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ABSTRACT

Rotational Structure of Extremely Floppy van der
Waals Complexes: Adiabatic Separation of

Angular and Radial Motion
by
P. Daniel Ward, Master of Science
Utah State University, 2000

Major Professor: Dr. David Farrelly

Department: Chemistry and Biochemistry
The adiabatic or Born-Oppenheimer approximation is often used in molecular
calculations to simplify the solution to the Schrodinger equation. The basis of

the approximation is the large difference in the relative motions of the nuclei and

the electrons are able to respond almost instantly to the

electrons in the molecule
movements of the nuclei. Thus, the nuclei may be regarded as being fixed in a
certain position and the Schrodinger equation can then be solved using the potential
obtained by solving the electronic problem at fixed nuclear configuration.

A similar argument can be used to decouple the angular and radial motions of
many van der Waals complexes because, like nuclei in molecules, the radial motions
in many van der Waals complexes are strongly localized. Fixing the radial separation
between the atoms and molecules in the complex to a particular value results in a
Schrodinger equation that is much simpler to solve because it is only dependent
on angles. van der Waals complexes containing helium atoms, however, present a

dilemma because the extremely weak interactions present also lead to large amplitude

radial as well as angular motions. Because the basis of the adiabatic approximation




v
is a large difference in time scale between the angular and radial motions, the validity
of the adiabatic approximation for helium complexes is uncertain.

In this thesis, the adiabatic separation of angular and radial motion is shown to be
accurate for extremely floppy complexes of helium by demonstrating its use on the
van der Waals molecule He-HCN. A major application of this method is expected
to be the quick calculation of approximate wavefunctions for Diffusion Monte Carlo
studies of the rotation of impurity molecules inside ultra-cold droplets of helium.
The method presented here is significantly faster than other methods (e.g., Varia-
tional Monte Carlo) that have been used to calculate approximate wavefunctions for

Diffusion Monte Carlo.

(136 pages)
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CHAPTER 1
INTRODUCTION AND BACKGROUND

1.1. Introduction

For millennia, philosophers and scientists have been interested in how matter 1s
made up on the small scale. This quest for knowledge about the microscopic has
been aided by the recent technological explosion of the past century. One example of
this is a particularly powerful technique, spectroscopy, which has provided numerous
new insights into the structure and behavior of atoms and molecules. While the
use of light to study matter is not new, the way it is used in modern spectroscopy
was only made possible after the invention and refinement of quantum mechanics.
This improvement in the model of the physical world provides a way to interpret
the complex interactions between light and matter. These interactions are examined
using spectroscopy by perturbing the sample of interest with light and recording
the sample’s response to the perturbation as its spectrum. Analysis of the sample’s
spectrum provides valuable information about molecules and their environment, e.g.,
intra- and intermolecular bonding.

Other influences besides light, of course, exist, which can perturb the sample be-
ing studied. These intrusive perturbations lead to broadening of spectral lines and a
subsequent decrease in spectral clarity, which makes extraction of information from
spectra more difficult. Many of the undesirable perturbations seen in spectroscopy
are a result of interactions of the sample molecule with its environment. Mini-
mization or, ideally, removal of such perturbations generally leads to much sharper
spectral lines and an increase in the amount of information that can be extracted

from molecular spectra.

An important way to minimize unwanted perturbations and increase spectral res-
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olution is to cool the sample down to extremely low temperatures, thereby reducing
molecular rotations and vibrations. These molecular motions are especially a prob-
lem for large molecules because the many modes present make their spectra difficult
to interpret. This difficulty, in practice, excludes many large molecules from spectro-
scopic study—a significant problem because many of the molecules of medical and
biological interest fall into this category.

Ideally, for spectroscopy, the sample molecule would be trapped inside an ultra-
cold matrix that interacts only minimally with the sample. A matrix that has these
properties is a nanometer-sized droplet of liquid helium [1] in a molecular beam.
Condensed phase (bulk) helium might be expected to work well in this role because
of its low boiling and melting points and its weak interactions with other molecules.
However, in practice, using liquid or solid helium as the host matrix for spectroscopy
is difficult; the extremely cold temperature of the helium leads to condensation of
the sample onto the container walls immediately when the sample is inserted into
the matrix [1].

Recently, experiments have shown that liquid helium in the form of otherwise gas
phase droplets (see Fig. 1) may overcome this problem. Many studies and experi-
ments have been done to explore the possibility of using helium droplets as spectro-
scopic matrices. These studies, which have mostly concentrated on the behavior of
simple chromophore molecules inside the clusters, have revealed a number of surpris-
ing and exciting properties of helium droplets. The pioneering experiments, which
were carried out primarily by two different research groups (the Toennies group at
the Max Planck Institute in Gottingen and the Scoles group at Princeton), use an
apparatus like the one shown in Fig. 2 to obtain spectra of molecules in helium

droplets.

The spectra collected for these molecules are similar to the respective gas phase




Fig. 1. Schematic of a molecule trapped inside a helium cluster in a molecular beam.

Adapted from [2].

molecular spectra although they differ in one key aspect—the rotation of the molecule
inside a helium droplet is much slower than it is in the gas phase. How the helium
cluster is able to reduce the rate of the molecule’s rotation is an important question
that needs to be answered in order to better understand the properties and behaviors
of these systems. Thus, a major goal of theoretical studies of these systems is the
calculation of their rotational states, which will provide valuable information about
how the helium environment affects the behavior of impurity molecules trapped
inside.

Just as the calculation of wavefunctions and energies for molecules is complicated
by the presence of many electrons, calculations of the states of molecules inside
helium clusters are complicated by the many helium atoms in the system. In
fact, solutions to the Schrodinger equation of these systems are not just difficult to
calculate, they are analytically impossible to obtain, making the use of approximate

methods necessary.
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Fig. 2. Schematic diagram of a typical experimental apparatus. The clusters are
initially formed by expanding gaseous helium through a cold, small diameter nozzle.
They are then passed through a cell containing gas phase dopant molecules. Impact
between dopant and droplet results in pick-up of the dopant by the droplet. After
exciting the dopant molecule inside the cluster using a laser, helium atoms evaporate.

This change in the size of the droplet is then detected.
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A common approach used to calculate approximate solutions for quantum me-
chanical systems is to expand the wavefunction of the system as a sum of basis
functions, which are approximate eigenfunctions of the Hamiltonian of the system.
For many-body systems, the wavefunction is dependent on the wavefunctions of the
individual particles, each of which is expressed as a series expansion in some basis
set. To calculate wavefunctions and energies for these systems to any reasonable
degree of accuracy requires the use of extremely large basis set expansions leading
to matrices that are impractical to diagonalize because of their large size.

An alternative to basis set expansion methods that is commonly used are the so-
called classical (or semi-classical) methods. There are many problems from classical
mechanics which can only be solved approximately because they have analytically
unsolvable Hamiltonians. For example, any realistic system that has more than two
interacting bodies, such as the Sun, Earth, and Moon, has a solution that can only
be solved approximately. The Sun-Earth-Moon system can be approximately solved
by restricting the motion of the three bodies to the same plane and assuming that
the mass of the moon is negligible compared to the other two bodies.

Often, the methods used to solve for more complicated classical systems can be
applied to quantum systems. To do this, the quantum system must be within the
classical limit, i.e., the masses of the particles involved must be large and their ve-
locity must not be too fast. The small mass of helium causes helium complexes to
move with very large-amplitude motions. The resulting “floppiness” of helium com-
plexes eliminates the possibility of using classical methods to solve for the properties
of these systems because the centers of mass of the helium atoms cannot be used to
obtain an approximation to the wavefunction.

Although direct application of classical methods to helium cluster systems is not

an acceptable option, a method that is closely related to a classical problem, Diffu-
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sion Monte Carlo, can be used to accurately calculate the wavefunctions and energies
for these systems. As will be described in detail in chapter 2, the similarity between
the equation which describes the diffusion of particles subject to a “source” or “sink”
term and the nonrelativistic, imaginary time-dependent Schrodinger equation allows
a numerically exact ground state sclution to the time-independent Schrodinger equa-
tion to be calculated.

The basis of the method can easily be seen by comparing the probability distri-
bution of charged particles in solution and in an electric field with the wavefunction
of a quantum system. If the diffusion-electric field system is examined a long time
after the electric field is turned on, the particles will be located in the areas where
their potential energy is minimized. In other words, the probability of finding a par-
ticle is highest in regions of low potential. For quantum systems, this process can
be simulated by using theoretical particles called “walkers” subject to the quantum
system’s potential, which allows the ground state wavefunction of the system to be
calculated. The process works by randomly moving the walkers to new positions
and then evaluating the move to see if it resulted in the particle being at higher or
lower potential. The walkers that move to regions of lower potential are duplicated
while those that move to regions of higher potential are removed. After enough of
these moves, the probability distribution of the walkers is concentrated in regions
of low potential. This final probability distribution of the walkers represents the
wavefunction of the system.

[t is important to note that the probability distribution of the hypothetical walkers
represents ¢, not |11)|2‘ This limits the basic Diffusion Monte Carlo method to systems
that have wavefunctions that do not change sign, i.e., they do not have nodes. This

is perhaps the major drawback to the method because it excludes excited states

and fermions from consideration. This hurdle can be overcome through the use of
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the fixed-node approximation, which works by restricting the random movement of
the walkers to regions where the wavefunction is either always positive or always
negative. In other words, it does not allow the walkers to cross the nodes of the
wavefunction. To fence the walkers into these regions, infinite potentials are placed
at the nodes, which requires that the location of the nodes be known. As neither the
wavefunction nor its nodes are known beforehand, an approximate way to accurately
predict nodal structure is critical.

In general, the complexity of the nodal surface of the wavefunction increases as the
number of bodies in the system does. There are several methods which can be used
to calculate approximate wavefunctions with complicated nodal structure and while
each has different virtues, all methods are ultimately judged on two factors—accuracy
and speed. A method that is often used to calculate approximate wavefunctions
is another Monte Carlo method called Variational Monte Carlo, which uses Monte
Carlo techniques in conjunction with the variational method.

The basis of the Variational Monte Carlo method is to first select a “trial” wave-
function that contains several parameters. An approximate wavefunction is calcu-
lated by adjusting the values of these parameters such that the expectation value of

the Hamiltonian,
<C1rial ‘H} Z“"t'rza/> ) (1>

is minimized. The complex integrals that arise in these calculations are solved using
Monte Carlo methods.

In addition to providing an approximate wavefunction, the variational method is
also useful because the energy calculated using the method is always an upper bound

to the true energy of the system. In other words, the energy calculated using the

variational method is always greater than or equal to the true energy of the system.
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The approximate wavefunctions calculated using Variational Monte Carlo allow
accurate excited state energies and wavefunctions to be calculated using Diftfusion
Monte Carlo and the fixed-node approximation; however, Variational Monte Carlo
calculations require a significant computational investment, which makes the method
impractical to use in many circumstances. The nature of the bonding in van der
Waals complexes suggests that there might be a way to calculate wavefunctions for
these systems using a method that can achieve accuracy comparable to Variational
Monte Carlo at a much lower computational expense.

As van der Waals forces are the weakest of all intermolecular forces, complexes
that are held together by them are very weakly bound. This weak bonding allows
the atoms and molecules in the complex to move with much larger amplitude motions
than is seen in complexes held together by other forces. More specifically, van der
Waals complexes exhibit very broad angular motions with much more localized radial
motions. The strong directional dependence of these complexes combined with their
relatively weak dependence on radial separation suggests that a decoupling of the
angular motion from the radial might lead to a highly accurate approximate wave-
function that is dependent only on angle. This adiabatic separation of angular and
radial motion is similar to the adiabatic separation of nuclear and radial motion in
the well-known Born-Oppenheimer! approximation. In this comparison, the angular
and radial motion of helium complexes are respectively analogous to the nuclear and
electronic motion in molecules.

While the adiabatic approximation was previously shown to be valid for the van der

Waals complex of Ar-HCI by Holmgren [3], whether the approximation will work for

'To prevent confusion between the adiabatic approximation for angular and radial motion and the

adiabatic approximation for electronic and nuclear motion, the latter is referred to throughout this

thesis as the “electronic” or “molecular” Born-Oppenheimer approximation.
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helium complexes is not known. The approximation works well for argon complexes
for basically three reasons:

1. Their potentials are strongly anisotropic,

2. They have relatively deep potential energy wells, and

3. They have small zero point energies.
While helium complexes have strongly anisotropic potentials, they have much shal-
lower potential energy wells and higher zero point energies than the complexes of
argon. These differences lead to much less radial localization for helium complexes
than is seen in those of argon. The radial delocalization present in helium com-
plexes is easily seen by comparing the approximate isotropic wavefunctions for a
helium complex and an argon complex (Fig. 3). The wavefunction for the argon
complex shown in Fig. 3 is tall and narrow while the wavefunction for the helium
complex is short and broad indicating that the helium complex is able to move with
much larger radial motions than the argon complex can.

As the basis of the adiabatic approximation for van der Waals complexes is the
large difference between the radial and angular motions, whether the approxima-
tion is still valid for helium complexes is not known. This thesis, which applies
the adiabatic approximation to the van der Waals complex He-HCN, shows that the
approximation is valid for complexes with extremely floppy radial character. In ad-
dition, the thesis demonstrates that the method can be used to calculate approximate
wavefunctions for Diffusion Monte Carlo studies of rotations of impurity molecules
inside helium clusters.

The remainder of this thesis is organized as outlined below. Chapter 2 describes
the Diffusion Monte Carlo method, its application to excited states, and the im-

portance of calculating an accurate approximate wavefunction. In addition, a brief

discussion of the Variational Monte Carlo method is given. Chapter 3 presents a
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Fig. 3. Approximate radial wavefunctions for Ar-HCI and He-HCN.

description of the adiabatic method and how it was used to calculate approximate,
excited state wavefunctions for the van der Waals complex He-HCN. The remainder
of this chapter provides some background on the properties of helium germane to its
use as a spectroscopic matrix as well as a description of how doped helium droplets

are produced and spectroscopically studied

1.2. Properties of helium

Helium 1s the second most abundant element in the universe and has the unique
property of being the only element identified extraterrestrially before it was detected
on earth. Its discovery came about through the observation of a new line in the yellow
region of the spectrum of the sun’s chromosphere during a solar eclipse in 1868 [4].
This observation led J. N. Lockyer (founder of the journal Nature) and E. Frankland

to propose the existence of a new element, which they named helium (after the Greek
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name for the Sun, Helios). In 1881, L. Palmieri observed the same spectral line in
the spectrum of volcanic gas emitted from Mount Vesuvius and a few years later,
William Ramsay finally confirmed the existence of helium on earth during his studies
of atmospheric gases.

Helium consists of two isotopes, *He, which comprises 99.999863% of terrestrial
helium, and ®He, which is produced as a by-product of nuclear reactions. Thus, this
minor isotope has only been available since the 1950s when nuclear weapon produc-
tion began in earnest. The only interatomic interactions of helium are very weak
van der Waals forces; the absence of any stronger forces results in several interest-
ing properties, such as a low boiling point (4.215 K) and enthalpy of vaporization
(AH,,=0.08 K'J mol~!, the lowest value for any substance).

Perhaps the most interesting property of helium is its behavior at low tempera-

tures. When helium is under its own vapor pressure (in a vacuum), it never freezes
additional pressure must be applied to produce solid helium. The reason for this is
due to the high zero point energy of helium (caused by its small mass), which allows
the atoms to vibrate with large amplitude vibrations even at extremely low temper-
atures. At these low temperatures, quantum mechanical effects become important
and cause helium to behave in a bizarre fashion.

Below around 2.2 K (the A-point temperature, named after the A-like shape of
helium’s phase diagram, see Fig. 4) for “He and 0.003 K for *He, helium undergoes
a transition to superfluidity. As the temperature of the helium is cooled down to T},
its tumultuous boiling suddenly stops, its specific heat increases by a factor of 10,
its thermal conductivity increases by 10°, and its viscosity (as measured by its flow
through a small capillary) approaches zero [5]. In addition, helium at temperatures

below T is able to cover all solid surfaces that are also below T, with a film that

is a few hundred helium atoms thick. These strange properties, first observed in
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the 1930s, led to the recognition of a new state of matter—superfluidity, so named
because the minimal resistance it experiences when flowing through a capillary is
analogous to the lack of resistance electrons experience as they flow through a su-
perconductor.

The reason why superfluidity occurs at a much lower temperature for *He than for
‘He arises from a difference between the two isotopes that becomes very important
at low temperatures—*He is a boson (it has integer nuclear spin) while *He is a
fermion (it has half-integer nuclear spin). Bosons can all fall into the lowest energy
state to form a Bose-Einstein condensate; fermions, on the other hand, must obey
the Pauli Exclusion Principle, which prohibits two identical particles from occupying

the same state. This allows bosons to form superfluids at much higher temperatures

than fermions.
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Just as the behavior of bulk 3He and “He differ, the behavior of droplets of the two
isotopes is also different. Clusters consisting of only three atoms of 4He are predicted
to exist [6] while the smallest number of atoms in a *He clusters is predicted to be
29 [7-11] . In addition, the size and temperature of the clusters vary with isotope.
The sizes of the two clusters are 2.22N'/? and 2.44N'/3 (where N is the number of
atoms in the cluster) for “He and 3He, respectively [12]. The temperature inside a
4He cluster is around 0.4 K while the temperature in a *He cluster is around 0.15 K
[12-14].

The placement of a strongly interacting impurity, such as SFg, in a helium droplet
creates a series of compressed shells of helium [15-20]. The first of these shells has
a density that is roughly four times greater than that of bulk helium and contains
22 or 23 frozen helium atoms on average [17]. The second solvation shell contains
50 helium atoms and has a density that is around —i times greater than that of bulk
helium [18]. In clusters containing a mixture of “He and *He atoms, the greater mass
and resultant lower zero point energy of “He causes the fraction of *He in the cluster
to coagulate in the center of the cluster forming a *He core that is surrounded by
3He atoms [11]. Any additional impurity or dopant molecule, such as SFg, is found
inside this “He core [11].

