
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2019

Error-Floors of the 802.3an LDPC Code for Noise Assisted Error-Floors of the 802.3an LDPC Code for Noise Assisted

Decoding Decoding

Tasnuva Tarannum Tithi
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Tithi, Tasnuva Tarannum, "Error-Floors of the 802.3an LDPC Code for Noise Assisted Decoding" (2019).
All Graduate Theses and Dissertations. 7465.
https://digitalcommons.usu.edu/etd/7465

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/220142245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fetd%2F7465&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7465?utm_source=digitalcommons.usu.edu%2Fetd%2F7465&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

ERROR-FLOORS OF THE 802.3AN LDPC CODE FOR NOISE ASSISTED

DECODING

by

Tasnuva Tarannum Tithi

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

Approved:

Chris Winstead, Ph.D. Jacob Gunther, Ph.D.
Major Professor Committee Member

Reyhan Baktur, Ph.D. Todd Moon, Ph.D.
Committee Member Committee Member

Haitao Wang, Ph.D. Richard S. Inouye, Ph.D.
Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2019

ii

Copyright © Tasnuva Tarannum Tithi 2019

All Rights Reserved

iii

ABSTRACT

Error-Floors of the 802.3an LDPC Code for Noise Assisted Decoding

by

Tasnuva Tarannum Tithi, Doctor of Philosophy

Utah State University, 2019

Major Professor: Chris Winstead, Ph.D.
Department: Electrical and Computer Engineering

This work characterizes a new noise assisted decoding algorithm called the Noisy Gra-

dient Descent Bit-Flip (NGDBF) for Low Density Parity Check (LDPC) codes on AWGN

channel. The NGDBF algorithm is an improvement over the Gradient Descent Bit-Flip

(GDBF) algorithm. Random perturbations is used in the decision function to escape from

local minima. An improvement over NGDBF is proposed called the Re-decoded NGDBF

(R-NGDBF). In the re-decoded version, a number of decoding phases are used per received

message instead of a large number of iterations in NGDBF. A Markov chain Monte Carlo

(MCMC) based technique is proposed to estimate the error-floors of the IEEE 802.3an

LDPC code, for different decoding parameters of NGDBF. The error-floor of the IEEE

802.3an LDPC code is dominated by a structure in the code-graph called the (8,8) trap-

ping set. This dissertation focuses on finding decoding parameters for NGDBF algorithm

to resolve the (8,8) trapping set errors to ultimately lower the error-floor. In the MCMC

estimation technique, every possible decoding decision is represented as a state. With every

iteration of the NGDBF algorithm, flipping one or more bits moves the decision from one

state to another state. As the probability of a flip is dependent on the random noise added

by NGDBF decoder, the different states of the decision can be considered as the states of

a Markov chain. A transition matrix containing the flipping probabilities for each bit can

iv

be obtained using the initial state of the received channel message, and the noise variance

of the random perturbation. Once the matrix is obtained, it is simple to find the steady

state probabilities of the chain. The steady state probabilities reveal the probability of error

for a given channel message. Importance sampling was used to obtain erroneous messages

at high SNRs for the (8,8) trapping set structure for varying decoding parameters such as

“weight (w)” corresponding to the syndrome weight and “noise-scale (η)”corresponding to

the scaled noise variance used in the decoder. The obtained error-floor was scaled by 104

to account for the multiplicity of the (8,8) trapping set, to obtain a true estimation of the

error-floor. Also, another set of simulations were performed to estimate any newly created

errors by the random noise in the NGDBF decoder. The ultimate error-floor is estimated

to be where the two sets of simulations cross over each other. The decoder was fully synthe-

sized, implemented and validated for the Xilinx VCU118 FPGA board using Vivado 2017.1.

The estimated decoding parameters “weight (w)” and “noise-scale (η)” were used in the

implementation to validate the MCMC simulation result, and the results corroborated.

(72 pages)

v

PUBLIC ABSTRACT

Error-Floors of the 802.3an LDPC Code for Noise Assisted Decoding

Tasnuva Tarannum Tithi

In digital communication, information is sent as bits, which is corrupted by the noise

present in wired/wireless medium known as the channel. The Low Density Parity Check

(LDPC) codes are a family of error correction codes used in communication systems to

detect and correct erroneous data at the receiver. Data is encoded with error correction

coding at the transmitter and decoded at the receiver. The Noisy Gradient Descent Bit-

Flip (NGDBF) decoding algorithm is a new algorithm with excellent decoding performance

with relatively low implementation requirements. This dissertation aims to characterize

the performance of the NGDBF algorithm. A simple improvement over NGDBF called

the Re-decoded NGDBF (R-NGDBF) is proposed to enhance the performance of NGDBF

decoding algorithm. A general method to estimate the decoding parameters of NGDBF is

presented. The estimated parameters are then verified in a hardware implementation of the

decoder to validate the accuracy of the estimation technique.

vi

To my family and teachers...

vii

ACKNOWLEDGMENTS

My sincerest gratitude to my advisor Dr. Chris Winstead, for being my mentor, for

training me to become an engineer, for the patience and for the most pleasant company.

The Low Energy Fault Tolerant (LE/FT) lab, became my home since the summer of 2012.

Our lab, though small in size and number of students, has never had any shortage of ideas

and projects. Nor was I ever limited by hard-lined research area to work on. I have enjoyed

unlimited freedom, acceptance and continued financial support at our lab- that has been a

sanctuary to me for the last 7 years.

I came to USU as an MS student in the fall of 2011, and decided to continue my Ph.D.

under Dr. Winstead’s supervision. Initially overwhelmed by the curriculum here at the ECE

department with my background in Applied Physics, it took me a longer time to become a

productive Ph.D. student. It started to get easier as my advisor invested a lot of his time

and energy training me. I thank him for his patience, friendship, and work philosophy. With

his guidance, I have enjoyed working on projects on Information theory - Error correction

codes, coding up FPGA boards, Cyber-physical security for autonomous vehicles, and being

a TA for microelectronics. Unlike most Ph.D. students, I enjoyed every single day of my

time working on my degree. My grateful thanks to all the current and former students at

LE/FT lab- Gopal, Yi, Soudeh, Mckay, Rakin and Reejoy for their warm friendship and

dedication. Most importantly Gopal, whose research started the Noisy Gradient Bit-Flip

decoding (NGDBF) project, and later became my area of research for Ph.D. dissertation,

deserves special mention. My Ph.D. work was financially supported by the US National

Science Foundation and the Research Catalyst grant from Utah State University.

Over this long period, I have been fortunate to take a lot of the graduate courses

offered by the ECE department- which has left me at awe with our faculty. Thanks to

Dr. Todd Moon and Dr. Jake Gunther for the class lectures, group help sessions, and the

drop-in personal help sessions. It is not only the quality of engineering education at ECE,

the paramount dedication to teaching and service is what continues to inspire generations

viii

of students. Thanks to our former Asst. Prof. Dr. Ryan Gerdes, for the guidance on the

autonomous vehicles project, and helping me to publish my first journal paper. To our

former Asst. Professor, Dr. Edmund Spencer for allowing me to work in his lab in my first

semester, so that I could continue to be a research student. To Dr. Reyhan Baktur and

Dr. Haitao Wang for serving in my committee and being available for assistance. To our

now and former staffs at ECE- Tricia, Kathy, Mary Lee and Rob at the Global Engagement

Office for taking care of logistics for me. To our former technical supports Trent and Scott

for many hours of help with my computer in the lab.

Thanks to my parents- Mesbah Uddin and Jahanara Pervin, for their trust, love, and

support- moral and often financial throughout all these years of graduate school; to my

husband- Upal, who gave up his promising career in Bangladesh to raise a family with me

here in Logan; to our infant daughter Arnina, for sacrificing the utmost attention that she

deserves; to my sister Athoi, my brother-in-law Salman and my best friend Mithila for shar-

ing all the anxieties over the long phone calls. Thanks to my friend Divya, to all the current

and former Bangladeshi students/post-docs at USU, especially Asif, Avirup, Shumi-Parvez,

Shante-Shajeeb, Sonia-Fahmid, Fariba-Rafsan, Shovon, and Towfiq- for the friendship, the

adventures, the parties, and the food. A Ph.D. degree is definitely a teamwork of all the

people around the candidate providing their support and guidance. I am forever grateful

to all of them for their kindness to me.

Tasnuva Tarannum Tithi

ix

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . v

ACKNOWLEDGMENTS . vii

LIST OF TABLES . xi

LIST OF FIGURES . xii

NOTATION . xiv

ACRONYMS . xv

1 INTRODUCTION . 1
1.1 History of Coding theory . 1
1.2 Low Density Parity Check (LDPC) codes 2
1.3 Trapping sets and absorbing sets of LDPC codes 6
1.4 The GDBF and the NGDBF decoding algorithm 8
1.5 Contributions of this dissertation: . 10

2 PROPOSED RE-DECODING FOR NGDBF . 12
2.1 Re-decoding background . 12
2.2 Related work on Re-decoding for decoding of ECC 13
2.3 Re-decoding in the context of NGDBF . 13
2.4 Proposed Re-decoded NGDBF (R-NGDBF) 15
2.5 Simulation results . 17
2.6 Latency considerations of R-NGDBF . 19

3 ANALYSIS OF TRAPPING SETS . 23
3.1 Analysis of trapping sets for the GDBF and NGDBF algorithm 23
3.2 Markov chain analysis of trapping sets in the NGDBF algorithm 27

4 SIMULATION METHODOLOGY . 31
4.1 Importance sampling for fast simulation of the error-floor 31
4.2 The dominant (8,8) absorbing set under the NGDBF algorithm 32
4.3 Simulation results . 33
4.4 Newly created errors and decoder limits: . 36

5 FPGA IMPLEMENTATION . 40
5.1 RTL description: . 40

5.1.1 Operating sequence of the decoder: 40
5.1.2 Brief descriptions of the modules . 42

x

5.2 Theory of the design . 43
5.3 Syndrome and early stopping condition . 45
5.4 Energy function and threshold . 45
5.5 Quantization and Least Significant Bit (LSB) corrections 48
5.6 FPGA results . 49

6 CONCLUSION AND FUTURE WORK . 52

REFERENCES . 54

CURRICULUM VITAE . 57

xi

LIST OF TABLES

Table Page

3.1 Energy values of each bit depending on the decisions 27

5.1 Symbols for the algorithm . 44

5.2 Decoder parameters for varying weights . 49

5.3 Estimated FER vs Obtained FER from FPGA, for 600 iterations 50

5.4 Estimated FER vs Obtained FER from FPGA, for 5000 iterations 50

xii

LIST OF FIGURES

Figure Page

1.1 The Tanner graph for the H matrix in (1.3). The ith variable node is labeled
as vi and the jth check node is labeled as c j. An edge between a variable
node vi and a check node c j implies a 1 in the jth row and ith column of the
H matrix. 4

1.2 BER results for the PEGReg504x1008 LDPC code for Belief Propagation
(BP) and Normalized Min-Sum (NMS) with different number of iterations. 5

1.3 Comparative performance of GDBF, Multi-bit NGDBF (M-NGDBF), and
Re-decoded NGDBF (R-NGDBF) with traditional Min-Sum (MS) with 5 and
100 iterations, Weighted Bit-Flip (WBF) algorithms on the PEGReg504x1008
code. 6

1.4 The dominant (8, 8) absorbing set in the 802.3an 10GBASE-T LDPC code. 8

2.1 The dominant (8, 8) absorbing set in the 802.3an 10GBASE-T LDPC code. 15

2.2 A typical case where GDBF is trapped but NGDBF escapes due to random
perturbations. 16

2.3 A case where NGDBF settles on an all-error pattern on the (8, 8) absorbing
set. Error propagation is triggered by a single errant bit-flip that occurs in
the first five iterations. 16

2.4 A re-decoded case with the same initial conditions as Fig. 2.3. This time
NGDBF evades the erroneous state and corrects all errors. 17

2.5 BER results for the PEGReg504x1008 code. Results for Belief Propagation
(BP) and Normalized Min-Sum (NMS) with different iterations are provided
for comparison. 20

