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ABSTRACT 

Interpretation and Application of Element 's of 

Differential Geometry and Lie Theory 

by 

James R. Brannan, Master of Science 

Utah State University, 1976 

Major Professor: Dr. Clyde Martin 
Department: Mathern a tics 

lV 

Basic concepts of differential geometry and Lie th eo ry are 

introduced. Lie transformation g roups are applied to linear systems of 

differ e ntial equations and the problem of describing rigid body orientation. 

Linear Hamiltonian systems are then treated as a Lie system of differ­

ential equations. This theory is applied to a particular Hamiltonian 

system arising from a problem in control theory, the linear state regula­

tor problem. 

(40 pages ) 
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CHAPTER I 

INTRODUCTIO N 

The objective of this thesis is to extract viable concep ts from 

diff eren tial geometry and Lie theory which will be of use in the treat­

ment of real problems . The main topics considered are the differentiable 

111anifold, Lic- transformation groups, Harniltonian systerns, and tlw 

linear state-regulator problern. It is the manifold conslruct which links 

these topi cs, 

The second chap t e r d e velops the idea of differentiable manifolds. 

Then, by atta c hing vector spaces to each point in the manifold, new 

manifolds, calle d vector bundles, are constructe d. This allows one to 

cons ider c ross-s ec tions, which are maps from the original manifold to 

the vector bundle. Specific examples of cross-sections that will be intro­

du ce d are ve ctorfields, c ovectorfi e ld s , and more gene r a lly, tens orfields. 

Emphasis is given to local c oordinate representations of tensorfields in 

order to develop son1e familiarity in working with these functions which 

are widely used in physics and continuum. mechanics . 

In r,hapter ~hree a group structure is assigned to manifold point 

sets. When the group elements are associated with transformations 

which act on a space in a continuous way, the group-manifold structure 

beco1nes a Lie transfonnation group. While matrix Lie groups are the 
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prin1ary considc'ration, their connc'c lion with linear f ir sl order systC'n1s 

or difJ<:rc'nli;:i] ('f]U;1f:ions lS also llH·nlion<'CL .J\ sp<'cif"ic l ' Xill1l pll' ur a 

inatri x Lie group is prescnlc ' d ,111d app l il'd lo llw problem of rigid body 

orientation. 

Linear Hamiltonian systems of d iffe r entia l eq u ations are con ­

si d ere d in cha pt e r four. This is a Lie system of diff eren ti a l e quations 

which evolves i.n a manifold where th eir form never cha ng es, th e sym­

plcctic manifold. These eq uat ions define a bilinear form which d etcr-

1nines the Lie transformation group of a d 1T1issible curvilinear coordinate 

lran sforma tions which connect the lo ca l regions of the syn1plectic mani­

fo ld. 

Chap t er five treats a particular linear Hamiltonian system which 

arises from a p r ob l en1 in con tr ol th eory , the lin ea r state-regulator pro­

blem. The system i s tr ea ted as a Lie system of diff eren ti al eq u a tions . 

This l ea ds to exp r ess ion of th e line ar tr a nsformation between th e state 

vector an d cos t a t e v ec tor in t e rm s of a generalized linear fractional 

tr ansformatio n. 



Cl!J\ l)Tl ~H Il 

GENERAL STRUCTURES AND OBJECTS OF 

DIFFERENTIAL GEOMETRY 

The principal object of investigation in differential geometry is 

the n-dimensional differentiable manifold. This is not necessarily a 

Euclidean n-space but for an observer in the manifold there is a small 

n region about his position that appears to be a part o[ R . Differentiable 

rnaniiolds arc• said to he locally Euclidean. 

Son,e preliminary definitions are required rn order to define a 

differentiable manifold. n 
Let S be an open subset of R • A function 

n . k. 
£:S -R 1s said to be o:f class C J.:ff each component function of£ has 

c ontinuous partial derivatives of all orders r< k. n 
The function f:S - R 

is said to be of class C
00 

if:f it 1s of class Ck for every positive integer k. 

The function f:S- Rn is of class Cw i:ff each of its component functions 1s 

analytic. A map f:S- T where Sand Tare open subsets of R 11 is a 

Cr diffeomorphism if£ f is of class c\ 1s a bijection and f-l is also of 

r 
class C . 

k 
A C n-di.mensional differ en ti able manifold consists of a topologi-

ca l space M togeth e r with a countable co llection of open sets u
1

, u
2

, . • . 

such that each point of M lies in at least one of these U .. Associated 
l 

n with each U. is a homeomorphism f of U . onto an open subset of R such 
1 1 

that if U. fl U. =I= 0, then 
l J 
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-1 
f _o f. : f.(U. DU.) -f. (U. DU.) 

lJ J l J 1 1 J 

is a Ck diffeomorphism. 
The ordered pairs (U., f . ) are called charts. 

l 1 

II (U, f) is a chart containing the point m, then the local coordinates of 

mare given by f(m) = (x
1 

(m), .. . ,xn(m)). 
Suppose that U with coordinate 

system x 1 , ••• , xn and V with coor dinate systen1 y
1

, ••• , yn overlap. 

