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ABSTRACT

Extracting and Visualizing Data from Mobile and Static Eye Trackers in R and

Matlab

by

Chunyang Li, Doctor of Philosophy

Utah State University, 2017

Major Professor: Jürgen Symanzik, Ph.D.
Department: Mathematics and Statistics

Eye tracking is the process of measuring where people are looking at with an

eye tracker device. Eye tracking has been used in many scientific fields, such as edu-

cation, usability research, sports, psychology, and marketing. Eye tracking data are

often obtained from a static eye tracker or are manually extracted from a mobile eye

tracker. Visualization usually plays an important role in the analysis of eye tracking

data. So far, there existed no software package that contains a whole collection of eye

tracking data processing and visualization tools. In this dissertation, we review the

eye tracking technology, the eye tracking techniques, the existing software related to

eye tracking, and the research on eye tracking for posters and related media. We then

discuss the three main goals we have achieved in this dissertation: (i) development



iv

of a Matlab toolbox for automatically extracting mobile eye tracking data; (ii) de-

velopment of the linked microposter plots family as new means for the visualization

of eye tracking data; (iii) development of an R package for automatically extracting

and visualizing data from mobile and static eye trackers.

(149 pages)
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PUBLIC ABSTRACT

Extracting and Visualizing Data from Mobile and Static Eye Trackers in R and

Matlab

Chunyang Li

Eye tracking is the process of measuring where people are looking at with an eye

tracker device. Eye tracking has been used in many scientific fields, such as educa-

tion, usability research, sports, psychology, and marketing. Eye tracking data are

often obtained from a static eye tracker or are manually extracted from a mobile eye

tracker. Visualization usually plays an important role in the analysis of eye tracking

data. So far, there existed no software package that contains a whole collection of eye

tracking data processing and visualization tools. In this dissertation, we review the

eye tracking technology, the eye tracking techniques, the existing software related to

eye tracking, and the research on eye tracking for posters and related media. We then

discuss the three main goals we have achieved in this dissertation: (i) development

of a Matlab toolbox for automatically extracting mobile eye tracking data; (ii) de-

velopment of the linked microposter plots family as new means for the visualization

of eye tracking data; (iii) development of an R package for automatically extracting

and visualizing data from mobile and static eye trackers.
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CHAPTER 1

INTRODUCTION

This chapter provides an introduction to eye tracking, eye tracking visualization

techniques, eye tracking software development, literature on eye tracking for posters

and related media, and an introduction on image processing.

1.1 Introduction to Eye Tracking

This section introduces the eye tracking technology in Section 1.1.1, the under-

lying terminology in Section 1.1.2, and main application areas for eye tracking in

Section 1.1.3.

1.1.1 Technology

This section introduces eye tracking equipment, such as the development of the

eye tracking technology, working principles, different eye trackers, the leading manu-

facturers in the eye tracking field, setting up and calibration, and data recording.

Eye Tracking Equipment

Development: Eye trackers were first built in the late 1800s, however, they were

very expensive and not comfortable for the participants (Holmqvist et al., 2011). Since

Dodge and Cline (1901) used light reflected from the cornea, improved the precision,

and reduced the invasiveness of the eye tracker in 1901, eye tracking techniques have

been developed rapidly during the past century. A number of different techniques were

developed and the eye trackers achieved high precision. But those techniques were
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either uncomfortable or expensive, and some of them were even mechanically com-

plicated. In the late 1900s, companies driven by engineers, such as Applied Science

Laboratories (ASL) and Tobii, began to offer eye tracking hardware to researchers,

making eye tracking techniques more accessible and versatile. Holmqvist et al. (2011)

gave a comprehensive review on the history of eye trackers as well as on the principles

of how they work.

Working Principle: Eye trackers nowadays are mostly using the corneal reflection

of an infrared light emitting diode to illuminate and generate a reflection off the

surface of the eye (Cooke, 2005). The cornea is the part that covers the outside

of the eye and reflects light. The corneal reflection is the brightest reflections of

all the reflections from one’s eye. Eye trackers based on this system are able to

track pupils precisely, taking small head movements into account, thus making this

video-based pupil and corneal reflection tracking method the dominating eye tracking

method since the early 1990s. The pupil either appears dark or bright in the eye

image, depending on the eye camera’s focal axis. While the dark-pupil technique

is most commonly used, both dark-pupil and bright-pupil techniques give the same

data quality. The eye tracker we used in this dissertation research is based on the

bright-pupil technique. The geometric centers of the pupil and corneal reflection

are calculated to estimate where people are looking at. For this estimation, some

examples of how points in the tracked area correspond to specific pupil and corneal

reflection relations are needed. These examples are provided to the eye tracker by

the process called calibration.

Monocular versus Binocular Eye Tracking: The majority of eye trackers are

monocular and record data from one eye only. Some eye trackers are binocular and

track both eyes. Monocular eye trackers are dominating. According to Holmqvist
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et al. (2011), there are two reasons why: First, even though it is not always the

case, the movements of both eyes are approximately the same, making it unnecessary

to measure both eyes simultaneously. The exceptions occur when recording children,

participants with neurological dysfunctions, etc. Second, it is cheaper to manufacture

monocular eye trackers. Therefore, unless it is for some special purposes, most of the

eye tracking experiments are conducted using monocular eye tracking systems. The

eye tracker we used in this dissertation research is monocular as well.

Sampling Frequency: The sampling frequency represents the speed of the eye

tracking system and is one of the most important properties of the eye trackers. It is

measured in hertz (Hz), which indicates how many times the eye tracker records the

eye movements of the participant each second. The existing eye trackers’ sampling

frequencies range from a few Hz up to over 1000 Hz. Higher speed eye trackers are

much more expensive, therefore, one needs to select the system depending on the

research requirements. For research that requires more detailed study or detection

of eye movement, a higher frequency eye tracker has to be used. In other cases, the

low sampling frequency can possibly be compensated with more data. Typically, a

system that has less than 250 Hz is considered a low-frequency tracker, otherwise, it

is of high frequency (Holmqvist et al., 2011). The one we are using has a frequency

of 30 Hz, i.e., it records 30 images of the eye movements each second.

Taxonomy: There exist two main categories of eye tracking equipment, static eye

trackers and mobile eye trackers. Each of them requires different set-ups. Eye trackers

from both categories follow the same basic working principle and data are usually

stored in video format and a series of x and y coordinates.
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• Static Eye Trackers: Static eye trackers are based on a desktop, hence they

are often used to study eye motion on a computer screen. They are usually of

lower price and higher durability and use a higher sampling frequency compared

to mobile eye trackers. The series of x and y coordinates corresponding to the

specific pixel on the computer screen are defined and positioned as part of the

system set-up and calibration. Therefore, the x and y coordinates exactly refer

to where the participant is looking at on the computer screen. This property

of the static eye tracker makes the data analysis relatively simple. There are

two types of static eye trackers: remote trackers and head mounted trackers.

Remote trackers are mounted remotely on the computer, while head mounted

trackers are mounted on the users’ heads.

Remote eye trackers measure the eye movement with a camera typically mounted

underneath a computer monitor, without any contact to the participant. For

some remote trackers, the participant’s head has to keep mostly still during the

eye tracking process, because the pupil reflections from multiple angles are not

measured with the remote system (Cooke, 2005). Some remote trackers offer a

head tracker with face recognition software to compensate for head movements,

thus head movements are allowed and calculated for each devices (Applied Sci-

ence Laboratories, 2013b). Remote eye trackers make it possible to record eye

tracking data on infants and even on animals.

Head mounted trackers are fixed on a user’s head. These systems are able

to measure eye movement from different angles, making it possible for users

to move their head. The coordinates in the data file refer only to positions

in the video scene and don’t indicate where the participant is looking at on

the screen. Some systems contain magnetic head tracking which calculates the

motion of the head and adds that into the motion of the eye. These systems
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generate useful data files that allow for automatic data analysis, even if very

large head movements occur. Head mounted systems are a good choice when

the participant is looking at multiple surfaces or when it is required to move

within a restricted area.

• Mobile Eye Trackers: Mobile eye trackers are head mounted as well, but

they are more light weight and wireless. They are also known as wearable eye

trackers. Users are not limited within a restricted area, so these eye trackers

can be used for a variety of activities, such as playing soccer, driving, etc.

Figure 1.1 shows the whole set of an ASL mobile eye tracker. There is a portable

data transmit unit (DTU), a laptop with wireless reception connected to the

DTU, and a pair of eye tracking glasses with optics. Babcock and Pelz (2004)

described the steps of building a mobile eye tracker and explained the working

principles of each part of the hardware. The eye tracking glasses are the main

part of the mobile eye tracker. Figure 1.2 shows the components of the mobile

eye tracker’s head mounted optics. The eye camera records the tracked eye

through the reflection of the “hot” mirror. The scene camera is aimed forward

and records the environment observed by the participant. The eye and scene

video can be recorded on an SD card by the DTU, can be transmitted directly

to the PC, or both (Applied Science Laboratories, 2012).
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Fig. 1.1: An ASL mobile eye tracker.

Fig. 1.2: Components of mobile eye tracker’s head mounted optics. (Previously pub-

lished in The DFKI Evaluation Center for Language Technology (2006)).
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Manufacturers

There exist several companies that are building eye tracking hardware. According

to Holmqvist et al. (2011), there were 23 companies that sold video based eye tracking

systems in spring 2009. Over the past years, some manufacturers vanished, some new

ones started. The leading manufacturers are Applied Science Laboratories (ASL),

Tobii, SensoMotoric Instruments (SMI), and SR Research.

• Applied Science Laboratories: ASL was founded by M.I.T scientists in 1962

and is located in Bedford, Massachusetts. The first video based eye tracker was

developed by ASL in 1974. ASL manufactures both, static and mobile eye track-

ers, that could be used in academic research, market research, and industrial

markets. Their eye tracking data analysis software is provided together with

the hardware (Applied Science Laboratories, 2013d).

• Tobii: Tobii was founded in Sweden in 2001 and developed rapidly during the

past years. Offices have been built in the US, Germany, Japan, and China.

Tobii has received world-wide recognition by building the first product that has

assisted communication with eye tracking, and launching the first computer with

built-in eye tracking. Nowadays, Tobii is collaborating with computer gaming

companies, such as SteelSeries, Ubisoft, and Avalanche Studios, to integrate eye

tracking into gaming accessories (Tobii, 2015a).

• SensoMotoric Instruments: SMI was founded in 1991 in Berlin, Germany.

SMI provides products based on computer vision applications with a focus on

eye tracking equipment. Its major fields of expertise are: eye and gaze tracking

systems for research and industry application, high speed image processing and

eye tracking. SMI products include data analysis software and mobile and static

eye tracking systems (SensoMotoric Instruments, 2016).
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• SR Research: SR Research manufactures EyeLink, including EyeLink 1000

Plus and EyeLink II (SR Research, 2013). There are many different options

that one can choose to build an EyeLink 1000 Plus eye tracker, e.g. different

options on a host computer, camera mount, and other accessories. EyeLink II

used binocular eye monitoring. It has a frequency of 500 Hz, which has the

fastest data rate and highest resolution of any head mounted video-based eye

tracker. The EyeLink II can be used as either static eye tracker or mobile eye

tracker. No mirrors are used in the EyeLink II system, which makes it relatively

easy to set up.

Setting-up and Calibration

Preparation is an essential phase for conducting an eye tracking experiment. The

participants need to be recruited following the ethics. The visual content, also known

as the stimuli, need to be prepared, the eye tracker need to be set up and calibration

has to be done to guarantee the experiment will work. The stimuli are mostly shown

on the computer screen. They are typically images or videos. The stimuli can also be

real-world situation. This is usually the case with mobile eye tracker. The setting up

for different eye trackers is slightly different. There is usually an instruction manual

on how to set up the specific eye tracker from the manufacturer. Once the equipments

are set up and connected, we put the participant into the eye tracker and conduct

the calibration. Calibration is typically done on a 2D area with some predefined

points. The video quality should be checked and the calibration should be validated

afterwards. Then the participants are instructed about the task and the recording

can be started.

Setting up the equipment and follow the recording procedures correctly are im-

portant to make sure that the data obtained are of best quality. The steps for setting
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up eye tracking equipment and calibration are as follows:

• The visual content, also known as the stimuli, need to be prepared first. The

stimuli are mostly shown on the computer screen. They are typically images or

videos. The stimuli can also be real-world situation. This is usually the case

with mobile eye tracker.

• Set up the eye tracker.

• Conduct calibration: Calibration is typically done on a 2D area with some

predefined points. The video quality should be checked and the calibration

should be validated afterwards.

Data Recording

Data recording is pivotal for all eye tracking based research. The data generated

typically include a video, and a file that contains the x and y coordinates, pupil radius,

mouse cursor position, etc. As stated in Section 1.1.1, the x and y coordinates are

meaningful for most static eye trackers that are not influenced by the head movement

and they can be directly processed with the eye tracking data analysis software.

However, for mobile eye trackers and some head mounted static eye trackers, the

coordinates in the data file are meaningless. In these situations, the video data are

used for further analysis.

1.1.2 Terminology

Raw eye tracking data are usually not directly used in research. They are summa-

rized with eye tracking metrics, based on which visualization techniques are applied

and statistical analyses are conducted. Different eye tracking research uses different

eye tracking metrics depending on the purpose of the research. A comprehensive
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review and detailed explanations of eye tracking metrics and terms can be found in

Holmqvist et al. (2011). This subsection introduces the most frequently used eye

tracking terminology and metrics according to the review of Holmqvist et al. (2011).

• Fixation: Fixation is the most frequently used metric in eye tracking data

analysis. It refers to the state when the eye remains stable for a period of time.

A fixation lasts from tens of milliseconds up to several seconds and aggregates

an area of about 20 to 50 pixels on a computer screen. It can be detected using

a velocity threshold or threshold of dispersion over a short period of time (e.g.,

100-200 ms).

• Area of Interest: The Area of Interest (AOI) is defined by researchers as one

or more area of the visual environment, based on the research interest. It is

also known as the Region of Interest (ROI).

• Gaze: Gaze is the collection of spatial locations of a series of consecutive fixa-

tions within an AOI. It typically includes several fixations and some relatively

short saccades between these fixations within an AOI (Jacob and Karn, 2003).

When a fixation happens outside the AOI, the gaze ends.

• Saccade: A saccade is the rapid movement of the eye from one fixation to

another. Saccades are the fastest movements the human body can conduct,

and usually take 30-80 ms to complete. During most of the saccade, we are

typically unaware of any visual information. The micro-movement during a

fixation is called microsaccades and is used to understand human neurology.

Saccades are not normally performed by taking the shortest path between two

points. Instead, they take several shapes and curvatures. Therefore, researchers

measure the amplitude, duration, and velocity of saccades.
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• Smooth Pursuit: When the eyes are following some moving objects, e.g., an

airplane flying across the sky, the slow movement of the eyes is called smooth

pursuit. The velocity of smooth pursuits is around 10 to 30 degrees per second.

• Scanpath: A scanpath is a sequence of alternated fixations and saccades. It

is the term originally introduced by Noton and Stark (1971) to refer to a fixed

path that shows the characteristics of a specific participant and viewing pattern.

Unlike a gaze, the saccades between fixations are relatively longer for a scanpath

and a scanpath doesn’t have to occur within one AOI.

1.1.3 Applications

Eye tracking has been widely used in various fields, both in academia and prac-

tices. Some of the main fields that adopted eye tracking are Education, Usability

Research, Sports, Psychology, and Marketing.

Education

Eye tracking has been applied in different aspects of education, such as solving

problems, classroom presentations, reading, and looking at graphics. With the im-

plementation of eye tracking technology, researchers and educators have been able to

confirm their research ideas on how to deliver knowledge more efficiently.

• Problem Solving.

Nyström and Ögren (2012) used eye tracking to measure how students visu-

ally process vector calculus problems with illustrations and the same problems

without illustrations. Line charts on proportion of fixations were used to visu-

alize and compare all the students’ different visual patterns in one illustrated

and the same non-illustrated problem. The eye tracking data showed how the
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illustrations captured students’ attention during the problem solving, however,

the illustration didn’t improve the overall performance. Tsai et al. (2012) also

used eye tracking techniques to explore students’ visual attention to solving

multiple-choice problems.

• Classroom Presentations.

Slykhuis et al. (2005) applied eye tracking technology to examine students’ at-

tentions on complimentary or decorative photographs on educational scientific

PowerPoint presentations with and without audio narration. The mean and

standard deviation of fixations on photographs were summarized and gazepaths

were plotted to compare average students’ visual patterns on slides with deco-

rative photographs and complementary photographs, as well as slides with and

without audio narration. Line charts were plotted to compare the fixation order

of slides with and without audio narration. The eye tracking technique made it

possible to confirm that students’ devote more attention to highly relevant pho-

tographs on the PowerPoint slides. Similar research has been conducted, e.g.,

by Yang et al. (2013) who investigated university learners’ visual attention to

the PowerPoint presentations in a real classroom with eye tracking techniques.

