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ABSTRACT
Interpretation and Application of Elements of
Differential Geometry and Lie Theory
by
James R. Brannan, Master of Science
Utah State University, 1976
Major Professor: Dr. Clyde Martin
Department: Mathematics
Basic concepts of differential geometry and Lie theory are

introduced. Lie transformation groups are applied to linear systems of
differential equations and the problem of describing rigid body orientation.
Linear Hamiltonian systems are then treated as a Lie system of differ-
ential equations. This theory is applied to a particular Hamiltonian
system arising from a problem in control theory, the linear state regula-
tor problem.

(40 pages)




CHAPTER 1

INTRODUC TION

The objective of this thesis is to extract viable concepts from
J i
differential geometry and Lie theory which will be of use in the treat-
ment of real problems The main topics considered are the differentiable
I I

manifold, Lie transformation groups, Hamiltonian systems, and the

linear state-regulator problem. It is the manifold

construct which links

these topics.

A gl

I'he second chapter develops the idea of differentiable manifolds.
Then, by attaching vector spaces to each point in the manifold, new
manifolds, called vector bundles, are constructed. This allows one to
consider cross-sections, which are maps from the original manifold to
the vector bundle. Specific examples of cross-sections that will be intro-
duced are vectorfields, covectorfields, and more generally, tensorfields.
Emphasis is given to local coordinate representations of tensorfields in
order to develop some familiarity in working with these functions which
are widely used in physics and continuum mechanics.,

In chapter three a group structure is assigned to manifold point
sets. When the group elements are associated with transformations
which act on a space in a continuous way, the group-manifold structure

becomes a Lie transformation group. While matrix Lie groups are the




primary consideration, their conncction with lincar lirst order

of diffecrential cquations is also mientioned, A specilic example of a

matrix l.ie group is presented and applied to the problem of rigid body

orientation

Linear Hamiltonian systems of differential equations are con

ns

This is a Lie system of differential equations

which evolves in a manifold where their form never changes, the sym-

plectic ’ [hese equations define a b form which deter-
mines the Lie transformation group of admissible curvilinear coordinate
transform which connect the local regions of the symplectic mani

Chapter five treats a particular linear Hamiltonian system which
arises from a problem in control theory, the linear state-regulator pro-

blem. The system is treated as a Lie system of differ

rential equations.

This leads to expression of the linear transformation between the state
vector and costate vector in terms of a generalized linear fractional

transformation.




CELA TR T

GENERAL STRUCTURES AND OBJECTS OF

S SN J

The pri ncipal object of investigation in differential geometry is

the n-dimensional dj fferentiable manifold, This is not necessarily a

Fuclidean n-space but for an observer in the manifold there is a small

n ! s
region about his position that appears to be a part of R . Differentiable

s 1 : 1 !
manitfolds are said to be focally

Some preliminary definitions are required in order to define a

: 2 i : n :

differentiable manifold. Let S be an open subset of R A function
n . k " s : :

1:5—R is said to be of class C iff each component function of f has

; 1 . g ~ Y 11 c . ~ o 1
ontinuous partial derivatives of all orders r< k. I'ne function f:S —R
1 . 1 .‘/‘ . i }‘\ . s .
1s said to be of class C = iff it 1s of class C  for every positive integer k,
) : AR n 0 1 - : s .
The function f:S—R" is of class ( 111 each of its component functions is

g
open subsets of R is a

d

analytic. A map f:S— T where S and T are

1
C _diffeomorphism iff f is of class ( , 1s a bijection and f 1s also of

A C n-dimensional differentiable manifold consists of a topologi-

cal space M together with a countable collection of open sets Ul ; UZ: cie s

such that each point of M lies in at least one of these U. Associated
1
with each U is 3 h()lﬂ(?()l‘n()l’})hlSlTJ I of U, onto an open subset of R such

L

that if U N U. = @, then
1 J




i ] T | 1 1 ]
k
1S a @ diffeomorphism. The ordered pairs (L‘j, J_I) are called “_;‘l]‘“‘_wf‘_:
If (U,f) is a chart containing the point m, then the local coordinates of
m are given by f(m) = (\1(}‘11), -++3X (m)). Suppose that U with coordinate
n
system X e, X and V with coordinate s ystemy ,,..,y overlap.