Then the map which relates the coordinate systerns 

X = X. (y
1

, ... 
1 

y ) 
1 1 n i=l, ..• ,n 

k 
is a C diffeomorphism called a curvilinear coor dinate transformation. 

Frorn now on, the ca pital letter M will be used to denote a c 00 - differen­

tiable n-manifold. Although locally M appears to be a part of Rn, it is 

not a vector space in general because there rnay not be closure under 

addition or scalar multiplication of ordered sets of numbers, even ii 

such operations can be defined. 

k 
The definition of a C map g:M-N where Man d N are manifolds 

w ill be required l ater . k 
The map g is oi class C iff for each mEM an d 

admissible char t (V, h) of N with g (m) EV , there is a chart (U, f) of M 

-1 with mEU and g (U) t~ V and the loc a l representative of g , he. g o£ , is of 

k 
class C . 
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Historically, di fferential geometry began as the study of properties 

of curves and surfaces imbedded in 3-dirnensiona l Euclidean space. An 

examplf' of a surface is the unit 2-splwre defined by 

2 2 2 
X + y + Z - l = 0 . 

In such a case the geometric properties of the manifold ca n be studied 

extrinsically, with the points of the rnanifold being located by coor dinates 

of the imbedding space. More generally, an n-manifold in Rn+k may be 

-1 n+k k represented implicitly as the invers e image set, F (0), of F:R ~ R : 

F.(x
1

, ••. ,x k)=O 
1 n+ i = l' . " . ' k . 

The Jacobian rnatrix of F is required to have rank k . Alternatively, an 

m n m n-manifold in R may be repr ese nted by the imbedding f:R --R , n ~ m: 

f . = f.(U
1

, .. . ,U) 
1 1 n i=l, ... , m. 

The rank of th e Jacobian 1natrix off is required to have rank n. The 

definition of a differentiable manifold given in this thesis is independent 

of any imbedding. The geometry which concerns itself with the study of 

properties determined entirely within the manifold is called intrinsic 

geometry. 
A beautiful example of application of the theory of intrinsic 
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diffrrcntial geometry is to g<'n<'ral r<'lativity . Roth tlw intrinsic c1nd 

extrinsi(· viewpoints are in,porLu1t and whenever possible it i~ usually 

advantageous to picturE" the manifold a~ being in1bcddvd in a higher 

di1nensional Euclidean space, A theorern from dimension th eory states 

that every n-manifold may be imbedded as a closed subset of Rm for 

some m < 2n+l [9]. For more information on intrinsic geometry see 

[ l O] 0 

A linear vector space will now be attached to mEM. Let 

c(t) = (x
1 

(t),. ", ,xn(t)) 

be a curve in local coo rdin ates such that c(O) = x (m). The tangent 

vector at mis the ordered set of first derivatives (.x:
1 

(0),. ,, ,xn(O)) 

eva luated at t=O. Every differentiable curve through m defines a vector 

and conve rsely every ordered n-tupl e is the tangent vector to some curve. 

The totality of these vectors form a vector space over the field of real 

num.bers. Howev er , a vector space isomorphic to this one is need e d , 

To each tangent vector (a
1

, .. . , a
11

) at n1EM, associate the partial deriva­

tiv e operator 

+ ... +a 
8 

n &x 
n 
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{ 

CJ c) ( 
The operators -

8
--, .. o, -

8
--> will be co nsidered as the basis of this 

xl xn ' 

space calle d the tangent space of M at m, denot e d by T(M, m)o If (U, x) 

00 
is the chart containing m, let F(U) denote the set of real-valued C 

functions on U. If LE" T(M, m) and f<F(U) then L(f) (m) is often called 

the derivative off in the direction L. 

Consider th0 union TM = U T(M, rn) of the tangent spaces to M 
mCM 

at a ll points m<M, The set TM has the natural structure of a c 00 

Zn-manifold and is called the tangent bundle of M. Suppose U is a 

neighborhood o.f rn with local coordinates x , 0 0 0, x , and a is a tangent 
1 n · 

v ec tor at m with components (a
1

, o o,, an)o Then the tangent vector a 

has local coordinates in a neighborhood TU given by (x , 0 o O, x , 
1 n 

a , o o,, a )o Let y. = y. (x
1

,, ,, , x ) be a c urvilinear coordinate trans-
l n 1 1 n 

.formation betw ee n neighborhoods and suppose 

n 
:z..; a. 

i= 1 1 

8 

ox. 
1 

n 
and 2..: b. 

j = 1 J 

8 

oy. 
J 

represent the same tangent vector at m. Since 

b. = 
J 

d 

dt 
y.(c(t)) 

J 

for some curve c(t) passing through m, we have 

n 
b , = 1; 

J i= 1 

8y. 
_J_ 
8x. 

1 

d 
dt 

m 
x. (c(t)) 

l 



which in1plit's that 

c) 

b =2:l/ 
j i = l ox. 

l 

a., 
m 1 

the transformation law for contravariant vectors [ 5 J. 

