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ABSTRACT 

The Nesting Ecology of Woodpeckers in The Eastern Cascades and Their Interactions 

with Nest Competitors and Predators. 

by 

Samuel D. Cowell, Master of Science 

Utah State University, 2018 

 

Major Professor: Dr. Kimberly A. Sullivan 

Department: Biology 

 

Woodpeckers serve as the primary cavity excavators (PCEs) in temperate forest 

ecosystems, with secondary cavity users (SCUs) dependent on these cavities for their 

own nesting success. This creates dynamic nest webs within a community as PCEs 

excavate nests and SCUs compete for these nests. Here, through the use of continuous 

video monitoring, we document direct behavioral interactions at the nests of four PCE 

species and SCUs in the Eastern Washington Cascades during the 2015 and 2016 

breeding seasons and how they influence nest web dynamics. Additionally, we offered 

937 students in a General Biology laboratory course to participate in this original 

research opportunity and described the impact the experience had on the participants as 

well as the researchers. 

In 2015, Western Blubebirds usurped two active Black-backed Woodpecker nests 

by cooperatively harassing the woodpeckesr and guarding the nest. In 2016, almost half 

of the PCE nests we monitored we reused within the same season by four species of 
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SCUs, with Western Bluebirds being are most common SCU. We found that some nests 

we reused within minutes to hours of vacancy by PCEs. However, we were not able to 

significantly predict nest reuse or SCU presence at the nest. Parent PCEs did not respond 

as aggressively to avian SCUs when compared to rodent SCUs, predators, and other PCE 

species. Our fine-scale analysis provides a new window into behavioral interactions in 

the nest webs and same-season nest reuse, but it is limited by its scope. Thus, we suggest 

for larger-scale video studies examining behavioral interactions around the nest and how 

it affects nest reuse within season. 

About 15% of students in the course participated in our research, and we found 

that students accurately recorded data approximately 90% of the time. Most students 

came away from the experience with a more positive attitude towards undergraduate 

research and were able to restate the main research question. However, many students 

had difficulty understanding their role as a data collector. We suggest making the 

experience mandatory to include all students and placing a greater emphasis on the 

process of science. 
(91 Pages) 
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PUBLIC ABSTRACT 

 

The Nesting Ecology of Woodpeckers in The Eastern Cascades and Their Interactions 

with Nest Competitors and Predators 

Samuel D. Cowell 

 

Woodpeckers create nesting cavities for other birds and animals in forests. This 

creates dynamic interactions between both woodpeckers and these other animals. Using 

video cameras, we documented direct behavioral interactions between nesting 

woodpeckers and other animals in the Eastern Washington Cascades during the 2015 and 

2016 breeding seasons. Additionally, we offered 937 students in a General Biology 

laboratory course to participate in this original research opportunity and described and the 

impact the experience had on the participants as well as the researchers. 

In 2015, Western Blubebirds took over two active Black-backed Woodpecker 

nests by physically attacking the woodpeckers. In 2016, almost half of the woodpecker 

nests were reused by other animals, with Western Bluebirds being are most common 

SCU. We found that some nests we reused within minutes to hours of vacancy. However, 

we were not able to significantly predict nest reuse or the presence of other animals at the 

nest. Parent woodpeckers towards avian cavity nesters when compared to rodent, 

predators, and other woodpeckers. Our fine-scale analysis provides a new window into 

behavioral interactions at woodpecker nests and same-season nest reuse, but it is limited 

by its scope. Thus, we suggest for larger-scale video studies examining behavioral 

interactions around the nest. 
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About 15% of students in the course participated in our research, and we found 

that students accurately recorded data approximately 90% of the time. Most students 

came away from the experience with a more positive attitude towards undergraduate 

research and were able to restate the main research question. However, many students 

had difficulty understanding their role as a data collector. We suggest making the 

experience mandatory to include all students and placing a greater emphasis on the 

process of science.  
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CHAPTER I 

TAG-TEAM TAKEOVER: USURPATION OF WOODPECKER NESTS BY 

WESTERN BLUEBIRD 

 

ABSTRACT: Woodpeckers provide important ecological services by excavating nesting 

cavities that are used by many forest birds and other animals. Demand for nesting cavities 

by secondary cavity nesters can lead to intense competition for this limited resource. The 

Western Bluebird (Sialia mexicana) is known to usurp nests from its own and other 

species. However, the process by which bluebirds take over nests from woodpeckers 

larger than themselves has not been well documented. In order to understand this process, 

we analyzed 112 hours of video footage of nests of a Black-backed (Picoides arcticus) 

and a Hairy Woodpecker (P. villosus) located in the Okanogan-Wenatchee National 

Forest in Washington. Usurpation first involves a short period of physical confrontation 

followed by a prolonged period of constant presence around the nest. The male and 

female bluebirds cooperate by taking turns harassing the woodpecker and guarding the 

nest. This may be of concern to managers as the Black-backed Woodpecker is considered 

a species at risk in certain locations 
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 In temperate forests, woodpeckers are the primary excavators of nesting cavities 

that are later used by many species of birds and mammals. The demand for these cavities 

by secondary cavity users can lead to intense competition (Miller 2010). Because of this, 

woodpeckers may be prone to having their nests usurped by both other woodpecker 

species and secondary cavity nesters (Loeb and Hooper 1997, Kronland 2007). The 

bluebirds are secondary cavity nesters that defend their own nests aggressively and usurp 

cavities from other birds (Frye and Rogers 2004, Guinan et al. 2008, Gowaty and Plissner 

2015), including woodpeckers (Nappi and Drapeau 2009, Kozma and Kroll 2012). 

However, these events seem rare (only one event was reported in in the latter two 

studies), and the mechanism by which bluebirds usurp a woodpecker nest has not been 

well documented. 

 Here, we describe the process by which Western Bluebirds (Sialia mexicana) 

usurped active nests from woodpeckers. Our work took place on the east slope of the 

Cascade Range of Washington. Common primary excavators in this area include the 

Hairy Woodpecker (Picoides villosus), Black-backed Woodpecker (P. arcticus), White-

headed Woodpecker (Picoides albolarvatus), and Northern Flicker (Colaptes auratus) 

(Haggard and Gaines 2001). Both the Black-backed and White-headed Woodpeckers 

have been petitioned or listed as endangered, threatened, or species of concern in several 

states and at the national level (Murphy and Lehnhausen 1998, Bonnot et al. 2008). 

Common secondary cavity users that may compete for cavities are the Western Bluebird, 

Mountain Bluebird (Sialia currucoides), and House Wren (Troglodytes aedon) (Haggard 

and Gaines 2001). 
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 Video cameras recorded active woodpecker nests, and, in reviewing these videos, 

we observed two usurpations by pairs of Western Bluebirds. We then scored the videos to 

examine the behaviors by which the bluebirds usurped the nests, nest defense by the 

woodpeckers, and the progress of the takeover. 

METHODS 

 In 2015 we set up video cameras near woodpecker nests to test techniques for 

documenting nest failures. Nests were located in burned coniferous forest in the Naches 

Ranger District, Okanogan-Wenatchee National Forest in Washington state 

(approximately 46º 45′ N, 120º 58′ W and 47º 30′ N, 120º 33′ W). The fires had been 

prescribed by the U.S. Forest Service from 2006 to 2014. Their severities were mixed, 

creating a mosaic of small patches (0.1–24.2 ha), some burned severely (~80–90% 

canopy mortality), others lightly (~0–10% canopy mortality), in an otherwise live forest. 

Forest composition varied by aspect, elevation, and distance from the Cascade crest, but 

most sites were dominated by a mixture of ponderosa pine (Pinus ponderosa), Douglas 

fir (Pseudotsuga menziesii), and grand fir (Abies grandis). 

 In total, we monitored over 40 nests of four species, the Black-backed 

Woodpecker, White-headed Woodpecker, Hairy Woodpecker, and Northern Flicker. We 

began monitoring our earliest nest on 28 April 2015 and concluded monitoring our latest 

on 28 June 2015. In this pilot study, the time over which we monitored each nest varied, 

from two to seven days per week through the season. We used Panasonic camcorders 

(model HC-V160) with LiPolymer batteries (model 1055275-2C) manufactured by 

Mogen Industrial Limited. Cameras were mounted on a tree 20–50 m from the nesting 
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cavity. Camera batteries and the 64-gigabyte Secure Digital card were changed out every 

day. 

 Of the two woodpecker nests taken over by Western Bluebirds, one (Angel Burn) 

was an active Black-backed Woodpecker nest. The other (Hause Creek) was originally 

excavated by Black-backed Woodpeckers, but Hairy Woodpeckers had occupied the 

cavity by the time filming began. We monitored the Angel Burn nest in the Rattlesnake 

Creek drainage for six 24-hour periods, on 14  15, 19, 20, 28, and 30 May, the Hause 

Creek nest in the Tieton River drainage for ten 24-hour periods, 28 April–8 May, 

skipping 3 May. 

 Our review of the video recordings began with an initial screening of 2-hour 

segments in which one of six observers recorded any activity near the woodpecker nest 

and the time of the occurrence. Observers watched and listened for woodpeckers, 

Western Bluebirds, rodents, and any other animals that approached the nest. For each 

animal, the observers recorded the species, sex, behavior, method of detection (visual or 

auditory), time at which it appeared in the frame, time at which it appeared at the cavity 

(if applicable), time at which it exited the frame, duration of the event, and if it was alone 

or interacting with other animals. By these methods, we identified the time from when 

bluebirds first appeared around the woodpecker nest to when usurpation was complete 

(defined by woodpeckers not being seen or heard at or around the nesting cavity for at 

least 24 hours). 

 Multiple observers then watched all video segments with woodpecker–bluebird 

interactions a second time and scored them according to an ethogram developed for this 

study and based on behavior described by Brawn (1984), Guinan et al. (2008), and 
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Kronland (2007). Interactions were categorized into two categories (displacement or 

chasing) with two sub-categories (with or without physical contact). Displacement was 

defined as one bird leaving a spot because of the presence of another bird. Chasing was 

defined as one bird continuing to aggressively pursue another bird even after the latter 

already left its previously occupied spot. Any vocalizations or drumming were also 

scored. For each event, we defined the actor as the initiator of the interaction and the 

recipient as the one experiencing the initiator’s action. We recorded the distance at which 

initiation occurred (with respect to the body length of the actor), the closest distance 

between the birds, the place where the interaction occurred, the outcome of the event, the 

duration of the event, and the time until the next interaction took place. 

RESULTS 

 Western Bluebirds successfully drove out the resident woodpeckers at both nests. 

At the Angel Burn nest, Black-backed Woodpeckers and Western Bluebirds were seen 

together on or within 1 m of the nesting cavity intermittently from 14 to 16 May 2015. 

The Black-backed Woodpeckers were not seen at the nesting cavity after 16 May 2015. 

At the Hause Creek nest, Black-backed Woodpeckers were photographed excavating a 

cavity on 18 April 2015. However, in our first video footage of that nest on 28 April 

2015, only Hairy Woodpeckers and Western Bluebirds were seen at the nesting cavity. 

Hairy Woodpeckers were not seen after 30 April 2015. 

 At the Hause Creek nest, the takeover period lasted about 24 hours. Bluebirds 

were already present at the Angel Burn nest when we began filming, so the length of the 

takeover period cannot be strictly defined. We defined the end of the usurpation as the 

last visit the woodpecker made to the cavity before an absence of at least 24 hours. At the  



6 

Angel Burn nest, the Black-backed Woodpeckers were heard presumably excavating a 

new nest about 22 hours after they were last seen at the original nest. 

