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ABSTRACT 

 

 

Application of Machine Learning and Statistical Learning Methods 

 

for Prediction in a Large-scale Vegetation Map 

 

 

by 

 

 

Carla M Brookey, Master of Science 

 

Utah State University, 2017 

 

 

Major Professor: Dr. Richard Cutler 

Department: Mathematics and Statistics 

 

 

Analyses of a large vegetation-cover dataset from Roosevelt National Forest in 

Colorado were carried out by Blackard (1998) and Blackard and Dean (1998; 2000).   

They compared classification accuracies of linear and quadratic discriminant analysis 

(LDA and QDA) with artificial neural networks (ANN) and obtained accuracies of 

70.58% for a tuned ANN, 58.38% for LDA, and 52.76% for QDA. 

Because of the development of machine learning classification methods over the last 

35 years and improvements in computer hardware speed, I applied five modern machine 

learning algorithms to the data to determine whether significant improvements in the 

classification accuracy were possible with these methods.  Only a tuned gradient boosting 

machine had a higher accuracy (71.62%) than the ANN of Blackard and Dean (1998), 

and the difference in accuracies was about 1%.  Of the other methods, Random Forests 

(RF), Support Vector Machines (SVM), Classification Trees (CT), and adaboosted trees 

(ADA), a tuned SVM and RF had accuracies of 67.17% and 67.57%, respectively. 
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The partition of the data by Blackard and Dean (1998) was unusual as the training 

and validation datasets had equal representation of the vegetation classes, even though 

85% of the data are classes 1 and 2.  I decided to randomly select 60% of the data for the 

training data and 20% each for the validation and test data.  On this partition, a single CT 

achieved an accuracy of 92.63% on the test data and the accuracy of RF is 83.98%.  Most 

of the gains in accuracy were in classes 1 and 2, the largest classes which had the highest 

misclassification rates under the original data partition.  By decreasing the size of the 

training data but maintaining the relative occurrences of the classes, I found that for a 

training dataset of the same size as that of Blackard and Dean (1998) a single CT was 

more accurate (73.80%) that their ANN(70.58%). 

The final part of my thesis was to explore the possibility that combining several of 

the classifiers could result in higher predictive accuracies.  In the analyses I carried out, a 

simple voting of five machine learning classifiers does not increase accuracy. 

 

(36 pages)  



v 
 

PUBLIC ABSTRACT 

 

 

Application of Machine Learning and Statistical Learning Methods 

 

for Prediction in a Large-scale Vegetation Map 

 

 

Carla M Brookey 

 

Original analyses of a large vegetation cover dataset from Roosevelt National Forest 

in northern Colorado were carried out by Blackard (1998) and Blackard and Dean (1998; 

2000).   They compared the classification accuracies of linear and quadratic discriminant 

analysis (LDA and QDA) with artificial neural networks (ANN) and obtained an overall 

classification accuracy of 70.58% for a tuned ANN compared to 58.38% for LDA and 

52.76% for QDA. 

Because there has been tremendous development of machine learning classification 

methods over the last 35 years in both computer science and statistics, as well as 

substantial improvements in the speed of computer hardware, I applied five modern 

machine learning algorithms to the data to determine whether significant improvements 

in the classification accuracy were possible using one or more of these methods.  I found 

that only a tuned gradient boosting machine had a higher accuracy (71.62%) that the 

ANN of Blackard and Dean (1998), and the difference in accuracies was only about 1%.  

Of the other four methods, Random Forests (RF), Support Vector Machines (SVM), 

Classification Trees (CT), and adaboosted trees (ADA), a tuned SVM and RF had 

accuracies of 67.17% and 67.57%, respectively. 

The partition of the data by Blackard and Dean (1998) was unusual in that the 

training and validation datasets had equal representation of the seven vegetation classes, 
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even though 85% of the data fell into classes 1 and 2.  For the second part of my analyses 

I randomly selected 60% of the data for the training data and 20% for each of the 

validation data and test data.  On this partition of the data a single classification tree 

achieved an accuracy of 92.63% on the test data and the accuracy of RF is 83.98%.  

Unsurprisingly, most of the gains in accuracy were in classes 1 and 2, the largest classes 

which also had the highest misclassification rates under the original partition of the data.  

By decreasing the size of the training data but maintaining the same relative occurrences 

of the vegetation classes as in the full dataset I found that even for a training dataset of 

the same size as that of Blackard and Dean (1998) a single classification tree was more 

accurate (73.80%) that the ANN of Blackard and Dean (1998) (70.58%). 

