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ABSTRACT 

Production and Purification of Recombinant Minor Ampullate Silk Proteins 

by 

Danielle A. Gaztambide, Master of Science 

Utah State University, 2018 

 

Major Professor: Randolph V. Lewis, Ph.D. 
Department: Biological Engineering  
 

Spider silks long have been recognized as some of nature’s most impressive 

materials. By divergent evolution, orb-weaving spiders produce and utilize six distinct 

silk fibers and one glue for a variety of biological roles. Each silk is the product of 

proteins, highly conserved across species, called spidroins. Because it is not possible to 

farm spiders, these proteins must be produced synthetically in order to study the protein 

sequences and use these proteins for material applications.  

This research uses Escherichia coli (E. coli) as a production system to investigate 

the first known expression and purification of synthetic minor ampullate silk, a lesser 

studied silk the spider uses to make up the auxiliary spiral of the orb web. The auxiliary 

spiral creates a template for the capture spiral and provides additional stability during 

web construction. Natural minor ampullate silk has a high tensile strength, does not 

supercontract in water, and is inelastic with fiber properties similar to Kevlar. This 

investigation completes the construction and expression of six synthetic analogs of minor 

ampullate silk protein ranging from 40 to 134 kilodaltons (kDa). Using fed-batch aerobic 
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fermentation, this thesis investigates the efficacy and optimization of E. coli as a 

production platform for recombinant minor ampullate silk proteins. This study also 

develops purification protocols for these proteins following production and performs the 

first preliminary characterization of synthetic recombinant minor ampullate silk proteins 

based on sequence and molecular weight.  

(93 pages) 
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PUBLIC ABSTRACT 

 

Production and Purification of Recombinant Minor Ampullate Silk Proteins 

Danielle A. Gaztambide 

 

Spider silks are incredible natural materials that have a wide variety of properties 

that can rival or outperform even common synthetic materials like Nylon and Kevlar.  As 

nature’s architects, orb-weaving spiders spin seven different silks that are used for very 

specific roles throughout the spider’s lifecycle. These silks are comprised of proteins 

called spidroins. Each of these spidroins has evolved to have properties such as strength 

and/or stretch that make these silks successful and highly adapted in their designated 

roles in web construction, prey capture and reproduction.  

This study involves the production of minor ampullate silk by genetically 

modifying the bacteria Escherichia coli. Minor ampullate is a lesser studied silk that is 

used for the first spiral of the orb web. This spiral is a template that the spider uses to 

finish the web and provides stability during the web construction. Minor ampullate silk is 

strong, however it does not stretch so it may be well-suited for certain applications such 

as ballistic materials.  

By producing and purifying different arrangements of minor ampullate silk 

protein, it is possible to learn how this protein can be expressed without using the spider 

itself. This investigation sheds light on how deviations in the protein sequence and motif 
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arrangement can produce different properties, which can potentially be used to make new 

materials.  
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CHAPTER 1 

INTRODUCTION 

 

NATIVE SPIDER SILKS 

Since ancient times, spider silk has inspired intrigue with its strength, elasticity, 

toughness, ductility, thermostability, and biocompatibility when compared with both 

natural and synthetic materials. All 41,000 species of spiders produce and utilize silk. 

Depending on the species, they use silk for a variety of biological acts including prey 

capture, prey wrapping, shelter, egg casings, mating, and even parachuting1. Most spiders 

spin more than one type of silk. Notably, the orb-weavers are the best representation of 

millions of years of gene duplication and divergence that led to the variety of silks that 

these spiders utilize today2.  

Female orb-weaving spiders produce six distinct silk fibers and one glue. Each 

originates from a separate silk gland in the spider’s abdomen as Figure 1-1 demonstrates. 

These silks include: major ampullate (dragline and web radii); minor ampullate 

(temporary auxiliary spiral); flagelliform (capture spiral); aggregate (aqueous glue); 

piriform (fiber attachment); aciniform (prey wrapping); and tubuliform (egg sacs and 

cocoons)3. Major ampullate silk proteins traditionally have been the most studied spider 

silk proteins due to their impressive combination of strength and elasticity that result in a 

toughness two to three times greater than synthetic fibers such as Kevlar and nylon. 

However, each of the silks possess different mechanical properties that may be ideally 

suited for material applications as diverse as ballistic material and very fine sutures4.  
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Table 1-1 illustrates how these silks compare with each other and with other 

natural and synthetic fibers5. Natural minor ampullate silk has properties similar to 

Kevlar and tendon, due to its high tensile strength (1 x 109 N/m2) and decreased 

elongation.  

The self-assembling fibroins that make up these silks result in a diverse set of 

fibers with mechanical properties that are functionally related to their amino acid motifs 

and thus protein sequence and folding structures6. In nature, spider silk proteins are large 

(~350 kDa) and include nonrepetitive N- and C-termini, with the rest of the sequence 

consisting entirely of repetitive amino acid motifs. 

Figure 1-1. Spider silk glands and silk biological roles 
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The N-terminus has a role in transport and encodes a signal peptide7; however, the 

role of the highly conserved C-terminus has remained somewhat elusive, with some 

investigations showing that it may be important for stability in the gland and fiber 

formation8. There are four types of shared amino acid motifs among the spider silk 

proteins: GPGGX/GPGQQ, GGX, poly-A/poly-Gly-Ala, and a nonrepetitive spacer 

region3. While much of the structure-to-function relationship in spider silks has remained 

elusive, fiber x-ray diffraction and nuclear magnetic resonance spectroscopy has shown 

that the poly-alanine and (GA)n  repeats correlate to crystalline β-sheet structures, while 

the glycine-rich (GGX) repeats form GlyII-helices9. The GPGGX regions primarily 

found in major ampullate silk correlate to β-spiral structures, providing the dragline silk  

its elasticity10.  

Substantial sequence information for the minor ampullate spidroins (MiSps) was 

first published in 1997 and has since been corroborated by additional investigations; 

Table 1-1: Fiber mechanical property comparisons. 
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however, there are currently no published investigations of synthetic analogs of these 

spidroins12. Minor ampullate silk, like many of the spider silks, is comprised of two  

proteins: MiSp1 (9.5 kb) and MiSp2 (7.5 kb)13,14. These two spidroins have similar 

repetitive regions; however, MiSp2 has a shorter and less conserved repetitive region 

when compared with MiSp1. Nevertheless, the repetitive regions in the MiSps are more 

highly conserved than either of the major ampullate silk proteins13. These repetitive 

regions of the MiSps sequence resemble amorphous regions in the heavy chain of the 

Bombyx mori silkworm15. MiSp1 and MiSp2 also contain identical 137 amino acid 

nonrepetitive spacer regions that occur every 10 repeats and are not homologous to any 

other spider silk sequence.13 No secondary structure has been definitively assigned to this 

spacer region, however it is hypothesized to be the cause of the inelasticity of the 

resulting MiSp fiber and contains long stretches of α-helical structures16. Figure 1-217 

Figure 1-2. Secondary structures assigned to the prevalent motifs in spider silks 
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illustrates the secondary structures that have been assigned to the amino-acid motifs in 

spider silks. The repetitive motifs in MiSps include GX, GGX, GGGX and shorter  

poly-alanine repeats, when compared with major ampullate silk. While the repetitive 

sequence in MiSp is similar to major ampullate spidroin 1 (MaSp1), the longer poly-

alanine repeats seen in major ampullate spidroins (MaSps) are replaced by (GA)n repeats 

in minor ampullate silk. The sequence hierarchy of minor ampullate silk proteins from 

the Nephila clavipes spider is illustrated in Figure 1-313.  This sequence organization is 

hypothesized to be the cause for the decreased tensile strength seen in MiSps, as the 

(GA)n  β-sheet structures possess fewer hydrophobic interactions when compared with the 

Figure 1-3. Sequence hierarchy of minor ampullate silk protein 
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longer poly-alanine β-sheet structures16,18. The MiSps also have different ratios of GGX 

and GA repeats and the repetitive region lacks the proline seen in MaSp2, which is 

hypothesized to give major ampullate silk its elasticity9,19,20. 

 

SYNTHETIC RECOMBINANT SPIDER SILK PRODUCTION 

Due to spiders’ cannibalistic and territorial behavior, and the fact that it is difficult 

to obtain specific spider silk proteins, farming spiders to study and use their silk is not 

economically or practically feasible. For reference, it took eight years to make a single 

spider silk cape with fibers harvested from 1.2 million orb webs21. Therefore, it is 

imperative to use transgenic hosts to produce spider silk synthetically for large-scale 

production of recombinant spider silk proteins (rSSps) so that these proteins may be 

utilized for functional materials12,22. These transgenic hosts have included both 

unicellular and multicellular organisms as heterologous hosts. While each transgenic host 

has its pros and cons, spider silk proteins are inherently difficult to produce synthetically 

regardless of their host due to their large size (~350 kDa) and highly repetitive 

sequence21,23,24. Multicellular organisms typically produce proteins at the size scale of 

spider silk proteins; however, genetic instability, protein aggregation post-translation, low 

mechanical properties, low yields, and high costs remain significant problems for large-

scale production. Multicellular organisms that have been investigated for the expression 

of spider silk proteins include goats, mice, silkworms, and plants12. A timeline of spider 

silk production in a variety of hosts is shown in Figure 1-421. 
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Because of the low cost of production, established protocols for scalability, and 

ease of genetic manipulation, unicellular organisms such as bacteria, and more 

specifically E. coli, have hosted most of the research into the production of synthetic 

spider silk proteins25–27. E. coli is a well-suited choice for large-scale protein expression 

and production because a large library of expression plasmids, molecular protocols, and 

cultivation parameters that are already established28. Adding to its cost-effectiveness, E. 

coli is also a much faster expression system to develop than many of the multicellular 

systems described above. 

Figure 1-4. Chronological representation of synthetic recombinant spider silk 
production in transgenic hosts  
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While synthetic production of spider silk proteins has been the subject of a large 

amount of investigation in recent years, most of these studies have been done with the 

major ampullate silk proteins17,26,29–31. Minor ampullate silk is one of the lesser studied 

silks due to the fact that the minor ampullate gland is much smaller and thus harder to 

isolate than the major ampullate gland. Minor ampullate fibers also typically have smaller 

diameters than the major ampullate silk fibers and their biological role is not as readily 

understood19. As well, based upon evidence presented in this thesis, it is very possible 

that when expressed in E. coli the proteins become so insoluble as to be unrecoverable by 

common methods. In essence, their levels of insolubility make it appear as if no protein 

was expressed. This may be one of the leading reasons for the lack of study of 

recombinant forms of other spider silk proteins like the minor ampullate silk proteins.   

Aside from the type of spider silk being produced, there are also many other 

hurdles to protein expression for synthetic spider silk proteins that are the result of the 

large size and repetitive nature of the protein sequence. Minimizing truncation of these 

high molecular weight products will need to be considered, as translation pauses and 

proteolytic degradation are all factors for high-density, cell culture expression of these 

repetitive proteins12,17,21–23,28,32. These proteins also have a tendency to fold incorrectly 

post-translation and, due to their self-assembling nature, create insoluble aggregates in a 

manner similar to inclusion bodies21. These aggregated proteins create even more 

challenges for purification, as the solubility and protein-protein interactions can defy 

conventional purification techniques such as affinity chromatography.  

