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ABSTRACT

Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula

by

Nicholas Graner, Master of Science

Utah State University, 2018

Major Professor: Mark Fels
Department: Mathematics and Statistics

Lie’s third theorem states that for any finite dimensional Lie algebra g over the real numbers,

there is a simply connected Lie group G which has g as its Lie algebra. The main part of this

document is concerned with the question of determining the group G, in Lie’s third theorem, and

its multiplication function when just g is given.

The Baker-Campbell-Hausdorff formula (BCH) is implemented in the Maple Differential Ge-

ometry package for nilpotent Lie groups where the group multiplication is determined from the Lie

algebra using the BCH formula. The BCH formula is also used to give a closed form formula for a

local basis for the left invariant vector fields of a Lie group in canonical coordinates of the 1st kind.

It is shown how the BCH formula can be used to locally give the group multiplication in canonical

coordinates of the 2nd kind. A closed form formula for a local basis for the left invariant vector

fields of a solvable Lie group is given in coordinates of the 2nd kind. For nilpotent Lie groups these

calculations are implemented in the Maple Differential Geometry package along with the calculation

of local left invariant 1-forms for general Lie groups in coordinates of the 2nd kind. Examples of the

calculations are given.

(70 pages)
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PUBLIC ABSTRACT

Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula

Nicholas Graner

Lie Groups occur in math and physics as representations of continuous symmetries and are

often described in terms of their Lie Algebra. This thesis is concerned with finding a concrete de-

scription of a Lie group given its associated Lie algebra. Several calculations toward this end are

developed and then implemented in the Maple Differential Geometry package. Examples of the

calculations are given.
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CHAPTER 1

INTRODUCTION

Lie’s third theorem states that for any finite dimensional Lie algebra g over the real numbers,

there is a simply connected Lie group G which has g as its Lie algebra. The main part of this

document is concerned with the question of determining the group G, in Lie’s third theorem, and

its multiplication function when just g is given.

1.1

Chapter Summary

Chapter 2 provides some background regarding Lie algebras and Lie groups and defines some

basic terminology that will be used in the document.

Chapter 3 defines canonical coordinates of the 1st kind by use of the exponential map. For

any Lie group these coordinates are defined in a neighborhood of the identity. For some simply

connected groups, including those with g nilpotent, these coordinates are global making the group

diffeomorphic to Rn.

In Section 2 of Chapter 3 we introduce the Baker Campbell Hausdorff formula (BCH) which

provides a local formula for the group multiplication in coordinates of the 1st kind. For simply

connected Lie groups with nilpotent g this will produce the multiplication map in coordinates for

the entire group. Examples are given in Section 3 and Maple code implementation is in Appendix A.

In Section 4 of Chapter 3 the BCH formula is used to determine a closed form formula for a

basis for the left invariant vector fields of a Lie group in coordinates of the 1st kind on an open set

about the identity. For nilpotent g these vector fields are defined on all of Rn. Examples are given

in Section 5 and Maple code implementation is in Appendix A.
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Chapter 4 defines canonical coordinates of the 2nd kind. For any Lie group these coordinates

are defined in a neighborhood of the identity. For simply connected groups with solvable g these

coordinates are global making the group diffeomorphic to Rn.

In Section 2 of Chapter 4 we show how the BCH formula can be used to give the group multi-

plication in coordinates of the 2nd kind for simply connected Lie groups with nilpotent g. Examples

are given and Maple code implementation is in Appendix A.

In Section 3 of Chapter 4 we modify the basis for left invariant 1-forms given in reference ]1]

to be in coordinates of the 2nd kind. These 1-forms are defined in a neighborhood of the identity for

any Lie group. Examples are given and Maple code implementation is in Appendix A.

In Section 4 of Chapter 4 we show that for Lie groups with solvable g the basis of 1-forms

given in reference [5] are the same as those computed in coordinates of the 2nd kind using the formula

developed in the prior section. We then go on to show that the dual to this basis is the same as one I

developed by use of the BCH formula. For simply connected Lie groups with nilpotent g these vector

fields are defined on all of Rn. Examples are given in Section 5 and the Maple code implementation

is in Appendix A.

1.2

Literature Review and Summary of Results

Eugene Dynkin gave an explicit formulation of the Baker Campbell Hausdorff Formula (BCH)

for expressing the multiplication in canonical coordinates of the 1st kind. (see [4] 1.7). In this doc-

ument we implement the calculation of this formula in the Maple Differential Geometry package for

nilpotent Lie groups.

In this document the BCH formula is used to derive a closed form formula for a basis for the

left invariant vector fields of a Lie group on a neighborhood of the identity in canonical coordinates

of the 1st kind. In developing this formula a result from reference [6] is used to write the sum of

some of the coefficients from the BCH formula in terms of Bernoulli numbers. For nilpotent Lie

groups these vector fields are implemented in Maple code.
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In this document we use the BCH formula to derive a formula for the group multiplication

for a nilpotent Lie group in coordinates of the 2nd kind. This is implemented in Maple code.

Reference [1] gives a formula for a basis for the left invariant 1-forms in coordinates,which are

similar to coordinates of the 2nd kind, on a neighborhood of the identity for any Lie group. In this

document we modify this formula so that it is given in coordinates of the 2nd kind. This formula is

implemented in Maple code.

In this document we show that for solvable Lie groups the formula for the left invariant 1-

forms given in [1] are, when modified to be in coordinates of the 2nd kind, the same as the left

invariant 1-forms given in [5].

In this document a formula is given for a basis for the left invariant vector fields of a solvable

Lie group on a neighborhood of the identity. This formula was developed by use of the BCH formula

and results from reference [6]. This formula is shown to give the same left invariant vector fields as

given in [5].
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CHAPTER 2

LIE GROUPS AND LIE ALGEBRAS

First we will introduce Lie groups and Lie algebras and state several important definitions

and theorems that we will utilize.

Definition. Lie group - Let G be a group with multiplication µ. The group G is a Lie group if it

has the following properties:

� G is a smooth manifold

� µ : G×G→ G is a smooth map

� the map i : G→ G by i(a) = a−1 is a smooth map.

Definition. Lie algebra - A Lie algebra g is a vector space with a multiplication [·, ·] : g× g → g,

having the properties:

� Bilinearity: [ax+ by, z] = a[x, z] + b[y, z], [z, ax+ by] = a[z, x] + b[z, y]

� Skew Symmetry: [x, y] = −[y, x] ⇒ [x, x] = 0

� Jacobi Identity: [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

where x, y, and z are vectors and a, b ∈ R.

Given X ∈ g, the Adjoint Endomorphism, adX : g → g is given by adX(Z) = [X,Z].

The Derived Series of a Lie algebra is a sequence of subalgebras gk ⊂ g where g0 = g and

gk+1 = [gk, gk] ⊂ gk, making each gk+1 and ideal in gk (note that each gk is also an ideal in g (see

[8] Exercise 5.1.9)) . A Lie algebra is Solvable if there is a k such that the term gk = 0 in the

derived series.
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The Lower Central Series of a Lie algebra is a sequence of subalgebras gk ⊂ g where g0 = g

and gk+1 = [gk, g] ⊂ gk making each gk+1 and ideal in gk (note that each gk is also an ideal in g

based on the Jacobi identity). A Lie algebra is nilpotent if there is a k such that the term gk = 0

in the lower central series. A nilpotent Lie algebra is said to be k-step nilpotent if gk = 0 and

gk−1 6= 0 in the lower central series.

We now describe the standard way to associate a Lie algebra with a Lie group.

Definition. Left Invariant Vector Field - Let G be a Lie group. Let Lg : G → G be left

multiplication by g given by Lg(h) = gh, g, h ∈ G. A vector field X on G is a left invariant vector

field if (Lg∗Xh) = Xgh.

Let X be the vector space of vector fields on a Lie group G. Let X, Y ∈ X and let f be a

function, f : G→ R. Define a multiplication operation (i.e. bracket), [X, Y](f) = X(Y(f)) − Y(X(f)).

This makes X an infinite dimensional Lie algebra. Let g ⊂ X be the set of left invariant vector fields

on G.

Theorem 1. The set g of left invariant vector fields on G with bracket, [ , ] is a finite dimensional

Lie algebra with dim g = dimG. Additionally if Xe ∈ TeG there is a unique left invariant vector field

X on G with the prescribed tangent vector. (See [3] Proposition 7.1)

In particular g ⊂ X is a finite dimensional subalgebra that we call the Lie algebra for G. Since

X ∈ g is uniquely determined by Xe, the Lie algebra can be thought of as either the left invariant

fields or as the tangent space at the identity since these are in 1-1 correspondence and given two left

invariant vector fields, X and Y, we have [X, Y]e = [Xe, Ye].

A standard theorem is the converse to Theorem 1. There are a number of forms of this but

one such is the following.

Theorem 2. Lie’s Third Theorem - Given any Lie algebra g there is a simply connected Lie

group G having g as its Lie algebra. (See [4] 1.14.3) In fact the simply connected group is unique

up to diffeomorphism (See [10] Theorem 3.28).
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2.1

Heisenberg Example:

The Heisenberg group H is the manifold R3 with the multiplication:

(x1, x2, x3) ∗ (y1, y2, y3) = (x1 + y1, x2 + y2 + x1y3, x3 + y3). (2.1)

This multiplication gives a smooth mapping from R3×R3 → R3 making R3 into a Lie group (albeit

a different Lie group then the familiar additive Abelian group). The Heisenberg Lie algebra is often

defined as the vector space R3 with the Lie bracket:

[(x1, x2, x3), (y1, y2, y3)] = (0, x1y3 − x3y1, 0). (2.2)

In terms of the standard basis for R3, {el, e2, e3}, equation (2.2) gives non-zero products

[e1, e3] = e2, [e3, e1] = −e2. (2.3)

It is easy to check that [ , ] satisfies the conditions for making R3 into a Lie algebra. In terms of

the standard basis for R3 equation (2.2) gives:

[xiei, y
jej] = (x1y3 − x3y1)e2. (2.4)

Note that the Heisenberg Lie algebra h is 2-step nilpotent since [h, [h, h]] = 0.

We now compute the Lie algebra g of left invariant vector fields for H and show that it

is isomorphic to the one described above in equation (2.4). Let Lg : H → H by Lg(x) = gx,

g = (g1, g2, g3), x = (x1, x2, x3) ∈ H. Specifically we have

Lg(x
1, x2, x3) = (g1 + x1, g2 + x2 + g1x3, g3 + x3).

A basis for the tangent space at the identity is given by ∂x1 , ∂x2 , ∂x3 ,. From these we can create

a basis for left invariant vector fields by pushing them forward with Lg. We have Lg∗(∂x1) = ∂x1 ,

Lg∗(∂x2) = ∂x2 and Lg∗(∂x3) = ∂x3 + g1∂x2 giving a basis

{X1 = ∂x1 , X2 = ∂x2 , X3 = ∂x3 + x1∂x2 }
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for the left invariant vector fields on H.

For b1, b2, b3, c1, c2, c3 ∈ R and X, Y ∈ g we can write

X = c1X1 + c
2X2 + c

3X3 = c
1∂x1 + (c2 + c3x1)∂x2 + c3∂x3 (2.5)

Y = b1X1 + b
2X2 + b

3X3 = b
1∂x1 + (b2 + b3x1)∂x2 + b3∂x3

with Lie bracket

[X, Y] = (c1b3 − b1c3)X2. (2.6)

Since the Lie algebra of left invariant vector fields on the Heisenberg group and the Heisenberg Lie

algebra are both 3 dimensional vector spaces we can define a vector space isomorphism ψ between

them by ψ(Xi) = ei. Comparing equations (2.4) and (2.6) we see that [ψ(X), ψ(Y)] = ψ([X, Y])

making ψ a Lie algebra isomorphism.



