a great 

candidate to analyze biological samples as it is a gentler technique compared to other 

DEP forms.  

In this article, we demonstrate the simultaneous isolation of bacteria from 5 µm 

polystyrene spheres and the acquisition of Raman spectra using an adaptation of a cDEP-

Raman design previously introduced [2]. The successful isolation of bacteria from debris 

and simultaneous acquisition of Raman spectra indicate the potential for the device to 

decrease the analysis time of bacteria. 

3. Materials and Methods 
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3.1 DEP modeling 

The dielectrophoretic force acting on a spherical, homogenous particle is expressed 

as  

�⃗�𝐹𝐷𝐷𝐷𝐷𝐷𝐷 = 2𝜋𝜋𝑟𝑟3𝜀𝜀𝑚𝑚𝑅𝑅𝑅𝑅[𝑓𝑓𝐶𝐶𝐶𝐶]∇�𝐸𝐸�⃗ 𝑟𝑟𝑚𝑚𝑟𝑟2 �    (6.1) 

where r, ∇�𝐸𝐸�⃗ 𝑟𝑟𝑚𝑚𝑟𝑟2 �, and  εm are the sphere radius, gradient of the squared electric field, and 

electrical permittivity of the media, respectively. The subscript rms stands for root mean 

squared and is applicable for AC power sources. 𝑅𝑅𝑅𝑅[𝑓𝑓𝐶𝐶𝐶𝐶] is the real part of the Clausius-

Mossotti factor, which is expressed as 

[𝑓𝑓𝐶𝐶𝐶𝐶] = 𝜀𝜀𝑝𝑝∗ −𝜀𝜀𝑚𝑚∗

𝜀𝜀𝑝𝑝∗ +2𝜀𝜀𝑚𝑚∗
     (6.2) 

where 𝜀𝜀𝑝𝑝∗  and 𝜀𝜀𝑚𝑚∗  is the complex permittivity of the particle and media, respectively. The 

complex permittivity is dependent on the conductivity (𝜎𝜎) and the frequency of the 

applied field (𝑓𝑓) and is given by 

𝜀𝜀∗ = 𝜀𝜀 − 𝑗𝑗𝑗𝑗
2𝜋𝜋𝜋𝜋

      (6.3)  

where j is the square root of negative one.  

To trap a particle, the dielectrophoretic force must be equal to the drag force 

acting on the particle. For laminar flow acting on a sphere, the drag force is expressed as  

�⃗�𝐹𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷 = 6𝜋𝜋𝜋𝜋𝑟𝑟𝜋𝜋     (6.4) 

where η is the kinematic viscosity and U is the velocity of the object relative to the fluid. 

Velocity is determined by dividing the flow rate by the cross sectional area of the sample 

channel at the pillar array. During trapping, the object is stationary relative to the fluid. 

Therefore, setting Equations (6.1) and (6.4) equal to each other and rearranging values 

results in  
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∇�𝐸𝐸�⃗ 𝑟𝑟𝑚𝑚𝑟𝑟2 � = 3𝜂𝜂𝜂𝜂
𝑟𝑟2𝜀𝜀𝑚𝑚𝐷𝐷𝑅𝑅[𝜋𝜋𝐶𝐶𝐶𝐶] .    (6.5) 

Equation (6.5) is the required gradient of the squared electric field to trap a particle. It 

should be noted that in the case of a prolate ellipsoid, which is the case for mycobacteria, 

Equation (6.1) changes to  

�⃗�𝐹𝐷𝐷𝐷𝐷𝐷𝐷 = 2𝜋𝜋𝜋𝜋𝑏𝑏2

3
𝜀𝜀𝑚𝑚𝑅𝑅𝑅𝑅[𝑓𝑓𝐶𝐶𝐶𝐶]∇�𝐸𝐸�⃗ 𝑟𝑟𝑚𝑚𝑟𝑟2 �   (6.6) 

where a and b are the major and minor axis of a prolate ellipsoid. The calculation of the 

Clausius-Mossotti factor is expressed as  

[𝑓𝑓𝐶𝐶𝐶𝐶] = 𝜀𝜀𝑝𝑝∗ −𝜀𝜀𝑚𝑚∗

1+�
𝜀𝜀𝑝𝑝
∗ −𝜀𝜀𝑚𝑚

∗

𝜀𝜀𝑚𝑚
∗ �𝐴𝐴

 .     (6.7) 

Here, A is the depolarization factor and is dependent on the respective x, y, or z axis. 

However, in the case of a prolate ellipsoid, the depolarization can be expressed by the 

expansion 

𝐴𝐴 = 1
3𝛾𝛾−2

�1 + 3
5

(1 − 𝛾𝛾−2) + 3
7

(1 − 𝛾𝛾−2)2 + ⋯�   (6.8) 

where γ is the major axis (a) of the prolate ellipsoid divided by the minor axis (b). 

In the case of mycobacteria, a core-shell model can be used to determine the 

effective electrical permittivity. The core is the cytoplasm (a4, b4, ε5, σ5), the cytoplasmic 

membrane is the first shell (a3, b3, ε4, σ4), the cell wall is the second shell (a2, b2, ε3, σ3), 

and the lipid layer is the third shell (a1, b1, ε2, σ2). For core-shell configurations, the 

overall effective electrical permittivity must be determined and used in place of 𝜀𝜀𝑝𝑝∗  from 

Equation (6.7) to calculate [𝑓𝑓𝐶𝐶𝐶𝐶]. The effective electrical permittivity is expressed as 

𝜀𝜀(𝑖𝑖)𝑅𝑅𝜋𝜋𝜋𝜋
∗ = 𝜀𝜀𝑖𝑖∗ �

𝜀𝜀𝑖𝑖
∗+�𝜀𝜀(𝑖𝑖+1)𝑒𝑒𝑒𝑒𝑒𝑒

∗ −𝜀𝜀𝑖𝑖
∗��𝐴𝐴𝑖𝑖+𝑣𝑣𝑖𝑖�1−𝐴𝐴(𝑖𝑖−1)��

𝜀𝜀𝑖𝑖
∗+�𝜀𝜀(𝑖𝑖+1)𝑒𝑒𝑒𝑒𝑒𝑒

∗ −𝜀𝜀𝑖𝑖
∗��𝐴𝐴𝑖𝑖+𝑣𝑣𝑖𝑖𝐴𝐴(𝑖𝑖−1)�

�    (6.9) 

with  
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𝑣𝑣𝑖𝑖 = 𝜋𝜋𝑖𝑖𝑏𝑏𝑖𝑖
2

𝜋𝜋𝑖𝑖−1
3  .      (6.10) 

to calculate the required ∇�𝐸𝐸�⃗ 𝑟𝑟𝑚𝑚𝑟𝑟2 � to trap mycobacteria, the dielectric force expressed in 

Equation (6.6) must be set equal to the drag force of a prolate ellipsoid. According to 

Chwang and Wu [161], the drag force on a prolate ellipsoid with a very small Reynolds 

number is expressed as  

�⃗�𝐹𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷 = 16𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑅𝑅𝜋𝜋     (6.11) 

where e is the eccentricity of the ellipsoid and  

𝜋𝜋 = 2𝑅𝑅2 �2𝑅𝑅 + (3𝑅𝑅2 − 1)𝑙𝑙𝑙𝑙𝑙𝑙 �1+𝑅𝑅
1−𝑅𝑅

��
−1

.   (6.12) 

Setting Equation (6.6) and (6.11) equal to each other and rearranging results in the 

required gradient of the electric field squared as expressed in Equation (6.13).  