 At the Angel Burn nest, nine out of ten bluebird–woodpecker interactions 

occurred within the first 24 hours, and at the Hause Creek nest, six out seven of these 

interactions also occurred within the first 24 hours. The majority of interactions were 

chases (six of ten at the Angel Burn nest, four of seven at the Hause Creek nest), with the 

Western Bluebird being the initiator in all cases (Tables 1-1 and 1-2). Vocalizations by 

both bluebirds and woodpeckers accompanied 40% of all chases. In five of the ten 

chases, both the male and female bluebird flew directly at the woodpecker from either 

side with physical contact occurring (see Supplemental Videos). We observed no sexual 

discrimination, as both male and female bluebirds attacked both male and female 

woodpeckers. Woodpeckers responded with vocalizations and a defensive display with 

open wings but no direct chases toward the bluebirds. Woodpecker presence at the nest 

dropped off after the first 6–10 hours. At both nests the woodpeckers returned after 24 

hours but were chased by the bluebirds and not seen afterward. All interactions described 

here took place immediately at or within 1 m of the nesting cavity. 
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Table 1-1 Numbers of Behaviors Video-Recorded during Takeover of a Nest of the 

Black-backed Woodpecker (Angel Burn) by Western Bluebirds  

           Behaviora             Western Bluebird sex 

Date and time Chase Vocal Bothb M F Unknown 

14 May       

11:00 a.m. – 1:00 p.m. 2 1 3 0 0 0 

1:00 p.m. – 3:00 p.m. 1 0 1 0 0 0 

3:00 p.m. – 5:00 p.m. 0 0 0 0 0 0 

5:00 p.m. – 7:00 p.m. 0 0 0 0 0 0 

7:00 p.m. – 9:00 p.m. 0 0 0 0 0 0 

15 May       

5:30 a.m. – 7:30 a.m. 2 1 2 1 0 0 

7:30 a.m. – 9:30 a.m. 0 0 0 0 0 0 

9:30 a.m. – 11:30 a.m. 0 0 0 0 0 0 

11:30 a.m. – 1:30 p.m. 0 0 0 0 0 0 

1:30 p.m. – 3:30 p.m. 0 0 0 0 0 0 

3:30 p.m. – 5:30 p.m. 1 1 0 0 1 1 

16 May       

1:30 p.m. – 3:30 p.m. 0 0 0 0 0 0 

3:30 p.m. – 5:30 p.m. 0 0 0 0 0 0 

5:30 p.m. – 7:30 p.m. 0 0 0 0 0 0 

7:30 p.m. – 9:30 p.m. 0 0 0 0 0 0 

17 May       

5:30 a.m. – 7:30 a.m. 0 0 0 0 0 0 

7:30 a.m. – 9:30 a.m. 0 0 0 0 0 0 

9:30 a.m. – 11:30 a.m. 0 0 0 0 0 0 

11:30 a.m. – 1:30 p.m. 0 0 0 0 0 0 

1:30 p.m. – 3:30 p.m. 

3:30 p.m. – 5:30 p.m. 

0 0 0 0 0 0 

0 1 0 1 0 0 

5:30 p.m. – 7:30 p.m. 0 0 0 0 0 0 

19 May       

11:30 a.m. – 1:30 p.m. 0 0 0 0 0 0 

1:30 p.m. – 3:30 p.m. 0 0 0 0 0 0 

20 May 

7:30 a.m. – 9:30 a.m. 

0 0 0 0 0 0 

28 May 

1:30 p.m. – 3:30 p.m. 

0 0 0 0 0 0 

Total 6 4 6 2 1 1 
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aIncludes only actions of the Western Bluebirds directed at woodpeckers, not those of 

driving off other species from the nest. Vocalizations often accompanied chases and were 

not always truly separate events. 

bBoth members of the pair acting simultaneously. 
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Table 1-2 Numbers of Behaviors Video-Recorded during Takeover of a Nest of the 

Hairy Woodpecker (Hause Creek) by Western Bluebirds  

         Behaviora                   Western Bluebird Sex 

Date and time Chase Vocal Bothb M F Unknown 

28 Apr       

6:15 p.m. – 8:15 p.m. 0 0 0 0 0 0 

8:15 p.m. – 10:15 p.m. 0 0 0 0 0 0 

29 Apr       

5:30 a.m. – 7:30 a.m. 1 0 0 1 0 0 

7:30 a.m. – 9:30 a.m. 0 0 0 0 0 0 

9:30 a.m. – 11:30 a.m. 0 0 0 0 0 0 

11:30 a.m. – 1:30 p.m. 0 0 0 0 0 0 

1:30 p.m. – 3:30 p.m. 0 0 0 0 0 0 

3:30 p.m. – 5:30 p.m. 0 0 0 0 0 0 

5:30 p.m. – 7:30 p.m. 0 0 0 0 0 0 

7:30 p.m. – 9:30 p.m. 1 1 1 1 0 0 

30 Apr       

5:30 a.m. – 7:30 a.m. 1 2 1 1 1 0 

7:30 a.m. – 9:30 a.m. 0 0 0 0 0 0 

9:30 a.m. – 11: 30 a.m. 0 0 0 0 0 0 

11:30 a.m. – 1:30 p.m. 0 0 0 0 0 0 

1:30 p.m. – 3:30 p.m. 0 0 0 0 0 0 

3:30 p.m. – 5:30 p.m. 0 0 0 0 0 0 

5:30 p.m. – 7:30 p.m. 0 0 0 0 0 0 

7:30 p.m. – 9:30 p.m. 1 0 0 1 0 0 

4 May       

12:30 p.m. – 2:30 p.m. 0 0 0 0 0 0 

2:30 p.m. – 4:30 p.m. 0 0 0 0 0 0 

4:30 p.m. – 6:30 p.m. 0 0 0 0 0 0 

5 May       

4:00 p.m. – 6:00 p.m. 0 0 0 0 0 0 

6:00 p.m. – 8:00 p.m. 0 0 0 0 0 0 

7 May 2:30 p.m. – 4:30 

p.m. 

0 0 0 0 0 0 

8 May 7:30 a.m. – 9:30 a.m. 0 0 0 0 0 0 

Total 4 3 2 4 1 0 
aIncludes only actions of the Western Bluebirds directed at woodpeckers, not those of 

driving off other species from the nest. Vocalizations often accompanied chases and were 

not always truly separate events. 

bBoth members of the pair acting simultaneously 
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DISCUSSION 

 We have described how Western Bluebirds engage Black-backed and Hairy 

Woodpeckers in interference competition, keeping the woodpeckers from using their own 

nest by usurping the nest. The smaller Western Bluebird (23.5–31.5 g; Guinan et al. 

2008) uses cooperative, tag-team chases to usurp nest from larger woodpeckers (Black-

backed, 67.8–82.7 g, Tremblay et al. 2016; Hairy [northwestern U.S.], about 66–84 g, 

Jackson et al. 2002). In nest defense against its own species, aggression of the Eastern 

Bluebird (Sialia sialis) is sex-specific, with females directing aggression toward females, 

males toward males (Gowaty and Wagner 1988). In contrast, Western Bluebirds are not 

known to discriminate by sex when establishing and defending a nesting territory 

(Herlugson 1980). When another male Western Bluebird showed up at the Angel Burn 

nest, only the male bluebird of the pair attacked the intruding male, suggesting the female 

may have been fertile (Dickinson and Leonard 1996). Olsen et al. (2008) reported both 

members of Western Bluebird pairs defending nests against life-like models of the 

European Starling (Sturnus vulgaris) by physically attacking the model. Our results 

suggest that Western Bluebirds usurp nests from woodpeckers in a similar manner. 

 Bluebirds disperse cyclically, and individuals dispersing to exploit and colonize 

new habitat (such as a recently burned forest) have been exposed to higher levels of 

androgens during development (Duckworth 2008, Duckworth et al. 2015). Nest 

usurpation may be a function of maternally induced aggression and the limited number of 

nest cavities available in recently burned forests (White et al. 2005, Duckworth et al. 

2015, Edworthy 2016). 



11 

 In both cases, bluebirds took over the cavity early in the breeding season soon 

after the woodpeckers had finished excavating and before they had laid eggs (Hause 

Creek nest, 28 April 2015; Angel Burn nest, 16 May 2015). Early in the breeding season, 

it may be more efficient for woodpeckers to abandon a nest and excavate a new cavity 

rather than fight off highly aggressive bluebirds. Later in the breeding season, we 

observed a male Western Bluebird investigating an active Northern Flicker nest, but there 

were no physical altercations. At a certain point, nestling woodpeckers may be too large 

for bluebirds to usurp the nest, and parent woodpeckers may defend the nest more 

intensely as the time available for reproduction decreases later in the season (Biermann 

and Robertson 1981). 

 Usurpation of woodpecker nests by bluebirds may be relevant to management, as 

the Black-backed Woodpecker is a species of conservation concern in several states, 

including Washington (Murphy and Lehnhausen 1998, Bonnot et al. 2008). Of the six 

Black-backed Woodpecker nests we filmed during our pilot study, two were usurped. 

While we were unable to confirm whether the Hairy Woodpeckers actually usurped the 

Hause Creek cavity from the Black-backed Woodpeckers that excavated it, this ratio still 

suggests that there is competition for nest cavities and snags suitable for nesting. 

However, nesting Western Bluebirds may benefit woodpeckers if enough cavities are 

available. In our study, the male bluebird was seen chasing off other male bluebirds, and 

both the male and female bluebird were seen chasing Brown Creepers (Certhia 

americana) from the nesting tree. Additionally, we saw a male Western Bluebird flying 

at a Douglas Squirrel (Tamiasciurus douglasii) at an abandoned White-headed 

Woodpecker cavity. If nest cavities are abundant, bluebirds may inadvertently defend 
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active woodpecker nests from other aggressive secondary cavity nesters and nest 

predators. 

 Because of its capacity for aggressiveness, the Western Bluebird is able to usurp 

cavities from Black-backed and Hairy Woodpeckers quickly when nest sites are limited. 

Therefore, the key to helping threatened woodpeckers such as the Black-backed is to 

manage fire regimes within forests so that there is an ample supply of snags available to 

supply nesting cavities for the woodpeckers, bluebirds, and the other species that depend 

on them for survival. 
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CHAPTER II 

LESSONS LEARNED FROM INVOLVING UNDERGRADUATE GENERAL 

BIOLOGY STUDENTS IN AUTHENTIC GRADUATE RESEARCH 

 

Participating in undergraduate research has many benefits for students. However, it can 

be a challenge to extend research opportunities to every undergraduate. Here, we describe 

an original research opportunity offered to 937 students in a General Biology laboratory 

course and the impact the experience had on the participants as well as the researchers. 