8

CHAPTER 3

CANONICAL COORDINATES OF THE 1ST KIND

In this section we will define the exponential map and show how it can be used to define a

coordinate chart about the identity of a Lie group, referred to as canonical coordinates of the 1st

kind. We will state the Baker Campbell Hausdorff formula and show how it can be used to give the

group multiplication for groups with nilpotent Lie algebras, knowing only the Lie algebra for the

group. We will then express the left invariant vector fields of the group in these coordinates and

show how they can be calculated algebraically in certain cases.

3.1

The Exponential and Definition of the Coordinates of the 1st Kind

We first define the exponential map which is a generalization of the matrix exponential and

then show how this can be used to define a coordinate chart about the identity of a Lie group.

Theorem 3. Let G be a Lie group with identity e and let g be the Lie algebra for G. For X ∈ g

there exists a unique curve γ : R → G satisfying

1. γ(0) = e

2. γ∗
d
dt

= X|γ(t)

3. γ(t+ s) = γ(t)γ(s).

The curve γ is the unique maximal integral curve of X through e. Furthermore item (3) tells us that

γ is a 1-parameter subgroup of G. (see [7] Corollary 1.5)

We use these unique integral cures to define the exponential map.

Definition. Exponential Map - Let G be a Lie group with associated Lie algebra, g and identity

e. Let X be a left invariant vector field on G. Let γ be the integral curve of X through e given by

Theorem 3. Define the exponential map to be exp : g → G by exp(X) = γ(1).
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Corollary 4. For each X ∈ g. The mapping φ : R → G by φ(t) = exp(tX) is the unique 1-parameter

subgroup of G with φ(0) = e and φ∗
d
dt

|t=0 = X|e.

The following theorems lay out a few fundamental properties of the exponential map.

Theorem 5. There exists an open set U ⊂ G, e ∈ U and an open set V ⊂ g, 0 ∈ V where

exp : V → U is a diffeomorphism of V onto U. (see [9] 2.10.1)

Theorem 6. exp(0) = e.

Proof. Let γ : R → G by γ(t) = e. Let X = 0 ∈ g, then γ is the unique integral curve of X through

e. Therefore exp(0) = γ(1) = e.

We now use the exponential map to define a coordinate chart about e in G. Let {ei}1≤i≤m

be a basis for g and define a mapping λ : Rm → g by

λ(x1, ..., xm) = xiei.

The function λ defines a topology and a differential structure on g by defining U ⊂ g is open iff

λ−1(U) is open. The pair (Rm, λ−1) gives a chart on all of g.

Combining the functions exp and λ we get a function ψ1 = (exp ◦λ) : Rm → G by

ψ1(x
1, ..., xm) = exp(xiei). (3.1)

Theorem 7. There is an open set U ⊂ G and W ⊂ Rm, 0 ∈ W with ψ1 : W → U being a

diffeomorphism making (U,ψ−1
1 ) a coordinate chart on G with ψ1(0) = e.

Proof. By Theorem 5 there are open sets U ⊂ G and V ⊂ g, 0 ∈ V with exp(V) = U a diffeomor-

phism. Let W = λ−1(V). If we restrict ψ1 to W we get ψ1 : W → U being a diffeomorphism. We

also have ψ1(0) = exp(λ(0)) = e.

Definition. The local coordinates (U,ψ−1
1 ) on G are called Canonical Coordinates of the 1st

Kind.

The following theorem shows that coordinate charts constructed in this way are (essentially)

unique up to a change of basis.
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Theorem 8. Let G be a Lie group with Lie algebra g. Let {ei}1≤i≤m and {fi}1≤i≤m be two basis

for g. Let A be the change of basis matrix with Ajifj = ei. By Theorem 7 there is a coordinate

chart (U1, ψ
−1
1 ) on G with e ∈ U1 where ψ1 is defined in equation (3.1). Similarly let (V1, φ

−1
1 )

be another coordinate chart on G with e ∈ V1 where φ1 is defined in the same way as ψ1 but with

λ(x1, ..., xm) = xifi, using the basis {fi}, so that φ1(x
1, ..., xm) = exp(xifi). Let W1 = ψ

−1
1 (U1∩V1)

and Z1 = φ−1
1 (U1 ∩ V1). Let (x1, ..., xm) ∈ W1. Then the change of coordinates function, ρ =

φ−1
1 ◦ψ1 :W1 → Z1 is given by ρ(x1, ..., xm)j = Ajix

i.

Proof. Let (y1, ..., ym) = ρ(x1, ..., xm). We have ψ1(x
1, ..., xm) = φ1(y

1, ..., ym) ⇒ exp(xiei) =

exp(yjfj). Since exp is a diffeomorphism on U1∩V1 we have xiei = y
jfj ⇒ xiAjifj = y

jfj ⇒ xiAji =

yj, the desired result.

A well studied problem in Lie theory is when exp : g → G is a diffeomorphism. The answer to

this is described as follows. A Lie algebra g is called exponential if for some (and therefore each)

Cartan subalgebra h of g and each root λ : hC → C we have λ(h) ∩ 2πiZ\{0} = ∅ (see [11] for the

following theorem).

Theorem 9. When G is simply connected the following are equivalent:

1. the exponential map is a diffeomorphism

2. the exponential map is injective

3. g is exponential.

This theorem tells us that for an exponential Lie algebra, g, there is an associated simply con-

nected Lie group, G having g as its Lie algebra and G is diffeomorphic to Rm, with the exponential

map giving us coordinates.

When g is a nilpotent Lie algebra it is itself a Cartan subalgebra with no non-zero roots λ

and is therefore exponential. This gives the following theorem.

Theorem 10. Let g be a nilpotent Lie algebra of dimension n and G its associated simply connected

Lie group. The function exp : g → G is a diffeomorphism. Furthermore given any basis {ei}1≤i≤n

for g the function ψ1 : Rn → G, defined above, defines coordinates of the 1st kind. Any other

coordinates of the 1st kind are related by a linear change of variables. (See [9] Theorem 3.6.2 for the

first part and Theorem 8 for the second.)
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3.1.1

Heisenberg Example

We show how the exponential map gives coordinates of the 1st kind for the Heisenberg group,

H, continued from 2.1. Let X = c1∂x1 + (c2 + c3x1)∂x2 + c3∂x3 , which is a generic left invariant

vector field on H as given in equation (2.5).

Let γ(t) : R → H. We want d
dt
γ(t) = (c1, c2 + c3x1, c3) and γ(0) = (0, 0, 0) so that γ is the integral

curve for the vector field X passing through the identity.

Integrating gives γ(t) = (c1t, c2t+ 1
2
c3c1t2, c3t). Since γ is the unique integral curve for X passing

through the identity we have

exp(X) = γ(1) = (x1 = c1, x2 = c2 +
1

2
c3c1, x3 = c3) (3.2)

giving us a mapping ψ1 : R3 → H by ψ1(c
1, c2, c3) = exp(X) and defining a coordinate chart

(H,ψ−1
1 ) on all of H in coordinates of the 1st kind.

3.2

Baker Campbell Hausdorff Formula

Let G be a Lie group with Lie algebra g, multiplication µ and identity e. According to

Theorem 5 there is an open set V ⊂ g and an open set U ⊂ G, e ∈ U, where exp : V → U is a

diffeomorphism. Let log : U → V be exp−1. Let W = µ−1(U) ⊂ G × G. There is an open set

U1 ⊂ U ⊂ G where U1 ×U1 ⊂W. Let V1 = log(U1). For X, Y ∈ V1 we can define:

Z = log(expX exp Y). (3.3)

The BCH formula provides a power series representation of the right side of equation (3.3)

written out explicitly in terms of the Lie bracket on g, and is the following:

Theorem 11. There is an open neighborhood V of 0 ∈ g where for X, Y ∈ V the series:

Z = X+
∑
k,m≥0
ri+si>0

(−1)k

(k+ 1)(1+
∑k
i=1 si)

(adX)r1

r1!

(adY)s1

s1!
· · · (adX)

rk

rk!

(adY)sk

sk!

(adX)m

m!
Y (3.4)
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converges and satisfies Z = log(expX exp Y), where adX, adY : g → g are the endomorphisms

adX(Z) = [X,Z], adY(Z) = [Y, Z]. (See [8] Proposition 9.2.32)

Two alternative ways of writing the BCH formula are:

Z = Y + X+
∑
k>0

ri+si>0

(−1)k

(k+ 1)(1+
∑k
i=1 ri)

(adX)r1

r1!

(adY)s1

s1!
· · · (adX)

rk

rk!

(adY)sk

sk!
X

(See [4] formula 1.7.3) and

Z = X+
∑
k>0

ri+si>0

(−1)k

k(
∑k
i=1 ri + si)

(adX)r1

r1!

(adY)s1

s1!
· · · (adX)

rk

rk!

(adY)sk

sk!
W

where W is either X or Y. (See Encyclopedia of Mathematics - Campbell-Hausdorff formula)

In order to implement (3.4) in Maple we need to write the sum as an iterated sum. To do so,

we first observe that the sum consists of polynomials in the non-commutative endomorphisms, adX

and adY. We use this observation to write (3.4) as an iterated sum where one summation is over

the degree of the polynomial. With this in mind we introduce some notation. Let sn = 1 and let

[Xr1Ys1Xr2Ys2 ...XrnYsn=1]

=(adX)r1(adY)s1 · · · (adX)rn−1(adY)sn−1(adX)rn(Y)

=[X, [X, ...[X, [Y, [Y, ...[Y, ...[X, [X, ...[X, Y]]...], (3.5)

where there are r1X’s followed by s1Y’s up to rnX’s followed by snY’s and [Y1] = Y.

For example the non-zero terms in equation (3.4) of degree d = 3 are then

1

2
[X2Y],−

1

2
[XY0XY],−

1

4
[X2Y0X0Y],

1

3
[X, Y0, XY0X0Y],−

1

4
[X0YXY] and

1

6
[X0, Y, XY0X0Y], (3.6)

which in Lie brackets are

1

2
[X, [X, Y]],−

1

2
[X, [X, Y]],−

1

4
[X, [X, Y]],

1

3
[X, [X, Y]],−

1

4
[Y, [X, Y]] and

1

6
[Y, [X, Y]].
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Let (tm, ..., t1) be a list of natural numbers with t1 > 0. Let

W(tm, ..., t1) =


[XtmYtm−1Xtm−2Ytm−3 ...Xt2Yt1 ], m even

[YtmXtm−1Ytm−2Xtm−3 ...Xt2Yt1 ], m odd.

(3.7)

For any list of natural numbers (r1, s1, r2, s2, ...rn, sn) with sn > 0 there is a unique list of positive

integers (tm, ..., t1) so that W(tm, ..., t1) and

W(r1, s1, r2, s2, ...rn, sn) represent the same non-commutative polynomial in adX and adY. To see

this take the ordered list of symbols < r1, s1, r2, s2, ...rn, sn > and remove any which are equal to

zero. In the remaining list if an ri is adjacent to an rj, let ri = ri + rj and remove rj from the list.

Do this for the si terms also and continue until we have an alternating list < ...ri, sj, rk, ... > with

no terms equal to zero. Relabel these symbols < tm, ..., t1 > giving W(tm, ..., t1), representing the

same polynomial as W(r1, s1, r2, s2, ...rn, sn). Let d =
∑m
1 ti, the degree of the polynomial then

(tm, ..., t1) is a composition of d, meaning d =
∑m
1 ti where each ti is a positive integer.