∇�𝐸𝐸�⃗ 𝑟𝑟𝑚𝑚𝑟𝑟2 � = 24𝜂𝜂𝜂𝜂𝑅𝑅𝜂𝜂
𝑏𝑏2𝜀𝜀𝑚𝑚𝐷𝐷𝑅𝑅[𝜋𝜋𝐶𝐶𝐶𝐶]    (6.13) 

Table 6.1 provides values for variables used to determine the required ∇�𝐸𝐸�⃗ 𝑟𝑟𝑚𝑚𝑟𝑟2 � 

for polystyrene spheres (PSS) and mycobacteria using Equations (6.5) and (6.13). The 

effective electrical permittivity for bacteria were calculated using Equation (6.9). Values 

for electrical conductivity, electrical permittivity, and thickness of mycobacteria 

cytoplasm, cytoplasmic membrane, cell wall, and lipid layer for Mycobacterium sp. MCS 

was assumed to be the same as for M. smegmatis [162]. Overall shape and size of M. sp. 

MCS was calculated from AFM and SEM images from previous work at Utah State 

University [50]. Using the stated electrical and physical values and assuming a particle 

velocity of 23.1 µm/s resulted in ∇�𝐸𝐸�⃗ 𝑟𝑟𝑚𝑚𝑟𝑟2 � values of 9.69×1014 and 3.13×1013 kg2m/s6A2 

for bacteria and PSS, respectively. Figure 6.1 is a COMSOL-generated plot of expected 

∇�𝐸𝐸�⃗ 𝑟𝑟𝑚𝑚𝑟𝑟2 � for the two pillar arrays operating at 500V and 40 kHz. The modeling results 
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indicate that the device is capable of isolating mycobacteria from 5 µm polystyrene 

spheres. 

 

Table 6.1. List of electrical permittivities, electrical conductivities, frequency, 

and the Clausius-Mossotti factor used to determine the required electric field 

gradient to induce trapping of bacteria and polystyrene spheres. 

εm εPSS σm (S/m) σPSS (S/m) f (kHz) Re[fCM]PSS Re[fCM]MCS 
80 2.5 0.01 1.0×10-12 40 -0.5 -0.451 

 

 

 
Figure 6.1. COMSOL simulations to determine expected gradient of the squared 

electric field for first (a) and second (b) pillar array operated at 500V and 40 kHz. 

Units for values are in kg2m/s6A2. 
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3.2 Device fabrication 

Figure 6.2 illustrates the layered microfluidic device with outer plates, which 

were made using Stratasys VeraClear photopolymer and Objet260 Connex3 printer (Eden 

Prairie, MN, USA). The outer plates accommodate #8-32 screws to provide proper 

sealing of the device, as bonding between PDMS and fused silica is avoided so the device 

can be cleaned and reused. The PDMS layer was made from Dow Corning 184 Sylgard 

(Auburn, MI, USA) silicone elastomer with a 10:1 ratio of PDMS monomer to curing 

agent. The solution was mixed, degassed, and poured onto a silicon wafer to provide a 

flat surface. The PDMS was cured at 100 °C for 35 min. After curing, the PDMS 

structure was carefully removed and trimmed. Holes were punched out using Miltex 

(Integra LifeSciences, York, PA, USA) 1.5 mm biopsy punches. The PDMS structure 

was aligned with the 3D printed plates and fused silica plate. The device was held 

together using #8-32 screws. 

The fused silica plate was fabricated by Translume (Ann Arbor, MI, USA). Figure 

6.3a is an illustration of the microfluidic chip, while Figures 6.3b and 6.3c are brightfield 

microscope images of the first and second pillar array, respectively. The barriers between 

the liquid electrode and sample channels are approximately 30 μm. The sample channel 

depth and width are 180 μm and 500 μm, respectively. 
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Figure 6.2. Schematic of layered cDEP device. 

 
 

 
Figure 6.3. Schematic of fused silica microfluidic plate (a) with green and blue 

channels, indicating the liquid electrode and sample channels, respectively. 

Brightfield images of first (b) and second (c) pillar arrays positioned in the middle 

of the sample channel. In (b), pillars are 60 µm diameter while in (c), the length of 

and width of the oval pillars are 100 and 60 µm, respectively. 

 

3D printed plate

3D printed plate

Viewing port

Fused silica 
microfluidic plate

PDMS gasket
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3.3 Sample preparation 

The sample consisted of 0.005× PBS (ScyTek, Logan, UT, USA), 0.1% TWEEN 

20 (ScyTek), 5 μm polystyrene fluorescent spheres (Thermo Fisher Scientific) at 

approximately 0.08% solids, and Mycobacterium sp. MCS. The bacteria were grown in 

Lysogeny Broth and introduced to the sample after rinsing. The rinsing process consisted 

of placing 1 mL of inoculated broth into a 1.5 mL centrifuge tube. The solution was 

centrifuged for 2min at 6000 rpm using a Thermo Fisher Scientific Heraeus Pico 21 

microcentrifuge. The supernatant was then discarded and the bacteria pellet formed at the 

bottom was resuspended in a sterile 0.85% saline solution and vortexed to ensure proper 

mixing. This centrifuging process was performed three times before introduction to the 

sample solution with the polystyrene spheres. 

The sample had a conductivity of 115 μS/cm. Two hundred microliter (Thermo 

Fisher Scientific, Waltham, MA, USA) pipette tips were trimmed to provide space for the 

microscope condenser and inserted through the PDMS to act as reservoirs for the liquid 

electrode channels. Using polytetrafluoroethylene (PTFE #20 AWG) tubing (Cole 

Parmer, Vernon Hills, IL, USA), liquid electrodes were filled with 1× PBS with a 

conductivity of 17 mS/cm.  Copper wires (28 gauge) were used to connect the electrodes 

spanning over the sample channel as performed previously [2]. 

3.4 Experimental setup 

A sinusoid wave was generated by an OWON AG1022 waveform generator 

(Industry, CA, USA) and passed through a Trek Model 2205 high-voltage amplifier 

(Lockport, NY, USA). The signal was monitored using an EZ Digital OS-5030 

oscilloscope (Gyeonggi-do, Korea). The applied AC field (500 VRMS at 33 kHz) was 
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delivered to the device using alligator clips. The base sample (0.005× PBS, 0.1% 

TWEEN 20) was introduced to the sample channel by means of capillary action. Once 

filled, the sample with the polystyrene spheres was introduced, and flow was generated 

by gravity due to height differences between the inlet and the outlet reservoirs.  

Raman spectra of trapped bacteria were collected using an in-house-built Raman 

microscope unit as described and used previously [137,138]. The unit consists of an 

inverted Nikon Eclipse TE2000-S (Melville, NY, USA), a 785 nm single-mode laser 

(Innovative Photonic Solutions, Monmouth, NJ, USA), an IsoPlane 160 spectrometer 

equipped with a 1200 g/mm grating (Princeton Instruments, Trenton, NJ, USA), and a 

Pixis-400 CCD (Princeton Instruments). A 60-s integration time was used to acquire one 

spectrum. Spectra were processed using LightField (Princeton Instruments) and 

Renishaw Wire 4.1 (Gloucestershire, United Kingdom). 