As part of a master’s thesis project addressing the ecology of woodpecker nesting, 

students watched videos of nesting woodpeckers and recorded the species and behavior 

observed. Students received extra credit for participation. In addition, a proportion of the 

participants voluntarily answered a questionnaire about their experience. A trained team 

of undergraduate researchers then validated the students’ data. About 15% of students in 

the course participated. We found that students accurately recorded data approximately 

90% of the time. Most students came away from the experience with a more positive 

attitude towards undergraduate research and were able to restate the main research 

question in their own words. However, many students had difficulty understanding their 

role as a data collector in the research project. Students who participated were more 

likely to have a higher grade than those who did not. Based on our experience, we 

recommend that local graduate students engage with undergraduate students in course-

based research experiences. We suggest making the experience mandatory to include all 

students and place a greater emphasis on the process of science than on the research 

topic. 
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Introduction 

 Numerous studies have demonstrated the beneficial impacts of undergraduate 

research experience in preparing students for future careers in STEM fields (Zydney, 

Bennett, Shahid, & Bauer, 2002; Bauer and Bennett, 2003; Russell, Hancock, & 

McCullough, 2007). Undergraduates who participate in research usually rate their 

experience as highly positive, giving them a more positive outlook on STEM careers 

(Lopatto, 2004). Research experience often includes extensive interactions with 

university faculty, establishing a relationship for future references, networking 

opportunities, and ongoing mentorship and advice during their professional or academic 

career (Hathaway, Nagda, & Gregerman, 2002). In fact, students who participate in 

undergraduate research are more likely to complete an undergraduate STEM degree 

(Chaplin, Manske, Cruise, 1998; Gregerman, Lerner, von Hippel, Jonides, & Nagda, 

1998) and enroll in graduate or professional school (Hathaway et al., 2002). In addition, 

providing more students with research opportunity early in their undergraduate education 

may lead to increased diversity in STEM fields. When compared to control groups that 

did not participate in undergraduate research, African-American students had higher 

undergraduate retention (Gregerman et al., 1998), and both African-American and 

Hispanic students had significantly higher rates of graduate school enrollment (Hathaway 

et al., 2002; Russell et al., 2007). 

Instructors and researchers have long pushed for involving more undergraduates 

in authentic research experiences as part of their educational experience (Seago, 1992; 

Chaplin et al., 1998), however, major logistical constraints arise when trying to 

implement such programs. At research-focused institutions with thousands of students in 
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STEM majors, designing an undergraduate research program to reach all students is 

challenging. It takes time and effort to establish the infrastructure necessary for such 

programs, and most research labs do not have enough room for every interested student 

(Russell et al., 2007). In certain undergraduate research programs, like the National 

Science Foundation’s Research Experience for Undergraduates program, students must 

meet certain criteria to be considered for admission, and even then, a random lottery 

sometimes determines who is accepted and who is not (Hathaway et al., 2002). 

Furthermore, students may need to be self-motivated to find and pursue research 

opportunities (Hathaway et al., 2002; Bangera & Brownell, 2014). Students may not be 

aware of these programs or know to seek them out; thereby, many qualified students, 

especially those from underrepresented groups in STEM fields, may miss these 

opportunities (Eagan Jr., Hurtado, Chang, Garcia, Herrera, & Garibay, 2013; Spronken-

Smith, Mirosa, & Darrou, 2014). Lastly, these research experiences tend to focus on 

upperclassmen who, presumably, are better prepared to undertake original research after 

completing prerequisite courses and narrowing their field of interest (Chaplin et al., 

1998). As such, some researchers suggest that these opportunities need to be introduced 

at the freshman and sophomore level (Russell et al., 2007; Spronken-Smith et al., 2014). 

Exposing a broad range of students to undergraduate research in a ‘low-risk’ 

environment may help reduce the barrier to entry into other undergraduate research 

opportunities outside the classroom. Programs such as the CURE program (course-based 

undergraduate research experiences) have sought to address this by including diverse 

authentic research experiences in courses taken for credit (Bangera & Brownell, 2014). 

To effectively reach the most students, the authors argue that CURE-type programs 
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should be implemented in courses at the introductory level. Here, we present our own 

findings of introducing undergraduates to authentic research at the introductory level 

through collaboration with a local graduate student. We conducted an authentic scientific 

research project in a General Biology laboratory course at Utah State University with 

nearly 1,000 students. Specifically, we examined the validity of using data collected by a 

large number of previously untrained undergraduates, the impact on students who 

participated in the project, and the logistics of incorporating such a project into the 

curriculum. 

Methods  

Project 

The project we implemented into the General Biology lab course was part of a 

master’s thesis of a graduate student in the Department of Biology at Utah State 

University. The project was focused on the nesting ecology of woodpeckers in the 

Eastern Washington Cascades. The research sought to answer how interactions between 

nest competitors, nest predators, and parent woodpeckers influenced woodpecker and 

nest competitor nesting behavior and success. We used video cameras at 30 woodpecker 

nests to capture feeding and competitor/predator behavior. We had approximately 15,000 

hours of daylight footage. 

Nine hundred thirty-seven students were introduced to this project three weeks 

into the General Biology laboratory course. In half of the 32 lab sections, the project was 

introduced by the graduate student in charge of the project, and in the other half, by the 

teaching assistant (TA) for that section. The presentation focused on the research 

question, the study species, and how the data would be used by the U.S. Forest Service to 
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manage forests and animal populations. Students watched several instances of predation 

and nest usurpation that had been recorded during the study. In addition, the presenter 

discussed opportunities to engage in undergraduate research at USU and how 

participating in research might benefit students. The initial introduction of the project was 

approximately 10 minutes long for each lab section. After this introduction, students were 

reminded every week of their opportunity to participate. 

We encouraged participation in this project by offering extra credit, which would 

increase a student’s overall grade by 2% in the course. Students received the extra credit 

if they read through a detailed protocol, watched one two-hour video while recoding data, 

and returned their datasheet to the TA the next week. 

Logistics 

 Students downloaded videos off USB flash drives onto their personal computer. 

Each section had two USB’s with two videos each, for a total of four videos available for 

download per lab section per week. Each video file was approximately 4 GB and took 

students five minutes to download. Upon download, students initialed a checkout sheet 

that had the name of their nest and video file number; this helped us keep track of the 

number of times each video was watched. Enough videos were provided throughout the 

course of the semester for each student to have the opportunity to watch one.  

Students picked up a datasheet along with a detailed protocol to follow and a 

photographic guide to the most common birds and animals seen in the area. The protocol 

instructed students on how to record the time of entrance and exit for each animal seen, 

the species of each animal seen, each animal’s behavior, sex, as well as any other 

additional notes. There were five behavior codes: on the nest, in the nest, feeding 
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nestlings, in the background, or chasing another animal, that helped track interactions 

competitors, predators, and woodpeckers around the nest and one another. 

We collected returned datasheets at the end of the week, and a research team of 

trained undergraduates reviewed the videos to correct any mistakes made by the General 

Biology students. At the end of each week, we deleted video files that had been checked 

and downloaded new files so that there were always four new videos for each lab section 

every week. One 4 GB video file took approximately 20 minutes to download onto one 

USB. 

Surveys 

 When students checked out their videos, they were encouraged to pick up a 

survey that asked them about this research experience. The surveys were introduced in 

each lab section by an individual not involved in grading the course to ensure students 

would not be coerced to participate (USU IRB protocol #7767). Students were asked to 

give their major but no other identifying information. The survey was completed 

voluntarily, and students did not receive additional credit for completing the survey. The 

survey asked if they had been aware of undergraduate research opportunities beforehand, 

how their participation affected their view of undergraduate research opportunities, who 

introduced the project to their lab, and any other comments. Students were also asked to 

restate the main research question in their own words and how their participation 

contributed to the project (Table 2-1). If students completed the survey, they returned it to 

their TA in a sealed envelope. 
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Table 2-1. Survey questions along with given answer options (if applicable). Note that 

Questions 1 and 2 were regarding the student’s ability or willingness to participate in the 

survey and were not a part of any analysis. 

Survey Questions 

Question Answer Options (blank if no given options) 

 

3. What is your current major? 

 

 

 

 

4. Before participating in this 

project, did you know about 

opportunities for undergraduate 

research? 

 

 

Yes 

 

No 

 

5. Did your participation in this 

project influence your interest in 

undergraduate research? 

 

A: This project increased my interest in 

participating in undergraduate research 

 

B: This project decreased my interest in 

participating in undergraduate research 

 

C: I already wanted to participate in undergraduate 

research, and this project did not influence me. 

 

D: I did not want to participate in undergraduate 

research, and this project did not influence me. 

 

 

6. In your own words, what was 

the main research question this 

project was addressing? 

 

 

 

7. How did your participating in 

this project contribute to 

answering the research 

question? 

 

 

 

8. Did the graduate student 

research, Sammy Cowell, or 

another teaching assistant 

 

Sammy Cowell 

 

Other person 
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explain the project to your lab 

section? 

 

 

I don’t remember 

 

 

9. Comments on the experience: 

 

 

 

 

 

Scoring of Surveys 

 After the end of the semester, student surveys were collected and scored together 

by two of the authors. We grouped student majors (Question 3) as either ‘biology’, ‘non-

biology science’, or ‘non-basic science’ majors based on their college affiliation within 

Utah State University (Table 2-2). Questions 6, 7, and 9 were subjective and open-ended 

(Table 2-1). Questions 6, regarding the student’s understanding of the research question, 

was scored on a 0-3 scale (see Table 2-3 for specifics on scoring). Question 7, regarding 

the student’s understanding of their contribution to the project, was scored in two parts: 

1) whether the students understand that they were collecting data for this project, and 2) 

whether the students understand how their data would be used in the project (Table 2-3). 

General comments (Question 9) were scored as negative, neutral, or positive. Questions 4 

and 5 were multiple choice answers and did not need to be scored. 

  



25 

Table 2-2. Grouping of majors. The placement of majors within the groups is not based 

on the content of the major, but rather their affiliated college within Utah State 

University. 

Major Group 

Veterinary Science 

Human Biology 

Conservation Biology 

Wildlife Science 

Plant Science 

Nutrition Science 

Forestry 

Biotechnology 

Public Health 

BIOLOGY 

Bioengineering 

Biochemistry 

Chemistry 

Physics 

Mathematics 

NON-BIOLOGY SCIENCE 

Nursing 

Business 

Psychology 

Human Movement Science 

Undeclared 

Economics 

NON-BASIC SCIENCE 
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Table 2-3. Scoring of Questions 6 and 7. Question 7 was scored in two parts: 1) Did the 

students understand that they were collecting data for this project, and 2) did the students 

understand how their data would be used in the project? All examples are direct quotes 

from student surveys. 

Scoring of Survey Questions 

Question Score Reasoning 

 

6. In your 

own words, 

what was 

the main 

research 

question this 

project was 

addressing? 

 

0 

 

No response or an extremely generalized 

answer (e.g. ‘What happens to woodpeckers’). 

 

 

1 

 

Student mentioned something about how this 

project was studying woodpecker behavior (e.g. 

‘How do woodpeckers behave in the wild’). 

 

 

2 

 

Student stated that this project was studying the 

nesting success of woodpeckers (e.g. ‘What are the 

nesting factors of woodpecker that contribute to 

their success’). 

 

 

3 

 

Student understood that this project was studying the 

behavior of nesting woodpeckers and their 

competitors and predators and how that behavior 

affected nesting success (e.g. ‘What animals in the 

woodpecker’s community have an [e]ffect on their 

successful nesting and raising young’). 

 

 

7. How did 

your 

participating 

in this 

project 

contribute to 

answering 

the research 

question? 

 

 

 

 

 

 

 

D 

a 

t 

a 

 

 

 

No 

 

Student did not display any understanding of 

how they were collecting data. 

 

 

 

Conceptual 

 

Student did not explicitly mention the term 

‘data’ in their response but used other terms such as 

‘observed’, ‘recorded’, ‘collected’, ‘analysed’, 

‘documented’, etc. that indicated they had some 

understanding in their role in collecting data. 
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Yes Student explicitly mentioned the term ‘data’ in their 

response. 

 

 

 

 

 

 

 

 

S 

p 

e 

c 

i 

f 

i 

c 

i 

t 

y 

 

 

0 

 

No response or no understanding of how 

their data would be used in the project (e.g. ‘I knew 

what happened in those 2 hrs of footage’). 