• Reading.

Eye tracking has been used extensively in reading since the 1970s, e.g., Adler-

Grinberg and Stark (1978). According to Rayner (1998), research in this field

that applied eye tracking technology includes language processing in reading,

individual differences in reading, speed reading, dyslexia, music reading, visual

search, etc. A comprehensive review of eye tracking for the past twenty years

in reading and information processing can be found in Rayner (1998).

• Looking at Graphics.
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The application of eye tracking on comparing different statistical graphics were

introduced in Goldberg and Helfman (2010a) and Zhao et al. (2013). Goldberg

and Helfman (2010a) examined the effectiveness of bar charts, line charts, and

spider graphs with eye tracking data on information delivering. Scanpaths were

used to visualize different visual patterns of the participants looking at the

three different types of graphics. Zhao et al. (2013) assessed how lineup plots,

such as histograms, densities, scatterplots and dotplots, were viewed with the

eye tracking data. The viewing patterns were compared and visualized with

scanpaths, timelines, dot plots, and bar charts.

Usability Research

Jacob and Karn (2003) provided a comprehensive review of eye tracking in

human-computer interaction and usability research before 2003. Granka et al. (2004)

employed eye tracking techniques “to gain insight into how users browse the presented

abstracts and how they select links for further exploration”. Bar charts were used

to visualize the time spent viewing each abstract together with the frequency the

abstracts were selected. Cooke (2005) illustrated the application of eye tracking in

reading behaviors online, searching, and scanning online information, as well as web

page design. Google has also incorporated eye tracking into user studies to explore

how users scan search results since 2005, when they obtained a Tobii eye tracker

(Granka and Rodden, 2006). As the eye tracking technology has been more com-

monly applied in usability research, there are more and more references explaining

how eye tracking can be used for usability research.

Sports

Many disciplines in sports have adopted eye tracking technology to study the
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basic technical mistakes in hand-eye coordination and how to optimize performance

(Tobii, 2015b). These sports include soccer, table tennis, shooting, hockey, and base-

ball. Barfoot et al. (2012) used eye tracking systems to measure visual focus in

archery. Du Toit et al. (2009) applied eye tracking in soccer to determine the visual

skills of soccer players. More detailed reviews about eye tracking in sports can be

found in Applied Science Laboratories (2013c).

Psychology

A variety of psychology fields have employed eye tracking to understand how

people gather information visually and how information is processed. Eye tracking has

helped researchers to reveal Autism at an early stage (Navab et al., 2012). Boraston

and Blakemore (2007) provided a review on the application of eye tracking in autism

studies with a focus on investigating gaze behavior of individuals with autism.

Marketing

Eye tracking is also a popular technique in marketing. There exist several refer-

ences related to marketing using eye tracking technologies, such as Piqueras-Fiszman

et al. (2012), and Purucker et al. (2013). Piqueras-Fiszman et al. (2012) defined the

AOIs on the products and let the participants look at the images on the computer

screen with a static eye tracker. Fixation data was analyzed in their study with a

conjoint analysis to determine the attributes that affect the consumers’ willingness

to purchase the goods. Purucker et al. (2013) gave an overview of the literature

using eye tracking for marketing and they proposed using scan statistics to analyze

eye tracking data instead of using region of interests data analysis. The clusters of

eye tracking data were identified and statistical tests were conducted on the spatial

temporal data to compare designs of the car (Purucker et al., 2013).
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Others

Other fields that made use of eye tracking technology include the military, civilian

armed forces, 3D games and videos. More details can be found in Applied Science

Laboratories (2013a).

1.2 Eye Tracking Visualization Techniques

This section summarizes the visualization techniques used for eye tracking data.

There are numerous ways of visualizing eye tracking data. Blascheck et al. (2014) gave

an overview of visualization of eye tracking data and classified the visualization tech-

niques into three main categories: point-based techniques, AOI-based techniques, and

techniques using both. Different taxonomies of plots are also illustrated in Blascheck

et al. (2014). We summarize the main visualization tools for eye tracking data based

on different graph categories. Common statistical graphics, scanpath visualization,

timelines, and attention maps are the four main graph categories used for eye tracking

data. The descriptions of the four graph categories and the plots belonging to each

category are introduced in the following subsections.

1.2.1 Common Statistical Graphics

Common statistical graphics are frequently used for eye tracking visualization.

These graphics are mostly used to present the data from the eye tracking metrics

or the raw eye tracking data. These graphics include line charts, bar charts, scatter

plots, and box plots.

• Line charts are used to visualize the proportion of participants looking at the

AOIs, fixation duration versus the order of occurrence, etc. (Holmqvist et al.,

2011).
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• Bar charts are an intuitive technique to display eye tracking metrics. An ex-

ample of employing bar charts can be found in Convertino et al. (2003), where

the percentage of fixation time for four different visualization techniques are

shown with a bar chart to compare the eye tracking data of people looking at

a parallel coordinates plot, a scatter plot, and a geographic map.

• Scatter plots are employed when the relationship between two variables or two

metrics of eye tracking data or the direct encoding of eye movements are of

interest (Card et al., 2014; Berg et al., 2009). Berg et al. (2009) visualized

amplitude and velocity measurements of saccadic movements for both, humans

and monkeys, to show the differences between visions of the two species. In the

visualization tool developed by Card et al. (2014), scatter plots were used to

directly indicate individual eye movements.

• Box plots are used to show the statistical distributions of eye tracking data.

Law et al. (2004) compared the difference in proportion of eye gaze on surgery

tools between experts and novices during the surgery process with a box plot.

Eye tracking metrics, such as fixation rate and fixation duration, can also be

presented with box plots (Sharif and Maletic, 2010).

1.2.2 Scanpath Visualization

The term “scanpath” was first introduced by Noton and Stark (1971) to describe

the chain of fixations and saccades. In visual representations of scanpaths, circles are

used to represent fixations and lines are used to represent saccades (Goldberg and

Helfman, 2010b). The length of the line and the radius of the circle indicate the

duration of the saccade and fixation. Figure 2.18 shows the scanpath representation,

also known as gaze plot. The numbers in the circles indicate the sequential order of
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the fixations. Scanpaths give the sequence of one’s eye movements, however, when

the viewing patterns become more complex, the crossings and overlaps of scanpaths

make it more difficult to perceive the visual patterns.

Fig. 1.3: Scanpath. (Previously published on https://bluekiteinsight.com/blog/

how-eye-tracking-works/).

1.2.3 Timelines

Point Data

Timelines are typically used to visualize temporal data (Blascheck et al., 2014).

Goldberg and Helfman (2010b) added a time expansion to the visual scanpath rep-

resentations, in which fixation positions are separated into x and y time expansion

graphs. Figure 1.4 shows that the time expanded representations separated the tan-

gled scanpaths. Figure 1.5 is an improved version of the time expanded representation.

Multiple viewers’ viewing patterns can be compared in the same plot (Grindinger

et al., 2010).

https://bluekiteinsight.com/blog/how-eye-tracking-works/
https://bluekiteinsight.com/blog/how-eye-tracking-works/
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Fig. 1.4: Time expanded x and y representations of scanpaths. (Previously published

as Figure 6 in Goldberg and Helfman (2010b), page 205).

Fig. 1.5: Time-projected scanpath visualization, where the y-axis denotes vertical

gaze position and the x-axis denotes time. “Vertical markers denote one-second in-

tervals”. The numbers represent the visual sequence and the size of the rectangles

represent the relative length of time of the fixations. (Previously published as Figure 1

in Grindinger et al. (2010), page 101).

As an improvement, Li et al. (2010) proposed a Space-Time-Cube representation,

making it possible to visualize eye movements with a timeline in both, horizontal

and vertical, direction. A Space-Time-Cube representation is basically a 3D plot, in

which the x and y axes represent horizontal and vertical movements and the z axis
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indicates the time (Li et al., 2010). Figure 1.6 compares a timeline, a scanpath, and

a space-time-cube (STC) representation, where a timeline only gives the temporal

pattern, a scanpath revels the spatial pattern but it is of potential overlap, and a

STC representation shows both spatial and temporal pattern.

Fig. 1.6: Comarison of a timeline, a 2D scanpath, and a space-time-cube (STC) repre-

sentation: the data are eye movements from two participants. (Previously published

as Figure 3 in Li et al. (2010), page 302).

Area of Interest Data

Timelines are also used to visualize eye tracking data divided by AOIs. Räihä

et al. (2005) used time plots to visualize scanpaths of AOIs. Followed by this idea,

Raschke et al. (2012) proposed three visualization techniques using timelines com-

bined with bar charts and line charts as parallel scanpath visualization. The three

types of plots are gaze duration sequence diagrams, fixation point diagrams, and gaze

duration distribution diagrams. With this parallel scanpath visualization technique,

various properties of scanpaths, such as fixations, gaze durations and eye shift fre-

quencies can be displayed in the same diagram (Raschke et al., 2012). According to

Raschke et al. (2014), the three types of parallel scanpath visualization techniques
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are described below:

• In a gaze duration sequence diagram, the horizontal axis shows the area of

interest (AOI) and the vertical axis shows the time. In this representation,

both, the start and end times, as well as the temporal sequence of changes

between AOIs can be identified in the same plot. Figure 1.7 shows a gaze

duration sequence diagram.

Fig. 1.7: Gaze duration sequence diagram. (Previously published as Figure 6c in

Raschke et al. (2014), page 400).

• In addition to a gaze duration sequence diagram, a fixation point diagram adds

single fixations inside AOIs as filled circle, e.g. AOI 2 starts with a fixation

and there are three fixations during the gaze duration in AOI 2. The centers

of respective gaze lines are connected. With more information added in the

fixation point diagram, the frequency and number of fixations can be studied

during a gaze duration in an AOI. Figure 1.8 shows an example of a fixation

point diagram.
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Fig. 1.8: Fixation point diagram. (Previously published as Figure 6d in Raschke et al.

(2014), page 400).

• A gaze duration distribution diagram uses a line plot overlaid on top of a bar

chart that shows the summation of the percentage of gaze durations in the areas

of interest. A filled circle is the midpoint of a gaze duration and all the circles

are connected to show the sequence of the gaze. An example of a gaze duration

distribution diagram is shown in Figure 1.9

Fig. 1.9: Gaze duration distribution diagram. (Previously published as Figure 6e in

Raschke et al. (2014), page 400).

Interactive versions of these diagrams also exist. Details are explained in Raschke

et al. (2014).
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1.2.4 Attention Maps

Holmqvist et al. (2011) provided a comprehensive review of attention maps.

Attention maps are usually made of heat maps or hot spot maps with Gaussian

kernel function. They describe the spatial distribution of eye tracking data and the

hot spots of the map point out “the regions attracted people’s gazes” (Holmqvist

et al., 2011). Figure 1.10 left shows an example of an attention map. With the hot

spots overlayed on top of a face, it is quite obvious at which areas people are looking

most. However, the sequential order of where one is looking is not shown in attention

maps.

There are some other plot types developed based on attention maps. These plot

types include difference maps and cluster images. The difference map is the map

produced by taking the difference between two images with different view patterns

(Caldara and Miellet, 2011). Figure 1.10 shows the plots that compare the difference

between two viewers. A cluster image shows the percentages of participants who

have viewed certain regions, instead of how long each section has been viewed by one

participant (Andersson, 2010).

Fig. 1.10: Statistical fixation maps for two datasets and for their difference. (Previ-

ously published as Figure 4 in Caldara and Miellet (2011), page 870).
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Other than the four most commonly used plot types summarized in this section,

some other plot types are also used for eye tracking visualization: Foulsham and

Kingstone (2011) used a schematic representation to summarize gaze transitions.

Burch et al. (2014) overlayed attention maps with a hierarchical diagram to visualize

the clusters of visual patterns and saccades.

1.3 Eye Tracking Software Development

This section provides an overview on the eye tracking software development.

Most of the existing eye tracking software is developed with R packages, Matlab

toolboxes and functions, and Python packages. A few software products, such as

EyeC, iComp, and eTaddyare, are developed in other environments. To the best of

our knowledge, the software reviewed in this chapter has been developed for data

from static eye trackers or for data extracted from mobile eye trackers.

1.3.1 CRAN R Packages

Four R packages that are introduced in this section are available on CRAN.

gazepath: Gazepath Transforms Eye-Tracking Data into Fixations and

Saccades

The gazepath R package (van Renswoude, 2015) provides a non-parametric speed-

based approach to transform eye tracking data into fixations and saccades. The

main function is called “gazepath”, which conducts the transformations. The input

dataframe is four by n, which includes the x and y coordinates, the stimuli name, and

the distance to the screen. The gazepath function then transforms the input data

frame in terms of fixations and saccades, based on the eye movement speed measured

in degree/s.



24

saccades: Detection of Fixations in Eye-Tracking Data

This saccades R package (von der Malsburg, 2015) is using a velocity-based

algorithm to detect eye fixations in raw eye-tracking data. The saccades are labeled

when the velocity of the eye movement exceeds a certain threshold. According to (von

der Malsburg, 2015):“Anything between two saccades is considered a fixation. Thus

the algorithm is not appropriate for data containing episodes of smooth pursuit eye

movements.” This package is based on a data frame that consists of four columns:

the x and y coordinates, the trial, and the time.

Three main functions are included in this package:

• Calculate.summary provides summary statistics such as the average number of

fixations in trials, the average spatial dispersion in the fixations, and the average

peak velocity that occurred during fixations.

• Detect.fixations converts the raw dataset to a data frame containing the statis-

tics of detected fixations: the duration, the start and end time, the x and y

coordinates, horizontal and vertical peak speed, and the standard deviation.

• Diagonostic.plot creates an interactive plot to show the raw samples and the

detected fixations, so that the data can be screened and possible problems with

the fixation detections can be diagnosed.

eyetracking: Eyetracking Helper Functions

Two functions are available in the eyetracking R package (Hope, 2012): One

takes the x and y coordinates and returns the physical distance from the subject to

the point on the screen; The other one takes two pairs of x and y coordinates and

returns the angle subtended by the two points.
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bdots

This bdots R package (Seedorff et al., 2015) analyzes differences among time

series curves with a modified p-value technique proposed by Oleson et al. (2015). A

4-parameter logistic or an asymmetric Gaussian function is used to fit the eye tracking

data.

1.3.2 Github R Packages

Three additional R packages that are introduced in this section are available on

github.

eyeTrackerR

The eyeTrackerR R package (Godwin, 2012) is designed to generate fixation

reports for eye tracking data. The two available functions are getting means for

measures and events and contingencies. This package is at a very early stage of

development.

Eyelinker

The Eyelinker R package (Barthelme, 2016b) is designed for reading data pro-

duced by Eyelink, which is a type of eye tracker manufactured by SR Research. It

transforms Eyelink.asc files into R data structures containing raw traces, saccades,

fixations, and blinks. Timeline plots can be produced with the Eyelinker R package.

eyetrackingR

This eyetrackingR R package (Dink and Ferguson, 2015) provides a connection of

visualization and hypothesis testing tools for eye tracking data . The analyses include

window analysis, growth curve analysis, onset contingent analysis, and estimating
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divergences. Plots are created with the ggplot2 R package (Wickham, 2009).

• Window analysis is a collection of statistical tests and mixed-effects models on

eye tracking data. It provides an initial look at the data and ascertains whether

a subject looked at one object more than at another object.

• Growth curve analysis show the change of data over time. The data are sum-

marized into time-bins and proportion-looking for each of the areas of interest

(AOI) are calculated. Curves are fitted over the timecourse of the trial (See

Figure 1.6) and bends in these curves are statistically assessed.

• Onset contingent analysis is used to examine how quickly participants looked

to the referent AOI, i.e., to calculate the reaction times.

• Divergence is used to ascertain when a condition, such as an animated or inan-

imated image, had a significant effect during a trial.

1.3.3 Eyetracking in Matlab

Five Matlab toolboxes or functions are introduced in this section.

EyeMMV Toolbox

This EyeMMV Matlab toolbox (Krassanakis et al., 2014) can be used to detect

fixation events, metrics analysis, data visualization, and ROI analysis. The fixa-

tion identification is based on an algorithm that has two spatial parameters and one

temporal constraint. The visualization tools available in the EyeMMV toolbox are

heat map, scanpath visualization and space-time-cube (See Chapter 2 for details).

