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ABSTRACT

Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula
by
Nicholas Graner, Master of Science

Utah State University, 2018

Major Professor: Mark Fels
Department: Mathematics and Statistics

Lie’s third theorem states that for any finite dimensional Lie algebra g over the real numbers,
there is a simply connected Lie group G which has g as its Lie algebra. The main part of this
document is concerned with the question of determining the group G, in Lie’s third theorem, and

its multiplication function when just g is given.

The Baker-Campbell-Hausdorff formula (BCH) is implemented in the Maple Differential Ge-
ometry package for nilpotent Lie groups where the group multiplication is determined from the Lie
algebra using the BCH formula. The BCH formula is also used to give a closed form formula for a
local basis for the left invariant vector fields of a Lie group in canonical coordinates of the 15* kind.
It is shown how the BCH formula can be used to locally give the group multiplication in canonical
coordinates of the 2" kind. A closed form formula for a local basis for the left invariant vector
fields of a solvable Lie group is given in coordinates of the 2 kind. For nilpotent Lie groups these
calculations are implemented in the Maple Differential Geometry package along with the calculation
of local left invariant 1-forms for general Lie groups in coordinates of the 2"? kind. Examples of the

calculations are given.

(70 pages)
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PUBLIC ABSTRACT

Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula

Nicholas Graner

Lie Groups occur in math and physics as representations of continuous symmetries and are
often described in terms of their Lie Algebra. This thesis is concerned with finding a concrete de-
scription of a Lie group given its associated Lie algebra. Several calculations toward this end are
developed and then implemented in the Maple Differential Geometry package. Examples of the

calculations are given.
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CHAPTER 1
INTRODUCTION

Lie’s third theorem states that for any finite dimensional Lie algebra g over the real numbers,
there is a simply connected Lie group G which has g as its Lie algebra. The main part of this
document is concerned with the question of determining the group G, in Lie’s third theorem, and

its multiplication function when just g is given.

1.1

Chapter Summary

Chapter 2 provides some background regarding Lie algebras and Lie groups and defines some

basic terminology that will be used in the document.

Chapter 3 defines canonical coordinates of the 1%* kind by use of the exponential map. For
any Lie group these coordinates are defined in a neighborhood of the identity. For some simply
connected groups, including those with g nilpotent, these coordinates are global making the group

diffeomorphic to R™.

In Section 2 of Chapter 3 we introduce the Baker Campbell Hausdorff formula (BCH) which
provides a local formula for the group multiplication in coordinates of the 15¢ kind. For simply
connected Lie groups with nilpotent g this will produce the multiplication map in coordinates for

the entire group. Examples are given in Section 3 and Maple code implementation is in Appendix A.

In Section 4 of Chapter 3 the BCH formula is used to determine a closed form formula for a
basis for the left invariant vector fields of a Lie group in coordinates of the 15 kind on an open set
about the identity. For nilpotent g these vector fields are defined on all of R™. Examples are given

in Section 5 and Maple code implementation is in Appendix A.



Chapter 4 defines canonical coordinates of the 2" kind. For any Lie group these coordinates
are defined in a neighborhood of the identity. For simply connected groups with solvable g these

coordinates are global making the group diffeomorphic to R™.

In Section 2 of Chapter 4 we show how the BCH formula can be used to give the group multi-
plication in coordinates of the 2"¢ kind for simply connected Lie groups with nilpotent g. Examples

are given and Maple code implementation is in Appendix A.

In Section 3 of Chapter 4 we modify the basis for left invariant 1-forms given in reference |1]
to be in coordinates of the 2"? kind. These 1-forms are defined in a neighborhood of the identity for

any Lie group. Examples are given and Maple code implementation is in Appendix A.

In Section 4 of Chapter 4 we show that for Lie groups with solvable g the basis of 1-forms
given in reference [5] are the same as those computed in coordinates of the 2°¢ kind using the formula
developed in the prior section. We then go on to show that the dual to this basis is the same as one I
developed by use of the BCH formula. For simply connected Lie groups with nilpotent g these vector
fields are defined on all of R™. Examples are given in Section 5 and the Maple code implementation

is in Appendix A.

1.2

Literature Review and Summary of Results

Eugene Dynkin gave an explicit formulation of the Baker Campbell Hausdorff Formula (BCH)
for expressing the multiplication in canonical coordinates of the 15 kind. (see [4] 1.7). In this doc-
ument we implement the calculation of this formula in the Maple Differential Geometry package for

nilpotent Lie groups.

In this document the BCH formula is used to derive a closed form formula for a basis for the
left invariant vector fields of a Lie group on a neighborhood of the identity in canonical coordinates
of the 1% kind. In developing this formula a result from reference [6] is used to write the sum of
some of the coefficients from the BCH formula in terms of Bernoulli numbers. For nilpotent Lie

groups these vector fields are implemented in Maple code.



In this document we use the BCH formula to derive a formula for the group multiplication

for a nilpotent Lie group in coordinates of the 2°¢ kind. This is implemented in Maple code.

Reference [1] gives a formula for a basis for the left invariant 1-forms in coordinates,which are
similar to coordinates of the 2" kind, on a neighborhood of the identity for any Lie group. In this
document we modify this formula so that it is given in coordinates of the 2" kind. This formula is

implemented in Maple code.

In this document we show that for solvable Lie groups the formula for the left invariant 1-
forms given in [1] are, when modified to be in coordinates of the 2°¢ kind, the same as the left

invariant 1-forms given in [5].

In this document a formula is given for a basis for the left invariant vector fields of a solvable
Lie group on a neighborhood of the identity. This formula was developed by use of the BCH formula
and results from reference [6]. This formula is shown to give the same left invariant vector fields as

given in [5].



CHAPTER 2
LIE GROUPS AND LIE ALGEBRAS

First we will introduce Lie groups and Lie algebras and state several important definitions

and theorems that we will utilize.

Definition. Lie group - Let G be a group with multiplication p. The group G is a Lie group if it

has the following properties:

e G is a smooth manifold
e 1t: G x G — G is a smooth map

1

e the mapi1:G — G by i(a) = a™' is a smooth map.

Definition. Lie algebra - A Lie algebra g is a vector space with a multiplication [-,-] : g x g — g,

having the properties:
e Bilinearity: [ax + by, z] = a[x, z] + bly, zl, [z, ax + by] = alz,x] + blz, y]
e Skew Symmetry: [x,yl = —[y,x] = [x,x] =0
e Jacobi Identity: [x, [y, zl] + [z, [x,yl] + [y, [z,x]] =0

where x, y, and z are vectors and a,b € R.

Given X € g, the Adjoint Endomorphism, adX : g — g is given by adX(Z) = [X, Z].

The Derived Series of a Lie algebra is a sequence of subalgebras gy C g where go = g and
Ok+1 = [k, 0k C gk, making each gx+1 and ideal in gy (note that each gy is also an ideal in g (see
[8] Exercise 5.1.9)) . A Lie algebra is Solvable if there is a k such that the term gy = 0 in the

derived series.



The Lower Central Series of a Lie algebra is a sequence of subalgebras g C g where go = g
and gy1 = gk, 0] C gk making each gr7 and ideal in gy (note that each gy is also an ideal in g
based on the Jacobi identity). A Lie algebra is nilpotent if there is a k such that the term g, =0
in the lower central series. A nilpotent Lie algebra is said to be k-step nilpotent if gy = 0 and

gk—1 # 0 in the lower central series.

We now describe the standard way to associate a Lie algebra with a Lie group.

Definition. Left Invariant Vector Field - Let G be a Lie group. Let Ly : G — G be left
multiplication by g given by Lg(h) = gh, g,h € G. A vector field X on G is a left invariant vector
field if (LguXpn) = Xgh.

Let X be the vector space of vector fields on a Lie group G. Let X,Y € X and let f be a
function, f : G — R. Define a multiplication operation (i.e. bracket), [X, YI(f) = X(Y(f)) — Y(X(f)).
This makes X an infinite dimensional Lie algebra. Let g C X be the set of left invariant vector fields

on G.

Theorem 1. The set g of left invariant vector fields on G with bracket, [, ] is a finite dimensional
Lie algebra with dim g = dim G. Additionally if Xe € TG there is a unique left invariant vector field

X on G with the prescribed tangent vector. (See [3] Proposition 7.1)

In particular g C X is a finite dimensional subalgebra that we call the Lie algebra for G. Since
X € g is uniquely determined by X, the Lie algebra can be thought of as either the left invariant
fields or as the tangent space at the identity since these are in 1-1 correspondence and given two left

invariant vector fields, X and Y, we have [X, Y], = [X, Yel.

A standard theorem is the converse to Theorem 1. There are a number of forms of this but

one such is the following.

Theorem 2. Lie’s Third Theorem - Given any Lie algebra g there is a simply connected Lie
group G having g as its Lie algebra. (See [4] 1.14.3) In fact the simply connected group is unique
up to diffeomorphism (See [10] Theorem 3.28).



2.1

Heisenberg Example:

The Heisenberg group H is the manifold R3 with the multiplication:

(x' %%, x) « (Y yhy?) = (k' +y' %y Ty +yd). (2.1)

This multiplication gives a smooth mapping from R3 x R3 — R3? making R? into a Lie group (albeit
a different Lie group then the familiar additive Abelian group). The Heisenberg Lie algebra is often

defined as the vector space R3 with the Lie bracket:

[(x", %%, %), (y', y3u)] = (0,x'y® —x3y',0). (2.2)

In terms of the standard basis for R3, {ey, ez, e3}, equation (2.2) gives non-zero products

ler,e3] = ez, [e3,e1] = —ey. (2.3)

It is easy to check that [, ] satisfies the conditions for making R3 into a Lie algebra. In terms of

the standard basis for R3 equation (2.2) gives:

x'ei,yejl = (x'y® —x3y')es. (2.4)

Note that the Heisenberg Lie algebra f is 2-step nilpotent since [b, [h, hl] = 0.

We now compute the Lie algebra g of left invariant vector fields for H and show that it
is isomorphic to the one described above in equation (2.4). Let Ly : H — H by Lg(x) = gx,

g=1(9",9% %), x = (x',x?,x3) € H. Specifically we have

Lo(x',x%,%*) = (g' +x', g% +x* + ¢'x>, g° +x%).

A basis for the tangent space at the identity is given by 01,042, 0,3,. From these we can create
a basis for left invariant vector fields by pushing them forward with Ly. We have Lg,(0y1) = 041,

Lg.(3y2) = 3,2 and Lg.(d,3) = 3,3 + g'0,2 giving a basis

X3 =0,1,X3 =0,2,X3 = 043 JrX]axz}



for the left invariant vector fields on H.