4. Results and Discussion 

Figure 6.4 displays brightfield of the cDEP device under operation to isolate 

bacteria away from debris. The 5 µm polystyrene spheres were all trapped at the first 

pillar array (Figure 6.4a), while the bacteria were trapped at the first and second pillar 

array. Although some of the bacteria were trapped at the first array, the device was 

successful in isolating only bacteria at the second array, as seen in Figure 6.4b. Raman 

spectra of the bacteria were collected while the bacteria were trapped in the device. The 

Raman spectrum of Mycobacterium sp. MCS trapped in the cDEP device is displayed in 

Figure 6.5. This successful isolation of a mixed sample and identification by Raman 

spectra indicates the potential for use of this cDEP-Raman device to simultaneously 

isolate and identify bacteria. 
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Figure 6.4. Brightfield images of isolating bacteria away from polystyrene 

spheres acting as debris. Image (a) is of the first pillar array with pillar diameters 

for 60 µm, while image (b) is of the second pillar array with the length of the oval 

pillar being 100 µm. The red circle indicates the area where Raman spectra were 

collected. 
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Figure 6.5. A Raman spectrum of Mycobacterium sp. MCS isolated from 5 µm 

polystyrene spheres while trapped in the cDEP-Raman device. 

 

The results indicate the potential of the cDEP-Raman device to decrease the 

analysis time of bacteria. However, Raman spectra were only collected from 

Mycobacterium sp. MCS. Therefore, Raman spectra from four different types of bacteria 

(Mycobacterium sp. MCS, Escherichia coli, Pseudomonas putida, and Streptococcus 

bovis) were collected using the in-house Raman microscope and compared to determine 

if the bacteria could be distinguished from each other. The spectra acquired from each 

bacterium is displayed in Figure 6.6. From observation, it is clear that distinct differences 

can be seen among these bacteria, which include Gram-positive, Gram-negative, and 

acid-fast bacteria, thus indicating the cDEP-Raman device’s capability to distinguish 

among an array of bacteria. 
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Figure 6. 6. Raman spectra of Escherichia coli (black), Mycobacterium sp. MCS 

(blue), Pseudomonas putida (green), and Streptococcus bovis (red). 

5. Conclusions 

In this article, we presented a cDEP-Raman device design to isolate and trap 

bacteria away from debris for simultaneous identification. The design is unique as the 

microfluidic channels are etched into fused silica rather than PDMS, allowing for the 

microfluidic plate to be autoclaved and reused. In addition, the device allows for the 

application of a non-uniform electric field to isolate bacteria from debris. The device was 

built and successfully tested for its capability to isolate Mycobacterium sp. MCS away 

from 5 µm PSS spheres. In addition, spectra of Gram-negative and Gram-positive 

bacteria were collected using the in-house inverted Raman microscope to demonstrate the 

ability to identify bacteria from a wide variety of bacteria. Therefore, the cDEP-Raman 

design presented here has potential to decrease the analysis time of bacteria.  
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SUMMARY 

Bacterial identification is typically done by visualizing colonies on a series of 

agar plates. This method is time-consuming, taking at least one to two days for fast-

growing bacteria. For slow-growing bacteria, this process can take weeks to complete. 

This lengthy analysis time is the source of several problems. For example, to avoid the 

analysis time, doctors may improperly prescribe antibiotics without identifying the cause 

of an infection. Research has indicated that such improper prescription of antibiotics 

increases the risk of developing antibiotic-resistant strains of bacteria. Another example 

is in the case of emergencies or of life-threatening illnesses where one to two days for 

bacterial analysis is unacceptable. 

To provide prompt and accurate bacterial identification, the method must not be 

dependent on the growth time of the bacteria, meaning that the bacteria must be identified 

on a microscopic scale. In addition, clinical samples will have associated debris that must 

be removed prior to bacterial identification. The research presented here addressed these 

issues by developing a device that simultaneously isolates, concentrates, and identifies 

bacteria using dielectrophoresis and Raman spectroscopy. 

We investigated Raman spectroscopy as the means for identification, and we 

investigated the effect of principal component analysis (centering and scaling) on 

classification accuracy. Raman spectra of three closely related bacteria (Mycobacterium 

sp. JLS, Mycobacterium sp. MCS, and Mycobacterium sp. KMS) were collected and 

classified using linear discriminant analysis as well as principal component analysis. 

Findings indicated that centering and not scaling provided the best classification 

accuracies when using the cumulative percent variance method for selecting principal 
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components. Among the three closely related strains, a 94.4% classification accuracy was 

achieved, indicating that Raman spectroscopy is an accurate method for bacterial 

identification. 

Raman spectroscopy provides such specific information concerning the molecular 

makeup of samples that even changes in bacteria growth conditions can be detected. 

Detectable conditions include growth phase, media, temperature, pH, and so on. As the 

goal of this research is to provide prompt and accurate identification of bacteria from 

clinical samples, environmental factors of temperature and pH were not investigated, as 

these factors should not vary greatly from person to person. Therefore, Raman spectra of 

Mycobacterium sp. MCS were collected and compared according to growth phase and 

media. Results indicate that there are differences, which can be detected using linear 

discriminant analysis as well as through direct observation of spectra. Therefore, the 

influence of environmental growth factors must be taken into account when attempting to 

build a spectral library of bacteria samples for identification. 

To collect Raman spectra of bacteria, a pure or highly concentrated sample is 

needed. Clinical samples may be from saliva, blood, urine, and sputum, which will 

include sample debris that must be removed to analyze bacteria. Many cell sorting 

methods exist to isolate bacteria, but they involve labels such as antibiotics, fluorescent 

tags, or primers. These labels increase costs and may result in wasted materials due to the 

broad range of bacteria strains that can be present in a sample. As such, label-free 

identification methods are appealing to cut costs and increase simplicity. 

Dielectrophoresis is a label-free, cell sorting technique that uses non-uniform 

electric fields to cause motion in particles due to the electrical and physical properties of 
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the particle and surrounding fluid. DEP is well suited for analysis of micron-sized 

particles. For example, DEP has been used to successfully sort bacteria away from debris 

and sort bacteria according to viability or antibiotic resistance. Despite DEP being a 

label-free and highly sensitivity technique, there are problems inherent to traditional 

designs, which include Joule heating, electrolysis, and electrode fouling. 

Contactless dielectrophoresis is a way to implement DEP to avoid common 

problems of Joule heating, electrolysis, and electrode fouling. The design typically 

consists of a microfluidic device made of PDMS with channels for the sample and liquid 

electrode. The liquid electrodes are separated from the sample channel by a thin (~20 

µm) insulating barrier. An AC power source is used to deliver an electric field by means 

of capacitive coupling. As such, the electrodes have no physical contact with the sample 

channel, and this, therefore, eliminates common problems associated with typical DEP 

methods.  

