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ABSTRACT 

Growth Characteristics of Lactobacillus wasatchensis and Its Detection and                

Enumeration Using Quantitative Polymerase Chain Reaction    

by 

Isaac Brockbank Bowen, Master of Science 

Utah State University, 2018 

 
Major Professor: Dr. Donald J. McMahon 
Department: Nutrition and Food Science  
 
 

Lactobacillus wasatchensis can be part of the nonstarter lactic acid bacteria 

(NSLAB) microbiota of cheese and has been associated with unwanted gas production 

during storage. Experiments were performed to determine the upper limits of salt 

tolerance of Lb. wasatchensis (strain WDC04) at pH 5.2 and 6.5, what effect different 

levels of salt (0, 3.5, 4.5, and 5.5% w/v) have on growth at a cheese pH of 5.2 and 5.5, at 

what pH is optimal growth observed and what pH range supports growth. Further 

experimentation was done to observe growth on various carbohydrate sources typically 

found in aging cheese, and in cell lysate solutions prepared from common starter and 

adjunct LAB. Heat stability of Lb. wasatchensis at 157, 161, 165, and 169°F was tested 

using an industrial heat exchanger. In addition, a phenol-chloroform DNA extraction 

method was used to extract Lb. wasatchensis DNA from cheese samples. The purity of 

DNA was determined and quantitative polymerase chain reaction (qPCR) techniques 

were utilized to visualize the Lb. wasatchensis DNA present.  
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It was determined there is minimal growth of Lb. wasatchensis at pH 6.5 when 

grown in MRS broth containing 6.0% salt (µmax of 0.012). Although growth was 

observed at all salt concentrations tested at pH 5.2, samples containing 6.0% salt still 

showed the slowest growth (µmax, 0.035). Further, Lb. wasatchensis growth was shown 

to be slowest at salt concentrations of 5.5% at a cheese pH of 5.2 and 5.5, with 

increasing growth at lower salt percentages. Lactobacillus wasatchensis grows best at 

pH 8 followed closely by pH 6.0, 6.6, and 7.0. Growth was observed at pH 9 (µmax, 

0.361) while minimal growth was observed at pH 4.0 (µmax, 0.015).  

In various carbohydrate sources, growth was best in MRS broth containing 

ribose. However, growth was also observed on galactose, lactose, fructose, glucose, and 

N-acetylglucosamine. In cell lysate made from Lactococcus lactis, Lactococcus 

cremoris, Streptococcus thermophilus, and Lactobacillus helveticus, growth was seen in 

all four filtrates. The phenol-chloroform extraction method is effective and produces a 

relatively pure DNA product which can be visualized using qPCR, although the 

detection threshold is too high to be successful. Further experimentation is needed in this 

area before implementation to overcome challenges of primer dimers and non-

amplification.    

(65 pages) 
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PUBLIC ABSTRACT 

 

Growth Characteristics of Lactobacillus wasatchensis and Its Detection and                

Enumeration Using Quantitative Polymerase Chain Reaction    

Isaac B. Bowen  

 
There are numerous challenges encountered during the manufacturing and storage 

of cheese by both the large-scale and artesian producers. One such challenge has been the 

formation of late gassy defect, which occurs when gas is produced by certain lactic acid 

bacteria found in the cheese block during storage and aging over a three month time 

period. Negative consequences of late gas production are slits and cracks in the cheese 

block and puffy cheese packaging, which cause significant financial losses for 

manufacturers along with poor consumer acceptance.  

Lactobacillus wasatchensis is one such lactic acid bacterium shown to produce 

gas during cheese storage. This bacterium has now been found in cheese samples 

exhibiting late gas defect in the Midwest and Western states. The goal of this study was 

to further characterize and understand the growth attributes of Lb. wasatchensis, and 

thereby gain some understanding on how it enters the cheese vats and if there are possible 

ways to limit or inhibit its subsequent growth. An additional goal was to determine if we 

could effectively extract Lb. wasatchensis DNA from cheese samples and visualize using 

the qPCR molecular technique. If possible, this detection method would allow a faster 

and more sensitive approach to determining if Lb. wasatchensis is present in cheese 

blocks, which would help manufacturers know how long they should age their cheeses. 
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It was discovered that Lb. wasatchensis does not survive processing through an 

industrial heat exchanger and therefore must be entering the cheese vats by other means 

such as:  cross-contamination, biofilm formation or aerosolizing. We also showed growth 

of Lb. wasatchensis is limited at an increased salt-in-moisture ratio in cheese. 

Additionally, we found that Lb. wasatchensis DNA can be extracted from cheese and 

visualized using qPCR, although further experimentation is needed to optimize this 

method.  
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INTRODUCTION 

Understanding the problems encountered during cheese manufacturing and 

storage has been a focus of the dairy community. There are a wide range of issues that 

both the large-scale manufacturing companies and novice cheesemaker deal with on a 

day to day and month to month basis. These challenges include achieving their proper 

moisture, fat, and salt targets along with developing proper flavor profiles or dealing with 

cheese “pinking.” However, one particular large challenging issue deals with unwanted 

gas formation during cheese ripening and storage—a persistent, widespread problem that 

has been around for over 100 years and affected most cheese plants (Van Slyke and Hart, 

1903; Mullan, 2000).   

During cheese making, there are both starter lactic acid bacteria (LAB) and non-

starter lactic acid bacteria (NSLAB) present. Starter LAB are purposefully added as part 

of a bulk set or direct-to-vat set (DVS) to acidify the milk, whereas the NSLAB enter the 

cheese make process either through their inherent presence in the milk or due to 

contamination in the processing facility (Peterson and Marshall, 1990, McSweeney et al., 

1993, Somers et al., 2001). Some NSLAB can have deleterious effects on both the body 

and flavor of ripening cheese (Khalid and Marth, 1990). A certain NSLAB, Lactobacillus 

wasatchensis, has been shown to produce gas in cheese during ripening, causing slits and 

cracks and “blowing” of packaging (Ortakci et al., 2015c, a). Typically, these slit and 

crack defects aren’t noticed until the cheese has been aged and graded, and can cause up 

to 50% cutting loses (Donnely et al., 2014). Both time and profit are lost due to the 

cheese being downgraded and sold at a lower cost.  
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It would be of great benefit to the cheese manufacturer to understand the growth 

characteristics of Lb. wasatchensis, and thereby, obtain further insight into how it enters 

the cheese making process, what conditions allow it to grow, and if any of its growth 

parameters could be utilized to reduce or eliminate its presence in the cheese. Also of 

interest to cheese manufacturers, would be to know whether or not Lb. wasatchensis is 

present in their final cheese blocks and at what numbers. Prior research has shown Lb. 

wasatchensis grows at pH 5.2 and 6.5, and up to 5% NaCl (Ortakci et al., 2015b). It also 

utilizes ribose and/or galactose as a carbohydrate source and grows well on lactococcal 

cell lysate (Ortakci et al., 2015c). Finally, in test tube experiments, Lb. wasatchensis 

exhibits some thermotolerant capabilities as no survival was noted at low-temperature, 

long-time pasteurization but some cells survived at high-temperature, short-time (HTST) 

pasteurization parameters (Ortakci et al., 2015b).  

Current methods to detect whether or not Lb. wasatchensis  is in cheese have been 

limited to plating the bacteria on de Man, Rogosa, and Sharpe (MRS) agar supplemented 

with 1.5% ribose (MRS+R), or extracting the bacterial DNA from a cheese sample in 

conjunction with an amplification step using polymerase chain reaction (PCR) with Lb. 

wasatchensis specific primers followed by agarose gel electrophoresis (Culumber et al., 

2017). However, there are limitations with these two methods. When Lb. wasatchensis is 

plated, it is very slow growing and takes 5 days to appear on the agar plates. Also, data 

shows it has to be within ~1.5 log colony forming units (CFU)/g of the other faster-

growing NSLAB or it won’t be detected (Culumber et al., 2017). When using PCR to 

amplify Lb. wasatchensis DNA followed by gel electrophoresis, it becomes time 

consuming and the detection limit is high, at least ~104 log CFU/g.   
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One goal of this project is to expand upon previous research already conducted 

that explored some of its growth conditions. The upper limits of salt tolerance were 

measured at both pH 5.2 and 6.5 to determine where the growth of Lb. wasatchensis is 

inhibited. The growth at varying pH concentrations was observed with special attention 

given to milk pH (6.6) and cheese pH (5.2). In addition, a number of pH versus salt 

concentrations were used to observe growth at pH 5.2 and 5.5 at 0, 3.5, 4.5, and 5.5% 

salt—typical combinations used in cheddar cheese manufacturing. Growth of Lb. 

wasatchensis was also determined in presence of various carbohydrate sources.   