2.6 BER for re-decoding with the SM-NGDBF on the PEGReg504x1008 code
for different Φs. 20

2.7 A histogram showing the fraction of frames completed at each decoding phase
for SM-NGDBF on the PEGReg504x1008 code, Φ � 10. The increase of
frames at the last phase arises due to the accumulation of failed frames. . . 21

2.8 BER for Re-decoded NGDBF compared to a benchmark OMS decoder for
the IEEE 802.3 standard LDPC code. 21

xiii

2.9 Latency comparison between different algorithms and codes. The dashed
lines indicate simulations on the PEGReg504x1008 code, and solid lines in-
dicate simulations on the IEEE 802.3 standard LDPC code. 22

3.1 The (3, 3) absorbing set in the 802.3an 10GBASE-T LDPC code. 23

4.1 The dominant (8, 8) absorbing set in the 802.3an 10GBASE-T LDPC code.
There are 8 degree one check nodes, 20 degree 2 check nodes, and 8 variable
nodes. 33

4.2 Maximum FER found from 1000000 samples, FER is scaled by 104 to account
for the multiplicity of the (8,8) absorbing set. 35

4.3 Averge FER found from 1000000 samples, FER is scaled by 104 to account
for the multiplicity of the (8,8) absorbing set. 36

4.4 average newly created errors of 1000000 samples of the (8,8) absorbing set.
The FER is scaled by 104 to account for the multiplicity of the (8,8) absorbing
set. 38

4.5 Estimated error-floor where the resolved trapping sets (decreasing errors)
and newly created trapping sets (increasing errors) cross over each other.The
FER are scaled by 104 to account for the multiplicity of the (8,8) absorbing
set. 39

5.1 test-bench for NGDBF decoder with microblaze controller 41

5.2 The NGDBF decoder with 2048 symbol nodes, 2648 noise perturbation reg-
isters(2048 symbol nodes + 600 iterations) in circular scanchain, 384 parity
check nodes and an early termination unit (ETU) 43

5.3 Comparing estimated FER with FPGA implementation results, wt = 1
6 . . 50

5.4 Comparing estimated FER with FPGA implementation results, wt = 1
5 . . 51

5.5 Comparing estimated FER with FPGA implementation results, wt = 1
4 . . 51

xiv

NOTATION

C Channel capacity

n Codeword length

k Uncoded message length

H n × m Binary parity check matrix

~c ∈ Zn
2 Binary codeword

ĉ ∈ {+1, 1}n Bipolar codeword ĉ � 1 − 2~c

~z ∈ Rn I.I.D. white noise samples

σ2
∈ R Noise variance

~y ∈ Rn Channel samples ~y � ĉ +~z

Φ ∈ Z Maximum number of phases in R-NGDBF

ymax Sample clipping limit

ỹ Quantized channel samples on Q bits within [−ymax ,+ymax]

x̂ ∈ {+1,−1}n Bipolar hypothesis ~x � sign(~y)

x̂ ∈ Zn
2 Binary hypothesis ~x � 0.5(1 − x̂)

~s ∈ Zm
2 Syndrome ~s � HT~x

ŝ ∈ {+1,−1}m Bipolar syndrome

η ∈ R Noise-scale

w ∈ R Weight (syndrome weight)

θ ∈ R Flipping threshold, θ < 0

λ Threshold (θ) adaptation parameter, 0 < λ ≤ 1

Ei ∈ R Energy function for bit i

Ni Adjacency in H for bit i

M j Adjacency in H for parity check j

L ∈ Z Maximum number of iterations

` ∈ Z Iteration number between 0 and L

~z ∈ Rn Decision

xv

ACRONYMS

BCH Bose, Chaudhuri, and Hocquenghem (BCH)

LDPC Low Density Parity Check

AWGN Additive White Gaussian Noise

BER Bit Error Rate

SNR Signal to Noise Ratio

BSC Binary Symmetric Channel

BFA Bit-Flip decoding Algorithm

BP Belief Propagation

MS Min-Sum

ML Maximum-Likelihood

PBFA Probabilistic Bit-Flip decoding Algorithm

WBF Weighted Bit-Flip

GDBF Gradient Descent Bit-Flip

M-GDBF Multi-bit Gradient Descent Bit-Flip

S-GDBF Single-bit Gradient Descent Bit-Flip

S-NGDBF Single-bit Noisy Gradient Descent Bit-Flip

M-NGDBF Multi-bit Noisy Gradient Descent Bit-Flip

SM-NGDBF Smoothed Multi-bit Noisy Gradient Descent Bit-Flip

R-NGDBF Re-decoded Noisy Gradient Descent Bit-Flip

IDB Improved Differential Binary

IEEE Institute of Electrical and Electronics Engineers

FPGA Field Programmable Gate Array

SVD Singular Value Decomposition

ETU Early Termination Unit

CHAPTER 1

INTRODUCTION

1.1 History of Coding theory

Published in 1948, Shannon’s work “A mathematical theory of communication” ini-

tiated the two fields of Information theory and Coding theory. In the paper, Shannon

proposed “Channel capacity, C ” as a quantitative measure of the upper bound of the rate,

R -at which information can be transmitted over a channel. Shannon demonstrated that a

proper coding scheme achieves transmission of information over a noisy channel at a rate R

less that or equal to channel capacity C with a small frequency of error or equivocation [1].

The field of Information theory is concerned with the bounds on the communication chan-

nel when proper encoding is applied. On the other hand, coding theory is concerned with

efficient encoding and decoding of information to reach Shannon’s limit. Over the past 70

years coding theorists and communication engineers proposed numerous error correcting

coding schemes approaching Shannon’s limit for various applications. All aspects of digital

data transmission and data storage employ error correcting codes.

Error correcting codes can be broadly divided into two categories: block codes and

tree codes [2]. In the case of block codes, every k information-symbols are encoded into an

n-tuple of channel-symbols, where n > k. The codeword of length n is then modulated and

transmitted over the channel. Tree codes take the information continuously and associate

it with a somewhat longer code sequence. The input sequence to the encoder is broken

into a sequence of k0 symbols and then combined with preceding information symbol which

generates an n0-symbol section of the code. Linear codes are a subclass of all codes which

can be defined with symbols chosen from a set of arbitrary size. For a linear code, the

sum of two codewords is also a codeword. The first channel coding scheme was proposed

by Richard Hamming in 1950, is called the Hamming code. Hamming codes are linear

2

block codes with the capabililty of correctiong a single error. The Hamming code has low

complexity implementation and mild error correcting performance.

Almost a decade after the Hamming codes, the BCH codes and the Reed-Solomon

codes were invented. Both the codes have uses in space and satellite communications, data

transmissions, data storage and bar codes. The early error correcting code applications

were in space and satellite communication for power limited and low spectral efficiency

applications. One of the earliest practical applications of error correcting codes were the

use of Reed Muller codes in the 1969 Mariner and later the Viking Mars missions to im-

prove uncoded BPSK modulation. With the invention of Trellis decoding for convolutional

codes in 1960, it was possible to use powerful codes providing substantial coding gains over

uncoded transmission that were used for space and satellite communication by NASA [3].

In 1991 a powerful new class of codes called the Turbo codes were invented to approach

Shannon’s theoretical capacity limit. Turbo codes are high performance codes with appli-

cations in reliable data communication. Turbo codes are widely used in digital systems

including 3G and 4G mobile communications, satellite communication, and IEEE 802.16

standards for broadband communications [4–6]. Soon after the Turbo codes, Low Density

Parity Check (LDPC) codes were rediscovered by MacKay- who showed that LDPC codes

reach Shannon’s capacity like the Turbo codes on the AWGN channel [7].

1.2 Low Density Parity Check (LDPC) codes

Low Density Parity Check (LDPC) codes are a class of linear block codes invented by

Robert Gallager in 1963 [8]. LDPC codes are widely used in communication systems for their

excellent decoding performance. However, because of their large structure and complexity

of decoding algorithms, LDPC codes were not practical to implement at the time. After

their rediscovery in the mid-nineties, LDPC codes have gained popularity and are used in

parallel with, or often preferred over Turbo codes for their low complexity implementation

and low error rate. Among many uses of LDPC codes, some are data storage, digital

broadcasting, IEEE 802.3an standards for 10GBase-T ethernet, IEEE 802.11 standards for

Wi-Fi [9,10]. A k bit information ~u is encoded by multiplying with the generator matrix G

3

of dimension (k , n) of the LDPC code. The codeword ~c is n bit long with (n− k) redundant

bits corresponding the parity check rules of the LDPC code.

~c � ~uG (1.1)

The parity check matrix H of the LDPC code is matrix with n− k rows and n columns

such that

GHT
� 0 (1.2)

An LDPC code is characterized by it’s parity check matrix (H), which can be rep-

resented by a bipartite graph called a Tanner graph consisting of nodes what are called

symbol nodes and parity check nodes of the LDPC code. The H matrix is sparse, and the

dimension of the H matrix is usually large. For a given code, the columns of the H matrix

denote the variable nodes, and the rows denote the check nodes in the tanner graph. A

1 in the H matrix imply a connection between a check node and a variable node. Let us

consider the parity check matrix H and the associated tanner graph in Fig. 1.1. The ith

variable node is labeled as vi and the jth check node is labeled as c j.

H �

*.........
,

1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1

0 0 0 1 1 1

+/////////
-

(1.3)

4

v1

v2

v3

v4

v5

v6

c1

c2

c3

c4

Fig. 1.1: The Tanner graph for the H matrix in (1.3). The ith variable node is labeled as
vi and the jth check node is labeled as c j. An edge between a variable node vi and a check
node c j implies a 1 in the jth row and ith column of the H matrix.

Decoding algorithms for LDPC codes are usually iterative in nature, where messages

are sent back and forth between the symbol nodes and parity check nodes represented

in a Tanner graph. Besides their structure, performance of LDPC codes depends to a

large degree on the algorithms that are deployed in the receiver to decode the originally

transmitted bits. The performance of the code and the algorithm are usually represented by

an SNR vs BER (bit error rate) graph, as shown in Fig. 1.2 for the PEGReg504x1008 LDPC

code with Belief Propagation (BP) and Normalized Min-Sum (NMS) decoding algorithms.

5

1 1.5 2 2.5 3 3.5 4 4.5

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E

R

NMS (T � 5)

NMS (T � 10)

NMS (T � 100)

BP

Fig. 1.2: BER results for the PEGReg504x1008 LDPC code for Belief Propagation (BP)
and Normalized Min-Sum (NMS) with different number of iterations.

Bit-flip decoding algorithms are reduced complexity decoding algorithms, where mes-

sages exchanged between the nodes in the tanner graph are binary valued. Bit-flip decoding

algorithms are often inferior in terms of BER performance compared to traditional Belief

Propagation and its variants, but offers significant gain in hardware complexity and speed.

Wadayama et.al proposed a low complexity algorithm Gradient Descent Bit-Flip (GDBF)

decoding in [11]. A significant improvement over the GDBF algorithm is the Noisy Gradient

Descent Bit-Flip (NGDBF) algorithm, that was proposed by Sundararanjan et al. [12]. The

NGDBF algorithm used random noise to perturb the decisions in the GDBF algorithm to

achieve superior performance. A few variants of the NGDBF algorithm was presented in

the original paper, including the Single-bit NGDBF (S-NGDBF), Multi-bit NGDBF (M-

NGDBF), and with a post-processing operation called the Smoothed-Multi-bit NGDBF

(SM-NGDBF).

It is shown in [13] that re-decoding a frame with NGDBF for a number of phases further

improves the decoding. Figure 1.3 shows the comparative performance of GDBF, NGDBF,

6

and Re-decoded NGDBF (R-NGDBF) with traditional Min-Sum (MS), Weighted Bit-Flip

(WBF) algorithms.

0 1 2 3 4 5 6 7 8
10−6

10−5

10−4

10−3

10−2

10−1

100

SNR

B
E

R

uncoded
MS, 100it
MS, 5it
WBF
GDBF
GDBF
M-NGDBF
R-NGDBF

Fig. 1.3: Comparative performance of GDBF, Multi-bit NGDBF (M-NGDBF), and Re-
decoded NGDBF (R-NGDBF) with traditional Min-Sum (MS) with 5 and 100 iterations,
Weighted Bit-Flip (WBF) algorithms on the PEGReg504x1008 code.