The next section describes some of the key experimental results of studies on these

systems.

1.3. Experimental studies of
helium clusters

1.3.1. Production of helium clusters
Helium droplets, i.e., clusters of helium atoms consisting of more than 1000 helium

atoms, were first produced by Kamerlingh Onnes in 1908 during his initial attempts

to liquefy helium [21]. In 1961, Becker was able to produce a molecular beam of “He
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droplets [22,23] and in 1977, Gspann duplicated the feat using droplets of SHe [24].

Fig. 2 shows the typical experimental setup used to produce helium beams. The
droplets are formed in a molecular beam by expanding gaseous helium through a 5-20
pm diameter nozzle at source temperatures between 5 and 30 K and source pressures
of 5-80 bar [25-29]. As the gaseous helium passes through the nozzle, it immediately
expands. This adiabatic expansion results in a precipitous drop in temperature and
leads to condensation of the gaseous helium into droplets consisting of 10® to 108
helium atoms [5]. A few millimeters away from the nozzle, collisions between helium
droplets cease and the droplets are further cooled through the evaporation of more
helium atoms. At this point, the velocity of the droplets is somewhere between 200

and 400 m/s [26,28].

1.8.2. Doping of helium clusters

The sample molecule is inserted into the helium droplet using the “pickup” tech-
nique first demonstrated by Gough et al. in 1985 [30]. In this method, the clusters
are passed through a gas cell that contains the molecules of interest. As the droplets
pass through the gas cell, collisions between the droplets and the sample molecules
result in the insertion of the dopant into the helium droplet.

The probability of a cluster picking up a molecule is quite good (the pickup cross
section is on the order of 5000 A) and thus the vapor pressure of the sample in
the cell need only be approximately 107¢ to 107> mbar [5]. In fact, Lewerenz et al.
predict that for a cluster containing 2650 helium atoms with a scattering cell dopant
(the dopant they used was SFg) pressure of 3x107% mbar, 7.7% of the clusters
are expected to have captured one dopant molecule [31]. This allows for the easy

insertion of species, such as amino acids, which are not very volatile. Samples such

as metals and large organic molecules may be inserted after sublimation in a heated




cell [5].

As the vapor pressure of the sample in the cell is increased, the likelihood of
picking up more than one sample molecule increases. The probability of capturing
k molecules in a given helium cluster is given by the Poisson distribution:

((Tnl)ke_mll. 2)

Fe= "0

where n is the density of impurity molecules in the scattering cell, o is the capture
cross section, and [ is the length of the scattering cell. The maximum probability
is achieved when o -n -1l = k. Assuming that the scattering cell length and the
capture cross section remain constant, the maximum directly indicates the number
of captured molecules. The low viscosity of the liquid helium droplet allows the
captured molecules to move about virtually unimpeded in the cluster. This allows
molecules to coagulate and form interesting van der Waals complexes such as (SFg)4
[32] and (H20);6 [31] inside the helium droplet.

The size of these complexes is limited by the fact that the sample’s internal energy,
the kinetic energy of the collision between the droplet and molecule, and the binding
energy of the molecule to the droplet lead to evaporation of some of the helium
atoms from the droplet [5]. Measurements on a 10,000 atom helium droplet before
and after insertion of a sample molecule reveal that approximately 600 helium atoms
are lost for each molecule that is inserted [31]. This sets a limit on the minimum

size of a helium droplet that can be “doped” using this method.

1.3.3. Spectroscopic study of doped
helium clusters

After pickup of the dopant, the droplet of helium is probed using a laser. The laser,
which is positioned perpendicular or antiparallel to the molecular beam, is used to

excite the sample in the cluster. The absorption of a photon by the molecule causes it

to become vibrationally excited and, as it relaxes back into its ground state, it releases
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the excess energy into the cluster causing additional helium atoms to evaporate from
the surface. Absorption of a photon can thus be detected by either measuring the
decrease in the droplet ionization cross section in the mass spectrometer or by using

. . . . 9 -
a sensitive on-axis semiconductor bolometer” located downstream from the lasers [o}

1.4. Studies of molecules trapped
inside helium clusters

The group of G. Scoles at Princeton performed the first spectroscopic study of a
molecule trapped inside a helium droplet in 1992 [33]. In this study, a line-tunable
CO, laser was used to excite the v3, or cage, vibrational mode of SFg (see Fig. 5).
The spectrum they obtained is shown in Fig. 6. The two vibrational bands located
at 945.8 and 946.4 cm™! were assigned to a single molecule of SFg located on the
surface of the helium cluster. The outer two peaks were later determined to be from
contamination with nitrogen gas [34].

The estimated linewidth they found was approximately 0.3 cm™!, a value much
lower than the 1-10 cm™! normally seen in other, heavier rare gas clusters, indicating
that perturbations of the molecule by the matrix of helium atoms are significantly
reduced compared to other types of clusters.

Later, Frochtenicht et al. [36] obtained the first high-resolution spectrum of the v3
vibrational mode of SFg (shown in Fig. 7) using diode lasers. The spectrum obtained
exhibits the P, Q, and R bands characteristic of a spherical top. In addition, the
1

pronounced sharpness of the central line at 946.3 cm™ indicates that most of the

2A bolometer is an instrument used to measure small amounts of radiation. It was invented in 1860
by the American scientist Samuel Pierpont Langley and is now used primarily to detect heat energy
from distant sources. In astronomy, for example, bolometers measure the heat of stars. In its most
basic form, the instrument consists of two platinum strips. When one strip receives radiation,

the small change in resistance it experiences is compared to the other strip and measured. This

difference indicates the amount of radiation received.
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Fig. 5. The v3 or cage vibrational mode of SFg. Adapted from [35].
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Fig. 6. IR spectrum obtained by Goyal in 1992. Adapted from [33].
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perturbations from the host matrix are absent—a surprising find because of the
significant inhomogeneous broadening that is usually seen in liquid matrices. These
findings, together with several other experimental and theoretical studies [15,37-39],
led them to the conclusion that the SFg was trapped at the center of the cluster and
not on its surface as the previous Scoles study suggested.

Attempts to fit the spectrum to a free rotor Hamiltonian revealed that the ro-
tational constant of the SFg in the cluster was reduced from its gas phase value.
Using a rotational constant reduced by a factor of five from its gas phase value,
Frochtenicht was able to obtain an accurate fit to the spectrum (shown in Fig. 8).
As the rotational constant of a molecule is inversely proportional to its moment of
inertia®, this reduction in the rotational constant must be the result of an increase
in the molecule’s moment of inertia. The reasonably good fit to experimental data
obtained with the reduced rotational constant led to the hypothesis that a portion
of the helium density is rigidly attached to the SFg.

This assumption was strengthened in 1995 when the first rotationally resolved
spectrum of a molecule (SFg) in a helium cluster was obtained directly [34]. The
spectrum (shown in Fig. 9) shows no observable splittings of the v3 spectral lines,
implying that the molecule resides in a symmetric environment. This rather con-
clusively shows that the molecule must be in the center of the cluster (a symmetric
environment) and not on the surface (an antisymmetric environment). The spec-
trum also allowed the determination of the actual rotational and centrifugal distor-
tionconstants of the molecule in the helium cluster.

By examining the relative intensities of the peaks, the first experimental deter-
mination of the temperature (0.37£0.01 K, a temperature in close agreement with

previous theoretical studies [12-14]) inside a helium cluster was determined. Most

3The rotational constant, B, of a molecule is defined as B = h/4wcl.
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Fig. 7. High resolution spectrum of SFg. Adapted from [36].
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Fig. 8. Fit of high resolution spectrum of SFg. The spectrum was calculated using

a rotational constant reduced by a factor of five. Adapted from [36].
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Fig. 9. Rotationally resolved spectrum of SFg in a helium cluster. Adapted from
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importantly, the observation of sharp rotational lines verified that SFg apparently
rotates uninhibited in helium clusters.

The spacings between transitions in the P and R branches of the spectrum of SFg
in a helium cluster are much smaller than the respective spacings in the gas phase
spectrum, implying that the rotational constant of the SFg in the helium cluster is
reduced to a fraction (37%) of its gas phase value. The authors presented a possible
explanation for this—the rotation of the SFg is slowed down by the almost-rigid
attachment of a helium atom at each of the eight global minima of the He-SFg
potential (see Fig. 10).

This idea of eight “frozen” helium atoms surrounding the central molecule is ap-
pealing in part because theoretical calculations done by Barnett [18] show that the
first solvation shell of helium atoms around an impurity molecule is frozen. However,
Barnett’s calculations suggest that the number of helium atoms in the first frozen
shell is actually as many as 22 or 23, a number that would give a much smaller rota-
tional constant than that actually observed in this spectroscopic study. In addition,
the model is also weakened by the fact that when the dopant molecule used is OCS,
the difference between the number of attached atoms and the number in the first
shell is even more pronounced—only two rigidly attached helium atoms are needed
to explain the reduction in the rotational constant [5].

Since the first rotationally resolved spectrum of SFy in a helium cluster was found,
the spectra of other molecules in helium clusters have been obtained. These exper-
iments have verified the temperature that was determined in the SFg experiment,
indicating that the temperature of the droplet is independent of the molecule inside
the cluster [14]. In addition, the apparent free rotation of several molecules has been

verified though the degree by which the rotational constants of these molecules are

reduced varies from molecule to molecule (see Table 1).




Fig. 10. He-SFg potential projected onto a sphere of radius r=8 a.u. The sulfur is
located at the center of the sphere while the six flourine atoms are located along the
coordinate axes. The potential minima are shown in purple and all distances are

given in a.u.




Table 1

The rotational constants of some molecules inside helium clusters.

Molecule By (cm™!) B in “Hey (% of By) Reference
H,O 27.8,14.5,9.3 ~ 100 [40]
HF 20.56 ~ 100 [41]
NH; 9.94 76 (42]
(CHO), 1.8 39 (43]
HCN 1.47 81 [44]
HCCH 1.17 89 [45]
DCCH 0.99 88 [45)
CH,CCH 0.28 25 [45]
0CS 0.20 33 (46]
HCCCN 0.15 33 47]
HCCCCH 0.146 32 [45]
CF;CCH 0.096 36 [45]
SF, 0.091 37 [34]
(CH3)3CCCH 0.089 33 (48]

(CH3)3SiCCH  0.065 22 48]
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Lee recently presented a compelling argument as to why the degree of reduction
of the rotational constant of molecules in helium clusters varies from molecule to
molecule [49]. Her numerically exact diffusion Monte Carlo calculations of the low-
lying rotational energy levels of SFg in a helium cluster revealed that a fraction of
the helium density (eight helium atoms) is able to instantaneously adjust to the
rotation of the SFg if the rotation of the molecule is slow enough. Conversely, for
molecules with large enough rotational constants, the helium atoms are unable to
keep up with the fast rotation of the molecule resulting in the molecule’s rotational
constant being unaffected. Thus, as can be seen in Table 1, the degree by which the
rotational constant in a helium cluster is reduced is dependent on the magnitude of
the molecule’s gas phase rotational constant.

Another important question which faced researchers was whether the behavior
of impurity molecules in liquid helium clusters is due simply to the extremely cold
temperatures of the cluster or to their superfluid nature. This question began to be
answered through a series of experiments done by Grebenev et al. [2], which they
called the “Microscopic Andronikashvili Experiment.”

In the original Andronikashvili experiment [50], performed in 1946, a small disk
torsional oscillator was immersed in superfluid helium. As the temperature of the
liquid helium was decreased, the rotational constant of the disk did not decrease as
would be expected in a classical fluid; rather, it sharply increased as the temperature
went below T.

The Grebenev experiment replaced the disk used in the original experiment with
the rod-like molecule OCS and the infrared spectrum of OCS in both 3He and “He
was collected. He clusters are colder than “He clusters (Tsy,=0.15 K, Tay.=0.40

K); however, as previously mentioned, the superfluid transition temperature for *He

is much lower than that of *He (T 3y.=3 mK, Ty 15.=2.2 K). Thus, at the temper-
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atures in the experiment, the *He clusters are superfluid while the *He clusters are
not even though the *He clusters are considerably colder than the *He clusters.

As can be seen from the v infrared spectrum of OCS in *He and *He (Fig. 11).
the 3He spectrum does not display sharp rotational peaks as the ‘He spectrum does.
Rather, the spectrum is characteristic of a molecule in a classical fluid, i.e., it only
has a broad band indicative of rotational diffusion [51-53]. As the number of “He
atoms is increased in the cluster, the rotationally resolved spectrum gradually begins
to appear (see Fig. 12). When the number of *He atoms in the cluster approaches
60, corresponding to two solvation shells surrounding the OCS, the spectrum of
the freely rotating OCS appears. This experiment conclusively showed that the
surprising behavior of molecules in liquid helium clusters is due to the superfluid
character of the clusters although it did not fully explain the mechanism by which
the helium cluster is able to slow down the rotation of some molecules.

In addition to this result, the experiment also revealed the minimum number
helium atoms that are needed to form a superfluid. Their experimental result of 60
helium atoms necessary for superfluidity closely agrees with the 64 atoms Sindzingre

predicted in 1989 [54].

1.5. Conclusions

Helium clusters offer a tremendous opportunity in both chemistry and physics.
From the perspective of chemical physics, helium clusters may become a valuable
spectroscopic tool that can be used to study molecules which currently elude spec-
troscopic study. From the physics standpoint, doped helium clusters provide a way
to understand superfluidity in finite-sized droplets. More specifically, they offer the

possibility to explore the role of size on superfluidity. This is an important objec-

tive because while there are many different ways to describe superfluidity on the
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bulk level. not much is known about the behavior of superfluids on a finite scale.
To explore these avenues, a better understanding of the behavior and properties of
impurity molecules trapped inside helium clusters must be reached.

The next chapter deals with a method that can be used to perform calculations
on the rotational states of these systems; more specifically, it concentrates on the
use of the method to calculate excited state wavefunctions and energies for helium
clusters. To use this method to calculate excited states, an approximate wavefunction
that can accurately predict the location of the nodes of the wavefunction must be
calculated. In addition to allowing the calculation of excited states, an approximate
wavefunction is also useful because it can be used to increase the efficiency of the

method.

References
[1] G. Scoles, K. K. Lehmann, Science 279 (1998) 2065.
S. Grebenev, J. Toennies, A. Vilesov, Science 279 (1998) 2083.
[3] S. Holmgren, M. Waldman, W. Klemperer, J. Chem. Phys. 67 (1977), 4414.

[4] N. N. Greenwood, A. Earnshaw, Chemistry of the Elements 204 edition,

Butterworth-Heinemann, Oxford, 1998.
[5] J. Toennies, A. F. Vilesov, Ann. Rev. Phys. Chem 49 (1998) 1.
[6] M. Lewerenz, J. Chem. Phys. 106 (1997) 4596.
[7] V. Pandharipande, S. Pieper, R. Wiringa, Phys. Rev. B 32 (1985) 3341.
[8] S. Stringari and J. Treiner, J. Chem. Phys 87 (1987) 5021.
[9] P. Joyes, R. Tarento, J. Van de Walle Z. Phys. D 20 (1993) 233.
[10] S. Stringari, Phys. Lett. A 107 (1985) 36.

[11] M. Barranco, M. Pi, S. M. Gatica, E. S. Hernandez, J. Navarro, Phys. Rev. B
56 (1997) 8997.

[12] D. Brink, S. Stringari, Z. Phys. D 15 (1990) 257.




31
[13] A. Guirao, M. Pi, M. Barranco, Z. Phys. D 21 (1991) 185.

[14] J. Gspann, in: S. Datz (Ed.), Physics of Electronic and Atomic Collisions, North
Holland, Amsterdam, 1982, p. 79.

[15] F. Dalfovo, Z. Phys. D 29 (1994) 61.

[16] S. M. Gatica, E. S. Hernandez, M. Barranco, J. Chem. Phys. 107 (1997) 927.
[17] R. N. Barnett, K. B. Whaley, J. Chem. Phys. 99 (1993) 9730.

(18] R. N. Barnett, K. B. Whaley, Z. Phys. D 31 (1994) 75.

[19] S. A. Chin, E. Krotscheck, Phys. Rev. B 52 (1995) 10405.

[20] M. Barranco, E. S. Hernandez, Phys. Rev. B 49 (1994) 12078.

[21] H. Kamerlingh Onnes, Commun. Phys. Lab. Leiden 105 (1908) 744.

2] E. W. Becker, R. Klingelhofer, P. Lohse, Z. Naturforsch. Teil A 16 (1961) 1259.
23] E. W. Becker, Z. Phys. D 3 (1986) 101.

[24] J. Gspann, G. Krieg, H. Vollmar, J. Phys 38 (1977) C2171.

[25] H. Buchenau, R. Gétting, R. Minuth, A. Scheidemann, J. P. Toennies, in: G. E.
A. Meier and F. Obermeier (Eds.), Flow of Real Fluids, Springer-Verlag, Berlin,
1985, p. 157.

[26] H. Buchenau, R. Goétting, R. Minuth, A. Scheidemann, J. P. Toennies, Proc.
Int. Sym. Rerefied Gas Dyn., 15th, Grado, Italy, July, 1986, p. 197.

[27] J. P. Toennies, Proc. Int. School Phys. “Enrico Fermi,” Course CVII, Varenna,
June, 1990, p. 597.

[28] H. Buchenau, E. L. Knuth, J. Northby, J. P. Toennies, J. Chem. Phys. 92 (1990)
6875.
[29] H. Buchenau, J. P. Toennies, J. A. Northby, J. Chem. Phys. 95 (1991) 8134.