Producing these large proteins in a cost-effective manner will also be a deciding 

factor if spider silk is to replace synthetic fibers such as nylon or Kevlar. Figure 1-533  
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shows a cost-analysis profile of rSSps produced in E. coli. As you can see, the cost of 

production of these rSSps depends on the capacity of the production system, an area that 

has seen continuous improvement in recent years23,24. 

MATERIAL APPLICATIONS OF SPIDER SILK PROTEINS 

Harnessing the properties of natural spider silk proteins synthetically will create 

possibilities for new, lightweight polymer materials that outperform current synthetic and 

natural materials. Figure 1-634 illustrates the native and synthetic processes for creating 

these silk materials and their subsequent potential product applications. Understanding 

the processing conditions necessary in synthetic systems to replicate silk properties will 

be crucial for future silk production and material characterizations.  

Figure 1-5. Cost analysis for production of rSSps in E. coli. Case 1: baseline scenario. 
Case 2: optimized scenario. 
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While the spider utilizes these proteins for mainly fiber applications, synthetic 

spider silk proteins have also been solubilized in water to produce environmentally 

friendly adhesives, films, sponges, lyogels, hydrogels, coatings, and fibrous mats as seen 

in Figure 1-735–37. When solvated in water, these materials produce no harmful by-

products and can be modified to contain antibiotics, antimicrobials, growth factors, etc37–

39. For comparison, Kevlar production utilizes concentrated sulfuric acid and yields 

hydrochloric acid as a by-product, which translate to additional costs to store and remove 

these compounds. Films have traditionally been the most studied material application 

outside of fibers because they typically require less processing than fibers and have many 

Figure 1-6. Native and synthetic processing of spider silk materials and potential 
product applications. 
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diverse functional applications. Silk film applications include medical device coatings, 

cell scaffolds, drug delivery systems, and in vivo implants40–44. 

To the author’s knowledge, there are no published characterizations of films or 

other materials using synthetic minor ampullate spider silk proteins. The solvation of 

rSSps in water also has raised the possibility that spider silk may be used in medical and 

other industries that restrict use of toxic substances. Previously, large and naturally 

insoluble rSSps had been solvated in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), a toxic 

organic solvent that disqualifies the protein products for many industrial uses. These 

products typically require much less protein than fibers, which increases the cost-

effectiveness for material applications. Synthetic MiSps may offer new and interesting 

Figure 1-7. Aqueous recombinant spider silk materials 
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properties to these aqueous materials, allowing them to fill new niches in a variety of 

applications.  

Using the known sequence information from Nephila clavipes, this investigation 

focused on: (i) the first known production of synthetic recombinant minor ampullate silk 

protein analogs in genetically engineered E. coli, (ii) the purification of these silk proteins 

from the soluble phase, and (iii) mechanical property characterization of thin films 

derived from the purified proteins. 
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CHAPTER 2 

EXPRESSION AND PURIFICATION OF SYNTHETIC MINOR AMPULLATE SILK 
PROTEINS 

 

MATERIALS AND METHODS 
 

Design and Construction of Synthetic Minor Ampullate Silk Protein Analogs 

The repetitive DNA core sequence and spacer region of MiSp1, based on Nephila 

clavipes, has been sequenced (GenBank:AAC14589.1) and was used for the synthetic 

constructs of this investigation. Prior to this study, this repetitive sequence was codon 

optimized and synthesized (Life Technologies). From this baseline construct, the next 

five constructs were built using molecular biology techniques. Figure 2-1 shows the full 

protein sequence used for each sequence module of the MiSps in these gene constructs. It 

matches exactly the repeat consensus sequence and spacer region in MiSp1 of Nephila 

clavipes shown in Figure 1-3. Notice the short poly-alanine stretches, GGX and (GA)n 

residues, and non-repetitve spacer and C-terminus. The repetitive consensus sequence is 

mostly composed of glycine and alanine, with highly conserved tyrosine and glutamine 

residues13.  

For purposes of this project, six DNA constructs were synthesized and built for 

expression of minor ampullate silk proteins in E. coli (MiSp8, MiSp8s, MiSp16, 

MiSp16s, MiSp24, and MiSp24s). Each construct was named in reference to how many 

core MiSp repeats they contained and whether they include the spacer region(s) 

indicative of these proteins in nature. Referring again to the sequence hierarchy in Figure 

1-3, natural MiSps contain 10 repetitive units per repeat. The first synthetic construct will 
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contain eight repetitive units (1,189 bp) as shown in the MiSp8 region of Figure 2-1. This 

gene insert and all subsequent spider silk gene inserts were flanked by restriction sites 

NdeI and BamHI at the N and C-terminus, respectively. The C-terminus region shown in 

Figure 2-1 had been previously cloned into the chosen expression vector and thus do not 

need to be included in the construction of the repetitive clones. The cloning vector that 

was used for the creation and propagation of these constructs was pMK (2829 bp) and 

TOP10 chemically competent cells (Thermo Fisher) were used for all subsequent 

transformations during cloning.  

Figure 2-1. Protein sequence information for modules of synthetic minor ampullate 
silk protein constructs  
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From this baseline MiSp8 construct shown in Figure 2-1, the next five silk 

constructs were created using molecular biology techniques and gene synthesis. The 411 

bp nonrepetitive spacer region created to match the amino acid sequence of the spacer 

region of MiSps of Nephila clavipes was also optimized for E. coli and synthesized at the 

N-terminus of the MiSp8 construct downstream from the NdeI and AgeI restriction sites 

and in frame with the repetitive MiSp8 core sequence. This 1,595 bp construct was 

named MiSp8s.  

Taking advantage of the modular and repetitive nature of spider silk, the remaining gene 

constructs were built from the MiSp8 and MiSp8s base constructs using compatible and 

nonregenerable restriction sites to extract and combine the repetitive modules resulting in 

increasingly larger DNA constructs15. Double digests were first performed on two 

aliquots of the pMK-MiSp8 plasmid in order to build pMK-MiSp16, using AgeI and 

NcoI on one aliquot and NcoI and BspeI on the other. The NcoI restriction site interrupts 

the kanamycin resistance gene in the pMK cloning vector. Following these digests, the 

two larger gene pieces from each of these digests (2,407 bp and 2,255 bp) were extracted 

using a QIAquick gel extraction kit. Once extracted and purified, these oligos were 

ligated using quick ligase (NEB) and transformed into One Shot TOP10 chemically 

competent cells per the manufacturer’s directions (Thermo Fisher). Colonies were 

incubated overnight at 37°C on an agar plate containing kanamycin (100 mg/ml) for 

additional selective pressure. Single colonies were transferred to 5 ml of LB media and 

incubated at 37°C for 12 hours. Plasmids were purified using a QIAGEN Plasmid 

Miniprep kit. Digestion checks with BamHI and NdeI were performed on the purified 
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plasmid to verify a successful ligation following agarose gel electrophoresis (0.2% 

agarose) run for 35 minutes at 100 V and stained with ethidium bromide. Plasmids that 

digested as expected were sequenced using the T7 forward and reverse universal primers 

(ACTG Inc.) to confirm. Successful ligation of this construct resulted in a complete 4,662 

bp plasmid that contained two sets of eight repeat units (MiSp16) in the pMK cloning 

vector. The mechanisms of construction are shown in Figure 2-2. Restriction enzymes 

AgeI and BspeI are compatible and nonregenerable. Therefore, following ligation these 

enzymes only cut at the N- and C-termini of the full MiSp16 repetitive sequence, because 

the site in the middle of these repeats has been eliminated. This method using compatible, 

nonregenerable restriction sites allows for the construction of larger MiSps. This basic 

protocol was repeated another three times to yield the final three MiSp constructs 

(MiSp16s, MiSp24, MiSp24s). Double digests of AgeI with NcoI and BspeI with NcoI 

were repeated on two aliquots of pMK-MiSp8s (3,900 bp). The larger DNA pieces from 

each digest (2,824 bp and 2,672 bp) were extracted and ligated to yield the complete 

pMK-MiSp16s plasmid (5,496 bp). This ligation resulted in two MiSp8 repeats separated 

by two spacer regions (3,203 bp) because the spacer region was synthesized downstream 

of the AgeI restriction site in the pMK-MiSp8s construct to make it compatible with this 

protocol. To build pMK-MiSp24, these same double digests were performed again on an 

aliquot of pMK-MiSp8 and an aliquot of pMK-MiSp16 and the two larger pieces of each 

digest (3,587 bp and 2,255 bp) were extracted, purified, and ligated. Finally, to build 

pMK-MiSp24s, these double digests were performed on two aliquots of MiSp8s and 
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MiSp16s. Again, the two larger pieces from each double digest were extracted, purified, 

Figure 2-2. Modular build of repetitive MiSp constructs illustrating the build from 
pMK-MiSp8 to pMK-MiSp16 
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and ligated (4,421 bp and 2,671 bp).   

  Once verified by digestion checks and sequencing, these synthetic spider silk 

constructs were digested out of the pMK cloning vector using enzymes BamHI and NdeI 

and ligated into a modified pET19 series expression vector that contains the nonrepetitive 

spider silk C-terminus region and a 6X-histidine tag. The C-terminus region was cloned 

into this vector before this project and was provided for this research (publication 

pending). This in-house vector is named pET19kt (~6,000 bp). 

A helper plasmid was also transformed into a stock of chemically competent 

BL21(DE3) cells, which codes for three glycine tRNAs and chloramphenicol resistance 

as part of a modified pACYC vector (4,245 bp). This cell stock was used for all 

subsequent transformations for both flask studies and benchtop bioreactor runs. These 

glycine tRNAs were expected to ease the burden of translation for the glycine-rich 

repetitive constructs, because previous studies have identified that in rSSp production, E. 

coli cells exhibited up-regulation for a glycine biosynthetic enzyme and the β-subunit of 

glycyl-tRNA synthetase, indicating cellular stress due to the expression of these highly 

repetitive silk sequences45. 

 

Expression of Minor Ampullate Silk Proteins 

 

Preliminary Flask Studies 

The pET19kt-MiSp plasmids constructed for protein expression were pET19kt-

MiSp8, pET19kt-MiSp8s, pET19kt-MiSp16, pET19kt-MiSp16s, pET19kt-MiSp24, and 
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pET19kt-MiSp24s. A BL21(DE3) chemically competent cell stock previously 

transformed with a plasmid coding for three glycine tRNAs and chloramphenicol 

resistance was made and used for transformation with the MiSp constructs. Preliminary 

investigations included flask studies for all six of the synthetic MiSps to verify protein 

expression and examine the expression capabilities for each protein. One liter flask 

studies were done for all six proteins using Terrific Broth media (yeast 24g/L, glycerol 4 

ml/L, tryptone 20 g/L, potassium phosophate monobasic 0.17 M, potassium phosphate 

dibasic 0.72 M) and the antibiotics chloramphenicol (60 mg/ml) and kanamycin (100 

mg/ml). Flasks were inoculated from a single-colony 10 ml overnight culture and grown 

at 37°C in a baffled shaker flask at 220 RPM to an OD600 of between 0.6 and 0.8. Protein 

expression was induced with 1mM isopropyl β-D-1-thiogalactopyranoside (IPTG). 