Consider the map rr: TM--M such that rr(m, a) is the point m at 

which a is tangent to M. The preimages of the points mEM under rr 

8 

are called fibres of the bundle TM. M is called the base space of the 

bundle TM. Each fibre has the structure of a vector space. By a 

vector field X on Mis meant a C
00

mapping X:M- TM such that the map­

ping rroX:M -Mis the identity mapping. A vector field Xis merely an 

assignment of a tang en t vector to each point mE"M. The general. form 

of X in local coordinates is 

0 + . .. ta (x
1

, .. . ,x) ci 

n n ux 
n 

Th e space of all vector fields on M will be denoted by X(M). 

Let fEF(U). The differential of f at m will be defined as a linear 

mapping of the tang e nt space T(M,m) into R. 

For LET(M, m), df(L)=L(f) . If f
1

, £
2

c F(U), then 
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irn .plies that the dif ferentia ls df al m of fCF(U) form a linear subspace of 

a ll lin ea r functions on T(M, m). Let x
1

, . .. , xn be a local coor dinate 

s yst em at rn . Each xi is a map from U into R an d the set {d x
1

, •.• , dxn/ 

forms a basi s for th e space of linear functionals on T(M, m). This space 

,, , ,,. 

will be d enote d by T (M, m) a nd i s calle d th e co tan ge nt space of Ma t m. 

It is c l e;:i_rly du a l to T(M, m ). Let y_ = y_ (x , ... , x ) be a c urvilin ea r 
1 1 l n 

coordinate transformation between n eighbo rh oo d s of m. If 

n n 
~ a. d x. a nd ~ b.dy. 

i = l 1 l j= l J J 

rep r esen t th e same c otangent vector, th e n 

n 
~ b <ly. 

j= l J J 

n n 
= L L b 

j=l i = l J 

ay. 
_l_ 
ox. 

J 
I d x 
n1 1 

irnp li (~s that th e compo n en ts are r e lat e d by th e lin ear tr a nsformation 

n 
a. = ~ 

l j= l 

By . 
__J_ 
Bx 

l 
! b . , 
mJ 

the transformation law for covariant vectors [5 J. 

The union T ,:,M = U T '\M, m) is calle d the cotangent bundle of 
m f"M 

M and is a C
00

2n-manifol d in th e sam e way th at the tangent bundle of M 

is a C
00

2n-manifold. 
::;;:: 

By a covectorfield X 00 . 
on M is 1n ea nt a C mapping 

* * * X :M-T M s uch that the mapping TToX :M -Mis the id e ntity. A 
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,,_ 

The space of all covectorfields is denoted by x -··(M). 

,,_ 

TM and T-,·M are special cases of a more general structure 

called a vector bundle [l]. Intuitively, a vector bundle may be thought 

of as a manifold with a vector space attached to each point. More 

precisely, a ve c tor bundle over Mis a c 00 
rnaprr ·:E-M of an (n+k)-mani-

-1 
Iold E onto M such that :for each mEM the fibre above rn., rr (m)C Eis 

a k-dimensional real vec t or space . 00 . 00 
AC cross-section is a C n1ap 

'i': M-E su c h that Tr'.)~ '(m) = m Ior each mE'M. The set of cross sections 

is denoted by r (E). Two cross sections \!_I l and f 
2 

can be adde d at 

each mE'M since 't' i (m) and '¥ 
2

(m) lie in the same vector space. Also, 

\fl E r(E) can be multi plied by fEF(M): 

f '±f (m) = f (m) ~ (m) . 

It should be pointed out that c ross-se c tions are g lobally defined. Local 

coo rdinat es only provid e a lo cal repr ese ntation of th e c ross-s ec tion and 

th e real-valued functions are elements of the set F(U) where U is a 
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coor din a te neighborhood. To patch these n eig hborh oods together r e quires 

knowledge of the interconnectin g curvilinear coordinate tr ansforma tions. 

The conce pt of v ec tor bundles and c ross se c tions allows us to 

assign more comp l ex objects than just tangent vectors and co t angent 

vectors to points rn("M. D e note by Tr (M) the s pace o.f multi-linear maps 
s 

o_f the Fibres of T ,:,M X • • . X T,;,M X TM X .. . X TM (r copies of T ,:,M and 

s copies of TM) into R. Tr{M) is cal l ed the vector bundle of tensors 
s 

r of c ontravariant order r and covariant order s, or simply of type ( ). 
s 0 ,;, 1 

C learly T 1 (M) = T M and T
O 

(M) may be identified with TM. A tens or-

field of type (r) on Mis a C
00

cross-section of Tr(M). 
s s 

cross-sections of Tr(M) will be d enote d by rr(M). 
s s 

00 
The set of all C 

Th en 

X (M) = f"' ~ (M) and x '\M) = I~ {M) . 