The final part of my thesis was to explore the possibility that combining several of 

the machine learning classifiers predictions could result in higher predictive accuracies.  

In the analyses I carried out, the answer seems to be that increased accuracies do not 

occur with a simple voting of five machine learning classifiers. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction and Previous Work 

The subject of the analyses that make up my M.S. Thesis is a dataset on vegetation cover 

type in Roosevelt National Forest in northern Colorado taken from the UCI Data Repository 

(Bache & Lichman, 2013).  Initial analyses of these data were carried out by Blackard (1998) 

and Blackard and Dean (1998; 2000) using linear dcriminant analysis (LDA), quadratic 

discriminant analysis (QDA), and artificial neural networks (ANN) to classify vegetation type 

(seven levels) using topographic, shade, and soil type variables. The intent of their work was to 

determine if ANN could be used to more accurately predict forest cover type than the more 

traditional methods.  After significant tuning of the neural network, the final model of Blackard 

and Dean (1998), which used all 54 predictor variables, had an overall accuracy (percent 

correctly classified) of 70.58% compared to 58.38% for LDA and 52.76% for QDA. 

Over the past 35 years there has been tremendous development of machine learning 

classification methods in both computer science (e.g., support vector machines) and statistics 

(e.g., classification and regression trees, gradient boosting machines and random forests) as well 

as substantial improvements in the speed of computer hardware.  The initial goal of my work 

was to determine if other classification methods could outperform the neural network of 

Blackard and Dean (1998).  During these analyses questions arose about the original selection of 

a training data by Blackard and Dean (1998) and a second piece of my thesis concerns different 

selections of training, validation, and test data.  The application of multiple classification 

methods brings to mind the possibility of combining predictions from several methods, and that 

is another part of my research reported in this thesis. 
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1.2 The Data 

I obtained the data for my thesis from the UC Irvine data repository (Bache and Lichman, 

2013).  The 581,012 observations were collected from the Rawah, Comanche Peak, Neota, and 

Cache la Poudre wilderness areas of the Roosevelt National Forest, in Colorado prior to 1999. 

These areas were chosen because there was limited human management disturbances in those 

areas, leaving the cover type to be determined by natural ecological processes. The data consist 

of 54 variables which may be broadly classified as topographic and soil type variables. 

Topographic variables include elevation, aspect, slope, horizontal distance to nearest surface 

water feature, vertical distance to nearest surface water feature, horizontal distance to nearest 

roadway, sunlight at 9am, at noon, at 3 pm, horizontal distance to nearest historic wildfire 

ignition point, wilderness area designation, and soil type. Two of these variables were then 

converted into a series of binary variables, the 4 wilderness areas, and 40 soil types to give the 

full set of 54 predictor variables as shown in Table 1. 
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Table 1 

List and description of variables used in analyses 

Name Data Type Measurement Description 

Elevation Quantitative Meters 
Elevation in 

meters 

Aspect Quantitative Azimuth 
Aspect in degrees 

Azimuth 

Slope Quantitative Degrees Slope in degrees 

Horizontal_Distance_To_Hydrology Quantitative Meters 

Horizontal 

distance to nearest 

surface water 

feature 

Vertical_Distance_To_Hydrology Quantitative Meters 

Vertical distance 

to nearest surface 

water features 

Hoirzontal_Distance_To_Roadways Quantitative Meters 

Horizontal 

distance to nearest 

roadway 

Hillshade_9am Quantitative 0 to 255 index 

Hillshade index at 

9am, summer 

solstice 

Hillshade_Noon Quantitative 0 to 255 index 

Hillshade index at 

noon, summer 

solstice 

Hillshade_3pm Quantitative 0 to 255 index 

Hillshade index at 

3pm, summer 

solstice 

Horizontal_Distance_to_Fire_Points Quantitative Meters 

Horizontal 

distance to nearest 

wildfire ignition 

points 

Wilderness_Area (4 binary 

columns) 
Quantitative 

0 (absence) or 1 

(presence) 

Wilderness area 

designation 

Soil_Type (40 binary columns) Quantitative 
0 (absence) or 1 

(presence) 

Soil type 

designation 

Cover_Type (7 types) Integer 1 to 7 
Forest cover type 

designation 

 

According to Blackard and Dean (1999), the elevation data was taken from the USGS digital 

elevation model. Each cell represents a unique 30x30 meter cell and the USGS digital elevation 
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model was used to determine aspect, slope and the measures of relative sunlight. It was also used 

in conjunction with USFS data concerning wildfire ignition points and hydrological data to 

determine several of the other variables. 