For example the terms in equation (3.4) of degree d = 3, listed in (3.6) (in the same order) are then

1

2
W(2, 1),−

1

2
W(2, 1),−

1

4
W(2, 1),

1

3
W(2, 1),−

1

4
W(1, 1, 1),

1

6
W(1, 1, 1).

Let (an1
, ...a1) and (bn2

, ...b1) be ordered lists of natural numbers. Define an equivalence relation

∼ so that (an1
, ...a1) ∼ (bn2

, ...b1) iff there is a sequence of positive integers (tm, ..., t1) such that

W(an1
, ..., a1), W(bn2

, ..., b1) and W(tm, ..., t1) represent the same non-commutative polynomial

in adX and adY. Let

c(tm, ..., t1) =
∑

ri+si>0
(r1,s1,r2,s2,...,rn,sn)∼(tm,...,t1)

(−1)n−1

n(
∑n
i=1 si) ·

∏n
i=1 ri!si!

. (3.8)

For example, for the terms in equation (3.4) of degree d = 3 we have

c(2, 1) =
1

2
−
1

2
−
1

4
+
1

3
=
1

12
and

c(1, 1, 1) = −
1

4
−
1

6
= −

1

12
.

We can now write equation (3.4) as an iterated sum over the degree of the polynomial with

the inner sum being over all compositions of d where d is the degree of the polynomial.
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Theorem 12. With W as defined in formula (3.7) and c as defined in formula (3.8), Z from

Theorem 11 is given by

Z = X+

∞∑
d=1

∑
compositions

(t1,...,tm)
of d

with t1=1

c(tm, ..., t1)W(tm, ..., t1). (3.9)

Equation (3.9) with all terms up to degree d = 3 written explicitly is:

Z = X+ c(1)W(1) + c(1, 1)W(1, 1) + c(1, 2)W(1, 2) + c(1, 1, 1)W(1, 1, 1) + ...

= X+ Y +
1

2
[X, Y] +

1

12
([X, [X, Y]] − [Y, [X, Y]]) + ....

Proof. Starting with equation (3.4), using the notation from (3.5) and letting n = k+ 1 we get

Z = X+
∑
k,m≥0
ri+si>0

(−1)k

(k+ 1)(1+
∑k
i=1 si)

(adX)r1

r1!

(adY)s1

s1!
· · · (adX)

rk

rk!

(adY)sk

sk!

(adX)m

m!
Y

= X+
∑
k,m≥0
ri+si>0

(−1)k

(k+ 1)(1+
∑k
i=1 si)

[Xr1Ys1Xr2Ys2 ...XrkYskXmY1]∏m
i=1 ri!si!

= X+
∑
n>0

ri+si>0

(−1)n−1

n(
∑n
i=1 si) ·

∏n
i=1 ri!si!

[Xr1Ys1Xr2Ys2 ...XrnYsn=1]. (3.10)

Let I = (r1, s1, ..., rn, sn) and let

BI =
(−1)n−1

n(
∑n
i=1 si) ·

∏n
i=1 ri!si!

. (3.11)

This allows equation (3.10) to be rewritten as:

Z = log(expX exp Y) = X+
∑
n>0

ri+si>0

BI[X
r1Ys1Xr2Ys2 ...XrnYsn=1]. (3.12)

Let d =
∑n
i=1 ri+si, where we think of d as the degree of the polynomial term [Xr1Ys1Xr2Ys2 ...XrnYsn=1]

in equation (3.12) in terms of the non commutative variables X and Y. By the definition of multiple
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sums, equation (3.12) can be written

Z = X+ lim
k,l→∞

k∑
n=1

l∑
d=n

ri+si>0

BI[X
r1Ys1Xr2Ys2 ...XrnYsn=1]

= X+ lim
k,l→∞

l∑
d=1

ri+si>0

min{k,d}∑
n=1

BI[X
r1Ys1Xr2Ys2 ...XrnYsn=1]

= X+ lim
l→∞

l∑
d=1

ri+si>0

d∑
n=1

BI[X
r1Ys1Xr2Ys2 ...XrnYsn=1]

= X+

∞∑
d=1

d∑
n=1

ri+si>0

BI[X
r1Ys1Xr2Ys2 ...XrnYsn=1], (3.13)

noting that n > d is impossible based on the restriction that ri + si > 0 and the fact that terms

where k = d must go to the same limit as the full sequence of terms.

Using the notation (3.11) we also have

c(tm, ..., t1) =
∑

ri+si>0 and
(r1,s1,r2,s2,...,rn,sn)∼(tm,...,t1)

BI

allowing us to rewrite equation (3.13) as

Z = X+

∞∑
d=1

d∑
n=1

ri+si>0

BI[X
r1Ys1Xr2Ys2 ...XrnYsn=1]

= X+

∞∑
d=1

∑
compositions

(t1,...,tm)
of d

with t1=1
ri+si>0 and

(r1,s1,r2,s2,...,rn,sn)∼(tm,...,t1)

BIW(tm, ..., t1)

= X+

∞∑
d=1

∑
compositions

(t1,...,tm)
of d

with t1=1

c(tm, ..., t1)W(tm, ..., t1).

establishing the theorem.
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3.3

BCH - The Nilpotent Case

One important corollary of Theorem 12 occurs when g is a nilpotent Lie algebra.

Corollary 13. Let g be k-step nilpotent, then W(tm, ..., t1) = 0 when d ≥ k and

Z = X+

k−1∑
d=1

∑
compositions

(t1,...,tm)
of d

with t1=1

c(tm, ..., t1)W(tm, ..., t1).

Furthermore if we write Z,X and Y in a basis {ei}1≤i≤m for g so that Z = ziei, Y = yiei and

X = xiei then

zi = xi +

( k−1∑
d=1

∑
compositions

(t1,...,tm)
of d

with t1=1

c(tm, ..., t1)W(tm, ..., t1)

)i
. (3.14)

Let G be a simply connected Lie group associated with g then equation (3.14) gives a global repre-

sentation of the group multiplication in coordinates of the 1st kind.

Formula (3.14) of Corollary 13 is implemented in Appendix A by the code 4.5.2 to produce

the multiplication function for a simply connected nilpotent Lie group with Lie algebra g.

3.3.1

Examples 3.3.1

Example 3.3.1.1 The Heisenberg Lie algebra defined in equation (2.2) is 1-step Nilpotent.

On account of that, formula (3.4) gives us

Z = X+ Y +
1

2
[X, Y].

Using the standard basis {e1, e2, e3}, the Heisenberg Lie algebra is given by the equations in (2.3).

Formula (3.14) then gives:

z1 = x
1 + y1, z2 = x

2 + y2 +
1

2
(x1y3 − x3y1), z3 = x

3 + y3.

Example 3.3.1.2 In 4.5.8 of Appendix B a more complicated example computing formula

(3.14) is shown.
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3.4

Left Invariant Vector Fields in Canonical Coordinates of the 1st Kind

Let G be a Lie group with Lie algebra g, multiplication µ and identity e. We will express a

basis for g in coordinates of the 1st kind and show how they can be calculated by use of the BCH

formula with the ultimate goal of computing the vector fields in Maple for g nilpotent.

Theorem 14. Let G be a Lie group and {ei}1≤i≤m be a basis for the left invariant vector fields on

G. Let (U,ψ−1
1 ) be a coordinate chart in coordinates of the 1st kind as defined in Theorem 7. There

is an open set W ⊂ ψ−1
1 (U), 0 ∈W where for x = (x1, ..., xm) ∈W, X̂k|x = ψ−1

1∗ ek|ψ1(x) is given by


X̂1|(x1,...,xm)

...

X̂m|(x1,...,xm)

 =

∞∑
n=0

(−1)n

n!
Bn([ad x

iei]
T )n


∂x1

...

∂xm

 (3.15)

where Bn is the n’th Bernoulli number in the standard notation (B1 = −1
2
) and [ad xiei] is the

matrix representation of ad xiei in the given basis.

Note that the exponential generating function for the Bernoulli numbers is

t

et − t0
=

∞∑
n=0

tn

n!
Bn (3.16)

allowing us to write formula (3.15) as


X̂1|(x1,...,xm)

...

X̂m|(x1,...,xm)

 =
[ad xiei]

T

I− e−[ad xiei]T


∂x1

...

∂xm

 (3.17)

where t = −[ad xiei]
T in equation (3.16). Formula (3.17) allows us to compute the vector fields

in some cases where the summation in equation (3.15) is infinite. We give an example of this in

3.4.1. Function (3.16) has been well studied, for example the radius of convergence for (3.16) is 2π.

Reference [4], in Lemma 1.8.2, gives a formula for right invariant vector fields which is similar to

formula (3.17).

Proof. By Theorem (11) there is an opens set V ⊂ g with exp being a diffeomorphism from V →
U = exp(V). Let x = xiei, y = (y1, ..., ym), and z = (z1, ..., zm) with x, y ∈ W. Let X = xiei,
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Y = yiei and Z = ziei = log(expX exp Y). Let µ1 : U×U→ Rm, by

µ1(x, y) = z = ψ
−1
1 (ψ1(x)ψ1(y)), (3.18)

which is simply the group multiplication expressed in coordinates of the 1st kind. We claim

X̂k|x = ∂ykµ1(x, y)
a∂xa |y=0.

To show this let Fx : Rm → Rm by

Fx(y) = µ1(x, y) (3.19)

giving

Fx∗|y=0(∂yk) = ∂ykµ1(x, y)
a∂xa |y=0.

Since Fx(y) = µ1(x, y) = ψ
−1
1 (ψ1(x)ψ1(y)) we have

Fx∗ = ψ
−1
1∗ ◦ Lψ1(x)∗ ◦ψ1∗

⇒ Fx∗|y=0(∂yk) = ψ−1
1∗ ◦ Lψ1(x)∗ek|e = ψ

−1
1∗ ek|ψ1(x) = X̂k|x

⇒ X̂k|x = Fx∗|y=0(∂yk) = ∂ykµ1(x, y)
a∂xa |y=0.

We now use equation (3.9) to explicitly calculate X̂k|x. Since we are going to set y = 0 we

only need the terms in the formula with exactly one Y. First we note that terms in equation (3.9)

with exactly one Y are of the form c(n, 1)W(n, 1). Let K be the sum of terms with more than one

Y. Formula (3.9) becomes

Z = X+ Y +

∞∑
n=1

c(n, 1)W(n, 1) + K. (3.20)

Let cjai be the structure constants for g in the basis {ei} so that

[ad x]ak = xicaik.

Let ia, pa be distinct indices for each a each taking on values from 1, ...,m. Let bn = c(n, 1). we

have

W(n, 1) = [X, [X, ...[X, Y]]...] = xi1 · · · xinyin+1cii1p1
cp1

i2p2
· · · cpn−1

inin+1
ei
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and formula (3.20) becomes

ziei = x
iei + y

iei +

∞∑
n=1

bnx
i1 · · · xinyin+1cii1p1

cp1

i2p2
· · · cpn−1

inin+1
ei + K. (3.21)

We can express the coefficients bn in terms of Bernoulli numbers by the following Lemma.

Lemma 1. Let c(n, 1) be defined as in (3.8) then

bn = c(n, 1) =
(−1)n

n!
Bn. (3.22)

(See [6] Theorem 3)

We can now use (3.21) to write out a formula for X̂k. We have

µ1(x, y)
a = za = xa + ya +

∞∑
n=1

bnx
i1 · · · xinyin+1cai1p1

cp1

i2p2
· · · cpn−1

inin+1
+ ka

giving

X̂k|x =
∂

∂yk
(xa + ya +

∞∑
n=1

bnx
i1 · · · xinyin+1cai1p1

cp1

i2p2
· · · cpn−1

inin+1
)∂xa

∣∣∣∣
y=0

= (δak +

∞∑
n=1

bnx
i1 · · · xincai1p1

cp1

i2p2
· · · cpn−1

inik
)∂xa

= (δak +

∞∑
n=1

(−1)n

n!
Bn[ad x]ap1

[ad x]p1
p2
· · · [ad x]pn−1

ik
)∂xa

which in matrix notation is (3.15) proving the theorem.