It is beneficial to observe the form of these cross-se c tions in 

lo c al coor din ates . Take, for example, a local t e n sorfie ld of t y p e (~), 

that is, a second r ank covaria nt tensorfield. Su c h an object can be 

c r eate d by fo r m in g the tensor product, or dir ec t produ ct , of two local 

covariant vector fields [61. L e t x == (x , .. . , x ). 
1 n 

n 

n 
If w = 2-: a. (x ) dx_ a nd 

i= 1 1 1 

0 = ~ b_(x) dx_ , then th e ir tenser product is 
j= 1 J J 

n n n n 
a= w® 8 = I: 2:: ,a_b_ dx __ ® d x_ = ~ ~ C .. (x) d x. ~ dx _. 

j=li=l l J l J j=l i= l lJ l J 
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Tlw syn,bol ® is the l<'nsor product syrn lH>I and dx.@ d:--:. is a i>,tsi s 
1 J 

clernent on the fibers of TU X TU. a is a bilinear rnap fron1 TU X TU 

into R. Let 

n 
X = I: e 

k=l k 8xk 

a 

be vectorfields. Then 

and 

n n 

n 
y = I: f 

m=l m 

n n 

a 
ox 

m 

a (X' y) = w(X) · 0 (Y) = (~ ~ a. e o. ) 
i= 1 k= l 1 k 1k 

( 2.; 2: b. f o_ ) 
j=l m =l J m Jm 

n n 
= {~ a e_) (~ b.f.) 

1=11 1 j=lJJ 

n n 
= ~ ~ 

i=l j=l 
e. a. b. f. 

l l J J 

n n 
= ~ ~ 

i= 1 j = 1 
e. C . . £. 

l lJ J 

All this can be represented as a matrix operation: 

C 11 cln 

a (X, Y) = [el, .. . ,en] 

I 
i C l C 
I_ n nn 

fl 

I 

I 

l ;~ 
A particular class of covariant tens ors has been found to be very 

important. These are the covariant tensors which are antisymmetric 

under exchange of any pair of indices. The formalism dev e loped for 



13 

these tensorfields is called the theory of differential forms [5]. Contin u­

ing with the example, suppose 

n n 
a = l: :Z: C . (x) dx. ® dx. 

i= l j = l iJ l J 

1s antisymmetric . Under the formalism a is called a 2-form and 

represented as 

a = £: f C .. (x) dx. /\ dx. 
i= l j= l lJ l J 

where the symbol /\ is called the wedge or exterior product. The fact 

that c .. = -c .. motiva tes th e following rules; 
lJ lJ 

dx. /\ d x. = 0 
l l 

dx. I\ d x. = - dx . (\ dx .. 
1 J l J ( 2-1) 

n 
If 13 is a 1 -form, 13 = :Z: bk(x) dx, then the we d ge product of a and 13 1s the 

k=l 

3-form 

n n n 
= :Z: :Z: :Z: C .. (x) bk(x) (dx. A dx . ) /\ dxk 

i=l j=l k=l lJ l J 
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whid1 l·;rn lw si111pJilu•d by us111~ ntl<·s (2-1) ;rnd the ;.ssociativity rule: 

(dx. Adx.) /\ dx = dx. /1. (dx. /\d x
1

) dx . ;\d x. l\d x . 
l J k l J 'l J k 

A 3-form called the ex t erior derivative of a, denoted d a, can be 

constructed as follows. Each coefficient c .. (x) of o: is an element of 
lJ 

F(U), that is, a 0-form. Then the differ ential of c .. , de .. 1s a 1-form. 
lJ lJ 

The exterior derivative of a, is defined as 

da - f ~ dt /\(d x. /\ dx.) . 
i = lj = l lj l J 

For more details and generalization of the algebra of tensors and 

differential forms see [l] or [ 5]. 
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C:J IJ\ PTT <H III 

LIE GROUPS OF TRANSFORMATIONS 

The theory of Lie groups and Lie algebras is an area where 

modern algebra, classical analysis, differ en tial geometry, and topology 

interact to give the user a powerful 1nathematical structure with which 

to work. The Lie theory has been applied to such areas as differential 

equations, special functions , perturbation theory, continuum mechanics, 

and control theory r3J. Gilmore [6] implies that the Lie theory may 

serve as a tool for stu dyin g the overall structure of dynamical system .s. 

In that capacity, the th eo ry is in an embryonic stage . A fairly comple t e 

bibliography on theory and application of Lie groups and Lie algebras 

may be fow1d in [3] and [ 6] . This chapter is concerne d with defining 

some basic elements of Lie theory, implicating the relationship with 

differential equations, and considering a specific example of a Lie group. 

A Lie group consists of an analytic manifold G which has a group 

structure 

(x, y)-x..y = z 

with the group operation being analytic . Each element of the group is 

specified by its local coo rdinates. Let the coordinates in a neighborhood 



16 

of the identity be chosen so that Lhe coordinates of the identity are zero. 