[30] T. E. Gough, M. Mengel, P. A. Rowntree, G. Scoles, J. Chem. Phys., 83 (1985)
4958.

[31] M. Lewerenz, B. Schilling, J. P. Toennies, J. Chem. Phys. 102 (1995) 8191.

[32] M. Hartmann, R. Miller, J. Toennies, A. Vilesov, Science 272 (1996) 1631.




[33]

[34]

S. Goyal, D. L. Schutt, G. Scoles, Phys. Rev. Lett. 69 (1992) 933.

M. Hartmann, R. Miller, J. Toennies, A. Vilesov, Phys. Rev. Lett. 75 (1995)
1566.

D. Eichenauer, R. LeRoy, J. Chem. Phys. 88 (1987) 2898.

R. Frochtenicht, J. Toennies, A. Vilesov, Chem. Phys. Lett. 229 (1994) 1.

] M. A. McMahon, R. N. Barnett, K. B. Whaley, J. Chem. Phys. 104 (1996) 5080.

F. Ancilotto, G. DeToffol, F. Toigo, Phys. Rev. B 52 (1990) 16125.

F. Ancilotto, M. W. Cole, G. DeToffol, P. B. Lerner, F. Toigo, J. Low Temp.
Phys. 101 (1995) 325.

F. Huisken, private communication.

D. Blume, M. Lewerenz, F. Huisken, M. Kaloudis, J. Chem. Phys. 105 (1996)
8666.

M. Behrens, U. Buck, R. Frochtenicht, M. Hartmann, F. Huisken, J. Chem.
Phys. 105 (1996) 6128.

J. Toennies, private communication.
K. Nauta and R. Miller, Science 283 (1999) 1895.
G. Scoles, private communication.

S. Grebenev, M. Hartmann, M. Havenith, B. Sartakov, J. Toennies, A. Vilesov,
J. Chem. Phys. 112 (2000) 4485.

K. Nauta, R. Miller, Faraday Discussions 113 (1999) 261.

R. Miller, private communication.

E. Lee, D. Farrelly, K. B. Whaley, Phys. Rev. Lett. 83 (1999) 3812.
E. L. Andronikashvili, J. Phys. U.S.S.R. 10 (1946) 201.

A. Burshstein and S. Temkin, Spectroscopy of Molecular Rotation in Gases and
Liquids, Cambridge University Press, Cambridge, 1994.

R. Clark, R. Hester (Eds.), Advances in Spectroscopy, vol. 23, Wiley, Singapore,
1995.




33
[53] R. Gordon, J. Chem. Phys. 44 (1966) 1830.

[54] P. Sindzingre, M. L. Klein, D. M. Ceperley, Phys. Rev. Lett. 63 (1989) 1601.




34
CHAPTER 2
MONTE CARLO METHODS

In the previous chapter, the properties and behavior of impurity molecules inside
ultra-cold clusters of helium atoms were examined. The intriguing results found
from the numerous experimental and theoretical studies of these systems suggest
that a closer theoretical examination could offer valuable insight into the molecular
properties of superfluidity. In addition, an improved understanding of doped helium
clusters could lead to the eventual use of helium clusters as a spectroscopic matrix
that can be used to study large molecules.

The most surprising result of these studies was the appearance of rotational struc-
ture in the spectra of molecules inside liquid helium clusters. To better understand
the cause of this behavior, a detailed study of the rotational dynamics of impurity
molecules in helium clusters is necessary.

The calculation of rotational states for these systems is complicated by the fact
that an analytical solution to the Schrédinger equation, the equation which governs
the behavior of quantum systems at the nonrelativistic level, is impossible to obtain
because of the many interacting bodies that must be considered. In fact, any realistic
system, whether it be quantum mechanical or classical, with three or more interacting
bodies leads to a Hamiltonian that is too complicated to solve analytically. This fact
means that approximations and numerical methods must be relied on to calculate
the eigenvalues and eigenfunctions of these systems.

One of the most useful sets of numerical methods that can be used to solve for
many-body systems are the Monte Carlo methods. Monte Carlo methods, named

after the reliance on probabilities they share with the games played in the casinos

of Monte Carlo, are very powerful because of their accuracy and efficiency. This
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chapter provides a description of two Monte Carlo methods, Diffusion Monte Carlo,
which can be used to calculate rotational states for impurity molecules in helium
clusters, and Variational Monte Carlo, which is often used to calculate trial wave-
functions for Diffusion Monte Carlo studies. In addition, results of the calculation
of a trial wavefunction for the ground state of the van der Waals complex He-SFg

using Variational Monte Carlo are given.

2.1. Monte Carlo methods

Monte Carlo methods use statistical sampling to approximate solutions of mathe-
matical problems. The use of statistics to solve problems dates back at least to the
eighteenth century to the work of the French mathematician Georges Buffon who
used a statistical method to estimate the value of 7. With a few isolated exceptions,
Monte Carlo methods were not used as a research tool until they were formally de-
veloped by von Neumann and Ulam during their work on the Manhattan project
[1-4].

The ability to quickly and easily generate random numbers that came as a result
of the improvement in computing technologies in the past sixty years has allowed
Monte Carlo methods to become one of the most widely used approximation methods
in quantum physics. The motivation for using Monte Carlo methods comes from the
accuracy the methods afford as well as the relatively minimal computer time they
require to obtain that high level of accuracy [3].

The basic idea of Monte Carlo is easily illustrated with the use of an example.

Consider any function f(z); the area under f from point a to point b, is given simply

by

l/b‘f(i:z‘,)dr. (1)

Suppose that this integral is impossible to solve analytically. Monte Carlo methods
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can be used to estimate the area under the curve by picking N random, uniformly
distributed points in an area A that contains f(z). The ratio of the number of
points that lie under the curve, Nynqer, to the total number of points is equal to the

area under the curve, A, nqer, divided by the total area, 1.e.,

—"\V:m.dcr B AAu,'zdcr (())
N ! 2
Solving for Aypger glves
]vumier ;
~4under e (‘5)

N
Thus, by simply counting the number of random points under the curve, the area
under it can be determined.

There are several different Monte Carlo methods that are often used in quantum
calculations. One of the most powerful Monte Carlo methods is the Diffusion Monte
Carlo method. This method is able to calculate numerically exact ground state
energies and wavefunctions without any prior knowledge of the wavefunction of the
system. In addition, it is the only viable option that can be used for calculations
on large helium clusters because it is the only method that can deal with the many
degrees of freedom at a uniform level of accuracy [6,7]. The next section outlines

the basis of the DMC method.

2.2. Diffusion Monte Carlo
The name Diffusion Monte Carlo comes from the similarity between the time-
dependent Schrodinger equation and a modified general diffusion equation. This

can be seen by examining the equations, which are shown respectively in equations

4 and 5:
o B,
h— = HiYp = —-——VY+ V¥
s Y o Y+ Vi (4)
06 5
— = DV~*C, (5)
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where C is the concentration of the particles undergoing diffusion and D is the

diffusional constant. Modification of the diffusion equation by the addition of a

first-order rate term,
—kC, (6)

results in an equation,

9C _ pvig- kG (7)
ot

that is close to having the same form as the time-dependent Schrédinger equation.
In fact, the only structural difference between the two equations is the presence

of imaginary terms in the Schrodinger equation. These terms may be removed

by replacing the real time, ¢, with imaginary time, 7 = %. This transformation,

also known as a Wick rotation of time [8], leads to the imaginary-time-dependent

Schrodinger equation,

R

’:TT%~Hm (8)
T 2

E

Q

which is an ordinary differential equation of the exact same form as a diffusion
equation modified by the presence of a first-order rate term (a “source” or “sink”).

As was first suggested by Fermi as cited in [8] and Wigner [9], a diffusion equation
modified by the addition of a rate term can be solved using a random walk procedure.
As equations 7 and 8 are completely analogous, any method that can be used to solve
one can be used to solve the other.

To use a random walk to solve equation 8, a shift in energy scale is necessary [8].
This shift, by an arbitrary energy F,.;, results in the following Schrodinger equation,

v  R® _,
O—Lr i 21_,&"1 — [V — E,e5]9. (9)

After this shift in energy, the probability that a particle “reacts” is now proportional

to -[V — E,.s] rather than V.
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Fig. 13. An initial distribution of walkers. A random distribution of walkers for an

arbitrary system with a potential minimum located at the origin.

The random walk procedure begins with an initial ensemble of theoretical particles
termed “walkers” that are distributed throughout position space (see Fig. 13). Each
walker is randomly moved to a new position at each time step, 67; after each move,
the potential at the new position is evaluated to see if the move resulted in the
walker being in a region of higher or lower potential. If the potential, V (r), at the
new position is greater than E,.r, the walker is destroyed; alternatively, if the move
resulted in the walker being in a position that has a lower potential value than E, s
the walker gives birth to additional' walkers. This “birth/death” process the walkers

undergo eventually results in a “steady-state” distribution that fluctuates about an

'The number of walkers that are produced is dependent on the magnitude of the difference between
E,ef and V. Typically, the maximum number of walkers that are “born™ after a “good” move 1s

not more than three. If the move results in a potential value equal to E,.s, then neither birth nor

death occurs.
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Fig. 14. A converged distribution of walkers. A distribution of walkers for an

arbitrary system with a potential minimum located at the origin after many time

steps.

average steady-state distribution centered around regions where the potential or sink
term is lowest (see Fig. 14 and Fig. 15).

This final, converged distribution of the walkers is identical to the solution of the
time-independent Schrodinger equation. Why this is so can be seen by consider-
ing the solution to the imaginary-time-dependent wavefunction, ¢ (r,T), which is
obtained by integrating Eq. 8.  This solution may be expressed in terms of an

expansion of the eigenfunctions, ¢,, and eigenvalues, E;, of the Hamiltonian (i.e.,

Ho = E¢),
(r,7) =Y cigy(x)e mEErerlr, (10)
1=0

Examination of this sum reveals that as 7 — oo, all time dependence in the solution is
removed. In addition, the only state that will appreciably contribute at large values

of 7 is the one with the lowest eigenvalue —the ground state. Thus as 7 — oo, the
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Fig. 15. The probability distribution of the walkers. The probability of finding a
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convergence as a function of position.
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converged walker distribution corresponds to the ground state wavefunction of the

time-independent Schrodinger equation.

2.3. Calculation of excited states
using Diffusion Monte Carlo

2.3.1. The fized-node approximation

One aim of the study of dopant molecules inside helium clusters is to be able to
better understand the behavior and properties of excited rotational states of the
molecule in the cluster. To do this, the energies and wavefunctions of the excited
states must be calculated. DMC is limited in this regard because it can only be
applied to systems that have wavefunctions that are positive-definite.

The reason for this arises from the interpretation of the probability distribution
of the walkers as the wavefunction, v, of the system. Physically, the probability

52 f o 5 5 .
¥|”, not . This fact eliminates any wavefunction

distribution is represented by
with negative regions (i.e., excited states and fermions) from consideration because
a probability distribution with negative regions is nonsensical.

The problem may be approximately overcome through the use of the so-called
fixed-node approximation, first introduced by Anderson in 1975 [10]. The basic idea
of the approximation is to place an infinite potential at each node of the wavefunction
and then study each nodal region separately. To illustrate the use of the method,
consider the well-known and oft-used example of a particle in a one-dimensional box.

The solution to such a system with box of length L is given by

,_<2>% y [nﬂ':l:} i
W = 7 sin 7 (11)

where

o= L2 (12)




n.2 0.4 0.6 0. 1

Fig. 16. Ground state wavefunction for a particle in a box of length L.

The ground state of this system,

2
boum (3

can easily be solved for using DMC because it has no nodes (see figure 16). However,
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the first excited state,

(14)
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has a node at 15 and is negative for all z > % (see figure 17).
With the use of the fixed-node approximation, DMC can be used to find the
solution of the first excited state. How to do this can be seen by noticing that

for 0 < z < £, the wavefunction for the first excited state is just the ground state

(Sl

solution for a particle in a box of length £. Noting the symmetry between the two

halves of the first excited state reveals that the solution for the region £ < z < L
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Fig. 17. First excited state wavefunction for a particle in a box of length L.

is just the negative of the solution to the first region. Piecing these two solutions
together gives the solution for the first excited state.

Stated shortly, the fixed-node approximation works by imposing appropriate bound-
ary conditions on the excited-state to obtain continuous and contiguous regions con-
taining no nodes themselves, but whose boundaries are the nodal surfaces. Of
course, the positions of the nodes are not known beforehand. In these cases, an
approximate or trial wavefunction, W7, must be used to predict the location of the
nodes of the wavefunction. A “good” trial wavefunction that can accurately pre-
dict nodal location is important because the error in the approximation is directly
dependent on the difference between the predicted node and the true node. In fact,
the error associated with the fixed-node approximation is zero if the exact location

of the nodes is known; otherwise, the approximation will always increase the energy

11].
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2.8.2. Importance sampling
To decrease the amount of time required for a DMC calculation, another mod-
ification called importance sampling is often used. Variations in the potential at
different values of 67 make the DMC method inefficient. Using importance sam-
pling, which was first introduced by Kalos in 1974 [12], the efficiency of DMC can
be improved by a factor on the order of two or three orders of magnitude.

The essence of the method is to sample the function
f=v(,7)¥r, (15)

where Uy is a trial wavefunction, instead of the function ¥ (r, 7). Multiplication of
equation 8 by ¥ and making use of the definition of f results in

HVy
1/ T

‘ 2 2 /—3
A0 E—V"f— %V (fVIn¥r) — |
20

OT e 2/1 i E"(fJ‘f(r"/,_) (16>

The term
Vin¥r

is a vector field, often called the quantum force [13] that shepherds the walkers to
regions where |Wp|” is greatest, thus modifying the diffusion process in a manner
analogous to the way particles undergoing Brownian motion are affected by an ex-
ternal field [13]. In addition to reducing variations in the potential, this modification
also increases the efficiency of DMC by replacing the potential, V', with the “local
energy,”

HYr
B = . 1
=12 a7)

This causes walkers to be reproduced with a probability that is now dependent on

[%‘I'TL — E,f] rather than [V (r) — Eg]. For a reasonably good trial wavefunction,

this leads to significantly smaller fluctuations.
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As with the fixed-node approximation, importance sampling requires the use of

a trial wavefunction. Importance sampling is what often makes DMC the method
of choice for systems containing hundreds or even thousands of particles (such as
helium clusters) because it can determine accurate energies and wavefunctions in a
much shorter time than can other methods that provide similar accuracy. This is
shown in Table 2, which was adapted from reference [14]. The table compares the
accuracy and time needed to calculate energies for a cluster of ten carbon atoms
by comparing the percentage of correlation energy® recovered and the relative time

needed for the calculation.

2.3.8. The trial wavefunction

For both importance sampling and the fixed-node approximation in DMC, a good
trial wavefunction is critical. Thus one of the challenges that must be overcome
for DMC calculations that utilize either of these techniques is the calculation of a
trial wavefunction that provides a reasonably good estimate of the behavior of the
true wavefunction of the system. In particular, for calculations of excited states of
molecules in helium clusters, the location of the nodes of the wavefunction must be
predicted to a reasonable level of accuracy.

In importance sampling, the form of the approximate wavefunction in all regions
is important. With this method, as the trial wavefunction approaches the true
wavefunction, the local energy approaches the exact eigenvalue quadratically fast
[14]. Thus, a good trial wavefunction for importance sampling is one that can
accurately mimic the behavior of the true wavefunction everywhere.

The requirements for a wavefunction that will be used in the fixed-node approxi
pp

9 ) . . : e 5
“The correlation energy, E .., is defined as the difference between the exact energy, Eq.qct and the

Hartree-Fock energy, Egrp, i.e., Ecorr =Eezact-Enr.
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Table 2
A comparison of different methods used for many body calculations

Percentage of correlation Relative time needed
energy recovered, to calculate the energy
Method Eoorr =Eezact—Bitarivee—Fock Of & Cyg cluster
Hartree-Fock 0 14
Local Density
Approximation N/A 1
Variational
Monte Carlo ~ 85% 16
Diffusion
Monte Carlo ~ 95% 300
Coupled Cluster® ~ 75% 1500

31n the case of infinite basis set, the coupled cluster method is exact and can provide exact results

for small, few-atom systems [14].
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mation differ slightly from those needed for approximate wavefunctions that will be
used in importance sampling. While an approximate wavefunction that is able to
accurately predict the behavior of the true wavefunction in all regions is desirable for
the fixed-node approximation, it is not necessary. In the fixed-node approximation,
the accurate prediction of the nodes of the wavefunction is the only real characteristic
that distinguishes a good trial wavefunction from a bad one. How accurately the
trial wavefunction mimics the behavior of the true wavefunction between the nodes
does not matter too much because any deviation of the trial wavefunction from the
true wavefunction in the non-nodal regions just results in the walkers taking longer

to converge to the steady-state distribution.

2.4. Variational Monte Carlo

There are many different methods which can be used to calculate trial wavefunc-
tions to use in DMC calculations. One of the most often used methods is Variational
Monte Carlo (VMC). The essence of VMC is the variational method is to vary the
parameters of a guessed, initial trial wavefunction until a best estimate of the true
wavefunction is found. This is done by defining &£, called the Rayleigh ratio, to be
£ [ U,"':rialH/L,”’”trialn <18)

fr(r/j/‘:rialwtrml

Next, the minimum values of the parameters of 1,,.,,, are found by calculating the
derivatives of £ with respect to those parameters. The optimal values of the pa-
rameters are then used to construct a “best guess” trial wavefunction.