Krassanakis et al. (2014) further described the details of the functionalities in this

toolbox.
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Eyelink Toolbox

The Eyelink Matlab toolbox provides an interface for Matlab, a visual display

programming toolbox called Psychophysics toolbox, and Eyelink (Cornelissen et al.,

2002). Brainard (1997) introduced the Psychophysics toolbox, which interfaces Mat-

lab and video display hardware.

GazeAlyze Toolbox

The functionalities of the GazeAlyze Matlab toolbox (Berger et al., 2012) in-

clude detecting and filtering artifacts, detecting events, generating regions of interest,

generating spread sheets for further statistical analysis, and providing methods for

the visualization of results, such as path plots and fixation heat maps. Fixations,

saccades, and movement path parameters are analyzed for ROIs and are included in

the spread sheets generated. Graphical user interfaces are designed to control all the

functions.

iMap Toolbox

iMap was introduced by Caldara and Miellet (2011) as an improvement of at-

tention maps. iMap generates three-dimensional fixation maps with fixation data

smoothed by convolving Gaussian kernels (See Section 1.2). The Gaussian kernel

functions are either weighted by the number of fixations or their durations. iMap

also produces difference maps (See Section 1.2) and uses robust statistics to compare

conditions. Holmqvist et al. (2011) explained three ways of measuring the difference

in attention maps in Section 11.3.4 of their book. In iMap, a priori segmentation of

images or AOIs are not required. This characteristic overcomes the fact that it is

difficult to define AOIs in some images, because the criteria can be too subjective.

Matlab functions have been developed to generate iMap and compute the eye tracking



28

data measures like number of fixations, the total fixation duration, the path length,

and the mean saccade length.

Region of Interest Based Eyetracking Analysis

The Brain Imageing & Analysis Center (2014) provided functionalities for Matlab

to let users draw Region of Interests (ROI) and create gaze paths. The gaze paths

show how much the eye tracking data fall into the ROI.

1.3.4 Eyetracking in Python

Two Python packages are introduced in this section.

GazeParser

The GazeParser Python package (Sogo, 2013) provides a module to control the

SimpleGazeTracker (Sogo, 2015), an open-source video-based eye-tracking applica-

tion, and also various functions for data analysis, such as detecting saccades and

fixations, plotting and comparing scan paths, calculating saccade trajectory curva-

ture, etc.

PyGaze

PyGaze (Dalmaijer et al., 2014) combines several existing Python eye tracking

packages including PyGame, PsychoPy, and pylink. EyeLink, SMI and Tobii eye

tracking systems are supported with PyGaze. The basic functionality of PyGaze is

to display visual stimuli and assess saccade and gaze behavior in real time. The

documentation of the functionalities is explained in Dalmaijer (2013-2016).

1.3.5 Other Eye Tracking Software
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EyeC

To compare the differences of visual patterns between subjects and groups of

subjects, Ristovski et al. (2013) developed EyeC, an interactive visual analysis tool

using coordinated views. Histograms of fixation durations for multiple people are

created in the same plot with user selected AOIs according to the heat maps created

(See Section 1.2). The interactive feature of scarf plots allows users to highlight a

fixation and all other fixations over the same AOI will be highlighted automatically.

Tree-structured visual representations are used for scanpaths, also with an interactive

feature, to compare the differences between subjects. Ristovski et al. (2013) provided

a detailed illustration of this visualization tool.

iComp

iComp is a visualization tool developed by Heminghous and Duchowski (2006),

which implements quantitative scanpath comparisons and clustered eye gaze data of

all viewers for each image display.

eTaddy

eTaddy (eyeTracking Analysis, conDuction and Designtool for user studies) was

introduced by Raschke et al. (2014) to embed eye tracking metrics, statistical tests,

and interactive parallel scanpath visualizations, introduced in Section 1.2.3.

1.4 Eye Tracking for Posters and Related Media

This section provides an overview on eye tracking usage on posters and related

media. The literature includes eye tracking on posters in both simulated outdoor and

indoor environments with computer screens. Commercial posters were investigated

in both environments. Academic posters were studied with a mobile tracker in an
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indoor environment in a mock poster session to understand the attention of people

during a poster session.

Barber et al. (2008) investigated posters in a computer simulated outdoor envi-

ronment in order to “provide common measurement framework for poster panel visi-

bility across settings and perspectives” with an eye tracking approach. The influence

of viewing distance and poster panel orientation were also investigated. According to

Barber et al. (2008), the participants’ eye movement data were recorded while they

were looking at photographs of scenes with one or more poster panels. A 60 Hz re-

mote static eye tracker was used to record the participant looking at the pictures on

the computer screen. The x and y coordinates were obtained from the eye tracker to

indicate gaze points. Poster panels were categorized into four environments in terms

of their settings. The categories include driver-roadside, pedestrian-roadside, retail,

and tube/rail. The eye fixations were classified as hits if they were on a poster panel.

Therefore, the hit rates for the poster panels were calculated. The hit rates along

with the poster panel properties, such as mean orientation of the scene, mean panel

area, count of panels and mean panel distance, were summarized and compared in

different scenes and each design category of interest.

Andersson (2010) looked at the effect of visual in-store advertisement designing

on customers’ decisions on purchasing. Eye tracking data were recorded to help an-

swer the research question “How should the text and picture elements be positioned

in in-store posters so that the message is understood as clearly as possible?” (An-

dersson, 2010). The participants’ eye movement data were recorded while they were

sitting in front of a computer screen. The author simulated two situations with com-

puter images and let the participants look at the images presented on the computer

screen given a certain amount of time. The first situation was when people were

passing by the stores and the second situation was when people were in the store
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and paying attention to the posters. These situations were analyzed separately by

Andersson (2010). Gaze plots were used to visualize experimental subjects’ viewing

patterns. Cluster images that show what components in the posters the participants

have looked at were also used to compare different designs. Experimental subjects

were interviewed about how many items they remembered in the posters. The research

question was analyzed by evaluating people’s visual patterns as well as summarizing

the percentages of different items people remembered.

Foulsham and Kingstone (2011) also investigated how people were looking at

posters in an indoor environment, but with a focus on academic posters from psychol-

ogy. A mobile eye tracker was used to record participants’ eye movements. However,

to our best knowledge, it was not explained in the literature how the data recorded

with the mobile eye tracker were extracted. Gaze transitions between different regions

of the posters were visualized with arrows. Figure 1.11 shows how the eye tracking

data were summarized in the visual representation. The summary statistics of gaze

behaviors of all participants, such as, mean and standard deviation for proportion of

fixation time on each components of the posters, probability of revisiting a poster,

time spent on a poster, etc., were also summarized in tables. It was suggested in

Foulsham and Kingstone (2011) that “participants spent the most time looking at

introductions and conclusions”. Larger posters and posters rated as more interesting

(but not necessarily nicer in terms of aesthetics) were looked at for a longer time.
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Fig. 1.11: Schematic representing the gaze transitions between regions across all

participants and posters, where the size of the arrow represents the relative frequency.

(Previously published as Figure 1 (b) in Foulsham and Kingstone (2011), page 1388).

Related research includes newspaper reading behavior (Holmqvist and Warten-

berg, 2005) and looking at images (Judd et al., 2009). Holmqvist and Wartenberg

(2005) used gaze plots as well as explorative multiple regression analysis to examine

the effect of local design factors on readers’ visual patterns. In Judd et al. (2009),

eye tracking data were used to train a model of image saliency to predict fixation

locations.

1.5 Image Processing

This section presents the terminology from image processing field in Section 1.5.1

and provides an overview of image matching algorithms in Section 1.5.2.

1.5.1 Terminology

The terminology from the image processing field that are used in this dissertation

are summarized in this section:
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• Digital Image:

A digital image is a two-dimensional array that consists of small square regions

known as pixels (Tanimoto, 2010). There are three basic types of images that

are commonly used:

– Binary Image:

A binary image only consists of black and white color, therefore, there are

only two possible values for each pixel. Such images are very efficient in

terms of storage, because each pixel only needs one bit of storage space.

– Greyscale Image:

Each pixel of a greyscale image represents a shade of grey that typically

ranges from 0 (black) to 255 (white).

– RGB Image:

Each pixel has a particular color, that is described by the amount of red,

green, and blue, in an RGB image. Each of the red, green, and blue colors

has a range of 0 to 255, which allows a large number of possible colors

in an RGB image (2563 = 16, 777, 216 possible colors). An RGB image is

made of three matrices that represent the red, green, and blue values for

each pixel. Each pixel on the image corresponds to three values.

• Feature:

Features are typically noticeable specific locations in the images, such as moun-

tain peaks, building corners, doorways, or interestingly shaped patches of snow.

Szeliski (2011) provided an overview related to features. The most commonly

used types of features are interest points or feature keypoints and edges. Interest

points are often described by the appearance of patches of pixels surrounding
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the point location (See Figure 1.12 (a), (b), (d)). Edges can be good indica-

tors of object boundaries and can be matched based on their orientations (See

Figure 1.12 (c)).

Fig. 1.12: A variety of features that can be used to describe and match images:

(a) keypoint features; (b) region-like interest operators; (c) edges; (d) straight lines.

(Previously published as Figure 4.1 in Szeliski (2011), page 212).

• Template Image:

A template image is an image that consists of the pre-specified pattern or shape

that is used for comparison with the original image (Institute of Electrical and

Electronics Engineers, 1990).

1.5.2 Image Matching
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Image matching is an important task in the computer vision field. There are two

approaches to tackle this task: a feature-based approach and a template-based ap-

proach. The feature-based approach is effective when the template image has strong

features. Given enough corresponding feature points, a transformation is then com-

puted between two images. The most commonly used feature-based approaches are

Scale Invariant Feature Transform (SIFT) (Lowe, 2004), Speeded up Robust Features

(SURF) (Bay et al., 2008), Oriented fast and Rotated Binary robust independent ele-

mentary features (ORB) (Rublee et al., 2011), and Binary Robust Invariant Scalable

Keypoints (BRISK). De Beugher et al. (2014) applied ORB to detect if one looked at

specific objects in an eye tracking videostream. For template images without strong

features, a template-based approach or template matching is a better option.

1.5.3 Speeded Up Robust Features (SURF)

The SURF algorithm was proposed by Bay et al. (2008) as a scale- and rotation-

invariant detector and descriptor. The three main steps for the SURF algorithm

are:

• Interest points, such as corners and T-junctions, are selected at different loca-

tions in the image. The detector is reliable such that the same physical interest

points are detected under different viewing conditions.

• Constructing the local descriptors by representing the neighborhood of every

interest point with a feature vector. The descriptor is invariant to view-point

changes of the local neighborhood of the interest points, i.e., the descriptor is

not changing based on the change of viewing distances and angles of the features

detected.
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• Matching of the descriptor vectors between different images based on the Eu-

clidean distance between vectors. Filters, such as the random sample consensus

(RANSAC) algorithm (Fischler and Bolles, 1981) or m-estimator sample consen-

sus algorithm (Torr and Zisserman, 2000), are applied to remove outliers, thus

the remaining matches more accurately correspond to the same scene viewed

from different viewpoints.

Template Matching

Roberto (2009) provided a comprehensive overview of template matching. Tem-

plate matching identifies the parts on an image that match a predefined template

image. The template is put at every possible location, where some numeric measure

of similarity is calculated between the template and the image segment it currently

is overlapped with. The similarity can be measured with different metrics, e.g., sum

of absolute differences (SAD), sum of squared differences (SSD), maximum absolute

differences (MaxAD), image correlation, etc. SAD is one of the most commonly used

metrics. Assuming the image is a greyscale image, SAD at location (x, y) of the

original image is defined as follows:

SAD(x, y) =
nrow∑
i=0

ncol∑
j=0

|Io(x + i, y + j)− It(i, j)|,

Where nrow and ncol denote the number of rows and the number of columns of

the template image, Io denotes the intensity of the original image, and It denotes the

intensity of the template image.

After obtaining the numeric measures of the similarities, the position that has

the best similarity measure (highest for SAD) is the location of the pattern on the

original image. This is considered as the naive template matching method. Advanced

template matching algorithms, such as Korman et al. (2013), and Pereira and Pun
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(2000), are able to locate the template on the images regardless of their orientation

and size.

1.6 Goals of this Dissertation

Since eye tracking equipment has become more affordable and accurate nowa-

days, eye tracking has been employed in a variety of fields, as reviewed in Section 1.1.3.

There exist several research projects on eye tracking usage on posters and related me-

dia (see Section 1.4). However, how people are looking at statistical posters hasn’t

been explored yet. Furthermore, most of the current research reviewed in Section 1.4

used the static eye tracker, which can provide meaningful x and y coordinates in-

dicating exactly where one’s visual focus is on a computer screen, as explained in

Section 1.1.1. De Beugher et al. (2014) applied object, face, and person detection

algorithms to automatically detect how often and how long a particular object was

viewed. To the best of our knowledge, there is not any existing literature on auto-

matic extraction of eye movement data for looking at posters from mobile eye trackers.

Therefore, in this dissertation, we propose an automatic approach to extract mobile

eye tracking data of where people are looking at on a poster. Advanced visualization

techniques are developed to visualize eye tracking data more effectively. The Eye-

TrackMat Matlab toolbox and the EyeTrackR R package are developed for the

data extraction and visualization. The three goals in this dissertation are described

below.
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1.6.1 Goal 1: Development of a Matlab Toolbox for the Extraction of

Mobile Eye Tracking Data with an Application on People Looking

at Scientific Posters

Eye tracking data is often obtained from a static eye tracker or manually ex-

tracted from a mobile eye tracker. We propose a new automatic way to extract

meaningful eye movement data from a mobile eye tracker used by people that are

looking at an object. In this dissertation, a scientific poster is used as an example.

The local features of the poster and video frames are detected using the Speeded Up

Robust Features (SURF) algorithm. The somewhat rotated recordings of posters in

the frames of the eye tracking video are extracted and projected to a clearer version

of the poster. The coordinates of the crosshair that represents the focus points of

the human eye in the new coordinate system are detected using our new proposed

heuristic object detection approach. Goal 1 of this dissertation is the development of

our Matlab toolbox EyeTrackMat, with an application in extracting the eye track-

ing data of people looking at scientific posters from mobile eye trackers. Some basic

visualization tools for eye tracking data are available in the toolbox to verify the

validity of the data extracted. This work is presented in Chapter 2. A final version

of this chapter will be submitted to an eye tracking journal such as the Journal of

Eye Movement Research.

1.6.2 Goal 2: Development of the Linked Microposter Plots Family as

New Means for the Visualization of Eye Tracking Data

Linked micromap plots have been widely used to visualize geographic patterns

of regions and subregions. Based on the idea of linked micromap plots, we introduce

three different types of linked microposter plots in Goal 2 of this dissertation (pre-

sented in Chapter 3) to visualize the eye movement pattern when people are looking at
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different components (such as headings, tables, figures, and different sections of text)

of posters. These types are basic linked microposter plots, linked timeline microposter

plots, and linked scanpath microposter plots. When using these the linked microp-

oster plots, the eye tracking data of people looking at the various poster components

can be better and more easily interpreted. The linked timeline microposter plots and

the linked scanpath microposter plots are extensions of the basic linked microposter

plots. The scanpath time series information is included in their visualizations. The

linked microposter plot and its extensions provide several features that overcome some

of the disadvantages of previously existing eye tracking data visualization methods.

The linked microposter plots family can easily be extended to visualize how people

look at webpages, power point slides, photos, etc. The preliminary work is published

in Li and Symanzik (2016). A final version of this chapter will be submitted to a

statistical visualization journal such as the Journal of Computational and Graphical

Statistics (JCGS).

1.6.3 Goal 3: Development of an R Package for Extracting and Visualiz-

ing Data from Mobile and Static Eye Trackers

So far, there existed no R package that contains a whole collection of eye track-

ing data processing and visualization tools. Goal 3 of this dissertation (presented

in Chapter 4) is the introduction of an R package, EyeTrackR, for processing and

visualizing data from mobile and static eye trackers. The main functionalities in

EyeTrackR are: (i) Automatic extraction of mobile eye tracking data; (ii) Defini-

tion of Areas of Interest (AOIs) and data summarization; (iii) Common eye tracking

visualization tools; (iv) Linked microposter plots, linked timeline microposter plots,

and linked scanpath microposter plots. Our primary application in this dissertation

is for people looking at scientific posters. The preliminary work is published in Li and
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Symanzik (2017). An application on looking at power point slides to judge human

postures by using the EyeTrackR R package for the data extraction and visualiza-

tion is published in Symanzik et al. (2017b). A final version of this chapter will be

submitted to a statistical software journal such as the Journal of Statistical Software

(JSS).
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CHAPTER 2

EYETRACKMAT: A MATLAB TOOLBOX FOR THE EXTRACTION OF

MOBILE EYE TRACKING DATA WITH AN APPLICATION ON PEOPLE

LOOKING AT SCIENTIFIC POSTERS

2.1 Introduction

Eye tracking is the process of measuring where people are looking at with an eye

tracker device. Eye trackers were first built in the late 1800s and have been developed

rapidly during the past century. Holmqvist et al. (2011) provided a comprehensive

review on the history of eye trackers as well as on the principles of how they work. Eye

trackers nowadays are mostly using the corneal reflection of an infrared light emitting

diode to illuminate and generate a reflection off the surface of the eye (Cooke, 2005).