Before induction, the temperature of the culture was lowered to 30°C, 25°C, or 22°C, to 

mitigate truncation and result in more full-size, spider silk protein in the soluble 

fraction38. The culture was grown for four hours after induction at each of these 

temperatures and hourly samples were taken. Protein expression was analyzed for each 

protein by SDS-PAGE and Western blot using a 6X Anti-His primary antibody 

(Rockland Scientific) and an Anti-Mouse IgG (H+L) secondary antibody (Rockland 

Scientific) or a custom rSSp C-terminus antibody with a Donkey Anti-Rabbit IgG (H+L) 

secondary antibody (Rockland Scientific). Blotting, antibody exposure time, and antibody 

concentration were according to manufacturer’s instructions. To prepare the samples for 

SDS-PAGE, hourly samples were standardized to a specific OD (50 for high-density 

culture samples) and this cell suspension was then sonicated with a Qsonica Q500 
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sonicator using a microtip (1/8” diameter) at 1A for 15 seconds and then centrifuged in a 

benchtop centrifuge (Beckman Coulter Microfuge 18) at 18,000 rcf to yield a soluble 

fraction and an insoluble fraction. The soluble fraction was added directly to 2x Laemmli 

sample buffer (Bio-Rad) at a 1:1 ratio and heated at 100°C for 15 minutes prior to 

loading. The insoluble fraction was resuspended in 8M urea and sonicated again for 15 

seconds at 1A and then centrifuged to remove any remaining insoluble material. The 

clarified solution was added to 2x Laemmli sample buffer at a 1:1 ratio and heated for 15 

minutes at 100°C before sample loading.  

 

Benchtop Bioreactor Experiments  

As with the flask study experiment, a BL21(DE3) cell stock previously transformed with 

the glycine helper plasmid was used for transformation with the pET19kt-MiSp 

constructs. A New Brunswick BioFlo/CelliGen 115 benchtop bioreactor (BF115) was 

used for all high-density culture experiments for the expression of the MiSps. This 2 L 

vessel has a 1 L working volume and was assembled for fed-batch aerobic fermentation 

per the manufacturer’s directions. Figure 2-3 shows the assembly of the reactor. The 

reactor was autoclaved before use. Vessel media components included glucose (25 g/L), 

trace metals (1x), magnesium sulfate (.002 M), yeast (5 g/L), phosphates (10 g/L), 

thiamine (2.5 g/L), and 0.3% v/v antifoam. The antibiotics kanamycin (100 mg/ml) and 

chloramphenicol (60 mg/ml) were added to both the vessel media and the feed media. 

510 ml of feed media was made from an autoclaved 70% glucose solution at a volume of 

220 ml. Additional feed media components included Hy-Express System II (0.6% v/v), 
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magnesium sulfate (.012 M), thiamine (.0124 g), trace metals (0.6x), and antibiotics 

kanamycin (100 mg/ml) and chloramphenicol (60 mg/ml)). A 100 ml seed culture 

inoculated with the pET19kt-MiSp construct was grown to an OD600 of ~3 at 37°C and 

220 RPM and used to inoculate the BF115 bioreactor for a starting OD600 ~0.3. New 

Brunswick Biocommand software was used to monitor the aerobic fermentation and 

programmed to start the exponential feed pump when the cells ran out of glucose (pH 

spike combined with a dissolved oxygen drop). 

A cascade program was set to control oxygen input, air flow, agitation, and pH 

dependent on probe readout values. A separate feed pump of ammonium hydroxide was 

used to maintain pH and was controlled by this cascade program. The fixed parameters 

Figure 2-3. Benchtop bioreactor setup for MiSp expression 
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for growth were a pH of 7.0 and a dissolved oxygen saturation of 85%. The cascade 

program controlled the oxygen input and agitation to ensure 85% dissolved oxygen in the 

vessel was maintained. The culture was allowed to grow at 37°C for ~8 hours or until an 

OD600 of ~80 was reached. At this point, temperature in the vessel was decreased to 22°C 

and the culture was induced with a final concentration of 1 mM IPTG. Following 

induction, glucose concentration was kept between 5 and 10 g/l and hourly samples were 

taken. The aerobic fermentation was continued for 4 hours after induction.  

 Hourly samples were standardized for a final OD600 of 25 by dilution with lysis 

buffer (2 M urea, 20 mM Tris-HCL, 0.5 M NaCl, 2 mM EDTA) for SDS-PAGE and 

Western blot analysis. Samples were prepped using the same protocol as above for the 

flask study experiments.  

 

Purification of Synthetic Minor Ampullate Silk Proteins 

Purification of the four synthetic MiSps expressed in E. coli was achieved using 

three main purification methods following an initial extraction and purification step. Due 

to the different molecular weights and sequence information of these recombinant 

proteins, purification methods had to be adapted and optimized for each construct. 

Moreover, purity, solubility, and yield were factors that rendered certain methods 

unviable. Purification methods included immobilized metal affinity high performance 

liquid chromatography, fractional ammonium sulfate precipitations, and sequential 

precipitations using ethanol, isopropanol, and acetone.  
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MiSp Extraction and Initial Purification Steps  

Following the harvesting of the cells from the BioFlo/Celligen 115 bioreactor, the 

cell slurry was centrifuged at 11,652 rcf for 45 minutes. The cell pellet was collected and 

the media was discarded. This cell pellet was weighed and 1.5x wt/vol of a urea lysis 

buffer at a pH of 8 was used to suspend the cell pellet (2 M urea, 20 mM Tris-HCL, 0.5 

M NaCl, 2 mM EDTA). This suspension was sonicated with a QSonica sonicator with 

3/4" diameter probe at 40 A for 45 to 60 minutes or until mixture was homogenous and 

cell lysis was completed. This mixture was then centrifuged at 11,652 rcf for 45 minutes 

and the supernatant was collected in a 1 L glass bottle. The lysate was then heated in an 

80°C water bath for 15 minutes with intermittent mixing to denature and precipitate E. 

coli proteins. Polyethylenimine (PEI) was added at a final concentration of 0.2% v/v and 

allowed to mix for 5 minutes to precipitate nucleic acids and then centrifuged for 1 hour 

at 11,652 rcf. The supernatant was collected and stored at 4°C. 

 

Nickel Affinity High Performance Liquid Chromatography 

The polyhistidine (6X) tag at the N-terminus of the MiSp constructs was utilized 

for immobilization on a Ni-NTA resin using an AKTA Avant chromatography system. A 

GE XK-16 column was packed for a bed height of 14 cm. To maximize protein 

solubility, accessibility of the His-tag, and to mitigate protein-protein interactions MiSp 

sample solutions were prepared using a salt buffer with 2M urea, 8M urea, and/or 50% 

glycerol. Running buffer compositions were adjusted accordingly to minimize rapid 

concentration changes on the column. A custom program was created for the purification 



 

 

24 

of MiSp8 using Unicorn 6.0 workstation software. This program set sample injection rate 

to 1 ml/minute for slow application of sample onto the column and the flow through was 

collected. The column was washed with running buffer (0.5 M NaCl, 20 mM Tris-HCL, 

0.5 mM EDTA) and wash fractions were collected. 5 ml fractions were collected for 3 

column volumes at 5%, 10% and 100% imidazole elutions. Samples of these fractions 

were mixed 1:1 with 2x Laemmli sample buffer, heated for 15 minutes at 100 °C and 

analyzed by SDS-PAGE and western blot to confirm MiSp in solution. The His-tag 

antibody was used in western blotting to confirm MiSp in solution. 

Following SDS-PAGE analysis to confirm MiSp in the fractions that elicited a 

peak in the chromatographic spectra, both dialysis and ammonium sulfate precipitations 

were performed to precipitate the MiSps. Ammonium sulfate was slowly added to the 

chromatography fractions for a final saturation of 15% at 4°C. This was mixed for 35 

minutes and centrifuged for 1 hour at 11,652 rcf and the pellet was collected. The pellet 

was washed and agitated in diH2O until the conductivity of the supernatant was <10 

microsiemens and lyophilized for storage.  

As an alternative to ammonium sulfate precipitation, dialysis was performed to 

remove the salts from the chromatography fractions and precipitate the MiSps as well. 30 

kDa dialysis tubing (Sigma-Aldrich) containing the MiSp fractions was suspended in a 

large volume of stirred ddH20 solution that was replaced every 6-8 hours for ~3 days or 

until the conductivity of the dialysate remained constant. The sample was then 

centrifuged for 1 hour at 11,652 rcf and the pellet was lyophilized for storage.  
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Fractional Ammonium Sulfate Precipitations 

Following the PEI and heat treatments, fractional ammonium sulfate 

precipitations were done to target a saturation point where the MiSp precipitated, but left 

most other soluble proteins and non-protein impurities in solution. Following the heat and 

PEI treatments, ammonium sulfate was mixed with the clarified lysate to a final 

saturation of 5% at 4°C,  centrifuged at 11,652 rcf at 4°C for 45 minutes and the pellet 

was discarded. The remaining supernatant was mixed with ammonium sulfate at 4°C for 

a final saturation of 15%. The mixture was then centrifuged for 1 hour at 11,652 rcf and 

4°C. The pellet was collected and washed with diH20 until conductivity fell below 10 

microsiemens. The pellet was then lyophilized for storage and dry weight calculations.  

 

Ethanol/Isopropanol/Acetone Precipitations 

As an alternative precipitation method, ethanol, isopropanol (IPA), and acetone 

precipitations were investigated to attempt to increase the solubility of the precipitated 

protein without sacrificing purity.  

Clarified lysates pre-treated with heat and PEI, containing MiSp8, MiSp8s, 

MiSp16, and MiSp16s were first mixed with varying concentrations of cold ethanol, 

centrifuged at 4°C and 8,500 rpm for 45 minutes, and tested by SDS-PAGE for presence 

of MiSp in both the soluble and insoluble fractions. In the case of the larger proteins, 

fractional precipitations using cold IPA and acetone were needed to precipitate the 

protein as a final purification step. After SDS-PAGE analysis, protein pellets were 
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washed with 70% IPA until supernatant conductivity was below 10 microsiemens. Pellets 

then were lyophilized for storage and dry weight calculations.  

 

Preliminary Characterization of Synthetic Minor Ampullate Silk Proteins 

 

Aqueous Recombinant Minor Ampullate Silk Films 

 Lyophilized MiSp protein pellet was weighed and added to distilled water for a 

final concentration of 6% w/v in a sealed glass vial. The MiSps were solubilized in water 

using high heat and pressure as described in previously published methods using a 

microwave35. Propionic acid (99%) at a concentration of 1% v/v was added to the dope if 

the protein exhibited poor solubility. Once the silk was in solution, the dope was carefully 

spread onto clean 7x30 mm PDMS strips and allowed to dry (~400 ul of dope per strip). 

The films were peeled off the PDMS strips for mechanical testing. No additional post-

treatments were used on films before testing due to the small sample sizes at this project 

stage; however, it is likely that additional treatments such as film stretching may help 

enhance the film properties36,46. The films were measured for gauge length, width, and 

thickness, then glued to plastic C-card testing strips across an 8 mm gap as described in 

previously published methods36. Tensile testing was done using an MTS Synergie 100 

machine with a 50 N load cell. The C-card was positioned on the MTS machine clamped 

on both ends. The C-card was cut before testing so that only the film was being tested. 