Other goals are to determine how well Lb. wasatchensis can grow off cell lysates 

derived from common cheddar cheese starter lactic acid bacteria or adjunct cultures.  To 

gain a more precise understanding of the thermotolerance of Lb. wasatchensis, a plant-

scale pasteurizer was used and run at varying temperatures. We also determined if a 

phenol/chloroform DNA extraction method can be used to extract Lb. wasatchensis DNA 

directly from cheese samples, resulting in a pure enough product that can be amplified 

using quantitative real-time PCR (qPCR). Such a method would provide a less 

complicated and more sensitive approach to detect and enumerate Lb. wasatchensis in 

cheese—allowing cheese manufacturers to detect contamination early on in the cheese 

making process and decide whether or not they should age out their cheese.  
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HYPOTHESIS AND OBJECTIVES  

Hypotheses: 

1. Lactobacillus wasatchensis is present in the milk in cheese vats because of 

insufficient inactivation during HTST pasteurization. 

2. Further characterization of the growth attributes of Lb. wasatchensis  will help 

to understand how it is able to grow to high numbers in cheese and produce 

unwanted carbon dioxide. 

3. The phenol-chloroform nucleic-acid extraction method will yield a clean 

product of the target Lb. wasatchensis gene when extracted from cheese 

samples to be used in quantitative real-time PCR.  

 

Objectives: 

1. Determine the thermotolerance and percent survival of Lb. wasatchensis when 

inoculated into milk and pasteurized using an industrial HTST heat exchanger. 

2. Measure the growth of Lb. wasatchensis at various pH concentrations with 

specific attention to milk (6.6) and cheese pH (5.2).  

3. Determine the upper limits of salt tolerance for Lb. wasatchensis growth at pH 

5.2 and 6.5.  

4. Determine how well Lb. wasatchensis grows at a number of pH versus salt 

concentrations typical of cheddar cheese manufacturing and aging—including 

pH 5.2 and 5.5 with 0, 3.5, 4.5, and 5.5% salt  
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5. Observe growth of Lb. wasatchensis on various carbohydrate sources and on 

different LAB cell lysates characteristic of cell lysis that may occur during 

storage of cheese.  

6. Determine the quantity of DNA extracted out from cheese samples with 

known amounts of Lb. wasatchensis using the phenol-chloroform extraction 

method. 

7. Determine the efficacy of qPCR at amplifying Lb. wasatchensis DNA 

extracted from cheese samples.  
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LITERATURE REVIEW 

Non-Starter Lactic Acid Bacteria  

During cheesemaking, there are both starter LAB (added as either a bulk starter or 

DVS) and NSLAB present. The starter LAB are deliberately added during the cheese 

manufacture to with the main purpose of converting lactose to lactic acid. However, the 

NSLAB are not deliberately added but are present as part of the original milk microflora 

or enter as contaminants in the cheese manufacturing facility (Peterson and Marshall, 

1990; McSweeney et al., 1993; Somers et al., 2001). These NSLAB can have 

advantageous effects (i.e., help with maturing and flavor development of cheese) or 

deleterious effects, such as producing gas during storage and aging causing late blowing 

defect (Crow et al., 2001; Settanni and Moschetti, 2010; Ortakci et al., 2015b).  

NSLAB can be classified based on metabolic characteristics—either as facultative 

heterofermentative (FHF) or obligatory heterofermentative (OHF). The population of 

NSLAB is dominated mainly by FHF bacteria, consisting of Lactobacillus curvatus, 

Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus plantarum and others. 

Less frequently present are the OHF lactobacilli (Williams and Banks, 1997; Crow et al., 

2001). Both flavor and body defects, including the presence of gas as evident by slits and 

cracks, have been attributed to the presence of OHF lactobacilli in cheese (Laleye et al., 

1987; Khalid and Marth, 1990; Ortakci et al., 2015b).  

Initially, the NSLAB population is relatively small compared to the starter LAB 

added during cheese manufacturing. However, during aging the cheese environment  

becomes more advantageous for the growth of NSLAB. Eventually, the NSLAB, 
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including both FHF and OHF lactobacilli, usually surpass the starter lactococci numbers 

to become the dominant population in aging cheese (Williams and Banks, 1997; Banks 

and Williams, 2004; Culumber et al., 2017).  

Lactobacillus wasatchensis 

Lactobacillus wasatchensis WDC04 was originally isolated from a “gassy” cheddar 

cheese manufactured at the Utah State Creamery. Recently, it has been found to be 

present in cheeses with unwanted gas formation from multiple states from the Midwest 

and Western states. It was discovered on an MRS agar plate after incubation for 35 days 

at 6°C (Ortakci et al., 2015b, Culumber et al., 2017). This bacterium is a slow-growing 

OHF NSLAB. Typical NSLAB grow quickly (within 2 d) at 30 or 37°C with glucose as a 

carbohydrate source. Lb. wasatchensis is atypical taking 5 d to grow small (0.5 mm-1.0 

mm), white, circular, smooth colonies. The optimal growth temperature is 23 to 25°C 

with very minimal growth at 37°C, and Lb. wasatchensis prefers ribose as an energy 

source. Galactose, a six carbon sugar, has also been shown to be co-utilized with ribose, 

but when utilized as an energy source, a carbon is cleaved off and released as CO2 that 

causes gassiness and blowing packages in aging cheese (Ortakci et al., 2015b; Oberg et 

al., 2016; Culumber et al., 2017).  

Lactobacillus wasatchensis has also been shown to grow well in an environment 

characteristic of the storage and aging of cheese. Growth was reported at up to 5.0%  salt 

concentration. It has been shown to grow at storage temperature of 6 and 12°C and up to 

30°C. Lactobacillus wasatchensis grows both in anaerobic conditions, hence its survival 

and growth in cheese and it is also aerotolerant (Oberg et al., 2016; Culumber et al., 
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2017). Thus, Lb. wasatchensis is shown to not only survive the harsh conditions of the 

cheese environment but also thrive.    

Salt Tolerance  

During the initial characterization of the growth attributes of Lb. wasatchensis, it 

was observed that it grows well at pH 5.2 and although its rate of growth slows down it 

can grow to high numbers with up to 5% salt (i.e., the normal salt-in-moisture levels for 

aged cheddar cheese). At pH 6.5, the results were similar (Ortakci et al., 2015b). Growth 

at 5% salt is not abnormal for NSLAB found in cheddar cheese and often up to 6% is 

required to inhibit growth (Lane et al., 1997).  

Carbohydrate Metabolism   

Lactobacillus wasatchensis has shown to preferentially metabolize five carbon 

sugars, such as ribose, using the pentose phosphate pathway but can also metabolize six 

carbon sugars (hexoses) using the Leloir pathway. Lactobacillus wasatchensis can grow 

using galactose as the only sugar available, but only slowly and not to high levels.  When 

a five-carbon sugar such as ribose s present, Lb. wasatchensis will grow at its maximum 

rate with an optimum temperature of ~23°C. Surprisingly, when ribose and galactose are 

both present, growth of Lb. wasatchensis also continues at its maximum rate without 

measurable gas production because galactose is not used to produce energy (Ortakci et 

al., 2015b). Based upon a genome analysis it was proposed that Lb. wasatchensis 

contains metabolic pathways that allows it to use ribose for its energy production while 

galactose is used for cell wall synthesis. Galactose, a six carbon sugar, can be utilized as 

an energy source but first a carbon is cleaved off which eventually goes to produce CO2 



 

 

9 
and cause gassiness and blowing packages in aging cheese, suggesting gas production 

occurs once growth slows or stops (Ortakci et al., 2015b). 

 Thermotolerance  

In the initial studies done to characterize Lb. wasatchensis, there was some 

indication that this bacterium may have some survival at pasteurization temperatures. 

Using a laboratory simulation of pasteurization in which 6 x 106 CFU/mL of Lb. 

wasatchensis was added to test tubes of sterile milk at 63°C (145°F) and 72°C (161F) and 

held for 30 min and 15 s, respectively, and then cooled. For the 63°C treatment 

(equivalent to batch pasteurization), there was no recovery of any Lb. wasatchensis. 