This approach is able to track pupils precisely, therefore meaningful scene videos

indicating where people are looking at are generated.

Eye tracking techniques have been applied in a variety of research fields, such as

behavioral sciences, education, marketing, and sports. There exist several literature

reviews focusing on the application of eye tracking, e.g., Rayner (1998) provided a

comprehensive review on eye tracking for the past twenty years in reading and infor-

mation processing, and Jacob and Karn (2003) provided a comprehensive review of

eye tracking in human-computer interaction and usability research. The eye tracking

technology has become more and more affordable and accessible nowadays (Gould

and Zolna, 2010). There also exists research on eye tracking for posters and related

media. Barber et al. (2008) investigated posters in a computer simulated outdoor

environment in order to “provide common measurement framework for poster panel
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visibility across settings and perspectives” with an eye tracking approach. Andersson

(2010) looked at the effect of visual in-store advertisement designing on customers’

decisions on purchasing, with participants’ eye movement data recorded sitting in

front of a computer screen. Using a mobile eye tracker, Foulsham and Kingstone

(2011) investigated how people were looking at posters in an indoor environment,

but with a focus on academic posters from psychology. However, the eye tracking

data in the existing research is often obtained from a static eye tracker or manually

extracted from a mobile eye tracker. De Beugher et al. (2014) used the “oriented fast

and rotated binary robust independent elementary features” (ORB-BRIEF) feature

descriptor as an object detection technique to extract the objects of interest from an

eye tracking video, making it possible to count how often and for how long a face or

a person was viewed. However, there does not exist any literature for automatically

extracting data from a mobile eye tracker for how people are looking at posters. We

propose a new automatic method to extract eye movement data of where people are

looking at the poster from a mobile eye tracker. We adopt and extend an algorithm

that automatically extracts eye movement data from a recorded video. Our approach

is based on feature detection and image registration algorithms.

Companies that design eye tracking technologies offer commercial software for

eye tracking data analysis in general. However, this software typically only applies

to the eye tracking hardware from the manufacturer and is not supporting any other

eye trackers (Zhegallo and Marmalyuk, 2015). In addition, users have to manually

go through every single video frame to extract data with the commercial software

provided by the eye tracking company for mobile eye trackers. Software for eye track-

ing data has been developed with R packages (von der Malsburg, 2015; Dink and

Ferguson, 2015), Matlab toolboxes and functions (Krassanakis et al., 2014; Berger

et al., 2012), Python packages (Dalmaijer et al., 2014), and in other environments
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(Heminghous and Duchowski, 2006), to detect eye movement events, to visualize and

model eye tracking data, and to clean raw eye tracking data. These software develop-

ments make it possible to support eye tracking hardware from different manufacturers.

However, none of the existing software developments has offered eye tracking data

processing tools for mobile eye tracking data from people looking at an object, such

as a poster. In this chapter, we introduce our new Matlab toolbox, EyeTrackMat,

to process video data recorded from a mobile eye tracker, and to conduct some basic

visualization tasks. Most of the existing Matlab tool boxes use a Graphical User

Interface (GUI) for user friendly purpose, however, this design makes it more difficult

for researchers to extend the toolboxes’ functions for specific studies (Krassanakis

et al., 2014). Our EyeTrackMat toolbox is made of a list of functions, therefore

making it more convenient for people to modify them for any purpose of usage.

The remainder of this chapter is structured as follows: We will discuss the mo-

bile eye tracking device and the collected data in Section 2.2. The data extraction

procedures and algorithms are discussed in Section 2.3. The functionality of the Eye-

TrackMat toolbox is described in Section 4. An example of the application of the

toolbox is introduced and the data quality is explored in Section 2.5. We will finish

with our conclusion and discussion in Section 4.4.

2.2 Mobile Eye Tracking Device and Collected Data

There are two main types of eye trackers: static eye trackers and mobile eye

trackers. Static eye trackers are based on a desktop, hence they are often used to

study eye motion on a computer screen. Mobile eye trackers are fixed on a user’s

head, so they are not limited within a restricted area and can be used for a variety of

activities, such as playing soccer, driving, etc. Figure 3.1 shows a full set of a mobile

eye tracker equipment manufactured by Applied Science Laboratory (ASL). There is
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Fig. 2.1: ASL mobile eye tracker equipment showing the DTU in the front, the eye
tracking glasses to the right, and the laptop in the back.

a portable Data Transmit Unit (DTU), a laptop with a wireless reception connected

to the DTU, and a pair of eye tracking glasses with optics. The eye tracking glasses

are the main part of the mobile eye tracker. There are two cameras on the eye tracking

glasses: one tracks the participant’s eye and the other one records the environment

observed by the participant.

The data generated from such equipment typically include a scene video (there

is only one video generated for each recording, though we have two cameras), and a

data file that contains the x and y coordinates, pupil radiuses, mouse cursor positions

on the computer screen, etc. The ASL mobile eye tracker used in this chapter has a

frequency of 30 Hz, i.e., the scene video data contains 30 frames per second. There is

a label on each video frame indicating where the participant is looking at. The default

and the nicest looking label of an ASL mobile eye tracker is a red crosshair. Other

options include a circle and a huge cross that covers the whole screen. There are

seven other options for the color of the crosshair: white, black, green, blue, magenta,

cyan, and yellow. Since red is salient in most situations, a red crosshair is adopted in

our data collections and illustration of the data extractions. The x and y coordinates

are the center of the crosshair, which refers to where the participant is looking at in

a particular video frame.
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2.3 Data Extraction

The x and y coordinates exactly refer to where the participant is looking at on

the computer screen for most static eye trackers. Therefore, they can be directly

processed with the eye tracking data analysis software. However, for mobile eye

trackers and some head mounted static eye trackers, the coordinates in the data file

can not be utilized directly, because they correspond to different frames, i.e., the

coordinate system is changing for every single frame. Therefore, we use the object

of interest (a scientific poster in this chapter) as a standard to unify the coordinate

system. The coordinates from different coordinate systems are all transformed to

the coordinates in the same coordinate system in terms of the object of interest,

therefore, they become comparable and can be directly utilized. In this chapter, we

transform all the coordinates to the same coordinate system in terms of a poster, thus

the transformed coordinates can be used for further data analysis.

Given a video collected from a user wearing the mobile eye tracker to look at

the poster and an electronic version or a clear photograph of the poster (the original

poster), we are able to generate a CSV file with x and y coordinates in terms of

the poster. Here, an electronic version of the original poster is used to illustrate the

procedures. We have tested our approach on both, an electronic version and a clear

photograph, for many posters and the results are similar. To complete this task, the

video is first broken into a sequence of consecutive images or video frames. Figure 3.4

shows two examples of video frames extracted from a video of a user looking at the

poster. As explained in Section 2.2, the location of the crosshair indicates the user’s

focus point. However, the coordinate systems in the two frames are different, therefore

they need to be transformed into the same coordinate system. To transform the

coordinates into the same coordinate system, the following three steps are applied: 1)

Detecting the local features of the video frames and the original poster using speeded
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Fig. 2.2: Two examples of the original frames from the video

up robusted features (SURF); 2) Adopting an image registration approach to map

the rotated and distorted poster onto the original poster; 3) Converting the given

coordinates to the coordinate system in terms of the poster, or applying an object

detection approach to locate the red crosshair in the unified coordinate system if a

video is given without the coordinates of the crosshair.

2.3.1 Local Feature Detection

Local features are typically noticeable specific locations in the images, such as

mountain peaks, building corners, doorways, or interestingly shaped patches of snow.

“A local feature is an image pattern which differs from its immediate neighborhood”

(Tuytelaars et al., 2008). A feature detector is able to provide a representation that

allows local features to match effectively between images (Hassaballah et al., 2016),

therefore, they should have the following properties:

• Robustness: The feature detector should be robust against scaling, rotation,

and deformation;

• Repeatability: The features should be detected under different viewing condi-

tions and different scenes, i.e., having the same locations when putting them

back in the detected images;



47

• Informativeness: The detected features should be able to show enough varia-

tions, therefore can be used to distinguish different scene and objects, and be

applied in tasks such as image registration;

• Quantity: A reasonable number of features should be detected in an image, i.e.,

the number of the features should be sufficient enough to provide a compact

image representation that reflect the information content;

• Efficiency: The detection of features should be quick enough for time-critical

applications.

The feature-based approach is effective when the template image has strong

features. Since the poster images usually have salient local features, such as the

textboxes, images, edges and corners, it is feasible to apply local feature detectors to

extract features for image registration. Given enough corresponding feature points,

a transformation is then computed between the images.

There are a variety of algorithms to detect and describe local features, such as

scale invariant feature transform (SIFT) (Lowe, 2004), speeded up robust features

(SURF) (Bay et al., 2008), oriented fast and rotated binary robust independent ele-

mentary features (ORB) (Rublee et al., 2011), and binary robust invariant scalable

keypoints (BRISK) (Leutenegger et al., 2011). In this paper, SURF is used to conduct

the feature detection task because of its efficiency and accuracy.

SURF was proposed by Bay et al. (2008) as a scale- and rotation-invariant de-

tector and descriptor. The two main steps for the SURF algorithm are:

• Selection of interest points, such as corners and T-junctions, at different lo-

cations in the image. The detector is reliable that the same physical interest

points are detected under different viewing conditions.
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Fig. 2.3: The 200 most salient features on the original poster (left) and on one of the
video frames (right)

• Construction of the local descriptors by representing the neighborhood of every

interest point with a feature vector. The descriptor is invariant to view-point

changes of the local neighborhood of the interest points.

Figure 2.3 (left) shows the 200 most salient features detected with the SURF

algorithm on the original poster that is provided as a clear photograph of the poster,

and Figure 2.3 (right) shows the 200 most salient features detected on the left video

frame from Figure 3.4. The radius of the circle represents the scale (or the size) and

the center represents the location of the feature.

2.3.2 Registration

After the feature descriptors are extracted, the descriptor vectors between dif-

ferent images are matched based on the Euclidean distance between vectors. Two

feature vectors match when the distance between them is less than the matching

threshold. The matching threshold can be adjusted. An increase of the matching

threshold results in more matches; and vice versa. After the matching, filters, such

as the random sample consensus (RANSAC) algorithm (Fischler and Bolles, 1981) or

the m-estimator sample consensus algorithm (Torr and Zisserman, 2000), are applied

to remove outliers. Thus, the remaining matches are more accurate and correspond
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Fig. 2.4: All matched features (left) and matched features with outliers excluded
(right)

to the same scene viewed from different viewpoints. We are using the m-estimator

sample consensus algorithm to exclude outliers.

Figure 2.4 (left) shows the matched features using their descriptors: the round

red circles indicate the feature points detected on the original poster and the green

crosshairs indicate the feature points detected on the distorted poster in the video

frame. Then outliers are removed using the statically robust m-estimator sample

consensus algorithm, therefore spurious matches are eliminated and the remaining

matches are relatively more reliable. Figure 2.4 (right) shows the matchings with

the outlier removed from Figure 2.4 (left). After matching, the scale and angle of

the distorted poster compared to the original poster are calculated. A geometric

transformation is then performed on the distorted poster to recover the distortion

from the original one. Figure 3.5 (right) shows the image registration result after

the geometric transformation. The new coordinate of the crosshair in terms of the

original poster is calculated and plotted in Figure 3.5 (left). The calculation methods

are described in Section 2.3.3.

2.3.3 Determining the Coordinates in the New Coordinate System

If the coordinates of the crosshairs in the video frames are provided, the locations
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Fig. 2.5: Image registration: the clear photograph of the poster with the calculated
coordinate of the crosshair (left) and the transformed poster from the video frame
(right)

of the crosshairs in terms of the poster can be calculated based on the scales and

angles from the geometric transformation. However, if the eye tracking video is

provided without the coordinates of the crosshairs, further processing is needed for

the calculation. We developed a heuristic object detection approach to locate the

crosshair based on its features.

Extracting the Crosshair Color

To detect the location of the red crosshair, the red objects are first extracted

based on the red, green, and blue (RGB) values (Garg, 2015). However, there are

several noises due to the other red components in the poster. Figure 2.6 (left) shows

the extracted red components from the left video frame from Figure 3.4. To locate

the crosshair, the noises are removed first and an object detection approach is applied

thereafter.

When the poster has too many red components, changing the color of the crosshair

may be necessary. If the crosshair has a different color, the objects with that color

in the image are extracted instead. The user has to change the code provided by

the toolbox function to extract a different color other than red, however, the working



51

and coding principle remains the same. For all the posters we have experimented

with, even with lots of red and orange (the colors that have very high “R” values)

components in them, the following algorithm still works effectively.

Removing the Noises

For all the connected components of the image, bounding boxes are created and

the length/width ratios are calculated. If the ratio is too small (smaller than 2) or

too large (larger than 7), the connected component is removed. The lower and upper

thresholds of the ratio, i.e., 2 and 7, are determined based on the shape of the legs

of a standard crosshair. After removing the connected components whose shapes are

too different from the legs of the crosshair, additional noises are removed, based on

the major axis length of the ellipse that is tangential inside the bounding box. If the

length of the major axis is too small (smaller than 20 pixels or half of the median of all

the major axis lengths) or too large (larger than 80 pixels or two times the median of

all the major axis lengths), the component is removed. The two thresholds, i.e., half

and twice of the median (or 20 and 80 pixels), were determined based on empirical

experiments. If there are several noises and most of their sizes are much smaller

or much larger than the leg of the crosshair, a fixed threshold is used, such as (20,

80). If some of the noises have sizes larger than the crosshair and some have sizes

smaller than the crosshair or if there are not many noises, a dynamic threshold is used,

such as (0.5*Median, 2*Median). This process is repeated until all the major axis

lengths are similar to a standard crosshair so that no additional components can be

removed. The next step is to find the pairwise distances between the centroids of all

the remaining components. In particular, the components whose pairwise distances

with all other components are between 0.3 and 4 times the median of the major axis

lengths are removed. Table 2.1 shows the summary of the thresholds applied in the
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Table 2.1: Threshold applied in removing the noises (M is the median major axis
length of all the remaining connected components)

Feature Length/width ratio Length Distances
Threshold (2, 7) (20, 80) or (0.5*M, 2*M) (0.3*M, 4*M)

Fig. 2.6: Extracted red objects in the image before (left) and after (right) removing
the noises. (The black connected components are the foreground and the background
is white.)

noises filtering procedure. The thresholds can be changed easily in the code provided

by the toolbox. Figure 2.6 (right) shows the remaining components after the noises

removal procedure.

Finding the Center of the Crosshair

The orientations of the remaining components in the image are detected. Orien-

tation is measured by the degree of the angle between the x-axis and the major axis

of the ellipse that is tangent inside the bounding box of the component. The range of

the angle is from -90 to 90 degrees. Figure 2.7 (left) shows the ellipse that covers the

connected component and Figure 2.7 (right) shows how the orientation is measured:

the angle between the longer solid line representing the major axis of the ellipse and

the dashed line representing the x-axis.

The absolute value of the orientations of the components are binned by 10 de-

grees from 0 to 90 degrees. There are nine bins in total. The components with
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Fig. 2.7: The connected component (left) and its definition of orientation (right)

the orientations falling into the same bin are considered to have similar orientations.

(Their orientations are different by 10 degrees at most.) If there are four remaining

components that are adjacent and two of their pairs have similar orientations, then

the location of the crosshair is the spatial mean of the two centroids of the pair that

has the smaller difference in their orientations. If there are more than two remain-

ing components in a bin, i.e., at least two components that are not the legs of the

crosshair are in the same bin, the orientation differences between the components are

calculated and compared with the differences in other bins. If there are noises, the

differences in the orientations of the components are most likely to be larger than the

differences in the bins with just the crosshair. Figure 2.8 (top left) shows the remain-

ing components after removing the noises. There are four horizontal components and

two vertical components that are in two different bins. The pairwise differences of the

four horizontal components’ orientations sum up to be 7.89 degrees, which is larger

than the difference between the two vertical components’ orientation (0.99 degrees).

The spatial location of the crosshair is then determined by averaging the centroids of

the two adjacent vertical legs.