¢
Il

H - 1 B = e ol
llch relates the coordinate systems

feomorphism called a curvilinear coordinate transformation,
] ———— o atb transiarmacion

' rom now on, the capital letter M will be used to denote a G — diffetren-

tiable n-manifold. Although locally M appears to be a part of |

not a vector space in general because there may not be closure under

addition or scalar multiplication of ordered sets of numbers, even if

such operations can be defined,
I

T} I F A }\ o A — N 5 /, S N oy - '»",\l/—i~
T'he definition of a C map g:M—+N where M and N are manifo ds

1
e ; . : L7 SR .
will be required later. The map g 1s ot class C  iff for each meM and

admissible chart (V, h) of N with gin)EV,; there iz 3 chare (U, ) of M

1

with m€U and g(U)Z V and the local representative of g,he gof 5 LS EoT

k
L‘].fl_b‘S (@ .




Historically, diffe beometry began as the study of properties
of curves and surfaces imbe

dded in 3-dimensional Fuclidean space An
example of a surface is the unit Z2-sphere defined by

geometric properties of the manifold can be studied
extrinsically, with the points of the manifold bei

peing located by coordinates
n-+k
Ol the imbedding space. More generally, an n-manifold in R may be
o e ] i Sl : n+k _k
Fepresented implicitly as the inversec lmage set, F (0], ot F'*R =R
o _(\' 90 o0 g X ) 0 l) s B
] n+k
The Jacobian matrix of F is required to have rank k., Alte ‘natively, an
o m : i & n o
n-manifold in R may be represented by the imbedding f:R i RE T T e
il e o ) i=1
1 1 L

The rank of the Jacobian matrix of { is required to have rank n. The
definition of a differentiable manifold given in this thesis is independent
of any imbedding. The eometry which concerns itself with the study of
properties determined entirely within the manifold is called intrinsic
geometry. A beautiful example of application of the tt

neory of intrinsic




differential geometry is to g 1l relativity. Both the
extrinsic viewpoints are important and whenever possible it is us ually
advantageous to picture the manifold as being imbedded in a higher

dimensional Euclidean space., A theorem from dimension theory states

o , . : e e a gy
that every n-manifold may be imbedded as a closed subset of R for

4

{‘91 . For more information on intrinsic geometry see

some m < 2n+l

A linear vector space will now be attached to me€M. Let
«Ql) (\ (I;u, ,‘\‘(1‘>)
1 n
be a curve in local coordinates such that c(0) - x(m). The tangent
vector at m is the ordered set of first derivatives (kx_(0),...,Xx (0))
1 n’

evaluated at t=0. Every differentiable curve through m defines a vector

and conversely every ordered n-tuple is the tangent vector to some curve.

the field of real

The totality of these vectors form a vector space over

numbers. However, a vector space isomorphic to this one is needed,

To each tangent vector (iLI yeewyd ) abTNEM, associate the partial deriva-
n

tive operator




o A9 o
The opéerators (————, ..., — > will be considered as the basis of this
Y doe )X !

1 Sy
It U, %)

pace called the tangent space of M at m, denoted by T(M, m).

- 1 . . = & ~ .0
1s the chart containing m, let F(U) denote the set of real-valued C
If L€ T(M, m) and f€F(U) then L(f) (m) is often called

functions on: 10,

the derivative of f in the direction I,.

Consider the union TM = U T(M, m) of the tangent spaces to M
me¢M
4 = ; 0
it all peoints mEM. I'ne set TM has the natural structure of a C
Zn-manifold and is called the tancent bundle of M. suppose U 1s a
I hborhood of m with local coordinates x_, . 3X ., and'a 18 a tangent
] n

vector at m with components (:—1! s o) e P e ol tangent vector a

L n
has local coordinates in a neighborhood TU given by (\1‘ IS e oo
n
ad ye0e05a )o Liety. =y (%x.,..+,% ) be a curvilinear coordinate trans-

l n 1 1 | 0

& 1 7 3 1 . R L i o l = | N "
Iormation between neilgnpornoods ana suppose

n n )
T —iafd. 2 b, ———
i=1 1 =1 J Oy

resent the same tangent vector at m. Since




which 1implies that

0, i
b 2, B
T EEG ke m 1

the transformation law for contravariant vectors

N

Consider the map w:TM—M such that mm, a) is the point m

at

which a is tangent to M. The preimages of the points m€M under T

are called fibres of the bundle TM. M 1s called the base space of the
undle TM. Each fibre has the structure of a vector spaces By a