As seen in Fig. 1.2 and Fig. 1.3, the BER rapidly goes down with increasing SNR, which

is known as the waterfall region of the graph, followed by a saturation in the improvement

where the BER no longer goes down with increasing SNR. This region is called the error-

floor of the graph.

1.3 Trapping sets and absorbing sets of LDPC codes

Despite their excellent performance in the waterfall region of the BER curve, the per-

formance of LDPC codes are limited by error-floors at the bottom the waterfall region,

where the BER no longer improves with increasing SNR. In the error-floor region, iterative

decoders are trapped in subgraphs of the code called the “trapping sets”, which causes the

decoders to remain in erroneous states after the maximum number of iterations in the decod-

7

ing algorithm. Richardson [14] showed that for the AWGN channel and BSC the error-floor

region for a rate 0.7969 code of length 4096, all the errors were due to the near-codewords,

which are known as “trapping sets”. We define trapping sets according to [14].

Trapping sets: For a given input y, let T(y) be the set of variables nodes that are not

eventually corrected by iterative decoding. Therefore, a successful decoding is indicated by

T(y) � ∅. If T(y) , ∅, T is a (a , b) trapping set where a is the number of variable nodes

and b is the number of odd degree check nodes in the subgraph T induced by T. In the

subgraph, the check nodes are usually only degree one or degree two check nodes. Higher

degree check nodes are possible but unlikely in dominant trapping sets. A related concept

“absorbing sets” were described in [15,16].

Absorbing sets: In [15], Zhang et.al. introduced absorbing sets to describe the failure of

iterative decoders. In the experimental work, a hardware emulator was analyzed for various

classes of structured LDPC codes. It was found that a set of graphical structures referred

to as absorbing caused message passing decoders to fail by converging on non-codewords.

Absorbing sets may be viewed as a special case of trapping sets, which is guaranteed to be

stable under a bit-flipping decoder. Absorbing sets are purely combinatorial like stopping

sets. Absorbing sets are defined as follows:

Let H be the parity check matrix and T (H) be the tanner graph induced by H. Let

a be a subset of variable nodes in the tanner graph and b be the set of their neighboring

odd-degree check nodes in the subgraph induced by a. Each of the variable nodes in a are

connected to more even degree check nodes than odd degree nodes, and all the remaining

check nodes outside the induced subgraph are even degree with respect to T (H). In that

case (a , b) is an absorbing set if for all a′, a′ < a, it does not contain an (a′, b) set as its

subgraph.

The (8,8) absorbing set of (2048,1723) Reed-Solomon LDPC code: The 802.3an LDPC

code is a high performance (2048,1723) Reed-Solomon LDPC code. It was found that the

error-floor of the (2048,1723) LDPC code is dominated by an (8,8) fully absorbing set that

has the structure showed in Fig. 1.4.

8

Fig. 1.4: The dominant (8, 8) absorbing set in the 802.3an 10GBASE-T LDPC code.

1.4 The GDBF and the NGDBF decoding algorithm

Wadayama et al. proposed the GDBF algorithm for decoding LDPC codes [11]. At each

iteration of the GDBF algorithm, an inversion function for each bit is based on the received

channel information, decision at the previous iteration, and parity check messages from

the neighbors of the node. The Noisy Gradient Descent Bit-Flip (NGDBF) [12] modifies

GDBF by adding a pseudo-random perturbation to the inversion function at each symbol

node during each iteration. The noise is used to probabilistically escape from the trapping

sets and lower the error-floor for a given LDPC code. Let the received message vector be

denoted by ~y. The neighborhood of a node refers to all the other nodes that are connected

to it. We denote the neighborhood of the ith check node by N (i) , { j : hi j � 1}, and the

neighborhood of the jth symbol node by M(j) , {i : hi j � 1}; where hi j is an element of

the parity check matrix H.

At each iteration of the NGDBF algorithm, the energy of each bit is calculated accord-

ing to (1.4),

Ek � xk yk + wk

∑
i∈M(k)

si + qk (1.4)

9

—where the decision vector at each iteration is denoted by ~x ∈ {−1, 1}n. If ~x is a valid

codeword and ~x ∈ Ĉ, all the parity checks would be satisfied. The ith parity check operation

is denoted by si ,
∏

j∈N (i) x j. Therefore, a satisfied parity check equation refers to si � 1.

The parameter wk is predefined weight parameter to scale the sum of the parity check

operations. If at iteration t, all the parity checks are satisfied, then ~x(t) is declared as a

valid codeword and decoding is terminated. The term qk is the perturbation noise used

by NGDBF which is independently distributed Gaussian random noise samples with zero

mean and variance equal to σ2 � η2N0/2 — proportional to the variance of the channel

noise — where η ≥ 0 is a noise-scale parameter. In all algorithms, unsuccessful frames are

terminated after a maximum number of iterations T. If the energy of the bit is below a

threshold parameter θ, the bit is flipped. Because a number of bits may have energy below

the threshold, and subsequently be flipped, this version of the NGDBF algorithm is termed

as the Multi-bit NGDBF (M-NGDBF). The M-NGDBF algorithm is outlined as follows:

Step 0: Initialize θk (t � 0) � θ for all k, where θ is the global initial threshold

parameter. Optionally saturate sample magnitudes at ymax and set ~x �

sign
(
~y
)
.

Step 1: Compute syndrome components:

si �
∏

j∈N (i)

x j , (1.5)

for all i ∈ {1, 2,,m}. If si � +1 for all i, output x and stop.

Step 2: Compute inversion functions:

Ek � xk yk + wk

∑
i∈M(k)

si + qk (1.6)

for k ∈ {1, 2, . . . , n}. where wk is a syndrome weight parameter and qk

is a Gaussian distributed random variable with zero mean and variance

10

σ2 � η2N0/2, where 0 < η ≤ 1. All qk are independent and identically

distributed.

Step 3: Bit-flip operations: if Ek (t) < θk (t) then xk (t + 1) � −xk (t), otherwise

θk (t + 1) � λθk (t) ,

where λ is a global threshold adaptation parameter for which 0 < λ ≤ 1.

Step 4: Repeat steps 1 to 3 until all si � 1, for i � 1, 2, . . . , m, or maximum

number of iterations T is reached.

Threshold adaptation and Output decision smoothing in Multi-bit NGDBF (M-NGDBF):

The authors proposed a threshold adaptation method to improve the convergence of M-

NGDBF. Each bit has a threshold θk , which is initialized at a global value θ. The threshold

θ is then adjusted for each bit at each iteration by a parameter λ. The following steps are

added to NGDBF to incorporate threshold adaptation:

• Initialize (t = 0) θk = θ for all bits, where θ ∈ R is the global initial threshold

parameter.

• For a bit k, at iteration t, if the energy function Ek ≥ θk (t), make the adjustment in

θk (t + 1) to be used in the next iteration t + 1 as follows:

θk (t + 1) � θk (t)λ (1.7)

where λ is a global adaptation parameter for which 0 < λ ≤ 1. In the next iteration

t + 1, the adjusted threshold θk (t + 1) is used. If Ek (t) < θk (t), flip the sign of the

corresponding decision xk

1.5 Contributions of this dissertation:

This dissertation started as an parameter optimization project for the original NGDBF

decoding algorithm [12]. The primary goal was to optimize the parameters of NGDBF such

as noise-scale (η) and weight (w) to lower the error-floors for the PEGReg504×1008 and

11

the IEEE 802.3 LDPC codes. Subsequently a faster method to analyze and simulate the

NGDBF decoding algorithm for the low error-floor was proposed. The results were then

validated in Xilinx FPGA platform. The contributions of this dissertation are arranged as

follows:

The first contribution to the improvement of NGDBF, the Re-decoded NGDBF (R-

NGDBF) is described in Ch. 2. The proposed technique involves re-decoding of failed

frames, after a number of decoding iterations have been observed with no success. In Ch.

3 a Markov chain analysis is adopted to study the decoding trajectory of NGDBF. The

contributions of the random perturbations of NGDBF to escape the dominant absorbing

set is discussed at length. The error-floor is explained as a consequence of the (dominant)

absorbing sets that are not resolved by NGDBF decoding algorithm. Based on the Markov

chain analysis, a simplified decoding approach is taken to estimate the low error-floors of

the NGDBF algorithm by simulation in Ch. 4. The estimated parameters are verified in

FPGA implementation in Ch. 5. The FPGA implementation includes a 5-bit resolution

decoder, which is fully synthesized, implemented and validated in Xilinx platform.

12

CHAPTER 2

PROPOSED RE-DECODING FOR NGDBF

2.1 Re-decoding background

In this chapter, we consider the performance of the Noisy Gradient Descent Bit-Flip

(NGDBF) decoding algorithm under re-decoding of failed frames. The proposed re-decode

procedure obtains improved performance because the perturbations are independent at each

re-decoding phase, therefore increasing the likelihood of successful decoding. We examine

the benefits of re-decoding for an LDPC code from the IEEE 802.3an standard, and find

that only a small fraction of re-decoded frames are needed to obtain significant performance

benefits. When re-decoding is used, the NGDBF performance is very close to a benchmark

offset min-sum decoder for the 802.3an code.

The recently proposed NGDBF algorithm provides superior performance by injecting

random noise into the GDBF inversion function [17]. The noise perturbation is hypothesized

to disrupt the activity around trapping sets, so that the decoder has a chance to escape.

In this chapter, we observe that failed NGDBF frames can often be correctly decoded by

re-decoding the algorithm from its initial state. Re-decoding is shown through simulations

to be more effective than increasing the iterations. To explain this result, we hypothesize

that the noise perturbations may sometimes stimulate new trapping set conditions that

are less likely to be escaped. Because the NGDBF algorithm is non-deterministic, these

conditions will not necessarily recur when decoding is performed a second time.

Re-decoding randomizes the decoding trajectory in the Tanner graph and provides a

way for the decoder to converge towards an actual codeword. Re-decoding from the same

initial condition was considered previously for stochastic decoders in [18, 19], where it was

proposed as a method to evade trapping sets. In [20], a two-phase decoding is proposed for

stochastic decoders. The frames that are failed after the 1st phase are decoded again with

13

a modified algorithm in the 2nd phase called the “VN harmonization”. VN harmonization

changes the log-likelihood ratio (LLR) input to each variable node by a constant. This

constant must be found empirically.

2.2 Related work on Re-decoding for decoding of ECC

In [21], two phase decoding has been applied to the Belief Propagation (BP) algorithm.

The Normalized Min-Sum (NMS) algorithm is employed in the 1st phase. If a valid codeword

is not found, the failed frames enter the 2nd phase. Two approaches are discussed for the

2nd phase: Random Sign Flip (RSF) and Random Initial State (RIS). RSF randomly flips

the sign of the outgoing check node messages with a probability p (0 ≤ p ≤ 1). RIS applies

random changes to the initial channel data externally, by adding random vectors to the

initial channel values. A similar re-launching process is described for LDPC decoders called

the Improved Differential Binary (IDB) message passing decoding in [22]. The re-launching

process divides the decoding process into multiple phases. The IDB algorithm uses a look-

up table approach, where the initial channel values are modified in a deterministic manner

at the start of a given phase according to a heuristic table.

2.3 Re-decoding in the context of NGDBF

The previous works demonstrated BER improvement due to re-decoding, but did not

provide a detailed inspection of trapping set behavior. In this chapter, we present some

experiments on the (8,8) absorbing set known to be dominant in the 802.3an 10GBASE-T

standard LDPC code under Belief Propagation [23]. The induced graph for this set is shown

in Fig. 2.1, where the degree-one check nodes are indicated as , degree-two check nodes as

, and symbol nodes as . While a full trapping set analysis has not yet been developed

for NGDBF, in this chapter we verify that the (8, 8) set acts as a trapping set for GDBF

and NGDBF, and we inspect the dynamics that allow NGDBF to evade the trapping set

during decoding.

To investigate NGDBF dynamics on this absorbing set, a localized simulation was

performed on the (8, 8) subgraph. The correct state is assumed to be ĉ � (+1 + 1 · · · + 1).