If there are three legs visible on the poster, the location of the crosshair is calcu-

lated by taking the spatial average of the legs that have similar orientations, either

the two vertical legs or the two horizontal legs. Figure 2.8 (top right) shows how the

spatial location of the crosshair is determined by averaging the centroids of the two

vertical legs.
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Fig. 2.8: Detecting the location of the crosshair with four visible legs (top left), with
three visible legs (top right), with two visible legs (bottom left), and with one leg
(bottom right). The red bounding boxes are indicating the legs that are used to
calculate the center of the crosshair. The red mark in the middle is the calculated
coordinates of the crosshair by averaging the centroid of the two legs with bounding
boxes.

If there are two legs visible on the poster, the intersection point of the two

perpendicular axes is the spatial center of the crosshair. Figure 2.8 (bottom left)

shows how the spatial location of the crosshair is determined by taking the intersection

point of the axes of the two vertical legs. If the intersection point is beyond the poster

boundary, then the crosshair is considered invisible on the poster. If there is only one

leg visible on the edge of the poster, as shown in Figure 2.8 (bottom right), the

crosshair is considered to be invisible on the poster.

The images in this section, except Figure 3.5, are generated for illustration pur-

pose, and are not an output of the EyeTrackMat toolbox functions.
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2.4 Toolbox Functionality

The Matlab toolbox EyeTrackMat provide functions to extract eye tracking

data from mobile eye tracker using the approach described in Section 2.3. The

GetVideoFrame function is firstly used to break the video into individual video frames

and then the ExtractData or ExtractData2 functions are used to extract data from

the video frames. Commonly used eye tracking visualization tools are available in the

EyeTrackMat toolbox to visualize the data extracted from the video.

The AVI video that is recorded by the ASL mobile eye tracker is broken into

consecutive video frames with the GetVideoFrame function (Zheng, 2014). Other

video formats, such as MP4, WMV, or MOV can also be directly used in this function

depending on the platforms one is using (The MathWorks Inc., 1994-2017). The user

can specify the starting and ending time, the interval in seconds between each frames,

and the output directory for the video frames. The GetVideoFrame function returns

the video frames in the specified output directory.

ExtractData and ExtractData2 are written to conduct the data extraction. Ex-

tractData is used when the coordinates of the scene are unknown and ExtractData2 is

used when the coordinates of the scene are given. Users need to specify the directory

of the video frames, the file that contains the clear image or photograph of the poster,

the output CSV file, the location where to store the matched images, and the starting

and ending iterations, i.e. from which video frame to which video frame the extrac-

tion should be conducted. For ExtractData2, users have to input the coordinates

of the crosshair in terms of the scene. The output of the two functions include the

matched images compared with the clear version of the poster that has the extracted

coordinate labeled for quality check purposes, and a CSV file of the coordinates of

the crosshair in terms of the poster. According to our empirical experiments, the

default settings of the two functions are able to extract meaningful data sets from the
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participants looking at the scientific posters. However, the matching parameters (see

Section 2.3.2) and the color parameters (see Section 2.3.3) can be modified based on

the code provided by the toolbox.

The visualization functions heatmap generator and scanpath are taken from Kras-

sanakis et al. (2014) to generate attention maps and scanpath visualizations. We

added the poster as the background image of the scanpath visualization and made

the sequences of the scanpath visible. The Scatterplot function is used for the scat-

terplot creation.

Figure 2.9 shows the flow chart of the data processing in the EyeTrackMat

toolbox and the structures of the functionality: The raw video data need to be broken

into a folder of video frames. Data extraction functions can then be applied. With

a csv file generated, data visualization tools are adopted for the data validation and

exploration.

2.5 Application

The functionality of EyeTrackMat toolbox is presented in the following appli-

cation.

2.5.1 Subjects

Data were collected on three participants, one computer science PhD student

specialized in image processing (P1), one PhD student in Electronic Engineering

(P2), and one computer science undergraduate student (P3). All three participants

had normal or corrected-to-normal vision.

2.5.2 Procedures

A poster on medical image processing was set up on the wall in the eye tracking
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Fig. 2.9: Flow chart of the EyeTrackMat processing procedures

lab. Figure 2.10 shows a clear image of the poster. The dominating color of the poster

is very close to red, the color of the crosshair that we are using; therefore, more noises

from this poster are expected. We used a 30 Hz mobile eye tracker manufactured by

ASL. The participant stood one to two meters away from the poster and was allowed

to move around. The participant was firstly looking at the poster freely for 90 seconds.

Then one of the authors read one question and let the participant look back at the

poster to find the answer. Three questions were asked. One video was recorded for

each of the participants, so we recorded three videos in total. Each video is about 3

minutes long overall. Therefore, we have around 3 ∗ 60 ∗ 30 = 5400 video frames for

each participant.
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Fig. 2.10: Poster used in this application

2.5.3 Data Quality

A total of 200 video frames were randomly selected from 2700 ∗ 3 video frames

of the 90 seconds of free viewing time for each participant. Based on a stratified

sampling technique, 66 to 68 samples were taken from each participant. Among

the 200 video frames, there are 29 missing coordinates (14.5%) according to our data

extraction results based on the object detection approach. Since we are able to obtain

a CSV file of the original coordinates of the crosshairs in terms of the video frame,

the coordinates in terms of the poster can also be calculated based on the scales and

angles from the geometric transformation for a comparison of the results. There are

30 missing coordinates (15%) according to the data extraction results. The missing

data is reported slightly differently for the two data extraction approaches. In this

case, the discrepancy is because when the crosshair is on the edge of the poster, the

object detection approach is still able to identify the remaining crosshair while the

transformed coordinate is outside the poster boundary (see Figure 2.11).

Missing Data

The reasons for the missing data have been investigated. 16 out of the 29 frames

don’t have the crosshair on the poster (Figure 2.12 (left)), or the center of the crosshair

falls outside of the poster (Figure 2.12 (right)). In these situations, we assume that
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Fig. 2.11: The coordinates transformation identifies that for this video frame, the
focus point is not on the poster, but the object detection identifies that the focus
point is on the poster.

the participant is blinking or not looking at the poster. The rest of the missing data

(13 out of 29) occurred because the image matching algorithm is not robust against

the distortion of the image due to the visual curvature. Figure 2.13 (left) shows

the original video frame and Figure 2.13 (right) shows the matching result. As the

matching is not very accurate in this case, we fail to extract the coordinates of the

crosshair.

Missing data could be imputed by taking the average of the coordinates of the

previous and the next video frame, or by duplicating the coordinates obtained from

the previous or the next video frame. Other missing data imputation approaches

could also be explored. Since we have a large enough sample size, the missing data

are deleted for further data analysis in the following application. There are still about

5400*0.85 = 4590 video frames left after removing the missing data.

Extraction Error

The extraction error is defined as the Euclidean distance between the calculated
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Fig. 2.12: Missing crosshair: the poster on the left does not have a crosshair and the
poster on the right has a crosshair but with only one leg on the poster.

Fig. 2.13: Missing coordinate: there is a crosshair on the poster (left), however, due to
the inaccurate matching in this case, we fail to detect the coordinates of the crosshair
(right).

coordinates and the true location of the crosshair. The true locations of the crosshairs

for 200 video frames were manually labeled by one of the authors of this article. The

dimension of every video frame and matched image is 640∗480 pixels (width*height).

For the object detection approach, the average of the extraction error is 20.8

pixels, with a median of 15.9 pixels and a standard deviation of 21.2 pixels. Figure 2.14

shows the accuracy of the algorithms: The red star shows the coordinates calculated

by the software, and the blue dot shows the true location labelled by one of the

authors. The smaller orange circle is drawn with the purple dot as the center and the

median extraction error (15.9 pixels) as a radius. The larger purple circle is drawn

with the purple dot as the center and the mean extraction error (20.8 pixels) as a

radius. The two circles show visually about how much the extracted coordinates are
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Fig. 2.14: Poster (left) with labeled true location (purple dot), the mapped location
(orange star), the median accuracy (smaller orange circle), and the mean accuracy
(larger purple circle), and the matched video frame (right).

away from the true locations on average or in terms of the median extraction error.

The distribution of the errors after removing one outlier are shown in a histogram in

Figure 2.15 (left). There was one outlier whose extraction error is 614.7 pixels, due

to the failure of detecting the crosshair.

For calculations based on the coordinates transformation, the average of the

extraction error is 20.1 pixels, with a median of 17.7 pixels and a standard deviation

of 21.8 pixels. The histogram of the errors after removing the outlier is shown in

Figure 2.15 (right). The distributions of the extraction errors based on the two

estimation approaches was similar.

More experiments on posters with different colors and contents were also con-

ducted and the data quality was similar.

2.5.4 Results

Figure 3.6 shows the scatterplots of where the focus points are and Figure 3.10

shows the heat maps of the viewing patterns for the 90 seconds of free views from the
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Fig. 2.15: The distribution of the extraction error: the errors from the calculation
based on the object detection approach (left) and the errors from the calculation
directly based on the geometric transformation (right)

three participants. It seems that the two PhD students (P1 and P2) were able to focus

on more parts of the poster within the limited amount of time than the undergraduate

student (P3). P1 is even trying to read some of the more detailed formulas, as we

can see there are some light hot spots on the formulas in Figure 3.10 (left).

For the first question, the PhD student specialized in image processing (P1)

didn’t even look back at the poster and immediately gave the answer. It seems that

the PhD student in Electronic Engineering (P2) looked all over the poster to find the

answer, while the undergraduate student (P3) just looked at the key words in the

title and gave the answer.

We used scanpath visualizations to visualize how the participants search for

answers of the three questions. Here we only show the results for Question two.

Results for Questions 1 and 3 are not presented in this chapter. Question 2 asked

to judge whether the following statement is true or not: “There are three main

parts for the proposed image segmentation framework.” An example of a scanpath

visualization presenting how the participants are searching answers for this question

is shown in Figure 2.18. For this question, both PhD students (P1 and P2) searched
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Fig. 2.16: Scatterplot for 90 seconds of free viewing: P1 (left), P2 (middle), and P3
(right)

Fig. 2.17: Heatmap for 90 seconds of free viewing: P1 (left), P2 (middle) and, P3
(right)

more parts on the poster in order to find the answer, while the undergraduate student

seemed to look at only a smaller part of the poster. According to the fixation detection

algorithm from Krassanakis et al. (2014), there are no meaningful fixation points

detected for the undergraduate participant (P3). Therefore, only the viewing patterns

from P1 and P2 are presented in Figure 2.18. The answer to the question is located

at the bottom of the middle column of the poster that is highlighted in a black box

shaded in a light gray color. Only P2 eventually found the correct answer. P1 only

briefly looked at the area and P3 didn’t look over the area at all. Therefore, both of

them gave the wrong answer.

2.6 Conclusion and Discussion
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Fig. 2.18: Scanpath for Question 2: P1 (left), P2 (right)

In this chapter, we proposed the application of feature detection and image reg-

istration approaches to automatically extract data from mobile eye trackers. In ad-

dition, we proposed a heuristic object detection approach to find the focus point

of people looking at posters when only the video data from a mobile eye tracker

is provided. Our proposed methods enable researchers to automatically obtain the

coordinates in the same coordinate system indicating where people are looking at

a poster, so that they don’t have to manually look at every single video frame to

decide the focus points on the poster. A case study was provided to illustrate the

functionality of the toolbox and data quality of the proposed approach.

More experiments have been conducted on different types of posters. The posters

with the height larger than the width usually generated better results, due to a smaller

viewing distortion from the video. Scientific posters mostly have strong features and

the default set of our function can conduct the image matching task. However, when

our extract data functions were applied to some relatively simple designed posters

or images, the threshold for detecting the features needed to be lowered in order to

return to more blobs of features, thus generating meaningful matches. If necessary,

the threshold for matching can be lowered as well. For the posters containing too

many red components that influence the data extraction results, we recommend to

change the default color of the crosshair to green or some other color that shows up
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less in the poster.

Future work will be to further improve the data quality by making the image

matching more robust against distortions. Also, other applications can be explored,

such as verifying the saliency algorithm with how people are looking at images, and

application in marketing research by analyzing video data of how potential customers

look at commercial posters or power point slides. Furthermore, other objects can

be thought of as a poster, therefore, this automatic data extraction approach could

be applied in extracting data of how people are looking at other objects, such as a

person’s face or body, a machine, or a tool, etc. Symanzik et al. (2017b) extended

the application on looking at power point slides to judge human postures by using

the EyeTrackMat toolbox. More visualization tools can be found in our R package

EyeTrackR that is soon to be released on the Comprehensive R Archive Network

(CRAN) (Li and Symanzik, 2017; Symanzik et al., 2017b).
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CHAPTER 3

THE LINKED MICROPOSTER PLOTS FAMILY AS NEW MEANS FOR THE

VISUALIZATION OF EYE TRACKING DATA

3.1 Introduction

Eye tracking is the process of measuring where people are looking at with an eye

tracker device. Eye trackers were first built in the late 1800s and have been developed

rapidly during the past century. Holmqvist et al. (2011) provided a comprehensive

review on the history of eye trackers as well as on the principles of how they work. Eye

trackers nowadays are mostly using the corneal reflection of an infrared light emitting

diode to illuminate and generate a reflection off the surface of the eye (Cooke, 2005).

This approach is able to track pupils precisely, therefore meaningful scene videos

indicating where people are looking at are generated.

Eye tracking techniques have been applied in a variety of research fields, such as

education, usability research, sports, psychology, and marketing. There exist several

literature reviews focusing on the application of eye tracking, e.g., Rayner (1998)

provided a comprehensive review on eye tracking for the past twenty years in reading

and information processing, and Jacob and Karn (2003) provided a comprehensive

review of eye tracking in human-computer interaction and usability research. Software

for eye tracking data has been developed with R (R Core Team, 2016) packages

(von der Malsburg, 2015; Dink and Ferguson, 2015), Matlab toolboxes and functions

(Krassanakis et al., 2014; Berger et al., 2012), Python packages (Sogo, 2013; Dalmaijer

et al., 2014) and in other environments (Heminghous and Duchowski, 2006), to detect

eye movement events, to visualize and model eye tracking data, and to clean raw eye
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tracking data.

The eye tracking technology has become more and more affordable and accessible

nowadays (Gould and Zolna, 2010). There exists some research on eye tracking for

posters and related media. Barber et al. (2008) investigated posters in a computer

simulated outdoor environment in order to “provide common measurement frame-

work for poster panel visibility across settings and perspectives” with an eye tracking

approach. Andersson (2010) looked at the effect of visual in-store advertisement de-

signing on customers’ decisions on purchasing, with participants’ eye movement data

recorded sitting in front of a computer screen. Using a mobile eye tracker, Foulsham

and Kingstone (2011) investigated how people were looking at posters in an indoor

environment, but with a focus on academic posters from psychology. However, none

of the existing literature on eye tracking for posters has specifically discussed eye

tracking visualization or adopted any new visualization techniques. In this chapter,

we propose three different types of linked microposter plots to visualize eye tracking

data of how people are looking at posters, recorded with a mobile eye tracker. These

types are basic linked microposter plots, linked timeline microposter plots, and linked

scanpath microposter plots. Linked timeline microposter plots and linked scanpath

microposter plots are extensions of basic linked micromap plots, and are used to vi-

sualize the scanpath of the eye tracking data. Therefore, time series information of

eye tracking data is included in these visualizations. Basic linked microposter plots

were first introduced in Li and Symanzik (2016). Software implementations of these

three types of linked microposter plots can be found in the EyeTrackR R package

(Li and Symanzik, 2017).

The remainder of this chapter is structured as follows: We will discuss eye track-

ing technology and eye tracking data collection and processing in Sections 4.2 and

3.3, respectively. Eye tracking data visualization, the development of the linked mi-
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croposter plot, and the construction of the linked microposter plot will be discussed

in Sections 3.4, 3.5, and 3.6, respectively. The resulting plots will be presented in

Section 3.7. The linked timeline microposter plot and the linked scanpath microp-

oster plot will be introduced and presented in Section 3.8. We will finish with our

conclusion and outline our future work in Section 4.4.

3.2 Eye Tracking Devices

There are two main types of eye tracking devices: static eye trackers and mobile

eye trackers. Static eye trackers are based on a desktop, hence they are often used

to study eye motion on a computer screen. Mobile eye trackers are fixed on a user’s

head, so they are not limited within a restricted area and can be used for a variety of

activities, such as playing soccer, driving, etc. Figure 3.1 shows all components of the

mobile eye tracker equipment manufactured by Applied Science Laboratory (ASL).

There is a portable data transmit unit (DTU), a laptop with a wireless reception

connected to the DTU, and a pair of eye tracking glasses with optics. The eye

tracking glasses are the main part of the mobile eye tracker. There are two cameras

on the eye tracking glasses: one tracks the participant’s eye and the other one records

the environment observed by the participant.