 

 

1 

 

Student understood that their data would, on some 

level, be used to help study woodpeckers (e.g. 

‘Recorded what went in and out the birds nest’). 

 

 

2 

 

Student understood their data would be used to help 

explain nesting success of woodpeckers (e.g. ‘It 

helped show ways that contribute to the success/fails 

of woodpecker nesting’). 

 

 

3 

 

Student understood that their data collection would 

be a part of the larger database reviewed by the 

researchers on woodpecker and competitor/predator 

behavior and nesting success (e.g. ‘I recorded every 

animal that was close to the nest so eventually 

someone else can crunch the numbers and see if the 

frequency of this species has an [e]ffect on the 

woodpeckers’). 

 

 

 

 

Analysis 

 We analysed the accuracy of student data collection by measuring for criteria 

from 50 randomly selected datasheets against the corresponding datasheets of our trained 

research team. We scored these criteria as a binary, yes or no, variable. First, were the 

students within +/- five seconds of the entrance and exit times of the animal into the 



28 

frame of the video (scored as separate categories)? Second, did the students write down 

the correct species code? Third, did the students record the correct behavior code? 

For the species, we calculated how likely it was for a student to misidentify a 

species given they had already misidentified one. For events with misidentified species, 

we graded them on severity, with Tier I being a less severe mistake (e.g. coding a rodent 

species as a different rodent species) and Tier II being a more severe mistake (e.g. 

misidentifying the focal woodpecker species of the nest). We created a contingency table 

to test for an interaction between these Tiers and the location of the event. 

We also calculated the average number of false positives and false negatives per 

video. An example of a false positive is a student watching an insect fly through the 

frame and recording it as a bird. An example of a false negative is a student missing an 

animal either flying or running through the frame, at the nest or in the background. We 

calculated the frequency of the behavior codes within these false negatives to determine 

the egregiousness of the error (i.e. did a student miss a bird flying far away in the 

background compared to missing an animal at the nest). We calculated the conditional 

probability of an additional false negative given one false negative. 

Finally, we created contingency tables to examine how the frequency of coding 

errors and false negatives/positives was impacted by the event type in the video (e.g. 

background event versus event at the nest). We graded these errors by severity and placed 

them in one of two categories: Tier 1 errors were incorrect codes that were still at the 

same location in the video (e.g. ‘in the nest’ instead of ‘on the nest”), whereas Tier 2 

errors were codes that described events at a different place in the video (e.g. ‘in the nest’ 
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instead of ‘background”) or instances when students did not use a code that we had given 

them (e.g. ‘lands on the tree’ instead of ‘onne’ for on nest tree). 

 To measure the impact of this experience on the students, we analysed results 

from the survey as well as the grades of those who participated in the project compared to 

those who did not. We ran a logistic regression model to see how a student’s major 

impacted their previous knowledge of undergraduate student research opportunities. We 

also ran stepwise multinomial regression models to see how a student’s major, previous 

knowledge of undergraduate research opportunities, and who presented to them affected 

levels of interest afterwards (Question 5), their ability to restate the research question 

(Question 6), their ability to understand their role in data collection (Question 7), and 

their comment ratings, using Akaine’s Information Criterion (AIC) to choose the best 

fitted model. For each model we also calculated McFadden’s pseudo-R2. Student 

responses with blank information or an “I don’t remember” in Question 8 (who 

presented) were left out of model analysis.  

At the end of the semester, we removed the names of students from the gradebook 

and calculated the average grade of students who did not participate and the average 

grade of students who did participate before the extra credit points were added to their 

grade. We ran a mixed-model with lab section and TA as random effects to compare the 

grades of the two groups of students. All statistical software computing was conducted in 

R 3.4.0. 
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Results 

Accuracy 

 Out of 937 students, 149 students participated in the research, and 100 students 

returned useable surveys (four students returned surveys but did not answer questions). 

Participation rates from the survey did not vary significantly among the three groups of 

majors (biology, non-biology science and non-basic science) in the class (Pearson's Chi-

squared test, χ2= 0.65231, df = 2, p-value = 0.7217, Figure 2-1). 

 

 

 

Figure 2-1: Enrollment in the General Biology Course by major (n = 937) and survey 

participation by major (n = 100).
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 Students accurately recorded data 89.23% of the time on average across the four 

categories that we tested for student accuracy. Students recorded an accurate (within +/- 

five seconds) entrance time 92.40% of the time, an accurate exit time 91.05% of the time, 

the correct species 90.03% of the time, and correct behavior 83.45% of the time. 

When students misidentified a species, 50% of the time, they were likely to 

misidentify a species at least one another time. Out of the 59 events with misidentified 

species, 48 of these events came from students with at least two misidentified species, 

with one student misidentifying 13 out of 14 species. If this extreme outlier was 

excluded, student accuracy on species identification rose to 92.04%. Misidentified 

species came from approximately equal number of background and nest events. Most 

incorrect species were classified as Tier II misidentifications, but there was not a 

significant interaction of Tier ranking and event location (Table 2-4, Fisher’s Exact Test, 

p = 0.26). 

 

 

 

Table 2-4: Incorrect Species based on severity (Tier) and Location, excluding one outlier 

student. 

 Background At Nest 

Tier I 6 3 

Tier II 14 21 

 

 

 



32 

Events at the nest were nearly 33 times more likely to be incorrectly coded for 

behavior when compared to events away from the nest (Fisher’s Exact Test, Odds Ratio 

(OR) estimate = 32.8, p <0.001, Table 2-5a). Most of these incorrect errors were 

insignificant Tier 1 errors. However, after removing Tier 1 errors, we still found that 

students were over four times as likely to commit Tier 2 errors with events at the nest 

(Fisher’s Exact Test, OR estimate = 4.35, p = 0.0469, Table 2-5b.). We found that 

students were twice as likely to miss background events than nest events (Fisher’s Exact 

Test, OR estimate = 2.17, p = 0.0104, Table 2-5c). Across the 50 videos viewed for 

validation, there was an average of 1.08 false negatives per video and 1.98 false positives 

per video. If the student had one false negative, there was a 57.14% probability that there 

would be another false negative. 

 

 

 

Table 2-5a: Number of correctly scored and incorrectly scored events by event type. 

 Incorrect Correct 

Away from nest 2 207 

At nest 83 261 
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Table 2-5b. Number of Tier 2 errors by event type. 

 Incorrect Correct 

Away from nest 2 207 

At nest 11 261 

 

 

 

 

Table 2-5c. Number of missed events (false negatives) by event type. 

 Missed Events Events Scored 

Away from nest 29 209 

At nest 22 344 

 

 

 

Surveys 

Most students reported that they were aware of undergraduate research 

opportunities (65%). There were nearly significant differences in knowledge of 

undergraduate research opportunities for students in biology and non-biology science 

majors (p = 0.0772, 0.0598, respectively), but not for non-basic science majors (p = 

0.6169; R2 = 0.04). We found that non-biology science majors were more knowledgeable 

of research opportunities than biology majors (Figure 2-2). Some students reported that 
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they were already interested in engaging in undergraduate research (34%), and many said 

this project increased their interest in undergraduate research opportunities (56%). A 

small number of students reported that they had no interest in undergraduate research 

(7%) or that this project decreased their interest (3%, Figure 2-3). 

 

 

 

Figure 2-2: Student response to Question 4 of if they had previous knowledge of 

undergraduate research opportunities grouped by major. 
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Figure 2-3: Student response to Question 5 of how their participation in the project 

influenced their interest in undergraduate research. A: This project increased my interest 

in participating in undergraduate research. B: This project decreased my interest in 

participating in undergraduate research. C: I already wanted to participate in 

undergraduate research, and this project did not influence me. D: I did not want to 

participate in undergraduate research, and this project did not influence me 
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As some interest level categories had low responses, we approached our analysis 

in two different ways. When combining positive (A and C) and negative (B and D) 

answers (Table 2-1), only students’ major was included in the final model. Students 

largely reported positive feelings (90%). When compared to biology majors, non-biology 

science majors were more likely to report positive feelings (OR > 100, p <0.001, R2 = 

0.21), while non-basic science majors were less likely (OR = 0.11, p < 0.01). However, 

all majors largely reported positive feelings (Table 2-6). When combining ‘changed 

interest levels’ (A and B) and ‘unchanged interest levels’ (C and D), more students were 

more likely to have changed their interest (59%). The final model included student’s 

previous knowledge of research opportunities and who presented to them; these factors 

were nearly significant (p = 0.0549, p =0.0774, respectively, R2 = 0.07). 

 

 

 

Table 2-6. Undergraduate student response by major and interest (positive or negative) 

interest levels after participation. 

 Positive (A and C) Negative (B and D) 

Biology 42 2 

Non-biology science 15 0 

Non-basic science 17 7 
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 Most students received a score of either a 2 or 3 (63%) when asked to restate the 

research question. When asked about their role in the project, 14% of students explicitly 

mentioned the term ‘data’, 41% of students displayed a conceptual understanding of their 

contribution to data collection, and 45% did not demonstrate any understanding of data 

collection. Compared to biology and non-biology science majors, non-basic science 

majors had the largest proportion of students unable to demonstrate an understanding of 

data collection (Figure 2-4). Most students (59%) received a low score of 0 or 1 (the 

highest possible score being a 3) for understanding how their role factored into the 

overall project. In the comments section, 42% of students did not leave a comment, 5% 

students left a neutral comment, 14% students left a negative comment, and 39% students 

left a positive comment. 

 

 

 

Figure 2-4: Student scores of how they understood their role as data collectors as 

determined by their responses to Question 7: How did your participating in this project 

contribute to answering the research question? Students with 'Yes' score explicitly 

mentioned the term 'data'. Students with a 'Conceptual' score did not explicitly mention 

the term 'data', but mentioned other terms such as 'collected', 'analyzed','documented', etc. 

Students with a 'No' score did not give any indication that they understood their role as  

data collectors 
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 When testing models on the students’ interest level after the project, their ability 

to restate the project’s objectives, or their understanding of how their data would be used 

for the project, only one model (ability to restate the research question) differed from the 

null model by including an explanatory variable (previous knowledge, however this was 

highly non-significant, all p’s > 0.85). A model of student ratings included presenter in 

the final model; this was barely non-significant (p’s > 0.05, R2 = 0.05). The ratios of 

positive to negative comments were similar for the graduate student researcher (24:9) and 
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the TA (9:3). However, when combining neutral/none comments and positive/negative 

comments, students who learned about the project from the graduate student researcher 

were over four times as likely to provide a positive or negative comment (OR = 4.22, p < 

0.01, R2 = 0.09).  

 Students earned two points of extra credit (2% of total possible points) for 

completing a video analysis. Mixed-models showed that the teaching assistant (TA) 

variable was not a significant predictor of student’s grades (standard deviation of 0), and 

there was no significant difference between the null model and the model including lab 

sections (ANOVA, χ2 = 0.3374, df = 1, p = 0.5613). The grades of students who 

participated were 2.33 points higher before adding the extra credit points than the grades 

of students who did not participate (Wilcoxon rank sum test with continuity correction, 

W = 53381, p <0.001). 

We spent 2.5 hours presenting the project to 16 lab sections, two hours preparing 

the protocol materials, and two hours per week for six weeks managing video files and 

student data sheets for a total of 16.5 hours of effort.  Trained undergraduate researchers 

watched the identified sections of the video files to verify or correct the general biology 

students’ work.   These undergraduate researchers could process more video files per 

week as they did not have to spend two hours watching each video file to identify the 

relevant sections. We calculated that involving the general biology students in our 

research saved 283.5 hours of effort for the research team. 