14

The GDBF and NGDBF algorithms were simulated with identical inputs ~y � ĉ+~z, where ~z

is a vector of zero-mean Gaussian noise samples with noise variance σ2 � 1. The simulations

were performed with parameters λ � 1 (i.e. without threshold adaptation), w � 1, T � 100

and for NGDBF η � 1. In these simulations, a frame was considered successful if the correct

result, ~x � ĉ, was obtained for at least one iteration. Failed frames were saved for detailed

inspection.

It was found that failed frames typically begin in a metastable initial condition, where

one or two early flips determine the ultimate trajectory. Fig. 2.2 shows the trajectory of

inversion functions for a case in which GDBF becomes trapped in an oscillating cycle, but

NGDBF avoids the oscillation due to a fortuitous early flip. In the early iterations, some of

the Ek are negative or weakly positive, so they are likely to be flipped. In later iterations,

most of the NGDBF Ek values are strongly positive, so additional flips are unlikely in spite

of the noise perturbations.

Fig. 2.3 shows a case where NGDBF failed due to an errant early flip. In this case,

NGDBF eventually converged on an all-error state with positive Ek . Because the Ek are pos-

itive, future flips are unlikely to occur and the error state is effectively stable. Fig. 2.4 shows

a repeated simulation from the same initial condition. In this case, NGDBF made different

flips in the first five iterations, and converged on the correct state. This example demon-

strates advantages of re-decoding from the same initial state, which cannot be achieved

by extending the simulation time. The benefits of re-decoding are more pronounced when

threshold adaptation is used, since the evolving thresholds tend to harden the stability of

the final state, thereby lowering the probability that NGDBF will escape to the correct

state if given more iterations.

These experiments were repeated for several values of σ, and NGDBF was found to

have a consistently lower rate of converging on an erroneous state compared to GDBF. The

simulation method used here is illuminating about the dynamics and provides motivation

for re-decoding, but it is not sufficient to quantify the frame error probability associated

with this absorbing set. For σ < 0.7, we did not obtain any failed cases for NGDBF. In

15

Fig. 2.1: The dominant (8, 8) absorbing set in the 802.3an 10GBASE-T LDPC code.

the sequel, we evaluate the re-decoding method for two practical codes, and show that

significant performance benefits are obtained.

2.4 Proposed Re-decoded NGDBF (R-NGDBF)

All the methods discussed above try to change the initial state of the decoder either in

a random or in a deterministic manner to improve convergence during a decoding process.

Random Initial State (RIS) and Stochastic decoding are random processes, while the re-

launching technique is a deterministic process. We leverage the randomness involved in

the NGDBF algorithm. Re-decoding a failed frame causes the different stream of random

noise to be to used during the decoding process which increases the likelihood of successful

convergence. The decoding process is repeated for a number of phases with the original

received message, with added perturbations to the inversion function at each phase. As

the random perturbations of NGDBF at each phase are independent of each other, the

decoding is likely to follow a different path and arrive at different results at each phase,

similar to stochastic decoders. This modified algorithm, is referred to as the Re-decoded

NGDBF (R-NGDBF) algorithm. The R-NGDBF has two variants: Re-decoded M-NGDBF

(R-M-NGDBF) and the Re-decoded SM-NGDBF(R-SM-NGDBF).

The number of phases is limited to a maximum value Φ. Φ is an important parameter of

16

0 2 4 6 8 10 12 14 16 18 20

−4

−2

0

2

4

6

8

10

12

14

Iteration

E
k

NGDBF
GDBF

Fig. 2.2: A typical case where GDBF is trapped but NGDBF escapes due to random
perturbations.

0 2 4 6 8 10 12 14 16 18 20

−4

−2

0

2

4

6

8

10

12

14

Iteration

E
k

NGDBF
GDBF

Fig. 2.3: A case where NGDBF settles on an all-error pattern on the (8, 8) absorbing
set. Error propagation is triggered by a single errant bit-flip that occurs in the first five
iterations.

17

0 2 4 6 8 10 12 14 16 18 20

−4

−2

0

2

4

6

8

10

12

14

Iteration

E
k

NGDBF
GDBF

Fig. 2.4: A re-decoded case with the same initial conditions as Fig. 2.3. This time NGDBF
evades the erroneous state and corrects all errors.

this algorithm. The convergence is expected to improve as Φ is increased. If a valid codeword

is not found by phase Φ, decoding failure is declared. The R-M-NGDBF algorithm can be

summarized as follows:

1. Initialize all the symbol nodes to the received channel message vector, and set phase=1.

2. Perform decoding operation using M-NGDBF.

3. Set phase = phase+1.

4. Repeat steps 2 and 3 with initial values of received vector yk and with different qk

until all the parity checks are satisfied or phase = Φ is reached.

2.5 Simulation results

Simulations were performed using re-decoding with NGDBF for two codes: the rate 1/2

regular (3, 6) LDPC code identified as PEGReg504x1008 in MacKay’s online encyclopedia of

sparse graph codes [24] and the rate 0.8413 LDPC code defined in IEEE 802.3an standard.

18

The smoothing and threshold adaptation heuristics are used for the PEGReg504x1008 code,

and the algorithm name is indicated as SM-NGDBF in reported simulations. For the

802.3an code, these heuristics were not used. Each frame was allowed to be simulated up to

a maximum number Φ of re-decoding phases. At least 200 bit errors and at least 20 word

errors were observed to obtain the BER measurements for each simulation.

For the PEGReg504x1008 code, SM-NGDBF was simulated with parameters T � 300,

w � 0.816, λ � 0.98, initial threshold θ � −0.6 and noise-scale η � 0.75. Fig. 2.5 shows

BER performance results for the PEGReg504x1008 code with Φ � 10. The re-decoding

technique has significant gain when applied to the SM-NGDBF algorithm. At BER� 10−6,

re-decoding provides a gain of about 0.5 dB. Output smoothing is only used for iterations

exceeding (T − 64). Performance of NMS and BP algorithms are presented for comparison.

The BER improves with higher values of Φ, but there is a diminishing benefit as Φ is

increased. As seen in Fig. 2.6, there is a rapid improvement in performance from Φ � 1

through Φ � 5. As Φ is increased further, the improvement in BER performance becomes

less significant. There is slight improvement in Φ � 10 compared to the improvement in the

earlier phases.

The simulations show that re-decoding is necessary for a small fraction of frames.

Fig. 2.7 shows the distribution of re-decoding phases to complete decoding. Most of the

failed frames that are not corrected in the first decoding phase are corrected by the second

phase. The frames that are not corrected by the second phase are passed onto the third

phase and so forth. Finally, at the last phase, the accumulated failed frames determine the

word error rate (WER). This accumulation is evident in the last phase in Fig. 2.7.

Fig. 2.8 shows the BER performance results for NGDBF on the IEEE 802.3an standard

LDPC code. Smoothing is not used for simulations with this code, because no significant

improvement was achieved using smoothing in this case. The simulation parameters are

T � 1000, w � 0.20833, λ � 1, θ � −0.525, and η � 0.92. Since λ � 1, threshold adaptation

is not required for this code. To evaluate the performance we use a recently reported 802.3an

Offset Min-Sum (OMS) decoder as a benchmark [25]. Re-decoding provides a gain of 0.25

19

dB for this code. The BER performance of NGDBF is very close to the benchmark OMS

decoder.

2.6 Latency considerations of R-NGDBF

Since re-decoding incurs a substantial latency penalty, we examined the average latency

on the 802.3an code. If buffering can be tolerated by the end application, then the average

latency penalty is very small since nearly all frames are successfully decoded in the first

phase. Fig. 2.9 shows the average latency in terms of clock cycles for all simulated cases,

in comparison to the reported latency of the OMS decoder. The OMS decoder uses a

semi parallel layered architecture which requires 12 clock cycles to complete an iteration.

The reported average number of iterations is therefore scaled by 12 to obtain the average

latency depicted in Fig. 2.9. The NGDBF decoder has a much lower complexity than the

OMS algorithm, so layering is not required and we can expect every iteration to complete

in a single clock cycle. The number of iterations is therefore equivalent to the latency in

the NGDBF case. Fig. 2.9 shows that the average latency for NGDBF is quite large at low

SNR values, but decreases at higher SNRs where it has a lower latency than OMS. When

operating at higher SNR values, Re-decoded NGDBF (R-NGDBF) offers better performance

and lower average latency than the benchmark design. To account for consecutive worst

case frames, the NGDBF decoder would require a larger frame buffer compared to the OMS

decoder. This is a potential drawback of re-decoding with the NGDBF algorithm.

20

1 1.5 2 2.5 3 3.5 4 4.5

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E

R

SM-NGDBF (Φ � 10)

NMS (T � 5)

NMS (T � 10)

NMS (T � 100)

BP

Fig. 2.5: BER results for the PEGReg504x1008 code. Results for Belief Propagation (BP)
and Normalized Min-Sum (NMS) with different iterations are provided for comparison.

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E

R

(Φ � 1)

(Φ � 3)

(Φ � 5)

(Φ � 8)

(Φ � 10)

Fig. 2.6: BER for re-decoding with the SM-NGDBF on the PEGReg504x1008 code for
different Φs.

21

1 2 3 4 5 6 7 8 9 10

10−5

10−4

10−3

10−2

10−1

100

Phase

F
ra

ct
io

n
of

fr
a
m

es

SNR 3.25 SNR 3.0 SNR 2.5

Fig. 2.7: A histogram showing the fraction of frames completed at each decoding phase for
SM-NGDBF on the PEGReg504x1008 code, Φ � 10. The increase of frames at the last
phase arises due to the accumulation of failed frames.

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E

R

NGDBF

NGDBF (Φ � 1)

NGDBF (Φ � 2)

NGDBF (Φ � 8)

OMS (T � 20)

OMS (T � 8)

Fig. 2.8: BER for Re-decoded NGDBF compared to a benchmark OMS decoder for the
IEEE 802.3an standard LDPC code.

22

2 2.5 3 3.5 4 4.5 5 5.5

101

102

103

104

SNR

A
ve

ra
ge

la
te

n
cy

SM-NGDBF (Φ � 10)

SM-NGDBF (Φ � 1)

NGDBF (Φ � 8)

NGDBF (Φ � 1)

OMS, T � 8

Fig. 2.9: Latency comparison between different algorithms and codes. The dashed lines
indicate simulations on the PEGReg504x1008 code, and solid lines indicate simulations on
the IEEE 802.3an standard LDPC code.

23

CHAPTER 3

ANALYSIS OF TRAPPING SETS

3.1 Analysis of trapping sets for the GDBF and NGDBF algorithm

Let us consider an example case to illustrate how an error is trapped in a trapping set

for the GDBF and the NGDBF algorithm. Consider the (3,3) trapping set in Fig. 3.1. The

graph induced by the trapping set is denoted by T3. The variable nodes in the trapping

set are X � {x1 , x2 , x3} with degree two check nodes c1 , c2 , c3 and degree one check nodes

c4 , c5 , c6. The set of all the check nodes is denoted as C � {c1 , c2 , c3 , c4 , c5 , c6}. In Fig. 3.1

the variable nodes are represented as , degree-one check nodes as , and degree-two check

nodes as .

We assume all-zero codeword transmission. Therefore the codeword for the example

is ~c ∈ {0}. For AWGN channel ~c is mapped to ĉ ∈ {1}. The transmitted codeword is

corrupted by Gaussian noise with zero mean and variance of σ2
z � N0/2, where N0 is the

noise spectral density. Therefore, the received signal is ~y � ĉ + ~z, which is to be decoded.

We are only interested in the subgraph T3 generated by the (3,3) trapping set. We denote

the subset of incoming channel messages to the trapping set T3 as ~yT . For example, let

~yT � {−1.3, 0.2,−0.5}.

x1

c4x2

c5

x3

c6

c1
c2c3

Fig. 3.1: The (3, 3) absorbing set in the 802.3an 10GBASE-T LDPC code.