Corollary 15. Let g be a Lie algebra where formula (3.9) converges for all elements in g × g and

the map ψ1 is a diffeomorphism Rm → G then the vector fields given by equation (3.15) are left

invariant vector fields on Rm with the group multiplication in coordinates of the 1st kind given by

µ1 : Rm × Rm → Rm by

µ1(x, y) = z = ψ
−1
1 (ψ1(x)ψ1(y)).
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3.4.1

Example

The following example is a case where we can compute the left invariant vector fields in co-

ordinates of the 1st kind by using equation (3.17) and diagonalization of the adjoint matrix.

Let g be a 3 dimensional Lie algebra with basis {e1, e2, e3} and structure equations [e1, e2] =

0, [e1, e3] = e1 and [e2, e3] = e2. We have

[ad xiei]
T =


−x3 0 0

0 −x3 0

x1 x2 0

 .

Putting this matrix in Jordan form gives


−x3 0 0

0 −x3 0

x1 x2 0

 = QJQ−1

where

Q =


0 x1−x2

x1
−x

2

x1

0 1 1

x1

x3
−x

1

x3
0


and

J =


0 0 0

0 −x3 0

0 0 −x3

 .
Since J is diagonal we can now compute

[ad xiei]
T

I− e−[ad xiei]T
= Q


1 0 0

0 −x3

1−exp(x3)
0

0 0 −x3

1−exp(x3)

Q−1
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which by equation (3.17) gives


X̂1|(x1,x2,x3)

X̂2|(x1,x2,x3)

X̂3|(x1,x2,x3)

 =


−x3

1−exp(x3)
∂x1

−x3

1−exp(x3)
∂x2

−x1(1−exp(x3)+x3)
−x3(1−exp(x3))

∂x1 + −x2(1−exp(x3)+x3)
−x3(1−exp(x3))

∂x2 + ∂x3

 .

3.5

Left Invariant Vector Fields in Canonical Coordinates of the 1st Kind - Nilpotent Case

One important case where Corollary 15 applies is when g is a nilpotent Lie algebra.

Corollary 16. Let g be k-step nilpotent. We have [ad xiei]
k = 0 so that (3.15) has only finitely

many terms allowing for exact calculation of the vector fields.

In the case Corollary 16 applies, formula (3.15) is implemented in Appendix A by the code

4.5.3.

3.5.1

Examples 3.5.1

Example 3.5.1.1 As an example consider the Heisenberg Lie algebra. Using the standard

basis {e1, e2, e3}, the Heisenberg Lie algebra is given by the equations in (2.3). The transpose of the

ad matrix is then given by:

[ad xiei]
T =


0 −x3 0

0 0 0

0 x3 0

 .
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Therefore formula (3.15) gives:


X̂1|(x1,x2,x3)

X̂2|(x1,x2,x3)

X̂3|(x1,x2,x3)

 =

1∑
n=0

(−1)n

n!
Bn


0 −x3 0

0 0 0

0 x1 0


n 
∂x1

∂x2

∂x3



=

(
1 0 0

0 1 0

0 0 1

−
1

2


0 −x3 0

0 0 0

0 x1 0


)

∂x1

∂x2

∂x3



=


∂x1 + 1

2
x3∂x2

∂x2

∂x3 − 1
2
x1∂x2

 .

For b1, b2, b3, c1, c2, c3 ∈ R we can write generic vector fields

X = c1X̂1 + c
2X̂2 + c

3X̂3 = c
1∂x1 + (c2 + c3x1)∂x2 + c3∂x3

Y = b1X̂1 + b
2X̂2 + b

3X̂3 = b
1∂x1 + (b2 + b3x1)∂x2 + b3∂x3

with Lie bracket

[X, Y] = (c1b3 − b1c3)X̂2

agreeing with the result we saw in equation (2.6).

Example 3.5.1.2 In 4.5.9 of Appendix B a more complicated example computing equation

(3.15) is shown.
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CHAPTER 4

CANONICAL COORDINATES OF THE 2ND KIND

In the prior section we saw how the exponential map could be used to define a chart on a

neighborhood about the identity for any Lie group. In this section we will use a different method

of using the exponential map to give a chart about the identity and these are called coordinates of

the 2nd kind. When the Lie group is simply connected and solvable this chart will cover the entire

group.

4.1

Defining the Coordinates of the 2nd Kind

Let G be a Lie group with Lie algebra g, multiplication µ and identity e. Let {ei}1≤i≤m be a

basis for g. Let ψ1 be defined as in equation (3.1). Let x̂j = (0, ..., 0, xj, 0, ...0), where xj is the jth

position. We define the mapping ψ2 : Rm → G by

ψ2(x
1, ..., xm) = exp(x1e1) exp(x2e2) · · · exp(xmem)

= ψ1(x̂
1)ψ1(x̂

2) · · ·ψ1(x̂m). (4.1)

It should be noted that the function ψ2 utilizes the group product whereas the function ψ1 did not.

We give an example of this calculation in 4.1.1.

Theorem 17. There is an open set W ⊂ Rm, 0 ∈ W and an open set U ⊂ G, e ∈ U such that

ψ2 :W → U is a diffeomorphism, thus making (U,ψ−1
2 ) a coordinate chart about e in G

Proof. We have µ∗|e : TeG × TeG → TeG with µ∗|e(ei|e, 0) = µ∗(0, ei|e) = ei|e. By induction,

µ̂ : G × · · · × G → G, by repeated group multiplication gives µ̂∗|e : TeG × · · · × TeG → TeG with

µ̂∗|e(0, ..., 0, ei|e, 0, ..., 0) = ei|e.
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Let ψ1 be defined as in equation (3.1). We have

ψ2(x
1, ..., xm) = µ̂(ψ1(x

1, 0, ..., 0), ψ1(0, x
2, 0, ..., 0), ..., ψ1(0, ..., 0, x

m))

⇒ ψ2∗|0(∂xi) = µ̂∗|e(0, ..., 0, ψ1∗(∂xi), 0, ..., 0)

= µ̂∗|e(0, ..., 0, ei|e, 0, ..., 0) = ei|e.

This makes ψ2∗|0 invertible and therefore by the inverse function theorem there is an open set W,

0 ∈W with ψ2 :W → U = ψ2(W) a diffeomorphism. Since ψ2(0) = e, the theorem then follows.

Definition. The coordinates (U,ψ−1
2 ) are called Coordinates of the 2nd Kind.

Definition. Let g be a solvable Lie algebra and let {e1, ..., em} is a basis for g where hi = span{e1, ..., ei}

is a subalgebra of g and hi is an ideal in hi+1 then we call {e1, ..., em} an adapted basis.

Theorem 18. Let g be a solvable Lie algebra then there exists an adapted basis for g. (See [7]

Lemma 2.1)

Theorem 19. Let G be a simply connected solvable Lie group with Lie algebra g. Let {e1, ..., em}

be an adapted basis for g, then the map (4.1) is a diffeomorphism of Rm → G. (See [9] Theorem

3.18.11)

The general approach used in the proof of [9] Theorem 3.18.11 is as follows. Let bi = span{ei},

for each i. In [9] Varadarajan shows that hm−1 and bm are the Lie algebras for closed simply

connected subgroups H and Bm of G with G = HBm and the mapping (h, bm) → hbm, h ∈ H,

bm ∈ Bm is a diffeomorphism. By induction we get the mapping (b1, ..., bm) → b1 · · ·bm, bi ∈ Bi

being a diffeomorphism. Since each Bi is simply connected and 1-dimensional the map exp : t →
exp(tei) is a diffeomorphism of R → Bi giving the desired result.

4.1.1

Heisenberg Example

As an example consider the Heisenberg group, H, defined in equation (2.1). Using the standard

basis {e1, e2, e3}, the Heisenberg Lie algebra is given by the equations in (2.3). With ψ1 as defined



25

in equation (3.1) equation (4.1) then gives:

ψ2(x
1, x2, x3) = ψ1(x

1, 0, 0)ψ1(0, x
2, 0)ψ1(0, 0, x

3)

= (x1, x2 + x1x3, x3).

4.2

Group Multiplication in Coordinates of the 2nd Kind -Nilpotent Case

We will now show how to give the multiplication function for a simply connected Lie group

with nilpotent Lie algebra in coordinates of the 2nd kind. We first note an immediate corollary to

Theorem 19.

Corollary 20. Let G be a simply connected Lie group with nilpotent Lie algebra g then the map ψ2

defined in equation (4.1) is a diffeomorphism of Rm → G.

Let G be a simply connected Lie group with nilpotent Lie algebra g. Let {e1, ..., em} be a

basis for g and let ψ1 be defined as in (3.1). By Theorem 10 ψ1 is a diffeomorphism from Rm → G.

Define a function φ : Rm → Rm by

φ(x) = ψ−1
1 ◦ψ2(x) (4.2)

for x ∈ Rm. This function is the change of coordinates function between coordinates of the 2nd kind

and coordinates of the 1st kind.

Theorem 21. Let G be a simply connected Lie group with nilpotent Lie algebra g. Let x, y ∈ Rm.

Let φ be defined as in equation (4.2). Let µ1 be defined as in equation (3.18). Let µ2 : Rm ×Rm by

µ2(x, y) = φ
−1 ◦ µ1(φ(x), φ(y)) (4.3)

then µ2 gives the group multiplication in coordinates of the 2nd kind.

Proof. Since ψ1 and ψ2 are diffeomorphisms φ is a diffeomorphism. We have

µ2(x, y) = φ
−1 ◦ µ1(φ(x), φ(y))

= (ψ−1
2 ◦ψ1) ◦ψ

−1
1 (ψ1(φ(x))ψ1(φ(y)))

= ψ−1
2 (ψ2(x)ψ2(y)).



26

establishing that µ2 gives the group multiplication in coordinates of the 2nd kind.

We now show that for nilpotent g that φ(x) and then µ2(x, y) can be calculated by use of

formula (3.14). Let x = (x1, ..., xm). Let x̂j = (0, ..., 0, xj, 0, ...0), where xj is the jth position. By

equations (4.2) and (4.1) we have

φ(x) = ψ−1
1 ◦ψ2(x) = ψ

−1
1 (ψ1(x̂

1)ψ1(x̂
2) · · ·ψ1(x̂m)).

Formula (3.14) first allows us to compute

µ1(x̂
1, x̂2) = ψ−1

1 (ψ1(x̂
1)ψ1(x̂

2)).

By inductive application of formula (3.14) we can compute

φ(x) = ψ−1
1 (ψ1(x̂

1)ψ1(x̂
2) · · ·ψ1(x̂m)). (4.4)

Formula (4.4) and the calculation of φ−1 is implemented in Appendix A by the code 4.5.4.

Since we can compute φ−1, µ1, and φ we can then by the use of formula (4.3) calculate µ2(x, y).

Formula (4.3) is implemented in Appendix A by the code 4.5.5.

4.2.1

Heisenberg Example

In 4.5.10 of Appendix B we show how Theorem 21 can be applied to the Heisenberg group.

4.3

Left Invariant 1-Forms in Coordinates of the 2nd Kind

In equation 3.3 of [1] a basis for the left invariant 1-forms is given in coordinates similar

to coordinates of the 2nd kind. We modify this formula slightly to determine the basis in actual

coordinates of the 2nd kind.
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Let G be a Lie group with Lie algebra g. Let {f1, ..., fn} be a basis for g. Let y = (y1, ..., yn)

and define coordinates about the identity in G using

ψ̂2(y
1, ..., yn) = exp(ynfn) exp(yn−1fn−1) · · · exp(y1f1). (4.5)

The following theorem is given in [1] p. 8.

Theorem 22. A basis for the left invariant 1-forms, dual to the {fi}, at (y1, ..., yn) is given by



ω̂1

ω̂2

ω̂3

...

ω̂n


= In



dy1

0

0

...

0


+M2(y)



0

dy2

0

...

0


+ ...+Mn(y)



0

0

...