Then, if 

x = (x 1 , . .. , x ) and y = (y
1

, • .• , y )i, z. (x
1

, . •. , x , y
1

, . .. y ) 
n n 1 n n 

can be expanded rn a convergent Taylor series about the origin: 

oz . (0, 0) oz . (0, 0) n 
z. (x,y) z.(0,0)+.~( l 

+ 1 
y.) = X. 

ay. l 1 F 1 ox J J 
j J 

32 2 2 
1 z.(0,0) o z.(0,0) 8 z.(0,0) 

- f f ( l xjxk + 2 
l l + 

8xj°yk x/k + ayj oy k Y/k + ... 2 j=l k=l oxj 8xk 

Because G is a group, all the manifold charts can be generated fron1 

the charts at the identity element. If U is a neighbor hood of g E"G then 

contains a coordinate neighborhood of the identity. For this reason, it 

suffices to study Lie groups in a neighborhood of the identity. 

Given a group G and a space M, the action of G on M is a 

function assigning to each element g of G, a continuous map 

so that 

f: M-M 
g 



( 1 ) 1 r <. , s 1 1i c Id ( · 111 i I y ( · 1 ( ·1 n <. 11 t 

of G, f is l:h<' identity rn,tp or M, 
e 

( 2) if g = hk, then f = fhc, f . 
g k 

17 

If G is a Lie group which acts on a space M according to this definition 

then G is called a Lie group of transformations. 

For simplicity, elements of G will now be identified with their 

image under the action function. Given an action of G on M, a flow on 

the space M (relative to G) is a curve t-g (t) in G such that g(O) = e. 

An orbit or patl::_ of the flow is a curve x(t) in M of the form 

x(t) = g(t)xo. 

The discussion will now be restricted to matrix Lie groups. 

Let M(n;R) denote the set of real-valued nxn matrices. A Lie algebra L 

in M(n;R) is a subspace of M(n;R) with a multiplication operation defined 

for B, CEL by 

[B, C] = BC- CB. 

This is called the Lie bracket of Band C. The Lie bracket is skew-

symmetric 

[B,C] =-[C,B] 

and satisfies the Jacobi identity 
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[ B , [C ,D]] + [C, [D, RlJ + [D,[B,C]] = 0. 

US is a subse t of M(n;R), th e Lie a lg( ' bra generated by S, d e notC'd Is > , 
\ . A 

is the srnallest Lie algebra co ntaining S. It is generated wi t h th e Lie 

bracket operatio n. A matrix group is a s ubs e t of M(n;R) that is a group 

under multiplica tion. Let ex p :M (n;R )-M(n;R) d eno t e th e matri x exponen-

tial map 

exp(B ) 

n 
oo B 

= :z: i 
n=O n. 

A rnatri:x group G is a rnatrix Lie group i.f for some Lie a l gebra L 

G = \ exp (L) / G ' 

that is, G i s the gro up generated by exp (L) under matrix mu ltipli cation 

[11]. To see that ma tri x groups are ana lyti c ma nifold s , cons id e r 

GL(n;R), the gro up of nonsingular nxn r eal matrices. Each e lement of 

GL(n;R) can be consi d ere d a point in a E uclid ean space of dimension n
2 

Each point in this ·s pace lies in an open se t contained in the space since 

th e d etenni nant function is c ontinuous rn the coordinates of the space, 

i.e., all points in a neighborhood of a point representing a nonsingular 

mat ri x also represent nonsingular matrices. Euclidean coordinates 

serve as c urviline ar coordinates for the group. Since the group opera-

tion is matrix multiplication, the coo rdinates of the product of two 
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matrices are polynon,iab 111 the L'Oordina tes of the two factors, hence 

the group operation is analytic. All the classical matrix Lie groups are 

subgroups of the complex general linear group GL(n;C) and can be re­

presented as hypersurfaces in Euclidean space. Whereas the exponential 

map is an algebraic relationship between the group and its algebra, in 

t e rms of differential geometry it is the tangent space to the group mani­

fold at the identity, T(G, c), that corresponds to the Lie algebra. 

A flow t-A(t) in GL(n;R) is called a linear flow. 

The matrix 

dA -1 
B(t) = cit (t) A (t) 

defines a curve in M(n;R) called the infinitesimal generator of the flow 

A(t). Now consider the orbit of a flow in a topological space M: 

x(t) = A(t)x(O). 

Differentiating obtains 

dA dx (t) 
dt = dt(t) X (0) - B(t) A (t) x (O) = B(t) x (t) 

an d shows the relationship of a system of lin ear differential eq uations to 

the infinitesimal generator of a flow. If a flow t -A (t) in GL(n;R) 

satisfies 
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and 

A(O) =- e 

then it is a one-parameter subgroup of GL(n;R). In such a case the 

infinitesimal generator is constant. For a linear autonomous system of 

first order differential equations, 

x (t) = Bx(t), 

the solution 1s given by an orbit of the flow t -exp (Bt) = A(t), 

x (t) = A(t)x
0

, 

A specific example of a matrix Lie group will now be consi dered, 

the special orthogonal group S0(3;R). The matrices A E S0(3;R) are 

characterize d by 

det A = l 

,,, ,,, 

A A = I 

3 
The action of this group on R leaves distances fixed, hence S0(3; R) is 

often calle d the 3-diinensional rotation group . A representation of 

S0(3; R) 1s g 1 ven by the product A BC where 

1 

0 

0 

0 0 cosj3 

0 

sinj3 

0 - sinj3 cosy - sinY 0 

A = cosa 

sina 

- sim 

cosa 

B = 1 

0 

0 

cosj3 

C = sin·y 

0 

cos)' 0 

0 1 
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l<,Lch o[ UH· n1alrJC('S /\, i ',, ,Lnd (: corrc·spond to a <>nC'-p;Lra-