 

It was also stated in Blackard and Dean(1998) that the cover types were determined from 

large scale aerial photography, which has been shown to be a reliable method for determining 

cover type in homogeneous stands. The soil type data and the wilderness designations came from 

the USFS. 

The variable of interest is the cover types and were coded as shown in Table 2. 

 

Table 2 

Class codes for vegetation types 

Code Type 

1 Spruce/Fir 

2 Lodgepole Pine 

3 Ponderosa Pine 

4 Cottonweed/Willow 

5 Aspen 

6 Douglas-fir 

7 Krummholz (stunted windblown 

trees growing near the tree line 

on mountains) 

 

 

1.3 Statistical Methods 

This section contains a brief overview of the various methodologies that I used in my 

analyses. They are linear discriminant analysis, quadratic discriminant analysis, classification 

trees, random forests, gradient boosting machines, boosted trees using the AdaBoost algorithm, 

and support vector machines.  
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Linear discriminant analysis (LDA) (Fisher 1936) involves taking linear combinations of the 

predictor variable to create boundaries among the different classes.   An assumption of LDA is 

that the distribution of the predictor variables is approximately multivariable normal with the 

same covariance matrix (but different means) for the different classes. Quadratic discriminant 

analysis (QDA) (Fisher 1936; 1938) also assumes multivariate normality of the predictor 

variables but allows different covariance matrices for the different classes, resulting in quadratic 

boundaries among the classes. For further explanation of LDA, see A simple explanation of what 

is LDA classification (Carrion, 2017). 

Classification trees (CT) (Breiman, Friedman, Olshen, & Stone, 1984) work by recursively 

dividing the data into smaller and smaller subsets (“nodes”) that are increasingly pure with 

respect to the classification variable as measured by the Gini index.  At each step in the process a 

node, a variable, and a cutoff value are chosen so as to maximize the reduction in the Gini index.  

The process stops when no further partitioning can reduce the value of the Gini index.  Such a 

tree is said to be fully grown and the final groups of the data are terminal nodes or leaves.  The 

number of terminal nodes may be as large as the size of the dataset.  Fully grown trees tend to 

overfit data in the sense that the lower branches and leaves are modeling noise in the data rather 

than structure.  Such trees generally have lower predictive accuracy and so methods for 

“pruning” trees have been developed, the most widely used of which is the 1-SE rule of Breiman 

et al. (1984).  This method penalizes the accuracy of the tree on the training data by multiplying 

the number of terminal nodes in the tree by a parameter, called the cost complexity parameter 

(cp), and then selecting the optimal value of cp (and hence the optimal predictive tree) by finding 

the minimum cross validated prediction error among different values of cp. For further 
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information see Accurate decision trees for mining high-speed data (Gama, Rocha, & Medas, 

2003). 

Adaboost (ADA) (Freund, 1995; Freund & Schapire, 1997) is an ensemble classifier that is 

usually implemented using classification trees.  The algorithm begins by fitting a very simple 

tree—perhaps with only two terminal nodes—to the data.  Observations that are misclassified are 

upweighted and a new tree is fit to the data.  The process is repeated many times, and the 

eventual predictions come from weighted voting of the many fitted trees with the weights of the 

individual trees being inversely proportional to their misclassification rates. For further 

information see A decision-theoretic generalization of on-line learning and an application to 

boosting (Greund & Schapire, 1997). 

Gradient Boosting Machines (GBM) (Friedman, 2001) is also an ensemble classifier that 

works sequentially.  The algorithm begins with a tree being fit to the data and a misclassification 

rate computed.  Residuals are computed, and a tree fit to the residuals.  The process is repeated 

many times and the predictions of the different fitted trees voted.  In many applications GBM.  In 

many applications fully tuned GBM’s have been found to be among the most accurate classifiers 

currently available, but the devil is in the details: tuning a GBM is a time-consuming process. 

Random forests (Breiman, 2001) is another ensemble classifier but works “in parallel” rather 

than sequentially.   Many subsets of the original data are drawn.  For each subset the 

observations that are in the original data but not in the subset are said to be out-of-bag (OOB).  