24

The initial value of the variable nodes X � {x1 , x2 , x3} are {−1,+1,−1}. In GDBF algo-

rithm, the check nodes update by multiplying all the incoming decisions from the neighbor-

ing variable nodes. Let the messages from check node ci to its neighboring variable nodes

be denoted by si. Check node c1 is connected to x1 and x3.

∴ s1 � (−1) × (−1) � +1. Similarly, {s2 , s3 , s4 , s5 , s6} � {−1,−1,−1,+1,−1}.

In the GDBF algorithm, the enrgy of a bit is calculated as

Ei � xi yTi +
∑

j: j∈N (xi)

(s j) (3.1)

where the neighbors of variable node vi are N (xi). The incoming message from the neigh-

boring check nodes N (xi) of variable node xi is denoted by s j, i.e j ∈ N (xi).

After the first iteration the energies of the variable nodes are as follows for the GDBF

algorithm:

E1 � (−1)(−1.3) + 1 − 1 − 1 � −0.3 (3.2)

E2 � (+1)(+0.2) − 1 − 1 + 1 � −0.8 (3.3)

E3 � (−1)(−0.5) + 1 − 1 − 1 � −0.5 (3.4)

In the GDBF algorithm, the bit with most negative energy value is flipped. Therefore

state of node x2 is flipped from +1 to −1. As a result, all the decision bits after the first

iteration are {−1,−1,−1} and all the variable nodes in the T3 are in error.

The NGDBF algorithm introduces random perturbation noise qi to the energy values

to perturb the decisions and provide means to escape the trapping set. In NGDBF, the

energies of the variable nodes are calculated as

25

Ei � xi yTi +
1

w

∑
j

(s j) + qi; (3.5)

where, qi ∼ N (0, σ2), σ2
� η × σ2

z

where w is called a weight parameter, and the perturbation noise variance σ2 is calculated

by scaling the channel noise variance σ2
z by a factor η. For now, we assume that the weight

parameter is equal to unity (w � 1).

For the NGDBF algorithm, let the perturbation noise vector be ~q � {q1 , q2 , q3} �

{−0.45, 0.51;−0.22}. The energies become

E1 � (−1)(−1.3) + 1 − 1 − 1 + q1 (3.6)

� −0.3 − 0.45 � −0.75 (3.7)

E2 � (+1)(+0.2) − 1 − 1 + 1 + q2 (3.8)

� −0.8 + 0.51 � −0.29 (3.9)

E3 � (−1)(−0.5) + 1 − 1 − 1 + q3 (3.10)

� −0.5 + −0.22 � −0.72 (3.11)

In the case of NGDBF the decision is flipped for variable node x3, and the one of

the faulty bits is corrected. In Multi-bit NGDBF (M-NGDBF), the filp operation at each

iteration is governed by a threshold θ. All the bits that have Ei values less than θ is flipped.

In the case the NGDBF algorithm, the probability that a bit will be flipped is given by

Pflip � Pr(Ei < θ) (3.12)

26

If we let the part of the energy without noise be E′i, i.e E′i � Ei − qi;

Pflip � Pr(E′i + qi < θ) � Q(θ, E′i , σ); where qi ∼ N (0, σ2) (3.13)

where Q is the the cumulative distribution function at θ with mean E′i and variance σ2.

According to (3.13), the probability that a flip will occur depends on the value of

threshold θ, perturbation noise variance σ2, and the energy E′i calculated in the previous

iteration. In the (3,3) trapping set, let E′i be the energy of a bit xi after the first iteration

(without adding the perturbation noise qi). For x ∈ {1,−1}, a total of 23 � 8 possible

combinations of bits can be achieved. Later, the 8 combinations are referred to 8 states of a

Markov process. Each combination generates a different energy value for each bit. A energy

matrix E of dimension 8 × 3 can be constructed with the 3 columns corresponding to energies

E′i for each bit {x1 , x2 , x3} and 8 rows corresponding the different combinations of the 3 bits,

as shown in Tab. 3.1. Once we have the matrix E, we can compute the probability of flip for

all bits under any initial condition applying (3.13) to E. The probability matrix is denoted

by PE, which contains all the probabilities that a bit will flip for a given combination of X.

In the example, we have incoming channel messages ~yT � {−1.3, 0.2,−0.5}, to the

trapping set T3, and we have calculated energies for each bit in X, {x1 , x2 , x3} � {−1,+1,−1}.

This combination of bits are represented by the 6th row of the energy matrix. The 6th row

of the energy matrix is therefore, {E61 , E62 , E63} � {−0.3,−0.8,−0.5}. The other entries of

E can be calculated for different states of X in a similar way.

27

state Decision Energy

x1 x2 x3 E1 E2 E3

1 1 1 1 E11 E12 E13

2 1 1 -1 E21 E22 E23

3 1 -1 1 E31 E32 E33

4 1 -1 -1 E41 E42 E43

5 -1 1 1 E51 E52 E53

6 -1 1 -1 E61 E62 E63

7 -1 -1 1 E71 E72 E73

8 -1 -1 -1 E81 E82 E83

Table 3.1: Energy values of each bit depending on the decisions

.

3.2 Markov chain analysis of trapping sets in the NGDBF algorithm

With every iteration of the NGDBF algorithm, flipping one or more bits moves the

decision from one state to another state. For an n bit codeword, there are a total of 2n

states that the decision can be in. As the probability of flip is dependent on the random

noise qi, the different states of the decision can be considered as the states of a Markov

chain. A similar approach has been adopted in [26] to analyze the trapping set dynamics

for probabilistic decoding for the BSC channel.

By flipping one or more bits, any state of the chain can be reached from any other

state. If every state of a Markov chain can be reached from every other state in one or

more moves, the Markov chain is Ergodic or irreducible Markov chain. We can construct a

transition matrix for the Markov chain from the probabilities of flip for each bit at every

state. The transition matrix that is achieved is of Ergodic type.

To explain how the probability for transition from one state to another, we consider a

transition from state 6 to state 7 from the example in Sec. 3.1. The state 6 is represented by

28

{x1 , x2 , x3} � {−1, 1,−1}, and the state 7 is represented {x1 , x2 , x3} � {−1,−1, 1}. We have

calculated that the energy of the bits {x1 , x2 , x3} in state 6.as {E1 , E2 , E3} � {−1.3, 0.2,−0.5}

in state 6. The probability that the bits will flip is found from (3.13). Let the threshold

θ � −0.1, and perturbation noise variance σ2 � 0.25. The probability of flip for a bit with

enrgy Ei is given by (3.13). Therefore,

pflip(x1) � Q(−0.1,−1.3,
√

0.25) (3.14)

pflip(x2) � Q(−0.1, 0.2,
√

0.25) (3.15)

pflip(x3) � Q(−0.1,−0.5,
√

0.25) (3.16)

To reach from state 6 to state 7, the bit x2 flips from 1 to −1 and the bit x3 flips from

−1 to 1. The bit x1 does not flip. Therefore the probability of transition from state 6 to

state 7 is given by

Pr(6→7) �
(
1 − pflip(x1)

)
× pflip(x2) × pflip(x3) (3.17)

Similarly, probability of staying in the same state is that no bit will flip:

Pr(6→6) �
(
1 − pflip(x1)

)
×

(
1 − pflip(x2)

)
×

(
1 − pflip(x3)

)
(3.18)

A transition matrix for the 8 states can be constructed with the probabilities for the

transition from every state to every other state, whose entries are calculated for the energies

of the bits in each state and their flip probability in that state. We denote the transition

matrix after the first iteration as Tr1 .

29

Tr1 �

*.................................
,

Pr(1→1) Pr(1→2) Pr(1→3) Pr(1→4) Pr(1→5) Pr(1→6) Pr(1→7) Pr(1→8)

Pr(2→1) Pr(2→2) Pr(2→3) Pr(2→4) Pr(2→5) Pr(2→6) Pr(2→7) Pr(2→8)

Pr(3→1) Pr(3→2) Pr(3→3) Pr(3→4) Pr(3→5) Pr(3→6) Pr(3→7) Pr(3→8)

Pr(4→1) Pr(4→2) Pr(4→3) Pr(4→4) Pr(4→5) Pr(4→6) Pr(4→7) Pr(4→8)

Pr(5→1) Pr(5→2) Pr(5→3) Pr(5→4) Pr(5→5) Pr(5→6) Pr(5→7) Pr(5→8)

Pr(6→1) Pr(6→2) Pr(6→3) Pr(6→4) Pr(6→5) Pr(6→6) Pr(6→7) Pr(6→8)

Pr(7→1) Pr(7→2) Pr(7→3) Pr(7→4) Pr(7→5) Pr(7→6) Pr(7→7) Pr(7→8)

Pr(8→1) Pr(8→2) Pr(8→3) Pr(8→4) Pr(8→5) Pr(8→6) Pr(8→7) Pr(8→8)

+/////////////////////////////////
-

(3.19)

The transition matrix describes that once a sample {x1 , x2 , x3} is received at the trap-

ping set Tr1 , the initial state of Tr1 is determined by {x1 , x2 , x3}. The transition matrix Tr1

then decides the next transitions at each iteration. The transition matrix Tr ` at the `th

iteration is given by

Tr` �
(
Tr1

) `
(3.20)

For a ergodic Markov chain, if the transition matrix (Tr) is irreducible, then there

exists exactly one eigenvector ~w such that

~w × Tr � ~w (3.21)

Also, ~w can be chosen such that all its entries are strictly positive. This is the Perron-

Frobenius theorem for the context of a Markov chain. The vector ~w denotes the steady

state probability of each state. It is the common row of the transition matrix after n steps

when the Markov chain reaches steady-state. For the all zero codeword, the correct state

30

after decoding is the state 1 corresponding to {x1 , x2 , x3} � {1, 1, 1}. The first component

of ~w denotes the probability that the decoder eventually reaches the correct state.

For the all-zero codeword, we are interested in the steady-state probability of the state

{x1 , x2 , x3} � {1, 1, 1}, which the 1st state in the transition matrix. The probability of error

for sample is therefore,

Perr � 1 − ~w(1) (3.22)

If the decoding algorithm is not allowed n iterations to reach the steady state, let the

maximum allowed iterations be ` such that ell < n. The transition matrix at the end of `

iterations is Tr` . Then the probability that the decoding is successful after the ` iterations

starting at state s is given by Tr` (s , 1) � Ps→1 calculated at the end of the ` iterations,

assuming all-zero codeword was transmitted. In that case the probability of error for the

sample is

Perr � 1 − Pr(s→1) (3.23)

Given that the probability of the received sample yT is Psample, the frame error rate

(FER) for the sample is given by

FER � Psample × Perr (3.24)

In Ch. 4 we use importance sampling to sample received messages close to the error

region to estimate the FER for a given (8,8) absorbing set. The maximum frame error

rate (FER) that is found from sampling from 1 million samples are reported, as well as the

average FER that is obtained.

31

CHAPTER 4

SIMULATION METHODOLOGY

4.1 Importance sampling for fast simulation of the error-floor

To measure the error-floor, usually a large number of samples are generated for the

noisy channel, and then decoded by the decoder. To accurately measure the BER graph

and error-floor, sufficient error events must be observed. Because the error-floor is very

low for LDPC codes, it may take a very long simulation time to observe an error event

at high SNRs. To simulate a fair number of error events at a high SNR, or and to study

the trapping sets, importance sampling is widely used [27–30]. The generation of samples

are biased in a way that many errors are generated. Later, to measure the true BER, the

probability of the samples are weighted to account for the biasing.

The idea of importance sampling is to sample from an important region of the target

distribution p. Suppose the problem is the find the expectation of (X) where X ∼ p.

Ep[(X)] �
∫

xp(x)dx (4.1)

�

∫
xp(x)
q(x)

q(x)dx (4.2)

� Eq
[xp(x)

q(x)

]
(4.3)

That means sampling x from distribution p is the same as sampling
xp(x)
q(x) from sam-

ple distribution q. The term
p(x)
q(x) is called the importance weight or the likelihood ratio.

The distribution p is called the nominal or target distribution and q is the importance

distribution or the sample distribution.