Discussion 

 In this study, undergraduate students with minimal training provided accurate 

analysis for a large-scale, video-based project. In two of the three criteria we examined, 
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students were 90% accurate. Student accuracy of species identification is comparable to 

other citizen science projects that have attempted similar goals (see Delaney, Sperling, 

Adams, & Leung, 2008). Furthermore, many of these inaccuracies came from localized 

sources (e.g. the student who misidentified 13 out of 14 species), making it easier to weed 

out “inaccurate” recorders from the majority of students who were “accurate” recorders. 

The least accurate category was the behavior codes. However, even in this 

instance, out of the 85 miscoded behaviors, 72 were Tier 1 errors involving the nest 

(‘feeding nestlings’ vs. ‘inside nesting cavity”), with 27 of these errors coming from one 

student. In our project, it can be difficult to determine which code to use, even for trained 

researchers, as it is not always obvious whether a parent is carrying a small food item to 

the nest and then feeding the nestlings inside. Events around the nest had more Tier 2 

errors, with six of these errors due to students writing a correct action but not correct 

code (e.g. ‘flew into the nest’ instead of ‘inne’ for in the nest). Five of these six errors 

came from one student. 

 False negatives provide a more difficult challenge in that they are not easily 

caught by trained observers since they are reviewing video segments identified by the 

students. Most of the false negatives (54.72%) in our analysis were background events, 

not directly concerned with the nesting cavity or tree. This reduces the amount of 

meaningful false negatives from 1.08 to 0.49 false negatives per video. Furthermore, as 

datasheets with false negatives were more likely to produce another false negative, we 

conclude that most of false negatives came from ‘localized’ sources, much like species 

misidentifications (e.g. 13 out of the 51 false negatives came from one student). This can 

be encouraging as trained undergraduate researchers reported that when they noticed one 
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false negative, they began to comb through the entire video to ensure there were no other 

false negatives, thereby reducing the amount of missed false negatives. False positives do 

not significantly impact data quality as they take little time to examine and discount. 

Using undergraduate students with minimal training can be a legitimate method 

for sound data collection, comparable to the widespread collaboration with citizen 

scientists in research. Large groups of volunteers, numbering hundreds or even 

thousands, collect or analyse large datasets with minimal training (Bonney et al., 2014; 

Danielsen et al., 2014). Our results are especially encouraging in that students received 

no direct guidance from the researchers after the initial presentation and still obtained 

highly accurate results by simply reading the protocol. Presumably, projects with more 

time spent training and hands-on guidance will produce more accurate results from 

previously untrained students or volunteers. 

 Students who participated in this project had a largely positive experience. Of the 

students who changed their opinion towards undergraduate research, more students 

indicated that the project increased their desire to participate in undergraduate research 

than decreased their desire. These results are nearly identical with studies focusing on 

student attitude towards postgraduate education after participating in undergraduate 

research (Lopatto, 2004), but with much less time and investment when compared to a 

summer internship within one research lab. Non-basic science majors were not as 

positive towards future research opportunities compared to biology majors, but this is 

because biology major responses were overwhelmingly positive (51/53) when compared 

to the still largely-positive responses of non-basic science majors (22/30). We could not 
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test if positive student responses were simply due to receiving extra credit, but future 

studies could do so by offering no credit in one semester and extra credit in another. 

 Many participants could restate the research question in their own words. We are 

encouraged by this result as the only exposure to the research question was a 10-minute 

presentation and the printed materials distributed with the video files. However, when 

asked about their role in collecting data for the project, only about half of the students 

demonstrated knowledge of the importance of data collection in original scientific 

research, and fewer than half of the participants recognized their role in the research 

project. Non-biology science majors struggled in particular, with 10 out of 17 of their 

answers failing to mention anything about data. Several students stated that they did not 

contribute to the project because there was minimal or no activity in their video. These 

students did not understand that ‘no data’ recorded is still useful information. Based on 

our surveys, we find that the concept of data collection is a step of the scientific method 

that is poorly understood by undergraduate students, even in STEM majors. Other studies 

working with citizen scientists have found that while volunteers gain understanding of 

their particular subject matter, they still display a deficiency in understanding a basic 

concept of the scientific process (Brossard, Lewenstein, & Bonney, 2005). Therefore, we 

suggest, along with Brossard et al. (2005), that the scientific process be emphasized when 

introducing authentic research projects to undergraduates, especially within laboratory 

courses designed to introduce students to research. 

 We found TAs and a graduate student researcher were equally effective in 

explaining the scope and significance of the project to students. The only effect of 

presenter we found was that students who learned about the project from a graduate 
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researcher were more likely to provide open-ended comments in survey. Students may 

see a research project as simply a part of the course when presented by their TA, and are 

thus more indifferent. 

Students who participated in the research had a significantly higher mean grade 

than those who did not participate. Those interested enough to participate in research may 

already possess higher intrinsic motivation to perform well in academic settings (Noels, 

Clément, & Pelletier, 1999; Lin, McKeachie, & Kim 2003). Another study found that 

those who participated in a voluntary research project for extra credit already had higher 

grades and scored higher on several academic measures than those who did not 

participate (Padilla-Walker, Thompson, Zamboanga, & Schmersal, 2005). Thus, 

voluntary exposure to research may not target underperforming students who could 

potentially benefit the most from such exposure. 

The weight of extra credit could be increased in order to increase participation. 

Many students complained that watching a 2-hour-long video was not worth their time 

for ‘only two extra credit points’. However, offering extra credit may not be an efficient 

method to help lower-achieving students reach educational goals (Padilla-Walker et al., 

2005). Just over 15% of students in the course participated in our research. Thus, instead 

of offering more extra credit for a research opportunity like this in the future, 

incorporating authentic research projects as a mandatory part of the curriculum may be 

more effective to help all undergraduates experience authentic research and reach desired 

educational learning outcomes. 

 It has been long known that processing, synthesizing, and restating of scientific 

facts and principles is an important cognitive step in a student’s scientific education 
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(Seago, 1992; Chaplin et al., 1998), and research projects such as this provide a perfect 

opportunity for students. Several students commented on how this educational, research-

based experience prepared them for their future careers. One student wrote: 

‘I really enjoyed participating in this. As a wildlife sciences major, this 

could very easily be a big part of my life and career in the future. Overall a 

very interesting and enlightening project.’ 

Another student commented, ‘It was interesting to see how biological research is 

conducted’, and one more stated, ‘This was fun! It made me realize the huge amount of 

time that goes into research and I appreciate it a lot more now.’ Projects do not need to be 

directly related to a student’s major or interest to have positive impact, as expressed in 

this comment: ‘This experience got me excited to participate in research in my field of 

study - cancer.’ Additionally, these projects do not need to be limited to STEM fields; 

almost 30% of our participants were from non-STEM majors. As one student 

commented, ‘I enjoyed [this project] and I wish as an economics major there were more 

school sponsored research projects in the business dept.’ 

In conclusion, incorporating this project into an undergraduate General Biology 

laboratory course appeared to benefit all parties involved. The researchers save almost 

300 hours of work, and students expressed positive attitudes towards undergraduate 

research. Original research projects should be supported across all academic fields to 

encourage critical and logical thinking skills for all undergraduates, which is possible in a 

collaboration between graduate student and in-course undergraduates. 

Acknowledgements: We would like to thank Teresa Lorenz and Phil Fischer for 

organising the woodpecker video study used in this research; Mariah Panoussi for 



45 

organising and downloading new videos for the undergraduates every week and entering 

survey data into the digital database; Karen Kapheim for reviewing the manuscript; all of 

the Fall 2016 General Biology teaching assistants; as well as our team of trained 

undergraduates: Taylor Albrecht, Melanie Athens, Blake Christensen, Eric Ethington, 

Ryan Gallegos, Marcos Garcia, Mariah Panoussi, Ryan Sabel, and Allison Stassel. 

  



46 

References 

Bangera, G., & Brownell, S. E. (2014). Course-based undergraduate research experiences 

can make scientific research more inclusive. CBE-Life Sciences Education, 13(4), 

602-606. 

Bauer, K. W., & Bennett, J. S. (2003). Alumni perceptions used to assess undergraduate 

research experience. The Journal of Higher Education, 74(2), 210-230. 

Bonney, R., Shirk, J. L., Phillips, T. B., Wiggins, A., Ballard, H. L., Miller-Rushing, A. 

J., & Parrish, J. K. (2014). Next steps for citizen science. Science, 343(6178), 

1436-1437. 

Brossard, D., Lewenstein, B., & Bonney, R. (2005). Scientific knowledge and attitude 

change: The impact of a citizen science project. International Journal of Science 

Education, 27(9), 1099-1121. 

Chaplin, S. B., Manske, J. M., & Cruise, J. L. (1998). Introducing freshmen to 

investigative research--a course for biology majors at Minnesota's University of 

St. Thomas: How’ investigative labs’ change the student from passive direction-

follower to analytically critical thinker. Journal of college science 

teaching, 27(5), 347. 

Danielsen, F., Jensen, P. M., Burgess, N. D., Altamirano, R., Alviola, P. A., 

Andrianandrasana, H., ... & Enghoff, M. (2014). A multicountry assessment of 

tropical resource monitoring by local communities. BioScience, 64(3), 236-251. 

Delaney, D. G., Sperling, C. D., Adams, C. S., & Leung, B. (2008). Marine invasive 

species: validation of citizen science and implications for national monitoring 

networks. Biological Invasions, 10(1), 117-128. 



47 

Eagan Jr, M. K., Hurtado, S., Chang, M. J., Garcia, G. A., Herrera, F. A., & Garibay, J. 

C. (2013). Making a difference in science education: the impact of undergraduate 

research programs. American educational research journal, 50(4), 683-713. 

Gregerman, S. R., Lerner, J. S., von Hippel, W., Jonides, J., & Nagda, B. A. (1998). 

Undergraduate student-faculty research partnerships affect student retention. The 

Review of Higher Education, 22(1), 55-72. 

Lin, Y. G., McKeachie, W. J., & Kim, Y. C. (2003). College student intrinsic and/or 

extrinsic motivation and learning. Learning and individual differences, 13(3), 

251-258. 

Lopatto, D. (2004). Survey of undergraduate research experiences (SURE): First 

findings. Cell biology education, 3(4), 270-277. 

Hathaway, R. S., Nagda, B. A., & Gregerman, S. R. (2002). The relationship of 

undergraduate research participation to graduate and professional education 

pursuit: an empirical study. Journal of College Student Development, 43(5), 614. 

Noels, K. A., Clément, R., & Pelletier, L. G. (1999). Perceptions of teachers’ 

communicative style and students’ intrinsic and extrinsic motivation. The Modern 

Language Journal, 83(1), 23-34. 

Padilla-Walker, L. M., Thompson, R. A., Zamboanga, B. L., & Schmersal, L. A. (2005). 

Extra credit as incentive for voluntary research participation. Teaching of 

Psychology, 32(3), 150-153. 

R Core Team (2017). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria.  URL https://www.R-

project.org/. 



48 

Russell, S. H., Hancock, M. P., & McCullough, J. (2007). Benefits of undergraduate 

research experiences. Science(Washington), 316(5824), 548-549. 

Seago, J. L. (1992). The role of research in undergraduate instruction. The American 

Biology Teacher, 54(7), 401-405. 

Spronken-Smith, R., Mirosa, R., & Darrou, M. (2014). ‘Learning is an endless journey 

for anyone’: undergraduate awareness, experiences and perceptions of the 

research culture in a research-intensive university. Higher Education Research & 

Development, 33(2), 355-371. 