However, for the 72°C treatment (equivalent to HTST pasteurization), the numbers of Lb. 

wasatchensis were reduced but only by 4.5 logs, which if correct, would be problematic 

for long operations of the pasteurizer and suggestive that Lb. wasatchensis cells may 

survive pasteurization and contribute to the NSLAB levels in the cheese vat (Ortakci et 

al., 2015b).  

 Cell Lysate Growth  

Based on the knowledge that Lb. wasatchensis metabolizes ribose as the primary 

energy source (Ortakci et al., 2015b), a study was performed to determine whether or not 

the bacterium could grow using lactococcal cell lysate (Ortakci et al., 2015c). During 

cheese ripening, autolysis of starter cells occurs releasing cellular components, including 

ribose and N-acetyl amino sugars. In particular, ribose is released in larger quantities than 

all the other sugars released by the starter LAB (Thomas, 1987, Rapposch et al., 1999). 

Lactococcus lactis ssp. lactis/cremoris bacterial cultures were grown, lysed, and 
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incubated with Lb. wasatchensis in absence of other carbohydrates. Growth of Lb. 

wasatchensis was considerably higher when grown with the lactococcal cell lysate than 

when solely supplemented with 1% ribose in MRS broth (Ortakci et al., 2015b). Growth 

reached 2.49 at OD600, therefore, lysis of the starter LAB Lc. Lactis ssp. lactis/cremoris 

provides an ample supply of exploitable energy that would allow Lb. wasatchensis to 

grow (Ortakci et al., 2015c) 

DNA Extraction Methods 

In recent years, molecular and nucleic acid-based approaches have become 

common place to studying both starter LAB and NSLAB in both milk and cheese systems 

(Pega et al., 2016). Some of these approaches include: DNA microarrays, next generation 

sequencing and PCR based approaches (O Sullivan et al., 2013). Although each approach 

is different, they all rely on successful DNA extraction. In the case of a cheese system, 

there have been a variety of kits and extraction methods used, such as the Nucleospin 

Food Kit, DNAzol BD Reagent, Wizard SV Genomic DNA Purification System, Dneasy 

Tissue Kit, Puregene Yeast and Gram Positive Bacteria Kit, DNA Powersoil Kit, and the 

phenol-chloroform extraction method (Amagliani et al., 2007; Cezar et al., 2016; Pega et 

al., 2016).  

The phenol-chloroform extraction method has been used extensively and shown 

to work well for cheese (Feligini et al., 2005; Monnet et al., 2006; Sambrook and Russell, 

2006; O Sullivan et al., 2013; Dugat-Bony et al., 2015; Monnet et al., 2016). One of the 

greatest challenges of performing a DNA extraction is to produce a sufficiently high level 

of quality product. Cheese contains a high concentration of fat and protein which makes 

it difficult to get a clean product. The phenol-chloroform method helps mitigate the 
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problems encountered with extracting DNA from a cheese system by first disrupting the 

fat/protein matrix when a cheese sample is homogenized with salts (i.e., sodium citrate) 

and detergents (i.e., guanidine thiocynate). Samples are also subjected to an enzyme 

treatment of proteinase K to lyse the bacterial cells and release their DNA. The DNA is 

purified with phenol-chloroform and precipitated with ethanol (Jany and Barbier, 2008; O 

Sullivan et al., 2013; Dugat-Bony et al., 2015). 

Quantitative Real-Time Polymerase Chain Reaction 

Traditional methods to studying LAB involve plating the selected bacteria on 

synthetic media that contains certain nutrients for the growth of these bacteria. This 

method is time-consuming and has a number of limitations in its approach, especially 

when dealing with a cheese system where many bacteria are present (O Sullivan et al., 

2013, Ferrario et al., 2017). In contrast to conventional methods, quantitative real-time 

polymerase chain reaction qPCR is a fast, accurate, and highly sensitive approach to 

studying and quantifying LAB individually or in aggregate (O Sullivan et al., 2013). 

qPCR also has the advantage of quantifying lysed and non-viable bacterial cells that 

would not be detected with standard spread plates (O Sullivan et al., 2013). 

The basis behind PCR is to amplify a region of the genome within the target bacteria 

that is unique to said bacteria, thereby making copies of only the gene of interest and 

producing a pure product. It is common practice to use a part of the 16S rRNA gene as 

this is present in all bacteria and contains species-specific sequences which are small and 

can be utilized (Justé et al., 2008; Quigley et al., 2011). Amplification of the gene of 

interest is done by developing a forward and reverse primer that are specific to the 
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bacterium and anneal at highly conserved areas both before and after the target gene 

(Justé et al., 2008; O Sullivan et al., 2013). 

 Quantitative PCR differs from traditional PCR amplification by tagging the gene of 

interest with a fluorescent marker (typically SYBR Green or BOXTO) allowing the 

researcher to calculate the number of copies of the gene replicated in real-time and 

thereby determine the quantity of bacteria present. Traditional PCR is visualized on gel 

agarose as bands using electrophoresis and does not provide much information on the 

quantity of target DNA in the mix. The qPCR products can be considered absolute or 

relative. Absolute qPCR products are quantified based on the relation of the level of 

fluorescence compared to the calibration curve, which is made with known amounts of 

extracted DNA or PCR products. Relative qPCR products are quantified based on the 

presence of another housekeeping gene found within the bacterial genome (Monnet et al., 

2006; O Sullivan et al., 2013).    
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MATERIALS AND METHODS  

Materials  

 Lactobacilli MRS (MRS) broth came from Hardy Diagnostics (Santa Maria, CA); 

Oxyrase® for Broth, sodium chloride, glucose, fructose, 0.2 µm membrane filters, sodium 

citrate, potassium phosphate, acetate-EDTA, ethanol, and dipotassium phosphate were 

from Fisher Scientific Inc. (Fair Lawn, NJ); Tris-HCl and proteinase K were from Fisher 

Bioreagents (Pittsburgh, PA); bacteriological agar, proteose peptone, beef extract and 

yeast extract came from Becton Dickinson and Co. (Sparks, MD); ribose and GasPak EZ 

pouches were from VWR (Solon, OH); Tween-80, M-17 broth, guanidine thiocynate, 

sodium dodecyl sulfate, phenol-chloroform-isoamyl alcohol, N-acetylmuramic acid, and 

N-acetylglucosamine were from Sigma-Aldrich Inc. (St. Louis, MO); Falcon 48 

transparent micro-well plates with lids were manufactured by Corning Inc. (Corning, 

NY); sodium acetate and ammonium citrate were purchased from Mallinckrodt Baker 

Inc. (Paris, KY); magnesium sulfate was from Alfa Aesar Inc. (Heysham, UK); 

manganese sulfate, galactose, and lactose came from J.T. Baker Chemical Co. 

(Phillipsburg, NJ); milk was obtained from the Aggie Creamery at Utah State University 

(Logan, UT); 0.1-mm zirconium glass beads came from BioSpec Products (Bartlesville, 

OK); 2-mL microcentrifuge tubes were from VWR (Radnor, PA); and filtered stomacher 

bags were purchased from Whirl-Pak™, Nasco (Fort Atkinson, WI). 

 Lactobacillus wasatchensis (strain WDC04) cultures were obtained from -80°C 

freezer stocks from Weber State University (Ogden, UT). Lc. lactis, ssp. lactis and 

cremoris and Streptococcus thermophilus cultures came from Vivolac Cultures 

Corporation (Greenfield, IN). Lactobacillus helveticus  culture was from Chr. Hansen 
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Inc. (Milwaukee, WI).    

Growth and Storage of Lactobacillus wasatchensis 

Working cultures of Lb. wasatchensis WDC04 were stored in MRS broth 

supplemented with 1.5% ribose (MRS-R) at ~25°C. Every 2 to 3 d fresh tubes of MRS-R 

were inoculated with Lb. wasatchensis from the 25°C working cultures to keep the 

bacterium in logarithmic growth. Every 3 to 4 wk new working cultures were started 

from the -80°C freezer stocks.  Frozen cultures were stored at -80°C in 1-mL aliquots 

supplemented with 20% glycerine. Agar plates were made from MRS-R broth with the 

addition of 1.5% agar. Spread plates were stored at ~25°C in anaerobic incubation jars 

with GasPak EZ.  