For AWGN channel, the noise variance σ2
z of the channel is given by

32

σ2
z �

N0

2
,N0 �

1

R
× 10(−SNR

10) (4.4)

where, N0 is the noise spectral density of the channel, R is the rate of the code, and SNR

is the signal-to-noise ratio of the channel. Therefore, for the all-zero codeword (ĉ � {1}N),

the incoming messages are distributed as a Gaussian distribution with mean 1 and variance

σ2
z , N (1, σ2

z).

For the all-zero codeword, and AWGN channel, we take the target distribution as

p � N (1, σ2
z), where σ2

z is the variance of the channel noise. To sample in the error

region, we use mean translation importance sampling, where the mean of the importance

distribution is shifted toward the region of interest. We use q � N (0.5, σ2
z) as the importance

distribution to sample more error cases for fast error-floor estimation.

In importance sampling, the average value is taken as the estimated result. However, in

a real decoder, if a particularly noisy sample is encountered, that sample would determine

the ultimate error-floor of the LDPC code. Therefore, while using importance sampling

to sample in the error region, we would consider the highest FER to set the estimated

error-floor.

4.2 The dominant (8,8) absorbing set under the NGDBF algorithm

We consider the subgraph induced by the (8,8) absorbing set in the 802.3an LDPC

code for our estimation of the error-floor. The HT (8,8) matrix for the absorbing set is given

by

33

HT (8,8) �

*.........................
,

1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

+/////////////////////////
-

T

(4.5)

The subgraph induced by the absorbing set HT (8,8) is shown in Fig. 4.1. The variable

nodes are represented as , degree-one check nodes as , and degree-two check nodes as .

Fig. 4.1: The dominant (8, 8) absorbing set in the 802.3an 10GBASE-T LDPC code. There
are 8 degree one check nodes, 20 degree 2 check nodes, and 8 variable nodes.

4.3 Simulation results

For the simulation, a sample yT of length 8 to the absorbing set is sampled from

34

the importance distribution N (0.5, σ2
z), and decoded with the NGDBF algorithm for 600

iterations. The energy of each bit is calculated as (3.5).

Ei � xi yTi +
1

w

∑
j

(s j) + qi;

where, qi ∼ N (0, σ2), σ2
� η × σ2

z

where w is called a weight parameter, and the perturbation noise variance σ2 is calculated

by scaling the channel noise variance σ2
z by a factor η.

For a given noise-scale (η), increasing the weight w reduces the error-floor a seen in

Fig. Fig. 4.2 and 4.3. Error-floor as a function of noise-scale (η) for different weights (w)

is shown in Fig. 4.2 and 4.3. For each data point in Fig. 4.2 and 4.3 1000000 samples

using importance sampling is used. The FER that are obtained for different weights (w)

and noise-scale (η) are scaled by 104 to account for the multiplicity of the (8,8) absorbing

set in the IEEE802.3an LDPC code.

35

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10−14

10−11

10−8

10−5

10−2

noise-scale (η)

M
ax

F
E

R

w �
1
6 w �

1
5 w �

1
4

w �
1
3 w �

1
2

(a) 600 iterations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10−14

10−11

10−8

10−5

10−2

noise-scale (η)

M
ax

F
E

R

w �
1
6 w �

1
5 w �

1
4

w �
1
3 w �

1
2

(b) 5000 iterations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10−14

10−11

10−8

10−5

10−2

noise-scale (η)

M
ax

F
E

R

w �
1
6 w �

1
5 w �

1
4

w �
1
3 w �

1
2

(c) 50000 iterations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10−14

10−11

10−8

10−5

10−2

noise-scale (η)

M
a
x

F
E

R

w �
1
6 w �

1
5 w �

1
4

w �
1
3 w �

1
2

(d) 1000000000 iterations

Fig. 4.2: Maximum FER found from 1000000 samples, FER is scaled by 104 to account for
the multiplicity of the (8,8) absorbing set.

36

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10−16

10−13

10−10

10−7

10−4

noise-scale (η)

A
v
g

F
E

R

w �
1
6 w �

1
5 w �

1
4

w �
1
3 w �

1
2

(a) 600 iterations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10−16

10−13

10−10

10−7

10−4

noise-scale (η)

A
v
g

F
E

R

w �
1
6 w �

1
5 w �

1
4

w �
1
3 w �

1
2

(b) 5000 iterations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10−16

10−13

10−10

10−7

10−4

noise-scale (η)

A
v
g

F
E

R

w �
1
6 w �

1
5 w �

1
4

w �
1
3 w �

1
2

(c) 50000 iterations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10−16

10−13

10−10

10−7

10−4

noise-scale (η)

A
v
g

F
E

R

w �
1
6 w �

1
5 w �

1
4

w �
1
3 w �

1
2

(d) 1000000000 iterations

Fig. 4.3: Averge FER found from 1000000 samples, FER is scaled by 104 to account for the
multiplicity of the (8,8) absorbing set.

4.4 Newly created errors and decoder limits:

The NGDBF algorithm takes advantage of the random noise used in every iteration to

escape from local minima. As seen in Fig. 4.3 and Fig. 4.2, the FER continues to improve

with increasing iterations. We want to investigate where the error-floor might lie, if there

exists one. In practice, while the NGDBF algorithm uses random noise to escapes from the

dominant (8,8) absorbing set, it creates new trapping sets with the random noise that is

used for decoding. Intuitively, we may suggest that with increasing number of iterations, the

37

newly created trapping sets keep increasing. Also, with decreasing weight (w), or increasing

noise-scale (η), or both, the random noise becomes more dominant in the energy function

(3.5), causing more newly created trapping sets to emerge and degrade the performance.

To observe this effect of the random noise, we yet again performed importance sampling

to sample in the error free region of the channel-messages. The Markov chain correspond-

ing to the NGDBF algorithm is Ergodic type, as each state is reachable from every other

state. Also, all the entries in the transition matrix Tr are strictly positive. For an Ergodic

and aperiodic Markov chain, with a positive transition matrix Tr , the steady state tran-

sition probabilities can be found using Perron-Frobenius theorem. The Perron-Frobenius

theorem states that if all entries of a n × n matrix Tr are positive, then it has a unique

maximal eigenvalue. Its eigenvector has positive entries. It can be showed that 1 is the

dominant eigenvalue with a positive eigenvector π. The unique positive eigenvector π is

called the Perron-Frobenius vector of Tr . The Perron-Frobenius vector π is a very impor-

tant characteristic vector of the Markov chain, and is often called the the invariant measure

of Tr . The Perron-Frobenius vector π is the unique steady state vector for an ergodic

and aperiodic Markov chain. For the irreducible and aperiodic transition matrix P and its

Perron-Frobenius vector π, we have for any probability vector ν ∈ RN ,

lim
n→∞

Tn
r ν � π (4.6)

The Perron-Frobenius vector is used to calculate the probability of error at steady state

for the error free samples. First, the dominant eigenvalue is found by taking the singular

value decomposition (SVD) of the transition matrix for that particular sample. Then the

eigenvector corresponding to the dominant eigenvalue was normalized to find steady state

probabilities for all the states. Let the all-zero state be represented by state s0, which is

the first state in the transition matrix Tr . The steady state probability of the all-zero state

is given by the first entry of the Perron-Frobenius vector π. Therefore probability of error

at the end of decoding for the particular channel-message is

38

Perr � 1 − π(1) (4.7)

The simulations reveal that, with decreasing weight (w), or increasing noise-scale (η),

or both, creates new errors in otherwise good channel-messages. The results are shown

in Fig. 4.4. The reason is, as the variance of the random perturbation is increased (or

the weight of the syndrome sum is decreased) to the point that the stochastic behavior

completely overshadows the deterministic part (the summation of syndromes) of the energy

function. The error-floor is estimated to be in the region where the decreasing error graph

for existing trapping sets Fig. 4.2, and Fig. 4.3 and the graph for the newly created errors

Fig. 4.4 cross over each other. This is showed in Fig. 4.5.

0.6 0.8 1 1.2 1.4 1.6 1.8 2

10−11

10−9

10−7

10−5

10−3

10−1

101

noise-scale (η)

F
E

R

w = 1
6 w = 1

5 w = 1
4 w = 1

3 w = 1
2

Fig. 4.4: average newly created errors of 1000000 samples of the (8,8) absorbing set. The
FER is scaled by 104 to account for the multiplicity of the (8,8) absorbing set.

39

0 0.2 0.4 0.6 0.8 1 1.2
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

noise-scale (η)

F
E

R

initial errors new errors

(a) w = 1
6

0 0.2 0.4 0.6 0.8 1 1.2
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

noise-scale (η)

F
E

R

initial errors new errors

(b) w �
1
5

Fig. 4.5: Estimated error-floor where the resolved trapping sets (decreasing errors) and
newly created trapping sets (increasing errors) cross over each other.The FER are scaled
by 104 to account for the multiplicity of the (8,8) absorbing set.

40

CHAPTER 5

FPGA IMPLEMENTATION

In order to validate the design, an NGDBF decoder with 5-bit resolution has been

fully synthesized, implemented and validated for a Xilinx VCU 118 board using Vivado

2017.1. A screen-shot of the architecture is shown in Fig, 5.1. This chapter describes the

NGDBF demonstration design implemented in behavioral SystemVerilog. A basic UART

test interface is provided using a Microblaze processor to control the decoder. The test

demonstration allows testing a large number of frames of channel data which are input

serially via the UART interface.

5.1 RTL description:

The FPGA implementation of the entire system is shown in the block diagram of Fig.

5.1. There are 6 decoding modules. Each of these modules contain a channel emulator

and an NGDBF decoder. The modules have the same internal architecture. However, the

stochastic behavior of the noise perturbation samples and channel samples allow them to

have different decoding behavior from each other. The decoder’s architecture and interface

are depicted in Fig. 5.2. Details of the algorithm and its calculations are given in Sec. 5.2.

Primary I/Os are indicated in red, and handshaking I/Os are indicated in blue. All channel

and noise samples have resolution Q = 5 bits in sign-magnitude format.

5.1.1 Operating sequence of the decoder:

Operation sequence of the decoder is as follows:

1. When the powerup signal is high, the registers are filled sequentially with samples

from noise in. In principle, sample values could be coded as initial states for each register

in order to avoid the latency incurred by this powerup sequence. When powerup is low, the

samples simply recirculate Simulations have shown that recirculating samples are sufficient

41

Fig. 5.1: test-bench for NGDBF decoder with microblaze controller

to achieve high performance in the NGDBF algorithm. When all the registers have been

initialized, the scanchain full signal is taken high to indicate that the decoder is ready.

2. Then the initialize signal is high, the decoder’s decisions are initialized as the sign

bits of channel messages. Decoding begins when initialize is low. The decoder will continue

indefinitely until it is reinitialized. When the decoder detects that the decisions are a valid

codeword, the done signal is asserted high to indicate that the stopping condition has been

reached. The decoder itself does not track its iterations or declare failure.

3. The parity check nodes and early stopping decision are implemented via assign

statements in the decoder’s top module. The symbol nodes have a more complex imple-

mentation, and use 8-bit arithmetic internally.

All pre-scaling adjustments to channel and noise samples (as described in Sec. 5.2) are

performed in the C simulation prior to generating the data files. The test-bench demon-

strates use of the test controller, where channel and noise samples are input serially prior

to decoding. After decoding, the number of errors for each iteration is reported and the

simulation terminates.

42

5.1.2 Brief descriptions of the modules

Below are descripotions of the important modules of the decoder:

1. The channel emulator: The channel emulator provides noisy samples assuming all

zero codeword, modulated as +1s. This does not allow for a system with real codewords.

To provide real codewords to the system, the channel samples are compared with real

codewords. The sign of the sample is changed to be negative (1 is modulated as -1) if a “1”

is encountered in the real codeword. The conversion is done in the symbol node description.

The SNR of the channel can be provided from the external interface of the UART manually,

by choosing a value called the channel index. For 5 db channel, the channel index is 20.

2. The decoder: The decoder has 3 main building blocks: the symbol node description,

the check node description, and the noise perturbation scanchain as shown in Fig. 5.2.