S e -0 . - S 1 11
vector Ineld X on M is meant a ( mapping X:M— TM such that the map-

ping 1o X:M —M is the idvntjty mapping. A vector field X is merely an

assignment of a tangent vector to each point m€M. The general form

of X in local coordinates is

9 )
Al yeue sx, ) == teoota (X ,0.0.,X ) —
1 1 n 0x 7l n ox

| n

he space of all vector fields on M will be denoted by X(M).
Let f€F(U). The differential of f at m will be defined as a linear
mapping of the tangent space T(M,m) into R.

For LET(M, m), df(L)=L(f). If f ,f

1 2( F(U), then




implies that the differentials df at m of f€ F(U) form a linear subspace of

all linear functions on T(M, m)

Let x.,...,x be a local coordinate
1 n
! {
ANTE : : : j \
system at m. Each x,  is a map from U into R and the set {dxl, e e
i ) n|

forms a basis for the space of linear functionals on T(M, m). This space

will be denoted by T (M, m) and is called the cotangent space of

[t 1s clearly dual to (M, m).  Tiet v - V(X 5 ewel, X ) be a curvilinear
et n
coordinate transformation between neighborhoods of m, If

implies that the components are related by the linear transformation

the transformation law for covariant vectors [5]

The union T M= U T‘V(‘i\/[,]h) 1s called the cotangent bundle of
meM :

M and is a C 2n-manifold in the same way that the tangent bundle of M

cO

Zn-manifold. By a covectorfield X on M is meant a C mapping

» that the mapping meX :M — M is the identity. A




10

covectorfield merely assigns a cotangent vector to cach point m¢ M,

1

Fhe peneral Lorm of X in 1ol coordinates is

The space of all covectorfields is denoted by X (M)

I'M and T M are special cases of a more general structure

called a vector bundle [1]. Intuitively, a vector bundle may be thought

of as a manifold with a vector space attached to each point. More

00 \ N A { ( 1 3
precisely, a vector bundle over M is a C mapm:E—M of an (n+k)-mani-
: : X ’ = L
fold E onto M such that for each mé€M the fibre above m, 7 (m)C E is
a k-dimensional real vector space. A C cross-section is a C map

I Y

\'t/:\‘l ~E such that n:»\i/'(m); m for each m€M. The set of cross sections
is denoted by r‘ (E). Two cross sections \i/} and \i/7 can be added at

each m€M since \i/l(rn) and \y,){nx) lie in the same vector space. Also,

'\f/ € r(_TC) can be multiplied by f€ F(M):

f\Y (m) = f(m) Y (m).

It should be pointed out that cross-sections are globally defined. Local
coordinates only provide a local representation of the cross-section and

a

the real-valued functions are elements of the set F(U) where U is a




coordinate neighborhood. To patch these neighborhoods together re juire
knowledge of the inte rconnecting curvilinear coordinate transformations.

The concept of vector bundles and cross sections allows us to

1

assign more complex objects than just tangent vectors and cotangent
gt T ‘ : :
vectors to points m€M, Denote by T (M) the space of multi-linear maps

of the fibres of T'M X.. . X T M X 'M X...X TM (r copies of T M and

copies of TM) into R. T (M) is called the vector bundle of tensors
& ———— e
] 7 : . _ %4
of ravariant order r and covariant order S, or simply of type { ).
S TR e e v Bl = e
—‘;‘)' P o A 3 vw'{ i Y A 1 . 3 1 m
learly ;Tj."-.g) I' M and T_ (M) may be identified with 'M. A tensor-
1 I . ~ 0 . Comt iAoy 11 - - 1 L0
field of type () on M is a C cross-sec tion ot T (M). Fhie set of all @
] MR SRR ) TR
cross-sections of T (M) will be denoted by r' (M). Then
2

i A \ "\() (M)