Although the use of cDEP eliminates common DEP problems in operation, the 

method has drawbacks concerning consistent fabrication. Typical cDEP devices are made 

by PDMS casting, curing, and sealing to a glass slide. A poor seal anywhere along the 

thin (~20 µm) barrier between the sample and liquid electrode channels will result in an 

unusable device. These devices require many PDMS casts before one will work. This 

creates a variability from one functioning device to the next. The fabrication and 

operation are complicated as the insulating barrier needs to be as thin as possible for the 

electric field without exceeding the dielectric breakdown of PDMS. cDEP devices do 

avoid common DEP problems but are difficult to fabricate consistently, making it 

difficult to apply outside of academic settings. 
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This research aimed to create a label-free device that could decrease the analysis 

time of bacteria using contactless dielectrophoresis and Raman spectroscopy. A unique 

cDEP design was developed to eliminate typical fabrication issues related to cDEP 

devices while retaining the advantages. The device was first modeled in COMSOL to 

determine if the gradient in the electric field could theoretically isolate bacteria away 

from debris and simultaneously trap bacteria for analysis by Raman spectroscopy. The 

device was then built and tested by simultaneously trapping 5 µm polystyrene spheres 

from bacteria and collecting Raman spectra of bacteria. This successful demonstration 

indicates the clear potential for the use of the cDEP-Raman device in bacteria 

identification from clinical samples to decrease the analysis time of bacteria. 
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FUTURE WORK 

The goal of the research presented here was to develop a platform to decrease the 

analysis time of bacteria. This goal was achieved by building a novel cDEP-Raman 

device. The next steps of this research would be tailoring the device and related 

equipment for clinical applications. These changes would include testing samples that 

more closely mimic clinical samples, such as blood, urine, saliva, etc. In addition to 

hardware and sample composition, further data acquisition for a spectral library would be 

needed. These changes would improve isolation and identification for clinical 

application. 

For clinical application, the microfluidic chip must be capable of trapping more 

than one type of bacteria and do so under a high-throughput environment. Currently the 

microfluidic device has only two pillar arrays, one for trapping debris and the other for 

trapping bacteria. To develop the device for clinical use, more arrays would be needed to 

trap different kinds of bacteria, as well as yeast, and trap them at faster flow rates than 

previously tested (~1-5 µL/hr). Improving a chip to isolate more than one bacteria at a 

higher throughput would include gathering electrical and physical properties of common 

bacteria and COMSOL modeling to determine appropriate values of the gradient of the 

squared electric field as presented in Chapter 6. 

Flow control of the device is also needed for clinical use. Currently, flow is 

gravity-controlled by monitoring the liquid levels in the inlet and outlet reservoirs. Flow 

could be controlled by electroosmosis by introducing a DC bias in the applied electric 

field. With that setup, particles would be transported and trapped by solely electrokinetic 

means, eliminating the need for a syringe pump, which is commonly used in DEP 
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applications. Flow control by electroosmosis would help make the cDEP device better 

suited for clinical samples as it would result in a more predictable flow rate that would be 

more easily automated.  

 The in-house Raman microscope could also be developed to improve 

identification for clinical samples. As is, there is only one operating wavelength (785nm) 

for the in-house Raman microscope. Adding more wavelengths could improve 

identification capabilities, as a 2D spectrum could be acquired, as demonstrated by other 

researchers. Wavelengths in the ultraviolet and visible wavelength region is suggested to 

incorporate resonant Raman responses. For example, Raman spectra from laser 

wavelengths in the ultraviolet region, like 244 nm and 229 nm, will primarily be rich in 

information about nucleic acids and aromatic amino acids, respectively [42]. 

Incorporating these wavelengths will require additional hardware changes such as 

Rayleigh filters, dichroic mirrors, and gratings with adequate quantum efficiency to 

collect Raman spectra. Implementing more wavelengths could improve the identification 

capability of the system by creating 2D spectra. 

In addition to hardware changes, a larger spectral library will need to be collected 

and tested for the system to be ready for clinical application. The spectral library would 

focus on bacteria genera and species that commonly cause infections, such as 

Staphylococcus, Klebsiella, and Escherichia. In addition, spectra of common yeasts 

should be included to provide an adequate spectral library for clinical samples. 

Analysis of clinical samples require identification of bacteria and antibiotic 

resistance in order to properly diagnosis and treat infections. Some researchers have used 

gradient iDEP as a means to identify antibiotic resistance. Although this is feasible, the 
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use of Raman and DEP in conjunction would be preferred. Raman spectra of bacteria 

susceptible to antibiotics will have a different Raman signature than antibiotic-resistant 

bacteria before and after exposure to antibiotics. After trapping the bacteria and 

collecting Raman spectra, bacteria could be rinsed in the cDEP device with an antibiotic 

solution, and Raman spectra could be collected again. Comparison of Raman spectra 

before and after would discriminate between antibiotic resistant and susceptible bacteria, 

making the device much more applicable for clinical samples. 

In order to address clinical needs, the nature of the samples tested and the 

sensitivity and specificity of the analysis need to be determined. The samples tested in 

this work included bacteria and polystyrene spheres that are roughly the same size as red 

blood cells (5 µm in diameter) in a low conductivity buffer. Future tests will need to be 

done in more realistic media such as blood, urine, and saliva. The analyses will also need 

to address the separation efficiency, sensitivity, and specificity to accurately compare the 

method against current diagnostics. 

The current cDEP-Raman system is capable of simultaneously isolating and 

identifying bacteria, which indicates great potential for clinical applications to decrease 

the analysis time of bacteria. For the system to be applied in clinical settings, it must be 

enhanced to allow for greater automation in flow control, improved identification with 

more excitation wavelengths and a larger spectral library, and greater separating 

capability with the microfluidic plate by adding more pillar arrays. Also, focus should be 

placed on identifying antibiotic resistance and using media that more closely mimic real-

life samples. By addressing the issues stated here, the cDEP-Raman system would be of 
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great value to clinical applications for prompt and accurate diagnosis and treatment of 

diseases and infections. 
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APPENDIX A 

COPY RIGHTS AND PERMISSIONS 

MDPI Terms of Use (Chapter 5) 

  
§ 1  These Terms of Use govern the use of the MDPI websites or any other MDPI online 

services you access. This includes any updates or releases thereof. By using our 

online services, you are legally bound by and hereby consent to our Terms of Use 

and Privacy Policy. These Terms of Use form a contract between MDPI AG, 

registered at St. Alban-Anlage 66, 4052 Basel, Switzerland (“MDPI”) and you as 

the user (“User”). These Terms of Use shall be governed by and construed in 

accordance with Swiss Law, applicable at the place of jurisdiction of MDPI in 

Basel, Switzerland.  

§ 2  Unless otherwise stated, the website and affiliated online services are the property 

of MDPI and the copyright of the website belongs to MDPI or its licensors. You 

may not copy, hack or modify the website or online services, or falsely claim that 

some other site is associated with MDPI. MDPI is a registered brand protected by 

the Swiss Federal Institute of Intellectual Property.  

§ 3 Unless otherwise stated, articles published on the MDPI websites are labeled as 

“Open Access” and licensed by the respective authors in accordance with the 

Creative Commons Attribution (CC-BY) license. Within the limitations mentioned 

in §4 of these Terms of Use, the “Open Access” license allows for unlimited 

distribution and reuse as long as appropriate credit is given to the original source 

and any changes made compared to the original are indicated.  
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§ 4  Some articles published on this website (especially articles labeled as “Review” or 

similar) may make use of copyrighted material for which the author(s) have 

obtained a reprint permission from the copyright holder. Usually such reprint 

permissions do not allow author(s) and/or MDPI to further license the copyrighted 

material. The licensing described in §3 of these terms and conditions are therefore 

not applicable to such kind of material enclosed within articles. It is the User’s 

responsibility to identify reusability of material provided on this website, for which 

he may take direct contact with the authors of the article.  