For by,b,,b3,c1,c2,c3 € R and X,Y € g we can write

X=c"X; +e2Xy+3X3 =c'0y1 + (c? +3x1)0,2 +¢30,5 (2.5)

Y=b'X; +b2Xo +b3X5 =b'0,1 + (b? +b3x")0,2 + b30, s

with Lie bracket

X, Y] = (c'b> —b'c3)X,. (2.6)

Since the Lie algebra of left invariant vector fields on the Heisenberg group and the Heisenberg Lie
algebra are both 3 dimensional vector spaces we can define a vector space isomorphism 1 between
them by ¥ (X;) = e;. Comparing equations (2.4) and (2.6) we see that [{(X), P(Y)] = (X, Y])

making 1 a Lie algebra isomorphism.



CHAPTER 3
CANONICAL COORDINATES OF THE 15T KIND

In this section we will define the exponential map and show how it can be used to define a
coordinate chart about the identity of a Lie group, referred to as canonical coordinates of the 15t
kind. We will state the Baker Campbell Hausdorff formula and show how it can be used to give the
group multiplication for groups with nilpotent Lie algebras, knowing only the Lie algebra for the
group. We will then express the left invariant vector fields of the group in these coordinates and

show how they can be calculated algebraically in certain cases.

3.1

The Exponential and Definition of the Coordinates of the 1%¢ Kind

We first define the exponential map which is a generalization of the matrix exponential and

then show how this can be used to define a coordinate chart about the identity of a Lie group.

Theorem 3. Let G be a Lie group with identity e and let g be the Lie algebra for G. For X € g

there exists a unique curve y : R — G satisfying

1. y(0) =e

2 e = Xhvv

3. y(t+s) =v(t)y(s).
The curve 'y is the unique maximal integral curve of X through e. Furthermore item (3) tells us that
v is a 1-parameter subgroup of G. (see [7] Corollary 1.5)

We use these unique integral cures to define the exponential map.

Definition. Exponential Map - Let G be a Lie group with associated Lie algebra, g and identity
e. Let X be a left invariant vector field on G. Let vy be the integral curve of X through e given by

Theorem 3. Define the exponential map to be exp : g — G by exp(X) = y(1).



Corollary 4. For each X € g. The mapping ¢ : R — G by d(t) = exp(tX) is the unique 1-parameter

subgroup of G with ¢(0) = e and (b*%\t:o = Xle.
The following theorems lay out a few fundamental properties of the exponential map.

Theorem 5. There exists an open set U C G, e € U and an open set V. C g, 0 € V where
exp:V — W is a diffeomorphism of V onto U. (see [9] 2.10.1)

Theorem 6. exp(0) =e.

Proof. Let v:R — G by y(t) =e. Let X =0 € g, then y is the unique integral curve of X through
e. Therefore exp(0) =vy(1) =e.
O

We now use the exponential map to define a coordinate chart about e in G. Let {ei}1<i<m
be a basis for g and define a mapping A : R™ — g by
m) i

AxTy o, x™) = xtes.

The function A defines a topology and a differential structure on g by defining U C g is open iff

A~T(U) is open. The pair (R™,A~") gives a chart on all of g.

Combining the functions exp and A we get a function 17 = (expoA) : R™ — G by

Pr(x', e x™) = exp(xtey). (3.1)

Theorem 7. There is an open set U C G and W C R™, 0 € W with 7 : W — U being a

diffeomorphism making (U,ﬂr)?w a coordinate chart on G with P1(0) = e.

Proof. By Theorem 5 there are open sets U C G and V C g, 0 € V with exp(V) = U a diffeomor-
phism. Let W = A~1(V). If we restrict 7 to W we get {7 : W — U being a diffeomorphism. We
also have P1(0) = exp(A(0)) = e.

O

Definition. The local coordinates (U,l])ﬂ) on G are called Canonical Coordinates of the 15t

Kind.

The following theorem shows that coordinate charts constructed in this way are (essentially)

unique up to a change of basis.
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Theorem 8. Let G be a Lie group with Lie algebra g. Let {ei}1<i<m and {fili<i<m be two basis
for g. Let A be the change of basis matriz with Aifj = e;. By Theorem 7 there is a coordinate
chart (U1,1J)?1) on G with e € Uy where Py is defined in equation (3.1). Similarly let (V1,d)T1)
be another coordinate chart on G with e € Vi where &1 is defined in the same way as V1 but with
Ay ooy x™) = xHfy, using the basis {fi}, so that d1(x', ..., x™) = exp(xfi). Let Wy =7 (U1NVy)
and Zy = c])f](l,h NViy). Let (x',..,x™) € Wy. Then the change of coordinates function, p =

&7 oWy Wy = Zy is given by p(x', ..., x™) = Alxt.

Proof. Let (y'y..,y™) = p(x',...;x™). We have {7 (x',....x™) = ¢1(y',....y™) = exp(x'e;) =
GXp(yjfj). Since exp is a diffeomorphism on U; N'V; we have xte; = gjfj N XiAzfj _ yjfj N xiAi _
y', the desired result.

O

A well studied problem in Lie theory is when exp : g — G is a diffeomorphism. The answer to
this is described as follows. A Lie algebra g is called exponential if for some (and therefore each)
Cartan subalgebra b of g and each root A : hc — C we have A(h) N 2miZ\{0} = 0 (see [11] for the

following theorem).

Theorem 9. When G is simply connected the following are equivalent:
1. the exponential map is a diffeomorphism
2. the exponential map s injective
3. g is exponential.

This theorem tells us that for an exponential Lie algebra, g, there is an associated simply con-
nected Lie group, G having g as its Lie algebra and G is diffeomorphic to R™, with the exponential

map giving us coordinates.

When g is a nilpotent Lie algebra it is itself a Cartan subalgebra with no non-zero roots A

and is therefore exponential. This gives the following theorem.

Theorem 10. Let g be a nilpotent Lie algebra of dimension n and G its associated simply connected
Lie group. The function exp : g — G is a diffeomorphism. Furthermore given any basis {ei}1<i<n
for g the function {7 : R™ — G, defined above, defines coordinates of the 1°¢ kind. Any other
coordinates of the 15 kind are related by a linear change of variables. (See [9] Theorem 3.6.2 for the

first part and Theorem 8 for the second.)
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3.1.1

Heisenberg Example

We show how the exponential map gives coordinates of the 15 kind for the Heisenberg group,
H, continued from 2.1. Let X = ¢'0,1 + (¢ 4 ¢3x')d,2 + 30,3, which is a generic left invariant

vector field on H as given in equation (2.5).

Let y(t) : R — H. We want y(t) = (c',¢? +¢3x',¢®) and y(0) = (0,0,0) so that v is the integral

curve for the vector field X passing through the identity.

Integrating gives y(t) = (c¢'t,c?t + %CSCLtZ, c3t). Since vy is the unique integral curve for X passing

through the identity we have

exp(X) =v(1) = (x! :c1,x2:cz—|—%c301,x3:c3) (3.2)

giving us a mapping 7 : R3 — H by Pq(c',c?,¢3) = exp(X) and defining a coordinate chart
(H,lbfl) on all of H in coordinates of the 15 kind.

3.2

Baker Campbell Hausdorff Formula

Let G be a Lie group with Lie algebra g, multiplication p and identity e. According to
Theorem 5 there is an open set V C g and an open set U C G, e € U, where exp: V — U is a
diffeomorphism. Let log : U — V be exp~'. Let W = u~'(U) € G x G. There is an open set
U; € U C G where U; x Uy € W. Let V7 =log(U;). For X, Y € V; we can define:

Z = log(exp XexpY). (3.3)

The BCH formula provides a power series representation of the right side of equation (3.3)

written out explicitly in terms of the Lie bracket on g, and is the following:

Theorem 11. There is an open neighborhood V of 0 € g where for XY € V the series:

z=x+ Y (1) (adX)™ (adY)*'  (adX)™ (adY)** (adX)™

= (kD1 ZL] sy) T s7! ! Sy! m!
TiLrSi_>O

Y (34)
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converges and satisfies Z = log(exp XexpY), where adX,adY : g — g are the endomorphisms

adX(Z) =X, Z], adY(Z) =Y, Z]. (See [8] Proposition 9.2.52)
Two alternative ways of writing the BCH formula are:

—Nk ™ $1 Tk Sk
Z=vi+x+ Y (=1) ; (@dX)™ (adY)*'  (adX)™ (adY)*
k>0 (k+1)(1 +Zi:1 Ti) 1! s1! TK! Sk!

Ti+si{>0

(See [4] formula 1.7.3) and

(—1)* (adX)" (adY)*'  (adX)™ (adY)**

Z=X+
kZ>o MZ?:] ri+sy) T s1! Ty ! sk!
Ti+si>0

w

where W is either X or Y. (See Encyclopedia of Mathematics - Campbell-Hausdorff formula)

In order to implement (3.4) in Maple we need to write the sum as an iterated sum. To do so,
we first observe that the sum consists of polynomials in the non-commutative endomorphisms, adX
and adY. We use this observation to write (3.4) as an iterated sum where one summation is over

the degree of the polynomial. With this in mind we introduce some notation. Let s;, =1 and let

[XTTYs1XT2ys2 X nysn=T]
=(adX)" (adY)®" --- (adX)™ ' (adY)*" " (adX)™(Y)

=X, X, oor DX, Y, 1Y, Y, DX IX X VDL, (3.5)

where there are 11X’s followed by s1Y’s up to 1, X’s followed by s,Y’s and [Y'] =Y.

For example the non-zero terms in equation (3.4) of degree d = 3 are then

1 2 1 0 1 2v/0+/0

5 DXV, =5 IXYOXY], = IXYOXOY,

1 1 1

§[x, YO,XYOXOY],—Z[XOYXY] and g[XO,Y,XYOXO\G, (3.6)

which in Lie brackets are

%[x, X, YII, —%[x, X, YII, — X, [X, Y1,
1 1 1
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Let (tm,...,t1) be a list of natural numbers with t; > 0. Let

[XtmYtm—1Xtm—2Ytm—s Xt2Yt1]" m even
Wi(tm, ..., t1) = (3.7)

[YimXtm—1Ytm—2Xtm—3 Xt2YU]  m odd.