Zydney, A. L., Bennett, J. S., Shahid, A., & Bauer, K. W. (2002). Impact of 

undergraduate research experience in engineering. Journal of Engineering 

Education, 91(2), 151-157. 

  



49 

CHAPTER III 

 

USING CONTINUOUS VIDEO MONITORING TO DOCUMENT SAME-SEASON 

NEST WEB DYNAMICS BETWEEN PRIMARY CAVITY EXCAVATORS AND 

SECONDARY CAVITY USERS 

 

ABSTRACT 

Woodpeckers serve as the primary cavity excavators (PCEs) in temperate forest 

ecosystems, with secondary cavity users (SCUs) dependent on these cavities for their 

own nesting success. This creates dynamic nest webs within a community as PCEs 

excavate nests and SCUs compete for these nests. Research on the dynamics of these nest 

webs is not new, however, little work has been done to determine how direct interactions 

around nesting cavities influence the behavioral response and interactions between PCEs 

and SCUs, especially within the same season. Here, through the use of continuous video 

monitoring, we document direct behavioral interactions at the nests of four PCE species 

and SCUs in the Eastern Washington Cascades and how they influence nest web 

dynamics. Overall, fourteen out of thirty-one PCE nests we monitored were reused within 

the same season by four species of SCUs, with Western Bluebirds being are most 

common SCU. We found that some nests were reused within minutes to hours of vacancy 

by PCEs. However, we found no significant predictors of nest reuse or SCU presence at 

nests. Parent PCEs responded less aggressively to avian SCUs than to rodent SCUs, 

predators, and other PCE species.  Our video-based study provides a new window into 

behavioral interactions in the nest webs and same-season nest reuse, but it is limited by 

its scope. Thus, we recommend additional video studies examining behavioral 

interactions around the nest and how it affects nest reuse within a season. 
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INTRODUCTION 

In temperate forest ecosystems, woodpeckers are the primary cavity excavators (PCEs), 

creating nesting sites that are later used by many species of birds and mammals (Raphael 

and White 1984, Martin and Eadie 1999). Both rodent and avian secondary cavity users 

(SCUs), unable to excavate their own nests, compete for vacant cavities to use for their 

own nests and roosting sites (Martin and Eadie 1999, Aitken et al. 2002). Thus, PCEs act 

as ecosystem engineers in creating these new nesting sites and introduce new nest webs 

into a community (Martin et al. 2004, Tarbill et al. 2015). 

Nest webs have been compared to food webs in that there is a central resource 

produced within a community (nesting cavities), a hierarchy of competitors for this 

resource (PCEs and SCUs), and ecological connections among competitors and predators 

(Martin and Eadie 1999, Aitken et al. 2002). However, these nest webs differ from food 

webs in that PCEs produce the nesting cavity from raw materials (i.e. trees) and may 

defend the nest from other PCEs and SCUs (Cockle et al. 2012). SCUs may usurp active 

nests from PCEs, driving parents away and potentially killing their offspring (Loeb and 

Hopper 1997, Vierling 1998, Frye and Rogers 2004, Kozma and Kroll 2012, Cowell et al. 

2017). Rodents have been identified as both SCUs and nest predators (Paclik et al. 2009). 

Thus, the direction and hierarchy of these interactions is convoluted and complex. 

 Research on the relationships between PCEs and SCUs is not new (Martin and 

Eadie 1999, Aitken et al. 2002, Martin et al. 2004, Tarbill et al. 2015, Altamirano et al. 

2017), however, little work has been done to determine how direct interactions around 

nesting cavities influence the behavioral response between PCEs and SCUs (Paclik et al. 

2009). Previous studies of nest webs focused on documenting species involved in the 
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nest-webs, correlations between PCE and SCU abundance, frequency of nest re-use, and 

environmental factors affecting nest selection. In western coniferous forests, most 

evidence of SCU competition is anecdotal or indirect, and continuous video surveillance 

has been encouraged in order document interactions among members of the nest web 

(Packlik et al. 2009). We monitored PCE nests with video cameras and compared how 

PCE parents respond to SCU presence, and factors associated with nest reuse.   We 

monitored nests of four PCE species in the Eastern Washington Cascades: Black-backed 

Woodpecker (Picoides arcticus), White-headed Woodpecker (Picoides albolarvatus), 

Hairy Woodpecker (Picoides villosus), and Northern Flicker. These species are PCEs 

found in post-fire habitats throughout the region (Haggard and Gaines, 2001). The goal 

for this study was to construct and interpret nest web relationships among the four PCE 

species and the SCUs and predators that interacted with their nest. This study was part of 

a larger study investigating whether rodent predators reduced nesting success in 

woodpecker species in the study area.  In the context of interactions at the nest, we put 

forward two main objectives: (1) Identify variables (habitat, time of year, presence and 

behavior of PCEs, SCUs, and predators) that predict within nest season reuse in western 

coniferous forests, and (2) understand the effects of SCU presence, predator presence, 

habitat, and seasonal variables on the nesting behavior of PCEs in western coniferous 

forests.  

METHODS 

Field Methods 

Nest monitoring. Video cameras were set up near PCE nests during the 2016 breeding 

seasons. Nests were located in post-fire coniferous forest habitat throughout the Naches 
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Ranger District, Okanogan-Wenatchee National Forest in Washington State 

(approximately 46º 45′ N, 120º 58′ W). These post-fire habitats were the result of 

prescribed fires by the U.S. Forest Service from 2006 to 2015. Fires burned with mixed-

severities, creating a mosaic of small (0.1-24.2 ha) severely burned (~80-90% canopy 

mortality), and lightly burned (~0-10% canopy mortality) patches in an otherwise live 

forest (Lorenz et al. 2015, Cowell et al. 2017). Forest composition varied by aspect, 

elevation, and distance from the Cascade Crest and most forests were dominated by a 

mixture of ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), and 

Grand Fir (Abies grandis). 

 We began monitoring on 15 April 2016 and concluded monitoring on 6 July 2016. 

Nests were monitored for one-week periods with approximately seven days in between 

monitoring periods. When nests were not monitored with videos, they were checked 

every 3-4 days to confirm activity or failure. We used Panasonic camcorders (model HC-

V160, Newark, NJ, USA) with LiPolymer batteries (model 1055275-2C) manufactured 

by Mogen Industrial Limited (Shenzhen, Guangdong, China). Cameras were mounted 

inside of a black PVC pipe on a tree 20-50 m from the nesting cavity. We replaced the 64 

GB SD card and camera battery once a day. 

Rodent and avian counts We visited each nest three times in July between 06:00 and 

11:00 after all PCE species had finished nesting to assess rodent and avian SCU relative 

abundance. We conducted counts after the nesting season to avoid affecting nest 

outcomes. We conducted counts for 15 minutes at each point, recording every rodent and 

bird heard or seen, distance from the nest, and the time it was detected. We did not 

conduct counts during strong winds or rain. For each nest, we conducted counts from 



54 

06:00 to 11:00. We used the maximum number of rodents and birds seen on any count in 

our analyses as this value indicated that at least that many were present at the site. 

Nest reuse. We determined nest reuse by visiting nests after the last PCE nestling 

fledged. Nest reuse was determined based on either evidence of nesting material in the 

cavity or observations of a SCU entering the cavity after fledging (either observed in 

person or on camera). If we lacked direct evidence of the SCU species, we inferred 

species identity through indirect evidence, such as nesting materials only used by certain 

species (Tarbill et al. 2015). 

Vegetation. We conducted vegetation surveys after the nesting season to avoid affecting 

nest outcomes, following Martin et al. (1997) and Dudley and Saab (2003). We measured 

snag DBH (tree diameter at breast height, ~ 1.4 m), snag height, and cavity height. We 

measured habitat variables within a 0.04 ha plot around the nesting snag and divided the 

plot into four quadrants using the cardinal directions as dividing lines: number of dead 

trees, number of cavities in the nest tree, number of total cavities in the plot, and canopy 

cover. In each quadrant we measured the DBH of any trees >1.4 m and estimated 

percentage of the ground covered by shrubs and coarse woody debris (CWD), as these 

are important habitat variables for rodents (Loeb 1999, Converse et al. 2006). 

Behavioral scoring. We used over 200 naïve along with 13 trained undergraduate 

students to score the videos. We randomly selected individual days of filming to be 

scored from each PCE nest, and only videos from daylight hours were used. Video files 

were generally two hours long. Many of these videos were initially scored by naïve 

undergraduates as class projects. The periods of activity in the videos were then watched 
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by a group of thirteen trained undergraduates to verify the scoring. The accuracy of naïve 

undergraduates was 89.23% (Cowell et al. in review). 

We trained 13 observers in the following protocol. Observers recorded every 

vertebrate species that entered the frame of the camera, the entrance and exit time, sex of 

the animal, and one of five behavioral codes: chasing, feeding nestlings, in the nest, on 

the nest tree, in the background. We defined a chase as any one animal or group of 

animals lunging at or pursuing another animal or group of animals. We defined “in the 

nest” as being in or on the rim of the nesting cavity. We defined “on the nest tree” as 

being on any part of the nesting tree. And, we defined “in the background” as within the 

frame but not directly interacting with the nesting tree. Species were classified either as 

the parent PCEs, avian SCUs, rodent SCUs, predators (species that had been observed on 

video attempting to depredate nests), or other non-parent PCE species. Observers 

recorded if parent PCEs were present when a non-parent animal was in the frame and the 

recipient of a chase. 

During the first three weeks of training all scoring was verified by SDC. 

Throughout the project, multiple students were given the same video file to watch to 

calibrate scoring accuracy. SDC reviewed some videos to minimize errors. 

Analysis 

Principle Component Analysis. We conducted Principle Component Analysis to reduce 

the dimensionality of the vegetation variables, clustering them into three clusters (Table 

3-1). Each nest was given a numeric score for each of the clusters.



56 

Table 3-1: Covariates used in models for nest reuse by SCUs, or presence of PCEs and 

SCUs in Central Washington in 2016, with the type of variable and its specific definition. 

Variable Variable Type Description 

Cluster 1 Vegetation Reduced-dimensionality vegetation variables 

describing the availability of cavities or cavity 

potential (the number of dead trees, number of cavities 

in the nest tree, and number of total cavities in the 

plot). 

Cluster 2 Vegetation Reduced-dimensionality vegetation variable 

describing the other vegetation in the plot (shrub 

cover, canopy cover, CWD). 

Cluster 3 Vegetation Reduced-dimensionality vegetation variable 

describing the height (tree height, cavity height). 

Parent PCE 

presence 

Behavioral Arcsine-transformed variable representing proportion 

of time parent PCEs spent at nest in all videos 

analyzed for that nest. 

Avian SCU 

presence 

Behavioral Arcsine-transformed variable representing proportion 

of time avian SCUs spent at nest in all videos 

analyzed for that nest. 

Rodent 

SCU 

presence 

Behavioral Arcsine-transformed variable representing proportion 

of time rodent SCUs spent at nest in all videos 

analyzed for that nest. 

Date ended Seasonal Calendar date the nest ended (fledgling or failure). 

Day of 

nesting 

cycle 

ended 

Seasonal The number of days from estimated date of the first 

egg-laying that the nest ended (fledgling or failure). 

SCU 

counts 

Point counts The maximum number of SCUs (avian, rodent) 

detected at each nest during counts. 

Nesting 

PCE 

species 

Other Species of nesting PCE (Hairy Woodpecker, Black-

backed Woodpecker, White-headed Woodpecker, or 

Northern Flicker). 