Micro-well Plate Preparation 

A fresh batch of Lb. wasatchensis was prepared by adding 4 mL of the working 

culture into 9 mL of MRS-R which was then allowed to incubate for 2 h. Following the 

incubation, the optical density was adjusted to ~0.900 at 600 nm (OD600). Into individual 

wells of the micro-well plates was added 930 µL of required MRS broth media such with 

ribose, varying pH, salt concentrations and or carbohydrate restricted (980 µL was used 

for controls that were not inoculated), 20 µL Oxyrase® (final concentration was 2% 

(vol/vol)), and 50 µL of Lb. wasatchensis broth. Experiments involving carbohydrate 

sensitivity, all Lb. wasatchensis cells were washed twice with phosphate buffer prior to 

use. All samples, including uninoculated controls, were prepared in triplicate wells on the 

plate. The lid was then placed on the plate and the plate inserted into an Infinite 200 Pro 

spectrophotometer (Tecan Production Corp., Chapel Hill, NC). 
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 Spectrophotometer parameters were 25 ± 1°C, orbital plate shaking, prior to 

reading, for 2 s at an amplitude of 3 mm and frequency of 218.3 rpm with a settle time of 

5 s. Optical density at 600 nm was measured every 60 min for 48 h with 25 

measurements per reading and 4 readings per well in a 2 x 2 pattern at 2.7 mm from the 

edge of the well. Maximum specific growth rate (µmax) was calculated as the steepest 

linear portion of individual growth curves.  

Thermotolerance  

A preliminary experiment was run to determine at what times samples should be 

collected from the HTST heat exchanger as the milk left the system. The pasteurizer was 

run with water until steady-state conditions were reached. The balance tank was allowed 

to drain and a 30-L batch of milk was added to the system, followed by water again. 

Samples were collected at the exit of the cooling section of the pasteurizer 10 s intervals 

starting at 60 s until the exit stream reverted back to water. Milk composition was 

determined at Dairy Herd Improvement (Logan, UT) by IR analysis  

Determining the thermotolerance of Lb. wasatchensis was done when sterile MRS 

broth was prepared with 2% ribose and a 1% inoculum of Lb. wasatchensis was added to 

four separate 3-L bottles of broth. The bacteria was grown for 3 d at ~25°C and then 

pelleted down in 250-mL bottles at 4°C at 9150 x g for 10 min. Bacterial cells were re-

suspended in UHT milk and added to four separate 30-L batches of milk which had been 

previously pasteurized at 62.8°C (145°F) for 30 min. The Lb. wasatchensis bacteria were 

allowed an hour to acclimate to the milk environment at refrigeration temperatures before 

being run through the pasteurizer at either 69.4 (157°F), 71.7 (161°F), 73.9 (165°F), or 

76.1°C (169°F). Triplicate samples were collected from the four batches of milk both pre 
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and post-pasteurization at 180, 200, and 220 s. A 1/10 dilution series was performed 

starting with no dilution up to 10-7 and samples were plated on MRS-R agar and grown 

anaerobically at ~25°C in jars containing GasPak EZ pouches. Colony counts were 

performed at 2, 5, and 10 d increments to determine the percent survival of Lb. 

wasatchensis.   

Carbohydrate, salt, and pH  

Carbohydrate restricted Media. Glucose, lactose, fructose, galactose, ribose, N-

actylglucosamine, and N-acetylmuramic acid each were prepared as 20% (wt/vol) stock 

solutions and filter sterilized with 0.2-µm pore size membranes. Carbohydrate-restricted 

MRS (CR-MRS) broth was prepared by adding 10.0 g proteose peptone No. 3, 10.0 g 

beef extract, 5.0 g yeast extract, 1.0 g Tween-80, 2.0 g ammonium citrate, 5.0 g sodium 

acetate, 0.1 g magnesium sulfate, 0.5 g manganese sulfate, and 2.0 g dipotassium 

phosphate to 1 L of deionized water. The CR-MRS was lowered to a pH of 5.2 with HCl 

and 4.5% salt was added to simulate a typical cheese environment. From each 

carbohydrate stock solution, 7.5 mL was taken and added to 92.5 mL of CR-MRS for a 

final volume of 100 mL containing 1.5% (wt/vol) of each carbohydrate.  

Salt Tolerance. Based on previous work (unpublished data), a salt range from 

5.4% to 6.0% with increments at every 0.1% NaCl was selected to determine growth 

characteristics of Lb. wasatchensis at the upper limits of salt tolerance. One-hundred 

milliliter quantities of MRS-R broth at pH 6.5 and pH 5.2 were made at each of these salt 

level (plus a batch with no added salt). In addition, MRS-R broth at pH and salt 

combinations typical for cheddar cheese were prepared: pH 5.2 and 5.5 at salt levels of 
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3.5, 4.5, and 5.5%. All samples were analyzed in triplicate for growth of Lb. 

wasatchensis as described above.  

pH. Aliquots of MRS-R broth covering a broad pH range (4, 5, 6, 7, 8, and 9) 

were prepared. as well as at pH levels characteristic of cheese and milk, i.e., pH 5.2 and 

pH 6.6, respectively. All samples were analyzed in triplicate for growth of Lb. 

wasatchensis as described above  

Bacterial Cell Lysate  

Lactococcus lactis ssp. lactis and cremoris and St. thermophilus were inoculated 

into M-17 broth containing lactose (M17-L). Lactobacillus helveticus DVS culture was 

inoculated into MRS broth. Lc. lactis and  Lc. cremoris were grown at 30°C and St. 

thermophilus and Lb. helveticus were grown at 37°C. An overnight culture of each was 

taken and plated on M17-L or MRS-R agar plates to determine CFU/mL. One-mL 

aliquots were placed into 2-mL screw-cap tubes containing 0.25 g of sterilized glass 

beads. Samples were lysed using a Mini-Beadbeater™ (Biospec Products, Bartlesville, 

OK) by alternating 6 bursts of 45 s each with 10 min of cooling in an ice bath. After 

disruption of the bacterial cells, samples were centrifuged for 15 min at 21,000 x g. A 

0.1-mL sample of the cell lysate was plated on M17-L or MRS-R agar to determine the 

effectiveness of the cell lysis procedure. The supernatant was collected and filter 

sterilized using 0.2 µm pore size membrane filters. Some of the filtrate was mixed with 

CR-MRS broth at a 1:1 ratio. Additionally, the Lc. lactis filtrate was also combined with 

the CR-MRS broth at a 1/10 and 1/100 dilution. Both the filtrate alone and filtrate-broth 

mixture were loaded into a 48 micro-well plate and prepared following the procedure for 

micro-well plate preparation. In addition, both lysate solutions were inoculated with 50 
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µL of Lb. wasatchensis and incubated anaerobically at 25°C for 10 d. Absorbance at 600 

nm was taken at day 0, 5, and 10 d. Controls were run using sterilized ultrapure water in 

place of the cell lysate and all samples were run in triplicate.  

Starter LAB in Cheese  

 Old Juniper cheddar cheese was manufactured at Utah State Creamery and used to 

determine initial starter LAB (Lc. lactis) and adjunct (Lb. helveticus) bacterial counts. 

Samples of cheese were taken before salting of the curd, immediately following 

overnight pressing, and after 1 d of storage at 4.4°C. Eleven grams of cheese was taken 

from each sample group and homogenized in 99 mL of 2% sodium citrate in a stomacher 

at 230 rpm for 3 min. A dilution series was performed and 0.1-mL aliquots were used to 

make spread plates on both MRS and M17-L plates. The MRS plates were incubated at 

37°C and the M17-L plates at 30°C for 24 h prior to colony counts being obtained. All 

samples were run in triplicate.  