Tensile data was collected using MTS TestWorks 4 (2001) and analyzed using Microsoft 

Excel for stress and strain values. 
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Fourier Transform Infrared Spectroscopy 

FTIR spectra were recorded using dry protein powder samples on an Agilent 660 

instrument with a diamond ATR accessory. The spectra were collected with 32 scans and 

a resolution of 4 cm-1. OriginPro 2018 software was used for baseline correction and 

deconvolution of the spectra. The Amide I band was fitted using three Gaussian peaks 

centered at 1620 cm-1 (β-sheet), 1650 cm-1 (α-helix/random coil), and 1698 cm-1 (β-

sheet), in accordance with the literature15,19. 

 

Statistical Analysis 

Mechanical properties were analyzed for significance using a two-tailed t-test 

assuming unequal variance with a null hypothesis that sample means were equal. A p-

value of <0.05 was deemed significant.  

 

RESULTS AND DISCUSSION 

 

Synthetic Minor Ampullate Silk Protein Constructs 

Using the build protocol outlined above in Figure 2-2, the double digests 

performed to build the complete MiSp contructs are shown in Figure 2-4. These gel 

extractions show the DNA pieces that were extracted and ligated together to create the 

complete MiSp plasmids.  
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Using the build protocol outlined above in Figure 2-2, the double digests 

performed to build the complete MiSp contructs are shown in Figure 2-4. These gel 

extractions show the DNA pieces that were extracted and ligated together to create the 

complete MiSp plasmids.  

  Following ligation and verification by sequencing, the complete MiSp gene 

constructs were removed from the pMK cloning vector and ligated into the pET19kt 

expression vector. The digested expression plasmids using BamHI and NdeI are shown in 

MiSp16 Build MiSp24 Build 

MiSp16s Build MiSp24s Build 

Figure 2-4. Gel extractions used to build the pMK-MiSp constructs 
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Figure 2-5 with the pET19kt vector at ~6000 bp and the MiSp insert running below it for 

each of the six inserts. Figure 2-6 shows the coding regions of these final minor 

ampullate silk protein constructs, with final protein molecular weights ranging from 40 to 

134 kDa.   

 

 

 

 

 

 

 

Figure 2-5. pET19kt-MiSp digested constructs 
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Expression of Synthetic Minor Ampullate Silk Proteins 

The goals of the high-density cell culture outlined in this thesis were to maximize 

the amount of MiSp in solution (soluble fraction) and minimize truncation so that the 

majority of this protein was full-size MiSp. Flask culture studies were effective in 

understanding how well these protein constructs expressed at low cell densities and how 

the temperature after induction affected the expression levels of these large and repetitive 

Figure 2-6. Coding regions for synthetic minor ampullate silk proteins 
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proteins. The flask study experiments also yielded information on the solubility of the 

protein constructs and how much of the expressed protein is stable in the soluble fraction 

after translation. Figure 2-7 shows the western blot analysis for the hourly samples taken 

during these flask study experiments when the temperature at induction was lowered to 

30°C.  Lanes 1-5 (SF0-SF4) on each membrane show the soluble fractions, while lanes 6-

10 (IF0-IF4) show the insoluble fraction of each cell sample for each MiSp construct. At 

the flask scale with the Terrific Broth media, OD600 varies between 1 and 3, so slight 

Figure 2-7. Western blots of flask study hourly samples to determine expression 
levels and solubility of MiSps; SF and IF denotes the soluble and insoluble fraction at 
each hour after induction; arrow indicates full-size MiSp  



 

 

32 

changes in protein expression and solubility are more readily noticeable than at high cell 

densities. As expected, expression for the two smallest protein constructs (MiSp8 and 

MiSp8s) is much higher than for the other four MiSp constructs of larger molecular 

weight as seen in the top row of Figure 2-7. Furthermore, as the constructs get larger, 

full-size protein is either not present, present in low quantities, or most of the full-size 

protein is in the insoluble fraction. The largest construct that saw expression at this 30°C 

induction temperature was MiSp16 at 68 kDa (second row left in Figure 2-7). A small 

amount of full-size protein is present in the soluble fraction, with the majority in the 

insoluble fraction. MiSp16s, MiSp24, and MiSp24s did not express at full size at  

an induction temperature of 30°C and the bands present in the expression checks for these 

constructs are highly truncated versions of the MiSp. At the flask scale, full-size 

expression was not seen for MiSp24 and MiSp24s at any of the induction temperatures 

tested. However, when the induction temperature was dropped to 22°C, full-size 

expression was seen for MiSp16s (95 kDa) as shown in Figure 2-8, but MiSp16s still 

showed significantly less expression than MiSp16. At this point, it was unclear whether 

enough MiSp16s would be produced for purification even after high density culture. 

Interestingly, the C-terminus antibody was also much more effective in detecting MiSp in 

solution at low cell densities than the His-tag antibody. This was the first indication that 

the His-tag at the N-terminus of the MiSp is not as readily available as the C-terminus 

when the proteins are folded in solution.  

 In the interest of time and the goals of this thesis, benchtop bioreactor runs were 

only performed for MiSp8, MiSp8s, MiSp16, and MiSp16s because full-size protein was 
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not expressed at any induction temperature for the MiSp24 and MiSp24s constructs at the 

flask scale. It is possible that the optimized expression of these constructs will involve the 

investigation of alternative expression conditions and molecular machinery that may 

nclude a different vector system28,47. The flask studies show that lower induction 

temperatures are necessary especially for the larger MiSp constructs, although the 

expression levels for MiSp16 and MiSp16s are lower than expected overall. The 

benchtop bioreactor experiments were used to analyze how high-density culture with 

OD600 values ranging from 80 to 100 may affect these expression conditions. Conditions 

for growth in these experiments were kept constant, with the exception of temperature 

and growth time after induction. Figures 2-9 and Figure 2-10 show expression at the 

benchtop bioreactor scale for MiSp8, MiSp8s, MiSp16, and MiSp16s.  

 At this scale, , MiSp8, MiSp8s, MiSp16, and MiSp16s are expressing at full size 

in the soluble fractions. As molecular weight increases, truncation becomes a more 

significant issue and there is less full-size protein in the MiSp16 and MiSp16s soluble  

Figure 2-8: Western blot of hourly samples from flask study expression checks for 
22°C induction; SF and IF denote soluble and insoluble fractions at each hour after 
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fractions. As molecular weight increases, truncation becomes a more significant issue and 

there is less full-size protein in the MiSp16 and MiSp16s soluble fractions than for 

MiSp8 and MiSp8s. For the MiSp16s expression, there is a higher concentration of the 

Figure 2-9. MiSp8 and MiSp8s hourly protein expression at the bioreactor scale in the 
soluble fraction standardized to OD600 25 

Figure 2-10. MiSp16 and MiSp16s hourly expression in the soluble fraction at the 
bioreactor scale; samples standardized to OD600 25 
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truncated products overall. The His-tag antibody was used for all western blots at the 

bioreactor scale because the His-tag is useful for detecting truncated forms of the MiSp. 

However, especially in the case of the smallest constructs (MiSp8 and MiSp8s), the His-

tag antibody more readily attached to MiSps that are running ~10 kDa lower than full 

size as seen in Figure 2-10. When the cell lysate samples are run with the C-terminus 

antibody, two distinct conformations of MiSp are seen: one running at full size on the 

SDS-PAGE, and one running ~10 kDa low as seen in the MiSp8s expression checks in 

Figure 2-11. Because the C-terminus is evident in both conformations, it is reasonable to 

assume both are full-size MiSp. Two other possible explanations could be that the protein 

was degraded after translation or that the custom rSSp C-terminus antibody is not specific 

enough. Degradation of the protein at the consistency seen in this high-density culture is 

unlikely because only two conformations are seen when the C-terminus antibody is used 

and they are seen in relatively high concentrations. Furthermore, the His-tag attaches to 

both conformations of the protein in solution; however, it attaches to the lower band with 

a much higher affinity as seen in Figures 2-9 and 2-10. Figure 2-11 also illustrates how 

the C-terminus antibody does not show the truncated versions of the protein seen when 

the His-tag antibody is used as in Figures 2-9 and 2-10.  

To rule out the possibility that the lower band is an E. coli protein impurity that 

binds to the C-terminus antibody, a blank BF115 benchtop bioreactor run was performed 

under the same constraints that were used for the MiSp aerobic fermentations. Expression 

checks were then performed on the hourly samples and a western blot was done using 
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both the His-tag antibody and the C-terminus antibody. Figure 2-12 shows the soluble 

and insoluble fractions of this “blank” expression test.   

The C-terminus antibody did attach to an E. coli impurity in the insoluble fraction 

of the cell lysate; however, no signal was seen in the soluble fraction as is evident in (A) 

of Figure 2-12. Therefore, it can be determined that the two bands seen in the expression 

checks of the MiSp high-density culture are both the target spider silk proteins. 

Additionally, the purification of MiSp involves the isolation of only the soluble fraction, 

so this E. coli impurity with an affinity to the C-terminus will be removed or mostly 

removed in the first centrifugation. Further investigation showed that the C-terminus 

antibody is less specific when used for insoluble pellet samples. Therefore, all additional 

pellet samples were analyzed using the His-tag antibody because this antibody did not 

result in any signal in either of the fractions as seen in (B) of Figure 2-12.  

Figure 2-11. Western blot using C-terminus antibody; Lane S: 65 kDa MaSp1 (M4) 
standard; Lane L: ladder; Lane SF soluble fraction MiSp8s lysate; Lane IF- insoluble 
fraction from MiSp8s lysate 
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Purification of Synthetic Minor Ampullate Silk Proteins 

 

MiSp Extraction and Initial Purification Steps 

MiSp8, MiSp8s, MiSp16, and MiSp16s were all extracted from the cell pellet 

using the protocol described above. Each of these constructs was tested for their stability 

at 80°C and with the addition of PEI to precipitate E. coli proteins and nucleic acids. 

These treatments were necessary to substantially clean up the lysate in order for future 

purification steps to be successful. Figure 2-13 illustrates this initial purification showing 

the MiSp8 (40 kDa) lysate supernatant before and after the PEI and heat precipitations. 

As seen in Lane 1 of Figure 2-13, the PEI and heat treatment are highly effective in 

removing most of the protein impurities present in the lysate, leaving the target protein as 

the most concentrated protein in solution.  

These precipitations did result in minor protein losses for the MiSp8 (40 kDa), 

MiSp8s, (53 kDa) and MiSp16 (68 kDa) constructs and more severe losses for the 

Figure 2-12. Hourly expression checks of soluble and insoluble fractions for blank 
BF115 run. SF: soluble fraction, IF: insoluble fraction; (A) Western blot using C-
terminus antibody. (B) Western blot using His-tag antibody.  
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MiSp16s (95 kDa). While a fraction of MiSp16s protein is still present after PEI and heat 

treatments, the concentration is substantially reduced when compared with the other 

MiSp constructs, indicating that MiSp16s is not as stable in the soluble fractions as the  

other three MiSps. Figure 2-14 shows the difference in concentration between MiSp16 

and MiSp16s after PEI and heat treatments. This stability difference is notable and is 

most likely due to the high molecular weight of the protein and not the presence of the 

two spacer regions in this construct. You can see in Figure 2-14 that after PEI and heat 

the majority of protein in solution is no longer the full-size MiSp16s depicted by the 

arrow. By comparison, MiSp16 (68 kDa) showed good stability in solution after lysis, 

heat, and PEI treatments and the majority of MiSp is full size, with acceptable levels of 

truncated product still present.  