0

dyn


, (4.6)

where

Mk(y) = exp(−y1[ad f1]) exp(−y2[ad f2]) · · · exp(−yk−1[ad fk−1]), k > 1. (4.7)

We now use this theorem to obtain our desired result.

Theorem 23. Let β = {e1, ..., en} be a basis for g. Let x = (x1, ..., xn) be coordinates of the 2nd

kind given by ψ2 as defined in equation (4.1). A basis for the left invariant 1-forms, dual to the {ei},

at (x1, ..., xn) is then given by



ω1

ω2

ω3

...

ωn


= In



0

0

...

0

dxn


+Nn−1(x)



0

...

0

dxn−1

0


+ ...+N1(x)



dx1

0

0

...

0


, (4.8)

where

Nk(x) = exp(−xn[ad en]) exp(−xn−1[ad en−1]) · · · exp(−xk+1[ad ek+1]), k < n. (4.9)

Proof. Let Q be the n × n involutory anti-diagonal matrix consisting of 1’s on the anti-diagonal.
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Let 
y1

...

yn

 = Q


x1

...

xn

 and [f1 · · · fn] = [e1 · · · en]Q. (4.10)

In particular equation (4.10) gives yn+1−k = xk and fn+1−k = ek. In terms of the basis β ′ =

{f1, ..., fn}, using (4.5), (4.1) and (4.10), we observe that

ψ̂2(Qx) = exp(x1fn) exp(x2fn−1) · · · exp(xnf1)

= exp(x1e1) exp(x2e2) · · · exp(xnen)

= ψ2(x)

Let φ = ψ̂2 ◦ ψ−1
2 be the change of coordinates given by y = Qx. The pullback of 1-forms by the

transformation φ gives 
dx1

...

dxn

 = φ∗(Q


dy1

...

dyn

). (4.11)

Let 

ω1

ω2

ω3

...

ωn


= φ∗(Q



ω̂1

ω̂2

ω̂3

...

ω̂n


)

where ω̂ are the left invariant 1-forms in the coordinates y given by equation (4.6). Since Q is

invertible and constant the ωi form a basis for the left invariant 1-forms in coordinates of the
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second kind. Using equations (4.6) and (4.11) we get



ω1

ω2

ω3

...

ωn


= φ∗(QIn



dy1

0

0

...

0


) + φ∗(QM2(y)Q

−1Q



0

dy2

0

...

0


) + ...+ φ∗(QMn(y)Q

−1Q



0

0

...

0

dyn


)

= In



0

0

...

0

dxn


+ φ∗(QM2(y)Q

−1)



0

...

0

dxn−1

0


+ ...+ φ∗(QMn(y)Q

−1)



dx1

0

0

...

0


. (4.12)

We have from (4.7)

QMn+1−k(y)Q
−1 = Q exp(−y1[ad f1])Q

−1 · · ·Q exp(−yn−k[ad fn−k])Q
−1

= exp(−y1Q[ad f1]Q
−1) · · · exp(−yn−kQ[ad fn−k]Q

−1). (4.13)

Since Q is the change of basis matrix from the basis β ′ to the basis β we have

[ad en+1−k] = [ad fk]β = Q[ad fk]β ′Q−1. (4.14)

Using equation (4.14) in equation (4.13) gives

QMn+1−k(y)Q
−1 = exp(−y1[ad en]) · · · exp(−yn−k[ad ek+1]),

so that

φ∗(QMn+1−k(y)Q
−1) = exp(−xn[ad en]) · · · exp(−xk+1[ad ek+1]).

We observe that Nk(x) = φ
∗(QMn+1−k(y)Q

−1), where Nk(x) is defined as in equation (4.9). This

demonstrates that equation (4.12) is the same as equation (4.8), thus establishing the theorem.

Formula (4.8) of Theorem 23 is implemented in Appendix A by the code 4.5.6.
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4.3.1

Example

In 4.5.11 of Appendix B we show an example of equation (4.8) being calculated fro so(3).

Testing indicated that with an Intel I5-6400 processor the left invariant 1-forms were calculated in

a few seconds for so(5), about 3 minutes for g2 and in about 5 minutes for so(6). Testing so(7) was

halted after about an hour.

4.4

Coordinates of the 2nd Kind - Solvable Case

We will now demonstrate a additional formulas for left invariant 1-forms and left invariant

vector fields expressed in coordinates of the 2nd kind.

4.4.1

Left Invariant 1-Forms in Coordinates of the 2nd Kind - Solvable Case

Let G be a Lie group with solvable Lie algebra g. The following theorem found on page 10 of

[5], gives a basis for the left invariant 1-forms of G.

Theorem 24. Let {e1, ..., en} be an adapted basis for a solvable Lie algebra g. Let ts = span{e1, ..., en−s}.

Note that this numbering of sub algebras differs from that used when we defined adapted basis in Def-

inition 4.1, having t0 = g. Let ads(en−s) be the restriction of ad(en−s) to the subspace ts. Let

Âs be the n − s by n − s matrix representation of ad(en−s) in the basis for ts. Let Is be the s × s

identity matrix and 0s the n− s by s zero matrix. The following formula gives us a basis, τ1, ..., τn

for the left invariant 1-forms on G, dual to the {ei},


τ1
...

τn

 = e−Â
T
0x

n

e−ÂT
1x

n−1

01

0T1 1

 ...
e−ÂT

n−2x
2

0n−2

0Tn−2 In−2



dx1

...

dxn

 . (4.15)

We now show that for g solvable formula (4.15) matches formula (4.8), thus establishing that

the vector fields from Theorem 24 are given in coordinates of the 2nd kind.

Theorem 25. Assume that g is solvable and that {e1, ..., en} is an adapted basis as defined in

Definition 4.1 then equations (4.8) and (4.15) are identical.
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Proof. Let ts, Âs, Is and 0s be defined as in Theorem 24. Since g is solvable, with the choice of

basis given in the theorem, the matrix [ad en−j] is of the form

Âj ∗

0Tj 0j


and exp(−xn−j[ad en−j]) is of the form

eÂj(−x
n−j) ∗

0Tj Ij

 , (4.16)

where ∗ is an n− j× j matrix. We are going to show that

Nk(x)



0

...

dxk

...

0


= eA0(−x

n)

eA1(−x
n−1) 01

0T1 1

 ...
eAn−2(−x

2) 0n−2

0Tn−2 In−2





0

...

dxk

...

0


, (4.17)

where Nk(x) is defined in equation (4.9), which will allow us to prove the theorem. We note that

based on equation (4.16) we have

exp(−xk+1[ad ek+1])



0

...

dxk

...

0


=

eÂn−(k+1)(−x
k+1) 0n−(k+1)

0Tn−(k+1) In−(k+1)





0

...

dxk

...

0


.

Assume thateÂr−s(−x
n−(r−s)) ∗

0Tr−s Ir−s

 · · ·
eÂr−1(−x

n−(r−1)) ∗

0Tr−1 Ir−1


eÂr(−x

n−r) 0

0Tr Ir


=

eÂr−s(−x
n−(r−s)) 0r−s

0Tr−s Ir−s

 · · ·
eÂr−1(−x

n−(r−1)) 0r−1

0Tr−1 Ir−1


eÂr(−x

n−r) 0

0Tr Ir


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for s < r. We observe thateÂr−(s+1)(−x
n−(r−(s+1))) ∗

0Tr−s Ir−(s+1)


eÂr−s(−x

n−(r−s)) 0

0Tr−s Ir−s


=

eÂr−(s+1)(−x
n−(r−s)) 0r−(s+1)

0Tr−s Ir−s


eÂr−s(−x

n−(r−s)) 0r−s

0Tr−s Ir−s


so that eÂr−(s+1)(−x

n−(r−(s+1))) ∗

0Tr−s Ir−(s+1)

 · · ·
eÂr−1(−x

n−(r−1)) ∗

0Tr−1 Ir−1


eÂr(−x

n−r) 0

0Tr Ir


=

eÂr−(s+1)(−x
n−(r−s)) 0r−(s+1)

0Tr−s Ir−s

 · · ·
eÂr−1(−x

n−(r−1)) 0r−1

0Tr−1 Ir−1


eÂr(−x

n−r) 0

0Tr Ir

 .
We can then conclude by induction that

eÂ0(−x
n)

eÂ1(−x
n−1) ∗

0Tn−1 In−1

 · · ·
eÂK+1(−x

n−(k+1)) 0

0Tn−1 In−1


= eÂ0(−x

n)

eÂ1(−x
n−1) 0

0Tn−1 In−1

 · · ·
eÂK+1(−x

n−(k+1)) 0

0Tn−1 In−1


and therefore

Nk(x)



0

...

dxk

...

0


= eÂ0(−x

n)

eÂ1(−x
n−1

) 01

0T1 I1

 · · ·
eÂn−(k+1)(−x

k+1) 0n−(k+1)

0Tn−(k+1) In−(k+1)





0

...

dxk

...

0


.

Since g is solvable, based on our choice of basis, Ân−k has zeros in column k and in row k. So
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eÂn−k(−x
k) has zeros in column k except for a 1 in column k, row k. This implies that

Nk(x)



0

...

dxk

...

0


= Nk(x)

eÂn−k(−x
k) 0n−k

0Tn−k In−k





0

...

dxk

...

0


.

Since each matrix eÂn−j(−x
j) 0n−j

0Tn−j In−j

 , j < k
has a kth column with all zeros except for a 1 in row k we see that

eA1(−x
n−k) 01

0T1 1

 ...
eAn−2(−x

2) 0n−2

0Tn−2 In−2





0

...

dxk

...

0


=



0

...

dxk

...

0


and therefore

Nk(x)



0

...

dxk

...

0


= eA0(−x

n)

eA1(−x
n−1) 01

0T1 1

 ...
eAn−2(−x

2) 0n−2

0Tn−2 In−2





0

...

dxk

...

0


thus establishing equation (4.17). By expanding formula (4.15) out and utilizing equation (4.17) we

see that


τ1

...

τn

 = In



0

0

...

0

dxn


+Nn−1(x)



0

...

0

dxn−1

0


+ ...+N1(x)



dx1

0

0

...

0


=


ω1

...

ωn


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establishing the theorem.

4.4.2

Left Invariant Vector Fields in Coordinates of the 2nd Kind - Solvable Case

We now demonstrate that an alternative formula, derived by the use of the BCH formula,

yields a basis of left invariant vector fields dual to the basis of left invariant 1-forms shown in The-

orem 24.

The following equation found on page 10 of [5], gives a basis for the left invariant vector fields

of a solvable Lie group G, which we have established in Theorem 25 to be in coordinates of 2nd kind.

Theorem 26. Let g be a solvable Lie algebra of dimension n. Let {Xi} be vector fields on Rm given

by 
X1
...

Xn

 = eÂ
T
0x

n

eÂT
1x

n−1

01

0T1 1

 ...
eÂT

n−2x
2

0n−2

0Tn−2 In−2



∂x1

...

∂xn

 (4.18)

with Âs defined as in Theorem 24, then {Xi} form a basis for g in coordinates of the 2nd kind.

We will now show that a formula built using BCH methods gives the same left invariant vector

fields as those given in equation (4.18). Let G be a Lie group of dimension m with identity e and

solvable Lie algebra g. The mapping ψ1 as defined in equation (3.1) and the mapping ψ2 defined in

equation (4.1) gives us coordinate charts about e ∈ G. We need a subset of the intersection of these

charts with some specific properties. This is given by the next theorem.

Theorem 27. Let (U1, ψ
−1
1 ) and (U2, ψ

−1
2 ) be charts about e ∈ G as given by Theorem 11 and

Theorem 17, then there is an open ball W about 0 in Rm with U = ψ1(W) ⊂ U ′ = U1 ∩ U2 with

a−1 ∈ U for a ∈ U and abc ∈ U ′ for a, b, c ∈ U.