§ 5  You may register or otherwise create a user account, user name or password (your 

“Registration”) that allows you to access or receive certain content and/or to 

participate or utilize certain features of our online service, including features in 

which you interact with us or other users. You represent and warrant that the 

information provided in your Registration is accurate to the best of your knowledge. 

You are responsible for the use of any password you create as part of your 

Registration and for maintaining its confidentiality, and you agree that MDPI may 

use this password to identify you. We reserve the right to deny, terminate or restrict 

your access to any content or feature reached via such Registration process for any 

reason, at our sole discretion. MDPI reserves the right to block or to terminate the 

User’s access to the website at any time and without prior notice.  

§ 6  The MDPI website and online services may provide links to other websites or 

external resources. As part of these Terms of Use, you acknowledge that MDPI is in 

not responsible for the availability of such external sites or resources, and that 
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MDPI is not liable for any content, services, advertising, or materials available from 

such external sites or resources.  

 

§ 7  The website may contain advertising. MDPI does not endorse any responsibility of 

any kind for the content of the advertisement or sponsorship or the advertised 

product or service, which is the responsibility of the advertiser or sponsor, unless 

the advertised product or service is offered by MDPI.  

§ 8  There is no warranty for the website and its content, to the extent permitted by 

applicable law. MDPI, the copyright holders and/or other parties provide the 

website and its content “as is” without representations or warranties of any kind, 

either expressed or implied, including, but not limited to, the implied warranties of 

merchantability, satisfactory quality and fitness for a particular purpose relating to 

this website, its content or any to which it is linked. No representations or 

warranties are given as to the accuracy or completeness of the information provided 

on this website, or any website to which it is linked.  

§ 9  In no event, unless required by applicable law shall MDPI, its employees, agents, 

suppliers, contractors or any other party, be liable to the User for any damages of 

any nature, including any general, special, incidental or consequential damages, 

loss, cost, claim or any expense of any kind arising out of the use, inability to 

access, or in connection with the use of the website, its content and information, 

even if the User has been advised of the possibility of such damages.  
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§ 10  MDPI reserves the right to change these Terms of Use at any time by posting 

changes to this page of the website without prior notice. Please check these Terms 

of Use periodically for any modifications. Your continued use of any Service 

following the posting of any changes will mean that you have accepted and agreed 

to the changes.  

§ 11 Basel, Switzerland shall be the place of jurisdiction for all legal disputes arising of 

these Terms of Use, even if the Customer has her/his domicile outside of 

Switzerland.  

§ 12 Swiss law applicable at the place of jurisdiction of MDPI shall apply exclusively.  

§ 13 If any provisions of the Terms of Use should be found invalid, this shall not affect 

the validity of the remaining provisions. In any such case, the contracting parties 

shall negotiate on the invalid clause to substitute by a valid arrangement as close as 

possible to the original provision.  
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APPENDIX B 

PERMISSION FROM AUTHORS TO REPRINT PUBLISHED MATERIALS 
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APPENDIX C 

R CODE 

#R-code for statistical classification methods using mycobacteria spectra 

setwd("C:/Users/student/Rworking") 
myco <- read.csv("150727_Myco_training.csv") 
myco_test <- read.csv("150727_Myco_test.csv") 

library(MASS) 
library(verification) 
library(randomForest) 
library(rpart) 
library(ada) 
library(gbm) 
library(caret) 
library (e1071) 
library(parallel) 

#####LDA###### 

myco.lda <- lda(Bacteria~.,data=myco) 
table(myco$Bacteria,predict(myco.lda)$class) 

 #10 fold cross validation# 

bacteria.lda.xval=rep(0,nrow(myco)) 
xvs=rep(1:10,length=nrow(myco)) 
xvs=sample(xvs) 
for(i in 1:10){ 
  test=myco[xvs==i,] 
  train=myco[xvs!=i,] 
  glub=lda(Bacteria~.,data=myco) 
  bacteria.lda.xval[xvs==i]=predict(glub,test)$class 
}
table(myco$Bacteria,bacteria.lda.xval) 

# Predict onto testdataset # 
table(myco_test$Bacteria,predict(myco.lda,myco_test)$class) 

################################## 

#####QDA##### 
# Method gives error message that the group it too small for qda 
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bacteria.qda <- qda(Bacteria~.,data=myco) 
table(myco$Bacteria,predict(bacteria.qda)$class) 

################################## 

#####Classification Trees##### 

myco.rpartfull=rpart(Bacteria~.,method="class",control=rpart.control(cp=0.0,minsplit=2)
,data=myco) 
plotcp(myco.rpartfull) 

myco.rpartcp=rpart(Bacteria~.,method="class",data=myco,control=rpart.control(cp=0.02
)) 
plot(myco.rpartcp,margin=0.7) 
text(myco.rpartcp,use.n=TRUE) 

table(myco$Bacteria,predict(myco.rpartcp,type="class")) 

myco.rpartcp.xval=rep(0,nrow(myco)) 
xvs=rep(c(1:10),length=nrow(myco)) 
xvs=sample(xvs) 
for(i in 1:10){ 
  train=myco[xvs!=i,] 
  test=myco[xvs==i,] 
  rp=rpart(Bacteria~.,method="class",data=train,control=rpart.control(cp=0.02)) 
  myco.rpartcp.xval[xvs==i]=predict(rp,test,type="class") 
}
table(myco$Bacteria,myco.rpartcp.xval) 

# Predict onto testdata set # 
table(myco_test$Bacteria,predict(myco.rpartcp,myco_test,type="class")) 

################################### 

#Logistic Resgression - is only for yes/no results, therefore can’t use as is 
#The training and test datasets would need to be altered to accommodate the #analysis 

myco.lr <- glm(Bacteria~.,data=myco) 
table(myco$Bacteria,predict(myco.lr)) 
table(myco$Bacteria,round(predict(myco.lr,type="response")+0.0000001)) 
myco.lr$confusion 

################################## 

##### Random Forest ##### 
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myco.rf <- randomForest(as.factor(Bacteria)~.,data=myco,keep.forest=T) 
myco.rf.predict <- predict(myco.rf) 
table(myco$Bacteria,myco.rf.predict) 
myco.rf$confusion 

# Predict onto testdata set # 
table(myco_test$Bacteria,predict(myco.rf,myco_test,type="class")) 

################################## 

#####Support Vector Machines##### 

myco.svm=svm(Bacteria~.,method="class",data=myco) 
table(myco$Bacteria,predict(myco.svm,type="class")) 

myco.svm.xval=rep(0,nrow(myco)) 
xvs=rep(c(1:10),length=nrow(myco)) 
xvs=sample(xvs) 
for(i in 1:10){ 
  train=myco[xvs!=i,] 
  test=myco[xvs==i,] 
  svm=svm(Bacteria~.,method="class",data=train) 
  myco.svm.xval[xvs==i]=predict(svm,test,type="class") 
}
table(myco$Bacteria,myco.svm.xval) 

# Predict onto testdata set # 

table(myco_test$Bacteria,predict(myco.svm,myco_test,type="class")) 