Figure 2-13. MiSp8 SDS-PAGE showing lysate initial purification with heat and PEI. 
Lane 1- MiSp8 supernatant post-PEI treatment; Lane 2- MiSp8 pellet post-PEI 
treatment; Lane 3- MiSp8 supernatant post-lysis with no treatment; MiSp8 pellet post-
lysis with no treatment 

L     1         2        3        4 
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The amount of full-size MiSp16 and MiSp16s produced by the cells in high 

density culture was substantially lower than the smaller MiSp8 and MiSp8s constructs as 

described in this chapter. The losses experienced by MiSp16s in this initial purification  

step made downstream processes less viable for this construct from both a purity and a 

yield standpoint. This initial purification step was constant for each of the MiSp 

constructs going forward. The downstream processes and overall purifications for each of 

the MiSps are shown in Figure 2-15. 

Figure 2-14. Lysate processing using heat and PEI as an initial purification. Lane 1: 
MiSp16 (68 kDa) soluble fraction after heat and PEI treatments. Lane 2: MiSp16s (95 
kDa) soluble fraction after heat and PEI treatments 
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30 30 

Figure 2-15. Purification strategies used in synthetic minor ampullate silk protein purification  
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Nickel Affinity High Performance Liquid Chromatography 

Taking advantage of the 6X histidine tag at the N-terminus of the MiSp 

constructs, MiSp8 (40 kDa) and MiSp8s (53 kDa) were purified using this 

chromatography method as they were soluble. These constructs were chosen as the trial 

proteins for this purification method because their smaller size and increased expression 

levels allowed for the best-case scenario in terms of yield and solubility of the four MiSp 

constructs being expressed in the BF115 reactors. Previous studies have identified metal 

affinity chromatography as a suitable small-scale purification method for synthetic spider 

silk protein; however, most of these studies involved major ampullate 

spidroins25,29,45,48,49.  

The fractions collected after stepwise imidazole elutions from the column showed 

full-size MiSp8 and MiSp8s in solution. Figure 2-16 shows the SDS-PAGE analysis of 

the flow-through, wash, and elution fractions for the purification of MiSp8s.  

There are substantial amounts of low molecular weight impurities in the eluted 

fractions from the nickel column, as well as one high molecular weight impurity at ~90 

kDa. These impurities are only seen on the Coomassie blue stained SDS-PAGE as they 

do not show on a western blot analysis with the His-tag antibody, indicating that these 

impurities are not full-size spider silk protein and should not bind independently to the 

column. These issues persisted after repacking the column with fresh resin and 

troubleshooting with a series of both MiSp8 and MiSp8s purifications. 

Furthermore, the impurities could not be removed from the fractions by 

centrifugal filtration, pH precipitation, or dialysis. This indicated that it was probable  
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these protein impurities are interacting with the MiSp in solution, allowing them to bind 

and be eluted from the column with the protein of interest.  

 Nickel affinity chromatography is one of the more laborious and expensive 

methods for spider silk purification, especially at larger scales. Combined with the purity 

issues seen with the MiSp purification on the Ni-NTA column, the yields for the MiSp8 

and MiSp8s purifications averaged only ~15 mg rSSp/L aerobic fermentation. The low 

yields may be the result of inconsistent column binding and elution of the MiSp in 

solution—an issue that is likely due to the folding of the MiSps upon expression in E. 

coli, which limits the accessibility of the His-tag. Because of these low yields, alternative 

methods were explored to achieve yields that could sustain the goals of this thesis.  

Figure 2-16. SDS-PAGE of MiSp8s nickel affinity chromatography purification. 
Arrow indicates full-size MiSp8s. Lane 1: column flow through. Lane 2: column 
wash. Lane 3: 5% imidazole elution. Lane 4: 10% imidazole elution. Lane 5-6: 100% 
imidazole elution.  
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Fractional Ammonium Sulfate Precipitations 

 As with nickel affinity chromatography, fractional ammonium sulfate 

precipitations are frequently used in the purification of recombinant spider silk proteins to 

obtain a protein pellet that can be then resolubilized in a concentrated “dope” for material 

applications. For each synthetic MiSp construct, precipitations were done at varying 

saturations with ammonium sulfate to identify a saturation point where all the MiSp was 

removed from the soluble fraction. At 15% saturation and 4°C, each MiSp construct 

(MiSp8, MiSp8s, MiSp16, and MiSp16s) could no longer be detected by western blot in 

the soluble fraction, indicating that both conformations of MiSp seen in the lysate were 

now in the pellet. The yields for this method were much better than with the 

chromatography method, at about ~100-200 mg/L for each construct. Table 2-1 shows 

the dry yields for each protein construct. 

 

MiSp Construct Average Dry 
Yield (mg/L) 

MiSp8 200 
MiSp8s 187 
MiSp16 182 
MiSp16s 86 

 

  

Upon precipitation, however, a marked decrease in solubility was seen to the 

point that it was extremely difficult to resolubilize the pellet for analysis using SDS-

Table 2-1. Average dry weight totals for MiSp purification 
with fractional ammonium sulfate precipitations  
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PAGE. It was determined that the pellets were also completely insoluble under high heat 

and pressure, in harsh organic solvents such as hexafluoroisopropanol (HFIP), and in 

strong chaotropic salts such as guanidine thiocyanate and sodium dodecyl sulfate (SDS). 

Because of this incredible level of insolubility, it was difficult to evaluate the purity of 

the pellets and to verify that the protein was indeed present in the pellet sample due to the 

fact that SDS-PAGE requires protein denaturation and solubility. Qualitative analysis 

during the doping process under high heat and pressure indicated that the purity level was 

high, as there was no observed color change or phase separation in the vial with 

continued doping, even with the addition of propionic acid and ammonium hydroxide 

(0.5M) at concentrations up to 5%.  

To assess purity and verify the protein was not degraded or altered during the 

precipitation, a wide variety of methods was attempted to solubilize the pellet and the 

MiSps. Figure 2-17 shows sequential resuspensions and sonications of MiSp ammonium 

Figure 2-17. Urea and sarkosyl washes to verify MiSp in ammonium sulfate pellets. 
Lane 1-MiSp8s; Lane 2- MiSp16; Lane 3- MiSp8 insoluble; Lane 4- MiSp8s; Lane 5- 
MiSp8 insoluble; Lane 6- MiSp16s; Lane 7- MiSp16 

L    1       2    3      4       5       6     7   
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sulfate pellets with 8M urea and 2% sarkosyl, which eventually resulted in a very small 

amount of solubilization and denaturation of the MiSps so that they could be analyzed 

using SDS-PAGE and western blotting. In most of these cases, the protein concentration 

was only high enough for western blotting and bands were not visible on the Coomassie-

stained polyacrylamide gel. To evaluate the purity of the pellet, enough of the MiSp8 

pellet was eventually solubilized using sequential sonications with 8M urea, 2% sarkosyl, 

and doping under high heat and pressure. Figure 2-18 shows this gel. This was the first 

Figure 2-18. SDS-PAGE of partially solubilized MiSp8 (43 kDa) ammonium 
sulfate pellet 
 



 

 

46 

and only instance where enough of the ammonium sulfate protein pellet was solubilized 

for visualization on a Coomassie-stained polyacrylamide gel. In every other case, the 

concentration of soluble and denatured protein was only high enough for western blotting 

visualization (<100 ng).  

   Although the concentrations of the other constructs in solution did not meet the 

threshold to see a signal with the Coomassie stain, the MiSp8 pellet seen in Figure 2-18 

reinforces what was qualitatively evident. The ammonium sulfate precipitation results in 

an MiSp protein pellet with a high degree of purity. The insolubility of these pellets, 

however, was a significant problem because they could not be solubilized in any solvent 

for analysis, even at concentrations as low 1% w/v. Known issues in the expression and 

purification of synthetic spider silks are the aggregation and natural insolubility of these 

proteins both at the expression and purification stages; however, purified synthetic 

MaSps are still soluble in HFIP and SDS in the worst-case scenarios. Information from 

the literature has identified ammonium sulfate as one of the most viable methods for 

protein stability and solubility50. Data from the Lewis lab and others report that the level 

of aggregation and insolubility seen with MiSps at the ammonium sulfate step does not 

occur in the purification of MaSps and chimeric silks from a bacterial platform31,35,25,38.  

Further investigation with the precipitation of MiSps using dialysis showed a less 

drastic, but similar level of insolubility seen with the ammonium sulfate precipitations. 

Analysis of the pellets using FTIR did not show an increase in beta sheet structures; 

aggregation of the MiSps in the insoluble fraction therefore is the likely cause of the 

insolubility and it is not a result of structural changes occurring upon precipitation. 
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Increasing the precipitation time and slowly (0.5 ml/minute) adding solubilized 

ammonium sulfate to the clarified lysate to avoid the “crash” of the MiSp out of solution 

failed to improve the solubility of the pellet. Because of this, no material applications 

could be explored following this purification method.  

 

Ethanol/Isopropyl Alcohol/Acetone Precipitations 

 Although the fractional ammonium sulfate precipitations succeeded from a 

purification standpoint, alternate precipitation methods were explored so that the 

synthetic MiSps could be investigated for material applications. Ethanol, isopropyl 

alcohol (IPA), and acetone were chosen as potential alternatives because preliminary 

investigations showed that upon precipitation with these solvents, the MiSps were much 

more soluble so they could be denatured in SDS and analyzed. The reasons for this 

solubility difference are relatively unclear as the modes of action of precipitation between 

these methods aren’t inherently that different. In the alcohol/IPA/acetone precipitations 

however, the precipitation of MiSps happens instantaneously, which may not allow for 

the levels of protein binding and aggregation seen with methods like dialysis and 

ammonium sulfate where the concentration of free water diminishes more slowly. 

Alcohol precipitations also result in more impurities in the precipitate and are far less 

specific when it comes to the complete precipitation of both conformations of MiSp in a 

single step, as was achieved with the ammonium sulfate precipitation. The presence of 

these impurities may also interrupt the aggregated complex of MiSps that exhibited such 

incredible levels of insolubility. While obtaining more soluble MiSps was a positive 
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aspect of these methods, significant investigation was necessary to evaluate which 

combinations and concentrations of these solvents were needed to effectively precipitate 

both conformations of MiSp and still arrive at an acceptable purity level for material 

applications to be successful.  