Proof. Let V = µ−1(µ−1(U ′)) ⊂ G × G × G. We have V open with abc ∈ U ′ for a, b, c ∈ V. Let

W ′ = ψ−1
1 (V). There is an open ball W ⊂ W ′ about 0. Let U = ψ1(W). Let a, b, c ∈ U, then

a, b, c ∈ V ⇒ abc ∈ U ′ and there is an x ∈ W with a = ψ1(x), which implies −x ∈ W ⇒ a−1 =

ψ1(−x) ∈ U, which proves the theorem.
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Let g be a Lie algebra and let {ei}1≤i≤m be an adapted basis of of g as defined in 4.1 with

hj = span{ei}1≤i≤j. Let

adj(ei) = ad ei|hj
, 1 ≤ i ≤ j ≤ m. (4.19)

Let 0j be a j by m− j matrix of zeros. Let Im−j be the m− j identity matrix.

Let

Axj =

∑∞
n=0

(−1)n

n! Bn([adj x
jej]

T )n 0j

0Tj In−j

 (4.20)

where there is no summation over j and the 0 and I matrices are omitted for j = m.

Theorem 28. Let G be a simply connected Lie group with solvable Lie algebra g and let {ei}1≤i≤m

be an adapted basis for g. Let Agj be defined as in (4.20). Let [ad xiei] be the matrix representation

of ad xiei in the basis {ei}. Let (U1, ψ
−1
1 ), (U2, ψ

−1
2 ), and U be defined as in Theorem 27. Then

for a ∈ U, x = (x1, ..., xm) = ψ−1
2 (a), X̂k|x = ψ−1

2∗ ek|a is given by


X̂1|x

...

X̂m|x

 = (A−1
−xmAxm)(A−1

−xm−1Axm−1) · · · (A−1
−x2

Ax2)


∂x1

...

∂xm

 . (4.21)

Proof. We will prove this theorem by establishing that formula (4.21) gives the same vector fields

as given by equation (4.18).

Formula (4.21) of Theorem 28 is implemented in Appendix A by the code 4.5.7. There is an

example shown in 4.5.1.

Theorem 29. The basis for left invariant vector fields given in formulas (4.18) and (4.21) are

identical.

Proof. To prove the theorem we only need to show that

eÂT
n−jx

j

0j

0Tj Ij

 = A−1
−xj
Axj
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for 2 ≤ j ≤ n. In other words we will show

A−xj

eÂT
n−jx

j

0j

0Tj Ij

 = Axj . (4.22)

We first note that using the notation of formula (4.19) that [adj(ej)] = Ân−j in the notation of

formula (4.15) so that

Axj =

∑∞
n=0

(−1)n

n! Bn(Â
T
n−jx

j)n 0j

0Tj In−j

 .
Let M = ÂTn−jx

j. In order to establish (4.22) we must show that

(

∞∑
n=0

(−1)n

n!
Bn(−M)n)eM =

∞∑
n=0

(−1)n

n!
BnM

n.

Inserting the power series for exp gives

(

∞∑
n=0

(−1)n

n!
Bn(−M)n)(

∞∑
n=0

1

n!
Mn) =

∞∑
n=0

(−1)n

n!
BnM

n.

Using the Cauchy product of power series formula on the left hand side we then need to show

∞∑
n=0

n∑
i=0

(−1)i

i!
Bi(−1)

i 1

(n− i)!
Mn =

∞∑
n=0

(−1)n

n!
BnM

n

which is equivalent to showing
n∑
i=0

Bi

i!(n− i)!
=

(−1)n

n!
Bn.

For n = 0 we get 1 = 1 and For n = 1 we get 1 − 1
2
= 1
2

. For n > 1, Bn = 0 for n odd so that

(−1)nBn = Bn, so we only need to show that

n−1∑
i=0

Bi

i!(n− i)!
= 0

but this is a known identity for Bernoulli numbers (See Wolfram Math World - Bernoulli Number)

thus establishing equation (4.22) and proving the theorem.
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4.5

Left Invariant Vector Fields in Coordinates 2nd Kind - Nilpotent Case

One important case is where Theorem 28 applies is if g is a nilpotent Lie algebra.

Corollary 30. Let g be k-step nilpotent. We have [ad xiei]
k = 0 so that (4.21) has only finitely

many terms allowing for exact calculation of the vector fields in terms of finite sums of brackets.

4.5.1

Example

In 4.5.12 of Appendix B we show an example of equation (4.21) of Theorem 28 being calcu-

lated.
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APPENDIX A

Maple Code



Alg > Alg > 

Initialize Packages.

Procedures
Input:      A Lie algebra.
Output:   The result of equation 3.14 for generic points x and y in coordinates of the 1st kind.

NilpotentBCHmultdproc alginput
     local i, X, Y, Z, algbasis, adim, basis;
     if Query alginput, "Nilpotent"  then 
              ChangeLieAlgebraTo alginput ;
              adimdDGinformation alginput,"LieAlgebraDimension”);
              basisdDGinfo alginput, "FrameBaseVectors" ;
              Xd evalDG 0$basis 1 ; 
              Yd evalDG 0$basis 1 ;
              for i from 1 to adim  do
                       Xd evalDG XCx i * basis i ;
                       Yd evalDG YCy i * basis i ;
              end do;
              Zd evalDG X C Y C BCH X, Y, Y, 1, 1, 0, 1, 1, 0 ;
              algbasisd e1  ;
              for i from 2 to adim do  algbasisd op algbasis , e i  end do; 
              GetComponents Z, algbasis ;
     else 
              print "Not a nilpotent Lie Algebra" ;
     end if;
end:
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4.5.2
Maple Code for Equation (3.14) of Corollary 13



Alg > Alg > 

The following function is an internal subroutine for NilpotentBCHmult. It is designed to be called 
recursively. It is not for external use.

BCHdproc X, Y, rt, sum, prod, leadx, leady, n, ind
        local lx, lx1, lx2, lx3, lx4, ly, ly1, ly2, ly3, ly4, ln, ln1, ln2;
        lnd n;
        lx1d 0; lx2d 0; lx3d 0; lx4d 0;
        ly1d 0; ly2d 0; ly3d 0; ly4d 0;
        lxd LieBracket X, rt ;
        if lxs 0 &mult e1 then
                if leadx = 0 then
                        ln1d K1 ^trunc nC ind / 2 * trunc nCind / 2 C1 ;
                        ln2d K1 ^trunc nC indC2 / 2 * trunc nCindC2 / 2

C1 ;
                        lx1d evalDG lx* 1 / ln1C1 / ln2 / sum / prod / leady! ;
                        lx2d BCH X, Y, lx, sum, prod* leady!, 1, 0, lnC1, ind ;
                        lx3d BCH X, Y, lx, sum, prod* leady!, 1, 0, lnC3, ind ;
                else
                        ln1d K1 ^ trunc nC1 / 2 K1 * trunc nC1 / 2 ;
                        ln2d K1 ^ trunc nC3 / 2 K1 * trunc nC3 / 2 ;
                        lx1d evalDG lx / ln1 / sum / prod / leadxC1 ! ;
                        lx2d BCH X, Y, lx, sum, prod, leadxC1, 0, ln, ind ;
                        lx3d evalDG lx / ln2 / sum / prod / leadx! ;
                        lx4d BCH X, Y, lx, sum, prod* leadx!, 1, 0, lnC2, ind ;
                end if;        
        end if;        
        lyd LieBracket Y, rt ;
        #print(6,ln,Y,rt);
        if lys 0 &mult e1 then
                if leady = 0 then
                        ln1d K1 ^trunc nC ind / 2 * trunc nCind / 2 C1 ;
                        ly1d evalDG ly / ln1 / sumC1 / prod / leadx! ;
                        ly2d BCH X, Y, ly, sumC1, prod* leadx, 0, 1, lnC1, ind ;
                else
                        ln1d K1 ^ trunc nC indC1 / 2 K1 * trunc nCind

C1 / 2 ;
                        ln2d K1 ^ trunc nC indC3 / 2 K1 * trunc nCind

C3 / 2 ;
                        ly1d evalDG ly / ln1 / sumC1 / prod / leadyC1 ! ;
                        ly2d BCH X, Y, ly, sumC1, prod, 0, leadyC1, ln, ind ;        
                        ly3d evalDG ly / ln2 / sumC1 / prod / leady! ;
                        ly4d BCH X, Y, ly, sumC1, prod* leady!, 0, 1, lnC2, ind ;        
                end if;        
        end if;
        evalDG lx1Clx2C lx3Clx4Cly1C ly2Cly3Cly4 ;
end:
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M > M > 

Input:       A Lie algebra.
                 A  manifold of the same dimension as the Lie algebra.
Output:    The vector fileds given by formula (3.15) in the thesis using the default basis for
                 the Lie algebra input.

NilpotentLivf1stKinddproc alginput, manifold
         local i, b, dv, gen_element, A, z, adim, coords, vects, basis;
         if Query alginput, "Nilpotent"  then 
                  ChangeLieAlgebraTo alginput ;
                  adimdDGinformation alginput, "LieAlgebraDimension" ;
                  basisdDGinformation alginput, "FrameBaseVectors" ;  
                  dvd  ;
                  gen_elementd evalDG 0$e1 ;
                  Ad IdentityMatrix adim ; 
                  coordsdDGinformation M, "FrameIndependentVariables" ;
                  vectsdDGinformation M, "FrameBaseVectors" ;
                  for i from 1 to adim do
                            gen_elementd evalDG gen_elementCcoords i $basis i ; 
                            dvd op dv , vects i  ;
                  end do;
                  for i from 1 to adim do

                           Ad AC
K1 i

i!
$bernoulli i $ Adjoint gen_element C i;

                  end do;
                  A.Matrix dv C  ;
         else
                  print "Not a nilpotent Lie Algebra" ;
         end if;
 end: 
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4.5.3
Maple Code for Equation (3.15) of Theorem 14



> > 

Input:      A Lie algebra
                A point in R^n (where n is the dimensiont of the Lie algebra) entered as a list
                If first_or_second="second" the function changes coordinates of the 2nd kind to 
coordinates of the first kind
                      otherwise the fuction changes coordinates of the 1st kind to coordinates of the
                      second kind.
Output:   The result of equation (4.4) in the thesis or its inverse.