Phenol-Chloroform Nucleic-Acid Extraction  

Initially, to test the effectiveness of the phenol-chloroform extraction method in 

recovering DNA, 11 g of cheddar cheese were homogenized with 99 mL of sodium 

citrate at 260 rpm for 2 min in a stomacher. Prior to stomaching, Lb. wasatchensis 

bacterial cells were inoculated into the stomacher bag at 100 µL, 500 µL, 1.0 mL, and 10 

mL quantities, and the extraction proceeded as normal. In conjunction with every DNA 

extraction performed, spread plates were performed on MRS-R agar to determine the 

starting quantity of bacteria present within each sample and compare this value with the 

amount of DNA extracted. 
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Once the 11 g of cheese was homogenized in 99 mL of sodium citrate, 1 mL of 

the homogenized cheese was collected into 2-mL microcentrifuge tubes and centrifuged 

at 12,000 x g for 5 min. The supernatant was discarded and another 1 mL of 

homogenized cheese was added and centrifuged again followed by discarding the 

supernatant. The pellet was then re-suspended with 400 µL of 4 M guanidine thiocyanate 

in 0.1 M Tris-HCl and 50 µL of 10% sodium dodecyl sulfate. The solution was 

transferred to a 2-mL tube with 350 mg of 0.1 mm sterile zirconium beads. Afterwards, 

30 µL of 20 mg/mL proteinase K solution was added to the tube and it was allowed to 

incubate on a heat block for 2 h at 55°C. Following the incubation, 150 µL potassium 

phosphate buffer 0.2 M pH 8, 300 µL 50 mM acetate-10 mM EDTA buffer pH 5, and 

500 µL of phenol-chloroform isoamyl alcohol (25:24:1 pH 8) were added and the tube 

was subjected to bead beating 3X for 45 s with 5 min of ice between cycles. Then, the 

samples were centrifuged at 10,000 x g for 2 min whereupon the aqueous phase was 

removed and added to a new microfuge tube. Another 300-500 µL of phenol-chloroform 

was added and the sample was centrifuged at 10,000 x g for another 2 min. 

Approximately 500 µL of the aqueous phase was removed and added to a fresh 2-mL 

microfuge tube with 800 µL of 95% cold ethanol and 50 µL of 3 M cold sodium acetate. 

The sample tubes were stored at -20°C overnight. Following the overnight incubation, the 

samples were centrifuged at 10,000 x g for 5 min, with the possibility of another 5 min if 

no pellet was observed. The ethanol was removed and the samples were washed with 

75% cold ETOH by briefly vortexing the tube followed by centrifugation at 10,000 x g 

for 5 min. The ethanol was drained off and the samples is allowed to air dry. Any 

extracted product was stored in 10 mM Tris and put in the freezer. The amount of DNA 
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extracted from each sample (based on absorbance at 260 nm (A260)) and respective purity 

(based on ratio of A260 and absorbance at 280nm (A280)) were determined by using a 

Nanodrop Lite spectrophotometer (Thermo Scientific, Waltham, MA).     

Quantitative PCR and Primers  

DNA samples were amplified using a QuantStudio quantitative real-time PCR 

using a SYBR Green fluorescent tag. The standard calibration curve was made using the 

16S rRNA PCR product extracted from a pure culture of Lb. wasatchensis and amplified 

using the 27F and 1492R primers (Culumber et al., 2017). Cheese samples were run 

using 20 µL per reaction, consisting of 2 µL of DNA, 7 µL sterile water, 10 µL master 

mix, and 0.5 µL of both the forward and reverse primers. The qPCR primers had been 

developed using the NCBI PrimerBlast tool by analyzing the 16S rRNA gene from Lb. 

wasatchensis. Based on product length, melting temperatures, self-complimentarity, and 

non-target matches, two primer pairs were selected. The primer pair used to produce the 

absolute qPCR product is 82F (5’-ATCATTCCGCCCATTCCAGG-3’) and 256R (5’-

GTTACAATGCCGCTGACGAC-3’). It is assumed the qPCR product appears only once 

per 16S rRNA gene sequence. This primer pair has been optimized and tested for 

specificity against 19 other common lactobacilli, one lactococci, and a leuconostoc, 

indicating it has a high specificity for only Lb. wasatchensis and will not amplify other 

bacterial DNA (unpublished data by Craig Oberg, Department of Microbiology, Weber 

State University, UT).        
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RESULTS AND DISCUSSION 

PART 1. THERMOTOLERANCE  

As shown in Figure 1, milk began to exit the pasteurizer after 120 s and continued 

until after 240 s. When a 30-L batch of milk is processed, the milk composition only 

reached ~98% of its original value indicating some slight mixing with the pre- and post-

rinse water. Times for sampling milk during the subsequent thermotolerance test were 

selected at 180, 200, and 220 s.  Since reduction in Lb. wasatchensis would be measured 

on a logarithmic scale, the slight dilution would be insignificant and all three sample 

times would have the same dilution.  

 
Figure 1. Relative concentration of fat, protein (pro), lactose (lac), solids-not-fat (SNF) 
and somatic cell count (SCC) of the exit stream from the pasteurizer compared to 
composition of the 30 L of milk prior to pasteurizing. Arrows indicate sample times that 
were selected for triplicate sampling during the thermotolerance test. 
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Table 1. Destruction of Lactobacillus wasatchensis upon processing through a high-
temperature-short-time plate heat exchanger with 15-s hold time, n = 3.  

 

Set Temperature  

Number of Lactobacillus 
wasatchensis1 

Before 
Heating 

After 
Heating 

----------(CFU/mL)---------- 
69.4°C (157°F) 6.0 x 108 ≤10 
71.7°C (161°F) 6.0 x 108 ≤10 
73.9°C (165°F) 4.5 x 108 ≤10 
76.1°C (169°F) 5.7 x 108 ≤10 

1Cell numbers counted through 10 d of anaerobic incubation at 23°C 
 

Each 30-L batch of inoculated milk contained 108 CFU/mL of Lb. wasatchensis 

prior to pasteurization. After passing through the heat exchanger, there was no 

measurable survival of bacteria (≤10 CFU/mL) at any of the temperatures, including a 

sub-pasteurization treatment of 69.4°C for 15 s (Table 1). This represent >7 log reduction 

which is greater than a previous laboratory pasteurization test (Ortakci et al., 2015b) in 

which broth heated to 72°C was inoculated with Lb. wasatchensis and then cooled after 

15 s. In that study, there was only a 4.5 log reduction.  

 Lactobacillus wasatchensis thus has a lower heat tolerance than initially thought, 

although the log reduction using a plant-scale heat exchanger, was similar to the 

reduction observed in milk held at 63°C for 30 min (Ortakci et al., 2015b). This can be 

explained by the greater, uniform heat exposure, turbulence, and mixing the Lb. 

wasatchensis cells receive in an industrial setting using a heat exchanger. Bacterial cells 

are exposed to heating as the milk passes through the warming regeneration section of the 

heat exchanger, then are held at the minimum of 72°C for 15 s, before being cooled down 

in the cooling section of the heat exchanger. In the laboratory method, the bacteria were 
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not added until after the milk reached 72°C, and cooling below 60°C occurred within a 

few seconds. Further, there was no mixing or turbulence with the test tube method. It 

therefore appears that the presence of Lb. wasatchensis as part of the NSLAB microbiota 

in cheese comes as an environmental post-pasteurization contaminant rather than as a 

result of its survival during pasteurization.  

Summary 

 Based off of our findings, the survival of Lb. wasatchensis cells is dependent on 

their exposure to a heat treatment rather than strictly an increase in temperature. When 

bacterial cells were exposed to HTST pasteurization conditions in a test tube at 72°C 

there was only a 4.5 log reduction. However, bacterial cells run through an industrial heat 

exchanger with an increased heat exposure due to the regeneration sections had a greater 

than 7 log reduction with no survival observed, even at sub-pasteurization temperatures 

of 69.4°C. It also appears the mixing and turbulence caused as the milk passes through a 

continuous HTST pasteurizer aids in the inactivation of the Lb. wasatchensis cells. 

Therefore, cheese manufacturers would be advised to look at possible causes of post-

pasteurization contamination to determine how the bacteria are entering the cheese vats. 