#####Gradient Boosted Trees##### 

myco.gbm=gbm(Bacteria~.,distribution="gaussian",n.trees=5000,data=myco) 
table(myco$Bacteria,round(predict(myco.gbm, 
type="response",n.trees=5000)+0.0000001)) 

myco.gbm.xvalpr=rep(0,nrow(myco)) 
xvs=rep(1:10,length=nrow(myco)) 
xvs=sample(xvs) 
for(i in 1:10){ 
  train=myco[xvs!=i,] 
  test=myco[xvs==i,] 
  glub=gbm(Bacteria~.,distribution="gaussian",n.trees=5000,data=train) 
  myco.gbm.xvalpr[xvs==i]=predict(glub,newdata=test,type="response",n.trees=5000) 
} 
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table(myco$Bacteria,round(myco.gbm.xvalpr+0.0000001)) 

# Prediction onto testdata set # 
table(myco_test$Bacteria,round(predict(myco.gbm,newdata=myco_test,type="response",
n.trees=5000)+0.0000001))

################################## 

#####Tuning GBM##### 

fitControl = trainControl(method = "cv", number = 10 ) 
# Code to use more than one processor # 
cl <- makeCluster(4) 
gbmGrid=expand.grid(.interaction.depth = c(5,10,15), .n.trees = c(100,200,300), 
.shrinkage = c(0.02, 0.1, 0.2)) 
gbmFit=train(as.factor(Bacteria)~., method="gbm", tuneGrid=gbmGrid, 
trControl=fitControl, data=myco) 
gbmFit 

# Results: 300 n.trees, 15 interaction depth, 0.02 shrinkage 

#keep performing iterations of different ranges for interaction depth, tree size, and 
#shrinkage until optimal values are found for each. The following code is an example 

gbmGrid=expand.grid(.interaction.depth = c(15), .n.trees = c(300,350,400), .shrinkage = 
c(0.01, 0.02)) 
gbmFit=train(as.factor(Bacteria)~., method="gbm", tuneGrid=gbmGrid, 
trControl=fitControl, data=myco) 
gbmFit 

# Results: 300 n.trees, 15 interaction depth, 0.02 shrinkage 

gbmGrid=expand.grid(.interaction.depth = c(15, 20, 25), .n.trees = c(300), .shrinkage = 
c(0.02)) 
gbmFit=train(as.factor(Bacteria)~., method="gbm", tuneGrid=gbmGrid, 
trControl=fitControl, data=myco) 
gbmFit 

# Results: 300 n.trees, 25 interaction depth, 0.02 shrinkage 

gbmGrid=expand.grid(.interaction.depth = c(25, 30), .n.trees = c(300), .shrinkage = 
c(0.02)) 
gbmFit=train(as.factor(Bacteria)~., method="gbm", tuneGrid=gbmGrid, 
trControl=fitControl, data=myco) 
gbmFit 
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# Results: 300 n.trees, 30 interaction depth, 0.02 shrinkage 

gbmGrid=expand.grid(.interaction.depth = c(30, 35, 40), .n.trees = c(300), .shrinkage = 
c(0.02)) 
gbmFit=train(as.factor(Bacteria)~., method="gbm", tuneGrid=gbmGrid, 
trControl=fitControl, data=myco) 
gbmFit 

# Results: 300 n.trees, 30 interaction depth, 0.02 shrinkage 

myco.gbm2=gbm(Bacteria~.,distribution="gaussian",interaction.depth=30,n.trees=300, 
shrinkage=0.02,data=myco) 
table(myco$Bacteria,round(predict(myco.gbm2,type="response",n.trees=300)+0.000000
1)) 

#crossvalidation# 
myco.gbmopt.xvalpr=rep(0,nrow(myco)) 
xvs=rep(1:10,length=nrow(myco)) 
xvs=sample(xvs) 
for(i in 1:10){ 
  train=myco[xvs!=i,] 
  test=myco[xvs==i,] 
  glub=gbm(Bacteria~.,distribution="gaussian",interaction.depth=30,n.trees=300, 
shrinkage=0.02,data=train) 
  myco.gbmopt.xvalpr[xvs==i]=predict(glub,newdata=test,type="response",n.trees=300) 
} 

table(myco$Bacteria,round(myco.gbmopt.xvalpr+0.0000001)) 

# Predict onto testdata set # 
table(myco_test$Bacteria,round(predict(myco.gbm2,newdata=myco_test,type="response
",n.trees=300)+0.0000001)) 

#################################################################### 

#R-code for to gather data as described in article for Applied Spectroscopy 
#the code includes a loop to generate confusion matrices for all PC possible for a 
#particular dataset 

#change the set directory to the file where the datasets are stored 
setwd("C:/Users/Cindy/Documents/R/Datasets") 
#change the name of the file as you move through each training and test dataset# 
myco10 <- read.csv("Raman_Train_Data_1.csv") 
myco10_test <- read.csv("Raman_Test_Data_1.csv") 

library(MASS) 
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library(verification) 
install.packages("xlsx") 
library("xlsx") 

#First do LDA classification without PCA # 

myco.lda <- lda(Bacteria~.,data=myco10) 
table(myco10$Bacteria,predict(myco.lda)$class) 

#test prediction# 
table(myco10_test$Bacteria,predict(myco.lda,myco10_test)$class) 

##### PCA ##### 

# scale true means I'm using the correlation matrix 
# scale false means I'm using the covariance matrix 

myco <- (myco10[,2:ncol(myco10)]) 
myco.bacteria <- myco10[,1] 

#Make sure to change Center and Scale as needed 
myco.pca <- prcomp(myco, center=FALSE, scale=TRUE) 

#to see the PCA details# 
print(myco.pca) 

#scree plot 
plot(myco.pca,type="l") 

# to see table of Standard deviation, proportion of variance, and cumulative proportion# 
#for each PC # 
summary(myco.pca) 

#Generate matrix of PCs 
myco10.pcs <- myco.pca$x 
# Write it as a matrix 
mat.myco.bacteria=as.matrix(myco.bacteria) 

#combine matrices so that the PC values are properly assigned to each bacteria 
myco10.pca.df <- cbind(mat.myco.bacteria,myco10.pcs) 
myco10.pca.dataframe <- as.data.frame(myco10.pca.df) 

# Prepare data for prediction onto test dataset # 
myco.test.prep <- myco10_test[,2:ncol(myco10)] 
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myco.bacteria.prep <- myco10_test[,1] 
myco.bacteria.prep.mat <- as.matrix(myco.bacteria.prep) 
is.matrix(myco.bacteria.prep.mat) 

#The test dataset needs to experience the same rotation as the training dataset 
predict(myco.pca,myco.test.prep) 
myco.test.pca <- predict(myco.pca,myco.test.prep) 
myco10.test.pcs <- cbind(myco.bacteria.prep.mat,myco.test.pca) 
myco10.test.pca.df <- as.data.frame(myco10.test.pcs) 

# write out to tables # 
write.table(myco10.pca.dataframe,file="Raman_Data_6_Training_NC&S.csv",row.name
s=FALSE,na="",col.names=TRUE,sep=",") 
write.table(myco10.test.pca.df,file="Raman_Data_6_Test_NC&S.csv",row.names=FALS
E,na="",col.names=TRUE,sep=",") 

#Read in the files and give it an appropriate name 
myco10_PCA_Train_all <- read.csv("Raman_Data_6_Training_NC&S.csv") 
myco10_PCA_Test_all <- read.csv("Raman_Data_6_Test_NC&S.csv") 