The MiSp8, MiSp8s, and MiSp16 constructs underwent initial precipitations with 

each of these solvents and ethanol was identified as the best of the three solvents for 

precipitation of impurities because MiSps were very stable in high concentrations of 

ethanol. Interestingly, the stability in solution and solubility of each of these constructs 

decreased with molecular weight. Figure 2-19 shows the complete purification of MiSp8 

from the heat/PEI step through to the ethanol precipitation pellet. The MiSp8 (40 kDa) 

precipitated after the concentration of ethanol reached 30% (v/v), while the MiSp8s (53 

L     1       2       3 

Figure 2-19. MiSp8 purification. Lane 1: MiSp8 clarified lysate post heat and PEI 
treatments; Lane 2: discarded pellet from PEI and heat treatments; Lane 3: MiSp8 
pellet from a 30% ethanol cold precipitation, arrow indicates MiSp8 in final pellet 
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kDa) required an overnight precipitation or an additional 10% (v/v) precipitation to fall 

out of solution and much of the MiSp8s remained in solution under these circumstances.  

MiSp8 was best-suited for the alcohol precipitations because it exhibited the 

highest purity and best recovery when compared with the other constructs. The MiSp16 

was the most difficult protein to precipitate out of solution using the 

alcohol/IPA/acetone precipitation method. Figure 2-20 shows MiSp16’s stability in 

sequential precipitations using both ethanol and IPA. MiSp16 was stable in solution at 

concentrations up to 40% ethanol and 20% IPA, with minimal losses. This was  

convenient from a purification standpoint because the ethanol and IPA precipitations 

remove many non-protein impurities that have been known to cause problems 

downstream. However, these precipitations did not remove the low molecular weight 

protein impurities that also plagued the chromatography method and resulted in minimal 

losses of the smaller conformation of MiSp, which do not show with the His-tag antibody 

but do show with the C-terminus antibody. The lower molecular weight conformation of 

MiSp that was described in this chapter was shown to be less soluble than the higher 

molecular weight band; however, it is still believed to be full-size MiSp. To precipitate 

the rest of both conformations of MiSp16, an additional 20% acetone purification was 

used following the ethanol and IPA treatments. Figure 2-21 shows the pellets with 

varying concentrations of acetone. 

 The purification of MiSp16s using these methods was not viable because it was 

not stable enough to stay soluble following the initial PEI and heat purification step, 

which was an imperative step in this process due to the purity problems that presented  



 

 

50 

   

Figure 2-20. MiSp16 ethanol/IPA precipitations. Left: SDS-PAGE; Right: Western 
blot with His-tag antibody; Lane 1: 10% IPA/25% EtOH super; Lane 2: 10% IPA/25% 
EtOH pellet; Lane 3: 15% IPA/25% EtOH super, Lane 4: 15% IPA/25% EtOH pellet; 
Lane 5: 20% IPA/25% EtOH super; Lane 6: 20% IPA/25% EtOH pellet; Lane 7: 30% 
IPA/25% EtOH super; Lane 8: 30% IPA/25% EtOH pellet; Lane 9: 20% IPA/40% 
EtOH super; Lane 10: 20% IPA/40% EtOH pellet 

Figure 2-21. MiSp16 ethanol/IPA/acetone pellets; Lane 1: 10% acetone pellet; Lane 
2: 15% acetone pellet; Lane 3: 20% acetone pellet 

L  1   2     3   4    5   6    7    8    9   10  L  1   2     3   4    5   6    7    8    9   10  

L       1          2          3 
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themselves even after most of the E. coli proteins and nucleic acids were removed from 

that initial clean-up step. Table 2-2 shows the yields from these methods. Note that the 

yields are slightly higher than seen in the ammonium sulfate method; however, purity 

levels have to be considered in that analysis.  

 

 

 

 

 

 

 

 

 

 

 

These precipitations using alcohols and acetone were effective in that they 

produced synthetic MiSps that were markedly more soluble in the pellet form. This pellet 

could then be utilized in concentrated dopes for material applications; however, the purity 

was not at the level seen with the ammonium sulfate precipitations. These purity issues 

are unavoidable with this method because it requires high concentrations of alcohol or 

acetone to precipitate the MiSps, which also precipitates protein and non-protein 

impurities that remain in the clarified lysate. These impurities have been known to 

MiSp Construct Average Dry Yield 
(mg/L) 

MiSp8 250 

MiSp8s 228 

MiSp16 192 

MiSp16s n/a 

Table 2-2. Average dry weight yields for ethanol/IPA/acetone precipitations 
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present problems with protein workability and mechanical properties; however, the 

sacrifice of purity was necessary in these cases to avoid the solubility issues and move 

forward with the project goals.  

 

PRELIMINARY BIOPHYSICAL CHARACTERIZATION OF SYNTHETIC MINOR 
AMPULLATE SILK PROTEINS 
 

The preliminary characterization of aqueous minor ampullate silk proteins and 

their material applications allows for the first comparison between synthetic analogs of 

minor ampullate silk proteins and how the properties of MiSp films depend on 

purification processing, protein sequence, and protein molecular weight.  

FTIR spectra including the Amide I (1600-1700 cm-1) and Amide II (1500-1600 

cm-1) regions for MiSp8, MiSp8s, MiSp16, and MaSp1 (transgenic goat-derived) are 

shown in Figure 5-2. Goat-derived MaSp1 (65 kDa) was used as a control/comparison in 

these studies because it has similar sequence and structural motifs to the MiSps. Data is 

limited on Nephila clavipes MaSp1 produced from a bacterial platform; therefore, the 

goat-derived protein was the best alternative for a comparison. Figure 2-22 shows that 

MaSp1, MiSp8, and MiSp16 deviate little in their spectra and exhibit predominantly β-

sheet structures. However, the MiSp8s and MiSp16s spectra have a clear left shift. This 

indicates a transition to primarily α-helical/random coil structures. 
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To further analyze the spectra and this shift, the Amide I region was deconvoluted 

and Figure 2-23 shows these deconvolution results. The Amide I region was chosen for 

deconvolution because it is the primary amide vibration band and its vibration depends  

Figure 2-22. FTIR spectra of rSSps; 1624 cm-1 and 1530 cm-1 peaks mark prominent 
β-sheet regions in Amide I and Amide II  

1624 1530 
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Construct β- sheet (%) α-helix/random coil (%) 

MaSp1 60 29 

MiSp8 65 25 

MiSp8s 23 76 

MiSp16 60 36 

MiSp16s 19 77 

B 

A 

Figure 2-23. FTIR deconvolution results; A: Summary of deconvolution results; B: 
Deconvolution of Amide I of the IR spectra with peak centers at 1620, 1650, and 1698 
cm-1 
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on the secondary structure of the protein backbone, without hinderance from the  

nature of the residues’ side chains52. The three characteristic peaks used for the  

deconvolution were 1624 cm-1, 1650 cm-1, 1698 cm-1, which have been identified as 

reliable indicators of protein secondary structure in silk structural analyses using both 

FTIR and Raman spectroscopy51,52. Figure 2-23 (B) indicates the secondary structure 

assignments to these characteristic peaks53. All of the constructs had similar relative 

percentages of β-sheet and α-helical/random coil structures, with the exception of 

MiSp8s and MiSp16s. Figure 2-23 (A) shows these integration results. These were very 

interesting results because no definitive secondary structure has been directly associated 

with the spacer region; however, it has been hypothesized that the spacer region is 

composed mainly of α-helical structures, does not participate in β-sheet structures, and 

may also serve as a matrix to embed the crystalline regions13. The FTIR spectra of the 

MiSp8s and MiSp16s protein in this investigation adds evidence to these hypotheses 

because there is a definitive and significant shift towards α-helical/random coil structures 

compared with the MiSp8 and MiSp16 constructs.  

From this preliminary characterization, it can be deduced that the addition of the 

spacer region adds significant α-helical structures to the protein’s identity; however, it is 

unclear if the repetitive regions of MiSp8s and MiSp16s were unable to fold into their 

correct secondary structure due to the low β-sheet percentages seen from the 

deconvolution compared with MiSp8 and MiSp16.  
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To further characterize these spidroins and test their properties in material 

applications, films from an aqueous dope were created and tested. The protein pellets 

from the ethanol/IPA/acetone precipitations had to be used to complete this project goal 

because the insolubility of the ammonium sulfate pellets eliminated them for material 

applications. These pellets were significantly less pure than the ammonium sulfate 

pellets, and that may have had an effect on the mechanical properties of the aqueous 

films. Table 2-3 displays tensile mechanical properties. As expected based on the 

findings of prior publications, higher molecular weight was correlated with a higher 

average stress45. However, none of the stress values were statistically different from each 

other. Interestingly, the MiSp8s had just as high of an average stress value as the other 

rSSp constructs, which were determined to have a much higher β-sheet content from 

FTIR analysis; therefore, the helices in MiSp8s contribute substantially to tensile 

strength.  

rSSp 
Average 

Max Stress 
(MPa) 

Average 
Max Strain 

(%)  
MiSp8 (40 kDa) 20.54 ± 8.37 2.9 ± 1.1* 

MiSp8s (53 kDa) 25.9 ± 3.0 2.7 ± .1* 

MiSp16 (67 kDa) 30.67 ± 4.24 3.3 ± 0.2* 

MaSp1 (65 kDa) 39.1 ± 8.52 1.8 ± .2 

Table 2-3. Tensile data for rSSps aqueous films 

* denotes significance p <.05 
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 It has also been hypothesized that the presence of the spacer region may be the 

cause of the inelasticity of minor ampullate silk because it irreversibly deforms upon 

stretching13. The MiSp aqueous films used in this study therefore could not be stretched 

before testing. This stretching has been shown to increase tensile strength and strain in 

recombinant MaSps, possibly as a result of the alignment of the protein chains36. 

Therefore, the low strain value of the MaSp1 in Table 2-3 is somewhat deceptive, as 

unstretched MaSp1 was used for comparison with the MiSp aqueous films. Using 

established methods for film post-treatment and stretching, aqueous MaSp1 films can 

experience an increase in tensile stress by 2.5x and strain by 18x36. Due to the small 

sample sizes available in this study, significant investigation into post-treatments and 

stretching ratios could not be explored for the MiSp films. However, compared with 

unstretched MaSp1, the MiSp films all had higher strain values, which were significant. 

Based on what is known about the sequence of MiSp and its mechanical properties in 

nature, it is not known whether custom post-treatment methods can be used to increase 

these strain values. However, it is likely that future work with MiSp film treatments and 

processing could significantly increase the tensile strength, as is seen with the 

recombinant MaSps. Possible film treatments include dope additives, alcohol baths, and 

ratios of film stretching.   
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CHAPTER 3 

CONCLUSIONS 

 

 This is the first known investigation involving synthetic recombinant minor 

ampullate silk proteins. The study of synthetic spider silk proteins has largely been 

confined to the major ampullate silks, however understanding the expression and 

purification considerations for other silk proteins may expand the material possibilities 

for synthetic spider silk industrial use. Using synthetic protein analogs may also shed 

light on how protein sequence motifs translate to secondary structure and mechanical 

properties. In this investigation, six synthetic MiSp constructs with varying iterations of 

characteristic protein motifs were created for expression in E. coli. These proteins were 

then successfully expressed at full-length in high-density cell culture at molecular 

weights ranging from 40 to 95 kDa.  

 Protein expression and extraction were more efficient with the lower molecular 

weight constructs and two conformations of MiSp could be detected in the soluble 

fraction depending on the antibody used, which was likely due to folding inconsistencies 

in high-density culture.  