Guild type Other The guild type (Parent PCE, Avian SCU, Rodent 

SCU, Predator, Non-parent PCE), to which any 

individual animal belongs. Animals not belonging to 

any of the above guilds were excluded from analysis. 
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Presence. We defined presence at the nest as the proportion of time any animal from a 

particular guild (parent PCE, rodent SCU, avian SCU, predator, non-parent PCE) was 

seen at the nest compared to the total number of video hours analyzed for that nest. In our 

final analysis, we used arcsine square-root transformations of these proportions, as rodent 

and avian SCU presence were close to 0 at multiple nests. 

Objective 1. We used logistic regression models to test if nest reuse was affected by 

different vegetation, behavioral, seasonal, and count explanatory variables (Table 3-1, 

Models 1-6 in Table 3-2). We used generalized linear regression models to see if rodent 

SCU presence and avian SCU presence at the nest were affected by different vegetation, 

behavioral, seasonal, and count explanatory variables (Table 3-1, Models 7-13 in Table 

3-2).

Table 3-2: All tested models of nest reuse by SCUs, presence of PCEs and SCUs, or 

parental PCE response to different guilds in central Washington in 2016. Models are 

arranged by response variable and corresponding explanatory variables. For logistic 

regression models, likelihood ratio p-values are reported. Models with only one variable 

are included only when they are significant (P < 0.05) or close to significant (P < 0.07). 

Model 

Number 

Response 

Variable 

Explanatory Variable(s) p-value

Objective 1 

1 Nest Reuse 

(yes/no) 

Reduced-dimensionality vegetation 

variables (Clusters 1,2,3) 

0.899 

2 Nest Reuse 

(yes/no) 

Parent PCE presence, Avian SCU 

presence, Rodent SCU presence 

0.9690 
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3 Nest Reuse 

(yes/no) 

Date ended, Day of nesting cycle the 

nest ended 

0.2981 

4 Nest Reuse 

(yes/no) 

Rodent SCU relative abundance, 

Avian SCU relative abundance 

0.0680 

5 Nest Reuse 

(yes/no) 

Avian SCU relative abundance 0.0578 

    

7 Avian SCU 

presence 

Reduced-dimensionality vegetation 

variables (Clusters 1,2,3) 

0.1888 

8 Avian SCU 

presence 

Date ended, Day of nesting cycle the 

nest ended 

0.1353 

9 Avian SCU 

presence 

Avian SCU relative abundance, Parent 

PCE presence 

0.1427 

10 Avian SCU 

presence 

Avian SCU relative abundance 0.0775 

11 Rodent SCU 

presence 

Reduced-dimensionality vegetation 

variables (Clusters 1,2,3) 

0.6249 

12 Rodent SCU 

presence 

Date ended, Day of nesting cycle the 

nest ended 

0.1906 

13 Rodent SCU 

presence 

Rodent SCU relative abundance, 

Parent PCE presence 

0.7616 

Objective 2 

14 Parent PCE 

presence 

Reduced-dimensionality vegetation 

variables (Clusters 1,2,3) 

0.3057 

15 Parent PCE 

presence 

Avian SCU presence, Rodent SCU 

presence 

0.4161 

16 Parent PCE 

presence 

Avian SCU relative abundance, 

Rodent SCU relative abundance 

0.6052 

17 Parent response 

(number of 

times 

chased/number 

of visits to the 

nest) 

Guild type (Avian SCU, Rodent SCU, 

Predator, Non-parent PCE), Nest ID 

(random effect) 

0.0126 

 

 

 

Objective 2. We used generalized linear regression models to test if parent PCE presence 

at the nest was affected by vegetation, behavioral, seasonal, and count explanatory 

variables (Table 3-1, Models 14-16 in Table 3-2). 
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We tested if parent PCEs responded to the presence of other PCEs, avian SCUs 

and rodent SCUs using a generalized linear mixed model, with parent response (number 

of times a species was chased divided by the number of times it visited the nest)as the 

response variable with a binomial distribution and the type of species being chased (avian 

SCU, rodent SCU, predator, other PCEs) as the explanatory variable (Table 3-1, Model 

17 in Table 3-2). Nest ID was included as a random effect (PROC GLIMMIX, SAS 

Institute 2015). 

We considered models to perform better than a null model if their overall model 

p-value < 0.05.  We considered parameter estimates to be significant if α < 0.05 or if odds 

ratio 95% confidence intervals overlapped 1. We report parameter estimates for models 

with P < 0.07. We used separate models to avoid over-fitting our small sample size with 

too many parameters. All analyses were conducted using SAS/IML 14.1 software (SAS 

Institute 2015) and R 3.4.0 (R Core Team 2017). 

RESULTS 

Nest Outcomes 

We monitored four Hairy Woodpecker nests, four Northern Flicker nests, eight Black-

backed Woodpecker nests, and fifteen White-headed Woodpecker nests for a total of 

thirty-one nests. However, we only obtained useable video data for twenty-two of the 

nests, for a total of 1,093 hours of video footage. Students watched 182 hours (16.6%) of 

this video.  

One Northern Flicker nest was abandoned during incubation, and nine White-

headed Woodpecker nests failed. Three White-headed Woodpecker nests successfully 

raised only one chick, with the others dying in the nest. One White-headed Woodpecker 
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nest failed for unknown reasons (heavy fog covered the camera), but two chicks were 

found dead in the cavity. One Black-backed Woodpecker pair was shot, and their nest 

was re-used by a second Black-headed Woodpecker pair (Table 3-3, Lorenz et al. 2018). 

 

 

 

Table 3-3: PCE nest outcomes in Central Washington in 2016. 

Species Total no. of 

nests monitored 

No. of 

successful nests 

No. of 

failed nests  

Reasons for failure 

(if applicable) 

Hairy 

Woodpecker 

 

4 4 0 NA 

Northern 

Flicker 

 

4 3 1 Abandoned during 

incubation 

Black-

backed 

Woodpecker 

 

8 8 *1 Parents shot during 

excavation. 

*Reused later by 

another Black-

backed 

Woodpecker pair 

that successfully 

fledged chicks. 

 

White-

headed 

Woodpecker 

 

15 6 9 7 nests: Unknown 

 

2 nests: 

Depredated 

(American Kestrel, 

Long-tailed 

Weasel). 

 

 

 

 



61 

Fourteen out of thirty-one nests were reused by rodent or avian SCUs in the 2016 

breeding season. The most common SCUs we detected in our counts were Western 

Bluebird (Sialia mexicana), House Wren (Troglodytes aedon), Mountain Chickadee 

(Poecile gambeli), Douglas Squirrel (Tamiasciurus douglasii), and chipmunks (Tamias 

spp.). Eight nests were reused by Western Bluebirds; two nests by House Wrens, two 

nests by pine squirrels, and one nest by Mountain Chickadees. One nest was reused by 

bluebirds and then by wrens (Figure 3-1). 

 

 

 

Figure 3-1: Nest web structure between PCEs and SCUs in central Washington in 

2016 (n = 31 nests). PCEs are bolded, SCUs are not bolded. Edge weight indicates how 

many times any SCU used the nest of that PCE. WHWO = White-headed Woodpecker, 

BBWO = Black-backed Woodpecker, HAWO = Hairy Woodpecker, NOFL = Northern 

Flicker, PISQ = Pine squirrel (Douglas squirrel), HOWR = House Wren, WEBL = 

Western Bluebird, MOCH = Mountain Chickadee. 
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Nest Reuse and SCU Presence 

No vegetation, behavioral, seasonal, or count models with multiple variables significantly 

predicted nest reuse by SCUs (Table 3-2). However, a model containing only avian SCU 

counts as an explanatory variable was nearly significant, with a parameter estimate that 

was positive and thus suggest a positive trend with nest reuse (Model 5 in Table 3-2, 

Table 3-4). 
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Table 3-4: Parameters estimates +/- SE, with odds ratios from the model predicting PCE 

nest reuse by SCUs in central Washington in 2016 with only avian SCU counts.  

Analysis of Maximum Likelihood Estimates 

Parameter Degrees of 

Freedom 

Estimate Standard 

Error 

Wald Chi-

Square 

P > |F| 

Intercept 1 -2.3195 1.3721 2.8579 0.0909 

Avian SCU 

count 

1 0.5184 0.3072 2.8484 0.0915 

Odds Ratio Estimates 

Effect Point Estimate 95% Wald Confidence Limits 

Avian SCU count 1.679 0.920 3.066 

 

 

 

No vegetation, behavioral, seasonal, or count models with multiple variables had 

a significant relationship with avian SCU presence at the nest. One model containing only 

avian SCU counts as an explanatory variable demonstrated a nearly significant 

relationship with avian SCU presence at the nest (Model 10 in Table 3-2, parameter 

estimate = 0.009, p = 0.0775). Cluster 1 had a significant relationship with avian SCU 

presence at the nest (parameter estimate = 0.00771, p = 0.0374), even though the 

probability for the entire model was not significant (Fd.f. = 3 = 1.81, p = 0.1888). No 

models significantly predicted rodent SCU presence at the nest. The highest presence of 

avian SCUs at nests occurred during the month of May (Figure 3-2). 
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Figure 3-2: Presence of avian SCUs at PCE nests in central Washington in 2016 (total 

duration of visits (in minutes) per 2-hour video segment) by date (n = 22 nests).

 

 

 

 

Parent PCE presence and Defensive Response 

No vegetation, behavioral, seasonal, or count models contained significant relationships 

with parent PCE presence at the nest (Table 3-2). Avian SCUs visited active PCE nests 

more often than rodent SCUs, predators, or non-parent PCEs, but they were chased less 

often (Fd.f. = 3 = 4.46, p = 0.0126, Table 3-5). 
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Table 3-5: Visits and number of chases by parent PCEs by guild category for PCE nest in 

central Washington in 2016. All nests are combined. 

Species No. of visits 

w/ chases 

No. of visits 

w/out chases 

No. of total visits 

Avian SCU 8 193 201 

Rodent SCU 5 27 32 

Predators 5 13 18 

Other PCEs 6 16 22 

 

 

 

DISCUSSION 

Almost half of the PCE nests in our study were reused in the same season by avian SCUs 

and rodents. While many studies have documented nest reuse (Aitken et al. 2002, Martin 

et al. 2004, Saab et al. 2004, Tarbill et al. 2015), to our knowledge, there appear to be no 

studies that directly examine nest reuse within the same breeding season in western 

coniferous forests. Nest reuse rates of PCE cavities between seasons is highly variable 

among studies, ranging from 86% (Tarbill et al. 2015) to 28% (Aitken et al. 2002). Out of 

the fourteen nests that were reused in our study, three nests were reused within the month 

of May, nine in June, and two nests during July. PCEs nesting earlier in the breeding 

season may face increased pressure from SCUs (Wiebe 2003), and we did find that avian 

SCU presence at nests peaked during the month of May. However, it appears that demand 

for nests by SCUs is present throughout the entire duration of the breeding season. 

While usurpation of PCE nests by Western Bluebirds has been documented in our 

study area before (Cowell et al. 2017), no such negative interactions occurred in the 2016 

breeding season. In fact, the presence of nesting Western Bluebirds may at times be 
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beneficial for nesting PCEs. One bluebird pair nesting in a Hairy Woodpecker cavity 

from the 2015 breeding season were seen chasing a chipmunk away from a nearby 

Northern Flicker nest and other bluebirds away from another Hairy Woodpecker nest.  