The data generated from such equipment typically include a scene video indi-

cating where the participant is looking at (there is only one video generated for each

recording, though we have two cameras), and a data file that contains the x and y

coordinates, pupil radiuses, mouse cursor positions, etc. The x and y coordinates

exactly refer to where the participant is looking at on the computer screen for most

static eye trackers, therefore, they can be directly processed with the eye tracking

data analysis software. However, for mobile eye trackers and some head mounted

static eye trackers, the coordinates in the data file correspond to different coordinate
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Fig. 3.1: ASL mobile eye tracker equipment showing the DTU in the front, the eye
tracking glasses to the right, and the laptop in the back.

systems, i.e., the coordinate system is changing for every single frame due to the

change of scences. In these situations, the videos first must be processed so that all

the coordinates are transformed to the same coordinate system in terms of a poster,

thus the resulting data can be used for further analysis.

3.3 Data Collection and Processing

The two co-authors of this chapter looked at a series of statistical and other

scientific posters, using a 30 Hz mobile eye tracker from ASL that records 30 images

per second. For each poster, the areas of interest (AOIs) were defined in advance,

such as the title, logos, multiple text areas, images, and tables. For this chapter,

two of the posters, the resulting videos, and data files have been used. The data for

Poster 1 is based on a controlled experiment. The data for Poster 2 is based on a

“free-viewing” experiment where no instructions were given to the participant. The

AOIs of the posters can be automatically defined with the EyeTrackR R package.

The rectangles that represent the AOIs are drawn by mouse clicking two vertices and

they are named by the analyst. Figure 3.2 shows the twelve defined AOIs of Poster

1 and Figure 3.3 shows the nine defined AOIs of Poster 2. The red bounding boxes

outline the defined AOIs. An additional AOI, called “Blank”, contains all the empty
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space between these main AOIs. Poster 1 is used to test the data processing results

and the validity of the linked microposter plot. The participant is timed to look at

eight of the AOIs for about six seconds and at four of the AOIs for about two seconds.

Poster 2 is used for a “free-viewing” experiment where it was left to the participant

to look over the poster with the general goal to understand as much of this poster

as possible. The data and video for both posters were processed in the same way.

Overall, the participants looked at Poster 1 for about 56 seconds and at Poster 2 for

about 80 seconds, resulting in a total of 1680 and 2400 video frames, respectively.

For further analysis, the video is broken into a sequence of consecutive video

frames, also via the EyeTrackR R package. Figure 3.4 shows an example of one of

the video frames extracted from the video recorded on Poster 1. The red crosshair

indicates where the participant is looking at. Since the scene is changing all the

time (because of movements and head movements), the coordinates of the crosshair

correspond to different coordinate systems and are not comparable, therefore they

need to be unified to the same coordinate systems. Image registration and object

detection approaches are used to automatically extract the location of the focus point

at the center of the crosshair. Li et al. (2017) provided the EyeTrackMat Matlab

toolbox to conduct the video data processing task and Li and Symanzik (2017) made

this functionality more widely available as part of the EyeTrackR R package.

Figure 3.5 shows the result of the automatically extracted focus point overlaid

on the poster: the image on the right shows where the crosshair is in the original

video frame and the image on the left shows the automatically extracted focus point

that is overlaid with a black circle on Poster 1. Figure 3.6 shows all the automatically

extracted focus points overlaid on Poster 1.

3.4 Eye Tracking Data Visualization
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Logo Title Img1

Data

Tab1

Con

Intro

Img2

Tab2

Plot1

Plot2

Ack

Fig. 3.2: Poster 1 with twelve AOIs (shown inside the red bounding boxes). The
abbreviations Img, Tab, Intro, Con, and Ack refer to the images, tables, introduction,
conclusion, and acknowledgement in the poster.

Title

Intro

Methods

Plot1

Plot2

Tab1

Tab2

Con

Ref

Fig. 3.3: Poster 2 with nine AOIs (shown inside the red bounding boxes). In addition
to the abbreviations used in Figure 3.2, Ref is used to refer to the references in this
poster.
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Fig. 3.4: One of the original video frames from the video of the viewing of Poster 1.
The red crosshair shows the focus point of the participant in this video frame.

Fig. 3.5: Automatically extracted focus point overlaid on Poster 1 (left), based on
the video frame of the viewing of Poster 1 shown in Figure 3.4 (right).

Graphical methods are among the most important tools to explore eye tracking

data. Common statistical graphics, such as dot plots, bar charts, and box plots, are

frequently used to visualize eye tracking data. Figures 3.7 and 3.8 show examples of

using dot plots and bar charts to visualize how much time the participant has spent
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Fig. 3.6: All extracted focus points overlaid on Poster 1, based on the video frames
of the viewing of Poster 1.

on each AOI of Poster 1. As a reminder, data from this experiment were obtained by

looking at eight of the AOIs for about six seconds and at four of the AOIs for about

two seconds. Both figures reveal that the actual looking times for these AOIs differ

up to one second from the intended looking time. This may be because of frames

where no crosshair could be detected or the image could not be matched properly

with the poster. Figure 3.9 shows an example of using box plots to visualize the

pupil radius in each AOI of Poster 1. The participant’s pupil dilated looking at

Image 1 and the variation of the pupil radiuses is high looking at Blank area. Pupil

radiuses are measured in pixels on the eye camera and are only comparable within the

same experiment with the same calibration. Though it hasn’t been fully established

what the changes of pupil radiuses really mean, pupil dilation has been shown to

be an indication of changes in light, arousal, cognitive and emotional events, and

the difficulty of the task at hand (Fong, 2012). These three graphs present the eye
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tracking data statistics, however, they are not overlapped with the poster. Therefore,

it is more difficult to obtain further insights of the viewing patterns of the participant.

Attention maps are also frequently used for eye tracking data visualization (Holmqvist

et al., 2011). Attention maps are usually based on heat maps or hot spot maps, using

a Gaussian kernel function. Figure 3.10 shows the attention map for Poster 1. With

the hot spots overlaid on the poster, it is quite obvious at which areas the participant

is looking most frequently: the hot spots mostly appeared on the top part of each

AOI, which can be explained by the viewing time limitations for each AOI. Because

the participant was reading from top to bottom and left to right in each AOI, only

the first few lines of text could be read in the allowed amount of time. However, only

one variable at a time can be visualized in a single attention map. Also, converting

numeric values into a few colors results in an immediate loss of information.

The term “scanpath” was first introduced by Noton and Stark (1971) to describe

the chain of fixations and saccades. Fixation is the state when the eye remains

stable for a period of time, and a saccade is the rapid movement of the eye from

one fixation to another. In visual representations of scanpaths, circles are used to

represent fixations and lines are used to represent saccades (Goldberg and Helfman,

2010b). The radius of the circle indicate the duration of the fixation. Figure 4.4

shows the scanpath map for Poster 1. Fixations and saccades are identified with the

saccades R package (von der Malsburg, 2015). The numbers in the circles indicate the

sequential order of the fixations. Scanpaths give the sequence of one’s eye movements,

however, when the viewing patterns become more complex, the crossings and overlaps

of scanpaths make it more difficult to perceive the visual patterns.

The AOI timeline (Figure 4.3) shows both the start and end times, as well as

the temporal sequence of changes between AOIs. The horizontal axis shows the AOIs

and the vertical axis shows the time. We can see from the plot that the participant
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Fig. 3.7: Dot plot: visualizing the length of visits in each AOI for Poster 1.
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Fig. 3.8: Bar chart: visualizing the length of visits in each AOI for Poster 1.

revisited the data and the title very briefly. The conclusion has been visited twice

as well, with a very short visit at the first time. However, an AOI timeline does not

present the spatial locations of each AOI from the plot.

There does not exist any type of plot that is specifically designed to visualize

how people are looking at posters. To overcome the shortcomings of the commonly

used eye tracking data visualization techniques, we introduce a linked microposter
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Fig. 3.9: Box plot: visualizing the pupil radius in each AOI for Poster 1.

Fig. 3.10: Attention map: hot spots that attract the participant’s attention for
Poster 1.

plot to visualize eye tracking data on posters. Further, a linked timeline microposter

plot and a scanpath microposter plot are extended to include scanpath time series
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Fig. 3.11: Scanpath map: the viewing sequences of the participant looking at Poster
1.

Fig. 3.12: AOI timelines: the temporal sequence of changes in viewing between AOIs
for Poster 1.

information in the plot.

3.5 The Development of Linked Microposter Plots

The linked microposter plot is based on the idea of linked micromap plots, a

plot type that was first introduced in 1996 to highlight geographic patterns and
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associations among the variables in a spatial dataset (Carr and Pierson, 1996). It has

been widely used to display geospatially-indexed summary statistics. For some in-

depth discussion of linked micromap plots, the reader is referred to Symanzik and Carr

(2008), Carr and Pickle (2010), Symanzik et al. (2014), and Symanzik et al. (2017a).

According to Carr and Pickle (2010), the linked micromap plots can represent any

two-dimensional space, not just latitude-longitude on the Earth’s surface. Based on

this idea, we can think of a poster as a map and the AOIs of the poster as the different

countries or states. The AOIs of the posters are the figures, tables, text areas, titles,

etc. The length of time spent and the number of times each AOI is visited, and

pupil radiuses are some of the variables of interest. Other variables, such as eye

movement speed, can also be visualized using linked microposter plots. Variables can

be visualized with different plot types, such as dot plots, bar charts, and box plots,

in different statistical data columns, all linked to the original poster and not isolated

as in Figures 3.7, 3.8, and 3.9.

Compared to an attention map, linked microposter plots can be used to explore

selected AOIs, instead of simply looking at the hot spots. Rather than focusing on a

single detailed poster, there are multiple small posters (microposters) shown in linked

microposter plots. The same colors are used to link the areas in the microposters, the

names of the AOIs, and the statistical data columns. Providing small microposters

on the sides, the linked microposter plot reveals the location patterns where one (or

multiple) participants look at most on a poster.

3.6 Linked Microposter Plots Construction

Computer code to construct linked micromap plots has been available since their

introduction in 1996, as summarized in Symanzik and Carr (2013). Major R code

was provided in 2010 in support of Carr and Pickle (2010). With the advancement
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of the R computing environment, more advanced R code for the production of linked

micromap plots has been developed. Two R packages, micromap (Payton et al.,

2015b,a), and micromapST (Carr and Pearson, 2015; Pickle et al., 2015), have also

been developed to make it easier for non-experts to produce linked micromap plots.

However, the micromapST R package is focused on linked micromap plots for the

United States. The micromap R package can be used for any geographic regions,

but it requires new geographic shapefiles. Therefore, we developed our R code in the

EyeTrackR R package for the construction of linked microposter plots based on the

original R code for linked micromap plots provided by Carr and Pickle (2010).

The state border data for linked micropmap plots is replaced with the R border

data generated by user-defined AOIs. The nation border for linked micromap plots is

changed to the border of the whole poster. The poster image is used as the background

image in each linked microposter plot. For better showing of the colors that link the

various columns, the poster image is changed to a grayscale version.

The variables investigated in our experiments for this chapter are the length of

visits, number of visits to each AOI, and the pupil radius in pixels. Length of visits

is how long the participant has spent looking at each AOI. Number of visits is how

many times the participant has looked at each AOI.

3.7 Linked Microposter Plots Interpretation

Figure 3.13 shows linked microposter plots for Poster 1. The first column shows

the microposters, the second column shows the color legend, and the third column

shows the AOI names. The last three columns are the statistics columns. The gray

shaded AOIs are the AOIs that are not of interest in the corresponding panel. The

light yellow shaded AOIs are the AOIs that have been investigated in the previous

microposters above the current microposter. The rows are sorted by the length of
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visits. Each dot that represents an AOI is horizontally aligned with its AOI name and

linked through color with the AOI on the microposter. The AOIs are separated into

several perceptual groups (three in Figure 3.13 and two in Figure 3.14.). Perceptual

groups typically contain between two and five of the AOIs. Such a design helps the

reader to focus on the values of a few mapped AOIs at once and allows to quickly

identify clusters of mapped AOIs with similar values of the sorting variable (Carr and

Pickle, 2010).

As stated in Section 3.3, the video of Poster 1 is recorded for a controlled experi-

ment where the participant is looking at eight AOIs for about six seconds and at four

AOIs for about two seconds. Figure 3.13 verifies that the length of visits for eight

AOIs are around six seconds and around two seconds for the remaining AOIs other

than the blank AOI. Although all of the AOIs are supposed to be visited only once,

several of the number of visits are bigger than one. This is because the participant’s

visual focus point is moving from one AOI to another and may pass through other

AOIs, resulting in an increased number of visits for those AOIs. To take some of these

situations into account, if the length of visits is less than a threshold of 1/10 second,

it does not count as a visit. The threshold can be changed by the analyst. The right-

most data column in Figure 3.13 shows the pupil radiuses for each AOI visualized via

boxplots. The participant’s pupil dilated while looking at the acknowledgement and

at Image 1 of the poster, possibly because the participant saw someone he knows in

the acknowledgement during the six seconds of reading and the image attracted him

shortly for the two seconds of looking at it.

Linked microposter plots for Poster 2 are shown in Figure 3.14. This figure shows

some spatial clusters of the eye tracking data that we would not be able to see in the

simpler row-labelled plot designs shown in Figures 3.7, 3.8, and 3.9. We can see that

the top microposter highlights the main content in the center regions of the poster,
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Fig. 3.13: Linked microposter plots of the eye tracking data for the AOIs for Poster 1.

while the bottom microposter highlights the parts in the corners of the poster. This

indicates that the participant has spent most of the time on the main content of the

poster, i.e., both tables, the introduction, the conclusion, and one of the plots of the

poster.

We are able to visualize and compare multiple variables via several statistics

columns in linked microposter plots, making it easier to identify the relationship

between these variables. In Figure 3.14, the number of visits and the length of visits

doesn’t seem to have a strong association. In fact, a numerical assessment confirms

that the correlation coefficient r is 0.032 between these two variables. Pupil radius

seems to be negatively associated with the number of visits and the length of visits,

with r = −0.43 and −0.64 respectively (r is calculated based on the median pupil

radius in each AOI.).

3.8 Linked Timeline Microposter Plots and Linked Scanpath Microposter

Plots
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Fig. 3.14: Linked microposter plots of the eye tracking data for the AOIs for Poster 2.

Linked timeline microposter plots and linked scanpath microposter plots are ex-

tensions of a basic linked microposter plots. Linked microposter plots have many

advantages over the commonly used eye tracking visualization techniques, however,

the viewing sequences can not be shown in basic linked microposter plots. To over-

come this disadvantage, we developed linked timeline microposter plots and linked

scanpath microposter plots to visualize the timeline and the scanpath of eye move-

ment. Linked timeline microposter plots are inspired by the idea of AOI timelines

and linked scanpath microposter plots are inspired by the scanpath map.

3.8.1 Linked Timeline Microposter Plots

Compared with an AOI timeline, linked timeline microposter plots also show the

spatial locations of the AOIs. Thus, the spatial clusters of the participant’s viewing

patterns can be identified. When there are many revisits of the AOIs, an AOI timeline

is becoming complicated and confusing. Since linked timeline microposter plots only

focus on several AOIs at a time in a microposter, an increased number of visits does

not affect the quality of the visualization. Further, with more quantitive variables
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presented in one single plot, readers are able to explore the relationship among several

variables.

Figure 3.15 shows an example of linked timeline microposter plots sorted by

the viewing sequence. The numbers labeled inside the AOIs indicate the viewing

sequence. Each color represents an AOI. We can see from the plot that the participant

is looking from the top left to the top right and then from top to bottom column

by column. While it is quite difficult to extract the exact viewing sequence of the

AOIs from Figure 4.3, the sequential top-down arrangement immediately reveals the

viewing sequence of the AOIs in Figure 3.15 respectively. Ideally, each of the AOI

should have a different color, making it easier to identify the revisits of the AOIs. For

example, in Figure 3.15, the light red, dark green and dark blue showed up twice in

the microposters. Therefore, it is apparent that the bottom left AOI (the conclusion

section) colored in light red has been visited three times, although the visits number

5 and 7 are just very quick glances. The visits of the data section (colored in dark

green) are split into visits 4 and 6, due to the participant’s glance at the conclusion

section. The participant’s eye passed by the title (colored in dark blue) again while

his focus point moves from the first column to the second column on the poster. If

the number of AOIs is more than the number of colors, the colors are recycled, i.e.,

some AOIs are shaded with the same color.

Linked timeline microposter plots can also be sorted by any of the other vari-

ables shown in the statistical columns, such as the length of visits and pupil radius.