For any list of natural numbers (r1,81,72,82,...Tn, Sn) With s, > 0 there is a unique list of positive
integers (tm, ..., t1) so that W(t,...,t1) and

W(rq,81,12,82,...Th, Sn) represent the same non-commutative polynomial in adX and adY. To see
this take the ordered list of symbols < r1,s7,72,52,...Th, Sp > and remove any which are equal to
zero. In the remaining list if an i is adjacent to an 1y, let Ty = 1; + 7; and remove 1; from the list.
Do this for the s; terms also and continue until we have an alternating list < ...y, 85, Tk, ... > with
no terms equal to zero. Relabel these symbols < ty,...,t1 > giving W(t, ..., t1), representing the
same polynomial as W(r1,81,72,82,...Tn,$n). Let d = Y {"t;, the degree of the polynomial then

(tm, ..., t1) is a composition of d, meaning d = Z;“ t; where each t; is a positive integer.

For example the terms in equation (3.4) of degree d = 3, listed in (3.6) (in the same order) are then

1

W21, = T2, 1, WL, 1), W2, 1), WL T, 1), S, 1),

2 4 '3
Let (an,,...ar) and (bn,,...b1) be ordered lists of natural numbers. Define an equivalence relation
~ 80 that (an,,...a1) ~ (bn,,...b7) iff there is a sequence of positive integers (tm, ..., t1) such that
W(an,,-ar), W(bn,,...,b1) and W(tm,...,t1) represent the same non-commutative polynomial

in adX and adY. Let

_1\yn—1
C(tmy ey t1) = > =D (3.8)

n n *
Ny n(y iqysi)- T rilsi!

(T1,81,72,52,5.+sTny 80 )~ (tm,ye-yt1)

For example, for the terms in equation (3.4) of degree d = 3 we have

We can now write equation (3.4) as an iterated sum over the degree of the polynomial with

the inner sum being over all compositions of d where d is the degree of the polynomial.
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Theorem 12. With W as defined in formula (3.7) and c as defined in formula (3.8), Z from

Theorem 11 is given by

o0
Z=X+)_ D cltmyen )Wty ey 1), (3.9)
d=1compositions
[t1 v”»tnl)
of d
with t;=1

Equation (3.9) with all terms up to degree d = 3 written explicitly is:

Z =X+ c(MW) +c(1, W1, 1) +c(1,2)W(1,2) +¢(1, 1, DW(T,1,1) + ...

= XY+ 3T (06 DX VI 9 D VI o

Proof. Starting with equation (3.4), using the notation from (3.5) and letting n =k + 1 we get

ZoX4 (—1)k (@dX)™ (adY)*'  (adX)™ (adY)** (adX)™

S RN+ X s T s1! ! Si! ml
Ti4+s{>0

X+ Y (—1)* [XT1YsiXT2ysz, XTRYSkXmYT)
mso (k1)1 + Y s [T rilsq!
Ti+si>0

=X+ ) NG X Ys XTEYsE Xy s, (3.10)

=0 n(Zi:] Si) . Hi:] Ti!Si!

Ti+si>0

Let I =(r1,81,...yTn,8n) and let

(=)~

B = . 3.11
! TL(Z?:] Si) . l_[?:1 T’i!Si! ( )
This allows equation (3.10) to be rewritten as:
Z=log(expXexpY) =X+ Y = ByXTYSIX2ys2 XTnysn=l] (3.12)
T‘iis>io>0

Let d = ) [, ri+si, where we think of d as the degree of the polynomial term [X"1Y$1X"2Y$2, X" ysn=1]

in equation (3.12) in terms of the non commutative variables X and Y. By the definition of multiple



15

sums, equation (3.12) can be written

k 1
— 1 T1 S1 T2VS2 Tn sn:1
Z—X—|—k)111§005 E Bi[XTrysiX"2ys2 XY ]
n=1 d=n
ri+si>0

1 min{k,d}
=X+ lim Z Z By[XT1YS1XT2YS2, XTnysn=1]

=1 n=1
Ti+si>0

d
=X+ lim Z Z BI[XYIYSIszyszmxrnysn:1]
n=1

[ee]
=X+) ) BIXTyeXTys XTeyse=l)) (3.13)

d=1 mn=1
Ti+s;>0

noting that n > d is impossible based on the restriction that r; + s; > 0 and the fact that terms

where k = d must go to the same limit as the full sequence of terms.

Using the notation (3.11) we also have

c(tm, .y th) = E Bi
Ti+si>0 and
(T1,81,72,82,-,Tn;,Sn )~ (tm,..rt1)

allowing us to rewrite equation (3.13) as

0 d
Z=X+) > BiXTysixrays2 Xyl
d=1 mn=1
Ti+si{>0
o0
=X+ ) > BiW(tm, .oy t1)
d=1 compositions
(th---»tm)
of d
with t;=1
Ti+si>0 and
(T1,81,72,525+eyTnySn )~ (tm,..0hty)
(o]
=X+ > C(tmy eory t1 )Wt vy t1).
d=1compositions
(t1y---ytm)
of d
with t;=1

establishing the theorem.
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3.3

BCH - The Nilpotent Case

One important corollary of Theorem 12 occurs when g is a nilpotent Lie algebra.

Corollary 13. Let g be k-step nilpotent, then W(tm, ...,t1) =0 when d > k and

k—1
Z=X+)_ > C(tamy ooy t1 )Wty ooy t1).
d=1compositions
(th"-»tm)

of d
with t1=1

Furthermore if we write Z,X and Y in a basis {eih1<i<m for g so that Z = Zle;, Y = yiei and
X = xle; then
k—1 i
b =x"+ < Z Z C(tmy ceey T )Wty ooy T )) . (3.14)
d=1compositions
(th---vtm]

of d
with t;=1

Let G be a simply connected Lie group associated with g then equation (3.14) gives a global repre-

sentation of the group multiplication in coordinates of the 1% kind.
Formula (3.14) of Corollary 13 is implemented in Appendix A by the code 4.5.2 to produce
the multiplication function for a simply connected nilpotent Lie group with Lie algebra g.
3.3.1
Examples 3.3.1

Example 3.3.1.1 The Heisenberg Lie algebra defined in equation (2.2) is 1-step Nilpotent.

On account of that, formula (3.4) gives us
1
Z=X+Y+ E[X’ﬂ'

Using the standard basis {e1, ez, e3}, the Heisenberg Lie algebra is given by the equations in (2.3).

Formula (3.14) then gives:

1
2 =x'+y,z =% +y? + Sy —yT),z =7+

Example 3.3.1.2 In 4.5.8 of Appendix B a more complicated example computing formula

(3.14) is shown.
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3.4

Left Invariant Vector Fields in Canonical Coordinates of the 15t Kind

Let G be a Lie group with Lie algebra g, multiplication p and identity e. We will express a
basis for g in coordinates of the 1% kind and show how they can be calculated by use of the BCH

formula with the ultimate goal of computing the vector fields in Maple for g nilpotent.

Theorem 14. Let G be a Lie group and {ei}1<i<m be a basis for the left invariant vector fields on
G. Let (U,ll)ﬁ) be a coordinate chart in coordinates of the 1°¢ kind as defined in Theorem 7. There

is an open set W C 11)?1 (U), 0 € W where forx = (x', ..., x™) € W, Rl = d)f,) exly, (x) s given by

521'(7(1,...,7("‘] ax‘
_ = (=" i, 1T\n .
=) ——Ba(ladxted )" | (3.15)
n=0 '
52’m|(x1,...,x‘“) Oym
where By, is the n’th Bernoulli number in the standard notation (B = —15) and [ad x‘e;i] is the

matriz representation of ad x‘e; in the given basis.

Note that the exponential generating function for the Bernoulli numbers is

o0

t tm
S = Z L (3.16)
n=0
allowing us to write formula (3.15) as
521‘(7(',...,)("‘) ) Oy
[ad xte;]T

Db pperrecyll (3.17)

Xm'(x‘,...,x‘“) Oxm

where t = —[ad xte;]T

in equation (3.16). Formula (3.17) allows us to compute the vector fields
in some cases where the summation in equation (3.15) is infinite. We give an example of this in
3.4.1. Function (3.16) has been well studied, for example the radius of convergence for (3.16) is 27t

Reference [4], in Lemma 1.8.2; gives a formula for right invariant vector fields which is similar to

formula (3.17).

Proof. By Theorem (11) there is an opens set V C g with exp being a diffeomorphism from V —

U = exp(V). Let x = xte;, y = (y'y...,y™), and z = (z',...,z2™) with x,y € W. Let X = xle,
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Y =yle; and Z = z'e; = log(exp XexpY). Let u; : U x U — R™, by
w6 y) =z =17 (b1 ()1 (y)), (3.18)

which is simply the group multiplication expressed in coordinates of the 15¢ kind. We claim

52k|x = aykll] (%, y)*0xaly=o-

To show this let Fy : R™ — R™ by
Fo(y) = m(x,y) (3.19)
giving

Fx*|y:0(ayk) = aykuJ (X)y)aax“|y:0-

Since Fx(y) = w1 (x,y) = b7 (b1 ()1 (y)) we have

Fys :1])?3 o ]_11,1 ()% U
:>Fx*| 70(6 k):1|)7101_ € | :lbi]e | :Sz |
y=0ty 1% Pq (x)xCkle 1% Cklg (x) klx

= Xk‘x = Fx*ly:O(ayk) = ay“”] (X)y)aaxa|y:0-

We now use equation (3.9) to explicitly calculate Rxlx. Since we are going to set y = 0 we
only need the terms in the formula with exactly one Y. First we note that terms in equation (3.9)
with exactly one Y are of the form c(n,1)W(n,1). Let K be the sum of terms with more than one

Y. Formula (3.9) becomes

Z:X+Y+ic(n,1)W(n,1)+K. (3.20)

n=1

Let cjai be the structure constants for g in the basis {e;} so that

[ad x]§ = x'cf.

Let 14, pq be distinct indices for each a each taking on values from 1,...,m. Let by = c(n,1). we
have
W(“) 1) = [X» [X) [X) Yl..l = Xt Xinyin+1 C}]pl C?zlpz o C}Ljnni:‘1+'l €q
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and formula (3.20) becomes

o0
zte; = x'e; + y‘ei + E bax' - xlnyl‘“r’ Chp] sz]pz cee C?:i;]+1 ei + K. (321)
n=1

We can express the coefficients by, in terms of Bernoulli numbers by the following Lemma.

Lemma 1. Let c(n,1) be defined as in (3.8) then

(="

bn:C(n)]): T

B (3.22)

(See [6] Theorem 3)

We can now use (3.21) to write out a formula for K. We have

[e.o]
a_ ,a__,a a i1, yinqgint1,0 P11 .. Pn—1 a
W6 y)t =28 = xSyt ) baxxinytrted el ek
n=1
giving
d )
. a a i .. in in+1 a P .. Pn—1
52k|x—ayk(x +y +§ bnx Xy C11P1Cizpz Cinin+l)axa
n=1 y=0
oo
_ a § 1'.1._. i a P1 .. pPn—1
- (6k + an X nch‘plcizpz Cinik )aX“
n=1

oo 1
= (& + Z =) Bnlad x]5 [ad xJB! ---[ad x]P"")0xa
which in matrix notation is (3.15) proving the theorem.