meter subgro up o( SO(3;R). Dirfcrcntiabng each curve with r('spcd to 

its parameter and eval uatin g at 0 gives the following basis for the tan-

gent space of SO(3;R): 

e = 
l 

0 0 0 

0 0 -1 

0 1 0 

e = 
2 

0 0 -1 

0 0 0 

1 0 0 

0 -1 0 

e = 
3 

1 0 0 

0 0 0 

J\ny dC'n1.ent of the Lie algebra is a linear con,bination of(' , e , and 
l • 2 

c•
3

. The effect of an element of the Lie' algebra of SO(3;H), denoted by 

3 
so(3, R.), is to assign a vector at each point of R. which points in the 

dir ection the point is being rotated under the action of the associated 

group elernent. Thus, a vectorfield is defined on R
3

. The Lie bracket 

operation gives 

No tice that the motion of points in R
3 

1s symrnetrical about the 

origin under the action of _AE SO(3;R), For this reason, SO(3;R) is 

2 
particularly well suited for description of motions on the 2-manifold S , 

2 2 2 
i.e., the unit two-sphere d efine d by x + y + z = 1. SO(3;R) is said 

2 2 
to act transitively on S since the orbit of a point in S is the entire 

space, In such a case, s
2 

is calle d homogeneous with respect to ·so(3;R) 

and can be identified with the underl ying manifold of G, since the thr ee 

parameters a, f3, 'Y can be used to unambiguously specify any point of 
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s
2

. An example of applicati on oL this group is to the differenti a l eq u a-

tions describing the orientation or a. rigid body relative to a fix<·d :-:;d of 

axes. The system may be thought of as evolving on SO(3;R). The diHcr­

cntial equation for such a system i:-:; given by 

3 
A (t) = (2: w. (t) e.)A(t) 

1:: 1 l 1 
A(O) = I 

where A(t) E SO(3;R) and thew . r.tre angular velocities. It has been shown 
1 

that th e re exists a time interval f 0, T] and real functions h
1 

(t), h
2

(t), 

h
3 

(t) such that 

for each t E [O, T]. See [11 J. For information concerning controllability 

and observability of this system see [4] and [7]. 
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CHAPTER IV 

SYMPLECTIC MANIFOLDS AND HAMILTONIAN SYSTEMS 

In classical mechanics the Lagrangian of a conservative mechani-

cal system is a function of the generalized position coordinates x
1

, .•. , xn 

and their time derivatives x , ... , x . It is defined as 
l n 

L = T-V 

where Tis the kinetic energy of the system and V is the potential energy 

of the system. The Hamiltonian function, H, is de fined in terms of the 

Lagrangian as 

n 
H = ~ p. X. -L 

i= 1 l l 
(4 -1) 

and must be expressed in terrrp; of th e generalize d coor dinates x , " .. , x 
l n 

and the generalize d momenta p
1

, ..• , pn defined by 

In order to simplify the discussion, only autonomous sys tems will be 

considere d. 
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In equation (4-1),for each t the vector (xl(t), ... ,xn(t)) is a 

tangent vector to a curve in a configuration space, M, which is assumed 

to be a di(fcrcntiablc manifold. The vector {p
1 

(t), ... , pn(t)) may bC' 

thought o[ as a vector dual to (x (t), ... , x (t)) since it rnap::; it into th e 
1 n 

real numbers. Then (x, p) can be considered a local coordinate systerr1 

_,, 

of the co tangent bundle T-,-M with H(x, p) an element of F(U). The equa-

tions 

x. (t) oH 
i 1, ... , n = = a 1 p. 

1 

(4 - 2) 

p. (t) -oH 
i 1, ... , n = = 

1 ox. 
l 

arc called II a1n ilton I s equations, a local s yste1n of first order ordinary 

,,, 

differ e ntial equations which evolve in T ·,·M. Given an initial value 

_,, ·,-
(x(O), p{O), equations {4 - 2) d efine a curve (x(t), p{t)) in UC T M. By a 

solution of (4 - 2) is meant the projection of this curve down to a region 

of the base space M. A method of handling this projection will be con-

sidered in the next chapter. 

Hamilton's equations may be written more suggestively as 

rx(t~ [ 0 11 
Lr(t~ = -1 ~ 

(4 -3) 

where 



Th e matrix 

oI--I 
clx 

n 

clH 
-a--, .. 

pl 
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~J op 
n 

_,, 
,,, 

defines an antisymmetric bilinear form on th e fibers of T(T M)XT(T M) 

called a symple c ti c form. \i'H is a local representation of a co variant 
I 

vectorfield and (x (t) , p (t)), as tangent vectors to a family of curves in 

~ ~ 

T ··-M, is a local contravariant vectorfield. Thus, for each (x, p) EU CT ,,M 

Hamilton's equati on s express a ca noni ca l relationship between a vector 

rn T(U, (x, p )) an d a co v ector in T (U, (x , p)). 