Therefore, the relationship between the viewing sequence and any other variable can

be explored. Figure 3.16 shows an example of sorting the plot by the median of the

pupil radius in a descending order. The plot shows that the participant’s pupil radius

is larger at the beginning and the end of the recording. Since it is a simple test record-

ing, the participant is possibly excited at the beginning and the end of the test, while
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Fig. 3.15: Linked timeline microposter plots sorted by viewing sequence for Poster 1

feeling bored in the middle of the test. The pupil radius seem to be slightly negatively

correlated with the eye movement speed, with r = −0.39. The eye movement speed

is calculated by taking the distance between the consecutive locations.

3.8.2 Linked Scanpath Microposter Plots

Figure 3.17 shows an example of linked scanpath microposter plots sorted by

the fixation sequences. Instead of defining the AOIs, fixations are detected with the

saccades R package. The statistical panels are based on the statistical summary of

the fixations, including the duration of the fixations (length of visits) and the pupil

radius for each fixation.

Compared with a scanpath plot shown in Figure 4.4, the linked scanpath mi-

croposter plots in Figure 3.17 are focusing on a few fixations at a time, instead of
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Fig. 3.16: Linked timeline microposter plots sorted by pupil radius for Poster 1

presenting the fixations all at once in a single graph. This feature makes even more

complicated visual patterns easier to understand. The scanpath map uses the radius

of a circle to indicate the duration of the fixation. When the duration of a fixation is

very small or very large, corresponding circle in the scanpath map becomes unclear

or overlapping. Using a dot plot in a separate panel to visualize the duration of the

fixations, and linking to the fixations via color overcomes this issue. The capability of

visualizing multiple variables in one single graph also shows the advantage of linked

scanpath microposter plots over the commonly used scanpath map.

From Figure 3.17, we can see fixation points 8 and 10, labeled in blue and

light red, last relatively longer than the other fixation points. The corresponding

pupil radiuses also look relatively larger. However, there seem to be weak negative
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Fig. 3.17: Linked scanpath microposter plots sorted by fixation sequences for Poster
1

correlation between the median pupil radius and the duration of fixation, with r =

−0.15.

3.9 Conclusion and Future Work
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In this chapter, we proposed linked microposter plots family as new means to

visualize how people are looking at a poster. We also demonstrated how the linked

microposter plots family are able to more effectively visualize eye tracking data, com-

pared to the commonly used eye tracking visualization tools. The linked microposter

plots family have overcome the disadvantages of the commonly used eye tracking data

visualization tools, making it possible to present multiple variables at one single plot

accurately as well as their relationships. With the perceptual groupings, readers can

quickly identify clusters of mapped AOIs with similar values of the sorting variable.

Basic linked microposter plots are able to present the eye tracking statistics together

with the spatial information. Linked timeline microposter plots and linked scanpath

microposter plots add the time information in the plot, in addition to the eye track-

ing statistics. They make the tangled visual clusters and their statistics more clearly

shown in one plot, compared with the AOI timelines and the scanpath map.

The EyeTrackR R package provides functions to extract and summarize the

raw eye tracking data from a mobile eye tracker and to create linked microposter

plots, linked timeline microposter plots, and linked scanpath microposter plots, in

addition to data summarization and common eye tracking visualization tools (Li and

Symanzik, 2017). The EyeTrackR R package will be released in late 2017 or early

2018.

Three types of linked microposter plots can be extended to visualize how people

look at webpages, power point slides, photos, etc. Also, displaying data for mul-

tiple participants via single linked microposter plots and their extensions could be

investigated in the future.
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CHAPTER 4

EYETRACKR: AN R PACKAGE FOR EXTRACTING AND VISUALIZING

DATA FROM MOBILE AND STATIC EYE TRACKERS

4.1 Introduction

Eye tracking is the process of measuring where people are looking at with an

eye tracker device, either a mobile eye tracker or a static eye tracker. Static eye

trackers are based on a desktop, hence they are often used to study eye motion on a

computer screen. Mobile eye trackers are fixed on a user’s head, so they are not limited

within a restricted area and can be used for a variety of activities, such as playing

soccer, driving, etc. Both types of current eye trackers are mostly using the corneal

reflection of an infrared light emitting diode to illuminate and generate a reflection off

the surface of the eye (Cooke, 2005). This approach is able to track pupils precisely,

therefore eye tracking data, that is, meaningful scene videos indicating where people

are looking at, are generated.

Eye tracking technology has become more and more affordable and accessible

nowadays (Gould and Zolna, 2010) and has been adopted in a variety of research

fields, including research for posters and related media. Barber et al. (2008) inves-

tigated posters in a computer simulated outdoor environment in order to “provide

common measurement framework for poster panel visibility across settings and per-

spectives” with an eye tracking approach. Andersson (2010) looked at the effect of

visual in-store advertisement designing on customers’ decisions on purchasing, with

participants’ eye movement data recorded sitting in front of a computer screen. Using

a mobile eye tracker, Foulsham and Kingstone (2011) investigated how people were
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looking at posters in an indoor environment, but with a focus on academic posters

from psychology. However, none of the existing literature on eye tracking for posters

has specifically discussed eye tracking visualization or adopted any new visualization

techniques.

Visualization tools are among the most important tools to explore eye tracking

data. Common statistical graphics are frequently used for eye tracking visualization.

These graphics are mostly used to present the data from the eye tracking metrics

or the raw eye tracking data. These graphics include line charts, bar charts, scatter

plots, and box plots.

Other plot types specifically for eye tracking data include attention maps, time-

lines with either point data or Area of Interest (AOI) data, and scanpath visualization.

• Attention maps are usually made of heat maps or hot spot maps with a Gaussian

kernel function. They describe the spatial distribution of eye tracking data

and the hot spots of the map point out “the regions attracted people’s gazes”

(Holmqvist et al., 2011). With the hot spots overlayed on top of an image, it is

quite obvious at which areas people are looking most. However, the sequential

order of where one is looking is not shown in attention maps.

• Timelines are typically used to visualize temporal data (Blascheck et al., 2014).

The AOI timelines are one of the most commonly used timeline plots for eye

tracking data. An AOI timeline is the visualization of eye tracking data di-

vided by AOIs: the horizontal axis shows the AOIs and the vertical axis shows

the time. In this representation, both the start and end times, as well as the

temporal sequence of changes between AOIs can be identified in the same plot.

However, an AOI timeline does not present the spatial locations of each AOI

from the plot underlying graph, photo, or poster.
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• The term “scanpath” was first introduced by Noton and Stark (1971) to describe

the chain of fixations and saccades. In visual representations of scanpaths, cir-

cles are used to represent fixations and lines are used to represent saccades

(Goldberg and Helfman, 2010b). The the radius of the circle indicate the dura-

tion of the fixation. The numbers in the circles indicate the sequential order of

the fixations. Scan path visualization give the sequence of one’s eye movements,

however, when the viewing patterns become more complex, it is very difficult

to perceive the visual patterns.

However, there is no plot type specifically designed for visualizing how people

are looking at posters. To overcome the disadvantages of the commonly used eye

tracking data visualization techniques, Li and Symanzik (2016) initially proposed the

linked microposter plot, as well as the implementation in R (R Core Team, 2016), to

visualize eye movement data on posters, based on the idea of the linked micromap

plot (Carr and Pickle, 2010). In this chapter, the linked microposter plot is further

extended to a linked timeline microposter plot and a linked scanpath microposter

plot to add the time information in the plot and to overcome the shortcomings of the

AOI timelines and scanpath visualization.

Companies that design eye tracking technologies offer commercial software for

eye tracking data analysis in general. ASL Results Plus GE provided by the Applied

Science Laboratory (ASL) summarizes the eye tracking data by AOIs and also makes

it possible to create bar chart and heat maps (Applied Science Laboratories, 2015).

Tobii Pro Studio provided by Tobii also summarizes the eye tracking data by AOIs

and offers visualization tools such as bar plot and timeline representations (Tobii

Technology, 2017). However, these software packages apply only to the eye track-

ing hardware from the manufacturer and are not supporting any other eye trackers

(Zhegallo and Marmalyuk, 2015). Software for eye tracking data has been developed
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with R packages (von der Malsburg, 2015; Dink and Ferguson, 2015), Matlab tool-

boxes and functions (Krassanakis et al., 2014; Berger et al., 2012), Python packages

(Dalmaijer et al., 2014), and in other environments (Heminghous and Duchowski,

2006), to detect eye movement events, to visualize and model eye tracking data, and

to clean raw eye tracking data. These software developments make it possible to

support eye tracking hardware from different manufacturers. Among these existing

software packages, there are some R packages, Matlab toolboxes, and Python pack-

ages specifically designed to visualize eye tracking data: the iMap Matlab toolbox

allows the generation of attention maps with Gaussian kernels (Caldara and Miellet,

2011); the GazeParser Python package provides various functions to detect saccades

and fixations and plot scanpaths (Sogo, 2015); The ETRAN R package provides fix-

ation detection, attention maps, and scanpath creation (Zhegallo and Marmalyuk,

2015).

However, none of the existing software developments offers the full combination

of eye tracking data processing, visualization, and features specifically required for

mobile eye tracking data from people looking at posters. In this chapter, we introduce

our new R package, EyeTrackR, to process video data recorded from a mobile eye

tracker, and to conduct different visualization tasks including the new plot types we

introduced, i.e., the linked microposter plots, the linked timeline microposter plots,

and linked scanpath microposter plots.

The remainder of this chapter is structured as follows: We will discuss the mobile

eye tracking device and how the data are collected in Section 4.2. The EyeTrackR

R package and its functionalities are discussed in Section 4.3. We will finish with our

conclusion and future work in Section 4.4.

4.2 Mobile Eye Tracking Device and Data Collection
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The mobile eye tracker manufactured by ASL consists of a portable Data Trans-

mit Unit (DTU), a laptop with a wireless reception connected to the DTU, and a

pair of eye tracking glasses with optics. The eye tracking glasses are the main part of

the mobile eye tracker. There are two cameras on the eye tracking glasses: one tracks

the participant’s eye and the other one records the environment observed by the par-

ticipant. The data generated from such equipment typically include a scene video

indicating where the participant is looking at (there is only one video generated for

each recording, though we have two cameras), and a data file that contains the x and

y coordinates, pupil radiuses, mouse cursor positions, etc. The x and y coordinates

exactly refer to where the participant is looking at on the computer screen for most

static eye trackers, therefore, they can be directly processed with the eye tracking

data analysis software. However, for mobile eye trackers and some head mounted

static eye trackers, the coordinates in the data file correspond to different coordinate

systems, i.e., the coordinate system is changing for every single frame. In these situ-

ations, the videos first must be processed so that all coordinates are transformed to

the same coordinate system in terms of a poster, thus the resulting data can be used

for further analysis.

For each poster, the AOIs are defined in advance, such as the title, logos, multiple

text areas, images, and tables. The AOIs on the posters can be defined automatically

with R (see Section 4.3.2). Figure 2.10 shows the twelve defined AOIs of the poster

used in this chapter. This poster is a student’s course project from multivariate

statistics class at Utah State University. The red bounding boxes outline the defined

AOIs. The areas that are not in the bounding box are defined as “Blank”. The poster

is used to test the data processing results and the validity of the linked microposter

plots. The participant is timed to look at eight of the AOIs for about five seconds

and at four AOIs for about two seconds, using a 30 Hz mobile eye tracker from ASL
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that records 30 images per second. Overall, the participant looked at the poster for

about 56 seconds, resulting in a total of 1680 video frames.

4.3 Functions in the EyeTrackR Package

In this section, we will present four functionality groups of functions contained

in the EyeTrackR R package: (i) data processing, (ii) data summarization, (iii)

common eye tracking visualization tools, and (iv) linked microposter plots. Data

processing includes two functions that process the video record of a participant look-

ing at a poster. Data summarization includes several functions that define AOIs and

summarize the data by the AOIs defined. Common eye tracking visualization tools

contains functions that create the commonly used eye tracking visualization tech-

niques such as dot plots, bar charts, attention maps, etc. Linked microposter plots

contains three functions that create the linked microposter plot, the linked timeline

microposter plot, and the linked scanpath microposter plot. Table 4.1 summarizes

the functions and their main functionalities.
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Table 4.1: Functions in the EyeTrackR R Package

Function Name Functionality Group

(i) Data Processing

GetVideoFrames Break AVI format video into individual frames.

ExtractCoordinates Extract x and y coordinates in terms of the poster.

(ii) Data Summarization

ResizeImg Convert an input image into a user specified size.

DrawAOIs Create rectangular AOIs and name the AOIs.

GetAOITimelineData Categorize the coordinates by the visits of each AOI.

GetPosterData Categorize the coordinates by each AOI.

(iii) Common Eye Tracking Visualization Tools

DrawEyeDotplot Create a dot plot indicating time spent on each AOI.

DrawEyeBoxplot Create a box plot showing pupil radiuses in each AOI.

DrawEyeBarplot Create a bar plot indicating time spent on each AOI.

DrawEyeScatterplot Create a scatter plot showing focus points.

DrawEyeHeatmap Create a heat map with Gaussian kernel function.

DrawEyeAOITimelines Create an AOI timeline plot.

DrawEyeScanpathMap Create a scanpath map.

(iv) Linked Microposter Plots

DrawEyeLMPlot Create a linked microposter plot.

DrawEyeLTMPlot Create a linked timeline microposter plot.

DrawEyeLSMPlot Create a linked scanpath microposter plot.

Below is the intial set up code in order to run the examples in the following

subsections:
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library(EyeTrackR)

library(matlabr)

library(RColorBrewer)

data(’locations_testing’, ’timelinedata.all’, ’AOIName’, ’posterdat.all’)

4.3.1 Data Processing

Two functions are included in the package for data processing: GetVideoFrames,

and ExtractCoordinates. Image processing and object detection algorithms are de-

signed and applied to conduct the data processing. The details of the algorithms used

in these functions are described in Li et al. (2017). The processing is conducted with

the Matlab server through R using the matlabr package (Muschelli, 2016). Matlab

2014a or above has to be installed in the system and the right version of Matlab has

to be specified in the Matlab path, in order to run the two functions.

options(matlab.path = "/Applications/MATLAB_R2016b.app/bin")

have_matlab()

The GetVideoFrames function breaks the AVI video into individual frames in

all platforms. Other video formats, such as MP4, WMV, MOV, can also be directly

used in this function depending on the platforms one is using (The MathWorks Inc.,

1994-2017). The user needs to specify the starting and ending seconds to break, the

time interval between two video frames, and the output folder.

After the video has been broken into individual frames, individual images can be

processed for the data extraction. As explained in Section 4.2, the locations of where

the participant is looking at have to be extracted and transformed into coordinates

with the same static coordinate system, such as the poster shown in Figure 2.10.

To perform this task, image registration and object detection approaches are applied

through the ExtractCoordinates function. A data set ready for further analysis is

generated with the ExtractCoordinates function.
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The ExtractCoordinates function extracts the x and y coordinates in terms of

the poster from the video recorded with the mobile eye tracker. The main inputs of

this function are a directory of the video frames and an electronic version or a clear

photo of the poster in JPEG format (PNG and BMP format are also supported).

The output of the function is a CSV file with the x and y coordinates in terms of the

poster. The code below illustrates how to apply the ExtractCoordinates function.

ExtractCoordinates(framedir = system.file("extdata", "Frames",

package = "EyeTrackR"),

poster = system.file("extdata", "poster_colored.jpg",

package = "EyeTrackR"),

coordinate = NA,

outputcsv = "locations.csv",

outputimg = "MatchImg",

ibegin = 1,

iend = 5)

4.3.2 Data Summarization

The data summarization functionality group includes the functions ResizeImg,

DrawAOIs, GetAOITimelineData, and GetPosterData to prepare the raw eye tracking

data for further analysis.

• ResizeImg is depending on the imager R package (Barthelme, 2016a) and con-

verts the input image into one with a user specified size. The function writes

the output image into a jpeg file.

• DrawAOIs defines the AOIs with rectangles that are drawn by mouse clicking

two vertices and the AOIs are named by the analyst through the R console right

after each rectangle is drawn. The function creates a CSV file that contains

names and border information of the AOI bounding boxes.
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• GetAOITimelineData categorizes the eye tracking data by the visits of each

AOI. The input files are a CSV file of the x and y coordinates and the pupil ra-

dius from the eye tracker, and the output CSV file from the DrawAOIs function.

The pupil radius information is optional for the input. The user can specify a

threshold for at least how many images (1/30 seconds for our eye tracker) the

coordinates fall into a certain AOI to be considered as a visit. The output is a

list that consists of a data frame with the length of visits for each visit, a list of

eye movement speeds from one focus point to another in pixels for the visit at

each AOI, and a list of pupil radiuses for each visit at the corresponding AOI

(in case the pupil radius is provided in the CSV file).