We failed to find significant models to explain nest reuse, our first study 

objective. Only one variable approached significance: avian SCU counts. Avian SCUs 

are important players in the nest web dynamics of our study area. Thus, models with only 

avian SCU variables may prove to be more predictive. Douglas squirrels were the only 

rodent species to reuse PCE nests in our study. The more common chipmunk species are 

not obligate cavity nesters (Broadbrooks 1974) and were not detected using nests.   

Landscape level vegetation variables, which were not a part of this study, may have 

greater predictive power than the nest site variables we measured (Saab et al 2004).   

We found anecdotal evidence for nest competition among SCUs.  At one Hairy 

Woodpecker nest finished on May 26, a pair of Western Bluebirds occupied the nest four 

minutes after the last nestling fledged. At a Black-backed Woodpecker nest, a pine 

squirrel was seen on the nest tree five days before the last nestling fledged. It occupied 

the nest with 24 hours of fledging. Both these events occurred in an area that burned in 

2015. Other nests that have been usurped in our study area were in recent burns (Cowell 

et al. 2017). Limited variability in the fire history of our nests prevented more in-depth 

analysis, but we believe it is important to further understand how fire influences nest 

competition, and consequently SCU behavior (Saab et al. 2004). 

We also failed to find significant models to explain the response of PCEs to other 

individuals at the nest site, our second objective.   Parental presence was not significantly 
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predicted by SCU presence or density. Rodents rarely visited nests in the video footage, 

and avian SCUs cautiously investigating a cavity may not be detected by parent PCEs. 

Few studies have provided more than anecdotal evidence for active PCE defense 

in western coniferous forests (Paclik et al. 2009, but see Vierling 1998). Overall, chase 

events were rare in the footage we reviewed, but we documented parent PCEs defending 

nests by physically blocking the entrance to the nesting cavity, lunging out at other 

animals from within the cavity, performing an open-wing display (Kilham 1962, Ligon 

1970) when outside of the cavity, and physically flying at animals outside of the cavity. 

Relationships in these nest webs may also influence the probability of predation 

on PCE nests. Predators may learn cues from other animals visiting the nest (Pelech et al. 

2010). In other avian nesting guilds, nests sites that are used by multiple species are 

exposed to greater risks of predation because of an increase in prey density (Martin 

1993). Predators may also learn from other predators. After the male White-headed 

Woodpecker defended the nest against a Stellar’s Jay, an American Kestrel (Falco 

sparverius) depredated the nest six hours later.  It is still unknown whether predators 

learn of active cavities from watching other predators. 

Nest web relationships may also help cavity nesters cooperatively defend nests 

against common predators. When a Long-tailed Weasel (Mustela frenata) appeared at a 

White-headed Woodpecker nest, a Northern Flicker was seen chasing the weasel along 

with the male White-headed Woodpecker. Mobbing a common predator benefits all nests 

in an area (Flasskamp1994) Jackdaws (Corvus monedula) nesting in old PCE cavities, 

experienced reduced predation from Pine Martens (Mattes mattes) by breeding in larger 
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colonies (Johnsson 1994). Thus, nesting closer to other PCEs and SCUs may be 

beneficial for nesting PCEs in defending nests from predators.  

     A goal of the larger study was to determine if rodents were reducing nesting success in 

woodpecker populations in our study area by preying on eggs and nestlings. Out of the 

twenty-two nests for which we had a definitive outcome, there was no evidence of rodent 

predation. Our definitive predator identifications included an American Kestrel and a 

long-tailed weasel. While we can confirm that while rodents did visit cavities, they did 

not depredate any of the nests in our study. 

Reviews of PCE nesting behavior have expressed the need for studies using 

continuous video surveillance to provide evidence on PCE nest defense, predation, and 

nest competition (Paclik et al. 2009). Video surveillance is the most accurate method for 

identifying other avian nest predators (Thompson 2007, Weidinger 2008), and through 

the use of continuous surveillance, we were able to provide detailed descriptions of 

parental, avian SCU, rodent, and predator behavior around PCE nests unachieved by 

other studies. Our study was limited by sample size, thus, we recommend future studies 

focus on larger samples of specific species across the entirety of a nesting season in order 

to create accurate depictions of the relationships within these nest webs and how they 

influence nesting success. 

ACKNOWLEDGEMENTS 

We would like to thank Jess Stitt for providing vegetation and SCU nest reuse 

data; Karen Kapheim for reviewing the manuscript; Taryn Rodman for quality checking 

the data; Mariah Panoussi for organizing and downloading new videos for the 

undergraduates every week; all of the Fall 2016 General Biology teaching assistants; as 



69 

well as our team of trained undergraduates: Taylor Albrecht, Melanie Athens, Blake 

Christensen, Eric Ethington, Ryan Gallegos, Marcos Garcia, Mariah Panoussi, Taryn 

Rodman, Ryan Sabel, and Allison Stassel. This research was funded by a joint venture 

agreement between the U.S. Forest Service and Utah State University, agreement 15-JV-

11261992-059. All aspects involving wildlife followed guidelines of the university’s 

institutional animal care and use committee, approval number 2590. 

Author Contributions: 

S.D.C. and K.A.S. conceived the idea, design, experiment, performed the experiments, 

wrote the paper, developed or designed methods, and analyzed the data; T.J.L and P.C.F. 

Conceived the idea, design, experiment, performed the experiments, developed or 

designed methods, and contributed substantial materials.  



70 

LITERATURE CITED 

Altamirano, T. A., Ibarra, J. T., Martin, K., & Bonacic, C. (2017). The conservation value 

of tree decay processes as a key driver structuring tree cavity nest webs in South 

American temperate rainforests. Biodiversity and Conservation, 26(10), 2453-

2472. 

Aitken, K. E. H., Wiebe, K. L., & Martin, K. (2002). Nest-site reuse patterns for a cavity-

nesting bird community in interior British Columbia. The Auk, 119(2), 391-402. 

Broadbooks, H. E. (1974). Tree nests of chipmunks with comments on associated 

behavior and ecology. Journal of Mammalogy, 55(3), 630-639. 

Cockle, K. L., Martin, K., & Robledo, G. (2012). Linking fungi, trees, and hole-using 

birds in a Neotropical tree-cavity network: Pathways of cavity production and 

implications for conservation. Forest Ecology and Management, 264, 210-219. 

Converse, S. J., Block, W. M., & White, G. C. (2006). Small mammal population and 

habitat responses to forest thinning and prescribed fire. Forest ecology and 

management, 228(1-3), 263-273. 

Cowell, S.D., Lorenz, T.J., Fischer, P.C., Lorscheider, S.A., Panoussi, M.W., Parrish 

L.L., Rodman T., & Sullivan K.A. Tag-Team Takeover: Usurpation of

Woodpecker Nests by Western Bluebirds. Western Birds, 48(3), 173-180. 

Duckworth, R. A., Belloni, V., & Anderson, S. R. (2015). Cycles of species replacement 

emerge from locally induced maternal effects on offspring behavior in a passerine 

bird. Science, 347(6224), 875-877. 

Dudley, J. G., & Saab, V. A. (2003). A field protocol to monitor cavity-nesting birds. US 

Department of Agriculture, Forest Service, Rocky Mountain Research Station. 



71 

Flasskamp, A. (1994). The adaptive significance of avian mobbing V. An experimental 

test of the ‘move on’hypothesis. Ethology, 96(4), 322-333. 

Frye, G. G., and Rogers, K. K. 2004. Probable cavity usurpation via interspecific killing 

by the Mountain Bluebird (Sialia currucoides). Northwest. Nat. 85:126–128. 

Haggard, M., and Gaines, W. L. (2001). Effects of stand-replacement fire and salvage 

logging on a cavity-nesting bird community in eastern Cascades, Washington. 

Northwest Science 75: 387-396. 

Johnsson, K. (1994). Colonial breeding and nest predation in the Jackdaw Corvus 

monedula using old Black Woodpecker Dryocopus martius holes. Ibis, 136(3), 

313-317. 

Kilham, L. (1962). Reproductive behavior of downy woodpeckers. Condor, 64(2), 126-

133. 

Kozma, J. M., and Kroll, A. J. (2012). Woodpecker nest survival in burned and unburned 

managed ponderosa pine forests of the northwestern United States. Condor 

114:173–184. 

Ligon, J. D. (1970). Behavior and breeding biology of the Red-cockaded Woodpecker. 

The Auk, 87(2), 255-278. 

Loeb, S. C. (1999). Responses of small mammals to coarse woody debris in a 

southeastern pine forest. Journal of mammalogy, 80(2), 460-471. 

Loeb, S. C., and Hooper, R. G. (1997). An experimental test of interspecific competition 

for red-cockaded woodpecker cavities. The Journal of Wildlife Management, 

61:1268-1280. 



72 

Lorenz, T. J., Fischer, P. C., & Cowell, S. D. (2018). Conspecifics Take Over Black-

Backed Woodpecker Nest Following Removal of Resident Pair. Northwestern 

Naturalist, 99(1), 66-72. 

Martin, K., and Eadie, J. M. (1999). Nest webs: a community-wide approach to the 

management and conservation of cavity-nesting forest birds. Forest Ecology and 

Management 115: 243-257. 

Martin, K., Aitken, K. E., & Wiebe, K. L. (2004). Nest sites and nest webs for cavity-

nesting communities in interior British Columbia, Canada: nest characteristics and 

niche partitioning. The condor, 106(1), 5-19. 

Martin, T. E. (1993). Nest predation and nest sites. BioScience, 43(8), 523. 

Martin, T. E., Paine, C. R., Conway, C. J., Hochachka, W. M., Allen, P., & Jenkins, W. 

(1997). BBIRD field protocol. Montana Cooperative Wildlife Research Unit, 

University of Montana, Missoula, USA. 

Miller, K. E. (2010). Nest-site limitation of secondary cavity-nesting birds in even-age 

southern pine forests. Wilson Journal of Ornithology 122: 126-134. 

Paclík, M., Misík, J., and Weidinger, K. (2009). Nest predation and nest defence in 

European and North American woodpeckers: a review. Annales Zoologici Fennici 

46: 361-379. 

Pelech, S. A., Smith, J. N., & Boutin, S. (2010). A predator's perspective of nest 

predation: predation by red squirrels is learned, not incidental. Oikos, 119(5), 

841-851.

SAS Institute Inc. (2015). SAS/IML® 14.1 User’s Guide. Cary, NC: SAS Institute Inc. 



73 

R Core Team (2017). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria.  URL https://www.R-

project.org/. 

Raphael, M. G., and White, M. (1984). Use of snags by cavity-nesting birds in the Sierra 

Nevada. Wildlife monographs, 3-66. 

Saab, V. A., Dudley, J., & Thompson, W. L. (2004). Factors influencing occupancy of 

nest cavities in recently burned forests. The Condor, 106(1), 20-36. 

Tarbill, G. L., Manley, P. N., and White, A. M. (2015). Drill, baby, drill: the influence of 

woodpeckers on post‐fire vertebrate communities through cavity excavation. 

Journal of Zoology 296: 95-103.  

Thompson, F. R. (2007). Factors affecting nest predation on forest songbirds in North 

America. Ibis, 149(s2), 98-109. 

Vierling, K. T. (1998). Interactions between European Starlings and Lewis' Woodpeckers 

at Nest Cavities. Journal of Field Ornithology 69:376-379. 

Weidinger, K. (2008). Identification of nest predators: a sampling perspective. Journal of 

Avian Biology, 39(6), 640-646. 

Wiebe, K. L. (2003). Delayed timing as a strategy to avoid nest‐site competition: testing a 

model using data from starlings and flickers. Oikos, 100(2), 291-298. 



74 

APPENDICES 



75 

Samuel Cowell is welcome to reproduce the article of which he is first author, 
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