Fully grown classification trees are fit to each subset with the restriction that only a random 

sample of predictor variables is made available for partitioning at each node of the tree.  This 

ensures that the fitted trees are quite different and hence will accurately prediction different 

observations among the original dataset.  Predictions made for each tree for all observations that 
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are out-of-bag for the dataset to which the tree is fit, and combined (by voting) to give a single 

prediction for that observation.  For further information on the use of Random Forests in ecology 

see Random Forests for Use in Ecology (Cutler, et al., 2007). 

The default number of trees to fit in a random forest is 500 in the randomForest package in 

R.  Due to computational limitations with some of my analyses I was not able to fit 500 trees.  

However, as the graph below suggests the accuracy of the predictions is very insensitive to the 

number of trees fit.  Note that the accuracies for 50—200 trees differ only in the third decimal 

place. 

 

 

Figure 1 

Number of trees used by Random Forests vs percent correctly classified on test set 
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Support vector machines (SVM) (Cortes & Vapnik, 1995; Vapnik, 1995) are a completely 

different, non-tree based classification tree methodology.  SVMs may be formulated as a 

constrained optimization and are related to logistic regression for two-group classification.  

Geometrically SVMs involve projecting the data into a higher dimensional space (the feature 

space) and using linear separators of the classes, then projecting back down to the original 

dimension of the data (the input space) and obtaining highly non-linear separators among the 

classes. 

 

 

Figure 2 

Visual representation of SVM taken from www.mdpi.com 

 

 More details about all these methods may be found in the original papers and in Hastie, 

Tibshirani and Friedman (2001). 

 All calculations were carried out in R (R Core Team) using the packages MASS 

(Venables & Ripley, 2002), lda (Chang, 2015), rpart (Therneau, Atkinson, & Ripley, 2015), 

randomForest (Liaw & Wiener, 2002), gbm (Ridgeway & with contributions from others, 

2015), caret (Kuhn, et al., 2016), e1071 (Meyer, Dimitriadou, Hornik, Weingessel, & 
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Leisch), ada (Culp, Johnson, & Michailidis, 2016), and adabag (Alfaro, Gamez, & Garcia, 

2013).   

1.4 Organization of Thesis 

 In Chapter 2 I report the results from applying the methods described above to the original 

division of the dataset into training, validation and test pieces.  I compare the accuracies obtained 

to those of Blackard and Dean (1998).  In Chapter 3 I explore different divisions of the data into 

training, validation and test components and compare the predictive accuracies of the various 

methods to each other and to the original results in Blackard and Dean (1998).  In Chapter 4, I 

explore the possible increases in accuracy that might be obtained by combining the predictions 

from several classification methods.  Chapter 5 contains an overall summary of my results and a 

discussion of possible future analyses of the cover type data. 
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CHAPTER 2 

NEW CLASSIFICATION ANALYSES ON THE ORIGINAL PARTITION OF THE DATA 

2.1 Methods 

For all the analyses in this chapter I used the training, validation and test datasets used by 

Blackard and Dean (1998).  The training data was obtained by randomly selecting 1,620 

(58.97%) of the 2,747 observations in the class with the fewest observations (4 = 

Cottonwood/Willow) and randomly selecting an equal number of observations from each of the 

other six vegetation classes.  The validation dataset was obtained in similar fashion, by selecting 

540 observations from each of the seven vegetation classes.  All the remaining data, 565,892 

observations, were used as the test data.  I note that the test data is very much larger than the 

training and validation datasets.  Also, the training and validation datasets have equal 

representation from all the vegetation classes whereas for the dataset as a whole more than 85% 

of the data is in classes 1 (Spruce/Fir) and 2 (Lodgepole pine). 

The variable Aspect is measured in degrees azimuth and hence is on a circular scale with the 

largest value, 359, being almost the same direction (north) as the smallest value, 0.  Accordingly 

I generated new variables, Northness and Eastness, by taking the cosine and sine of Aspect, 

respectively. In all subsequent analyses I used Northness and Eastness rather than the original 

variable Aspect. 

I fit LDA, QDA, CT, RF, ADA, GBM and SVM to the training data using the validation data 

for tuning parameters where possible.  GBM and SVM perform poorly using the default 

parameters settings in R so tuning is very important.  I used the caret and tune.svm packages in R 

to tune these methodologies and this greatly improved their accuracy. 
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GBM gave tuned parameters on a multinomial distribution of 200 trees, with an interaction 

depth of 22 and shrinkage of 0.1. SVM tuned on a radial kernel with cost equal to 85 and gamma 

equal to 1/43.  