In VMC, the calculations are done by moving walkers, which are subject to the
system’s potential, randomly to new positions and then calculating the expectation
value in equation 18. Eventually, the walkers are all distributed around the potential

minimum and the value of the expectation value converges. This converged value

of the Rayleigh ratio is never less than the system’s true energy.
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Fig. 18 shows the results of VMC calculations of the ground state wavefunction for
He-SFg. The eight regions of high density are located at the eight-fold minima of the
He-SF¢ potential, indicating that the wavefunction calculated using VMC is fairly
accurate. The trial wavefunctions found using VMC are certainly accurate enough
to use in DMC calculations of excited states; however, VMC requires a significant
amount of computer time to achieve that accuracy. In addition, VMC is not a
general method. That is, for each new system, an initial trial wavefunction must be
calculated. This can be a tremendous investment in human and computer time and
thus makes the method cumbersome to use. The computational expense of VMC is
significant enough to warrant a search for other methods that can maintain a similar

degree of accuracy while minimizing the computer time needed.

2.5. Conclusions

DMC is the preferred method to calculate wavefunctions and energies for systems
with a large number of particles because it can provide accurate results in a relatively
short period of time. To calculate excited state energies and wavefunctions for these
systems using DMC, the fixed-node approximation must be used. The fixed-node
approximation requires the use of a trial wavefunction to predict the location of
the nodes of the wavefunction. In addition, a trial wavefunction makes the DMC
method more efficient.  Thus, a trial wavefunction must be calculated in many
different circumstances.

One way to calculate accurate trial wavefunctions is to use VMC; however, the
high computational cost of VMC often makes it impractical to use. ~The next
chapter describes an attractive alternative to VMC. The method uses an adiabatic

separation of angular and radial motion to obtain an approximate wavefunction that

depends only on angle. The method has the advantage over VMC and other methods




49

g r'l " ’U ¢ ' " 0 4 N
6 - J U G ) : "
Yo Sy Y sy 4
, o \"”«"".1”3‘ R SRR e i
4 o Y JJ‘VB-V »Wf i ) ' q
o ‘o Wt ] ' v '
e \1 f‘.,J,’ (T ; )
' . . ' : ! ’ ,rv“,,'f y | 3 " ‘ .
PTTRTI P A T 5 , '
L o N o g i ;
N v B T ‘ \ v
bl ' '
3 A " :
n 1“,4‘{"'. Uy “" 2 :
y ? L, S
.
§ ¢
2
R K v,‘u&q.\ v \4 i G L
VAT URLCTRAORE [ o ] % Vs ) '
) i " .\) ﬂ,, “,A)lr.’ A ' '
s aow Nv/l,‘ ’_4.‘““2,:'.‘ i) " e ' y‘\,‘\ ‘f‘ : r‘,| .: e 0 ‘ ;
k0, P DA Yol A ‘ T e ,
' " “w " ! .." b "' - ' ““\ . ' A . Tt i‘l‘ " J ' i‘ '
A ' .- v 5 i 'l:' (IO s ot AL h ' 1 2
n ! ! g vyl M L) :
0 | I I T T

Fig. 18. VMC calculation of the ground state wave function of He-SFg.
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used to calculate trial wavefunctions because it can be calculated at a much cheaper

computational cost without sacrificing accuracy.
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CHAPTER 3
THE ADIABATIC SEPARATION

3.1. Introduction

As noted in the previous chapter, calculations of ezcited states of systems con-
taining an impurity molecule trapped inside a helium cluster using Diffusion Monte
Carlo (DMC) requires the use of a trial wavefunction. A minimum requirement of a
trial wavefunction that is to be used for this purpose is that it predict the location of
the nodes of the true wavefunction to an acceptable degree of accuracy. In addition
to allowing calculations on excited states to be done using DMC, a trial wavefunc-
tion can be used to greatly increase the efficiency of DMC calculations. These facts
make calculation of a trial wavefunction a necessary and important part of many
DMC studies.

The Variational Monte Carlo method provides trial wavefunctions that can prop-
erly predict the location of the nodes of the wavefunction; however, the method is
quite expensive computationally. In addition, the trial wavefunction that is required
for Variational Monte Carlo varies from problem to problem, meaning that a new
form of a trial wavefunction must be found for each new problem. As finding a
trial wavefunction requires a significant time investment, a more general method is
desirable. This chapter gives a description of an alternative to Variational Monte
Carlo—the adiabatic separation of angular and radial motion—as well as the results

of the application of the method to the van der Waals “molecule” He-HCN.

3.2. The adiabatic approximation
The adiabatic approximation is useful for quantum calculations because it can

greatly simplify the Hamiltonian of the system by decoupling two of its components

from each other. For the electronic Born-Oppenheimer approximation, the two
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components that are decoupled are the molecule’s nuclear and electronic motion.
This approximation is widely used and without it, solutions for even the simplest
molecules would be impossible to obtain.

Just as the adiabatic approximation is used to simplify molecular electronic calcu-
lations, it can also be used to simplify the calculations on van der Waals complexes.
In this case, the approximation utilizes the large difference in the amplitudes of the
angular and radial motion of the van der Waals complex to decouple their motion
from each other leading to a much simpler Hamiltonian.

For example, consider the Hamiltonian for the interaction of a rare gas element
with a linear molecule in the laboratory frame (the same Hamiltonian used in this

study of He-HCN),

2 :
= ———— 4+ —— + V(R,0) + byj’, i
s 2u OR? * 21 R? (R, 6) + boj (1)

where p is the reduced mass of the complex, by is the rotational constant of the linear
molecule, and V' is the intermolecular potential which is dependent on both R (the
distance between the two centers of mass) and 6 (the angle the lone element makes
with the molecule, see Fig. 19). The operator j is the angular momentum of the
rod-like molecule and 1 is the angular momentum of the element and the molecule
about each other.

Rewriting the Hamiltonian in a body-fixed frame' [1] gives

L C )l
2udR? - 2p v

H = + V(R, ) + boj?, (2)

where j is now the rotational angular momentum operator for the diatomic in the

molecule-fixed coordinate system and J is defined as the total angular momentum,

1The body-fixed frame is fixed on the molecule and thus rotates with respect to the laboratory

frame. The two reference frames are related to each other by the Euler angles.
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Fig. 19. Definition of terms used in Eq. 1.

l.e.,
J=j+1 (3)

If the radial motion is assumed to be much smaller than the angular motion, R may
be parameterized which allows the first term in the Hamiltonian,
92

he & (4)

2/t OR?’
to be ignored leading to a modified Hamiltonian,

R (J —j)° "
H{R0) = 9]_;/(—]?-’_”_ + V(R, ) + boj>. (5)

Here, the notation H(R;6) denotes a Hamiltonian that is dependent on ¢ and para-

metrically dependent on R. Now, instead of solving the full Schrodinger equation,
HY(R,0) = EY(R,0), (6)
the much simpler approximate Schrédinger equation,

H(R;0)¥ 4(R;0) = U(R)¥V 4(R;0), (7)

can be solved by constructing and diagonalizing H(R;#) in an appropriate basis.

As the adiabatic separation for van der Waals complexes is based entirely on

the assumption that the radial motion of the complex is localized, whether the
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Fig. 20. Radial probability distribution for He-HCN

approximation 1s valid for complexes that do not have highly localized radial motion
cannot be determined without testing it on a radially floppy complex. The large
amplitude radial motions and the extremely weak interactions which cause them can
be seen by comparing Fig. 20 and Fig. 21, which show the potential energy curves,
ground state energies, and radial probability distributions? for Ar-HCI (a classical
van der Waals complex) and He-HCN (a radially floppy or quantum van der Waals
complex) respectively. The shallow potential energy well and large zero point energy
of He-HCN lead to a radial distribution that is much broader than that of the argon

complex.

Dla 8 . g s A a3 s 5 s . -
“The approximate radial wave function used to determine the probability distributions for He-HCN

and Ar-HCI1 shown in Fig. 20 and Fig. 21 were calculated by solving the respective Hamiltonians

0
for He-HCN and Ar-HCl using the isotropic potential, i.e., V = > C,(R)P,(cost) = Co(R)

n=0
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In spite of the large amplitude radial motions, the wavefunctions for radially floppy
van der Waals complexes are still much more sensitive to changes in angle than they
are to changes in distance. This is shown in Fig. 22, which shows the interaction
potential of He-HCN at fixed angle (Fig. 22a) and fixed radial separation (Fig.
22b). The fact that there is still a significant difference between the angular and
radial motions of helium complexes leaves open the possibility of using the adiabatic
approximation on them.

By showing that the adiabatic approximation is valid for helium van der Waals
complexes, the work presented in this thesis demonstrates that the adiabatic approx-
imation can be used to calculate approximate wavefunctions accurate enough to be
used in DMC studies of impurity molecules trapped inside helium clusters. Using

the method for this purpose offers significant improvements over other methods (such
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as Variational Monte Carlo) commonly used to calculate approximate wavefunctions
because of the relatively short amount of time it requires. The time improvement
over Variational Monte Carlo this method provides comes not only from a decrease in
actual computer time needed, but also from the fact that an initial trial wavefunction
does not need to be calculated for each new system.

The next section describes how the adiabatic approximation was applied to the
He-HCN van der Waals complex.
3.3. Application of the adiabatic

approximation to He-HCN
The Hamiltonian matrix for the He-HCN van der Waals complex in the Y2 basis®

is given by

(V3 | H(R;0) | YD) =

m

A
N
S o
—
(0]
s,

Using

: )72)/ =n(n+1) ‘§,§'> 3 (9)

J

leads to the following expression for the matrix elements of the bgj* term:

(Yo | 00i® | Y7)) = bo[n(n + 1)]ém,n. (10)

The matrix elements for the %L;{?ﬁ term can be simplified by expanding (J — j)?,
o | B (T =) PR ,

<y,,? Iﬁ—f?‘z_ Y,?> = (V3|32 -§# -2 5|7}, (11)

and then replacing the operators J* and j* with their respective eigenvalues, J(J +1)
and n(n + 1), giving

72
L

|

B{I(T+ 1)+ n(n+ 1)} bmn —2(¥3 1T -§| V)] (12)

[A)

3Y.9(6) are the spherical harmonics, Y., (6, #), with =0.
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The final term in this expression, (Y,2 |J - j| Y.¥), can be shown to be negligible using

perturbation theory [2], which gives

(Y2 | H(R;0)|Y?)=bo[n(n+1)|bmn+

m
2
4

h i (o .
5/;[71{'7(.1+1)+n<n+1>}6m.,11 + (Y3 V(R 0)|YY). (13)

Unlike the matrix elements of by and (J — j)?, the V(R;#) matrix elements do not
have an analytical form that can be used. To overcome this obstacle, the potential
was expressed as an expansion of the associated Legendre functions, i.e.,

V(R,0) = Z C(R)Py(cos ). (14)

n=0
Using this expansion, the matrix elements of the potential are

Za ) Pr (ox())’) >: (15)

/

(YOIV(RO)|Y2) = <Y,?,

)

K n <
: o : m k
(em+D)@n+ D)2 B[ © "), (16)
= 00O
where (’G 8' (7]’) is a Wigner 3-j symbol and Ci(R) is the k' expansion coefficient

for the potential expressed in terms of the Legendre polynomials. Thus, the final
expression for the approximate Hamiltonian matrix was

Fxr0 e FON

W | HZE) | b)) =

f \
bo(n(ﬂ'{”l))(\mn* Vl{] ]+1)—1—n< 1)}5”1'”] +
2

s m k n\’
\/[(2m+1)(2n+ 1)]%})0;5(]?,)(0 0 0) : (17)

The matrix was diagonalized using the Jacobi method, which, like most numerical
eigensystem routines, nudges the matrix to diagonal form by performing a series of

similarity transformations, i.e.,

A - Ty ATy, » TV VT AT — T TV T P AT TV T — et (18)
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In the Jacobi method, each similarity transformation is actually a rotation that elim-
inates one of the off-diagonal matrix elements. After enough of these transforma-
tions, all off-diagonal matrix elements are removed. The method has the advantage
of being virtually foolproof—it will diagonalize any n x n real symmetrical matrix
[3]-
After diagonalization, the matrix elements remaining on the diagonal are the eigen-
values; the eigenvectors are found by expressing them in an expansion of the basis
functions (in this case, ¥,°). The coefficients for this expansion are found by multi-

plying the columns of the accumulated transformation together as follows:

The eigenvectors found from diagonalizing the matrix are the approximate wave-
function of the He-HCN van der Waals complex. The eigenvectors were checked for
normalization and convergence by examining the sum of the square of the expansion

coefficients, 1.e.,

N (2t (20)

Convergence was checked by examining this sum as the number of basis vectors

increased. Assuming the wavefunction is normalized, the sum will converge to one
when the expansion of the basis vectors is equal to the wavefunction. As can be
seen in Fig. 23, which shows a plot of }_, \C,le versus n, the expansion is converged
after approximately n = 15; therefore, the number of terms that were used in these
calculations was twenty. This examination of the expansion coefficients also allowed
a check for normalization because the sum is only equal to one if the wavefunction
is normalized since the basis vectors themselves are normalized.

The He-HCN potential used in this study was obtained from a recent paper by

Atkins and Hutson [4]. Their potential was found by fitting parameterized functional
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Fig. 23. Graph showing the number of terms, n, that were needed for convergence.




61
forms to high-resolution microwave and millimeter wave spectroscopic data that was
collected by Drucker et al. in 1995 [5]. In the Atkins paper, there are several
different potential forms presented; the one used in this study was the one termed
“1E8” (the ES signifies the potential was fit to eight experimental data).

The expression for the potential consists of three terms:
‘/(R' H) = Lvrep = ‘fmd il "iizbw (21)
The first term, V,p,, the intermolecular repulsion, is given by
Vien = Al 7 (22)
the intermolecular induction, V;,q, is given by

Vind = — (@1, )(/11/(,\\')2[1 + Ps(cos 0)][177'“ — (5(,(\m)(/111(1\')((")//(‘,\')("0-\':g OR™"; (23)

[

and the dispersion energy, Vg, 18

4
\:ll.s SRty Z (V'zz(())Dn(R)Rw”. (.24)
n=~6
where
(0) e .
('(\'(9) = ¢ +Cg ]’Q((‘Oh’ﬁ).
c7(0) = (-Q” cosf + ('(73') cos® 8, (25)

and D, (R) are the Tang-Toennies damping functions (6],
: 1 n ‘iR m
D”(.R)zl—e“”‘z(——)—. (26)

|
m=0 m.

The values of the parameters used are shown in Table 3.  A(f) and cg(0) were
calculated by expanding the depth, €(#), and the position, R,(6), of the minimum

of the potential well as Legendre series,

3
e(d) = Zq]}(vosf)) and
A=0

3
Rm(e) = Z H;\;IP,\<('OS (‘))

A={)




Table 3

Parameters used in the He-HCN potential

Parameter

Potential 1E8

ape (ag)
trcn (€ao)
Ouen (eaf)
B (A

€0 (cm™1)
e; (cm™1)
€z (cm™?)

€3 (cm™?)

Rg'n (‘A)

01.383
01.174
01.77
03.901(15)
24.825(139)
03.402
00.385(3)
00.854
03.715
00.200

00.071
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Using these expansions, the definition of the derivative of a Tang-Toennies damping

function,

=)
D
SN—
|
)
e
T
o
5
5
T
=~
S—r

and defining V;;, to be
I"fi'x(Rm) = "K;nd(Rm) i C(EDG(RW)R;LG 5 ('TDT(erz)R;Tv <28)

allows cg(#) and A(f) to be found,

7)[6(9> + l"fif(]?mﬂ ol ‘}ZI(\Rﬂl)
Di(Rm) — Ds(Ry) {h— o 3]

8 .
R, and

cg(0) =

1(9) =h <(~'8(9)D3(R7”>R;8 P, o I'Tij(Rm)> (f‘“{“{

The final form of the potential is shown in Fig. 24.
The associated Legendre polynomials used to obtain an analytical function for
the potential were calculated using the following recursion relation to calculate the

polynomials:
(l-m)P"=z(2l-1)P", — (I+m - 1)P7,. (29)

Although there are many different recurrence relations that the associated Legendre
functions satisfy, this one was chosen because it is stable and because it has a closed-
form expression that can be used to find a starting® value.

The expansion coefficients, C,(R), used to expand the potential were found by

integrating the potential with the Legendre polynomials, i.e.,

™

Co(R) = (Va(R) | Pa(cos 8)) = / V(R, 8) P, (cos 0)d6. (30)

0

4The closed-form expression is P = (—=1)™(2m —1)!!(1 — 22)™/2 where n!! denotes the sum of all

m

odd integers less than or equal ton. If l=m+1and P’ ; =0, then P, = z(2m + 1) P™.

m—1 — m+1 /% m
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Fig. 24. The He-HCN potential.
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Fig. 25 shows the potential plotted with an expansion of the first fifteen terms at
several values of #. As can be seen from Fig. 26, which shows the percent error in the
potential expansion, most of the error in the expansion occurs along the minimum
of the potential well with the largest error of 2.18% occurring at approximately 3.3

A and 118°.

3.4. Discussion

The ground state angular wavefunction, Wg,,(R;6) found from diagonalizing the
approximate Hamiltonian, H(R;#0), is shown in Fig. 27. The fact that a reasonable
wavefunction was found shows that the adiabatic approximation is indeed valid for
extremely floppy van der Waals complexes. As shown in Fig. 28a, which shows
VU,q(R;0) plotted at different fixed values of R, the angular wavefunction does a

good job of matching up with the He-HCN potential. However, Fig. 28b, which
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shows the ground state angular wavefunction plotted with the potential at 6 = 0,
reveals that the angular wavefunction does not accurately match up with the He-
HCN potential radially.

To improve the form of the angular wavefunction radially, it was multiplied by a
radial wavefunction calculated using the radially dependent eigenvalues, U(R) (found
from diagonalizing approximate Hamiltonian matrix), as an effective radial potential,
le.,

%v? + U(R)| x(R) = [Ea] x(R). (31)

This equation was solved using the Fourier Grid Hamiltonian” method. The radial
wavefunction, x(R), and the radial potential, U(R), are both shown in Fig. 29.