 In order to study these protein analogs, four general purification methods were 

used: an initial lysate purification using PEI and heat treatments, nickel affinity 

chromatography, fractional ammonium sulfate precipitations, and ethanol/IPA/acetone 

precipitations. MiSp’s folding patterns introduced challenges in purification, as the 

expressed proteins exhibited a limited accessibility to the 6x-His tag. As a result, nickel 
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affinity chromatography produced yields that were too low to support the goals of this 

project. Furthermore, low molecular weight impurities interacting with the MiSps in 

solution created purity problems throughout the purification processes.  

 Fractional ammonium sulfate precipitations produced an MiSp pellet that 

exhibited the highest purity level of all the purification methods, however protein 

aggregation resulted in a totally insoluble pellet that prevented use of the protein for all 

material applications. In order to precipitate the protein and solubilize the pellet in high 

concentration dopes for material applications, ethanol/IPA/acetone precipitations had to 

be used to preserve the solubility of the MiSps. The solubility difference of these solvent-

extracted pellets could be due to the lower purity of the final pellet or it could be due to 

the rapid phase change the proteins undergo when exposed to the solvents. This method, 

although effective from a solubilization standpoint, was not ideal due to the fact that the 

solvent precipitations were not selective, which resulted in some MiSp left in solution 

and/or more impurities in the final pellet that may have interfered with mechanical 

properties of the materials.  

 A preliminary structural investigation and comparison was done using FTIR-ATR 

spectroscopy, which showed very little difference in secondary structure between MiSp8, 

MiSp16, and goat-derived MaSp1. These proteins all exhibited predominantly β-sheet 

structures, with ~20% α-helices contributing to the spectra. However, the MiSp8s and 

MiSp16s proteins including the spacer region(s) showed a definitive shift in the spectra 

and its secondary structure exhibited significant α-helices. This is the first defined 

characterization of the spacer region.  
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 For information on how these secondary structures transfer to mechanical 

properties, aqueous MiSp films were created for tensile testing and compared to each 

other and unstretched, goat-derived MaSp1. The tensile stress of these films were not 

significantly different from each other or MaSp1. However, the strain values were all 

significantly higher than the strain of unstretched MaSp1. This result is interesting, but it 

must be also considered that the more characterized MaSp1 films experience increases in 

tensile properties when they are processed in a series of post-treatments that include a 

variation of stretch baths36. The sample sizes in this study were inadequate for an in-

depth investigation of film processing as has been done previously for the MaSps, 

however it is likely that with processing MiSp films would also see an increase in tensile 

strength. Since these proteins are naturally inelastic, it is unlikely that MiSp films would 

see the elongation increases seen for MaSps—allowing them to fill different niches in 

product applications, such as ballistics.  

 

Future Work 

While this investigation yielded the first information on synthetic minor ampullate 

silk proteins, more work needs to be done to improve extraction efficiency, yields, 

protein purity, and material mechanical properties. While four MiSps were produced in 

the soluble fraction of high-density culture, there are folding inconsistencies of the full-

size protein that are not yet fully understood. This causes variation in the behavior of the 

MiSps in solution, which complicates purifications that take advantage of protein charge, 

solubility, and folding and ultimately affects the yield and purity of the processes. 



 

 

61 

MiSp16s showed a high instability in solution after extraction, which resulted in an 

inability to purify it for use in aqueous films. Future work will require an investigation of 

the stability requirements for these proteins after lysis, as well as what can be done to 

prevent the aggregation and insolubility issues presented with the fractional ammonium 

sulfate precipitations. This may also require alternative purification methods such as ion-

exchange chromatography, size exclusion chromatography, or reverse-phase 

chromatography. Investigating these other chromatography methods allows for an 

opportunity to significantly clean up the clarified lysate before precipitation, as the 

precipitation step was identified in this investigation as a critical step that always 

introduced either purity and/or insolubility issues.    

 Using these synthetically produced spidroins, more work can be done to study the 

structural implications of the arrangement and prevalence of MiSp’s amino acid motifs. 

Investigating the processing and post-treatment of aqueous films may contribute to this, 

as it is still unclear if mechanical properties of these films may be enhanced, as is seen 

with MaSp aqueous films.  

 

Engineering Significance and Innovation 

 

Significance 

The functional diversity of spider silks creates unique opportunities for robust, 

biocompatible, and ecofriendly alternatives for a variety of polymer applications35,37,55–59. 
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Because of the unique properties of spider silks, significant research efforts have focused 

on the native protein sequences and folding structures. Among this research, most 

investigations focus on the major ampullate silks. This is due to factors that include the 

impressive combination of strength and elasticity seen in the dragline silk, the large size 

of the major ampullate gland, and the fact that the native dragline silk fibers can be more 

easily isolated from the spider for fiber and protein characterization40. While the 

sequences of the other six silks have been determined, significantly less research has been 

done on their folding structures and mechanical properties. For most of the silks, little to 

no research has been published on their synthetic production making them difficult to 

study and further characterize for potential material applications.  

Minor ampullate silk is one of these lesser studied silks that possesses properties 

that could be well suited for many applications. Native minor ampullate silk is difficult to 

harvest because the natural fibers are significantly smaller in diameter than other spider 

silk fibers and no minor ampullate silk is easily identifiable in the orb web because it is 

used as a template for the capture spiral and most species later replace it with flagelliform 

silk3. Therefore, studying minor ampullate silk proteins synthetically makes it possible to 

study the protein sequences and their subsequent folding structures and how the 

production of these proteins compares with the production of other spider silk proteins, 

namely the major ampullate silk proteins11. 

Because of the limited published investigations into synthetic analogs of most of 

the spider silk proteins, engineering the production and purification of these proteins is 

novel and requires extensive planning, testing, and revision as was evident in this thesis. 
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The folding mechanisms of synthetic spider silk proteins are still not entirely understood, 

therefore we do see folding inconsistencies and insolubility issues in the synthetic 

production and purification of spider silk proteins. Interestingly, these issues present 

differently and are more drastic for certain silks compared with others. This may be one 

of the reasons that there are so few published investigations of synthetic spider silk 

proteins that are not the MaSps. Investigations like these are needed to understand how 

sequence motifs, molecular weight, and secondary structure of each of the proteins may 

be considered to engineer expression and purification methods that are specifically 

designed for each spider silk protein. Many of the problems associated with expression 

and purification are similar and solutions may be deduced from the further study of many 

different spider silk proteins that have slight modifications to their sequence and folding 

structures.  

These investigations also have the potential to expand the opportunities for these 

proteins and their potential use in industry. The spider silk gene family is diverse and the 

mechanical properties that each silk possesses could result in material applications for a 

wide variety of industries that include textiles, medical, ballistics, outdoor etc.  

 

Innovation 

This thesis, combined with other investigations, has significantly broadened the 

knowledge of how protein sequence translates to secondary structure and mechanical 

properties. This may allow for the construction of new chimeric silks that could be tuned 

for the selection of certain properties. Each of the seven spider silks possesses properties 



 

 

64 

that could diversify the portfolio for potential material applications and products. For 

example, major ampullate silk is bulletproof by nature and can absorb and dissipate high 

amounts of energy, but its elasticity disqualifies it for real-life ballistic applications. 

Minor ampullate silk, on the other hand, achieves a high tensile strength while 

maintaining an elongation that is identical to Kevlar5. Ballistic recombinant spider silk 

materials would also be environmentally friendly to produce and more lightweight than 

their competitors5. 

Another interesting property of minor ampullate silk is that it does not 

supercontract in water, which is a phenomenon seen in the major ampullate silk that is 

not entirely understood. Previous studies have shown that major ampullate silk’s tensile 

properties are affected significantly more than minor ampullate silk properties when 

tested in water due to the plasticizing effect of supercontraction. This might be due to the 

fact that MiSps are more crystalline than MaSps, causing a lower loss of orientation when 

exposed to water57. It has been hypothesized that the proline content of the silk protein 

may also be a contributing factor. This must be accounted for when developing materials 

that have high exposure to moisture and aqueous environments, such as medical materials 

or implants. Tuning the crystallinity of a chimeric silk or combining a variation of silk 

proteins could result in a polymer material that possesses a variation of the sought-after 

properties of silks. 

Based on the findings of this thesis, the highly conserved spacer region 

contributes helical structures to the final protein structure. These helices have been 

known to contribute to tensile strength and, based on expression results in this thesis, may 
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allow for the construction of higher molecular weight silk proteins due to its 

nonrepetitive nature. 

 

Potential Drawbacks and Cost Analysis 

 The synthetic production of these proteins in transgenic systems remains a 

limiting factor in the design of prototype materials and their subsequent use in industry. 

Referring Figure 1-533, rSSp production in bacterial systems needs to reach yields of 10 

g/l of fermentation to compete with fiber materials such as Kevlar, which sell for about 

$20-$30/kg60. However, non-fiber applications such as films, coatings, adhesives, 

lyogels, hydrogels, and foams typically require much less protein than fibers do, which 

increases the cost-effectiveness of rSSps for these materials35. MiSp yields from E. coli 

have been shown in this thesis to be low (~100-300 mg/L) compared with other reported 

yields of rSSps like MaSp2 (800 mg-2 g/L)26,29,49,54. Similar low yields in bacterial 

systems, such as those seen for the MiSps, have been reported for high molecular weight 

constructs of MaSp1. This is likely due to the fact that MaSp2 has been the subject of 

more studies as far as synthetic production is concerned. More research needs to be done 

to optimize the parameters of cell growth, protein expression, protein extraction, and 

purification methods for these protein constructs to maximize yields and purity to 

increase the likelihood that synthetic rSSps may be used in industrial products.  
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Background 
 
 In 2004, Takara Bio developed a series of cold-shock expression vectors (pColdI, 

pColdII, pColdIII, and pCold IV)61. These systems regulate gene expression using the 

cspA promoter, which exhibits up-regulation at growth temperatures of 15°C62. This, 

coupled with an upstream lac operator sequence prevents leaky expression at 37°C and 

allows for gene expression and protein translation to occur at low temperatures after the 

addition of IPTG. The vector also includes a translation-enhancing element (TEE) and a 

6x-His tag. This process allows expression of the target protein at high yields, while 

suppressing cell growth and the expression of other cellular proteins. A vector map of 

pColdII is shown in Figure A-1. 

Figure A-1. Vector map of pColdII 
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  These vectors are currently being explored as an alternate choice for recombinant 

spider silk protein production as well as for the production of other eukaryotic proteins63. 

These large and repetitive proteins exhibit both expression and solubility limitations upon 

expression in E. coli, which may make them prime candidates for a cold-shock 

expression system.  

 
Materials and Methods 
 
 
MiSp-pColdII Constructs 
 

The linearized synthetic MiSp constructs MiSp8 and MiSp16 were ligated into 

pColdII using the restriction sites BamHI and NdeI in the multiple cloning site of the 

expression vector. Figure A-2 shows these final digested constructs, which were verified 

by sequencing (ACTG, Inc).  