2.2 Results 

Column 1 of Table 3 contains the classification accuracies for LDA and QDA using the 

variable Aspect.  These results perfectly match those of Blackard and Dean (1998).  The second 

column contains the accuracies for LDA and QDA with Northness and Eastness instead of 

Aspect.  The results are very similar to those from using the variable Aspect.  LDA actually does 

very slightly worse with Northness and Eastness whereas QDA does very slightly better. 

 

Table 3 

Comparison of LDA and QDA results using Aspect and the transformed variables of Northness 

and Eastness 

Method Test Set Percent Correctly 

Classified (using Aspect) 

Test Set Percent Correctly 

Classified (using Northness 

and Eastness) 

LDA 58.38% 58.31% 

QDA 52.76% 52.95% 

  

Table 4 contains a summary of the classification accuracies for all the methods under 

consideration on the training (“resubstitution accuracies”), validation and test data.  The results 

of Blackard and Dean (1998) for ANNs are included for purposes of comparison.  I note that 

only tuned GBM produced a higher accuracy than the value obtained by Blackard and Dean 

(1998) for ANNs, and only by a little over 1%.  Random forests also had a relatively high 

accuracy of 67.57% on the test data.  CTs and the tuned version of SVM had an accuracy 
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between those of LDA/QDA and random forests. The ADA boost method performed particularly 

poorly, with an accuracy even lower than that of LDA/QDA. 

 

Table 4 

Comparison of all methodologies and their resulting accuracies for training, validation, and test 

data sets 

Method Training Data Validation 

Data 

Test Data 

ANN − − 70.58% 
LDA 64.78% 65.43% 58.31% 
QDA 65.68% 66.14% 52.95% 
Classification 

Trees 

87.48% 78.73% 63.22% 

Random Forests 80.70% 80.90% 67.57% 
GBM 68.47% 68.18% 49.20% 
Tuned GBM 99.88% 84.63% 71.62% 
ADA Boost 66.53% 65.93% 46.20% 
SVM 74.30% 73.73% 61.22% 
Tuned SVM 90.41% 79.84% 67.17% 

  

Table 5 contains the confusion matrix for tuned GBM with error rates by class.  There is 

significant misclassification in classes 1 (Spruce/Fir) and 2 (Lodgepole pine) and because 85% 

of the data is in these two classes, this dominates the overall correct classification rate and 

misclassification rate.  The classification accuracies for classes 4, 5, and 7 are particularly high, 

all over 90% and two of them over 95%.  Classes 3 and 6 have classification accuracies over 

80% which is still much higher than the overall correct classification rate.  The results of these 

first analyses suggests that with a training dataset that has equal representation from the seven 

classes it is not possible to get a correct classification rate significantly higher than 70%.  Part of 

the problem here is the unusual partition of the dataset into training, validation, and test 

components with equal representation of the seven vegetation categories in both the training and 
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validation datasets, even though most of the data is in classes 1 and 2.  This observation 

motivates the analyses of chapter 3 of my thesis. 

 

Table 5 

Confusion matrix of tuned GBM using Northness and Eastness 

 Predicted Class  

True 

Class 

 

1 2 3 4 5 6 7 

% 

correctly 

classified 

1 154,515 34,580 133 0 4,050 564 15,838 73.69% 
2 54,517 185,335 6,284 58 24,506 8,657 1,784 65.92% 
3 0 256 27462 1367 434 4075 0 81.18% 
4 0 0 9 570 0 8 0 97.10% 
5 19 268 111 0 6,851 84 0 93.43% 
6 1 134 1,786 312 120 12,854 0 84.53% 
7 602 20 5 0 16 0 17,707 96.50% 
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CHAPTER 3 

ANALYSES USING A NEW 60-20-20 PARTITION 

3.1 Methods 

 Following the analysis completed on the original partition of the data, I decided to rerun 

the classification methods on a different partition of the data that reflected the different numbers 

of observations in the vegetation classes. Blackard and Dean (1998) used 60% of the smallest 

class with equal numbers from each of the other classes for their training set and 20% of the 

smallest class with equal numbers from all other classes as their validation set, with all remaining 

data being used as part of the test set, so the vast majority of the data was in the test set. I chose a 

simple 60-20-20 random partition of the whole dataset, which gave roughly matching 

proportions of observations in the individual classes relative to their proportion as part of the 

whole data set. 