It is beneficial to observe the lorm of these cross-sections in

i : i 3 = 0
ocal coordinates. Take, for example, a local tensorfield of type (2),

that is, a second rank covariant tensorfield. Such an object can be

1 y o

created by forming the tensor product, or direct product, of two local

n
covariant vector fields [6]. Let x : (s gwsw g )e 1o =02 a, () dx. and
1 n i=1 1 1
n
) 'Ll b (x)dx_, then their tensor product is
U= J )

non n n
¥=w® 0= X X abdx ®dx, =3 3 C,.(x) dx, ® dx .
=] : B 1 j

(ol
]
s
i
i
-
i
c




[he symbol ® is the tensor product symbol and dx. ® dx . is a basi

1

element on the fibers of TU X TU, @ is a bilinear map from TU X

1hto R Jueh

n n : o)
DC RN \‘] and Yol 2 ot
1 < ) = m X
k=1 m=1 "
be vectorfields. Then
n n n n
(X Ol (06 IO & I ) {2 e A e S o) ¢ 3 >l 0
i=1 k=1 1 k 1k =1 m=1 m. Jm
n , : n - n noon
(2 alel) (B bri)hs it e ias v P2 D T - f
1=1 1 i=1 3=l 1 S i=10 =1 1 e
All this can be represented as a matrix operation:

: : : -

& (X Y) [ ylet sy € ; ; : |
ek ! | n | !
ot s : , et

© SRR b K il

nl nn | [ n|

L J L

A particular class of covariant tensors has been found to be very
important, These are the covariant tensors which are antisymmetric

under exchange of any pair of indices. The formalism developed for




13

these tensorfields is

~alled the theory of differential forms [5]

(9]« Continu-

ing with the example, suppose

n. n
&= Z X G (x)dc® dx
i=1 ]i] 1 : ]

1s antisymmetric. Under the formalism « is called a 2-form and

represented as

e

where the symbol A is called the wedge or exterior product. The fact

that ¢.. = —c.. motivates the following rules
1]
dx. A dx, =0
R 1
dx. dx. = — dx Adx..
;A l N ; (2-1)
1 - I] ~ ( .
tPpis al-form, B = 'li b. (x) dx, then the wedge product of @ and B is the
K= K

n
aAB = T 3 3 C )b ) kA e




1 4

1ch can be simplified by using rules (2-

assoclativity rule:

(dxi Adxﬁ),\ dxk = dxj A(dx.) A(l:\l«;) dxi /\d.\‘_i‘ ,\dxi(‘,

5-form called the exterior derivative of @, denoted da, can be

constructed as follows., FEach coefficient C, . i(x) of

), that is, a O-form. Then the differential of «

s digy s 1sias ]l Sforim
1] 1]
'he exterior derivative of @ is defined as
A (G :
Al 2 Q¢ €l a X
oy Bl e A he Adas )

1 E ) | | 1 J
) o ol P N 1
F Or Mmore Kl‘\'l,{LlJf:\ anc 2.

generalization of the algebra of tensors a

and

aifferential forms see [1] or |




CIHAPTER III

LIE GROUPS OF TRANSFORMA TIONS

IThe theory of Lie groups and Lie algebras is an area where

modern algebra, classical analysis

, differential geometry, and topology

3 - 3 - - g - . 1 e L S | T o~
interact to give the user a powerful mathematical structure with which

to work. The Lie theorv has been applied to such areas as differenti

1al

equations, special functions, perturbation theory, continuum mec hanics,

and control theory [3]. Gilmore [6] implies that the Lie theory may

i1

serve as a tool for studyin

g the overall structure of dynamical systems.

In that capacity, the theory is in an embryonic stage. A fairly complete

graphy on theory and application of Lie groups and Lie algebras

may be found in [3] and [6].

I'his chapter is concerned with defining

some basic

elements of Lie theory, implicating the relationship with

differential equations, and onsidering a specific example of a Lie group.

A Lie group consists of an analytic manifold G which has a group

Structure

(x, y) =2y =

with the group operation being analytic.

Fach element of the group is

by its local coordinates. Let the coordin:

specified 1ates in a neighborhood




of the identity be chosen so that t coordinates of the identity are zero.
Then, if
= i) / Z
X (xl, e X ) ind y (v),_.,y”)’/A(\

an be expanded in

a (

mve 1 nt Taylor series about the origin:
(s ) > (0 L

& A\Xs ) =02(0,.0) 2

1 1 == |

)

¥ ‘ 4
n 1
e R T (e b s
2 i) k=1 9x. 0x k
1= 1 k=1 X, C )
o 1

Because G is a group, all the manifold charts can be generated from

ts at the identity element. If U is a neighborhood of g€G then

contains a coordinate neighborhood of the identity. For this reason,

=t
o+

uffices to study Lie groups in a neighborhood of the identity.