Possible methods could be cross-contamination, biofilm formation, or through 

aerosolizing.        
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PART 2. GROWTH CHARACTERISTICS  

Monitoring Growth of Lb. wasatchensis Using 48-well Plates 

 In preliminary studies (data not shown) it was observed that Lb. wasatchensis did 

not always grow well when it was inoculated into the wells of a 48-well plate. It was 

determined that the surface area of liquid in the wells compared to the volume was too 

large to produce an anaerobic environment within the liquid media (personal 

communication, Craig Oberg, Department of Microbiology, Weber State University, 

UT). Consequently, Oxyrase® for Broth was added to the wells to create a micro-

anaerobic environment. As shown in Figure 2, adding Oxyrase® was effective in 

increasing the rate and extent of growth of Lb. wasatchensis in the micro-wells. There 

was also less variation among replicates as seen with smaller error bars. Therefore, it was 

determined Oxyrase® would be used in the subsequent experiments.  

pH Tolerance 

It was observed that  Lb. wasatchensis is well-suited for growing at a variety of 

pH levels. The highest optical density was seen at pH 8.0, followed closely by pH 6.0, 

6.6, and 7.0. Growth was also observed at pH 5.0 and 5.2 and also up to pH 9.0 but 

minimal growth was seen at pH 4.0 (Figure 3). Although the initial growth of Lb. 

wasatchensis was slower at pH 9, indicative of a longer lag phase as the bacterial cells 

adjusted to the increased basic environment, it had the highest specific growth rate 

compared to the other pH levels (Table 2). The initial stress response undergone by the 

bacterial cells to survive in the basic environment may activate additional genes that 

appear to protect and help accelerate growth in the new environment after 24 h.   
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Figure 2. Growth of Lactobacillus wasatchensis at 25°C in MRS-Ribose broth at pH 5.2 
supplemented with 3.5, 4.5, and 5.5% salt, based on optical density measured at 600 nm 
both with Oxyraseâ enzyme (A) and without Oxyraseâ (B), error bars = SE, n = 3.   
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Figure 3. Growth of Lactobacillus wasatchensis at 25°C in MRS broth supplemented 
with 1.5% ribose as a function of pH levels based on optical density measured at at 600 
nm, error bars = SE, n = 3.  

 
 
 
Table 2. Maximum specific growth rate (µmax) of Lactobacillus wasatchensis as a 
function of pH when grown at 25°C in MRS broth supplemented with 1.5% ribose based 
on optical density measured at at 600 nm (OD600). 
 

pH µmax 
 OD600/h 
4.0 0.015 
5.0 0.175 
5.2 0.224 
6.0 0.305 
6.6 0.310 
7.0 0.315 
8.0 0.338 
9.0 0.361 
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The growth observed at pH 9 could also indicate a low level of contamination with 

another bacteria, as lactobacilli are generally not recognized as growing at pH 9.    

Salt Tolerance 

When Lb. wasatchensis was grown at pH 5.2, adding salt slowed down the rate of 

growth (Figure 2) but even with 5.5% salt it still reached OD600 of 0.5 after 46 h 

incubation.  However, the bacterium is more sensitive to salt when it is at pH 6.5, and 

less growth occured.  With a salt content of 5.4%, OD600 was only ~0.2 after 46 hours 

(Figure 4).  Increasing salt concentration further slowed growth. At pH 6.5 and with no 

salt addition, Lb. wasatchensis grew to an optical density of ~1.85. At pH 5.2, growth of 

Lb. wasatchensis with no salt addition grew to an optical density of ~1.44 (Figure 5). The 

µmax at pH 5.2 was lower than at pH 6.5, going from 0.356 to a 0.226 when Lb. 

wasatchensis was grown without added salt. (Table 3). Both the growth curves and 

corresponding µmax for the salt range 5.4 to 6.0% at pH 5.2 had a >50% increase when 

compared to their counterparts at pH 6.5. This suggests when Lb. wasatchensis is grown 

in the absence of salt, it grows to higher numbers at  a pH closer to neutral (Figure 4 

compared to Figure 5). However, when pH is lower (such as pH 5.2 which is typical of 

cheese) it can tolerate higher salt levels. As was mentioned in regards to Lb. wasatchensis 

growth at pH 9, when the stress response is activated, due to high or low pH levels (i.e., 

pH 5.2) or increased salt concentrations, it appears additional genes are turned on causing 

a bioprotective effect which help the bacteria adapt and facilitate better growth than when 

grown at a pH of 6.5 with the same salt concentrations.        
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Figure 4. Growth of Lactobacillus wasatchensis at 25°C in MRS-Ribose broth at pH 6.5 
supplemented with 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 6% NaCl over 46 h, based on optical 
density measured at 600 nm, error bars = SE, n = 3.   

Figure 5. Growth of Lactobacillus wasatchensis at 25°C in MRS-Ribose broth at pH 5.2 
supplemented with 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 6.0% NaCl over 46 h, based on optical 
density measured at 600 nm, error bars = SE, n = 3.   
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Table 3. Maximum specific growth rate (µmax) of Lactobacillus wasatchensis at 25°C as 
a function of varying salt concentrations in MRS broth containing 1.5% ribose at pH 5.2 
and 6.5 supplemented with salt at 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 6.0% NaCl, based on 
optical density measured at at 600 nm (OD600).   
 
 µmax 

% NaCl pH 5.2 pH 6.5 
 OD600/h OD600/h 
0.0 0.226 0.356 
5.4 0.080 0.035 
5.5 0.075 0.032 
5.6 0.064 0.027 
5.7 0.065 0.029 
5.8 0.058 0.021 
5.9 0.048 0.022 
6.0 0.035 0.012 
 

Growth at Cheese Conditions 

Growth of Lb. wasatchensis at both pH 5.2 and 5.5 containing 3.5, 4.5, and 5.5% 

salt is shown in Figures 2A and 6, respectively. This represents, a medium and high pH 

for cheddar cheese, and a low, medium and high salt-in-moisture content. As already 

shown, Lb. wasatchensis grows quicker when no salt is added and reach OD600 of ~1.74 

at pH 5.5 and ~1.48 at pH 5.2 after 46 h with µmax of 0.348 and 0.238 OD600/h, 

respectively (Table 4). Then as salt was added, the growth rate slowed down with slightly 

slower growth occurring at pH 5.2 compared to pH 5.5. Although the growth curves at 

3.5, 4.5 and 5.5% salt had not reached stationary phase after 46 h incubation, they likely 

would have eventually reached the same OD600 as broth with no added salt as shown by 

Ortakci et al. (2015a). Although growth of Lb. wasatchensis at 5.5% NaCl was the 

slowest, positive growth was still seen after 46 hours and optical density was >0.40 at pH 

5.2 and 5.5.  
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Figure 6. Growth of Lb. wasatchensis based on optical density measured at 600 nm at 
25°C in MRS-Ribose broth at pH 5.5 supplemented with 3.5, 4.5, and 5.5% salt over 46 
h, error bars = SE, n = 3. 

 

 
Table 4. Maximum specific growth rate (µmax) of Lactobacillus wasatchensis at 25°C as 
a function of varying salt concentrations when grown in MRS broth containing 1.5% 
ribose at pH 5.2 and 5.5 supplemented with salt at 3.5, 4.5, and 5.5% NaCl, based on 
optical density measured at at 600 nm (OD600).   
 
 µmax 
% NaCl pH 5.2 pH 5.5 
 OD600/h OD600/h 
0.0 0.238 0.348 
3.5 0.154 0.202 
4.5 0.111 0.141 
5.5 0.068 0.079 
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These and prior findings indicate Lb. wasatchensis is able to grow in cheddar 

cheese during storage and under ripening conditions. Not only does it grow at a normal 

cheese pH range of 5 to 6, but also is not completely inhibited by salt at concentrations up 

to 6% at pH 6.5 or 5.2. There is an increased risk of Lb. wasatchensis growth and 

subsequent gas production at a salt content ≤3.5%. As salt content is increased, the rate of 

growth of Lb. wasatchensis is retarded. Further, as previously noted in Figures 2A and 6, 

Lb. wasatchensis continues to show some positive growth in conditions typical of 

cheddar cheese at pH 5.2 and 5.5 in up to 5.5% salt. These observations indicate Lb. 

wasatchensis is robust in surviving the conditions characteristic of a cheese environment 

and would be able to grow in a variety of cheeses, in particular cheddar-type cheeses.  

 When there is a big variation in salt content during manufacture of cheese, any 

cheese at the low end of the range (i.e. Monterey cheese with 42% moisture and 1.4% 

salt) will have faster growth of Lb. wasatchensis and be more susceptible to unwanted 

gas production. To decrease the likelihood of growth of Lb. wasatchensis and subsequent 

unwanted gas production in cheese, manufacturers are advised to select cheese for aging 

that have salt-in-moisture content towards the upper target level.  This coincides with 

historical information that the best aged cheddar cheese contain between 4.5 and 5.5% 

salt-in moisture (Lawrence et al., 1987). Maintaining this salt level would help slow 

growth of NSLAB populations in cheese.  

Carbohydrate Utilization  

Growth of Lb. wasatchensis on various carbohydrate sources is shown in Figure 

7. The fastest and highest level of growth occurred with ribose. No growth was observed 

on the N-acetylmuramic acid. The other sugars (galactose, lactose, glucose, fructose, and 
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N-acetylglucosamine) had similar µmax (Table  5), however, they grew to different 

extents. (Figure 7). Since the Lb. wasatchensis cells had been washed twice with 

phosphate buffer prior to inoculation into the various carbohydrate-restricted broth, it is 

unlikely the differences were because of carryover of nutrients.  