The modified ground state wavefunction,
d(R,0) = Uong(R; 0)x(R), (32)

is shown in Fig. 30. This modified wavefunction is a much better approxima-
tion than the angular wavefunction because in addition to accurately describing the
system angularly, it also gives a reasonable radial description of the system. The
radial improvement this modification provides can be seen by comparing the modi-
fied wavefunction at fixed 6 (Fig. 31) with the angular wavefunction at fixed 6 (Fig.
28b).

As the major motivation for this study was the development of a method that
can be used to calculate excited state trial wavefunctions for DMC studies, the
approximation was also tested on the excited states of He-HCN. As shown in Figs.
32-34, which show W,,, for the first three excited states of He-HCN, the adiabatic
approximation is also valid for the excited states of extremely floppy van der Waals

complexes.

°A description of the Fourier Grid Hamiltonian method is given in Appendix A.
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As was the case with the ground state wavefunctions, the radial description pro-
vided by W,,, is lacking. To improve the form of the excited state wavefunctions,
the angular wavefunctions were again multiplied by y(R). Figs. 35-37 show the
result of this modification.

Calculation of excited states using DMC and the fixed-node approximation only
require the nodes of the wavefunction to be approximately known. Thus, the nodal
structures of the excited state trial wavefunctions are of particular interest. Fig.
38 shows the nodal structure of the angular wavefunction for the first three excited
states of He-HCN. These plots reveal the strong angular localization of the nodes
of the angular wavefunction. The nodal structure for the first three excited states
of the modified wavefunction, ¢, is shown in Fig. 39. These graphs again reveal the

radial improvement provided by multiplying the angular wavefunction by the radial

wavefunction.
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3.5. Conclusion

Use of the adiabatic separation to determine trial wavefunctions that can be used
in Diffusion Monte Carlo to calculate excited state energies and wavefunctions has
been shown here to be an attractive alternative to other methods currently used
to calculate trial wavefunctions such as Variational Monte Carlo. This is the first
time the adiabatic approximation has been applied to an extremely radially floppy
complex such as He-HCN.

As shown here, the angular wavefunction calculated using the adiabatic separation
is a reasonable approximation to the true wavefunction that can be calculated at a
computational cost significantly less than Variational Monte Carlo. The form of this
wavefunction can be improved by multiplying it by the radial wavefunction found
by solving the radial equation. This calculation is minimally expensive and greatly
improves the form of the approximate wavefunction. This improvement in form is
important because it can speed up the DMC calculation while decreasing the error

associated with calculation of excited states using DMC.
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CHAPTER 4
SUMMARY

Ultra-cold droplets of helium are interesting for at least two reasons. First, as finite
sized superfluids, they offer the opportunity to study superfluidity on a microscopic
level. This is important because it could lead to a more complete and fundamental
description of superfluidity. Second, helium droplets in a molecular beam could be
used to obtain high-quality spectroscopic data for molecules that are currently too
large to study using spectroscopy because their many modes of motion lead to spectra
that are impossible to interpret. Helium droplets are ideal matrices for spectroscopy
because they are very cold and interact very weakly with other molecules. Thus, a
better understanding of the behavior and properties of helium droplets will lead to
significant advances in both chemistry and physics.

An important part of the study of helium clusters is the behavior of molecules
with well understood properties inside the clusters. A molecule inside a helium
cluster can be used as a probe that relays information about the helium cluster
environment back to the macroscopic world. Experimental studies of these systems
have revealed some fascinating results about the properties of helium clusters. One
of these results was the apparent free rotation of the molecule in the droplet of
helium. This free rotation is a result of the superfluid nature of the helium cluster.
To better understand the properties of helium droplets, a detailed study of molecular
rotation inside the cluster is necessary.

Any theoretical study of these systems requires the use of approximate meth-
ods because analytical solutions are not possible. A particularly powerful numer-
ical method that can be used for many body calculations is the so-called Diffusion

Monte Carlo method, which can calculate numerically exact ground state energies
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and wavefunctions. To calculate excited states using Diffusion Monte Carlo, an
approximation—the fixed-node approximation—is necessary. The error associated
with this approximation is directly dependent on how well the nodes of the wave-
function are known. This makes the calculation of approximate wavefunctions that
can accurately predict nodal structure a critical component of Diffusion Monte Carlo
studies.

Typically, the many-body wavefunction for Diffusion Monte Carlo is written as
a product of the helium-impurity molecule dimer wavefunctions, i.e., for a helium

cluster consisting of n helium atoms, the wavefunction is written as

U= H YHe-1,
n

where 1), ; is the helium-impurity molecule wavefunction and W is the total wave-
function. Thus, a form for the dimer wavefunction is first necessary. One of the
most common methods used to calculate approximate wavefunctions for Diffusion
Monte Carlo studies is the so-called Variational Monte Carlo method. This method
provides wavefunctions that are accurate enough to use for Diffusion Monte Carlo;
however, they are computationally costly. Thus, a method that can calculate ap-
proximate wavefunctions at a reduced computational cost is highly desirable.

A method that has been used to calculate approximate wavefunctions for van
der Waals complexes in the past is the adiabatic approximation. In general, this
approximation decouples one component of the system from another based on the
large difference between the amplitudes of the two components. For example, the
adiabatic approximation for molecules uses the fact that nuclei move much more
slowly than electrons to decouple the nuclear motion from the electronic. In the
case of van der Waals complexes, the approximation is based on the large difference

in the radial and angular motions of the complex.
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The approximation has never before been applied to the van der Waals complexes
of helium because, unlike other complexes, those of helium do not have highly lo-
calized radial motion. As the essence of the adiabatic approximation is the large
difference in the relative motions of the angular and radial components of the van der
Waals complex, whether it is valid for complexes that have large radial and angular
motions could not be determined without testing it on a radially floppy complex.
The results presented here show for the first time that the adiabatic approximation
is valid for He-HCN and other radially floppy complexes.

By showing that the adiabatic approximation is appropriate for helium van der
Waals complexes, this thesis shows that the adiabatic approximation can be used
to calculate approximate wavefunctions for these systems. The major application
of the method is expected to be in the approximation of helium-impurity molecule
dimer wavefunctions. These approximate wavefunctions can then be used to con-
struct wavefunctions for Diffusion Monte Carlo calculations of excited state helium

clusters. The code for the program written to calculate these wavefunctions is given

in Appendix B.
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Appendix A. The Fourier Grid Hamiltonian Method
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The radial wave function, x(R), is found by solving the “radial” Schrodinger

equation,

2
;iuv? + U(R)| x(R) = [Ex] x(R). (1)

In this equation, the potential, U(R), is the effective radial potential, which is repre-
sented by the eigenvalues that are found by diagonalizing the approximate Hamnilto-
nian matrix. To solve this equation, the Fourier Grid Hamiltonian method developed
by Balint-Kurti was employed [1, 2].

The Fourier Grid Hamiltonian method utilizes the fact that the Hamiltonian
is comprised of a kinetic and a potential term and that these two terms are best
treated in different representations. The kinetic operator is most easily treated in
the momentum representation, where it is diagonal, while the potential operator
is easiest to handle in the coordinate representation in which it is diagonal. The
essence of the method is to express each of these terms in the representations that

are easiest to use and then connect them using the Fourier transform,

toln) = 1_( =tk (2)

This method allows bound state eigenvalues and eigenfunctions for a one-dimensional

Schrodinger equation to be easily found.
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Appendix B. Fortran 90 Program Used to Calculate He-HCN Trial

Wave Function




PROGRAM Adiabatic Approximation for He-HCN

IC This program calculates a trial wave function for the van der Waals

'C molecule He-HCN using an adiabatic separation of angular and radial

IC motion. A description of the theory behing the adiabatic method is

IC given in Holmgren, Waldman, and Klemperer, J. Chem. Phys. 67 (1977)
IC 4414. The angular wave function calculated using the method can be

IC made to be a better approximation if it is multiplied by the radial

IC wave function. Thus, the final wave function this program calculates

IC is a product of the radial wave function and the angular wave function.
IC The radial wavefunction was calculated here using the Fast Fourier

'C Grid Hamiltonian method developed by Balint-Kurti and Marston. The
IC potential for He-HCN was taken from a paper by Atkins and Hutson.

IC Many of the subroutines used were found in Numerical Recipes in FORTRAN,
IC 2nd edition by Press, Teukolsky, Vetterling, and Flannery, Cambridge
IC Press, Cambridge. The files that are output and what they correspond
IC to are listed in the program. Most of the calculations in the program

IC are done in atomic units although there were some necessary conversions
'C betweeen subroutines that were necessary.

!C —Dan Ward

IC

INTEGER size !size=size of matrix

INTEGER np,uu,zz,pp,vv,ff

INTEGER rinit,rfinal !initial and final values of r in angstroms

INTEGER 1i.j.ii,jj,n,nn,intr,kk.npoint,qq,q,intangle,intscale,intscale2
INTEGER xxmin,xxmax !xxmin and xxmax provide a way to use a spline routine
PARAMETER (size=20)

PARAMETER (np=size)
PARAMETER (npoint=20)

PARAMETER (intscale=100)

PARAMETER (intscale2=100)

PARAMETER (rinit=3*intscale)

PARAMETER (rfinal=7*intscale)

PARAMETER (uu=rfinal-rinit+1)

PARAMETER (xxmin=3*intscale2)

PARAMETER (xxmax="T7*intscale2)

PARAMETER (vv=4)

PARAMETER (ff=rfinal-rinit+1) !(ff=xxmax-xxmin+1)

IThese are the integer variables from the Fast Fourier Grid Method Program

(FFGM)
!******************************************************************X************
INTEGER NX,ITEST,NFACT1,NFACT2IJD,JERR,NWRIT,NPRIN

PARAMETER (nx=xxmax-xxmin,NWRIT=4 NPRIN=1) Ixxmax-xxmin
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REAL*S8 a(size,size),d(np),v(np,np),moe,e(np),pot,cn,cni,w(npoint ),x(npoint)
REAL*8 dc !de=kronecker delta(i,j)

REAL*8 b0,bigJ,angle,pi,mu,mHCN,mHe,twopi

REAL*8 threejterm,threejtermi hbar

REAL*8 aa,bb,funct, THREEJ,plgndr,term0,potex,potexi

REAL*8 expandthreej,expandthreeji,psiq,psi,scale

REAL*8 xa(uu),ya(uu),y2(uu),ypl,ypn,xx

REAL*S scale2,xal(uu),yal(uu),xa2(uu),ya2(uu),xa3(uu),ya3d(uu)
REAL*8 aaa,bbb,ccc,ddd,psiql,psil,psiq2,psi2,psiq3,psi3

IThese are the real variables from the Fast Fourier Grid Method Program
(FFGM)
!*******************************************************************************
REAL*8
RO,WCH(NX),ZR(NX,NX),FVI(NX),FV2(NX),AR(NX,NX),R1,RMIN,RMAX,ZL,DX,COl
REAL*8
CONST2,DARG,RATIO,VVV,NEWX,PSQ,XXAA(UU),YYAA(UU),YYPLYYPN,YY2(UU
REAL*R eee,fif ggg, hhh IXA (NX)

PARAMETER (R0=1.d0) !7329D0)

EXTERNAL funct,pot,plgndr,ocspotential, HCNpotential

I***Get values of parameters (in atomic units).

b0=6.698d-6 !6.698d-6 Hartree = 1.47 wavenumber
mHe=7.29629343490d3

mHCN=4.92646549378d4

pi=2.d0*dasin(1.d0)

mu=6.35508047048d3

aa=0.d0

bb=p1

twopi=2.d0*pi

hbar= 1.d0

scale=1.d0*intscale

scale2=1.d0*intscale2

***Convert from degrees to radians

do intangle=1,ff

ang=180.d0/(rfinal-rinit)

angledeg=intangle*ang-ang

angle=angledeg™pi/180.d0

write(6,*) ‘theta= ’,angledeg,’degrees’

do intr=rinit,rfinal

moe=(intr/scale)/.529d0 'moe is the value of r in atomic units
pp=intr-rinit+1

psi=0.d0
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psil=0.d0

psi2=0.d0

psi3=0.d0

do ii=1,np

i=ii-1

do jj=1,np

j=jj-1

cn=0.d0

threejterm=0.d0

leg=0.d0

potex=0.d0

expandthreej=0.d0

Pracktorkxkrk**xThis segment calculates cn and threej”
2***********************************
do nn=1,15

n=nn-1

expandthreeji=0.d0

cni=0.d0

threejtermi=0.d0

potexi=0.d0

P¥**calculate three j symbols
threejtermi=(THREEJ(i,n,j))**2
I***Integrate to find the expansion coeflicients***
call gauleg(aa,bb,x,wnpoint) !* This is the integration of

I* potential(r,theta)*

do kk=1,npoint * LegendreP[n,Cos[theta]]
cni=cni+w(kk)*funct(x(kk),moe,n) '*to find the expansion coeff.
enddo
!**************************************************
potexi=cni*plgndr(n,0,angle)

potex=potex+potexi

expandthreeji=cni*threejtermi
expandthreej=expandthreej+expandthreeji

enddo

expandthreej=expandthreej*4.55635d-6 !converts cn from cm-1 to hartree
I ¥3.16683d-6 kelvin

***This segment calculates the matrix
elelllents********************************

if (i.ne.j) then !This "if” loop calculates dc=kroneckerdelta(i,j)
dc=0.d0

else

de=1.d0

endif




bigJ=0.d0

term0=dsqrt (4.d0*1*j4-2.d0*i+2.d0*j+1.d0)
a(ii,jj)= bOF((7**2)+]1)*de + &
term0*expandthreej + &
((0.5d0)/(mu*((moe)**2)))* &
((hbar**2)*((bigJ**2)+bigJ+(j**2)+j) )*dc
expandthreej=0.d0

enddo

enddo

***Diagonalize the matrix

call jacobi(a,size,np,d,v,nrot) !Jacobi diagonalizes the matrix, a,
land then puts the eigenvalues in the array d.
IThe eigenvectors (in the legendre polynomial
Ibasis) are in the array v.

I***Convert eigenvalues (radial potential from a.u. to wave #
do j=1,np

e(j)=d(j)*219474.d0 !This converts from Eh to wave#

enddo

P***Calculate angular wave functions

do qq=1np

q=qq-1

psig=v(qq,1)*plgndr(q,0,angle) !psi is the ground state angular
psi=psi+psiq !wave function.
psiql=v(qq,2)*plgndr(q,0,angle) !psil is the first excited state
psil=psil+psiql langular wave function.
psiq2=v(qq,3)*plgndr(q,0,angle) 'psi2 is the first excited state
psi2=psi2+psiq2 langular wave function.
psiq3=v(qq,4)*plgndr(q,0,angle) !psi3 is the first excited state
psi3=psi3+psiq3 langular wave function.

enddo

F**get x and y values for wavefunction spline
xa(pp)=moe*.529d0

ya(pp)=psi

xal(pp)=moe*.529d0
yal(pp)=psil
xaQ(pp):moc 529d0
ya2(pp)=
xa3(pp)=moe*.529d0

ya3(pp)=psi3

P¥**This segment puts the radial potential into an array for the FFGH method.
XXAA(pp)=moe

YYAA(pp)=d(1)
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P¥**xWrite to file

write(10,*) moe*.529d0, angledeg, psi
write(11,*) moe*.529d0, angledeg, psil
write(12,*) moe*.529d0, angledeg, psi2
write(13,*) moe*.529d0, angledeg, psi3
write(99,*) moe*0.529,angledeg, HCNpotential(moe*.529d0.angle)
write(98,*) moe*.529,angledeg,potex
I***Reset values of angular wave functions
psi=0.d0

psil=0.d0

psi2=0.d0

psi3=0.d0

enddo 'end of r loop

IC....TEST THE EFFECTIVE POTENTIAL

DO J=xxmin,xxmax !200

R1=dfloat(J)/scale2/.529d0

call SUB(R1,xxaa,yyaa,uu,poten)

lwrite(6,*) r1*.529d0,poten*2.19474d5

WRITE(30,*) r1*.529d0,POTEN*2.19474D5

poten=0.d0

'call morsepot(rl,VVV)

write(6,%) ' rl °, VVV°’

lwrite(31,*) r1,VVV

ENDDO

IC....TEST THAT NX IS EVEN

ITEST=MOD(NX,2)

[F(ITEST.NE.0) THEN

WRITE(6,*) »**** NX MUST BE EVEN-FATAL ERROR ****’
STOP

ENDIF

1IC....SET UP GRID

WRITE(6,*)’GRID PARAMETERS?’