Given a group G and a space M, the action of G on M is a
function assigning to each element g

g of G, a continuous map

SO that




(L) il e is the identity clement
Ol ICr s 15 the tdentity map ol M,
=
(2) if g ='hk, then f g eif
g b ik

[f G is a Lie group which acts on a space M according to this definition

then G is called a Lie group of transformations.,

For simplicity elements of G will now be identified with their
! Y

image under the action function. Given an action of G on M, a flow on

the space M (relative to G) is a curve t —g (t) in G such that g(0) = e.
An or path of the flow is a curve x(t) in M of the form
<(t) = g(t)x .
0
The discussion will now be restricted to matrix Lie groups.
et M(n;R) denote the set of real-valued nxn matrices. A Lie algebra L

in M(n;R) is a subspace of M(n;R) with a multiplication operation defined

This is called the Lie bracket of B and C. The Lie bracket is skew-

symmetric

and satisfies the Jacobi identity




18

[ B, [Cob]] %1618, Bl ] + [D B, cl] = 6.

[{ Sis a subset of M(n;R), the Lie algebra generated by S, denoted <§ At
4 A
is the smallest Lie algebra containing S. It is generated with the Lie

bracket operation. A matrix group is a subset of M(n;R) that is a group

under multiplication. Let exp:M(n;R)—M(n;R) denote the matrix exponen-

tial ma 18]

ebra L

A matrix group G is a matrix Lie group 1if for some Lie alg

that is, G is the group generated by exp (L) under matrix multiplication

[11]. To see that matrix groups are analytic manifolds, consider

. o
GL(n;R), the group of nonsingular nxn real matrices, Each element of
Tad) I | D 1 : ] ~3 s == . c s C 2
GL(n;R) can be considered a point in a Euclidean space of dimension n .
Each point in this'space lies in an open set contained in the space since
the determinant function is continuous in the coordinates of the space,

ghborhood of a point representing a nonsingular

i€, allipointssin & nei
matrix also represent nonsingular matrices. Euclidean coordinates

serve as curvilinear coordinates for the group. Since the group opera-

tion is matrix multiplication, the coordinates of the product of two




J8G

matrices are polynomials in the coordinates of the two fac tors, hence

the group operation is analytic. All the classical matrix Lie groups are

subgroups of the complex general linear group GL(n;C) and can be re-

presented as hypersurfaces in Euclidean space.

Whereas the exponential

1t

nship between the group and its algebra, in

terms of differential geometry it is the tangent space to the group mani-

fold at the identity, T(G,e), that corresponds to the I.ic algebra,

A flow t—A(t) in GL(n;R) is called a linear flow.

defines a curve in M(n;R) called the infinitesimal generator of the flow

A(t). Now consider the orbit of a flow in a topological space M:

Differentiating obtains
dx dA : !
E{_\— (t) ~é—-(t) x (0) = B(t) A(t) x(0) = B(t) x (t)

and shows the relationship of a system of linear differential equations to
the infinitesimal generator of a flow. If a flow t = Alt)in GE(niR)

satisfies

At At = A(tl)A (LZ)




and

then it'is a one -pa rameter

infinitesimal generator is constant,

first order differential equations,

tion is given by an orbit of the flow t

A specific example of a matrix Lie
ial orthogonal group SO(3;R).

characterized by

Yo

subgroup of GL(n;I

In such

group will now be

a case the

For a linear autonomous system of

considered,

The matrices A € SO(3;R) are

The action of this group on R™ leaves distances fixed, hence SO(3;R) is

often called the 3-dimensional rotation group.

SO(3;R) is given by the product ABC where

;’ ¥ I
] 0 0 ! | cosp 0
A - {0 cosa —siny B= f 0 1
[ , | W
0 sina cosa | sinf 0

A representation of

i)

I
142}
iy

=)
¢

,\
O
m

™

inB |
E
Lol
08|
|
}

{

I"

,cos Y —sinY

sin?Y

L
I

0 0

el

cosY

=1

et



Gach of the matrices A, 13, and C correspond to a one
Dilferentiating each curve-with respect to

meter subgroup of SO(3;R).

t 0 gives the following basis for the tan-

Qo

its parameter and evaluating ¢

gent space of SO(3;R):