 In doing this, I became aware of the fact that the partition used by Blackard and Dean 

(1998) has variables for which there is no variation within the training and validation sets. The 

variables Soil_Type7, Soil_Type15, and Soil_Type16 all had to be removed due to being 

consistent within either the training or validation set. The new 60-20-20 partition did not have 

any variables that were constant within their set. 

 The methodologies and process used to complete these analyses were the same as when 

working on partition the original partition of the data by Blackard and Dean (1998). 

 Due to processor limitations on the device used for computation, tuning of GBM and 

SVM on the new partition of the data has not been completed. 
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3.2 Results 

The final results for these sets is included in the Table 6 below with the accuracies of the 

training (“resubstitution accuracies”), validation, and test sets all listed. 

 

Table 6 

Comparison of all methods with the accuracies for training, validation, and test data sets 

 

Methods 

Percent Correctly Classified 

Training Set Validation Set Test Set 

LDA 67.98% 68.30% 68.04% 
QDA 66.02% 66.50% 66.20% 
Classification Tree 99.00% 92.50% 92.63% 
Random Forests 83.55% 83.98% 83.98% 
GBM 67.10% 67.20% 67.05% 
SVM 78.95% 78.96% 78.63% 
Ada Boost 69.65% 69.71% 69.56% 

 

Comparing the test set accuracies of this new 60-20-20 partition to the results on the 

original partition used by Blackard and Dean (Blackard & Dean, 2000) we get the following 

table which shows a dramatic increase in accuracy. 
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Table 7 

Comparison of methods' accuracies on the test set between the original partition and the new 60-

20-20 partition 

Method Original 

Partition 

60-20-20 Partition Increase from 

Original to 60-20-20 

Partition 

ANN 70.58% − − 

LDA 58.31% 68.04% 9.73% 

QDA 52.95% 66.20% 13.26% 

Classification Tree 63.22% 92.63% 29.41% 

Random Forests 67.57% 83.98% 16.41% 

GBM 49.20% 67.07% 17.87% 

Tuned GBM 71.62% − − 

SVM 61.22% 78.64% 17.41% 

Tuned SVM 78.64% − − 

Ada Boost 46.20% 70.67%% 24.47% 

  

The smallest gain was in LDA and that alone was nearly a 10% increase in accuracy by 

using a straight 60-20-20 partition over the equal numbers of each class for the training and 

validation sets used in the original analysis of the data. By taking a simple random sample from 

the data, the accuracy of the more traditional methods increased to a level comparable with the 

Artificial Neural Network created by Blackard and Dean. 

 A single classification tree did spectacularly well, increasing its accuracy by more than 

20%. Using the 1-SE rule I determined to use a cp value of 0.000039, which is very small, but 

performed incredibly well with an overall accuracy of 92.63% and much higher accuracies on 

vegetation classes 1 and 2 than with the original partition of the data. The confusion matrix 

shows that even these good results still have the biggest issue differentiating between classes 1 

and 2. The confusion matrix is below. 
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Table 8 

Confusion matrix on test data of classification tree 

 Predicted Class 

True 

Class 

 

1 2 3 4 5 6 7 
% 

correctly 

classified 

1 39,335 2,789 2 0 44 6 208 92.81% 

2 2,672 53,360 193 3 267 111 33 94.21% 

3 3 178 6,498 54 24 304 0 92.03% 

4 0 3 88 463 0 17 0 81.09% 

5 55 343 31 0 1,531 8 0 77.79% 

6 12 167 326 25 4 2,971 0 84.76% 

7 228 38 0 0 0 0 3,808 93.47% 

 

3.3 Classification Tree Partition Reduction 

Due to the single classification tree giving unexpectedly accurate results, particularly in 

comparison to other tree-based classifiers that typically outperform single trees, I carried out 

additional analyses determine how much of a reduction in size of the training set would be 

required to reach the same level of accuracy as the other methodologies. To do this, rpart was run 

on randomly generated partitions with training sets equal to 50%, 40%, 30%, 20%, 10%, 2% 

and 1.9%. The final two were chosen to surround the overall percentage of the partition chosen 

by Blackard and Dean (2000)for their original analysis using LDA, QDA, and ANN. The results 

for these trees are given in Table 9 below. 
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Table 9 