WRITE(6,*)’ NUMBER OF GRID POINTS = ’,NX
RMIN=xxmin/scale2/0.529d0 !rinit /scale/.529d0 !xxmin/100.d0/.529d0
RMAX=xxmax/scale2/0.529d0 !rfinal/scale/.529d0 !xxmax/100.d0/.529d0
ZL=(RMAX-RMIN)

WRITE(6,*)’ GRID LENGTH = ',ZL

DX=ZL/dfloat(NX)

WRITE(6,*) ’ GRID SPACINGS = ’,.DX

IC....COMPUTE CONSTANTS

PSQ=FPI*PI

CONST1=PSQ/(MU*(ZL**2))
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NFACT1=(NX-1)*(NX-2)

NFACT2=(NX-2)/2

CONST2=CONST1*(dfloat(NFACT1)/6.D0+1.D0+dfloat(NFACT?2))

DARG=PI/dfloat(NX)

IC....NOW COMPUTE HAMILTONIAN MATRIX

NEWX=RMIN

DO I=1.NX

ixa(I)=NEWX

DO J=1.1

[JD=(I-J)

[F(IJD.EQ.0) THEN

AR(I,J)=CONST?2

ELSE

RATIO=1.D0/DSIN(DARG*dfloat(IJD))

AR(I,J)=((-1)**1JD)*CONST1*(RATIO**2)

ENDIF

ENDDO

IC...FIND THE POTENTIAL VALUE AT X

call SUB(newx,xxaa,yyaa,uu,VVV)

'call morsepot(newx,VVV)

IC....ADD THE POTENTIAL VALUE WHEN THE KRONECKER DELTA
FUNCTION

IC....EQUALS ONE, I.LE. WHEN I AND J ARE EQUAL

AR(IL)=AR(LI)+VVV

NEWX=NEWX+DX

ENDDO

IC...NOW FILL OUT HAMILTONIAN MATRIX

DO I=1NX

B0 J=1.1

AR(J,I)=AR(L,J)

ENDDO

ENDDO

'C...NOW CALL EIGENVALUE SOLVER

CALL FLUSH(6)

CALL RS(NX,NX,AR,WCH,NPRIN,ZR,FV1,FV2IERR)

IC....PRINT OUT E’VALUES AND E'VECTORS

WRITE(6,12)

12 FORMAT(/)

WRITE(6,*)’ THE FIRST’ NWRIT,” ENERGY LEVELS FOR He-HCN MOLECULE

DO I=1,NWRIT
WRITE(6,*)’ ENERGY LEVEL NO. *I’E-VAL(1/cm)="WCH(I)*2.19474D5
'PAUSE
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ENDDO
WRITE(6,12)
WRITE(6,*)’ THE CORRESPONDING EIGENFUNCTIONS ARE:’
DO I=1,NWRIT

WRITE(6,*)’ ENERGY LEVEL NO. ’I,” EIGENVALUE= ’,WCH(I)
IF (NPRIN.EQ.1) THEN

DO J=1,NX

WRITE(6,*)’ R = ’,ixa(J)*.529,” WAVEFUNCTION=",ZR(J,I)
WRITE(20+i-1,*) ixa(J)*.529d0,ZR(J.I)

ENDDO

ENDIF

ENDDO

I***This segment calculates the modified wave functions
do i=1,pp-1
write(75,%) xaf(i
write(81,*) xal )
write(82,%) xa2

write(83,*) xa3

enddo
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),angledeg,ya(i)*zr(i,1)
(i),angledeg,yal(i)*zr(i,
(1),angledeg,ya2(i)*zr(i,3)
(1), )*ar(i,

*,

»J‘—kbut()

i),angledeg,ya3(i

write(10,*) !ground state angular wave function=psi

write(11,*) !first excited state angular wave function =psil
write(12,*) !second excited state angular wave function =psi2
write(13,*) !third excited state angular wave function =psi3
write(75,*) !modified ground state wave function=

I(ground state angular wf=psi)*(ground state radial wf)
write(81,*) !modified first excited state wave function=

I(1st excited state angular wf=psil)*(1st excited state radial wf)
write(82,*) Imodified second excited state wave function=

I(2nd excited state angular wf=psi2)*(2nd excited state radial wf)
write(83,*) !modified third excited state wave function=

I(3rd excited state angular wf=psi3)*(3rd excited state radial wf)
write(98,*) !He-HCN potential expansion

write(99,*) 'He-HCN potential

enddo lend of angle loop
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I*This program outputs the following files: *

'* 1. Angular Wave Function (fort.10) *

I* 2. Potential (fort.99) *

I* 3. Potential Expansion (fort.98) *

I* 4. Radial Potential (fort.30) *

I* 5. Radial Wave Function (fort.20) *

I* 6. Trial Wave Function—-Radial Wave Function * Angular Wave Function
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(fort.75) *

!********************************************************************************
END
REAL*8 FUNCTION funct(theta,rr,0) funct with r in Angstroms
REAL*S8 r,theta,functi,rr
INTEGER o
r=rr*0.529d0
functi=plgndr(o,0,theta)*HCNpotential(r,theta)
funct=functi*(dsin(theta)*(2.d0*0+1.d0)/2.d0)
RETURN
END
REAL*8 FUNCTION pot(r,theta)
REAL*S r,theta,alpha,rm,eps,pOr,plr,p2r,p3r,pOa,pla,p2a,p3a,K,G,L,Va,Vr
REAL*8 terml,term?2 term3,term4,termd ! terma,termb
alpha=13.5d0
eps=202.d0
rm=3.805d0
pOr=1.d0
plr=0.650d0 !0.35d0
p2r=0.919d0 !0.65d0 !
p3r=0.d0
pOa=1.d0
pla=0.313d0 !0.35d0 !
p2a=0.400d0 !0.09d0 !
p 3a=0.d0
K=eps*((6.d0/alpha)/(1.d0-(6.d0/alpha)))
G=alpha/rm
L=(-eps/(1.d0-(6.d0/alpha)))*rm**6
term1=(K*dEXP(13.5d0-G*R))
term2=(1.d0+P1R*dCOS(theta)+P2R*(1.5d0*(dCOS(theta)**2)-0.5d0))
term3=(L/(r**6))
termd4=1.d0+P1A*dCOS(theta)
term5=P2A*(1.5d0*(dCOS(theta)**2)-0.5d0)
IPOT=term1*term2+term3*(term4+term5)
Va= -eps*(alpha/(alpha-6.d0))*((rm/r)**6)*(pOa+pla*®(rm/r)*dcos(theta)+ &
p2a*(-0.5d0+(3.d0*dcos(theta)**2) /2.d0)+p3a*(((-3.d0*dcos(theta))/2.d0) + &
(5.d0*dcos(theta)**2)/2.d0))
Vr=
eps*(6.d0/(alpha-6.d0))*(dexp(alpha*(1.d0-(r/rm))))*(pOr+plr*(dcos(theta))+
&
p2r*(-0.5d0+(3.d0*dcos(theta)**2) /2.d0)+p3r*(((-3.d0*dcos(theta)) /2.d0) + &
(5.d0*dcos(theta)**2)/2.d0))
POT=Va+Vr
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RETURN
END
REAL*8 FUNCTION HCNpotential(R,theta)
'He-HCN potential from Atkins and Hutson in JCP vol. 105, p. 440 (1996)
'Distances enter in a.u.; angles in radians and energies leave in cm™-1
real*8
R, theta,alpha,mu,thetabig,beta,eps0,epsl,eps2.eps3.eps.rm.rm0,rm1l.rm2,rm3, &
¢6,c60,c62,c7,c71,¢73,d6,d7,vfix,d8,d8prime,c8,A,vrep,vind,vdisp, &
b1,b2,b3,b4,b5,b6,b7,b8 d6rm,d7rm,d8rm,vindrm
alpha=1.383d0
mu=1.174d0
thetabig=1.777d0
c60=13.067d0
c62=1.864d0
¢71=9.939d0
¢73=9.401d0
beta=3.90115d0
eps0=24.825139d0
eps1=3.402d0
eps2=0.3853d0
eps3=0.854d0
rm0=3.7151d0
rm1=0.200d0
rm2=0.4582d0
rm3=0.071d0
eps=eps0+eps1*dcos(theta)+eps2*(-0.5d0 + (3.d0*dcos(theta)**2)/2.d0)+ &
eps3*((-3.d0*dcos(theta))/2.d0 + (5.d0*dcos(theta)**3)/2.d0)
rm=rm0+rm1l*dcos(theta)+rm2*(-0.5d0 + (3.d0*dcos(theta)**2)/2.d0)+ &
rm3*((-3.d0*dcos(theta))/2.d0 + (5.d0*dcos(theta)**3)/2.d0
vindrm=-(alpha*(mu**2)*(1.d0+(-0.5d0 +
(3.d0*dcos(theta)**2)/2.d0))*rm™**(-6))-
(6*alpha*mu*thetabig*((dcos(theta))*"&) 1111**(—7))
c6=c60+c62*(-0.5d0 + (3.d0*dcos(theta)**2)/2.d0)
c7=c71*dcos(theta)+c73*((dcos(theta))**3)
bl=beta
b‘? (beta™*2

beta**3)/6.d0
beta**4)/24.d0
5

)/2.d0
3=( )
4=( )
(beta**5)/120.d0
( )
( )
(

1 |

beta**6)/720.d0
beta**7)/5040.d0
beta**8)/40320.d0

5
b6
b7
b8=
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d6rm=1-(dexp(-beta*rm))*(1+(b1*rm)+(b2*rm**2)+(b3*rm**3)+(b4*rm**4)+

(b5*rm**5)+(b6*rm**6))
d7rm=1-(dexp(-beta*rm))*(1+(b1*rm)+(b2*rm**2)+(b3*rm**3)+(b4*rm**4)+

(b5*rm**5)+(b6*rm**6)+(b7*rm**7))
d8rm=1-(dexp(-beta*rm))*(1+(b1*rm)+(b2*rm**2)+(b3*rm**3)+(b4*rm**4)+

(b5*rm**5)+(b6*rm**6)+(b7*rm**7)+(b8*rm**8))
d8prime=Dbeta*(d7rm-d8rm)
vfix=vindrm- (c6*d6rm*rm**(-6))-(c7*d7rm*rm**(-7))
c8=((beta*eps*rm**8)+(beta*viix*rm**8)+(viix*rm**8)) /((8.d0*d8prime/rm) &
-(beta*d8prime)-(8.d0*d8rm/rm)+(beta*d8rm))
A=(c8*d8rm*(rm**(-8))*dexp(beta*rm))-(eps*dexp(beta*rm))-(vfix*dexp &
(beta*rm))
d6=1-(dexp(-beta*R))*(1+(b1*R)+(b2*R**2)+(b3*R**3)+(b4*R**4)+(b5*R**5)

+(b6*R**6))
d7=1-(dexp(-beta*R))*(1+(b1*R)+(b2*¥R**2)+(b3*R**3)+(b4*R**4)4-(b5*R**5)

+(b6*R**6)+(b7*R**7))
d8=1-(dexp(-beta*R))* (14 (b1*R)+(b2*¥*R**2)+(b3*R**3)+(b4*R**4)+(b5*R**5)

+(b6*R**6)+(b7*R**7)+(b8*R**8))

vrep=A*dexp(-beta*R)

vind=-alpha*(mu**2)*(0.5d0 + (3.d0*dcos(theta)**2)/2.d0)*(R**(-6))- &
6*alpha*mu*thetabig*((dcos(theta))**3)*(R**(-7))
vdisp=-(c6*d6*(R**(-6)))-(cT*d7*(R**(-7)))-(c8*d8*(R**(-8)))
HCNpotential=(vrep+vind+vdisp)

RETURN

END

REAL*8 FUNCTION ocspotential(r,theta)

implicit real*8(a-h,o0-z)

I MMSYV fit to Higgins/Klemperer Potential. JCP vol. 110, p. 1383 (1999)
I Distances come in in a.u., angles in radians and

I energies exit in cm-1.

I All internal calculations are done in Angstroms/cm-1

rlim=12.25d0

c6= -5.518337819784241d6 - &

2.815526194265673d7*dcos(theta) - &

1.222022540841727d6* &

dcos(theta)**2 + &

9.28433189859905d7*dcos(theta)**3 - &
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5.147503485810399d7* &
dcos(theta)**4 - &
2.371545691135376d8* &
dcos(theta)**5 - &
4.298021781056592d7* &
dcos(theta)**6 + &
3.356904207752721d8* &
dcos(theta)**7 4+ &
3.711123257316639d8* &
dcos(theta)**8 - &
2.187342071289152d8* &
dcos(theta)**9 - &
4.779521200196144d8* &
dcos(theta)**10 + &
5.369489863099884d7* &
dcos(theta)**11 + &
2.052905607469811d8*dcos(theta)**12
c7=8.11427571093064d7 + &
6.915953104421285d8*dcos(theta) - &
3.302620601496621d6* &
dcos(theta)**2 - &
2.469508814138928d9* &
dcos(theta)**3 + &
7.862550115104378d8* &
dcos(theta)**4 + &
6.917741424386369d9* &
dcos(theta)**5 + &
2.361213150132689d9* &
dcos(theta)**6 - &
1.056687114337185d10* &
dcos(theta)**7 - &
1.131235010642686d10* &
dcos(theta)**8 + &
7.644808382222111d9* &
dcos(theta)**9 + &
1.340802869471866d10* &
dcos(theta)**10 - &
2.110569758270181d9* &
dcos(theta)**11 - &
5.555319238436844d9*dcos(theta)**12
c8=1.772439907199721d8 - &
3.640726069925961d9*dcos(theta) + &
3.75432581972346d8*dcos(theta)**2 + &




1.455420403849449d10*&

dcos(theta)**3 + &
1.000003378656614d9*&

dcos(theta)**4 - &
4.617315309215618d10* &

dcos(theta)**5 - &
2.797291174372391d10* &

dcos(theta)**6 + &
7.628291799349615d10* &

dcos(theta)**7 4 &
8.72010434775106d10* &

dcos(theta)**8 - &
6.021553008035978d10* &

dcos(theta)**9 - &

9.29303148210638d10* &

dcos(theta)**10 + &
1.798370591378436d10* &
dcos(theta)**11 + &
3.658316840255752d10*dcos(theta)**12
eps= 26.56028761259177d0 - &
66.00411254231051d0*dcos(theta) +
113.7818762706877d0 (()s(thetl)**Q + &
253.9842073871831d0*dcos(theta)**3 - &
861.492606088799d0*dcos(theta)**4 - &
372.9912295962823d0*dcos(theta)**5 + &
2377.068086446698d0*dcos(theta)**6 + &
205.2388974075886d0*dcos(theta)**7 - &
3252.98701566141d0*dcos(theta)**8 + &
12.69015656350256d0*dcos(theta)**9 + &
2231.436969104492d0*dcos(theta)**10 -
31.65780133613179d0*dcos(theta)**11 - «\
607.0829551078825d0*dcos(theta)**12
rm=6.92914426071697d0 + &
3.120064333769215d0*dcos(theta) + &
0.7266538203334347d0*dcos(theta)**2 - &
9.33193775575554d0*dcos(theta)**3 + &
12.48406119957126d0*dcos(theta)**4 + &
9.27208587287942d0*dcos(theta)**5 - &
30.3186120249881d0*dcos(theta)**6 + &
0.1118890543344939d0*dcos(theta)**7 + &
33.45333098260939d0*dcos(theta)**8 - &
6.833790407369015d0*dcos(theta)**9 - &
18.5896707305704d0*dcos(theta)**10 + &
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3.376275567894582d0*dcos(theta)**11 + &
4.162194568737485d0*dcos(theta)**12
alphal=0.840448904141149d0 - &
0.3277295205015458d0*dcos(theta) + &
0.4753915908998801d0*dcos(theta)**2 + &
2.024536820689881d0*dcos(theta)**3 - &
3.3499513477514d0*dcos(theta)**4 - &
6.291793710168604d0*dcos(theta)**5 + &
9.84880899105184d0*dcos(theta)**6 + &
10.26389067511479d0*dcos(theta)**7 - &
13.62883386586445d0*dcos(theta)**8 - &
8.36423058246549d0*dcos(theta)**9 + &
9.18459266695318d0*dcos(theta)**10 + &
2.668208793886965d0*dcos(theta)**11 - &
2.404330940098348d0*dcos(theta)**12
alpha2= 0.818336538913902d0 - &
0.2992044234243529d0*dcos(theta) + &
0.4697371433769803d0*dcos(theta)**2 + &
1.665773063318903d0*dcos(theta)**3 - &
3.089373409988408d0*dcos(theta)**4 - &
4.735292584383614d0*dcos(theta)**5 + &
8.62422346889475d0*dcos(theta)**6 + &
7.247704748785174d0*dcos(theta)**7 - &
11.55703899826573d0*dcos(theta)**8 - &
5.664708797189565d0*dcos(theta)**9 + &
7. ()19()()/()10()34000(10*(1(oq(theta)**1(
1.764938759546422d0*dcos(theta)**11 -
1.952200596603219d0*¢ 1(()s(theta)**l7

I Region I of MMSV potential

if(r.lt.rm) then
vvl=dexp(-2.d0*alphal*(r-rm))
vv2=dexp(-alphal*(r-rm))
vv=eps*(vv1-2.d0*vv2)

endif

rtest=rm-+dlog(2.d0) /alpha2

I Region II of MMSV potential
if(r.gt.rm.and.r.lt.rtest) then
vvl=dexp(-2.d0*alpha2*(r-rm))
vv2=dexp(-alpha2*(r-rm))
vv=eps*(vv1-2.d0*vv2)

endif

x1=rtest/rm

x2=rlim/rm




X=r/rm

I Region III of MMSV potential
if(x.ge.xl.and.x.1t.x2) then
dx=x2-x1
terml=dexp(-rm*alpha2*(x1-1.d0))
betal=eps*term1*(term1-2.d0)
term2=1.d0/ (rm**2*x2**2)
term3=-(c8/(rm**8*x2**8)) - &
c7/(rm™**7*x2**7) - &
¢6/(rm**6*%x2*%6)
beta2=(term3-betal)/dx
term4=-2.d0*rm*alpha2*eps*term1*(term1-1.d0)
betad=-(termd-beta2)/dx
term5=(8*c8) /(rm**8*x2**9) + &
(7*cT)/(rm**7*x2*¥*8) + &
(6%¢B) [/ (rm* ¥ 6 x2**T)
beta4d=(term5-dx*beta3-beta2)/dx**2
termb6=x-x1

term7=x-x2
vv=Dbetal+term6*(beta2+term7*(betad+term6*betad))
VV=VV

endif

! Region IV of MMSV potential
if(r.ge.rlim) then
vv=(-c6/r**6-c7/r**7-c8/r**8)
endif

ocspotential=vv

return

end

SUBROUTINE gauleg(x1,x2,x,w,n)
INTEGER n

REAL*8 x1,x2,x(n),w(n),EPS
PARAMETER (EPS=3.d-16)
INTEGER 1i,j,m

REAL*8 pl,p2,p3,pp,xl,xm,z,z1
m=(n+1)/2

xm=0.5d0*(x2+x1)
x1=0.5d0*(x2-x1)

do 12 i=1,m
z=co0s(3.141592654d0*(i-.25d0)/(n+.5d0))
1 continue

pl=1.d0

p2=0.d0




103

do 1} j=1.n

p3=p2

p2=pl
pl=((2.d0*}-1.d0)*z*p2-(j-1.d0)*p3) /j
11 continue
pp=n*(z*pl-p2)/(z*z-1.d0)
z1=2

z=z1-pl/pp

if(abs(z-z1).gt. EPS)goto 1
x(1)=xm-x1*z
x(n+1-1)=xm+x1*z
w(i)=2.d0*x1/((1.d0-z*z)*pp*pp)
w(n+1-1)=w(i)