O

Corollary 15. Let g be a Lie algebra where formula (3.9) converges for all elements in g X g and
the map b1 is a diffeomorphism R™ — G then the vector fields given by equation (3.15) are left
invariant vector fields on R™ with the group multiplication in coordinates of the 15 kind given by
n cR™ x R™ — R™ by

w(%,y) =z =17 (b1 (x)1(y)).
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3.4.1

Example

The following example is a case where we can compute the left invariant vector fields in co-

ordinates of the 1% kind by using equation (3.17) and diagonalization of the adjoint matrix.

Let g be a 3 dimensional Lie algebra with basis {e7, ez, e3} and structure equations [e7, e2] =

0, [61,63] =€ and [ez, 63] = ey. ‘We have

—x> 0 0
[adx'e]" =] 0 —3 0
x' x2 0
Putting this matrix in Jordan form gives
—x> 0 0
0 —3 o|=QJQ"
x! x> 0
where
0 s
Q=10 1 1
and
0 0 0

o 0 =
Since | is diagonal we can now compute
1 0 0
lad xte;]" 3 -1
[ —e—ladxied’ Qo 17ex)1;<>(x3] 0 Q
o 0 —

1—exp(x3)
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which by equation (3.17) gives

.3
521|(X1»X2,X3) 17ex)[()(x3)ax]
3
Kol w2 o) | = Texp(3) Ox2
—x" (1—exp(x3)+x3) —x2(1—exp(x3)+x>)
X3|(x‘,x2,x3) ST epl)) 08! T~ 3]y Ox2 T+ 0x3

3.5

Left Invariant Vector Fields in Canonical Coordinates of the 1% Kind - Nilpotent Case

One important case where Corollary 15 applies is when g is a nilpotent Lie algebra.

Corollary 16. Let g be k-step nilpotent. We have [ad x'e;]* = 0 so that (3.15) has only finitely

many terms allowing for exact calculation of the vector fields.

In the case Corollary 16 applies, formula (3.15) is implemented in Appendix A by the code
4.5.3.

3.5.1

Examples 3.5.1

Example 3.5.1.1 As an example consider the Heisenberg Lie algebra. Using the standard
basis {e1, e, e3}, the Heisenberg Lie algebra is given by the equations in (2.3). The transpose of the

ad matrix is then given by:

0 —x3 0
ladxted"=10 0o o
0 ¥ 0
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Therefore formula (3.15) gives:

521|(x‘,x2,x3) 0 —X3 0 ax1
1"
522|(x‘,x2,x3) = Z ( Tl') Bn |0 0 0 axz
n=0 :

523|(x‘,x2,x3) 0 X1 0 axs

100 0 —x* 0 Oy
1

—< 0 1T.0/=510 0 0 > 0y2
00 1 0 x' 0| |0

0,1 + %XS 042
= 0,2

ds — 3x10,2
For by, bs,b3,c1,c2,c3 € R we can write generic vector fields

X=c'X+2K+3K5=c'a0 + (2 +3x1)d,2 + ¢,

Y=b'R; +b2K, + b3R5 =b'0,1 + (b2 +b3x')0,2 + b30,5
with Lie bracket
X,Y] = (c'b® = b' K,
agreeing with the result we saw in equation (2.6).

Example 3.5.1.2 In 4.5.9 of Appendix B a more complicated example computing equation

(3.15) is shown.
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CHAPTER 4
CANONICAL COORDINATES OF THE 2NP KIND

In the prior section we saw how the exponential map could be used to define a chart on a
neighborhood about the identity for any Lie group. In this section we will use a different method
of using the exponential map to give a chart about the identity and these are called coordinates of

the 2" kind. When the Lie group is simply connected and solvable this chart will cover the entire

group.

4.1
Defining the Coordinates of the 2" Kind
Let G be a Lie group with Lie algebra g, multiplication p and identity e. Let {ei}1<i<m be a

basis for g. Let {7 be defined as in equation (3.1). Let & = (0,...,0,%xJ,0,...0), where xJ is the jth

position. We define the mapping ¥, : R™ — G by

P2(x'y .y x™) = exp(x'er) exp(x’ez) - - exp(x™em)

=1 (RN (R2) -y (R™). (4.1)

It should be noted that the function 1, utilizes the group product whereas the function 17 did not.

We give an example of this calculation in 4.1.1.

Theorem 17. There is an open set W C R™, 0 € W and an open set U C G, e € U such that

Py : W — U is a diffeomorphism, thus making (U,l])zl) a coordinate chart about e in G

Proof. We have e : TeG x TG — T.G with ple(eile,0) = 1. (0,eile) = eile. By induction,
fl:Gx---x G — G, by repeated group multiplication gives {ly|e : TeG x --- X TG — T.G with

ﬁ*|e(0> eey O> ei|e» O) () 0) = ei|e~
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Let 1 be defined as in equation (3.1). We have

IbZ(X] ) ---»Xm) = ﬁ(ll)l (X1 30y eny O)»'lbl (O) Xz) 0y .ery O)a ey 1 (O) o0y O»Xm))
= 1p2*|0(axi) = ﬁ'*le(o) -°')O)l~|)1*(axi))o) )O)

= ﬁ*|e(0) ceey O) eile) Oa o0y 0) = ei|e-

This makes 4|0 invertible and therefore by the inverse function theorem there is an open set W,
0 e W with 1, : W — U =1, (W) a diffeomorphism. Since 1,(0) = e, the theorem then follows.
O

Definition. The coordinates (U,ll)zi) are called Coordinates of the 2"d Kind.

Definition. Let g be a solvable Lie algebra and let {eq, ..., e;, } is a basis for g where h; = span{eq, ..., e;}

is a subalgebra of g and b; is an ideal in b;,, then we call {eq,...,en} an adapted basis.

Theorem 18. Let g be a solvable Lie algebra then there exists an adapted basis for g. (See [7]
Lemma 2.1)

Theorem 19. Let G be a simply connected solvable Lie group with Lie algebra g. Let {e1,...,em}
be an adapted basis for g, then the map (4.1) is a diffeomorphism of R™ — G. (See [9] Theorem

3.18.11)

The general approach used in the proof of [9] Theorem 3.18.11 is as follows. Let b; = span{e;},
for each i. In [9] Varadarajan shows that b1 and by, are the Lie algebras for closed simply
connected subgroups H and By, of G with G = HB;;, and the mapping (h,b;y) — hby,, h € H,
bm € By is a diffeomorphism. By induction we get the mapping (by,....,bmm) — by --- by, by € By
being a diffeomorphism. Since each B; is simply connected and 1-dimensional the map exp : t —

exp(tei) is a diffeomorphism of R — B; giving the desired result.
4.1.1
Heisenberg Example

As an example consider the Heisenberg group, H, defined in equation (2.1). Using the standard

basis {e1, e2, e3}, the Heisenberg Lie algebra is given by the equations in (2.3). With {; as defined
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in equation (3.1) equation (4.1) then gives:

Yo (x!,x3, %) =y (%', 0,001 (0,x%, 0111 (0,0,x)

= (x",x% +x"x3,x3).

4.2

Group Multiplication in Coordinates of the 2°¢ Kind -Nilpotent Case

We will now show how to give the multiplication function for a simply connected Lie group
with nilpotent Lie algebra in coordinates of the 2°d kind. We first note an immediate corollary to

Theorem 19.

Corollary 20. Let G be a simply connected Lie group with nilpotent Lie algebra g then the map 2

defined in equation (4.1) is a diffeomorphism of R™ — G.

Let G be a simply connected Lie group with nilpotent Lie algebra g. Let {eq,...,em} be a
basis for g and let 1 be defined as in (3.1). By Theorem 10 1 is a diffeomorphism from R™ — G.

Define a function ¢ : R™ — R™ by

d(x) =" o a(x) (4.2)
for x € R™. This function is the change of coordinates function between coordinates of the 2°¢ kind
and coordinates of the 1%% kind.

Theorem 21. Let G be a simply connected Lie group with nilpotent Lie algebra g. Let x,y € R™.

Let ¢ be defined as in equation (4.2). Let wy be defined as in equation (3.18). Let py : R™ x R™ by

w206 y) = &7 o i (b(x), d(y)) (4.3)

then Wy gives the group multiplication in coordinates of the 2™ kind.

Proof. Since {1 and 1, are diffeomorphisms ¢ is a diffeomorphism. We have

L (x,y) = ¢ o (d(x), b(y))
= (W5 " odr) oy (W1 (d(x)1 (d(y)))
=15 (W2 (x)2(y)).
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establishing that p, gives the group multiplication in coordinates of the 2" kind.

O

We now show that for nilpotent g that ¢(x) and then p,(x,y) can be calculated by use of
formula (3.14). Let x = (x',...,x™). Let & = (0,...,0,x},0,...0), where xJ is the jth position. By

equations (4.2) and (4.1) we have

b(x) =7 o2 (x) =¥y (W1 (R (R?) -1 (R™)).

Formula (3.14) first allows us to compute

w (R, R%) =07 (W1 (RN (R?)).

By inductive application of formula (3.14) we can compute

b(x) =0y (W1 R1 (R7) - b1 (’™). (4.4)

Formula (4.4) and the calculation of ¢! is implemented in Appendix A by the code 4.5.4.

Since we can compute ¢!, wy, and ¢ we can then by the use of formula (4.3) calculate pz(x,y).

Formula (4.3) is implemented in Appendix A by the code 4.5.5.
4.2.1
Heisenberg Example

In 4.5.10 of Appendix B we show how Theorem 21 can be applied to the Heisenberg group.

4.3
Left Invariant 1-Forms in Coordinates of the 2"¢ Kind
In equation 3.3 of [1] a basis for the left invariant 1-forms is given in coordinates similar

to coordinates of the 2"® kind. We modify this formula slightly to determine the basis in actual

coordinates of the 274 kind.
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Let G be a Lie group with Lie algebra g. Let {f1, ..., fn} be a basis for g. Let y = (y',...,y™)

and define coordinates about the identity in G using

Pa(y'y .y y™) = exp(y™fn) exp(y™ 'fa1) - -exply’f1). (4.5)

The following theorem is given in [1] p. 8.