# The following code is a loop that will return the resulting confusion matrix for 
#predicting the test dataset according to each PC. Make sure the results_train.csv and 
#results_test.csv is either empty or has zeros for A1-C3. 
# V1 is "Bacteria"# 

for(i in 2:ncol(myco10_PCA_Train_all)) { 
  myco10_PCA_Train <- (myco10_PCA_Train_all[,1:i]) 
  myco10_PCA_Test <-(myco10_PCA_Test_all[,1:i]) 
  myco10.lda <- lda(V1~.,data=myco10_PCA_Train) 
  x<-table(myco10_PCA_Train$V1,predict(myco10.lda)$class) 
  y<-table(myco10_PCA_Test$V1,predict(myco10.lda,myco10_PCA_Test)$class) 

  mat.x <- as.matrix(x) 
  write.table(mat.x,file="outfile_x.csv",sep=",", col.names = FALSE, row.names = 
FALSE) 
  olddata_x <- read.csv("results_train.csv",header=FALSE,sep=",") 
  mat.olddata_x <- as.matrix(olddata_x) 
  newdata_x <- rbind(mat.olddata_x,mat.x) 
  write.table(newdata_x,file="results_train.csv",sep=",", col.names = FALSE, row.names 
= FALSE) 

  mat.y <- as.matrix(y) 
  write.table(mat.y,file="outfile_y.csv",sep=",", col.names = FALSE, row.names = 
FALSE) 
  olddata_y <- read.csv("results_test.csv", header=FALSE, sep=",") 
  mat.olddata_y <- as.matrix(olddata_y) 
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  newdata_y <- rbind(mat.olddata_y,mat.y) 
  write.table(newdata_y,file="results_test.csv",sep=",", col.names = FALSE, row.names = 
FALSE) 
} 
#################################################################### 

#R-code for creating test and training datasets in a format that can be used in R 
# prior to building, spectra for a particular bacteria is given a name and is saved in the 
# working directory and is randomly assigned to be in the training or test dataset.  
 
setwd("C:/Users/Cindy/Documents/R/Datasets") 
 
library(MASS) 
library(verification) 
library(randomForest) 
library(rpart) 
library(ada) 
library(gbm) 
library(caret) 
library (e1071) 
library("xlsx") 
library(gtools) 
 
#Raman 
#Building the Training Dataset 
readin_R1 <- read.csv("RJ6.csv",header=TRUE,sep=",") 
readin_R2 <- read.csv("RJ8.csv",header=TRUE,sep=",") 
readin_R3 <- read.csv("RJ9.csv",header=TRUE,sep=",") 
 
readin_R4 <- read.csv("RK5.csv",header=TRUE,sep=",") 
readin_R5 <- read.csv("RK7.csv",header=TRUE,sep=",") 
readin_R6 <- read.csv("RK8.csv",header=TRUE,sep=",") 
 
readin_R7 <- read.csv("RM5.csv",header=TRUE,sep=",") 
readin_R8 <- read.csv("RM7.csv",header=TRUE,sep=",") 
readin_R9 <- read.csv("RM8.csv",header=TRUE,sep=",") 
 
mat_R1 <- as.matrix(readin_R1) 
mat_R2 <- as.matrix(readin_R2) 
mat_R3 <- as.matrix(readin_R3) 
mat_R4 <- as.matrix(readin_R4) 
mat_R5 <- as.matrix(readin_R5) 
mat_R6 <- as.matrix(readin_R6) 
mat_R7 <- as.matrix(readin_R7) 
mat_R8 <- as.matrix(readin_R8) 
mat_R9 <- as.matrix(readin_R9) 
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Seleted_Train <- 
rbind(mat_R1,mat_R2,mat_R3,mat_R4,mat_R5,mat_R6,mat_R7,mat_R8,mat_R9) 
write.table(Seleted_Train,file="Raman_Train_Data_6.csv",sep=",", col.names = TRUE, 
row.names = FALSE) 

# Building the Test Dataset 
readin_R.1 <- read.csv("RJ1.csv",header=TRUE,sep=",") 
readin_R.2 <- read.csv("RJ2.csv",header=TRUE,sep=",") 
readin_R.3 <- read.csv("RJ4.csv",header=TRUE,sep=",") 
readin_R.4 <- read.csv("RJ5.csv",header=TRUE,sep=",") 
readin_R.5 <- read.csv("RJ7.csv",header=TRUE,sep=",") 

readin_R.6 <- read.csv("RK1.csv",header=TRUE,sep=",") 
readin_R.7 <- read.csv("RK2.csv",header=TRUE,sep=",") 
readin_R.8 <- read.csv("RK3.csv",header=TRUE,sep=",") 
readin_R.9 <- read.csv("RK4.csv",header=TRUE,sep=",") 
readin_R.10 <- read.csv("RK6.csv",header=TRUE,sep=",") 

readin_R.11 <- read.csv("RM1.csv",header=TRUE,sep=",") 
readin_R.12 <- read.csv("RM2.csv",header=TRUE,sep=",") 
readin_R.13 <- read.csv("RM3.csv",header=TRUE,sep=",") 
readin_R.14 <- read.csv("RM4.csv",header=TRUE,sep=",") 
readin_R.15 <- read.csv("RM6.csv",header=TRUE,sep=",") 

mat.R.1 <- as.matrix(readin_R.1) 
mat.R.2 <- as.matrix(readin_R.2) 
mat.R.3 <- as.matrix(readin_R.3) 
mat.R.4 <- as.matrix(readin_R.4) 
mat.R.5 <- as.matrix(readin_R.5) 
mat.R.6 <- as.matrix(readin_R.6) 
mat.R.7 <- as.matrix(readin_R.7) 
mat.R.8 <- as.matrix(readin_R.8) 
mat.R.9 <- as.matrix(readin_R.9) 
mat.R.10 <- as.matrix(readin_R.10) 
mat.R.11 <- as.matrix(readin_R.11) 
mat.R.12 <- as.matrix(readin_R.12) 
mat.R.13 <- as.matrix(readin_R.13) 
mat.R.14 <- as.matrix(readin_R.14) 
mat.R.15 <- as.matrix(readin_R.15) 

Selected_Test <- rbind(mat.R.1, mat.R.2, mat.R.3, mat.R.4, mat.R.5, mat.R.6, mat.R.7, 
mat.R.8, mat.R.9,  mat.R.10, mat.R.11, mat.R.12, mat.R.13, mat.R.14, mat.R.15) 
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write.table(Selected_Test,file="Raman_Test_Data_6.csv",sep=",", col.names = TRUE, 
row.names = FALSE) 
# adjust code as needed to accommodate the various test and training data sets. 
#################################################################### 

#R-code for creating LDA plots 

#change the set directory to the file where the datasets are stored 
setwd("C:/Users/Cindy/Documents/R/Datasets") 
library(MASS) 

#read in the file 
LB_phase <- read.csv("LB_Compiled.csv") 

#LDA# 

LB.lda <- lda(Name~.,data=LB_phase) 
table(LB_phase$Name,predict(LB.lda)$class) 

plot(LB.lda, panel = function(x, y, ...) points(x, y, ...), col = as.integer(LB_phase$Name), 
pch = 19) 

#################################################################### 
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APPENDIX D 

COMSOL OPERATING PARAMETERS 

This section includes the information to set up a model of the cDEP device to 

acquire estimated ∇E values. These values are important to determine if the design is 

capable of trapping particles as explained in Chapter 6.  