12 continue

return

END

FUNCTION plgndr(l,m,xx)
INTEGER lm,i,ll

REAL*8 plgndr

REAL*8 x,xx

REAL*8 fact,pll,pmm,pmmpl,somx2
x=dcos(xx)
if(m.1t.0.or.m.gt.l.or.dabs(x).gt.1.d0) then
Ipause’bad arguments in plgndr’
endif

pmm=1.d0

if(m.gt.0) then
somx2=dsqrt((1.d0-x)*(1.d0+x))
fact=1.d0

do 11 i=1,m
pmm=-pmm*fact*somx2
fact=fact+2.d0

11 continue

endif

if(l.,eq.m) then

plgndr=pmm

else
pmmpl=x*(2.d0*m+1)*pmm
if(l.eq.m+1) then
plgndr=pmmpl

else

do 12 ll=m+2,]
pll=(x*(2.d0*1l-1)*pmmp1-(ll4+m-1.d0)*pmm) /(1l-m)
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pmm=pmmpl

pmmpl=pll

12 continue

plgndr=pll

endif

endif

return

END

SUBROUTINE jacobi(a,n,np,d,v,nrot)
INTEGER n.np,nrot, NMAX
REAL*8 a(np,np),d(np),v(np,np)
PARAMETER (NMAX=500)
INTEGER i,ip,iq,j

REAL*8 c¢,g,h,s,sm,t,tau,theta,tresh,b(NMAX),z(NMAX)
do 12 ip=1,n

do 11 ig=1,n

v(ip,iq)=0.d0

11 continue

v(ip,ip)=1.d0

12 continue

do 13 ip=1,n

b(ip)=a(ip,ip)

d(ip)=b(ip)

z(ip)=0.d0

13 continue

nrot=0

do 24 i=1,50

sm=0.d0

do 15 ip=1,n-1

do 14 ig=1p+1,n
sm=sm-+dabs(a(ip,iq))

14 continue

15 continue
if(sm.eq.0.d0)return
if(i.1t.4)then
tresh=0.2d0*sm/n**2

else

tresh=0.d0

endif

do 22 ip=1,n-1

do 21 ig=ip+1,n
g=100.d0*dabs(a(ip,iq))
if((i.gt.4).and.(dabs(d(ip))+g.eq.dabs(d(ip))).and. &




(dabs(d(iq))+g.eq.dabs(d(iq))))then

a(ip,iq)=0.d0

else if(dabs(a(ip,iq)).gt.tresh)then

h=d(ig)-d(ip)

if(dabs(h)+g.eq.dabs(h))then

t=a(ip,iq)/h

else

theta=0.5d0*h/a(ip,iq)

t=1.d0/(dabs(theta)+dsqrt(1.d0+theta®*2))

if(theta.lt.0.d0)t=-t

endif

c=1.d0/dsqrt(1+t**2)

s=t*¢

tau=s/(1.d0+c)

h=t*a(ip,iq)

z(ip)= (ip) 1

z(iq)=z(iq

(ip)=c (lp

(iq)=d 1q)+h

(ip,iq)=0.d0

o 16 j=1,ip-1
—a(j.ip)

h——d(J.lq}

a(j,ip)=g-s*(h+g*tau)
a(j,iq)=h+s*(g-h*tau)

16 continue

do 17 j=ip+1,ig-1

g=a(ip,j)

h=a(j,iq)

a(ip,j)=g-s*(h+g*tau)

a(j,iq)=h+s*(g-h*tau)

17 continue

do 18 j=i1q+1,n

g=a(ip,j)

h=a(iq,))

a(ip,j)=g-s*(h+g*tau)

a(iq,j)=h+s*(g-h*tau)

18 continue

do 19 j=1,n

g=v(j,ip)

h=v(j,iq)

v(j,ip)=g-s*(h+g*tau)

v(j,iq)=h+s*(g-h*tau)

d
d
a
dc
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19 continue

nrot=nrot+1

endif

21 continue

22 continue

do 23 ip=1,n

b(ip)=b(ip)+z(ip)

d(ip)=b(ip)

z(ip)=0.d0

23 continue

24 continue

Ipause 'too many iterations in jacobi’

return

END

REAL*8 FUNCTION THREEJ (J1,J2,J3)

'IMPLICIT DOUBLE PRECISION (A-H,0-Z)

IC

IC COMPUTATION OF SPECIAL WIGNER 3J COEFFICIENT WITH

IC VANISHING PROJECTIONS. SEE EDMONDS, P. 50.

IC

IC THIS VERSION EVALUATES BINOM AND PARITY IN-LINE

IC SHOULD IMPROVE EFFICIENCY, ESPECIALLY ON CRAY;

IC ALSO GIVES IMPROVEMENT ON AMDAHL (SG: 20 DEC 92)

IC

IC STATEMENT FUNCTION FOR DELTA ASSOCIATED W/ RACAH AND
SIXJ SYMBOLS

IC DELTA(I,J,K)= SQRT(1.D0/ ( BINOM(I+J+K+1,I+J-K) *

IC 1 BINOM(K+K+1,I-J+K) * DBLE(K+J-I+1) ) )

IC

INTEGER J1,J2,J3, 11,12,13,14,15,16 N,M,NM ,MNM,FN

REAL*8 SIGN,F,C,B,B1,B2,B3,B4,DELTA

H=J1-+J2+J3

IF (I1-2*(11/2).NE.0) GO TO 8

1 12=J1-J2+J3

IF (12.1t.0.d0) goto 8

if (i2.eq.0.d0) goto 2

if (i2.gt.0.d0) goto 2

2 18=J14-J2-J3

IF (I13.1t.0.d0) goto 8

if (i3.eq.0.d0) goto 3

if (i3.gt.0.d0) goto 3

3 [4=-J14+J2+J3

[F (I4.1t.0.d0) goto 8
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if (i4.eq.0.d0) goto 4
if (i4.gt.0.d0) goto 4

4 15=11/2

16=12/2

SIGN=1.DO0

IF (I5-2*(15/2).NE.0) SIGN=-SIGN
IC 7 THREEJ=SIGN*DELTA (J1,J2,J3)*BINOM(I5,J1)*BINOM(J1,16)
'C B1,B2 ARE BINOM ASSOCIATED W/ DELTA
N=J1+J2+4J3+1
M=J1+J2-J3

NM = N-M

MNM = MIN(NM,M)
[F(MNM.LE.0O) THEN
Bl=1.130

ELSE

FN = N+1

F = 0.120

B =100

DO I = 1,MNM
F=FF+1.D0

C = (FN-F)*B

B = C/F

enddo

Bl =B

ENDIF

N=J3+J3+1
M=J1-J2+J3

NM = N-M

MNM = MIN(NM,M)
IF(MNM.LE.O) THEN
B2=1.D0

ELSE

FN = N+1

F = 0.D0

B= 1.190

DO I = 1,MNM

F = F<+1.D0

C = (EN-F}*B

B =C/F

enddo

B2-—1B

ENDIF
DELTA=dSQRT(1.D0/(B1*B2*(J3+J2-J1+1)))




IC B3=BINOM(I5,J1), B4=BINOM(J1,16)
N=I5

M=Jl

NM = N-M

MNM = MIN(NM,M)
IF(MNM.LE.0O) THEN
B3=1.D0

ELSE

FN = N+1

F =010

B = 1100

DO I = 1MNM

F = F+1.D0

C = (FN-F)*B

B =C/F

enddo

B3i—=B

ENDIF

N=J1

M=I6

NM = N-M

MNM = MIN(NM,M)
[F(MNM.LE.0) THEN
B4=1.D0

ELSE

FN = N+1

F = 0.D0

B =1.D0

DO I = 1,MNM

F = F+1.D0

C = (FN-F)*B

B=C/F

enddo

Bi=B

ENDIF
THREEJ=SIGN*DELTA*B3*B4
RETURN

8 THREEJ=0.D0
RETURN

END

SUBROUTINE RS(NM,N,A,W,MATZ,Z,FV1,FV2IERR)
IMPLICIT real*8(A-H,0-Z)
DIMENSION A(NM,N),W(N),Z(NM,N),FV1(N),FV2(N)

108
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[0 ¥Rk Rk kR ok ko Rk ok stk ok R R K K K K oK

'C THIS SUBROUTINE CALLS THE RECOMMENDED SEQUENCE OF

IC SUBROUTINES FROM THE EIGENSYSTEM SUBROUTINE PACKAGE
(EISPACK)

IC TO FIND THE EIGENVALUES AND EIGENVECTORS (IF DESIRED)

IC OF A REAL SYMMETRIC MATRIX.

IC

IC ON INPUT :

IC

IC N,M MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL

IC ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM

IC DIMENSION STATEMENT,

IC N IS THE ORDER OF THE MATRIX A,

IC A CONTAINS THE REAL SYMMETRIC MATRIX,

IC MATZ IS AN INTEGER VARIABLE SET EQUAL TO ZERO IF

IC ONLY EIGENVALUES ARE DESIRED, OTHERWISE IT IS SET TO

IC ANY NON-ZERO INTEGER FOR BOTH EIGENVALUES AND EIGEN-
VECTORS.

IC

IC ON OUTPUT :

IC

IC W CONTAINS THE EIGENVALUES IN ASCENDING ORDER,

IC Z CONTAINS THE EIGENVECTORS IF MATZ IS NOT ZERO,

IC IERR IS AN INTEGER OUTPUT VARIABLE SET EQUAL TO AN

IC ERROR COMPLETION CODE DESCRIBED IN SECTION 2B OF THE

IC DOCUMENTATION. THE NORMAL COMPLETION CODE IS ZERO,

IC FV1 AND FV2 ARE TEMPORARY STORAGE ARRAYS.

IC

IC QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GAR-
BOW,

IC APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORA-
TORY

IO Rk KRR R KRR AR AR R KKK KRR KRR R KK

IF (N .LE. NM) GO TO 10

IERR = 10 * N
GO TO 50
IC

10 IF (MATZ .NE. 0) GO TO 20
IC #xxxxkkkkx PFIND EIGENVALUES ONLY *xersttsks

CALL TREDI1(NM,N,A,W.FV1,FV?2)

CALL TQLRAT(N,W,FV2,IERR)

GO TO 50

|Q #xxxkkixk FIND BOTH EIGENVALUES AND EIGENVECTORS *##kkk sk
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20 CALL TRED2(NM,N,A,W,FV1,7)

CALL TQL2(NM,N,W,FV1,ZIERR)

50 RETURN

|C K 3k 5K 3 K kK kK kK K 5k LAST CARD OF RS ok 3K K K K K K Kk

END

IC

IC

SUBROUTINE TRED1(NM,N,A,D,E E2)

IMPLICIT real*8(A-H,0-Z)

DIMENSION A(NM,N),D(N),E(N),E2(N)

|C sk sk 5K 3k 5k 5K 3k ok 5k >k sk K 5K 5k >k 3k 5k >k 3k 5k sk 3k 5k K 5K %k 3k ok 5k %k 3K 5K K ok 5K 5K 3K 3k 5K >k 3% % 3k >k 3k 3k Sk >k 3k Sk >k >k kK 5k >k >k ok %k >k %k Kk %k 5k

|C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE
TREDL,

IC NUM. MATH. 11, 181-195(1968) BY mArTIN, REINSCH, AND WILKIN-
SON.

|C HANDBOOK FOR AUTO. COMP., VOL.IL. LINEAR ALGEBRA, 212-226(1971).

IC THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX

IC TO A SYMMETRIC TRIDIAGONAL MATRIX USING

IC ORTHOGONAL SIMILARITY TRANSFORMATIONS.

IC

IC ON INPUT :

IC

IC NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL

IC ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM

IC DIMENSION STATEMENT,

IC

IC N IS THE ORDER OF THE MATRIX,

IC A CONTAINS THE REAL SYMMETRIC INPUT MATRIX. ONLY THE

IC LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED.

IC

IC ON OUTPUT :

IC

IC A CONTAINS INFORMATION ABOUT THE ORTHOGONAL TRANS-

IC FORMATIONS USED IN THE REDUCTION IN ITS STRICT LOWER

IC TRIANGLE. THE FULL UPPER TRIANGLE OF A IS UNALTERED,

IC

IC D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL
MATRIX,

IC

IC E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL

IC MATRIX IN ITS LAST N-1 POSITIONS. E(1) IS SET TO ZERO,

i
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IC E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS

OF E.
IC E2 MAY COINCIDE WITH E IF THE SQUARES ARE NOT NEEDED.

IC
IC QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GAR-

BOW,
IC APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORA-

TORY

'C‘****************************************************************

IC

POT =1, N
D(1} = A{L]1)
enddo

IC ¥*+¥k¥rkdkxx FOR [=N STEP -1 UNTIL 1 DO — ¥ekkarikax
DO300II=1,N

I=N+1-1I
L=1-1
H = 0.0D0

SCALE = 0.0D0

IF (L .LT. 1) GO TO 130

1C wrrkkxxikk SOALE ROW (ALGOL TOL THEN NOT NEEDED) *xxkkosses
PO K =1L

SCALE = SCALE + DABS(A(L,K))
enddo

1C

[F (SCALE .NE. 0.0D0) GO TO 140
130 E(I) = 0.0DO0

E2(I) = 0.0D0

GO TO 290

IC

140DO 150K =1, L

A(LK) = A(LLK) / SCALE
H=H+ A(LK) * A(LK)

150 CONTINUE

IC
E2(I) = SCALE * SCALE * H
F=A(L)

G = -DSIGN(DSQRT(H),F)
E(I) = SCALE * G
H=H-F*G

ALY =F- G

IF (L .EQ. 1) GO TO 270
F = 0.0D0




IC

PO 240 =1, L

G = 0.0D0

|C > 5k 3k >k >k 3k >k kK K FORI\I ELE.‘\IENT OF A*'[J K K K 5K K KK K K kK
DOVK ="1(d

G=G+ A(UJK) * A(LK)
enddo

'IC

JPL =} 41

IF (L .LT. JP1) GO TO 220
IC

DO K =P, L

G=G+ AK,)J) * A(LK)
enddo

|C K 3K K K 3K K K K K kK FOR‘\I ELE:\IENCF ()P‘ I) 5 3 >k K 5K K K kK kK K
20E(J)=6G [ H
F=F+ EQJ) * A(L,J)
240 CONTINUE
IC
H=F/(H+H)
DO 260 = 1.1
A(LJ)

G E(]) H*F

EJ) =G
IC
@R ==
A(JK)=A(JK)-F *EK)-G* A(LK)
enddo
260 CONTINUE
IC
WHEDOK =1, I
A(IK) = SCALE * A(LK)

enddo

IC

200 H = D{(I)
D(I) = A(LI)
Al = H

300 CONTINUE
(e

RETURN

END
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IC

IC

SUBROUTINE TRED2(NM,N,A,D,E,Z)

IMPLICIT real*8(A-H,0-Z)

DIMENSION A(NM,N),D(N),E(N),Z(NM.N)

[C sk 3k 3K 5k 3k 3k 5k 3k 3k 5k 5k 3k sk 3k 3k 3K 5K 5k 3k 3k 3K 5K 5K K 5K K K K 5K 5K 5k 5k K 3K 5K 3K 3 K %K 3K 3K 5K 3 3K 5K 5K 3K K 3K 5K 3K K K 3K K K K K K kK XK kK kX

IC THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE
TRED?2,

IC NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKIN-
SON.

IC HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).

IC

'C THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX TO A

IC SYMMETRIC TRIDIAGONAL MATRIX USING AND ACCUMULATING

IC ORTHOGONAL SIMILARITY TRANSFORMATIONS.

IC

!C ON INPUT :

IC

!C NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL

'C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM

'!C DIMENSION STATEMENT,

IC

!C N IS THE ORDER OF THE MATRIX,

IC

!C A CONTAINS THE REAL SYMMETRIC INPUT MATRIX. ONLY THE

'C LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED.

IC

'C ON OUTPUT :

IC

!C D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL
MATRIX,

IC

'!C E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL

'C MATRIX IN ITS LAST N-1 POSITIONS. E(1) IS SET TO ZERO,

IC

!C Z CONTAINS THE ORTHOGONAL TRANSFORMATION MATRIX

'!C PRODUCED IN THE REDUCTION,

IC

!C A AND Z MAY COINCIDE. IF DISTINCT, A IS UNALTERED.

IC

IC QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GAR-
BOW,




114

IC APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORA-
TORY

|C sk sk 3k 3K 3k 3k 3k 3k ok 3k %k 5K 5K 5K 3K K 5k 5k K K 3k 5K 3K 3K K 5K 5K K 3K 5k 5 3k K 5K 5K 5K K 5K 5K K 3 3K ok 3K 3K 3K 5K 3K K 3K 3K kK K 3K kK K %k K kK K 5k

BO100T =1, N

BOS=1,1

Z(1,J) = A(L,J)

enddo

100 CONTINUE

e

IF (N .EQ. 1) GO TO 320

Wbkt BOR TN STEP -1 UNTIL 2 DO — Frfetiskask

BO300 L= 2, N

F=N+2~1I
L=1-1
H = 0.0D0

SCALE = 0.0D0

IF (L .LT. 2) GO TO 130

IC FeFrtekrkk SCALE ROW (ALGOL TOL THEN NOT NEEDED) *¥*#**s®s®
BORK =1, 1.