With galactose, Lb. wasatchensis was still in exponential grown phase after the 46 

h of incubation, while growth ceased (or slowed down) after ~24 h for lactose and 

glucose, and  after ~32 h for fructose. These observations suggest all available sugar had 

been depleted and therefore there was no energy to support further growth. Although 

initially glucose, lactose, and fructose followed the same growth rate of galactose, 

assuming energy costs for cell wall synthesis and cell division remain consistent, it is  

 
Figure 7. Growth of Lactobacillus wasatchensis at 25°C in MRS without added 
carbohydrate at pH 5.2 with 4.5% NaCl containing various carbohydrate sources, based 
on optical density measured at 600 nm over 46 h, error bars = SE, n = 3.  
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Table 5. Maximum specific growth rate (µmax) Lactobacillus wasatchensis at 25°C as a 
function of varying carbohydrates of when grown in MRS broth containing 1.5% ribose 
at pH 5.2 supplemented with 4.5% NaCl, based on optical density measured at at 600 nm 
(OD600).   
 
Carbohydrate source µmax 
 OD600/h 
Ribose 0.174 
Galactose 0.076 
Lactose 0.059 
Glucose 0.065 
Fructose 0.069 
N-acetylglucosamine 0.066 
N-acetylmuramic acid 0.000 
  

hypothesized use of these sugars by Lb. wasatchensis has a higher energy cost and 

faster usage of resources.  

Previous research showed how Lb. wasatchensis will co-metabolize galactose if 

present with ribose (Ortakci et al., 2015c). Although there are no conditions where these 

carbohydrates were tested with ribose, it is possible that Lb. wasatchensis could also co-

metabolize lactose, glucose, fructose, and N-acetylglucosamine (Figure 7). Fructose is of 

less importance as it is not expected to be found within cheese.  

Bacterial Cell Lysate  

When grown on Lc. lactis, Lc. cremoris, St. thermophilus,and Lb. helveticus cell 

lysate solutions, Lb. wasatchensis showed growth at d 5 of incubation on all four 

bacterial cultures. At d 10 of growth, there was an interesting decrease in growth 

observed (lower OD) on all cell lysate solutions with the exception of Lb. helveticus 

which had an increase in growth. Growth of Lb. wasatchensis was also observed in the 

control tubes at d 5 with a decrease in optical density at d 10.  

Growth of Lb. wasatchensis in Lc. lactis cell lysate and its 1/10 and 1/100 fold 
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dilutions showed minimal growth at 5 d in the 1/10 and 1/100 samples. At d 10, there was 

minimal growth. Due to the contradictory data between the two experiment the results are 

not shown.   

When grown in the 48 micro-well plate for 3 d in CR-MRS supplemented with 

Lc. lactis, Lc. cremoris, St. thermophilus, and Lb. helveticus cell lysate filtrate, Lb. 

wasatchensis grew on all four solutions. After 70 h, all four solutions showed positive 

growth, which would be expected to continue. The best growth was seen when Lb. 

wasatchensis was grown on the Lb. helveticus lysate combined with CR-MRS. In  

 addition, growth was also observed on the Lb. helveticus lysate solution containing no 

MRS broth, although growth was relatively unchanging after 16 h and only reached an 

optical density of ~0.02 (Figure 8). Teusink and Molenaar (2017) showed LAB can use 

amino acids for growth and energy metabolism, which may explain how the Lb. 

wasatchensis cells were able to have limited growth utilizing solely lysate.  

Starter LAB in Cheddar Cheese 

The highest number of CFU/g of cheese were observed for both starter lactococci 

and Lb. helveticus when sampled in the curd immediately before salting. Starter 

lactococci bacterial cells were in more abundance than the adjunct culture with counts 

being >108 CFU/g. After overnight pressing of the cheese curd, there was a decrease in 

the number of both lactoccci and lactobacilli cells with the most noticeable drop being in 

starter lactococci cells being almost a one log reduction. There was a minimal decrease in 

bacterial cells after a further day of storage.      

Determining the lactococci and lactobacilli bacterial numbers in freshly made 

cheddar cheese showed the lactococci dominated the microflora initially (Figure 9).  



 

 

35 

 
Figure 8. Growth of Lactobacillus wasatchensis based on optical density measured at 
600 nm when grown in cell lysate and in carbohydrate restricted MRS at pH 5.2 
supplemented at a 1:1 ratio with starter LAB and adjunct culture cell lysate. Grown at 
25°C with measurements taken at every hour for 70 h.  

 

 
Figure 9. Colony Forming Units of lactococci and Lactobacillus helveticus per gram of 
cheese sample taken before salting, immediately following overnight pressing, and after 1 
d of storage at 4.4°C.  
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After salting, both lactococci numbers and lacobaciili numbers dropped. Assuming most 

lysis was of the starter LAB (Lc. lactis subspecies lactis  and cremoris) strains, this 

represents an 80% lysis of cells happening immediately after cheese manufacturing to 

support growth of Lb. wasatchensis and other NSLAB during cheese storage.  

Summary  

 Lactobacillus wasatchensis is suited to grow in conditions typical of cheese 

storage and ripening. It can grow in a wide range of pH concentrations from 5.2 up to 9.0 

with growth observed in up to 6.0% salt at pH 5.2 and pH 6.5. At pH 9, after an extended 

lag phase, Lb. wasatchensis had the highest µmax. In the absence of salt, faster growth was 

observed at pH 6.5 than at pH 5.2, but the reverse was observed in the presence of 3.5% 

salt or more. This suggests an enhancement of growth as a side effect of bioprotective 

mechanisms when Lb. wasatchensis cells are stressed. It may be there are additional 

genes activated when cells are challenged against harsh growth conditions which help 

protect and improve growth. In addition, although growth was still observed at cheese pH 

levels of 5.2 and 5.5 in 5.5% salt, there was a substantial decrease in growth when 

compared to the 3.5 and 4.5% salt concentrations. This suggests a decreased likelihood of 

growth and subsequent gas production of Lb. wasatchensis when the salt-in-moisture 

content is kept high. While Lb. wasatchensis grows best on ribose, galactose, lactose, 

glucose, fructose and N-acetylglucosamine can also be utilized by Lb. wasatchensis. This 

extends the list of carbohydrate sources available to support growth than previously 

shown. Lactobacillus wasatchensis also grows on the lysis of common starter and adjunct 

cultures. An 80% decrease in bacterial CFU/g was observed within the first 24 h after 

salting the curd.  
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PART 3. DNA EXTRACTION 

The cheddar cheese samples inoculated with Lb. wasatchensis had increasing 

CFU/g from 1.9 x 107 in sample group A to 1.1 x 109 in sample group D (Table 6). The 

recovery of extracted DNA from these cheeses ranged from 8.3 ng/µL to 39.5 ng/µL 

(Table 7). The  A260/A280 ratio was consistently between 1.81 or above 1.91, indicating 

relatively pure DNA extracts. The optimal is considered 1.90 for nucleic acids.   

The phenol-chloroform DNA extraction method was thus effective at extracting 

DNA from cheese samples. However, other work at USU (Tyler Allen, unpublished data 

2018) has shown that with direct extraction of DNA from cheese, such as the phenol-

chloroform method, there is a problem with extraneous DNA (i.e., not from living 

bacterial cells) which can persist in milk and cheese.  Based upon this finding, it would 

be better to use a method that first harvests the cells from the cheese, followed by a DNA 

extraction protocol. 

There was also a lot of variation in the amount of DNA extracted from the 

cheeses and quantity of DNA was not proportional to the number of Lb. wasatchensis 

cells (although count of the total number of bacteria in the cheese was not performed). 

Whether the variance occurred because of uneven spatial distribution of the bacteria 

community in the cheese or inherent in the extraction method, it was not determined. 

Interestingly, the extract from cheese B contained 39 ng/µL DNA whereas the extract 

from cheese D had only 18.4 ng/µL, even though it contained one log more of Lb. 

wasatchensis.   Although cheese D had less total DNA extracted, when amplified, it 

contained the greater amount of Lb. wasatchensis DNA, as indicated by the lower CT 

value (Figure 10 and Table 8).  
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Table 6. Bacterial counts from four cheeses made from milk inoculated with 100 µL, 500 
µL, 1 mL, and 10 mL of Lactobacillus wasatchensis. Counts were performed on MRS 
agar spread plates supplemented with 1.5% ribose after 5 d of anaerobic incubation at 
25°C.   
 