B ] ~ = g o
{ \ ] - \ |
GOS0 LS ==t L0l SRR O
. ; | g 5
© 10 0 ‘LI e = {0 0 0] e_= 11 0 0
] | | H | > | |
| | l | % :
(@l (U 0 S ) ) OSSR O
| 1 [
L B i [S5 lbe
Any element of the Liie algebra is a linear combination of vl" e, and
- o
[he effect of an element of the Lie algebra of SO(3;R), denoted by
so(3,R), is to assign a vector at each point of R which points in the

direction the point is being rotated under the action of the associated

2
yroup element. Thus, a vectorfield is defined on R™. The Lie bracket
operation gives
|
e _,e = e, [6’, e ] = e l(’ e, = e
legamg] = ey 3 %y 1 R 2

)

Notice that the motion of points in R is symmetrical about the

origin under the action of A€ SO(3;R). For this reason, SO(3;R) is

particularly well suited for description of motions on the 2-manifold S,
R e 2 2 2 i :

i, e. , the unit two~sphere defined by x~ +y +2z =1, SO(3;R) is said

to act transitively on S since the orbit of a point in S is the entire

2 .
In such a case, S 1is called homogeneous with respect to SO(3;R)

and can be identified with the underlying manifold of G, since the three

parameters «, B, Y can be used to unambiguously specify any point of

|-




An example of application ol th

group is to the differential e
tions describing the orientation

agua -
of a rigid body relative to a fixed
- he system may be thought of as cevolving on SO(3;R)
ential equation for such a

5 £
gt of
o 1l N |

). The diffexr-
system 1is

) ALOY = I
where A(t) € SO(3;R) and the are angular velocities. It has been shown
i ‘
. ! . S o s .
that there exists a time interval 10, T and real functions h_ (=)
h_(t) such that
D

L, (t),
Z

for each t€ [0, T]. See [11]. For information concerning
and observability of this system s

controllability
see J«‘r! and [1‘] .




CHAPTER IV

SYMPLECTIC MANIFOLDS AND HAMILTONIAN SYSTEMS

In classical mechanics the Lagrangian of a conservative mechan:

cal system is a function of the generalized position coordinates xl, et i
T [ o PRI Ty
ana their time

derivatives x ,...,x . It is defined as
|

where T is the kinetic energy of the system and V is the potential energy
of the system T'he Hamiltonian function, H, is de fined in terms of the
[.agrangian as

n

Hs 20 pyox =T 4-1)

] e

ind must be expressed in terms of the gseneralized coordinates x -
n

and the generalized momenta PypoesesP defined by
n

oT
i o=
1

In order to simplify the discussion, only autonomous systems will be

considered.




~N
N

In equation (4-1), for each t the vector (f\J (B e =t ) Tsha
n

tangent vector to a curve in a confliguration space, M, which is assumed
to be a differentiable manifold. The vector (pI (t)s-os o P2 (L)) Ay be
n

ht of as a vector dual to (%X _(t),...,x (t)) since it maps it into the

thoug
] n

real numbers. Then (x,p) can be considered a local coordinate system

of the cotangent bundle T M with H(x, p) an element of F(U). The equa

: oH
x0,i(5) — i I
1 on.
=1
(4-2)
— G
(t) —_— i 1 n
p-(“ a § B0 1y
1 Ox.,
1

are called Hamilton's equations, a local system of first order ordinary
differential equations which evolve in 'FYM, Given an initial value
(x(0), p(0), equations (4-2) define a curve (x(t), p(t)) in UC T:::T\fi. By a
solution of (4-2) is meant the projection of this curve down to a region
of the base space M. A method of handling this projection will be con-
sidered in the next chapter.

Hamilton's equations may be written more suggestively as

F'(t) 2 i
L A VU (4_3)

whe re




VH _é)II _ oH OH oH
: N R

The matrix

daefines an antisymmetric }

s of T(T M)XT(T M)

called a symplectic form. YVVH

0
i
oy

reépresentation of a covariant

vectorfield and (x(t), p(

L
~

~——
c

as tangent vectors to a family of curves in
I' M, is a local contravariant vectorfield, Thus, for each (x, p)EUCT M
Efsyrrys 16 T iy St S e o o A ' g oL :

Hamilton's equations express a canonical relationship between a vector

and a-covector in

'F‘(U, (=, D)k

al to ask what curvilinear coordinate transformations
‘ ‘ : 2 2
leave the torm of equations e

(4.2) i BTN S e EE)
(4-2) 1nvariant. —V &R

Suppose f:UcCR

girven by

B SN Dt e o )Rl K S e ST
i el S e :
s 8. (35 £yl s e s el S i S S ) =] R e )
i SR Bl n

is such a transformation. It will be beneficial to pause and consider

again the transformation laws concerning contravariant and covariant
vectorfields.