Theorem 22. A basis for the left invariant 1-forms, dual to the {fi}, at (y',...,y™) is given by

@' dy’ 0 0
»? 0 dy? 0
3| =In| 0 [+M2(y) | 0 |+ +Maly)| : |, (4.6)
0
am 0 0 dy™
where
My (y) = exp(—y'[ad f1]) exp(—y?[ad f3]) - - - exp(—y* '[ad fr_1]),k > 1. (4.7)

We now use this theorem to obtain our desired result.

Theorem 23. Let B = {e1,...,en} be a basis for g. Let x = (x!,...,x™) be coordinates of the 2"%

kind given by as defined in equation (4.1). A basis for the left invariant 1-forms, dual to the {ei},

at (x',...,x™) is then given by
w! 0 0 dx!
w? 0 0
w3 =T | P | +Npalx) | o [+t Ni(x)| 0|, (4.8)
0 dxn!
w™ dx™" 0 0
where

n71[

Ny (x) = exp(—x"[ad en]) exp(—x ad en_1]) - -exp(—x*""[ad ex41]), k < n. (4.9)

Proof. Let Q be the n x n involutory anti-diagonal matrix consisting of 1’s on the anti-diagonal.
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Let

=Q | ‘| and [f1---fn]l =T[e1---enlQ. (4.10)

In particular equation (4.10) gives ynt1—x = Xk and fr1-x = ex. In terms of the basis B’ =

{f1, ..., fn}, using (4.5), (4.1) and (4.10), we observe that

12(Qx) = exp(x' fn) exp(x*fn_1) - - - exp(x™f1)
= exp(x'e7) exp(xZez) - - exp(x"en)

=12(x)

Let ¢ = {0 11)51 be the change of coordinates given by y = Qx. The pullback of 1-forms by the

transformation ¢ gives

dx! dy’
$*(Q ) (4.11)
dx™ dy™
Let _ -
w! o'
w? »?

w™ om

where @ are the left invariant 1-forms in the coordinates y given by equation (4.6). Since Q is

invertible and constant the w'! form a basis for the left invariant 1-forms in coordinates of the
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second kind. Using equations (4.6) and (4.11) we get

w! dy' 0 0
w? 0 dy? 0
w?| =¢*(QIn | 0 [N+ (QM2(Q Q| 0 )+ + " (QMa(yQ'Q| & |)
0
w" 0 0 dy™
o | o] [ ax'|
0 : 0
=L | P [+07(QM2WQ )| 0 |+ F+ (QMayQ | 0 |- (4.12)
0 dx™!
ax™ 0 0

We have from (4.7)

QM1 (y)Q ' = Qexp(—y'lad £,1)Q ™" - Qexp(—y™ *[ad fr ])Q ™"

= exp(—y'Qlad f1]Q ") - - exp(—y™ *Qlad f, 1 JQ ). (4.13)

Since Q is the change of basis matrix from the basis ’ to the basis f we have

[ad eni1-+] = [ad filp = Qlad filp Q. (4.14)

Using equation (4.14) in equation (4.13) gives

nfk[

QMns1 1 (y)Q " = exp(—y'lad en]) - - - exp(—y™ *[ad ex11]),

so that

d*(QMni1 1 (y)Q™ ") = exp(—x"lad en]) - - - exp(—x*ad ey 41]).

We observe that Ny (x) = ¢*(QMu11-1(y)Q ™), where Ny (x) is defined as in equation (4.9). This

demonstrates that equation (4.12) is the same as equation (4.8), thus establishing the theorem.

Formula (4.8) of Theorem 23 is implemented in Appendix A by the code 4.5.6.
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4.3.1

Example

In 4.5.11 of Appendix B we show an example of equation (4.8) being calculated fro so(3).
Testing indicated that with an Intel I5-6400 processor the left invariant 1-forms were calculated in
a few seconds for so(5), about 3 minutes for g2 and in about 5 minutes for so(6). Testing so(7) was

halted after about an hour.

4.4

Coordinates of the 2" Kind - Solvable Case

We will now demonstrate a additional formulas for left invariant 1-forms and left invariant

vector fields expressed in coordinates of the 279 kind.

4.4.1

Left Invariant 1-Forms in Coordinates of the 2”4 Kind - Solvable Case

Let G be a Lie group with solvable Lie algebra g. The following theorem found on page 10 of

[5], gives a basis for the left invariant 1-forms of G.

Theorem 24. Let{eq,...,en} be an adapted basis for a solvable Lie algebra g. Letts = span{eq,...,en_s}-
Note that this numbering of sub algebras differs from that used when we defined adapted basis in Def-
inition 4.1, having to = g. Let ads(en—s) be the restriction of ad(en_s) to the subspace ts. Let
As be the n — s by n — s matriz representation of ad(en_s) in the basis for ts. Let Ig be the s X s
identity matrix and Og the n —s by s zero matrix. The following formula gives us a basis, T1, ..., Tn

for the left invariant 1-forms on G, dual to the {e;},

T _ATyn—1 AT 2 dX1
ATon | €7 01 e 2 Opp
=e Mox : 4.15
=e . . S (4.15)
O] 1 On 2 ITL—Z
Tn an

We now show that for g solvable formula (4.15) matches formula (4.8), thus establishing that

the vector fields from Theorem 24 are given in coordinates of the 2" kind.

Theorem 25. Assume that g is solvable and that {e1,...,en} is an adapted basis as defined in

Definition 4.1 then equations (4.8) and (4.15) are identical.
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Proof. Let s, As, I and Os be defined as in Theorem 24. Since g is solvable, with the choice of

basis given in the theorem, the matrix [ad en—_;] is of the form

A
0]-T 05
and exp(—x"[ad en—j]) is of the form
eﬁi(f"nﬂ) *
, (4.16)
OjT I
where * is an n —j x j matrix. We are going to show that
0 0
L leAM =TT, eAn2(=x") o
Nic(x) | dxk | = efolx™) . . " ax® |, (4.17)
01 1 On,Z w2
0 0

where Ny (x) is defined in equation (4.9), which will allow us to prove the theorem. We note that

based on equation (4.16) we have

0
1 eAnf(kJrl)(—XkJr])
k
exp(—x*"'[ad ex+1]) [dxk| =
OT
n—(k+1)
0
Assume that
B O U I eAr 1 (Xm0
T T
Orfs IT*S Orfl
eAr—s (—x" () 0, ¢ eAr—1 (=x" )
T T
Orfs IV*S Orf1

0
On—(i+1)
" dxk
L
0
eAr(—x""T)
J OI I,
OT‘*" eAr(_anr) 0
I‘r71 O-rr I"



for s < r. We observe that

_e/A\r (sp1) (—x™ (s
o
_eA“*(sH Y (—xm (e

= _ 0175

so that

eArf(sH)(—X"i(Ti(H”)) %

T
01‘75

A (s _an(rfs)
eAr—(s+n ) O (s41)

O_rrfs IT*S

We can then conclude by induction that

R A1 (—x™)
eAol(—=x")

-

On 1
R N e/ﬁw(—xnil)

— eMo(—x")
-
On 1

and therefore

Ni(x) |dxk| =e

L (s41)

e/f\KH (—xn—(k+1))

or

n

eAK+1 (_an(kJrl ))

T
0n—1
eAnf(ka] ) (=X

T
Onf(kJr])

On—(x+1)

In—(x+1)
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. . . . o~ . .
Since g is solvable, based on our choice of basis, A,,_x has zeros in column k and in row k. So



eAn— (=) hag zeros in column k except for a 1 in column k, row k. This implies that
0 0
eAnfk(_xk) OT'L*k
Ni(x) |dx*| = Ni(x) dxk
0f x Lk
0 0
Since each matrix
An j (7Xj ) .
e/tn—i On—
"<k
-
0nj L

has a k' column with all zeros except for a 1 in row k we see that

0 0
eA1(—X"7k) 01 eAn—2(—x7) s
; ; " dxk| = | dx*
0] 1 On,Z I 2
0 0
and therefore
0 0
L lem " g eAn—2(—x*) o
Ni(x) | dxk| = eto(™") . ] . " dxk
01 1 0n72 L2
0 0
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thus establishing equation (4.17). By expanding formula (4.15) out and utilizing equation (4.17) we

see that L _ - -
0 0 dx!
4 0 0 w!
=I,| ' | +Np_1(x) 0 +..+Ni(x) | 0 | =
et 0 dx! w™
dx™ 0 0
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establishing the theorem.

4.4.2

Left Invariant Vector Fields in Coordinates of the 2" Kind - Solvable Case

We now demonstrate that an alternative formula, derived by the use of the BCH formula,
yields a basis of left invariant vector fields dual to the basis of left invariant 1-forms shown in The-

orem 24.

The following equation found on page 10 of [5], gives a basis for the left invariant vector fields

of a solvable Lie group G, which we have established in Theorem 25 to be in coordinates of 2" kind.

Theorem 26. Let g be a solvable Lie algebra of dimension n. Let {Xi} be vector fields on R™ given

by
X Oy
ATxn—1 A x
ATon | € 0 etn—2 On_
= A ‘ n (4.18)
0—1|' 1 01 2 In—Z
Xn Ox

with A defined as in Theorem 24, then {Xi} form a basis for g in coordinates of the 2™ kind.

We will now show that a formula built using BCH methods gives the same left invariant vector
fields as those given in equation (4.18). Let G be a Lie group of dimension m with identity e and
solvable Lie algebra g. The mapping 1 as defined in equation (3.1) and the mapping 1, defined in
equation (4.1) gives us coordinate charts about e € G. We need a subset of the intersection of these

charts with some specific properties. This is given by the next theorem.

Theorem 27. Let (Lh,lbf]) and (Uz,ﬂ)z1) be charts about e € G as given by Theorem 11 and
Theorem 17, then there is an open ball W about 0 in R™ with U = P (W) Cc U’ = U; NUy with

a ' eU foraeU and abc € U’ for a,b,c € U.

Proof. Let V= p '(u ' (U") € G x G x G. We have V open with abc € U’ for a,b,c € V. Let
W' = 11)1_1 (V). There is an open ball W € W’ about 0. Let U = {;(W). Let a,b,c € U, then
a,b,c € V= abc € U’ and there is an x € W with a = 1;(x), which implies —x € W = a~ ! =

VP (—x) € U, which proves the theorem.
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Let g be a Lie algebra and let {e;}1<i<m be an adapted basis of of g as defined in 4.1 with
[’)]' = span{eihgigj. Let

adj(ei) =ad eilhj, 1<i<ji<m. (4.19)

Let 0; be a j by m — j matrix of zeros. Let I,,_; be the m —j identity matrix.

o EUB (lad; Ye;]T)™ 0
ij: Zn:O n! n ) ) ) (420)
of I ;

where there is no summation over j and the 0 and I matrices are omitted for j = m.