  Lb. wasatchensis 
Cheese Inoculation Volume CFU/g 

A 100 µL 1.9 x 107 
B 500 µL 7.6 x 107 

C 1 mL 2.2 x 108 

D 10 mL 1.1 x 109 

 
Table 7. Concentration and purity of DNA extracted from cheese inoculated with known 
amounts of Lactobacillus wasatchensis cells using the phenol-chloroform method.  DNA  
purity of each sample group determined by the ratio of absorbance at 260 nm to 
absorbance at 280 nm (A260/A280). 
 
  DNA Concentration DNA Purity  

Cheese 
Inoculation 

Volume ng/µL 260nm/280nm 
A 100 µL 8.3 1.90 
B 500 µL 39.5 1.83 
C 1 mL 10.6 1.91 
D 10 mL 18.4 1.91 

 

 
Figure 10. Quantitative PCR amplification of cheese samples inoculated with 100 µL, 
500 µL, 1 mL, and 10 mL of Lactobacillus wasatchensis.   
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Table 8. CT values obtained from the amplification of Lactobacillus wasatchensis DNA 
extracted from cheese samples containing 100 µL, 500 µL, 1 mL, and 10 mL 
Lactobacillus wasatchensis, n = 2.  
 

Cheese  Inoculation Volume CT value 
A 100 µL 0.0 
A 100 µL 0.0 
B 500 µL 33.4 
B 500 µL 33.1 
C 1.0 mL 31.4 
C 1.0 mL 32.6 
D 10 mL 24.1 
D 10 mL 26.3 

 
The amount of Lb. wasatchensis specific DNA was not proportional to the total DNA 

extracted.  

There were a number of complications in performing the qPCR analysis with 

samples not amplifying or having more than one melting point peak (Figures 11 and 12). 

Even when making the calibration curve using serial dilutions, some of the samples did 

not amplify. Only one replicate of the most dilute sample amplified (Figure 11). A lack of 

amplification of cheese extracts may be because of PCR inhibitors being found in the 

cheese (Al-Soud and Rådström, 1998, Monnet et al., 2006), or whether or not the original 

cheese sample contains enough Lb. wasatchensis, and whether the phenol-chloroform 

extraction is able to recover that DNA from the cheese. Using qPCR, the detection 

threshold of ~8 x 107 CFU/g is higher than the 105 CFU/g that can be observed using 

standard PCR and gel electrophoresis (Tyler Allen, Utah State University, unpublished 

data 2018). The CT for cheeses B, C, and D of 33.3, 32.0, and 25.2 respectively 

corresponded to cell numbers of 7 x 107, 1 x 108, and 7 x 108 which were similar to the 

7.6 x 107, 2.2 x 108, and 1.1 x 109 CFU/g determined by plate counting (Table 6).    
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Figure 11. Quantitative PCR standard curve made by diluting the amplified 16S rRNA 
PCR product of Lactobacillus wasatchensis grown in MRS broth and then serially 
diluted.  

 

 
Figure 12. Melting peaks of 100 µL, 500 µL, 1.0 mL, and 10 mL Lactobacillus 
wasatchensis DNA sample groups monitored during qPCR amplification.  
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There was also occasionally two melting point peaks observed. The primer pair 

used was thought to be specific to Lb. wasatchensis, however, since it also occurred with 

some of the standard curve samples prepared from broth culture it may indicate non-

specific primer binding and amplification (Monnet et al., 2006).  

Summary  

The phenol-chloroform DNA extraction method from cheese produced a 

relatively pure DNA product. The amount of DNA harvested was not proportional to the 

amount of Lb. wasatchensis in the cheese. The threshold for detection using qPCR was 

~8 x 107 CFU/g of cheese. The CT for extracts from cheese with higher levels of Lb. 

wasatchensis corresponded to CT values determined for the calibration curve. Further 

optimization and experimentation needed to cover the detection threshold for this method 

to be effective at measuring low levels of Lb. wasatchensis concentrations in cheese.   
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CONCLUSION 

 We assumed Lb. wasatchensis was present in the cheese vats and final cheese 

product due to insufficient inactivation during HTST pasteurization. However, our 

hypothesis was proven incorrect. Lactobacillus wasatchensis was shown to be heat 

sensitive with low thermotolerant capabilities. Heating in a HTST pasteurizer heat 

exchanger caused a greater than 7 log inactivation of Lb. wasatchensis cells with no signs 

of survival, even at sub-pasteurization temperatures of 69.4°C for 15s.   

 By further characterizing the growth attributes of Lb. wasatchensis, we have come 

to understand better how it is able to grow to high numbers in cheese and produce 

unwanted carbon dioxide. Lactobacillus wasatchensis grows at milk pH (6.6) and cheese 

pH (5.2). After a longer lag period, the fastest growth rate was at pH 9. The upper limit of 

salt tolerance at pH 6.5 was >6.0% with only slight growth at 5.4 to 6.0%. At pH 5.2 

there was >50% increase in growth rate at each salt concentration compared to pH 6.5. 

Perhaps in slightly acidic or alkaline conditions, there is a stress response that activates 

bioprotective genes that support growth.  

At pH 5.2 and 5.5 Lb. wasatchensis grew at salt concentrations up to 5.5%, 

although at a slower rate than at 3.5 to 4.5% salt. Among the ever-growing list of risk 

factors causing late gassy defect, low salt concentrations is another. There was increased 

Lb. wasatchensis growth as salt concentrations dropped from 5.5 to 4.5% (the ideal range 

for aged cheddar cheeses) and even further growth at 3.5%. At low salt levels, the risk for 

poor quality cheese increases along with Lb. wasatchensis growth and subsequent 

unwanted gas production.  

Observing growth on various carbohydrate sources indicated Lb. wasatchensis is 
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able to utilize additional carbohydrates than solely ribose and galactose as previously 

suggested based on API CH50 tests. Growth occurred with lactose, glucose, fructose, and 

N-acetlyglucosamine being present as the only carbohydrate source. No growth occurred 

with N-acetylmuramic acid.  

Using the phenol-chloroform DNA extraction method, DNA was obtained from 

cheese samples inoculated with known amounts of  Lb. wasatchensis cells. However, 

there was too much variation in the concentration of DNA extracted from each sample 

although the extracts were acceptable. The work involving the qPCR method was not 

successful.  
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FUTURE RESEARCH  

 Based off the experiments performed a number of questions arose which would be 

interesting to explore. Could it be Lb. wasatchensis is surviving in the HTST pasteurizer 

through biofilm formation and thus getting into the cheese vats? This port of entry would 

appear to be the most probable. Therefore, it might be of interest to run the pasteurizer for 

8 to 12 h with milk inoculated with Lb. wasatchensis and take samples every 30 min to 

see if some cells begin to survive after long runs. It would also be advised to cheese 

manufacturers to look at additional post-pasteurization entry points of Lb. wasatchensis 

contamination (i.e., cross-contamination or aerosols).   

 It was proposed that Lb. wasatchensis utilizes different energy pathways to 

metabolize lactose and glucose. After 24 h of incubation Lb. wasatchensis ceases to grow 

on these carbohydrates suggesting there is no more sugar available for energy and 

growth. It would be interesting to use molecular techniques to explore whether or not 

there are different pathways utilized when metabolizing these sugars. It would also be 

beneficial to test if Lb. wasatchensis can co-metabolize lactose, glucose, fructose, and N-

acetylglucosamine when present with ribose.    

 Further, it was suggested there may be a bioprotective effect elicited when Lb. 

wasatchensis cells are put into a stressful environment (i.e., pH 9 or pH 5.2 with salt). It 

appears there may be additional genes activated to help the bacteria survive the harsh 

conditions and grow better than their “more” neutral counterparts. Is what we suggest 

actually happening or what helps these cells grow better? It would be curious to look at 

gene activation of bacteria in stressful environments compared to those at neutral pH.   

 It may be beneficial to re-do the bacterial cell lysate experiments involving 
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growth over 10 d. There was contradictory data produced from the two experiments 

involving the controls and decreased growth at 10 d versus 5 d.  

 Finally, to improve the concentration of DNA extracted from cheese samples, 

rather than using proteinase K as the enzyme treatment during incubation try using a 

lysozyme/mutanolysin treatment.  
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