 

MiSp16 MiSp8 

Figure A-2. MiSp-pColdII digested constructs 
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MiSp-pColdII Preliminary Flask Study 
 

Once the synthetic MiSp-pColdII constructs had been verified, a preliminary flask 

study was performed to evaluate expression levels of MiSp8. In order to effectively 

compare the expression levels between the pColdII system and the pET19kt system, two 

side-by-side 1L flask studies were done using MiSp8-pColdII and MiSp8-pET19kt. 

Overnight cultures of a single colony of each construct were used to inoculate both flasks 

containing Terrific Broth media as was described in Chapter 2. Both flasks were 

incubated at 37°C and 200 RPM until OD600 values reached 0.6 to 0.8. At this point, the 

pColdII flask was removed from the incubator and chilled on ice until the temperature of 

culture dropped to 15°C. Both flasks were then inoculated with a final concentration of 

1mM IPTG. After induction with IPTG, the pColdII flask was incubated at 15°C and the 

pET19kt flask was incubated at 25°C according to the protocol in Chapter 2. Both flasks 

were incubated for 24 hours after induction.  

Unfortunately, the pColdII vector has not yet been adapted to include the C-

terminus region that the pET19kt vector includes so western blot analysis of the hourly 

samples had to be done using the His-tag antibody to compare the expression to the 

pET19kt expression system. Expression tests and SDS-PAGE analysis was done 

according to the protocol in Chapter 2.  

 
Preliminary Results and Discussion 
 

Recombinant spider silk proteins have traditionally been difficult to express in 

bacterial systems like E. coli due to significant truncation of the full molecular weight 
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product and improper folding that results in insoluble inclusion bodies that are difficult to 

extract and purify.    

Because the pColdII vector lacks the C-terminus coding region, analysis had to be 

done using the His-tag antibody instead of the C-terminus antibody. This was not ideal, 

as the prior flask studies carried out in this thesis showed that the folding of MiSps limit 

the accessibility of the His-tag and it was difficult to get a strong signal at the low protein 

expression levels available at the flask scale, whereas the C-terminus antibody gives a 

much stronger signal at these low expression levels. The expression checks showing the 

soluble fractions of both of these flask studies are shown in Figure A-3. It’s seen in this  

western blot analysis that expression of MiSp8 was evident in both the pColdII and 

pET19kt flask, however this preliminary flask study shows that the pET19kt flask may 

have resulted in higher expression levels than the pColdII flask. The MiSp8 expressed in 

L     1    2     3      4      5     6       7    8  

Figure A-3. His-tag western blot of pColdII and pET19kt expression of MiSp8. Lanes 
1-4: soluble fractions of pColdII flask at hours 4, 16, 21, 24 after induction; Lanes 5-8: 
soluble fractions of pET19kt flask at hours 4, 16, 21, and 24 after induction 
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the pColdII system does appear to have lower levels of truncation. This lower level of 

truncation is to be expected based on the low induction and incubation temperature.  

 

Conclusions 

Two synthetic MiSp constructs  (MiSp8 and MiSp16) were ligated into a pColdII 

expression vector for expression analysis compared to a pET19kt expression system. A 

preliminary flask study exhibiting a side-by-step 24 hour induction of MiSp8 showed that 

the pColdII vector did not show significantly higher expression in the soluble fraction of 

recombinant protein when compared to pET19kt, however it does appear to result in 

lower levels of truncation. This may be significant at larger scales where truncation 

becomes an issue at higher OD600 values. Because pColdII carries an ampicillin resistance 

gene, benchtop bioreactor studies were not done to evaluate these truncation levels at 

higher OD600 values. Ampicillin is not compatible with high-density, as beta-lactamase 

causes degradation problems in high-density culture.  

Future work needs to be done to evaluate how well this expression system may 

work with the production and purification of synthetic MiSps. In order to work with this 

vector in high-density culture, a kanamycin adapter needs to be cloned in and more 

analysis needs to be done on the expression and truncation levels of each recombinant 

spider silk protein. Data from this thesis and from literature indicate that lower induction 

temperatures help with the truncation and overall yield of these proteins, therefore a cold-

shock vector system like pColdII may be a suitable alternative to pET series vectors.   
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APPENDIX B 

SYNTHETIC RECOMBINANT MINOR AMPULLATE SILK PROTEIN SEQUENCES 
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**C-termini highlighted in blue and spacer regions highlighted in yellow** 

 
MiSp8 
 
M T G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A 
G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G 
A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G 
A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G 
A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G 
A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A 
G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A 
G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A 
G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A 
G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G 
G Y G G Q G G Y G A G A G A G A A A A A G A G A S G G D P G S A S R L A S P 
D S G A R V A S A V S N L V S S G P T S S A A L S S V I S N A V S Q I G A S N P 
G L S G C D V L I Q A L L E I V S A C V T I L S S S S I G Q V N Y G A A S Q F A Q 
V V G Q S V L S A F A A Stop 
 
 
MiSp8s 
 
M T G G G S S A G N A F A Q S L S S N L L S S G D F V Q Met I S S T T S T D E A 
V S V A T S V A Q N V G S Q L G L D A N A Met N N L L G A V S G Y V S T L G N 
A I S D A S A Y A N A L S S A I G N V L A N S G S I S E S T A S S A A S S A A S S 
V T T T L T S Y G P A V F Y A P S A S S G G S G G A G G Y G R G A G A G A G A 
A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G 
G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A 
A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G 
Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A 
A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G 
Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A 
A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q 
G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A 
G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y 
G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A 
A A G A G A S G G D P G S A S R L A S P D S G A R V A S A V S N L V S S G P T 
S S A A L S S V I S N A V S Q I G A S N P G L S G C D V L I Q A L L E I V S A C V 
T I L S S S S I G Q V N Y G A A S Q F A Q V V G Q S V L S A F A A Stop 
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MiSp16  

M T G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A 
G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G 
A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G 
A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G 
A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G 
A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A 
G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A 
G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A 
G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A 
G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G 
G Y G G Q G G Y G A G A G A G A A A A A G A G A S G G A G G Y G R G A G A 
G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A 
G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A 
G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G 
G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G 
A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G 
G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G 
A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G 
Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A 
G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G 
A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A 
G A A A A A G A G A S G G D P G S A S R L A S P D S G A R V A S A V S N L V S 
S G P T S S A A L S S V I S N A V S Q I G A S N P G L S G C D V L I Q A L L E I V 
S A C V T I L S S S S I G Q V N Y G A A S Q F A Q V V G Q S V L S A F A A Stop 
 
MiSp16s 
 
M T G G G S S A G N A F A Q S L S S N L L S S G D F V Q M I S S T T S T D E A V 
S V A T S V A Q N V G S Q L G L D A N A M N N L L G A V S G Y V S T L G N A I 
S D A S A Y A N A L S S A I G N V L A N S G S I S E S T A S S A A S S A A S S V T 
T T L T S Y G P A V F Y A P S A S S G G S G G A G G Y G R G A G A G A G A A A 
G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y 
G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A 
A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G 
G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G 
A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G 
R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A 
A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G 
Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A 
G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R 
G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A 
G A G A S G G G S S A G N A F A Q S L S S N L L S S G D F V Q M I S S T T S T D 
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E A V S V A T S V A Q N V G S Q L G L D A N A M N N L L G A V S G Y V S T L 
G N A I S D A S A Y A N A L S S A I G N V L A N S G S I S E S T A S S A A S S A 
A S S V T T T L T S Y G P A V F Y A P S A S S G G S G G A G G Y G R G A G A G 
A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G 
G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G 
A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G 
Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A 
G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G 
A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A 
G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y 
G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G 
A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A 
G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G 
A A A A A G A G A S G G D P G S A S R L A S P D S G A R V A S A V S N L V S S 
G P T S S A A L S S V I S N A V S Q I G A S N P G L S G C D V L I Q A L L E I V S 
A C V T I L S S S S I G Q V N Y G A A S Q F A Q V V G Q S V L S A F A A Stop 
 
 
MiSp24 
 
M T G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A 
G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G 
A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G 
A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G 
A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G 
A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A 
G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A 
G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A 
G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A 
G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G 
G Y G G Q G G Y G A G A G A G A A A A A G A G A S G G A G G Y G R G A G A 
G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A 
G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A 
G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G 
G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G 
A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G 
G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G 
A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G 
Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A 
G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G 
A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A 
G A A A A A G A G A S G G A G G Y G R G A G A G A G A A A G A G A G A G G 
Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A 
G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G 
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A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A 
G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y 
G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G 
A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A 
G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G 
A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G 
G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A 
A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A S G G D 
P G S A S R L A S P D S G A R V A S A V S N L V S S G P T S S A A L S S V I S N 
A V S Q I G A S N P G L S G C D V L I Q A L L E I V S A C V T I L S S S S I G Q V 
N Y G A A S Q F A Q V V G Q S V L S A F A A Stop 
 
 
MiSp24s 
 
M T G G G S S A G N A F A Q S L S S N L L S S G D F V Q M I S S T T S T D E A V 
S V A T S V A Q N V G S Q L G L D A N A M N N L L G A V S G Y V S T L G N A I 
S D A S A Y A N A L S S A I G N V L A N S G S I S E S T A S S A A S S A A S S V T 
T T L T S Y G P A V F Y A P S A S S G G S G G A G G Y G R G A G A G A G A A A 
G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y 
G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A 
A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G 
G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G 
A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G 
R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A 
A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G 
Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A 
G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R 
G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A 
G A G A S G G G S S A G N A F A Q S L S S N L L S S G D F V Q M I S S T T S T D 
E A V S V A T S V A Q N V G S Q L G L D A N A M N N L L G A V S G Y V S T L 
G N A I S D A S A Y A N A L S S A I G N V L A N S G S I S E S T A S S A A S S A 
A S S V T T T L T S Y G P A V F Y A P S A S S G G S G G A G G Y G R G A G A G 
A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G 
G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G 
A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G 
Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A 
G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G 
A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A 
G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y 
G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G 
A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A 
G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G 
A A A A A G A G A S G G G S S A G N A F A Q S L S S N L L S S G D F V Q M I S 
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S T T S T D E A V S V A T S V A Q N V G S Q L G L D A N A M N N L L G A V S G 
Y V S T L G N A I S D A S A Y A N A L S S A I G N V L A N S G S I S E S T A S S A 
A S S A A S S V T T T L T S Y G P A V F Y A P S A S S G G S G G A G G Y G R G 
A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G 
A G A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G 
A G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A 
G A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A 
G A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A 
G A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A 
G A G A G A A A A A G A G A G G A G G Y G R G A G A G A G A A A G A G A G 
A G G Y G G Q G G Y G A G A G A G A A A A A G A G A G G A G G Y G R G A G 
A G A G A A A G A G A G A G G Y G G Q G G Y G A G A G A G A A A A A G A G 
A G G A G G Y G R G A G A G A G A A A G A G A G A G G Y G G Q G G Y G A G 
A G A G A A A A A G A G A S G G D P G S A S R L A S P D S G A R V A S A V S N 
L V S S G P T S S A A L S S V I S N A V S Q I G A S N P G L S G C D V L I Q A L L 
E I V S A C V T I L S S S S I G Q V N Y G A A S Q F A Q V V G Q S V L S A F A 
A Stop 
 
 
 
 
 

 
 
 
 
 

https://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.70252,2
https://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.70252,2
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