I'he map f induces a map on the local tangent bundle and
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local cotangent bundle of the 2n-manifold T M.
The induced map is the Jacobian of £, DFf,
D
J([ J\1s(\:5)) '(-\;f)) 'r(l \1:(\ P))

Since T (T M, (x,p)) is dual to TR M, (=, p)),  DE (x. p) maps
X, P
LA
opposite to Dj'i( \» Hence, if H. (y, s) is the Hamiltonian in the new
X5 p) 1

T g g 3 .
coordinate system, and \/il. transiforms according to
|

VH(x, p) = 1)1‘,(:\"))\7’{11(\,,,\) (4-4)

)VHl(y,u). (4-6)

Di‘:“‘ J° Do
S (x, p
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The form of Hamilton's equations will remain invariant iff given a curvi

linear coordinate transformation f,

N
~J

Df 3 D=3 (4 -

The set of all curvilinear coordinate maps satisfying (4-7) form a Lie

group called the symplectic group [1]. Such transformations are called

homogeneous canonical or contact transformations.

The condition (4-7) is identical to the Lagrange bracket conditions
g g

[ & 1 = (0] (4 —8\
UEG Tl (R0 he=o)
e <
(x,,\]J 0 (4-9)
J K
[p.,p ] 0 (4-10)
3 Tk
where
# dy. ou. oy, ou.
i i 1 i 1
[ }\j’P]\—l i:l( 0x. op op 0x )
- j k ] k

with similar definitions for (4-9) and (4-10). The manifold T;DM with

this sympletic form is called a symplectic manifold. The symplectic

group provides an elegant method of discussing all admissible curvili-

near coordinate transformations for this manifold. It is this group

which ties the manifold together.
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If f happens to be linear, then Df = f, This space of linear
symplectic maps is a subgroup of the symplectic group and is classically
denoted by Sp(2n;R). It is called the linear symplectic group.
In the case that Hamilton's equations are linear, they can be

written in the form

fx Bl BZ ¢ ,

f = (4-11)
!f) B i p

Ll L £ 7|

This is possible iff H(x, p) is quadratic in x, and p.. It can be shown that
§ 1 ]

the matrix

L 1 2
D =
B3 B*

must satisfy

BJ+JB=0 {4-12)
which implies

S %

ey




(2]
O

2n

The set of all linear maps B:R =R which satisfy (4-12) are callec

jon

Hamiltonian matrices. It can also be shown that

(expB) J (expB) = J,

{ )

that is, the exponential map associates B with some e] ement of Sp(2n;R).

When the set of matrices satisfying (4-12) is equipped with the product

it becomes a Lie algebra, denoted by sp(2n;R), called the symplectic
FFor linear Hamiltonian systems, the Hamiltonian matrix is the
infinitesimal generator of a flow t ~A(t) whose orbits are the level sets
of the Hamiltonian H in phase space. However, to solve the linear
Hamiltonian system, one needs to know the specific relationship between

the state vector x(t) and its dual state vector p(t). This will be taken

1

up in the next section.




CHAPTER V

THE LINEAR REGULATOR AND THE SYMPLEC TIC GROUP

This chapter treats a linear autonomous Hamiltonian system
.

arising from a problem in optimal control theory. In this case the

2n

symplectic manifold is R~ ., A general method of finding the map which

relates the orbit of the system in the tangent bundle to the orbit in the

base space is derived in terms of a generalized linear fractional traz:
formation. An alternative method of obtaining this map results in a
matrix Ricatti system of differential equations.