Upon opening COMSOL, select the following choices: 

• Model Wizard

• 2D

• AC/DC

o Add Electric Currents

o Add Frequency Domain for Study

• Done

Global Parameters 

Under Global Definitions, enter the information in the following table: 

Table D.1. Table of parameters under Global Definitions. 
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Build Geometry 

1. Rectangle (r1)
a. Width: PL
b. Height: PW
c. Position > Base: Center at (0,0)

2. Rectangle (r2)
a. Width: PL
b. Height: SCW
c. Position > Base: Center at (0,0)

3. Rectangle (r3)
a. Width: RL
b. Height: RW
c. Position > Base: Corner

i. x: -0.5*PL+AL
ii. y: 0.5*SCW+BW

4. Rectangle (r4)
a. Width: SCW
b. Height: QW
c. Position > Base: Corner

i. x: -0.5*PL+AL
ii. y: 0.5*SCW+BW

5. Rectangle (r5)
a. Width: QL
b. Height: QW
c. Position > Base: Corner

i. x: -0.5*PL+AL+RL-SCW
ii. y: 0.5*SCW+BW

6. Union (uni2)
a. Select objects r3, r4, and r5
b. “Keep input objects” and “Keep interior boundaries” unchecked

7. Mirror (mir1)
a. Select object uni2
b. Check box “Keep input objects”
c. Point on Line of Reflections (0,0)
d. Normal Vector to Line of Reflection (1,0)

8. Mirror (mir2)
a. Select objects uni2 and mir1
b. Check box “Keep input objects”
c. Point on Line of Reflections (0,0)
d. Normal Vector to Line of Reflection (0,1)
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9. Circle (c1)
a. Radius: 0.5*pil_diameter
b. Sector angle: 360
c. Position > Base: Center

i. x: -(0.5*Ncol-0.5)*(pil_diam+Sb)
ii. y: -(0.5*Nrow-0.5)*(pil_diam+Sb)

10. Array (arr2)
a. Select object c1
b. Array type: Rectangular

i. x size: Ncol
ii. y size: Nrow

c. Displacement
i. x: pil_diam+Sb

ii. y: pil_diam+Sb
11. Build All

To build the array of ovals, values for Nrow and Sb change to 4 and 33e-6[m] 
respectively. In addition, the parameter “scale” is added with a value of 0.6. After step 9 
the procedure changes as follows: 

10. Scale (sca1)
a. Input object c1
b. Uncheck “Keep input objects” box
c. Scale Factor

i. Scaling: anisotropic
ii. x: scale

iii. y: 1
d. Center of scaling (0,0)

11. Array
a. Select object sca1
b. Array type: Rectangular

i. x size: Ncol
ii. y size: Nrow

c. Displacement
i. x: scale*pil_diam+Sb

ii. y: pil_diam+Sb
12. Build All
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Add Materials 

 Under Component 1 > Materials, add quartz from the materials library. Also add 
the following information for blank material: 

• Sample channel 
o Electrical conductivity: 0.005 S/m 
o Relative permittivity: 80 

• Liquid electrodes 
o Electrical conductivity: 1.5 S/m 
o Relative permittivity: 80 

Under each material, select the areas that correspond with each material.  

Assign Source and Sink Electrodes 

 Under Component 1 > Electrical Currents 

• Select the Physics tab 
• Click the down arrow under Boundaries 
• Select Terminal 

o Select the boundaries for liquid electrodes which correspond to the source 
electrodes 

o Under Terminal drop down, select Voltage as the terminal type 
o Enter the desired voltage for the source electrode 

• Repeat for the process to add a sink electrode with the voltage set to 0+ 

Add a Study 

• Select the Study tab 
• Click Add Study and the Add study pane will appear on the right hand side 
• Select Frequency Domain 
• Click Add Study 
• Under the Frequency Domain Settings tab find study settings and enter the desired 

frequency 
• Compute 

Add a 2D plot group to determine ∇(E2) 

• Select the Results tab 
• Select 2D Plot group 
• Select Surface 
• In the Settings pane, find Expression 
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• Click the Replace Expression drop down arrow 
• Select Model > Component 1 >Electric Currents > Electric field > ec.Ex – 

Electric field, x component 
• Under Expression 

o Type d(ec.Ex^2,x) 
o Unit should change to kg^2*m/(s^6*A^2) 

• Click Plot in the Settings pane 
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APPENDIX E 

LASTER ALIGNMENT ONTO SPECTROMETER SLIT 

Collection of Raman spectra requires proper alignment of the laser spot through the 

objective and imaged onto the spectrometer slit. The process of aligning the laser is 

documented here. Please refer to Figure E.1 to identify important components in laser 

alignment. 

 

 
Figure E.1. Image of laser delivery to in-house built Raman microscope. 

Important components include laser head (A), filter wheel with neutral density 

filters (B), 60mm to 30mm adapter plates with threaded hole to accommodate 

alignment target (C1 and C2), mirrors in kinematic mounts (D1 and D2), entrance 

to spectrometer slit (E), and the spectrometer (F). 
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Before the laser is aligned to the spectrometer, a rough alignment must first be 

accomplished. This is done using a D1, D2, and an fluorescent illumination target 

(Thorlabs  VRC4SM1) using a Z-fold alignment as shown in Figure E.1. Ensure that the 

laser and the center of the all optics are at the same height. The laser is then centered on 

the target at C1 by adjusting D1. The target is then removed from C1 and placed into C2. 

The laser is centered at C2 by adjusting D2. The process is repeated until the laser is 

centered at C1 and C2 without the need of further adjustment to D1 and D2. This rough 

alignment will allow for the laser spot to be visible on the spectrometer opening 

Fine tune alignment first requires determining the center of the spectrometer by 

acquiring an image of light coming through the entrance slit with the grating acting like a 

mirror (set center wavelength to 0 using Lightfield software). The image will look like 

Figure E.2. After the center of the spectrometer is determined, remove the slit and add a 

neutral density filter into the filter cube at the location of the emission filter as indicated 

by Figure E.4. Also insert a neutral density filter in the laser path using the fly wheel as 

shown in Figure E.1. Collect an image of the laser spot, which will look similar to Figure 

E.3. Before acquiring and image using the spectrometer, make sure to do the following: 

• Neutral density filter is in place 

• Slit wide open 

• Center wavelength set at 0 

• Focus objective on second surface 

Adjust the laser spot to the center using kinematic mount D2. Then add a fluorescent 

target to C2 and center laser spot using kinematic mount D1. Repeat this centering 
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process until the laser is aligned at C2 and at the spectrometer. Note that the centering 

process should be done on a substrate that is the same thickness that will be used when 

acquiring Raman spectra for the sample.  

 

Figure E.2. Image of light entering through the spectrometer slit to determine 

vertical and horizontal midpoint for laser alignment. 

 

 

Figure E.3. Image of laser spot being aligned to the center of the spectrometer slit 

as determined by Figure E.2. 
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Figure E.4. Illustration of filter cube used in the in-house built Raman 

microscope. Blue and red lines represent the excitation laser and the scattered 

light, respectively. 
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