It is nat ur a l to ask what curvi linear coor dinate transformations 

leave the [orrn oi e qu ations (4- 2) inv aria nt. 2n 2n 
Suppo se f:U c R -Ve R 

given by 

y . = y. (x , ••. , x , p
1

, . .. , p ) i= l, ... , n 
1 1 l n n 

s .. = s.(x , ... , x ,p
1

, ... ,p) i=l, •.. ,n 
1 1 l n n 

1s such a tr ansforma tion . It will be beneficial to pause and consider 

again ' th e transformation laws concer ning contravariant and covariant 

ve c torfields. The map f induces a map on the local tangent bundle and 



,,, -,-
local cota ng ent bundle of the 2n-rnaniiold T M. 

The indu ce d map is the Jacobian of I, Df. 

n// 
T(T

0

:'M, (y, s)) ( (x, p) 

T '\T ':'M, (y, s)) Df I (x, p) 

Since T\T':'M, (x, p)) is du al to T(T ,:,M, (x, p)), Dl' I ( ) maps 
I x,p 

opposite to Dfl( . Hence, if H
1 

( y, s) is the Hamiltonian in th e new x, p) 

coordinate systern , and '\JH transforms according to 
] 

\] I-I (x , p) = Dff(x, p) Vr\ (y, s) 

the left han d si d e of !4-3) must transform according t o 

X -1 0 

y 
;;:-: 

= Df 
(x , p) 

p . 
s 

Substitution of (4-4) a nd (4- 5 ) into (4- 3 ) gives 

(4 - 4) 

(4 - 5) 

( 4-6) 

26 
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The form of Hamilton 1s equanons will remain invariant iff given a curvi­

linear coordinate transformation f, 

,:-: 
Df J Df = J. (4 - 7) 

The set of all c urvilinear coordinate maps satisfying (4- 7) form a Lie 

group called the SyIUplectic group [l]. Such transformations are called 

homogeneous canonical or contact transformations. 

The condition ( 4- 7) is identical to the Lagrange bracket conditions 

where 

[ xj' pk] 

[ xj'xk] 

[ pj' pk] 

n 8y. 
= ~ (-1-

i=l 8x_ 
J 

= 

= 

= 

0 jk 

0 

0 

8y_ 
1 

8p. 
J 

8u. 
_1_) 
8xk 

(4-8) 

(4-9) 

(4 -1 0) 

,,, ,,, 

with similar definitions for (4-9) and (4-10). The manifold T M with 

this sympletic form is called a symplectic manifold. The s yn1ple ctic 

group provides an elegant method of discussing all admissible curvili­

near coordinate transformations for this manifold. It is this group 

which ties the manifold together. 
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If f happens to be 1rnear, then Df = f. This space of linear 

syrnplectic maps is a subgroup of th e syrnplectic group and is classically 

denoted by Sp(2n;R). It is called the linear syrnplectic group. 

In the case that Hamilton I s equations are linear, they can be 

written in the form 

[:] = [:: ::] [:] (4-11) 

This is possible iff H(x, p) is quadratic in x. and p.. It can be shown that 
l J 

th e matrix 

B = [:: ::] 

must satisfy 

( 4-1 2) 

which implies 

,,, ,,, 

Bl = -B 
4 

,._ ~-
B2 = B2 

,., ,,, 

B3 = B3 



Zn Zn . 
The set of all linear maps B:R - R which satisfy (4 -12) are called 

Hamiltonian matrices. It can also be shown that 

(expB ) 

_,_ 
,,-

J (expB ) = J, 
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that is, the exponential map associates B with some elemen t of Sp(Zn;R). 

When the set of matrices satisfying (4-12) is equipped with the product 

[B,C] = BC-CB 

it becomes a Lie algebra, denoted by sp(Zn;R), called the symplectic 

algebra. 

For linear Harniltonian systems, the Hamiltonian matrix is the 

infinitesimal generator of a flow t -A(t) whose orbits are the level sets 

of the Hamiltonian Hin phase space . However, to solve the linear 

Hamiltonian system, one needs to know the specific relationship between 

the state vector x(t) and its dual state vector p(t). This will be taken 

up in the next section. 



CHAPTER V 

THE LINEAR REGULA TOR AND THE SYMPLEC TIC GROUP 

This chapter treats a -linear autonomous Hamiltonian system 

arising from a problem in optimal control theory. In this case the 

30 

R 2n. symplectic manifold is A general method of finding the map which 

relates the orbit of th e system in the tangent bundle to the orbit in the 

base space is derived in terms of a generalized linear fractional trans-

formation. An alternative method of obtaining this map results in a 

matrix Ricatti system of differ e ntial equations. 