Comparison of the accuracies of a single classification tree (using the 1-SE rule to choose cp) for 

various sized training, validation, and test data sets 

Partition 

Percentages 

(Training-

Validation-Test) 

Training Percentage 

Correctly Classified 

Validation 

Percentage 

Correctly Classified 

Test Percentage 

Correctly Classified 

60-20-20 99.00% 92.50% 92.63% 

50-25-25 97.24% 92.03% 91.90% 
40-30-30 97.20% 91.17% 90.99% 
30-35-35 95.95% 89.79% 89.67% 
20-40-40 95.12% 87.81% 87.74% 
10-45-45 93.27% 84.06% 83.90% 
2-49-49 95.28% 75.16% 75.07% 

1.9-49-49.1 79.54% 73.63% 73.80% 
 

As can be seen from the table, and by recalling the results of the ANN model created by 

Blackard and Dean (1998), there’s a high chance the high accuracy achieved by ANN in 

comparison to other statistical methods may have been due in part to the choice of training data. 

A single classification tree is outperforming the tuned ANN with equally small training sets (the 

original training set was just over 1.9% of the total dataset). 

I also looked at the influence of the cp value on the results of the classification tree. 

Starting with the original cp value, and doubling it until the accuracy on the test set was 

comparable to the results of random forests. Doing so showed that I could have needed to take 

the cp value from the one chosen (5 ∗ 10−6) to one 32 time larger (1.6 ∗ 10−4) to get results 

comparable to those of Random Forests as shown in the table below. 
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Table 10 

Percent correctly classified by a single classification tree as the cp was doubled on the new 60-

20-20 partition 

cp value Percentage Correctly Classified of Test Set 

𝟎. 𝟎𝟎𝟎𝟎𝟎𝟓 92.91% 

𝟎. 𝟎𝟎𝟎𝟎𝟏 92.67% 

𝟎. 𝟎𝟎𝟎𝟎𝟐 91.29% 

𝟎. 𝟎𝟎𝟎𝟎𝟒 89.06% 

𝟎. 𝟎𝟎𝟎𝟎𝟖 85.90% 

𝟎. 𝟎𝟎𝟎𝟏𝟔 81.95% 
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CHAPTER 4 

COMBINING CLASSIFIERS 

4.1 Analyses 

Based on the 60-20-20 partition, I ran further analysis to determine if the various methods 

were misclassifying the same observations or if it was unique to the method. The results of that 

analysis are summarized below. 

 

Table 11 

Counts of correctly and incorrectly classified observations for 4 methods on the 60-20-20 

partition 

Method Number Correct Number Incorrect Percent Correct 

Tree 107,966 8,236 92.91% 
Random Forest 97,593 18,609 83.99% 

SVM 91,378 24,824 78.64% 
GBM 77,931 38,271 67.07% 

Ada Boost 82,117 34,085 70.67% 

 

 

Table 12 

Counts of how many times a given observation was misclassified by the four methods 

Number of times mis-

classified 

Count Percent of Total Cumulative 

Percent 

0 68,149 58.65% 58.65% 
1 12,676 10.91% 69.56% 
2 13,039 11.22% 80.78% 
3 7,385 6.36% 87.14% 
4 11,649 10.02% 97.16% 
5 3,304 2.84% 100% 

 

The worst-case scenario being that those misclassified 3 or more times as the same incorrect 

class, a straight vote of these four methods would produce accuracies of 80.78% , which is 

substantially less than the accuracy of the single classification tree. Should those that were 
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misclassed be misclassified as different classes, it would be possible to achieve up to 87.14% 

accuracy by voting. Given the high accuracy of a single classification tree, this would perhaps 

not be the best option to pursue. However, due to these results a similar analysis was completed 

using the results of the original partition (equal numbers for the training and validation set based 

on 60% and 20% of the smallest class respectively). Those results are summarized in the 

following two tables. Since Ada Boost returned such poor results, I decided to replace it with 

LDA which performed better for the purposes of this voting. 