NilpotentCanonicalCoordinateChangedproc alginput, coordinate, first_or_second
     local i, X, Y, W, Z, adim, basis, dgsetupvarsx, dgsetupvarsy, rt, sc,  ab, ls, liedata, phi, psi,

Mult, wvars, zvars, subvars, Mult2;
     if Query alginput, "Nilpotent"  then 
               ChangeLieAlgebraTo alginput ;
               adimdDGinformation alginput, "LieAlgebraDimension" ; 
               lsd Series "Lower" ;
               abd ls nops ls K1 ;
               for i from nops ls K1 by K1 to 2  do
                          abd op ab , op ComplementaryBasis ls i , ls iK1 ;
               end do;             
               liedatad LieAlgebraData ab, alginput ;
               DGsetup liedata ;
              basisdDGinfo alginput, "FrameBaseVectors" ;
               rtd y1$basis 1 ;        
               for i from 2 to adim do
                         Xd rt;
                         Yd y i$basis i ;
                         rtd evalDG rt C Y C BCH X, Y, Y, 1, 1, 0, 1, 1, 0 ;
              end do;
              scdGetComponents rt, basis ;
              dgsetupvarsxd ; 
              dgsetupvarsyd ; 
              wvarsd ;
              zvarsd ;
              subvarsd ;
              for i from 1 to adim do 
                         dgsetupvarsxd op dgsetupvarsx , x i ;
                         dgsetupvarsyd op dgsetupvarsy , y i ;
                         wvarsd op wvars , w i ;
                         zvarsd op zvars , z i ;
                         subvarsd op subvars , x i = sc i ;   
              end do ;
              DGsetup dgsetupvarsx, M ;
              DGsetup dgsetupvarsy, N ;
              phid Transformation N, M, subvars ; 
              psid InverseTransformation phi ;
              if first_or_second = "second" then
                      ApplyTransformation phi, coordinate ;   
              else 
                    ApplyTransformation psi, coordinate ;
              end if;
     else 
             print "Not a nilpotent Lie Algebra" ;
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4.5.4
Maple Code for Equation (4.4)



     end if;
 end: 
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Alg > Alg > 

Input:      A Lie algebra
Output:   The result of equation 4.3 for generic points x and y in coordinates of the 2nd kind              

NilpotentBCHmult2dproc alginput
     local i, X, Y, W, Z, adim, basis, dgsetupvarsx, dgsetupvarsy, rt, sc,  ab, ls,

liedata, phi, psi, Mult, wvars, zvars, subvars, Mult2;
     if Query alginput, "Nilpotent"  then 
             adimdDGinformation alginput, "LieAlgebraDimension" ; 
             wvarsd ;
             zvarsd ;
             for i from 1 to adim do 
                         wvarsd op wvars , w i ;
                         zvarsd op zvars , z i ;
             end do ; 
             Multd NilpotentBCHmult alginput ;
             Wd NilpotentCanonicalCoordinateChange alginput, wvars, "second" ;
             Zd NilpotentCanonicalCoordinateChange alginput, zvars, "second" ;
             subvarsd ;
             for i from 1 to adim do 
                       subvarsd op subvars , x i = W i ;
                       subvarsd op subvars , y i = Z i ;
             end do;  
             Mult2d subs subvars, Mult ;
             Mult2d NilpotentCanonicalCoordinateChange alginput, Mult2,

"first" ;
             subvarsd ;
             for i from 1 to adim do 
                       subvarsd op subvars , w i = x i ;
                       subvarsd op subvars , z i = y i ;
             end do;  
             Mult2d subs subvars, Mult2
     else 
             print "Not a nilpotent Lie Algebra" ;
     end if;
end:
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4.5.5
Maple Code for Equation (4.3) of Theorem 21



M > M > 

M > M > 

Input:     A Lie algebra.
              A manifold of the same dimension as the Lie algebra.
Output:  The 1-form fields given by equation (4.8) in the thesis using the default basis for
               the Lie algebra input.

CalcLeftInv1Formsdproc alginput, manifold
 local i, j, B, V, adim, ls, ab, liedata, forms;
      ChangeLieAlgebraTo alginput ;
      adimdDGinformation alginput,"LieAlgebraDimension”);
       formsdDGinformation manifold, "FrameBaseForms" ;  
      Bd ; 
      for i from 1 to adim do Bd op B , 0  end do;
      Bd convert B, Matrix C ; 
      for i from 1 to adim  do 
               Vd ;
               for j  from 1 to adim do
                       if j = i then 
                                  Vd op V , forms j ;
                       else
                                  Vd op V , 0 ;
                       end if;
               end do;
               Vd convert V, Matrix C  ;
               if i! adim then
                         Bd evalDG BCcalc_Nk alginput, manifold, adim, i .V ; 
               else
                         Bd evalDG BCV ;
               end if; 
      end do;
end:

The following function is an internal subroutine for calc_left_forms. It is not for external use.
calc_Nk dproc alginput, manifold, adim, cnt
local i, Nk , basis, coords; 
      basisdDGinformation alginput, "FrameBaseVectors" ;  
      coordsdDGinformation manifold, "FrameIndependentVariables" ;
      Nkd AdjointExp Kcoords adim $ basis adim  ;
      if adimK1O cnt  then
           for i from adimK1 by K1 to 1C cnt do  
                   NkdMultiply Nk, AdjointExp Kcoords i $ basis i
          end do;
      else
            return Nk;
      end if; 
end:
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4.5.6
Maple Code for Equation (4.8) of Theorem 23



M > M > 

Input:     A Lie algebra.
               A manifold of the same dimension as the Lie algebra.
Output:  The vector fileds from equation (4.21) in the thesis using a basis adapted to lower
               central series for the Lie algebra input.

NilpotentLivf2ndKinddproc alginput, manifold
local i, dv, A, adim, ls, ab, liedata, vects;
        if Query alginput, "Nilpotent"  then 
               ChangeLieAlgebraTo alginput ;
               adimdDGinformation alginput, "LieAlgebraDimension" ;            
               lsd Series "Lower" ;
               abd ls nops ls K1 ;
               for i from nops ls K1 by K1 to 2  do
                          abd op ab , op ComplementaryBasis ls i , ls iK1 ;
               end do;             
               liedatad LieAlgebraData ab, alginput ;
               DGsetup liedata ;
               dvd  ;
               Ad IdentityMatrix adim ;
               vectsdDGinformation manifold, "FrameBaseVectors" ; 
               for i from 1 to adim do
                      dvd op dv , vects i  ; 
               end do;
               for i from adim by K1 to 2 do
                       Ad A.Admatrix alginput, manifold, adim, i,K1 K1.Admatrix alginput,

manifold, adim, i, 1 ;
              end do;
             Ad A.Matrix dv C  ; 
        else
              print "Not a nilpotent Lie Algebra" ;
        end if;
end: 
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4.5.7
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M > M > 
The following function is an internal subroutine for NilpotentLivf2ndKind. It is not for external use.

Admatrixdproc alginput, manifold, initdim, adim, s  
 local i, j, b, A, A0, L2, dgsetupvars, coords, basis;
        dgsetupvarsd ; 
        Ad IdentityMatrix adim ;
        A0d IdentityMatrix initdim, compact = false ;
        for i from 1 to adim do
               dgsetupvarsd op dgsetupvars , e i  ; 
        end do;
        L2d LieAlgebraData dgsetupvars, alginput ;
        DGsetup L2 ;
        basisdDGinformation alginput, "FrameBaseVectors" ;  
        coordsdDGinformation manifold, "FrameIndependentVariables" ;
        for i from 1 to adim  do

            Ad AC
K1 i

i!
$bernoulli i $ Adjoint evalDG s$coords adim

$basis adim C i ;
        end do;
        for i from 1 to adim do
                for j from 1 to adim do
                      A0 i, j d A i, j ;
                end do; 
        end do; 
        A0;  
 end:
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> > 

> > 

Alg > Alg > 
The following are functions used for testing.

AdaptedBasisdproc ls  
        local basis, i;
        basisd ls nops ls K1 ;
        for i from nops ls K1 by K1 to 2 
                do basisd op basis , op ComplementaryBasis ls i , ls iK1 ;
                end do;
 end:

Livf_from_multdproc mult
         local adim, i, j, dgsetupvars, subvars, vf, l, L;
         dgsetupvarsd ;
         subvarsd ;
         vfd ; 
         adimdDGinformation Alg,"LieAlgebraDimension” :   
         for i from 1 to adim do 
                   dgsetupvarsd op dgsetupvars , x i ;
                   subvarsd op subvars , y i = 0 ;
         end do :
         DGsetup dgsetupvars, M :
         for i from 1 to adim do 
                   ld subs subvars, diff mult, y i ;
                   Ld evalDG l 1 $D_x1 ;
                   for j from 2 to adim do  
                             Ld evalDG LCl j $D_x j
                   end do;
                   vfd op vf , L
         end do;    
end:
CheckAssociativitydproc mu
         local i, subvars, a, ans1, ans2;
         subvarsd ;
         ad ;
         for i from 1 to nops mu  do  subvarsd op subvars , y i = w i, x i = y i   end do:
         for i from 1 to nops mu  do  ad simplify op a , subs subvars, mu i   end do:

      
         subvarsd ;
         for i from 1 to nops mu  do  subvarsd op subvars , y i = a i   end do:   
         ans1d simplify subs subvars, mu ; 
         admu;
         subvarsd ; 
         for i from 1 to nops mu  do  subvarsd op subvars , y i = w i   end do:   
         ad subs subvars, a ;
         subvarsd ;
         for i from 1 to nops mu  do  subvarsd op subvars , x i = mu i   end do:   
         ans2d subs subvars, a ;
         simplify ans1Kans2 ; 
 end:
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M > M > CheckLeftInvariantdproc X, mu
         local i, subvars, left_mult, yX, ans, X_at_xy;
         subvarsd ;
         for i from 1 to nops mu  do  subvarsd op subvars , x i = mu i   end do:
         X_at_xy d subs subvars, X ;
         left_multd Transformation N, M, subvars ;
         subvarsd ; 
         for i from 1 to nops mu  do  subvarsd op subvars , D_x i = D_y i, x i = y

i   end do:
         yXd subs subvars, X ; 
         ansd ;
         for i from 1 to nops mu  do
                  ansd op ans , Pushforward left_mult, yX i
         end do;
         evalDG ansKX_at_xy ;
 end:
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> > 

(5.1)(5.1)

> > 

> > 

> > 

> > 

> > 

(5.3)(5.3)

(5.4)(5.4)

(5.2)(5.2)

Synopsis

1. Multiplication in Canonical Coordinates of  the 1st Kind - 
Nilpotent Case.
We retrieve a Lie algebra from Winternitz.

LieAlgd Retrieve "Winternitz", 1, 6, 2 , Alg
LieAlg d e1, e2  = e3, e1, e3  = e4, e1, e4  = e5, e1, e5  = e6, e1, e6  = 0, e2, e3  = 0, 

e2, e4  = 0, e2, e5  = 0, e2, e6  = 0, e3, e4  = 0, e3, e5  = 0, e3, e6  = 0, e4, e5
 = 0, e4, e6  = 0, e5, e6  = 0

DGsetup LieAlg :
We swith to an adapted basis for convienience in comparing vector fields in coordinates of the 1st 
kind and coordinates of the second kind.

DGsetup LieAlgebraData AdaptedBasis Series "Lower" , Alg :
MultiplicationTable

Alg e1 e2 e3 e4 e5 e6

e1 0 0 0 0 0 0

e2 0 0 0 0 e1 0

e3 0 0 0 0 e2 0

e4 0 0 0 0 e3 0

e5 0 Ke1 Ke2 Ke3 0 e4

e6 0 0 0 0 Ke4 0

We check to see that our Lie algebra is nilpotent.
Query Alg, "Nilpotent"

true

We use the BCH formula to calculate z=xy, where z,x, and y are group elements in coordinates of 
the 1st kind.

zdNilpotentBCHmult Alg

z d x1Cy1C
1
2

 x2 y5K
1
2

 x5 y2K
1

24
 x4 x5 y52C

1
24

 x52 y4 y5K
1

180
 x52 y52 y6

C
1

180
 x5 x6 y53C

1
12

 x3 y52K
1

12
 x5 y3 y5K

1
12

 x3 x5 y5C
1

12
 x52 y3

C
1

720
 x54 y6K

1
720

 x53 x6 y5C
1

180
 x53 y5 y6K

1
180

 x52 x6 y52K
1

720
 x5 y53 y6

C
1

720
 x6 y54, x2Cy2C

1
2

 x3 y5K
1
2

 x5 y3K
1

24
 x52 y5 y6C

1
24

 x5 x6 y52

C
1

12
 x4 y52K

1
12

 x5 y4 y5K
1

12
 x4 x5 y5C

1
12

 x52 y4, x3Cy3C
1
2

 x4 y5
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(5.7)(5.7)

(5.9)(5.9)
> > 

> > 

> > 

(5.8)(5.8)

> > 

> > 

(5.10)(5.10)

> > 

> > 

> > 

(5.5)(5.5)

> > 

> > 

(5.6)(5.6)

K
1
2

 x5 y4C
1

12
 x5 y5 y6K

1
12

 x6 y52K
1

12
 x52 y6C

1
12

 x5 x6 y5, x4Cy4

C
1
2

 x5 y6K
1
2

 x6 y5, x5Cy5, x6Cy6

We verify that this is a group multiplicaiton.
adimdDGinformation Alg,"LieAlgebraDimension” :   
identvarsd :
invvarsd :
for i from 1 to adim do
      identvarsd op identvars , y i = 0 ;
      invvarsd op invvars , y i =Kx i ;
end do: 