[t is desired to find the controi function u(t) which minimizes the

functional

B :
J(u) = 3 [ (x (t) Qx(t) + u (t)Ru(t))dt
subject to the linear autonomous system constraint

s(t) = Fselt) + Craft)

with the arbitrary initial condition x(0) = Xy Q is a positive definite

nxn matrix and R is a positive definite mxm matrix. F is an nxn matrix




(&S]

and (i is an nxim matrix, In physical terms this may be interpreted
[inding the control which keeps the state x(t) near zero with minimum
energy expenditure,

It is a result of optimal control theory [2] that the problem ma

be reformulated as a Hamiltonian system. The Hamiltonian functio:

Hx, p,u) is given by

] : T gl R N 5 ! T ! :‘r\
H(x,p,u) = 3 (x Qx + u Ru) 4 p Bx +op Gu)
where p(t) is the costate n-vector asso 1ated with x(t). T'he extremal

path in state space is the solution to Hamilton's equations:

—-‘L 5T =
x(t) F =GR G E %
= (5-1}
p(t) Q —1 ; p
"

This is a linear autonomous system of 2n differential equations. The
initial state X5 furnishes n boundary conditions and the remaining n
boundary conditions are given by p(T) = 0. It is also a fact that p and x

are related by an equation of the form

p(t) = K(t) x(t) (5-2)

h
o
fart
Q)
=
—

t€[0,T]: See[2].




(O,
oo

2 n

Let W1 be the subspace of R™ spanned by the standard basis
| B , .~ 2n
vectors ¢ €yre--5€ ) and let W2 be the subspace of R spanned by the
| n{ 2 '
« \
standard basis vectors /e sialay > > by L(W 7 s s
\ rel? on ( Denote by L(W L’ W 2) the space
of linear maps of W1 into W S dheniK{t) e I.(WJ » W_) for every t€ [0, T]
L : P :

and at time t = 0 the position of the system in phase space is a point

(x(0), p(0)) in the subspace

\
S . = (%, p) p=EK(O)s, x€ W.}
Al if

L )
[ B B
Jaal 2
|

B

B. B
3 {

be the Hamiltonian state matrix of (5-1). Let t—A(t) = exp (Bt) be a

flow in Sp(2n;R) and partition A(t) into four nxn submatrices:

Consider the action of A(t) on SO' A(t) must map SO to another subspace

S,




At this time the position ol the system in phase Space 1s the

point (x(t), p(t)) in Sl" Since SL |‘:(L)SO, it follows that

r & o
t / ! g x(t)
/\1'() %2(1) j x(0) (t)
\ () A () L]\'(L)) x(0) K(t) x(t)
(S + B E: i
Fhen
4 (8] =(0) + A (P R(0) % (0 = x{t)
¥ (5-3)
Aj(L) x(0) + Aﬁl(t) K(0) x(0) = K(t) x(t)
and
sl e £ A
K(t) = [A5(8) + A, (VK (0)] [A(t) + A,(6)K ()] (5-4)

when this inverse exists. Equation (5-4) is a special example of a

generalized linear fractional transformation [8]. The symplectic auto-

: 2n
morphism A (t) thus induces an action on L(Wl’ WZ) as well as on R

Equation (5.4)defines a flow t —K(t) acting on the costate space Wl'




Since K(0) is unknown, an alternative method of solving for K(t) must b

found.

Consider equations (5-3), Differentiating these equations gives

k(t) = (A, (t) + A_(t) K(0)) x(0)

K(t) x(t) + K(t) X(t) = (A,(t) + A (t) K(0)) x(0). (5-6)
5 +
Substitution of (5-5) into (5-6) obtains

K(t) x(t) + K(t) (A] (t) + A_(t) K(0)x(0) = (Agu) + f\4(t) K(0)) x(0). (5-7)

But BA = A implies that

1 J&e] 2.3
A B.A_ +B_A

2172 24

(5-8)
= P 3 /\

/\j >5/\i + I 3
ik = S s + B

\4 13/\2 ;1\4

Substituting equations (5-8) into (5-7) and simplifying gives a differential

equation that K(t) must satisfy:




This is a matrix Ricatti equation. The right hand side generates the

flow t —K(t) in L(W._, W7). Since K(T) is known, the solution to (5-9)
3 1

exists and is unique [2].

Hamilton's equations (5-1) may now be written

l =
=
G
Bt g
11
s o v
l
'®
!
b
%
l \:

Comparing

with the system constraint

x(t) = Fx (t) + Gu(t)

implies that

1 3k
u(t) = =R G K(t) x(t).

It is a fact of control theory that this is the unique optimal control [2].
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