2a. Symbol node: At the symbol node, all-zero samples added with AWGN channel

noise come from the channel emulator. The channel messages are then converted to real

codewords (not all-zero) by changing the signs of the samples according to a set of predefined

codewords, before sending off to neighboring check nodes. As the syndrome calculations

are received by the symbol node from the neighboring check nodes, the energy is calculated

to decide whether the bit will be flipped or not.

2b. Check node: The check node description contains the connections of each of the

check nodes to their neighboring symbol nodes. The check node has an early termination

unit to signal “done” if the decoding is successfully completed before the maximum number

of iterations.

2c. Scanchain/ Decoder noise perturbations: The algorithm relies on noise perturba-

tions which must be unique to each symbol node at each iteration. Rather than include a

random number generator in the design, it is sufficient to use a circular shift register. The

“scanchain” module is essentially the same as the channel emulator. However, because the

channel emulator provides all-zero transmission (modulated as +1s), the noise perturba-

tions are obtained by subtracting +1 to provide zero-mean noise. It is to be noted that

only 600+2048 samples are initialized before the start of the decoding (once for each set of

43

SR(n+T) • • • SRn • • • SR3 SR2 SR1

Q
noise in

Powerup
scanchain full

SNn • • • SN3 SN2 SN1

~y (channel messages)

~x (decisions)

Q × n

n

ETU CNm • • • CN3 CN2 CN1

Noise Perturbation Scanchain

Symbol nodes

Check nodes

n m

Q

initialize

done

Fig. 5.2: The NGDBF decoder with 2048 symbol nodes, 2648 noise perturbation regis-
ters(2048 symbol nodes + 600 iterations) in circular scanchain, 384 parity check nodes and
an early termination unit (ETU)

tests), assuming a maximum of 600 iterations, and for the 2048 bits of a sample. The noise

perturbations are statistically independent, allowing the same noise samples to be reused.

The SNR of the noise perturbations can also be provided via the UART manually. For

noisescale η � 1, for our 5 db channel (channel index 20), the noise index is also 20.

5.2 Theory of the design

An n-bit codeword is transmitted across an antipodal binary-input Additive White

Gaussian Noise (AWGN) channel. The decoder receives quantized, clipped samples from

the channel. For each sample, an initial hypothesis bit is taken based on the samples sign,

where a positive sign indicates a 0 and a negative sign indicates a 1. The decoder then

computes the parity syndrome from the hypothesis bits. Then, for each bit, an energy

function is computed. If the energy falls below a specified threshold, the bit is flipped.

Then the syndrome is computed again and the procedure is iterated until all parity checks

are satisfied, or a maximum number of iterations is reached. For a precise statement of the

algorithm, the following symbols are defined

44

H n × m Binary parity check matrix

~c ∈ Zn
2 Binary codeword

ĉ ∈ {+1, 1}n Bipolar codeword ĉ � 1 − 2~c

~z ∈ Rn I.I.D. white noise samples

ymax Sample clipping limit

ỹ Quantized channel samples on Q bits within [−ymax ,+ymax]

x̂ ∈ {+1,−1}n Bipolar hypothesis ~x � sign(~y)

x̂ ∈ Zn
2 Binary hypothesis ~x � 0.5(1 − x̂)

~s ∈ Zm
2 Syndrome ~s � HT~x

ŝ ∈ {+1,−1}m Bipolar syndrome

η ∈ R Noise-scale

w ∈ R Weight (syndrome weight)

θ ∈ R Flipping threshold, θ < 0

λ Threshold (θ) adaptation parameter, 0 < λ ≤ 1

Ei ∈ R Energy function for bit i

Ni Adjacency in H for bit i

M j Adjacency in H for parity check j

L ∈ Z Maximum number of iterations

` ∈ Z Iteration number between 0 and L

~z ∈ Rn Decision

Table 5.1: Symbols for the algorithm

The NGDBF algorithm is traditionally developed using bipolar notation (e.g. x̂, ŝ),

which is convenient for algebraic analysis. The bipolar notation is presented here and

translated into binary form appropriate for hardware description. The algorithms precise

steps are as follows:

1. Initialize x̂ (`) = sign (~y) and reset iteration number l = 0.

45

2. Compute the syndrome ~s l � HT~x (`).

3. Early stopping condition: If ~s � ~0 then output ~d � ~x l and halt.

4. For bits i � 1, 2, ..., n:

(a) Compute E(`)
i � x̂i ỹi + w

∑
j∈N ŝ j + z (`)

i

(b) If E(`)
i < θ then set x̂ (`+1)

i � x̂ (`)
i

5. If ` < L then increment ` and return to step 2. Else output ~x , declare failure and

halt.

5.3 Syndrome and early stopping condition

bipolar: ŝ j �
∏

i∈M j
x̂ j (5.1)

binary: s j � ⊕i∈M j xi (5.2)

where ‘⊕’ indicates addition in GF2. In hardware terms, this can be interpreted as a

tree of binary XOR operations.

The early stopping condition is most easily expressed in binary notation:

stop if ∪ j∈{1,2,...,m} S j (5.3)

5.4 Energy function and threshold

The bulk of the algorithm’s arithmetic lies in the energy function. For implementation,

both the energy function and threshold operation are combined in one expression:

flip if, Ei − θ < 0 (5.4)

⇒ x̂i ỹi + w
∑

j∈Ni
ŝ j + zi − θ < 0 (5.5)

46

To translate this into binary format, we may assume variables are represented in a

sign-magnitude format { sgn, mag }. Then the flip decision may be expressed as

{
xi ⊕ sign(ỹi),mag(ỹi)

}
+ w

∑
j∈Ni

(1 − 2s j) + zi − θ < 0 (5.6)

Since the IEEE 802.3an LDPC code is regular, |Ni | � 6 for every i, yielding some

simplification:

{
xi ⊕ sign(ỹi),mag(ỹi)

}
+ w *.

,
6 − 2

∑
j∈Ni

s j
+/
-
+ zi − θ < 0 (5.7)

{
xi ⊕ sign(ỹi),

mag(ỹi)
2w

}
+ 3 −

∑
j∈Ni

s j +

(zi − θ
2w

)
< 0 (5.8)

{
xi ⊕ sign(ỹi),

mag(ỹi)
2w

}
−

∑
j∈Ni

s j +

(zi − θ
2w

+ 3
)
< 0 (5.9)

This representation allows some of the operations to be moved into the noise samples

and pre-scaling of the channel samples. The main advantage of this is to separate algo-

rithm parameters from architecture parameters. The architecture will be designed around

a default set of choices allowing for fixed thresholds and constant scaling factors. Further

design exploration and “fine tuning” can be done by adjusting the channel and noise sample

statistics.

In order to avoid subtraction, we note that

∑
j∈Ni

s̄ j � 6 −
∑
j∈Ni

s j (5.10)

so we can make the further simplification

47

{
xi ⊕ sign(ỹi),

mag(ỹi)
2w

}
+

∑
j∈Ni

s̄ j +

(zi − θ
2w

+ 3 − 6
)
< 0 (5.11)

https://www.overleaf.com/project/5a510ffa2abc9179e05c1337 When the noise samples are

pre-shifted by the threshold , the resulting non-zero mean reduces the dynamic range of

noise perturbations and may introduce bias. Through empirical optimization, good NGDBF

parameters for the IEEE 802.3an were found to be θ � 0.55 and w �
1
6 in [12], so that the

mean of z′ is θ/2w − 3 � 1.65 − 3 � −1.35. The dynamic range is improved by introducing

a constant shift of + 2 into the samples:

flip if

{
xi ⊕ sign(ỹi),

mag(ỹi)
2w

}
+

∑
j∈Ni

s̄ j +

(zi − θ
2w

− 3 + 2
)
< 2 (5.12)

Finally, we define the adjusted channel and noise samples as

y′i �
ỹi

2w
(5.13)

z′i �
zi − θ

2w
− 1 (5.14)

Then the flip decision is simplified as

flip if
{
xi ⊕ sign(ỹi),mag(ỹi)

}
+

∑
j∈Ni

s̄ j + z′i < 2 (5.15)

5.5 Quantization and Least Significant Bit (LSB) corrections

In order to physically realize the energy calculation, two further problems need to be

addressed: the first is the occurrence of ±0 in sign-magnitude representations. The second

problem is that y′, q′ and θ′ are quantized real numbers requiring fractional bits, so the

syndrome summation must be adjusted to account for the quantization.

48

The first problem is solved by appending one LSB to each channel and noise sample,

and to the modified threshold θ′ . This means that signals are widened by one bit when

performing symbol node arithmetic. We refer to this as the “LSB correction”.

For the second problem, the quantization is corrected by identifying the integer value

corresponding to a pre-quantized “1.0”. The parameter ymax dictates the maximum channel

sample magnitude. For modified samples, the maximum is translated to y′max � ymax/(2w).

Since samples are widened by one bit for the LSB correction, there are 2Q samples between

0 and y′max . We may therefore correct the syndrome summation with a scale multiplier

defined as

Smult � d
1.0

y′max
(2Q)e (5.16)

θhw � 2Smult + 1 (5.17)

Then the flip decision is revised to its final form:

flip if
{
xi ⊕ sign(ỹi),mag(ỹi), 1

}
+ Smult

∑
j∈Ni

s̄ j +
{
z′i , 1

}
< 2Smult + 1 (5.18)

⇒
{
xi ⊕ sign(ỹi),mag(ỹi), 1

}
+ Smult

∑
j∈Ni

s̄ j +
{
z′i , 1

}
< θhw (5.19)

The typical values used in our decoder are: ymax � 1.625, θ � −0.525, Q � 5. The

values of Smult and θhw change with changing w as follows:

49

w Smult θhw

1
6 7 15

1
5 8 16

1
4 10 21

Table 5.2: Decoder parameters for varying weights

5.6 FPGA results

The decoder was synthesized for three weights, w � {
1
6 ,

1
5 ,

1
4 }. The results are plotted

in Fig. 5.3, Fig. 5.4 and Fig. 5.5 for the weights in respective order. In the figures, the

simulation results for decreasing error-floor for initial trapping sets and the increasing error-

floor for new trapping sets are shown for comparison. The actual error-floor is expected to

be affected by both the increasing new trapping sets and decreasing initial trapping sets.

The optimal choice for weight (w) and noise-scale (η) are where the two graphs cross over

each other, where the error-floor is the lowest.

As seen in the figures, the results are very close the prediction for all the presented

results. To determine the FER contributions from the new trapping sets, the steady state

error probabilities are considered. Which theoretically means that we are considering an

infinite number of iterations for new trapping sets to be emerged. Therefore, the FER

contributions from the new trapping sets is a pessimistic over-estimation. In the hardware

implementation, the decoder is able to achieve an optimum error-floor slightly lower than

the prediction, as evident in the figures.

50

w Estimated FER FPGA FER

1
6 1.0 ×10−06 (η = 0.80) 1.5×10−06 (η = 1.19)

1
5 2.5×10−06 (η = 0.90) 1.96×10−07 (η = 1.26)

1
4 3.0×10−06 (η = 1.00) 4.25×10−07 (η = 1.40)

Table 5.3: Estimated FER vs Obtained FER from FPGA, for 600 iterations

w Estimated FER FPGA FER

1
6 4×10−07 (η = 0.75) 2.0×10−07 (η = 1.0)

1
5 1×10−06 (η = 0.85) 3.5×10−08 (η = 1.33)

1
4 2×10−06 (η = 1.00) 6.6×10−08 (η = 1.40)

Table 5.4: Estimated FER vs Obtained FER from FPGA, for 5000 iterations

0 0.5 1 1.5 2 2.5 3

10−7

10−5

10−3

10−1

noise-scale (η)

F
E

R

max FER New errors FPGA

(a) 600 iteration

0 0.5 1 1.5 2 2.5 3

10−7

10−5

10−3

10−1

noise-scale (η)

F
E

R

max FER New errors FPGA

(b) 5000 iterations

Fig. 5.3: Comparing estimated FER with FPGA implementation results, wt = 1
6

51

0 0.5 1 1.5 2 2.5 3

10−7

10−5

10−3

10−1

noise-scale (η)

F
E

R

Max FER New errors FPGA

(a) 600 iterations

0 0.5 1 1.5 2 2.5 3

10−7

10−5

10−3

10−1

noise-scale (η)

F
E

R

Max FER New errors FPGA

(b) 5000 iterations

Fig. 5.4: Comparing estimated FER with FPGA implementation results, wt = 1
5

0 0.5 1 1.5 2 2.5 3

10−7

10−5

10−3

10−1

noise-scale (η)

F
E

R

Max FER New errors FPGA

(a) 600 iterations

0 0.5 1 1.5 2 2.5 3

10−7

10−5

10−3

10−1

noise-scale (η)

F
E

R

Max FER New errors FPGA

(b) 5000 iterations

Fig. 5.5: Comparing estimated FER with FPGA implementation results, wt = 1
4

52

CHAPTER 6

CONCLUSION AND FUTURE WORK

This work studies various aspects of the NGDBF algorithm for decoding LDPC codes.