 

Table 13 

Counts of correctly and incorrectly classified observations by four methods on the original 

partition 

Method Number Correct Number Incorrect Percent Correct 

Tree 358,168 207,724 63.29% 
Random Forest 382,316 183,576 67.56% 

SVM - tuned 380,124 185,768 67.17% 

GBM - tuned 405,294 160,598 71.16% 
LDA 329,972 235,920 58.31% 

 

 

Table 14 

Counts of how many times a given observation was misclassified by the four methods 

Number of times mis-

classified 

Count Percent of Total Cumulative 

Percent 

0 211,465 37.37% 37.37% 
1 111,488 19.70% 57.07% 
2 64,282 11.36% 68.43% 
3 53,001 9.37% 77.80% 
4 53,752 9.50% 87.30% 
5 71,904 12.71% 100% 
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Also, in this case, voting classifiers does not seem to help the predictive accuracy.  The 

worst-case scenario that each time an observation was misclassified it was consistently 

misclassified as the same class would give an overall accuracy of 68.43%. The best we could 

get, should those that were misclassified be misclassified as a different class each time, would 

give at best an overall accuracy of 77.80%. This range indicates that a voted prediction of each 

observation by these classifiers would give a comparable result to that of the ANN created by 

Blackard and Dean (1998). 

Another option for voting would be some sort of weighted votes where the weight would be 

inversely related to the error rate of the particular method, giving higher weight to classifications 

that came from a highly accurate method. This could potentially increase the overall accuracy to 

something slightly higher than the ANN result. 

4.2 Results 

 It seems that voting would improve the results on the original partition of the data, 

however, for the new 60-20-20 partition, the single classification tree still seems the best choice. 
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CHAPTER 5 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

 In conclusion, it seems possible that a simple random sample partition would have 

prevented the superiority of ANN. A tuned GBM was the best performer on the type of partition 

used by Blackard and Dean. And with a straight partition, a single classification tree consistently 

performed better. 

I began by replicating the results of Blackard and Dean (1998) for LDA and QDA on the 

cover type data and then applied a number of classification methods that have emerged from the 

statistics and computer science literature in the last 35 years.  My results suggested that with the 

original partition of the data it was not possible to significantly improve on the classification 

accuracy obtained by Blackard and Dean (1998) using an artificial neural network.  The best 

classification accuracy I obtained was for tuned gradient boosting machines at 71.62% compared 

to 70.58% for the ANN of Blackard and Dean (1998). 

In examining the confusion matrix from the GBM classification it became clear that most 

of the misclassifications were for classes 1 (Spruce/Fir) and 2 (Lodgepole Pine), which comprise 

over 85% of the data.  The selection of the training and validation data by Blackard and Dean 

(1998) with equal numbers of observations of the 7 vegetation classes works well for the smaller 

classes, but very poorly for the two most common classes. 

So, I randomly partitioned the dataset with 60% of all observations making up the 

training data, 20% the validation data, and the remaining 20% the test data.  In the training 

dataset that I selected the numbers of observations in the different vegetation classes mirrored the 

dataset as a whole.  I reran all the classification methods, with tuning where appropriate, and 

found much higher classification accuracies for the populous vegetation classes 1 and 2.  For 
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some of the smaller classes the classification accuracies were not quite as high as they were with 

the training data selected by Blackard and Dean (1998). 

In the second batch of analyses, I noticed that the overall prediction accuracy for a single 

classification tree was especially high, 93.67% on the test data.  This is surprising because 

normally ensemble tree classifiers do better than a single tree.  I do not have a good explanation 

of this result.  I decided to see what the effect of reducing the size of the training data would be 

and found that accuracies of 90% or higher were achieved with a single tree for training datasets 

as small as 20% of the data.  I chose a training dataset in this proportional manner that was the 

same size as the original training data of Blackard and Dean (1998) and found that on these data 

a single classification tree was a more accurate predictor of vegetation class that the ANN of 

Blackard and Dean (1998) using their training data. 

Finally, in running different classification methods I saw that the predictions were not 

quite the same even for methods that had comparable classification accuracies.  I decided to 

“vote” the results from 5 classifiers to see if increased predictive accuracy could be obtained, 

particularly for the original partition of the data.  I found that this voting has the potential of 

improving the overall accuracy greatly to make it comparable to the ANN created by Blackard 

and Dean (1998). 

Some things that I have not resolved in my thesis work and which could be the subject of 

future work include figuring out why a single tree does so well compared to ensembles of trees, 

and the effect of training dataset size on all the other classification methods.  (I only explored 

this for classification trees).  I think it would also be valuable to apply modern neural net 

packages to see how ANNs compare with other methods on a proportional partition of the data. 
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And finally, determining the most useful voting method would be of value, as either a straight 

vote or weighted vote based on the overall accuracy of the particular method. 
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