Theorem 28. Let G be a simply connected Lie group with solvable Lie algebra g and let {ei}1<i<m
be an adapted basis for g. Let Ag; be defined as in (4.20). Let [ad xtei] be the matriz representation
of ad xte; in the basis {ei}. Let (Lh,lj)?] ), (UZ,‘LI)Z]), and U be defined as in Theorem 27. Then

foraeU, x=(x'y...x™) =" (a), Rlx = W3, exla is given by

521‘x ax1
= (A mA) (ATl Ama ) (ATLAG) | 8| (4.21)

Kinlx D

Proof. We will prove this theorem by establishing that formula (4.21) gives the same vector fields
as given by equation (4.18).
O

Formula (4.21) of Theorem 28 is implemented in Appendix A by the code 4.5.7. There is an

example shown in 4.5.1.

Theorem 29. The basis for left invariant vector fields given in formulas (4.18) and (4.21) are

identical.
Proof. To prove the theorem we only need to show that

QA’T‘*in Oj

0of I
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for 2 <j < n. In other words we will show
A_j =A. (4.22)

We first note that using the notation of formula (4.19) that [ad;(e;)] = //A\\n_j in the notation of
formula (4.15) so that

Y SIEBR AL ) 0
of Lnj

Let M = ATTHJ.XJ‘. In order to establish (4.22) we must show that

B.M™.

(Z (_TI')HBH(_M)n)eM _ Z (_TI')H
n=0 ' n=0 '

Inserting the power series for exp gives

IR NEVILTS MRV R S iV
n=0 : n=0 n=0 ’

Using the Cauchy product of power series formula on the left hand side we then need to show

ZZ 7B M =; ——BaM

Fornszeget]:landFornzlwegetl—%:%. For n > 1, B, = 0 for n odd so that

(—1)"B,, = By, so we only need to show that

n—1

By
ZO iln—1i)! =0

i=

but this is a known identity for Bernoulli numbers (See Wolfram Math World - Bernoulli Number)

thus establishing equation (4.22) and proving the theorem.
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4.5

Left Invariant Vector Fields in Coordinates 2"? Kind - Nilpotent Case

One important case is where Theorem 28 applies is if g is a nilpotent Lie algebra.

Corollary 30. Let g be k-step nilpotent. We have [ad x'e;]® = 0 so that (4.21) has only finitely

many terms allowing for exact calculation of the vector fields in terms of finite sums of brackets.

4.5.1

Example

In 4.5.12 of Appendix B we show an example of equation (4.21) of Theorem 28 being calcu-

lated.
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4.5.2
Maple Code for Equation (3.14) of Corollary 13

» Initialize Packages.

VY Procedures

Input: A Lie algebra.
| Output: The result of equation 3.14 for generic points x and y in coordinates of the Ist kind.
Alg > NilpotentBCHmult :=proc(alginput)
local i, X, Y, Z, algbasis, adim, basis;,
if Query(alginput, "Nilpotent") then
ChangeLieAlgebraTo(alginput);
adim = DGinformation (alginput,"LieAlgebraDimension”);
basis := DGinfo (alginput, "FrameBaseVectors" );
X = evalDG(0-basis[1]);
Y = evalDG(0-basis[1]);
for i from 1 to adim do
X = evalDG (X + x|| i * basis[i]);
Y= evalDG(Y + y||i* basis[i]);
end do;
Z=evwalDG(X+Y+BCH(X,Y,Y,1,1,0,1,1,0));
algbasis == [el];
for i from 2 to adim do algbasis = [op(algbasis), e||i] end do;
GetComponents(Z, algbasis ) ;
else
print("Not a nilpotent Lie Algebra");
end if;
end:




The following function is an internal subroutine for NilpotentBCHmult. It is designed to be called
Lrecursively. It is not for external use.
Alg > BCH :=proc(X, Y, rt, sum, prod, leadx, leady, n, ind)
local Ix, Ix1, Ix2, Ix3, Ix4, Iy, Iy1, Iy2, Iy3, Iy4, In, Inl, In2;
In := n;
Ixl == 0;Ix2:=0;Ix3:=0;Ix4:=0;
Iyl == 0;ly2:=0;ly3 = 0;p4 = 0;
Ix '= LieBracket(X, rt);
if Ix # 0 &mult el then
if leadx =0 then
Inl = (-1)™Mrunc((n +ind)/2) * (trunc((n +ind)/2) +1);
In2 = (-1)™Mrunc((n +ind +2)/2) * (trunc((n +ind +2)/2)

+1);
Ixl == evalDG(Ix* (1/Inl +1/In2)/ (sum) /prod/leady!);
Ix2 == BCH (X, Y, Ix, sum, prod* leady!, 1, 0, In + 1, ind);
Ix3 == BCH (X, Y, Ix, sum, prod* leady!, 1, 0, In + 3, ind);
else
Inl = (-1)"(trunc((n+1)/2)-1) *trunc(((n +1)/2));
In2 = (-1)"(trunc((n+3)/2)-1) *trunc(((n +3)/2));
Ixl == evalDG(Ix/Inl/ (sum) /prod/ (leadx + 1)!);
Ix2 == BCH (X, Y, Ix, sum, prod, leadx + 1, 0, In, ind);
Ix3 == evalDG(Ix/In2/ (sum) /prod/ leadx!);
Ix4 == BCH (X, Y, Ix, sum, prod* leadx!, 1,0, In + 2, ind);
end if;
end if;

ly == LieBracket(Y, rt);
#print(6,In,Y,rt);
if Iy # 0 &mult el then
if leady =0 then
Inl = (-1)™Mrunc((n +ind)/2) * (trunc((n +ind)/2) +1);
Iyl == evalDG(ly/Inl/ (sum + 1)/ prod/leadx!);
ly2 .= BCH (X, Y, ly, sum + 1, prod* leadx, 0, 1, In + 1, ind);
else
Inl == (-1)"(trunc((n +ind+1)/2)-1) *trunc(((n + ind
+1)/2));
In2 = (-1)"(trunc((n +ind +3)/2)-1) *trunc( ((n + ind

+3)/2));
Iyl == evalDG(ly/Inl/ (sum + 1) /prod/ (leady + 1)!);
ly2 == BCH (X, Y, Iy, sum + 1, prod, 0, leady + 1, In, ind);
ly3 == evalDG(ly/In2/ (sum + 1)/ prod/leady!),;
4 == BCH (X, Y, Iy, sum + 1, prod* leady!, 0, 1, In + 2, ind);
end if;
end if;

evalDG(Ix] + Ix2 + Ix3 + Ix4 + byl + Iy2 + Iy3 + by4);
end:
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4.5.3
Maple Code for Equation (3.15) of Theorem 14

Input: A Lie algebra.
L A manifold of the same dimension as the Lie algebra.
Output: The vector fileds given by formula (3.15) in the thesis using the default basis for
L the Lie algebra input.
M > NilpotentLivfistKind -=proc(alginput, manifold)
local i, b, dv, gen_element, A, z, adim, coords, vects, basis,
if Query(alginput, "Nilpotent") then
ChangelLieAlgebraTo(alginput);
adim = DGinformation (alginput, "LieAlgebraDimension");
basis = DGinformation (alginput, "FrameBaseVectors" );
dvi=1[1;
gen_element := evalDG(0-el);
A = IdentityMatrix(adim);
coords = DGinformation (M, "FramelndependentVariables");
vects == DGinformation (M, "FrameBaseVectors");
for i from 1 to adim do
gen_element = evalDG(gen_element + coords[i]-basis[i]);
dv == [op(dv), vects[i]];
end do;
for i from 1 to adim do
1
A=A+ % -bernoulli(i) - [Adjoint(genfelement) Ty
end do;
AMatrix(dv) T ;
else
print("Not a nilpotent Lie Algebra");
end if;
end:




4.54
Maple Code for Equation (4.4)

Input: A Lie algebra
A point in R”n (where n is the dimensiont of the Lie algebra) entered as a list
If first or second="second" the function changes coordinates of the 2nd kind to
coordinates of the first kind
otherwise the fuction changes coordinates of the 1st kind to coordinates of the
L second kind.
 Output: The result of equation (4.4) in the thesis or its inverse.
> NilpotentCanonicalCoordinateChange :=proc(alginput, coordinate, first_or_second)
locali, X, Y, W, Z, adim, basis, dgsetupvarsx, dgsetupvarsy, rt, sc, ab, ls, liedata, phi, psi,
Mult, wvars, zvars, subvars, Mult2;
if Query(alginput, "Nilpotent") then
ChangelLieAlgebraTo(alginput);
adim = DGinformation (alginput, "LieAlgebraDimension");
Is := Series("Lower");
ab = Is[nops(ls)-17;
for i from nops(ls) — 1 by -1to2 do
ab = [op(ab), op(ComplementaryBasis(Is[i], Is[i-1])) ];

end do;
liedata = LieAlgebraData(ab, alginput);
DGsetup(liedata);

basis = DGinfo (alginput, "FrameBaseVectors");
rt == yl-basis[1];
for i from 2 to adim do
X = rt;
Y:=y|i-basis[i];
rt == evalDG(rt + Y+ BCH(X, Y, Y,1,1,0,1,1,0));
end do;
sc == GetComponents(rt, basis);
dgsetupvarsx = [ 1,
dgsetupvarsy == [ |,
wvars = [ |;
zvars == [ ];
subvars = |;
for i from 1 to adim do
dgsetupvarsx == [op(dgsetupvarsx), x||i];
dgsetupvarsy = [op(dgsetupvarsy), y||i];
wvars := [op(wvars), w||i];
zvars = [op(zvars), z||i];
subvars = [op (subvars), x||i=sc[i]];
end do;
DGsetup(dgsetupvarsx, M);
DGsetup(dgsetupvarsy, N );
phi := Transformation(N, M, subvars);,
psi = InverseTransformation(phi);
if first_or_second ="second" then
ApplyTransformation (phi, coordinate);
else
ApplyTransformation (psi, coordinate);
end if;
else
print("Not a nilpotent Lie Algebra");




il

end if;
end:
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4.5.5
Maple Code for Equation (4.3) of Theorem 21

;Input: A Lie algebra
Output: The result of equation 4.3 for generic points x and y in coordinates of the 2nd kind