Setting y=0 in the multiplication gives x, verifiing that (0,0,0,0,0,0) is the identity.
simplify subs identvars, z

x1, x2, x3, x4, x5, x6

Setting y=(-x1,-x2,-x4,-x4,-x5,-x6) gives 0 verifying that (-x1,-x2,-x4,-x4,-x5,-x6) is the inverse.
subs invvars, z

0, 0, 0, 0, 0, 0

We check the associative property by computing x(yw)-(xy)w.
CheckAssociativity z

0, 0, 0, 0, 0, 0

We compute left invariant vector fields by taking derivatives of the multiplication function.
Livf_multd convert Livf_from_mult z , Matrix C

Livf_mult d v
x1

, 

K
x5
2

 v
x1
Cv

x2
, 

x52

12
 v

x1
K

x5
2

 v
x2
Cv

x3
, 

x52

12
 v

x2
K

x5
2

 v
x3
Cv

x4
, 

1
2

 x2K
1

12
 x3 x5K

1
720

 x53 x6  v
x1
C

x3
2
K

x4 x5
12

 v
x2
C

x4
2
C

x5 x6
12

 v
x3

K
x6
2

 v
x4
Cv

x5
, 

x54

720
 v

x1
K

x52

12
 v

x3
C

x5
2

 v
x4
Cv

x6

We create a new Lie algebra with these vector fields.
L2d LieAlgebraData convert Livf_mult, list , Alg2

L2 d e1, e2  = 0, e1, e3  = 0, e1, e4  = 0, e1, e5  = 0, e1, e6  = 0, e2, e3  = 0, e2, e4
 = 0, e2, e5  = e1, e2, e6  = 0, e3, e4  = 0, e3, e5  = e2, e3, e6  = 0, e4, e5  = e3, 
e4, e6  = 0, e5, e6  = e4

DGsetup L2
Lie algebra: Alg2
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(5.11)(5.11)

> > 
We see that they give the same multiplication table that we started with.

MultiplicationTable

Alg2 e1 e2 e3 e4 e5 e6

e1 0 0 0 0 0 0

e2 0 0 0 0 e1 0

e3 0 0 0 0 e2 0

e4 0 0 0 0 e3 0

e5 0 Ke1 Ke2 Ke3 0 e4

e6 0 0 0 0 Ke4 0
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> > 

> > 

> > 

> > 

> > 

(7.1)(7.1)

> > 

(7.2)(7.2)

2. Left Invariant Vector Fields in Coordinates of the 1st Kind 
by Algebraic Formula
        - Nilpotent Case.
We set up a coordinate manifold.

dgsetupvarsd :
for i from 1 to adim do dgsetupvarsd op dgsetupvars , x i   end do :
DGsetup dgsetupvars, M :

We compute left invariant vector fields by formula [1] from the slides.
Livf_algebraicdNilpotentLivf1stKind Alg, M

Livf_algebraic d v
x1

, 

K
1
2

 x5 v
x1
Cv

x2
, 

1
12

 x52 v
x1
K

1
2

 x5 v
x2
Cv

x3
, 

1
12

 x52 v
x2
K

1
2

 x5 v
x3
Cv

x4
, 

1
2

 x2K
1

12
 x3 x5K

1
720

 x53 x6  v
x1
C

1
2

 x3K
1

12
 x4 x5  v

x2
C

1
2

 x4

C
1

12
 x5 x6  v

x3
K

1
2

 x6 v
x4
Cv

x5
, 

1
720

 x54 v
x1
K

1
12

 x52 v
x3
C

1
2

 x5 v
x4
Cv

x6

We see that these are the same vector fields given by taking derivatives of the multiplicaiton 
function.

evalDG Livf_multKLivf_algebraic

0

0 v
x1

0 v
x1

0 v
x1

0 v
x1

0 v
x1

We verify that these vector fields are left invariant.
We set up second coordinate manifold.

dgsetupvarsd :
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> > 
> > 

> > 
(7.3)(7.3)

for i from 1 to adim do  dgsetupvarsd op dgsetupvars , y i  end do :
DGsetup dgsetupvars, N :

We check left invariance by pushing forward Livf_algebraic evaluated at y to xy and see that it is 
the same vector as Liff_algebraic evaluated at xy.
This test is similar to the one illustrated on the online help for GroupActions
[InvariantVectorsAndForms].

CheckLeftInvariant convert Livf_algebraic, list , z
0, 0 v

x1
, 0 v

x1
, 0 v

x1
, 0 v

x1
, 0 v

x1
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> > 

> > 

> > 
(9.5)(9.5)

> > 
> > 

> > 

(9.1)(9.1)

> > 

(9.4)(9.4)

> > 

> > 

> > 

(9.2)(9.2)

> > 

> > 

(9.3)(9.3)

> > 

> > 

> > 

> > 

3. Multiplication in Canonical Coordinates of  the 2nd Kind - 
Nilpotent Case.
We caluclate coordinates of the second kind for a generic point in coordinates of the 1st kind.

coordinate_1std :
for i from 1 to adim do coordinate_1std op coordinate_1st , x i   end do :
NilpotentCanonicalCoordinateChange Alg, coordinate_1st, "first"
1

30
 x54 x6K

1
24

 x53 x4C
1
6

 x52 x3K
1
2

 x5 x2Cx1,K
1
8

 x53 x6C
1
6

 x52 x4K
1
2

 x3 x5

Cx2,
1
3

 x52 x6K
1
2

 x4 x5Cx3,K
1
2

 x5 x6Cx4, x5, x6

We check that converting back to coordinates of the 1st kind gives the original point we started 
with.

simplify NilpotentCanonicalCoordinateChange Alg, %, "second"
x1, x2, x3, x4, x5, x6

We calculate z=xy, where z,x, and y are group elements in coordinates of the 2nd kind.
z2dNilpotentBCHmult2 Alg :

We verify that this is a group multiplicaiton.
Setting y=0 in the multiplication gives x, verifiing that (0,0,0,0,0,0) is the identity.

simplify subs identvars, z2
x1, x2, x3, x4, x5, x6

Calculate the Inverse of a generic point by switching to coordinates of the 1st kind and taking the 
negative of each coordinate
then switching bback to coordinates of the 2nd kind.

xvarsd :
invvarsd :
for i from 1 to adim do xvarsd op xvars , x i  end do:
inversedNilpotentCanonicalCoordinateChange Alg, xvars, "second" :
for i from 1 to adim do invvarsd op invvars ,Kinverse i  end do:
inverse2dNilpotentCanonicalCoordinateChange Alg, invvars, "first" :

We check that this is in fact the inverse.
subvarsd :
for i from 1 to adim do subvarsd op subvars , y i = inverse2 i  end do:
simplify subs subvars, z2

0, 0, 0, 0, 0, 0

We check the associative property by computing x(yw)-(xy)w.
CheckAssociativity z2

0, 0, 0, 0, 0, 0
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> > 

(9.8)(9.8)

> > 

(9.6)(9.6)

(9.7)(9.7)

> > 

We compute left invariant vector fields by taking derivatives of the multiplication function.
Livf_mult2d convert Livf_from_mult z2 , Matrix C

Livf_mult2 d 

v
x1

Kx5 v
x1
Cv

x2

x52

2
 v

x1
Kx5 v

x2
Cv

x3

K
x53

6
 v

x1
C

x52

2
 v

x2
Kx5 v

x3
Cv

x4

x53 x6
6

 v
x1
K

x52 x6
2

 v
x2
Cx5 x6 v

x3
Kx6 v

x4
Cv

x5

v
x6

We create a new Lie algebra with these vector fields.
DGsetup LieAlgebraData convert Livf_mult2, list , Alg3

Lie algebra: Alg3

We see that they give the same multiplication table that we started with.
MultiplicationTable

Alg3 e1 e2 e3 e4 e5 e6

e1 0 0 0 0 0 0

e2 0 0 0 0 e1 0

e3 0 0 0 0 e2 0

e4 0 0 0 0 e3 0

e5 0 Ke1 Ke2 Ke3 0 e4

e6 0 0 0 0 Ke4 0
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(11.3)(11.3)

(11.4)(11.4)

> > 

> > 

> > 

(11.2)(11.2)

> > 

> > 

> > 

> > 
(11.5)(11.5)

> > 

> > 

> > 

> > 

> > 

> > 

(11.1)(11.1)

4. Calculate Left Invariant 1-Forms.
We retrieve a Lie algebra so(3) from Winternitz.

LieAlgFd Retrieve "Winternitz", 1, 3, 9 , FormAlg
LieAlgF d e1, e2  = e3, e1, e3  = Ke2, e2, e3  = e1

DGsetup LieAlgF :
MultiplicationTable

FormAlg e1 e2 e3

e1 0 e3 Ke2

e2 Ke3 0 e1

e3 e2 Ke1 0

We set up a coordinate manifold.
adimFdDGinformation FormAlg,"LieAlgebraDimension” :   
dgsetupvarsd :
for i from 1 to adimF do dgsetupvarsd op dgsetupvars , x i   end do :
DGsetup dgsetupvars, MF :

We compute left invariant 1-forms by formula [2] from the slides.
omegadCalcLeftInv1Forms FormAlg, MF

w d 

cos x3  cos x2  dx1Csin x3  dx2

Ksin x3  cos x2  dx1Ccos x3  dx2

sin x2  dx1Cdx3

We calculate the dual vectors to these 1-forms.
omegavarsd :
for i from 1 to adimF do omegavarsd op omegavars , omega i, 1   end do :
Livf_from_1formsd simplify convert DualBasis omegavars , Matrix C

Livf_from_1forms d 

cos x3
cos x2

 v
x1
Csin x3  v

x2
K

cos x3  sin x2
cos x2

 v
x3

K
sin x3
cos x2

 v
x1
Ccos x3  v

x2
C

sin x3  sin x2
cos x2

 v
x3

v
x3

We create a new Lie algebra with these vector fields.
DGsetup LieAlgebraData convert Livf_from_1forms, list , Alg4

Lie algebra: Alg4

We see that they give the same multiplication table that we started with.
MultiplicationTable
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(11.6)(11.6)

Alg4 e1 e2 e3

e1 0 e3 Ke2

e2 Ke3 0 e1

e3 e2 Ke1 0
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> > 

> > 
(13.3)(13.3)

(13.1)(13.1)

(13.2)(13.2)

> > 

> > 

5. Left Invariant Vector Fields in Coordinates of the 2nd Kind 
by Algebraic Formula
    - Nilpotent Case.
We compute left invariant vector fields by formula [3] from the slides.

Livf2_algebraicdNilpotentLivf2ndKind Alg, M

Livf2_algebraic d 

v
x1

Kx5 v
x1
Cv

x2

1
2

 x52 v
x1
Kx5 v

x2
Cv

x3

K
1
6

 x53 v
x1
C

1
2

 x52 v
x2
Kx5 v

x3
Cv

x4

1
6

 x53 x6 v
x1
K

1
2

 x52 x6 v
x2
Cx5 x6 v

x3
Kx6 v

x4
Cv

x5

v
x6

We see that these are the same vector fields given by taking derivatives of the multiplicaiton 
function in coordinates of t he 2nd kind.

evalDG Livf_mult2KLivf2_algebraic

0

0 v
x1

0 v
x1

0 v
x1

0 v
x1

0

We check left invariance by pushing forward Livf_algebraic evaluated at y to xy and see that it is 
the same vector as Liff_algebraic evaluated at xy.

CheckLeftInvariant convert Livf2_algebraic, list , z2
0, 0 v

x1
, 0 v

x1
, 0 v

x1
, 0 v

x1
, 0 v

x1
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