It is desired to find the control function u(t) which minimizes the 

functional 

J(u) = ½ J T(x'\t) Qx(t) + u,;,(t)Ru(t)) dt 

0 

subject to the linear autonomous system constraint 

x(t) = Fx(t ) + Gu(t) 

with the arbitrary initial con d ition x(0) = x
0

. Q is a positive d efinite 

nxn matrix and R is a positive definite mxm matrix. F is an nxn matrix 
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and(; is an nx1n n1,ltrix. Jn phys1(;ll L<'rn1s tl1is 111ay he interpreted a:-; 

finding the control which keeps Llw sLlt(· x(t) near 1/,ero with rninin1w-r1 

energy ex penditure. 

It is a result of optimal control theory [2] that the problem may 

be r eform ulated as a Hamiltonian system. Th e Hamiltonian function 

H(x, p, u) i s given by 

where p(t) is the c:ostate n-vector associated with x( t). fhe ext r emal 

path in s tate space is the sol ution t o Han,ilton 1s e quation s: 

x (t) F 
-1 ,:, 

-GR G X 

= = (5-1) _,_ 

p(t) Q -F 
-,-

p 

This is a linear autonomous system of Zn differential equations. Th e 

initial state x
0 

furnishes n boundary co nditions and the remaining n 

boundary conditions are given by p(T) = O. It is also a fact that p and x 

are related by an equation of the form 

p(t) = K(t) x(t) (5 - 2) 

for all t E" [ 0 , T]. See [2]. 
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Zn d Let W 1 be the subspace oi R s panned by the standar b asis 

, Zn 
vectors ,; e 1 , .. . , e } and let W be th e subspace of R spanned by th e 

1 n( 2 

stan d ar d basis vectors {en+ l' . . . , e
2

n ~- D e note by L(W
1

, W 
2

) the space 

of linear maps of W 1 into W 
2

. Then K (t) E' L(W 
1

, W 
2

) for every t E' [O, T] 

an d at time t = 0 the position of the system in phase space is a point 

(x (O), p(O)) in the subspace 

S O = ~ (x, p) I p = K ( 0 ) s, x E' W i/ 

Let 

be the Hamiltonian state matrix of (5-1). Let t-A(t) = exp ( Bt ) be a 

flow in Sp(Zn;R) and partition A(t) into fou r n xn subma trices: 

Al (t) 

A = 

Cons id er the action of A(t) on S . A (t) must map S to another subspace 
0 0 

s ' t 



st = { (x , p) Ip = K(t) x , xE: w 1 l 0 

/\l thi s lim e the po s ition o r llic sysl< ~n1 in phas e space 1s the 

point (x(t), p(t)) in S . Si nee S = K(t )S , it follows that 
t t 0 

Then 

and 

x ( 0) 

= 

K(O) x (O) K(t) 

A
1 

(t) x (O) + A
2

(t)K(O) x (O) = x (t) 

A
3

(t) x(O) + A
4

(t) K(O) x(O) = K(t) x (t) 

x (t) 

x (t) 

-1 
K( t) = [ A

3 
(t) + A 

4 
(t) K (O)] [ A

1 
(t) + A 

2
(t) K (O)] 

(5 - 3) 

( 5 -4) 
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when this inverse exists. Equation ( 5-4) is a special example of a 

generalized linear fractional transformation [8]. The symplectic auto­

Zn 
morphism A (t) thus induces an action on L(W 

1
, W 

2
) as well as on R • 

Equation (5-4) defines a flow t -- K(t) acting on the co state space W 
1

• 



Since K( 0) i::; unknown, an a1t<' r n,tl 1 V(' 1nethod or solving for K(t) n1u st be 

found . 

Consider equa tions ( 5-3) " Differentiating thes e equations gives 

x(t) = (Al (t) + Az't) K(O)) x(O) (5 - 5) 

K (t) x (t) + K(t) x(t) = (A3 (t) + A 
4 

(t) K(O )) x ( 0 ). ( 5- 6 ) 

Substitution of (5- S) into (5- 6) obt a ins 

K(t) x (t) + K(t) (A 1 (t) + A
2

(t) K(O))x(O) = (~ (t) + A
4

(t) K(O )) x (O ). (5-7) 

But BA = A implies that 

Al = BlAl + B2A3 

A = B
1

A + B
2
A 

2 2 . 4 

( 5-8) 
A = 

3 B3Al + B4A3 

A = 
4 B3AZ + B4A4 

Substituting equations (5-8) into (5-7) and simplifying gives a differ ential 

equation that K(t) must satisfy: 



35 

( 5 - 9) 

This is a matrix Ricatti equation. Th e right hand side gene rates th e 

flow t - K(t) in L(W 1 , W 
2

). Sine<' K(T ) is known, the solution to (5 -9) 

exists an d is unique [2]. 

Hamilton's eq uations (5-1) may now be written 

[

x (t~ r F 

p(tJ-l-Q 

Comparing 

. -1 ,:, 
x (t) = Fx(t) - GR G K(t) x (t) 

wi th the system cons traint 

x(t) = Fx (t) + Gu (t) 

implies that 

-1 ,:, 
u(t) = -R G K(t) x(t). 

It is a fact of control theory that this is the unique optimal control [2]. 
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