For high performance codes, the error-floors are very low to be simulated. To encounter mul-

tiple failed frames after decoding at high SNRs to reliably measure the error-floor takes very

long simulation time. Evaluation of very low error-floors is performed by the implemented

decoder. The algorithm is assisted by random perturbation in the decoding function, which

gives the algorithm stochastic behavior. The perturbation noise in the NGDBF algorithm

enables the decoder to escape from trapping sets. Taking further advantage of the stochas-

tic nature of the algorithm, an improvement called the Re-decoded NGDBF (R-NGDBF)

was proposed in Ch. 2. In R-NGDBF, a number of decoding phases were introduced with

a limited number of iterations. If the message was not successfully decoded by a phase,

then it was passed on to the next phase. The initial conditions for decoding are random in

a new phase because of the random perturbations. This gives the decoder a new decoding

path to follow that may result in successful decoding at a new phase. The primary goal of

this dissertation was to find a faster and deterministic technique to estimate the decoding

parameters for the NGDBF decoding algorithm for LDPC code. The IEEE 802.3an LDPC

code has a number of trapping sets, the (8,8) trapping set being the dominant one in the

error-floor region. A method using a Markov chain representation of the states for the (8,8)

trapping set was proved to be successful in estimating the parameters for the IEEE 802.3an

LDPC code. As beneficial as the random perturbations are for decoding, it is also respon-

sible for creating new trapping sets that ultimately limit the performance of the decoder.

The error-floor is estimated to be where the two graphs, one for the escaped trapping sets

and another for the newly created trapping sets cross over each other. The error-floor is

also dependent on the weight of the sum of the parity check messages. As seen in Ch .4,

at high SNRs, increasing the weight lowers the error-floor. However, at low SNRs a large

53

weight will cause the parity check message to dominate the inversion function (1.4), and

minimize the benefits of the added perturbation noise.

Implementation of the NGDBF decoder to validate the theoretical findings is another

key part of this dissertation. To evaluate the performance of the IEEE 802.3 LDPC code

at high SNRs, parallel FPGA implementation of multiple NGDBF decoders is done with

Xilinx VCU118 platform.

Re-decoding a frame for a number of phases has been proposed by the author in [13].

Because of the random perturbation noise, every phase has an independent and random

probability of successfully decoding a received frame. Implementation of the re-decoding

method would imply a number of parallel decoders operating simultaneously on a single

frame until one of the decoders finishes decoding. However, the benefits of increasing the

number of phases tends to saturate after a number of phases. Optimization of the number

of employed decoders on an FPGA for maximum speed in terms of clock frequency, critical

path and iteration numbers would be done in future research.

54

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” ACM SIGMOBILE Mo-
bile Computing and Communications Review, vol. 5, no. 1, pp. 3–55, 2001.

[2] W. W. Peterson and E. J. Weldon, Error-correcting codes. MIT press, 1972.

[3] D. J. Costello, J. Hagenauer, H. Imai, and S. B. Wicker, “Applications of error-control
coding,” IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2531–2560, Oct
1998.

[4] P. M. Shah, P. D. Vyavahare, and A. Jain, “Modern error correcting codes for 4g and
beyond: Turbo codes and ldpc codes,” in 2015 Radio and Antenna Days of the Indian
Ocean (RADIO), Sept 2015, pp. 1–2.

[5] E. ETSI, “Digital video broadcasting (dvb); interaction channel for satellite distribu-
tion systems,” ETSI EN, vol. 301, p. 790, 2005.

[6] A. Ghosh, D. R. Wolter, J. G. Andrews, and R. Chen, “Broadband wireless access
with wimax/802.16: current performance benchmarks and future potential,” IEEE
Communications Magazine, vol. 43, no. 2, pp. 129–136, Feb 2005.

[7] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density
parity check codes,” IEEE Electronics Lett., vol. 33, no. 6, pp. 457–458, Mar. 1997.

[8] R. G. Gallager, “Low-density parity-check codes,” Information Theory, IRE Transac-
tions on, vol. 8, no. 1, pp. 21–28, 1962.

[9] E. Perahia and R. Stacey, Next generation wireless LANs: 802.11 n and 802.11 ac.
Cambridge university press, 2013.

[10] B. Bellalta, L. Bononi, R. Bruno, and A. Kassler, “Next generation ieee 802.11 wireless
local area networks: Current status, future directions and open challenges,” Computer
Communications, vol. 75, pp. 1–25, 2016.

[11] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and I. Takumi,
“Gradient descent bit flipping algorithms for decoding LDPC codes,” Communications,
IEEE Transactions on, vol. 58, no. 6, pp. 1610–1614, 2010.

[12] G. Sundararajan, C. Winstead, and E. Boutillon, “Noisy gradient descent bit-flip de-
coding for ldpc codes,” IEEE Transactions on Communications, vol. 62, no. 10, pp.
3385–3400, Oct 2014.

[13] T. Tithi, C. Winstead, and G. Sundararajan, “Decoding ldpc codes via noisy gradient
descent bit-flipping with re-decoding,” arXiv preprint arXiv:1503.08913, 2015.

[14] T. Richardson, “Error floors of ldpc codes,” in Proceedings of the annual Allerton
conference on communication control and computing, vol. 41, no. 3. The University;
1998, 2003, pp. 1426–1435.

55

[15] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. Wainwright, “Gen03-6:
Investigation of error floors of structured low-density parity-check codes by hardware
emulation,” in IEEE Globecom 2006, Nov 2006, pp. 1–6.

[16] L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “Analysis of
absorbing sets and fully absorbing sets of array-based ldpc codes,” IEEE Transactions
on Information Theory, vol. 56, no. 1, pp. 181–201, Jan 2010.

[17] G. Sundararajan, C. Winstead, and E. Boutillon, “Noisy gradient descent bit-flip de-
coding for decoding LDPC codes,” Communications, IEEE Transactions on, in press
2014b.

[18] F. Leduc-Primeau, S. Hemati, W. J. Gross, and S. Mannor, “A relaxed half-stochastic
iterative decoder for ldpc codes,” in GLOBECOM 2009 - 2009 IEEE Global Telecom-
munications Conference, Nov 2009, pp. 1–6.

[19] S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Mannor, and W. J.
Gross, “Majority-based tracking forecast memories for stochastic LDPC decoding,”
Signal Processing, IEEE Transactions on, vol. 58, no. 9, pp. 4883–4896, 2010.

[20] Leduc-Primeau et al., “Relaxed half-stochastic belief propagation,” Communications,
IEEE Transactions on, vol. 61, no. 5, pp. 1648–1659, May 2013.

[21] F. Leduc-Primeau, S. Hemati, S. Mannor, and W. Gross, “Dithered belief propagation
decoding,” Communications, IEEE Transactions on, vol. 60, no. 8, pp. 2042–2047,
2012.

[22] K. Cushon et al., “High-throughput energy-efficient LDPC decoders using differential
binary message passing,” Signal Processing, IEEE Transactions on, vol. 62, no. 3, pp.
619–631, Feb 2014.

[23] S. Zhang and C. Schlegel, “Controlling the error floor in LDPC decoding,” Communi-
cations, IEEE Transactions on, vol. 61, no. 9, pp. 3566–3575, September 2013.

[24] D. J. C. MacKay. Encyclopedia of sparse graph codes. Accessed: 2014-06-20. [Online].
Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

[25] Z. Zhang et al., “An efficient 10GBASE-T ethernet LDPC decoder design with low
error floors,” IEEE J. Solid-State Circ., vol. 45, pp. 843–855, Apr. 2010.

[26] L. Trung, “New direction on low complexity implementation of probabilistic gradient
descent bit-flipping decoder,” Ph.D. dissertation, University of Cergy-Pontoise, 2017.

[27] C. A. Cole, S. G. Wilson, E. Hall, T. R. Giallorenzi et al., “A general method for
finding low error rates of ldpc codes,” arXiv preprint cs/0605051, 2006.

[28] T. Sakai and K. Shibata, “Importance sampling for ldpc codes based on optimal simu-
lation probability density function,” in 2010 International Symposium On Information
Theory Its Applications, Oct 2010, pp. 389–393.

http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

56

[29] E. Cavus, C. L. Haymes, and B. Daneshrad, “Low ber performance estimation of ldpc
codes via application of importance sampling to trapping sets,” IEEE Transactions on
Communications, vol. 57, no. 7, pp. 1886–1888, July 2009.

[30] L. Dolecek, P. Lee, Z. Zhang, V. Anantharam, B. Nikolic, and M. Wainwright, “Predict-
ing error floors of structured ldpc codes: deterministic bounds and estimates,” IEEE
Journal on Selected Areas in Communications, vol. 27, no. 6, pp. 908–917, August
2009.

57

CURRICULUM VITAE

Tasnuva Tarannum Tithi

Published Journal Articles

• T. Tithi, B. Deka, R. Gerdes, C. Winstead, M. Li, and K. Heaslip. “Analysis of

Friendly Jamming for Secure Location Verification of Vehicles”. IEEE Transactions

on Vehicular Technology, 2018.

• C. Winstead, T. Tithi, E. Boutillon, F. Ghaffari. “Recent Advances on Stochastic

and Noise Enhanced Methods in Error Correction Decoders”. 10th International

Symposium on Turbo Codes & Iterative Information Processing (ISTC-2018).

• T. Tithi, R. Gerdes, C. Winstead. “Viability of Using Shadows Cast by Vehicles

for Position Verification in Vehicle Platooning”. (accepted) IEEE International Con-

ference on Trust, Security and Privacy in Computing and Communications (IEEE

TrustCom-17).

• T. Tithi, R. Gerdes, and C. Winstead. “Poster: Position Verification in Vehicular

Platoons Using a Euclidean Distance Matrix”. IEEE Symposium on Security and

Privacy 2015.

• T. Tithi, C. Winstead, and G. Sundararajan. “Decoding LDPC codes via noisy gra-

dient descent bit-flipping with re-decoding”. arXiv preprint arXiv:1503.08913 (2015).

	Error-Floors of the 802.3an LDPC Code for Noise Assisted Decoding
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	NOTATION
	ACRONYMS
	INTRODUCTION
	History of Coding theory
	Low Density Parity Check (LDPC) codes
	Trapping sets and absorbing sets of LDPC codes
	The GDBF and the NGDBF decoding algorithm
	Contributions of this dissertation:

	PROPOSED RE-DECODING FOR NGDBF
	Re-decoding background
	Related work on Re-decoding for decoding of ECC
	Re-decoding in the context of NGDBF
	Proposed Re-decoded NGDBF (R-NGDBF)
	Simulation results
	Latency considerations of R-NGDBF

	ANALYSIS OF TRAPPING SETS
	Analysis of trapping sets for the GDBF and NGDBF algorithm
	Markov chain analysis of trapping sets in the NGDBF algorithm

	SIMULATION METHODOLOGY
	Importance sampling for fast simulation of the error-floor
	The dominant (8,8) absorbing set under the NGDBF algorithm
	Simulation results
	Newly created errors and decoder limits:

	FPGA IMPLEMENTATION
	RTL description:
	Operating sequence of the decoder:
	Brief descriptions of the modules

	Theory of the design
	Syndrome and early stopping condition
	Energy function and threshold
	Quantization and Least Significant Bit (LSB) corrections
	FPGA results

	CONCLUSION AND FUTURE WORK
	REFERENCES
	CURRICULUM VITAE