Alg > NilpotentBCHmult2 :=proc(alginput)
locali, X, Y, W, Z, adim, basis, dgsetupvarsx, dgsetupvarsy, rt, sc, ab, Is,
liedata, phi, psi, Mult, wvars, zvars, subvars, Mult2;
if Query(alginput, "Nilpotent") then
adim = DGinformation (alginput, "LieAlgebraDimension");
wvars = [ |,
zvars = [ ],
for i from 1 to adim do
wvars = [op(wvars), w||i];
zvars = [op(zvars), z||i];

end do;
Mult :== NilpotentBCHmult (alginput);
W = NilpotentCanonicalCoordinateChange( alginput, wvars, "second");
Z = NilpotentCanonicalCoordinateChange(alginput, zvars, "second" );
subvars == [ |;
for i from 1 to adim do

subvars = [op(subvars), x||i=W[i]],

subvars = [op (subvars), y||i=Z[i]];
end do;
Mult2 := subs(subvars, Mult);
Mult2 = NilpotentCanonicalCoordinateChange( alginput, Mult2,

"first" ) ;

subvars == [ |,
for i from 1 to adim do

subvars = [op(subvars), w||i=x||i];

subvars = [op(subvars), z||i=y||i];

end do;

Mult2 := subs(subvars, Mult2)
else

print("Not a nilpotent Lie Algebra");
end if;

end:
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4.5.6
Maple Code for Equation (4.8) of Theorem 23

Input: A Lie algebra.
L A manifold of the same dimension as the Lie algebra.
Output: The 1-form fields given by equation (4.8) in the thesis using the default basis for
L the Lie algebra input.
M > CalcLeftinviForms :=proc(alginput, manifold)
local i, j, B, V, adim, Is, ab, liedata, forms;
ChangeLieAlgebraTo(alginput);
adim = DGinformation ( alginput,"LieAlgebraDimension”);
forms = DGinformation(manifold, "FrameBaseForms");
B=[}
for i from 1 to adim do B := [op(B), 0] end do;
B = convert(B, Matrix) © ;
for i from 1 to adim do

Ve=1[1
forj from 1 to adim do
if j =i then
V= [op(V), forms[ j11;
else
V= [op(V),0];
end if;
end do;

V = convert(V, Matrix) + ;

ifi < adim then
B = evalDG (B + calc_Nk(alginput, manifold, adim, i).V');
else
B:=evalDG(B+V);

end if;

end do;
L end:
| The following function is an internal subroutine for calc_left_forms. It is not for external use.
M > calc_Nk :=proc(alginput, manifold, adim, cnt)
local i, Nk , basis, coords;
basis == DGinformation (alginput, "FrameBaseVectors");
coords == DGinformation (manifold, "FramelndependentVariables");
Nk = AdjointExp( ( - coords[adim]) - (basis[adim])) ;
if adim — 1 > cnt then
for i from adim — 1 by -1 to 1 + cntdo
Nk == Multiply(Nk, AdjointExp( ( - coords[i]) - (basis[i])))
end do;
else
return Nk;
end if;
end:




4.5.7
Maple Code for Equation (4.21) of Theorem 28

Input: A Lie algebra.
L A manifold of the same dimension as the Lie algebra.
Output: The vector fileds from equation (4.21) in the thesis using a basis adapted to lower
L central series for the Lie algebra input.
M > NilpotentLivf2ndKind :=proc(alginput, manifold)
local i, dv, A, adim, Is, ab, liedata, vects;
if Query(alginput, "Nilpotent") then
ChangelLieAlgebraTo(alginput);
adim = DGinformation (alginput, "LieAlgebraDimension");
Is = Series("Lower");
ab = Is[nops(ls)-11;
for i from nops(ls) — 1 by -1to2 do
ab = [op(ab), op(ComplementaryBasis(Is[i], Is[i-11))];
end do;
liedata = LieAlgebraData(ab, alginput);
DGsetup(liedata);
dv=1[1;
A = IldentityMatrix(adim);
vects == DGinformation (manifold, "FrameBaseVectors" );
for i from 1 to adim do
dv = [op(dv), vects[i]];
end do;
for i from adim by -1 to2 do
A = A.Admatrix(alginput, manifold, adim, i,- 1) _1.Admatrix(alginput,
manifold, adim, i, 1);
end do;
A == AMatrix(dv) t ;
else
print("Not a nilpotent Lie Algebra");
end if;
end:




;The following function is an internal subroutine for NilpotentLivf2ndKind. It is not for external use.

M > Admatrix =proc(alginput, manifold, initdim, adim, s)
local i, j, b, A, A0, L2, dgsetupvars, coords, basis;

end:

dgsetupvars = [ ],
A = IdentityMatrix(adim);
A0 = IdentityMatrix (initdim, compact = false);
for i from 1 to adim do
dgsetupvars = [op (dgsetupvars), el|i];
end do;
L2 = LieAlgebraData(dgsetupvars, alginput);
DGsetup(L2);
basis = DGinformation (alginput, "FrameBaseVectors" );
coords == DGinformation (manifold, "FramelndependentVariables");
for i from 1 to adim do

1
A=A+ ( i'l) -bernoulli(i) - [Adjoint(evalDG(s-coords[adim]
-basis[adim]) ) e
end do;
for i from 1 to adim do

for j from 1 to adim do

A0Li,j1 = Ali, j;

end do;
end do;
A0;
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end:

end:

;The following are functions used for testing.
Alg > AdaptedBasis =proc(ls)

local basis, i;
basis == Is[nops(ls)-1];
for i from nops(ls)-1by -1 to2
do basis == [op(basis), op(ComplementaryBasis(Is[i], Is[i-1])) ];
end do;
end:

> Livf from_mult :=proc(mult)

local adim, i, j, dgsetupvars, subvars, vf, I, L;
dgsetupvars == [ |;
subvars = [ ],
vi=1[1
adim := DGinformation (Alg,"LieAlgebraDimension™) :
for i from 1 to adim do

dgsetupvars = [op (dgsetupvars), x || i];

subvars == [op (subvars),y||i=01];
end do :
DGsetup(dgsetupvars, M) :
for i from 1 to adim do

[ == subs(subvars, diff (mult, y||i));

L = evalDG(I[1]-D_xI);

for j from 2 to adim do

L= evalDG(L+I[j]-D x| j)

end do;
vf= [op(vf), L]
end do;

> CheckAssociativity ==proc(mu)

local i, subvars, a, ansl, ans2;
subvars = [ |,
a=1[]

for i from 1 to nops(mu) do subvars == [op(subvars), y||li=w]|i,x||i=y]||i] end do:

for i from 1 to nops(mu) do a := simplify([op(a), subs(subvars, mu[i])]) end do:

subvars = [ ],

for i from 1 to nops(mu) do subvars = [op(subvars),y|li=a[i]] end do:
ansl = simplify(subs(subvars, mu) );

a ‘= mu;

subvars = [ |;

for i from 1 to nops(mu) do subvars := [op(subvars), y||li=w]||i] end do:
a = subs(subvars, a);

subvars = [ ],

for i from 1 to nops(mu) do subvars := [op(subvars), x||i=mu[i]] end do:
ans2 = subs(subvars, a);

simplify(ansl — ans2);

o1



(M > CheckLeftInvariant ==proc(X, mu)

local i, subvars, left_mult, yX, ans, X_at_xy;
subvars =1 ];
for i from 1 to nops(mu) do subvars := [op(subvars), x||i=mu[i]] end do:
X at xy = subs(subvars, X);
left mult == Transformation(N, M, subvars);
subvars = [ ];
for i from 1 to nops(mu) do subvars := [op(subvars), D _x||i=D yl||i,x||i=y
[|i] end do:
vX := subs(subvars, X);
ans = [ ],
for i from 1 to nops(mu) do
ans = [op(ans), Pushforward(left mult, yX[i]) ]
end do;
evalDG (ans — X _at xy);

end:
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4.5.8
Example 3.3.1.2

» Synopsis

¥ 1. Multiplication in Canonical Coordinates of the 1st Kind -
Nilpotent Case.

;We retrieve a Lie algebra from Winternitz.

> LieAlg = Retrieve("Winternitz", 1, [6, 2], Alg)

LieAlg := [el,e2]=e3, [el,e3]=e4, [el,ed]=e5, [el, eS]=eb,
[e2,e4]=0, [e2,e5]=0, [e2,e6]=0, [e3,e4]=0, [e3,e5]=

| 1=0, [e4,e6]=0, [e5,e6]=0

;> DGsetup(LieAlg) :

We swith to an adapted basis for convienience in comparing vector fields in coordinates of the 1st
| kind and coordinates of the second kind.

| > DGsetup(LieAlgebraData( AdaptedBasis(Series("Lower") ), Alg) ) :
> MultiplicationTable( )

[el,e6]=0, [e2,e3]=0, (5.1)
0, [e3,e6]=0, [e4, e5

Alg |el e2 e3 ed e5 eb
el| 0 0 0 0 0 0
e2| 0 0 0 0 el 0
e3| 0 0 0 0 e2 0 (5.2)
e4| 0 0 0 0 e3 0
eS| 0 —el —e2 —e3 0 e4
e6| 0 0 0 0 —e4 O

;We check to see that our Lie algebra is nilpotent.
> Query(Alg, "Nilpotent")
true 5.3

[ We use the BCH formula to calculate z=xy, where z,x, and y are group elements in coordinates of
| the 1st kind.

> z := NilpotentBCHmult (Alg)

— s _1 _ L 2, 1 o _ 1l 209
z:= |x] +yl+ 2 x2y5 2 x5y2 24 x4x5y5 + 24 x5°y4y5 130 x5°y57y6 54

1 3, 1 2 _
+ xX5x6y5 + 2 x3y5 2

e 1o
130 x5y3y5 2 x3x5y5 + x5 y3

12

1 1 3 1 3 1 2 2 1 3
+7720 x54y6 720 x5 x6y5+7]80 x5 y5y6 130 x5"x6y5 720 x5y5 y6

b 1 _1 e 1 2
+720 x6y54,x2+y2+2x3y5 2x5y3 24 x5 y5y6 + 24 x5x6y5

- S _ U 1 s 1
+ B x4 y5 2 x5y4y5 2 x4x5y5 + 2 x5 y4,x3+y3+2x4y5
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i 1 SR SV - RS Sy 1
2x5y4+ B x5y5y6 B x6y5 B x5 y6 + D x5x6y5,x4 + y4

+ % x5y6 — % x6y35,x5 +y35,x6 +y6
;We verify that this is a group multiplicaiton.
| > adim = DGinformation(Alg,"LieAlgebraDimension”) :
| > identvars =1 ]:
| > invvars == [ ]:
> for i from 1 to adim do
identvars == [op (identvars),y||i=0];
invvars := [op(invvars), y||i=-x||i];
L enddo:
| Setting y=0 in the multiplication gives x, verifiing that (0,0,0,0,0,0) is the identity.
> simplify(subs(identvars, z))
| [x1,x2,x3, x4, x5, x6] 5.5
| Setting y=(-x1,-x2,-x4,-x4,-x5,-x6) gives 0 verifying that (-x1,-x2,-x4,-x4,-x5,-x6) is the inverse.
> subs(invvars, z)
L [07 09 09 09 05 0] (5'6)
| We check the associative property by computing x(yw)-(Xy)w.
> CheckAssociativity(z)
L [0,0,0,0,0,0] (&)
| We compute left invariant vector fields by taking derivatives of the multiplication function.
> Livf mult = convert(Livf _from_mult(z), Matrix) ©

Livf mult = Haﬂ], (5.8)
: - x275 9, +ax2]’
ro2
% Xl xzi ax2+ax3]’
T2
% 9,7~ x275 93 +ax4]’
: %xZ—%x3x5—%x53x6 6x1+ )6273 — xéltgj] x2+ );i + xif}aﬁ

x6
a 7 ax4 + ax5

>

[ x5
| 720 i
| We create a new Lie algebra with these vector fields.