• GetPosterData categorizes the eye tracking data by each AOI. It generates a

data frame that summarizes how long the participant has spent and how many

times the participant has visited each AOI, a list of eye movement speed from

one focus point to another in pixels within each AOIs and possibly one more

list of pupil radiuses as described in the function GetAOITimelineData. The

input files and options are also the two CSV files, i.e., the same as for the

GetAOITimelineData function.

The example function calls are below:

ResizeImg(poster = system.file("extdata", "poster_colored.jpg",

package = "EyeTrackR"),

size_x = 500,

size_y = 400,

resized_poster = "poster_colored2.jpg"

)

DrawAOIs(boxes = 3,

poster = system.file("extdata", "poster_colored.jpg",
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package = "EyeTrackR"))

timelinedata.all <- GetAOITimelineData(posterVBorders = AOIName,

locations = locations_testing

)

posterdat.all <- GetPosterData(posterVBorders = AOIName,

locations = locations_testing

)

4.3.3 Common Eye Tracking Visualization Tools

Common statistical graphics introduced in Section 4.1, such as dot plots, bar

charts, and box plots, are available in the EyeTrackR R package to visualize how

much time the participant has spent on each AOI. The plotting options are passed

on from the general graphic options in R. Other frequently used eye tracking visu-

alizing tools, such as eye scatter plots, attention maps, AOI timelines, and scanpath

visualizations are also implemented in the EyeTrackR R package.

The scatter plot (Figure 4.1) shows where the focus points are and is used to

directly indicate individual eye movements. There are 1647 focus points presented in

Figure 4.1.

DrawEyeScatterplot(poster = system.file("extdata", "poster_colored.jpg",

package = "EyeTrackR"),

locations = locations_testing[, 1:2])
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Fig. 4.1: Scatterplot, overlaid on the photo of the original poster

Figure 4.2 shows an example of an attention map created by the DrawEye-

Heatmap function. With the hot spots overlayed on top of the poster, it is quite

obvious at which areas the participant is looking most. However, the sequential order

of where one is looking at can not be shown in such a figure.

DrawEyeHeatmap(poster = system.file("extdata", "poster_colored.jpg",

package = "EyeTrackR"),

locations = locations_testing,

bandwidth = c(60, 60))

Figure 4.3 shows the AOI timeline. We can see from the plot that the participant

revisited the data and the title very briefly. The conclusion has been visited twice

as well, with a very short visit at the first time. However, the spatial information of

the AOIs can not be shown in the AOI timeline. When the viewing patterns become

complicated, it is very difficult to see the visual patterns from the AOI timeline.

DrawEyeAOItimelines(timelinedata = timelinedata.all[[1]], label.cex = 0.8)

Figure 4.4 shows the scanpath visualization. Fixations and saccades are identified

with the saccades R package (von der Malsburg, 2015). The numbers in the circles
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Fig. 4.2: Attention map, overlaid on the photo of the original poster
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indicate the sequential order of the fixations. Scanpaths give the sequence of one’s eye

movements, however, when the viewing patterns become more complex, the crossings

and overlaps of scanpaths make it more difficult to perceive the visual patterns.

DrawEyeScanpathMap(poster = system.file("extdata", "poster_colored.jpg",

package = "EyeTrackR"),

locations = locations_testing

)
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Fig. 4.4: Scanpath map, overlaid on the photo of the original poster

4.3.4 Linked Microposter Plots

The linked microposter plot is based on the idea of the linked micromap plot,

a plot type that was first introduced in 1996 to highlight geographic patterns and

associations among the variables in a spatial dataset (Carr and Pierson, 1996). It has

been widely used to display geospatially-indexed summary statistics. According to

Carr and Pickle (2010), the micromap plot can represent any two-dimensional space,

not just latitude-longitude on the Earth’s surface. Based on this idea, we can think

of a poster as a map and the AOIs of the poster as the different countries or states

shown in a geographic map. The AOIs of the posters are the figures, tables, text

areas, titles, etc. The length of time spent and the number of times each AOI is

visited, eye movement speed and pupil radiuses are some of the variables of interest.

Variables can be visualized with different plot types, such as dot plots, bar charts,

and box plots, in different statistical data columns, all linked to the original poster

and not isolated as in Figures 4.1, 4.2, 4.3, and 4.4. The same colors are used to

link the areas in the small posters (microposters), the names of the AOIs, and the

statistical data columns. Compared with an attention map or a scatter plot, the
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linked microposter plot is exploring selected AOIs, instead of simply looking at the

hot spots. See Li and Symanzik (2016) for more details.

To create the linked microposter plot, the poster image, the AOI data created

from the DrawAOIs function, and the summarized list of the eye tracking data from

the GetPosterData function need to be provided. The input argument columns.att

describes the content of each column in the plot. The column definition contains the

number of the column, the data to be shown in this column, and the sizes and content

of the labelings, such as column title and axis labels. The cumulate option highlights

the AOIs cumulatively from top to bottom across the panels with light yellow. Each

list of the columns.att list describes a column in the plot. The code below creates the

list for the columns.att argument prepared for the main function DrawEyeLMPlot.

The structure is inspired by the micromap R package (Payton et al., 2015b).

columns.att <- list(

list(col.num = 1,

cumulate = TRUE),

list(col.num = 2,

header = "Areas of Interest",

header.size = 0.7,

point.size = 0.96,

text.size = 0.7,

text.font = 1),

list(col.num = 3,

panel.data = "visits",

header = "Length of Visits (sec)",

text.size = 0.7,

point.size = 0.96,

axis.ticks = NA,

axis.labels = NA),

list(col.num = 4,
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panel.data = "visits.num",

header = "Number of Visits",

text.size = 0.7,

point.size = 0.96,

axis.ticks = NA,

axis.labels = NA),

list(col.num = 5,

panel.data = "pupildat",

header = "Pupil Radius in Pixels",

text.size = 0.7,

axis.ticks = NA,

axis.labels = NA))

The function DrawEyeLMPlot allows the user to create the linked microposter

plot. The user needs to read in the output files from the functions described in

Section 4.3.2, and to specify plot types, the variables to visualize in each statistical

column, and other options, such as the titles and panel width. The user can also

change options like the highlighting colors, sorting variable, layout arrangements,

and having a median row or not, if a median row is applicable. The panel.types

input argument specifies the column types, including the poster, legend, boxplot, and

dotplot. panel.width defines the width of each column. Once the panels and the

layout are specified, defaults are acceptable for other details.

DrawEyeLMPlot(poster.loc = system.file("extdata", "poster_colored.jpg",

package = "EyeTrackR"),

data = posterdat.all,

posterVBorders = AOIName,

panel.types = c("poster", "legend", "dot", "dot", "boxplot"),

panel.width = c(2.9, 2.7, 3, 3, 3),

columns.att = columns.att)
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Fig. 4.5: Linked Microposter Plot

Figure 4.5 is created with the code above. Figure 4.5 shows the linked microposter

plot for the poster. The first column shows the microposters, the second column shows

the color legend, and the third column shows the AOI names. The last three columns

are the statistics columns. The gray AOIs are the AOIs that are not of interest in

the corresponding panel. The light yellow shaded AOIs are the AOIs that have been

investigated in the previous microposters above the current microposter. The rows are

sorted by the length of visits. Each dot that represents an AOI is horizontally aligned

with its AOI name and linked through color with the AOI on the microposter. The

AOIs are separated into three perceptual groups. Perceptual groups typically contain

between two and five of the AOIs. Such a design helps the readers focus on the values

of a few mapped AOIs at once and allows to quickly identify clusters of mapped AOIs

with similar values of the sorting variable (Carr and Pickle, 2010).

However, the viewing sequences can not be shown in the linked microposter plot.

To overcome this disadvantage, we developed the linked timeline microposter plot
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Fig. 4.6: Linked Timeline Microposter Plots sorted by viewing sequence

and the linked scanpath microposter plot to visualize the timeline and scanpath of

the eye movements, respectively. Figure 4.6 shows an example of the linked timeline

microposter plot sorted by the temporal viewing sequences, i.e., the data is presented

based on the timeline of the eye tracking data. The numbers labeled inside the AOIs

indicate the viewing sequences. Each color represents an AOI. If the number of AOIs

is more than the number of available colors, the colors are recycled, i.e., some AOIs

are shaded with the same color. The AOIs can also be colored based on the panels

similar to the linked microposter plot. Figure 4.7 shows the linked scanpath microp-

oster plot. Instead of defining the AOIs, fixations are detected with the saccades R

package. The statistical panels are based on the statistical summary of the fixations.

Compared with an AOI timeline (Figure 4.3) and the scanpath visualization (Fig-

ure 4.4), the linked timeline microposter plot and the linked scanpath microposter

plot can visualize multiple variables in one plot. Without all the AOIs and scanpath

circles tangled in one single plot, it is much easier to see the visual patterns. For

example, the revisits in Figure 4.3 of the title is not very intuitive from the plot as
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Fig. 4.7: Linked Scanpath Microposter Plots sorted by viewing sequence

well as how long the participant has spent on the revisit. In Figure 4.6, the revisit

of the title is easier to view as the title is highlighted in blue and the color showed

up twice labeled with number 2 and 10 in the microposter column. The length of the

revisit is about 0.2 seconds from the linked timeline microposter plot, which is hardly

readable from the AOI timeline.

The DrawEyeLTMPlot and DrawEyeLSMPlot functions have similar options as

the DrawEyeLMPlot function. For the DrawEyeLTMPlot function, the additional

options include colorby, which determines assigning each AOI a different color or just
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assigning different colors in the same panel. For DrawEyeLSMPlot, the additional

options include the frequency of the eye tracker and the lambda that determines the

threshold for the fixation detection.

The layout of the panels can be self-defined for the three functions, i.e., one can

specify how many data points are in each panel. A median row can be added if a

median is available. Below is an example of a self-defined layout with a median row

enabled, where there are three groups of data points and each row has 6, 1, and 6

data points. The data presented in each colomn can be self-defined and the colors

can also be changed. Figure 4.8 shows the linked microposter plot created.

DrawEyeLMPlot(poster.loc = system.file("extdata", "poster_colored.jpg",

package = "EyeTrackR"),

grayscale = TRUE,

AutomaticLayout = FALSE,

data = posterdat.all,

posterVBorders = AOIName,

Layout = c(6, 1, 6),

panel.types = c("poster", "legend", "dot",

"dot", "boxplot", "boxplot"),

panel.width = c(2.9, 2.7, 3, 3, 3, 3),

hdColors = c(rev(brewer.pal(6, "Accent")), "#000000"),

columns.att = conlums.att,

main.title = ""

)

4.4 Conclusion and Future Work
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Fig. 4.8: Linked Microposter Plot

In this chapter, we presented the EyeTrackR R package and how it can be

applied to process and visualize eye tracking data. If Matlab 2014a or above is

installed, raw video data from a mobile eye tracker can also be processed with our

EyeTrackR R package. The processed mobile eye tracking data can then be used

for visualization and further analysis. For users without Matlab installed, the vi-

sualization tools can still be used to visualize processed mobile eye tracking data or

data from static eye trackers from different manufacturers.

The commonly used existing eye tracking data visualization tools are imple-

mented in the EyeTrackR R package. The new visualization tools we introduced, the

linked microposter plot, the linked timeline microposter plot, and the linked scanpath

microposter plot, are also implemented to visualize the eye tracking data. However,

the application is not limited to visualize how people are looking at posters. The

EyeTrackR video data processing, extraction, and visualization can also be applied

when people are looking at power point slides, book chapters, commercial electronic

posters, etc. Symanzik et al. (2017b) has extended the application on looking at

power point slides to judge human postures by using the EyeTrackR R package for

the data extraction and visualization. The visualization tools are also applicable on

visualizing the extracted mobile eye tracking data or the data from static eye trackers.
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Displaying data for multiple participants via a single linked microposter plot,

linked timeline microposter plot, or a linked scanpath microposter plot will be added

in the future. Dynamic microposter plots can also be implemented. The supporting

EyeTrackR R package will be released on the Comprehensive R Archive Network

(CRAN) in early 2018.
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CHAPTER 5

CONCLUSION

In this dissertation, we presented an approach to automatically extract data from

mobile eye trackers. Feature detection and image registration are adopted to process

the consecutive images from an eye tracking video. A heuristic object detection

approach is designed to find the focus point when only the video data from a mobile

eye tracker is provided. Our proposed methods enable researchers to automatically

obtain the coordinates in the same coordinate system indicating where people are

looking at a poster, so that they don’t have to manually look at every single video

frame to decide the focus points on the poster. We incorporated the data extraction

in our EyeTrackMat Matlab toolbox.

We proposed the linked microposter plots family as new means to visualize how

people are looking at a poster. Compared to the commonly used eye tracking visual-

ization tools, the linked microposter plots family is able to more effectively visualize

eye tracking data. The linked microposter plots family overcomes the disadvantages

of the commonly used eye tracking data visualization tools, making it possible to

present multiple variables in a single plot accurately as well as the relationships of

these variables. With the perceptual groupings, readers can quickly identify clusters

of mapped AOIs with similar values of the sorting variable. We implemented the data

extraction, commonly used eye tracking techniques, and the linked microposter plots

family in our EyeTrackR R package. The visualization tools in the R package are

applicable for visualizing both the extracted mobile eye tracking data and the data

from static eye trackers.
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Future work includes displaying data for multiple participants via a single linked

microposter plot, linked timeline microposter plot, or a linked scanpath microposter

plot. Dynamic microposter plots could also be implemented in the future, such as

through an R shiny app.

The limitation of this dissertation is that the main application is focusing on

looking at scientific posters. The data processing, extraction, and visualization can

also be applied when people are looking at power point slides, book chapters, com-

mercial electronic posters, etc. The application in looking at other objects could

also be explored. Symanzik et al. (2017b) extended the application on looking at

power point slides to judge human postures by using the EyeTrackR R package for

the data extraction and visualization. The preliminary results for two test partici-

pants are presented in Symanzik et al. (2017b) using the exploratory data analysis

techniques introduced in this dissertation. In the upcoming study, “two groups of par-

ticipants will be examined: one group with extensive yoga experience, and one group

with minimal experience with actions that require stability (e.g., yoga, gymnastics,

ballet dancing, etc.).” (Symanzik et al., 2017b). The participants are eqquiped with

a mobile eye-tracking device that will allow us to see what they are looking at as

they make stability judgments. The data collection is ongoing. The data processing,

visualization, and analysis are based on this dissertation, and will be extended to

another Ph.D. dissertation.
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Tekniska Högskola (LTHs) 7: e Pedagogiska Inspirationskonferens.

https://CRAN.R-project.org/package=matlabr


121

URL https://www.lth.se/fileadmin/lth/genombrottet/konferens2012/23_

Nystroem_OEgren.pdf

Oleson, J. J., Cavanaugh, J. E., McMurray, B., Brown, G., 2015. Detecting time-

specific differences between temporal nonlinear curves: Analyzing data from the

visual world paradigm. Statistical Methods in Medical Research (0), 1–22.

Payton, Q., Olsen, T., Weber, M., McManus, M., Kincaid, T., 2015a. Micromap: A

package for linked micromaps. Journal of Statistical Software 63 (3).

URL https://www.jstatsoft.org/article/view/v063i02

Payton, Q., Olsen, T., Weber, M., McManus, M., Kincaid, T., 2015b. Micromap:

Linked micromap plots. R version 1.9.2.

URL https://CRAN.R-project.org/package=micromap

Pereira, S., Pun, T., 2000. Robust template matching for affine resistant image wa-

termarks. IEEE Transactions on Image Processing 9 (6), 1123–1129.

Pickle, L. W., Pearson, J. B., Carr, D. B., 2015. MicromapST: Exploring and com-

municating geospatial patterns in US state data. Journal of Statistical Software

63 (3).

URL https://www.jstatsoft.org/article/view/v063i03

Piqueras-Fiszman, B., Alcaide-Marzal, J., Spence, C., 2012. An application of eye-

tracking technologies to study consumers’attention to packaging sensory attributes.

XVI Congreso Internacional de Ingenieria de Proyectos Valencia, 1952–1963.

Purucker, C., Landwehr, J. R., Sprott, D. E., Herrmann, A., 2013. Clustered insights:

Improving eye tracking data analysis using scan statistics. International Journal of

Market Research 55 (1), 105–130.

https://www.lth.se/fileadmin/lth/genombrottet/konferens2012/23_Nystroem_OEgren.pdf
https://www.lth.se/fileadmin/lth/genombrottet/konferens2012/23_Nystroem_OEgren.pdf
https://www.jstatsoft.org/article/view/v063i02
https://CRAN.R-project.org/package=micromap
https://www.jstatsoft.org/article/view/v063i03


122

R Core Team, 2016. R: A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing.

URL http://www.R-project.org/
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