> L2 = LieAlgebraData(convert(Livf mult, list), Alg2)
L2 = [el, e2]=0, [el,e3]=0, [el,e4]=0, [el,e5]=0, [el,e6]=0, [e2,e3]=0, [e2,e4 (5.9)

1=0, [e2, e5]=el, [e2,e6]=0, [e3,e4]=0, [e3,e5]=e2, [e3,e6]=0, [e4, e5]=e3,
| [e4,e6]1=0, [e5, e6]=e4
> DGsetup(L2)

2
x5 x5
- E ax3 + 7 ax4+ax6”

Lie algebra: Alg?2 (5.10)
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| We see that they give the same multiplication table that we started with.

> MultiplicationTable( )

Alg2 [el e2 e3 ed eSS e6
el 0 0 0 0 0 0
e2| 0 0 0 0 el 0
e3| 0 0 0 0 e2 0
e4]| 0 0 0 0 e3 0
eS| 0 —el —e2 —e3 0 e4
e6| 0 0 0 0 —e4d O

(5.11)
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4.5.9
Example 3.5.1.2

Y 2. Left Invariant Vector Fields in Coordinates of the 1st Kind
by Algebraic Formula
- Nilpotent Case.

| We set up a coordinate manifold.

| > dgsetupvars = [ ]:

| > for i from 1 to adim do dgsetupvars := [op(dgsetupvars),x||i] end do:
| > DGsetup(dgsetupvars, M) :

| We compute left invariant vector fields by formula [1] from the slides.

> Livf algebraic := NilpotentLivflstKind(Alg, M)

Livf algebraic = Hax]], @.1)
oL 5o 4o
I 2 X x! x2 0
(1 52 1
550, x5ax2+ax3],
(1 2. 1
12 x5 6x2 2x56x3—|—6x4,
((r ,_ 1 _ 1 3 1 . 1 1
_[2x2 2 x3 x5 720 x5 x6) 6x1+(2x3 2 x4x5j 8x2+(2x4

1 1
+ E x5x6) 6x3— Ex66x4+6x5],

L 1
| 1720 12
[ We see that these are the same vector fields given by taking derivatives of the multiplicaiton
| function.
> evalDG(Livf mult — Livf algebraic)

4 2 1
$o — L x5+ 2x5ax4+ax6H

0

O@xl

00

x1

0 axl

(7.2)
00

O@xl

;We verify that these vector fields are left invariant.
| We set up second coordinate manifold.
| > dgsetupvars = [ ]:




| > for i from 1 to adim do dgsetupvars = [op(dgsetupvars), y||i] end do:
| > DGsetup(dgsetupvars, N) :

We check left invariance by pushing forward Livf algebraic evaluated at y to Xy and see that it is
 the same vector as Liff_algebraic evaluated at xy.

This test is similar to the one illustrated on the online help for GroupActions
| [InvariantVectorsAndForms].

> CheckLeftInvariant (convert(Livf algebraic, list), z)

[0,06x1,06x1,06x1,06x1,0ax]] (7.3)
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4.5.10
Example 4.2.1

¥ 3. Multiplication in Canonical Coordinates of the 2nd Kind -
Nilpotent Case.

;We caluclate coordinates of the second kind for a generic point in coordinates of the 1st kind.
| > coordinate_Ist:= [ ]:
| > for i from 1 to adim do coordinate_Ist := [op(coordinate_Ist), x||i] end do:

> NilpotentCanonicalCoordinateChange(Alg, coordinate_1st, "first")

% x5*x6 — i x5° x4 + % x5*x3 — % x5x2+x1, - % x5° x6 + % x5% x4 — % x3x5 (9.1

+x2, % x52x6 — % x4 x5 +x3, - % X5 x6 + x4, x5, x6

[ We check that converting back to coordinates of the 1st kind gives the original point we started
with.

> simplify( NilpotentCanonicalCoordinateChange(Alg, %, "second") )

| [x1,x2,x3, x4, x5, x6] 9.2)

;We calculate z=xy, where z,x, and y are group elements in coordinates of the 2nd kind.

| > z2 = NilpotentBCHmult2 (Alg) :

| We verify that this is a group multiplicaiton.

| Setting y=0 in the multiplication gives x, verifiing that (0,0,0,0,0,0) is the identity.

> simplify(subs (identvars, z2) )

| [x1,x2, x3, x4, x5, x6] 9.3)

[ Calculate the Inverse of a generic point by switching to coordinates of the 1st kind and taking the

negative of each coordinate
| then switching bback to coordinates of the 2nd kind.

> xvars = [1]:
| > invvars == [ ]:
| > for i from 1 to adim do xvars := [op(xvars), x||i] end do:
| > inverse := NilpotentCanonicalCoordinateChange(Alg, xvars, "second") :
| > for i from 1 to adim do invvars := [op(invvars),-inverse[i]] end do:
| > inverse2 := NilpotentCanonicalCoordinateChange(Alg, invvars, "first") :
| We check that this is in fact the inverse.
| > subvars = [ ]:
| > for i from 1 to adim do subvars := [op(subvars), y||i=inverse2[i]] end do:
> simplify(subs(subvars, z2))
i [0,0,0,0,0,0] 9.9
| We check the associative property by computing x(yw)-(Xy)w.
> CheckAssociativity (z2)
[0,0,0,0,0,0] 9.5)




Livf mult2 = B L53

6
x5 x6
6 x1

;We create a new Lie algebra with these vec

> MultiplicationTable( )

;We compute left invariant vector fields by taking derivatives of the multiplication function.
> Livf mult2 == convert(Livf from_mult(z2), Matrix) =

a

x1

—x56x1 +6x2

x5°
7 ax] —xJ axZ + ax3

2
x5
axj + 7 6x2 — x5 6x3 +6x4
x5° x6
-5 6x2+x5x66x3—x68x4+6x5
x6
tor fields.

> DGsetup(LieAlgebraData(convert(Livf mult2, list), Alg3))
Lie algebra: Alg3

;We see that they give the same multiplication table that we started with.

e3 e4 e5 eb

Alg3 [el e2
el 0 0
e2| 0 0
e3| 0 0
e4d]| 0 0
eS| 0 —el
e6| 0 0

0 0 0 0
0 0 el 0
0 0 e2 0
0 0 e3 0
—e2 —e3 0 e4
0 0 —e4d O

(9.6)

©.7)

9.8)
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4.5.11
Example 4.3.1

VY 4. Calculate Left Invariant 1-Forms.

;We retrieve a Lie algebra so(3) from Winternitz.

:> DGsetup(LieAIgF) :
> MultiplicationTable( )
FormAlg| el o2

> LieAIgF = Retrieve("Winternitz", 1, [3, 9], FormAlg)
LiedlgF = [el,e2]=e3, [el,e3]=—¢e2, [e2,e3]=el

el 0 e3
e2| —e3 0
e3 el —el

;We set up a coordinate manifold.
> dgsetupvars = [ ]:
| > DGsetup(dgsetupvars, MF) :

> omega = CalcLeftinvl Forms(FormAlg, MF')

;We calculate the dual vectors to these 1-forms.
| > omegavars = [ ]:

;We create a new Lie algebra with these vector fields.

Lie algebra: Alg4

> MultiplicationTable( )

—e2

> adimF = DGinformation(FormAlg,"LieAlgebraDimension”) :
> for i from 1 to adimF do dgsetupvars := [op(dgsetupvars), x||i] end do :

| We compute left invariant 1-forms by formula [2] from the slides.

cos(x3) cos(x2) dxI +sin(x3) dx2
o= | —sin(x3) cos(x2) dxI + cos(x3) dx2
sin(x2) dx1 + dx3

> DGsetup(LieAlgebraData(convert(Livf from_1forms, list), Alg4))

| We see that they give the same multiplication table that we started with.

> for i from 1 to adimF’ do omegavars := [op(omegavars), omegali, 1]] end do:
> Livf from_Iforms = simplify(convert( DualBasis (omegavars), Matrix) *)

cos(x3) . _ cos(x3) sin(x2)
cos(x2) axl +sin(x3) ax2 cos(x2) x3
Livf_ﬁom_lﬁ)rms = _ sin(x3) sin(x3) sin(xZ)
7cos(x2) 0 ’ + cos(x3) 6x2 + —cos(xZ) 6x3
axj’
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(11.2)

(11.3)

(11.4)

(11.5)



Alg4 el e2 e3
el 0 e3 —e2
e2| —e3 0 el
e3 e2 —el 0

(11.6)
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4.5.12
Example 4.5.1

V¥ 5. Left Invariant Vector Fields in Coordinates of the 2nd Kind
by Algebraic Formula
- Nilpotent Case.
;We compute left invariant vector fields by formula [3] from the slides.
> Livf2_algebraic = Nilpo_tentLivandKind(Alg, M)
0,
-x5 6x ’ + 6x2

1 2
2 x5 axj—x56x2+6x3

Livf2_algebraic = 1

_Ex

5 1 (13.1)
5 6x1+5x5 axz—x56x3+6x4

1 3 1 2 _
5 x5 x66x1 ) x5 x66x2+x5x66x3 x66x4+6x5

x6

We see that these are the same vector fields given by taking derivatives of the multiplicaiton
| function in coordinates of t he 2nd kind.

> evalDG(Livf mult2 — Livf2_algebraic)
0

OGXI

090

x1

13.2
08 13.2)
x1

0 ax]

0

[ We check left invariance by pushing forward Livf algebraic evaluated at y to xy and see that it is
| the same vector as Liff_algebraic evaluated at xy.

> CheckLeftInvariant(convert(Livf2_algebraic, list), z2)
[0,06,06,06,06,06 ] (13.3)
x1 x1 x1 xI x1

>
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