SCALE = SCALE + DABS(Z(LK))
enddo

IC

[F (SCALE .NE. 0.0D0) GO TO 140
130 E(I) = Z(IL)

GO TO 290

IC

140 DO 150 K =1, L

Z(LK) = Z(ILK) / SCALE

H=H + Z(LK) * Z(LLK)

150 CONTINUE

IC

F = Z(I.L)

G = -DSIGN(DSQRT(H),F)

E(I) = SCALE * G

H=H-F*G
L =F-G
F = 0.0D0

IC

DO240J =1,L
Z(JD) =7Z(1,J) / H

G = 0.0D0

|C K 3K 5K 5K 3K K K K K % F()Rl\[ ELE.\IENT ()F AA*U K 3K 5K 3K 3 K K K K kK

DOK=1,J




G =G + Z(JK) * ZAK)

enddo

@

JP1=J+1

IF (L .LT. JP1) GO TO 220
1€

PO K = JP1, L

G =G+ Z(K,J) * Z(LK)
enddo

220E(J)=G /H

F =F + EQJ) * Z(1J)
240 CONTINUE

IC

HH =F / (H + H)
DO 260J =1,L

B =2Z{1,J)
G=E(J)-HH*F
E(J) =G

IC

DO'K =1 J
Z(JK) =Z(JK) - F * E(K) - G * Z(LK)
enddo

260 CONTINUE
IC

290 D(I) = H

300 CONTINUE
IC

320 D(1) = 0.0DO0

E(1) = 0.0D0

IC ¥¥xkxdkikrk ACCUMULATION OF TRANSFORMATION MATRICES **#*xkckak
DOSIOI =1, N

= 1=

IF (D(I) .EQ. 0.0D0) GO TO 380
IC

BOWB60.) =1

G = 0.0D0

IC

DOK =11

G=G+ Z(IK) * Z(K,J)

enddo

IC
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POaKE="]. L,

Z(K,J) =Z2(KJ) -G * Z(K,I)
enddo

360 CONTINUE

(&

380 D(I) = Z(L,I)
Z(LI) = 1.0D0

IF (L .LT. 1) GO TO 500
¢

DO 400 J =1, 1,
Z(1,J) = 0.0DO

Z(J,I) = 0.0D0

400 CONTINUE

1@

500 CONTINUE

IC

RETURN

|C > 3k kK 5K K kK kK K K kK L‘%S"[‘ C“ARD ()F TREDQ K 3K 3K K K K K K K %k
END

1@

IC

SUBROUTINE TQLRAT(N,D,E2,IERR)

IMPLICIT real*8(A-H,0-Z)

DIMENSION D(N),E2(N)

REAL*S MACHEP

IC THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE
TOLRAT,

IC ALGORITHM 464, COMM. ACM 16, 689(1973) BY REINSCH.

IC

IC THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC

IC TRIDIAGONAL MATRIX BY THE RATIONAL QL METHOD.

&

IC ON INPUT :

IC

IC N IS THE ORDER OF THE MATRIX,

IC

IC D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX’

IC

IC E2 CONTAINS THE SQUARES OF THE SUBDIAGONAL ELEMENTS OF
THE

IC INPUT MATRIX IN ITS LAST N-1 POSITIONS. E2(1) IS ARBITRARY.

IC
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!IC ON OUTPUT :
IC
IC D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN
'IC ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT AND
!IC ORDERED FOR INDICES 1,2,..IERR-1, BUT MAY NOT BE
!IC THE SMALLEST EIGENVALUES,
IC
IC IERR IS SET TO
'C ZERO FOR NORMAL RETURN,
IC J IF THE J-TH EIGENVALUE HAS NOT BEEN
'!C DETERMINED AFTER 30 ITERATIONS.

IC

IC QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GAR-
BOW,

!C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORA-
TORY

IC sk sk 3K 5k 3k >k 3 5K 5k 3k >k 5k 3k K 3k 3k 3K 5K 5K 5K Sk 3K >k 5k 5K K 5K 5K 3K K 5K 3K >k 5K K 5K >k 5K 5 K 5K 3k 5K 5K 5K K 5K 3 3 3k 5k 5K 5K > 3K K 5K 5K kK K K Xk

IC

1C *x¥xxkxkrxk NTACHEP IS A MACHINE DEPENDENT PARAMETER SPEC-
IFYING

IC THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC.

1€

IC

MACHEP = 2.D0**(-26)

IC

IERR =0

IF (N .EQ. 1) GO TO 1001

'C

POT=2 N

E2(I-1) = E2(I)

enddo

IC

F = 0.0D0

B = 0:0D0

C =0.0D0

E2(N) = 0.0D0

I

PO 290'E = 1, N

J =0

H = MACHEP * (DABS(D(L)) + DSQRT(E2(L)))
IF (B .GT. H) GO TO 105

B=H

C=B*B
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IC *rkxxxxxxk TOOK FOR SMALL SQUARED SUB-DIAGONAL ELEMENT

stk ok ok ok ok ok K K

15 DO 110M = 1L, N

IF (E2(M) .LE. C) GO TO 120

IC ****xxxxxx FI(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
IC THROUGH THE BOTTOM OF THE LOQP *#easkarkokx
110 CONTINUE

WRITE(6,*)’ **** FATAL ERROR IN TQLRAT ****°
WRITE(6,*)’ **** FALLEN THROUGH BOTTOM OF LOOP 110 ***°
STOP

IC

120 IF (M .EQ. L) GO TO 210

130 IF (J .EQ. 30) GO TO 1000

J=J+1

[(‘t 3k K 5K 5K K K K %k % %k F()RI\I SHIFT kK KK kK ok Kk K

L1=L+1

S = DSQRT(E2(L))

G = D(L)

P = (D(L1) - G) / (2.0D0 * S)

R = DSQRT(P*P+1.0D0)

D(L) =S / (P + DSIGN(R,P))

H =G - D(L)

IC

DOl=11 N

D(I) =D()-H

enddo

IC

F=F+H

1C Feerkrkkxt D ATIONAL QL TRANSFORMATION *#¥skkksak
G = D(M)

IF (G .EQ. 0.0D0) G =B

H ="

S = 0.0D0

MML =M-L

I sisketkd FOR [=M-1 STEP -1 UNTIL L DO — ¥rersssdais
DO 200 II = 1, MML

I =M-II

P=G*H

R =P + E2(I)

E2(I+1) =S *R

S=E2) /R

D(I+1) =H + S * (H + D(I))

G=D()-E2(I) /G
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IF (G .EQ. 0.0D0) G = B
H=G*P/R

200 CONTINUE

IC

E2(L) =S * G

D(L) = H

IC FRRRxRxecx GUARD AGAINST UNDERFLOW IN CONVERGENCE TEST

> 3K >k ok 3 K K K K X

IF (H .EQ. 0.0D0) GO TO 210
IF (DABS(E2(L)) .LE.DABS(C/H)) GO TO 210

E2(L) = H * E2(L)

IF (E2(L) .NE. 0.0D0) GO TO 130

210P =D(L) + F

IF (L .EQ. 1) GO TO 250

I *xxkkkkkkk ROR [=L STEP -1 UNTIL 2 DO — *¥#rxte
DO 23011 = 2, L

I=L+2-1II

IF (P .GE. D(I-1)) GO TO 270

D(I) = D(I-1)

230 CONTINUE

IC

2501 =1

270 D(I) = P

290 CONTINUE

IC

GO TO 1001

IC *xreeeriik SET ERROR — NO CONVERGENCE TO AN
IC EIGENVALUE AFTER 30 ITERATIONS *¥¥tkskit
1000 IERR = L

1001 RETURN

END

IC

IC

SUBROUTINE TQL2(NM.N,D.E,Z IERR)

IMPLICIT real*8(A-H,0-Z)

DIMENSION D(N),E(N),Z(NM,N)

REAL*8 MACHEP

[C 3K >k 3K 3K 3K K 5K 3K 5k 3K 3K K K 3k 5K > K ok 5K K K K K 3K K K K >k 3k K 3K 5K 5K 5K 3K 3K 5K 5K K 3K 5K 5K 5K 5K 5K 5K 5K K >k >k K K K 5K 5K 5K K K K K kK %k
IC THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE

TQLZ,
IC NUM. MATH. 11, 293-306(1968) BY BOWDLER, MARTIN, REINSCH, AND
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!C WILKINSON.

'C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240(1971).

IC

IC THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS

!IC OF A SYMMETRIC TRIDIAGONAL MATRIX BY THE QL METHOD.

IC THE EIGENVECTORS OF A FULL SYMMETRIC MATRIX CAN ALSO

'C BE FOUND IF TRED2 HAS BEEN USED TO REDUCE THIS

!C FULL MATRIX TO TRIDIAGONAL FORM.

IC

'!C ON INPUT :

IC

!C NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL

'C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM

!C DIMENSION STATEMENT,

IC

!C N IS THE ORDER OF THE MATRIX,

IC

!C D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX,

IC

IC E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MA-
TRIX

!C IN ITS LAST N-1 POSITIONS. E(1) IS ARBITRARY

IC

!C Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE

!C REDUCTION BY TREDZ, IF PERFORMED. IF THE EIGENVECTORS

IC OF THE TRIDIAGONAL MATRIX ARE DESIRED, Z MUST CONTAIN

!C THE IDENTITY MATRIX.

IC

IC ON OUTPUT :

IC

!C D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN

!C ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT BUT

IC UNORDERED FOR INDICES 1,2,... IERR-1,

IC

'!C E HAS BEEN DESTROYED,

IC

IC Z CONTAINS ORTHONORMAL EIGENVECTORS OF THE SYMMETRIC

!IC TRIDIAGONAL (OR FULL) MATRIX. IF AN ERROR EXIT IS MADE,

IC Z CONTAINS THE EIGENVECTORS ASSOCIATED WITH THE STORED

!C EIGENVALUES,

IC
IC IERR IS SET TO
!C ZERO FOR NORMAL RETURN,




IC J IF THE J-TH EIGENVALUE HAS NOT BEEN

|C DETERMINED AFTER 30 ITERATIONS.

IC

IC QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GAR-
BOW,

IC APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORA-
TORY

IC

[C sk 3k 3k 5k 3k 3k 3k 3k 5k ok Sk 3K 5K K >k 5k 5K 5K 3K K 5K 5K 3K 5K 5K XK 3K 5K 3k 5K K 3K 3K K 5K 3K 3K K 3 3K 3K 3K 5K 5K 3K 5K 3K 3K 3K 3K 5K 5K 5 kK kK K %k K K KK Kk

O #xrsceess \[ACHEP IS A MACHINE DEPENDENT PARAMETER SPEC-
IFYING

IC THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC.

MACHEP = 2.D0**(-26)

1C

IERR =0

IF (N .EQ. 1) GO TO 1001
1C

DOl =2, N
E(I-1) = E(I)
enddo

(@

F = 0.0D0

B = 0.0D0
E(N) = 0.0D0
1

DO 240L =1, N
J =0

H = MACHEP * (DABS(D(L)) + DABS(E(L)))

IF (B.LT.H)B=H

IC *xxeeeeersk LOOK FOR SMALL SUB-DIAGONAL ELEMENT *#¥kkksokk
DO 110M =L, N

IF (DABS(E(M)) .LE. B) GO TO 120

|C *xeerrkikx B(N) IS ALWAYS ZERO, SO THERE IS NO EXIT

IC THROUGH THE BOTTOM OF THE LOQP *¥*xstttt

110 CONTINUE

120 IF (M .EQ. L) GO TO 220

130 IF (J .EQ. 30) GO TO 1000

J=J+1

LI =541

G = D(L)

P = (D(L1) - G) / (2.0D0 * E(L))

R = DSQRT(P*P+1.0D0)




D(L) = E(L) / (P + DSIGN(R,P))
H=G-D(L)

DOT=Ll,N

DI =D -H

enddo

IC

F=F+H

P = D(M)

C = 1.0DB0O

S =10.0D0

MML =M - L

I Heeekkadk pOR 1—-M-1 STEP -1 UNTIL L DO — *Fexkiaek
DO 200 IT = 1, MML

I=M-1II

G=C€*ED

=l P

IF (DABS(P) .LT. DABS(E(I))) GO TO 150
C=E(l)/P

R = DSQRT(C*C+1.0D0)
E(l+1y=8*P*R

5=C /R

C=10D0/R

GO TO 160

15000 =P / E(l)

R = DSQRT(C*C+1.0D0)

E(I+1) =S *E(I) *R

S=10D0 /R

G=0U%*8

160 P=C*I(I) -S*G
D(I+1)=H+S*(C* G+ S *D(I))
POA8Y K = 1, N

H=7Z(K,I+1)

ZKI+1) =S *Z(KI)+ C*H
ZIKD =C*Z(KI)-S*H

180 CONTINUE

200 CONTINUE

E{L)=8*P

Bly=C*P

IF (DABS(E(L)) .GT. B) GO TO 130
220 D(L) = D(L) + F

240 CONTINUE

S}
[N}
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IC *¥**kkkxxxx ORDER EIGENVALUES AND EIGENVECTORS *ickrsskt®
DO300II =2, N
Lie=df =5l
K=l
P = DI(I)
IC
DO260.d = I, N
IF (D(J) .GE. P) GO TO 260
K=2J
P =D(J)
260 CONTINUE
IC
IF (K .EQ. I) GO TO 300
D(K) = D(I)
D) =P
DO280J=1,N
Bi=Z(J1
Z(J. 1) = Z{J K)
I K} =P
280 CONTINUE
300 CONTINUE
GO TO 1001
IC ¥rxekxkxxk SET ERROR — NO CONVERGENCE TO AN
IC EIGENVALUE AFTER 30 ITERATIONS *xekrsokack
1000 IERR = L
1001 RETURN
[C K 3K K 3K K K K % K K L‘_‘\S’I“ C‘[\I}D ()F T(QL‘Z 3K 5K 3K 3K 5K K K K K kK
END
SUBROUTINE splint(xa,ya,y2a,n,x,y)
INTEGER n
REAL*8 x,y,xa(n),y2a(n),ya(n)
INTEGER k khi klo
REAL a,bh
klo=1
khi=n
1 if (khi-klo.gt.1) then
k=(khi+klo)/2
if(xa(k).gt.x)then
khi=k
else
klo=k
endif
goto 1




endif

h=xa(khi)-xa(klo)

if (h.eq.0.d0) then

write(6,*) 'bad xa input in splint’

stop

ondif

a=(xa(khi)-x)/h

b=(x- \a(l\lo\)/h

y=a*ya(klo)+b*ya(khi)+((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(h**2) /6.

return

END

SUBROUTINE spline(x,y,n,ypl,ypn,y2)

INTEGER n,NMAX

REAL*8 ypl,ypn,x(n),y(n),y2(n)

PARAMETER (NMAX=500)

INTEGER i,k

REAL*8 p,qn,sig,un,u(NMAX)

if(ypl.gt..99e30) then

v2(1)=0.d0

u(1)=0.d0

else

y2(1)=- )Jdo
u(1)=(3./(x(2)x(1)*((y(2)-y(1))/(x(2)-x(1))-ypL)

endif

do i=2,n-1

sig=(x(1)-x(i-1)) / (x(i+1)-x(i-1))

p=sig*y2(i-1)+2.d0

y2(i)=(sig-1.d0)/p

u(i)=(6.d0*((y(i+1)-y ('))/(X(H 1)-x(1))-(y(1)-y(i-1))/(x(i)- &

x(i-1))),/ (x(ic+ 1)-x(i-1))-sig*ui-1)) /p

enddo

if(ypn.gt..99e30) then

qn=0.d0

un=0.d0

else

gqn=0.5d0

un=(3.d0/(x(n)-x(n-1)))*(ypn-(y(n)-y(n-1))/(x(n)-x(n-1)))

endif

y2(n)=(un-qn*u(n-1))/(qn*y2(n-1)+1.d0)

do k=n-1,1,-1

y2(k)=y2(k)*y2(k+1)+u(k)

enddo

return




END

SUBROUTINE SUB(x,xa,ya,n,V)

INTEGER n

REAL*8 x,xa(n),ya(n),V,a,b,ypl,ypn,y2(n)

lif (x.1t.2.d0) then

| b=(dlog(ya(4))-dlog(ya(5)))/ (xa(4)-xa(5))

I a=dexp(0.5d0*dlog(ya(4))+0.5d0*dlog(ya(5))- &
I 0.5d0*b*xa(4)-0.5d0*b*xa(5))

I V=a*dexp(b*x)

lelseif (x.gt.8.d0) then

I b=(dlog(ya(n-5))-dlog(ya(n-4)))/(xa(n-5)-xa(n-4))
I a=dexp(0.5d0*dlog(ya(n-5))+0.5d0*dlog(ya(n-4))- &
! 0.5d0*b*xa(n-5)-0.5d0*b*xa(n-4))

I V=a*dexp(b*x)

lelse

ypl=(ya(3)-ya(1))/(xa(3)-xa(1))
ypn=(ya(n)-ya(n-3))/(xa(n)-xa(n-3))

call spline(xa,ya,n,ypl,ypn,y2)

call splint(xa,ya,y2,n,x,V)

lendif

RETURN

END

SUBROUTINE morsepot(x,V)

REAL*8 x,V.De,Re,a

De=60.d0

a=1.d0

Re=3.d0

V=De*(1-dexp(-a*(x-Re)))**2

RETURN

END

SUBROUTINE gauher(x,w,n)

INTEGER n,MAXIT

REAL*8 w(n),x(n),EPS,PIM4

PARAMETER (EPS=3.D-14,PIM4=.7511255444649425D0,MAXIT=10)
INTEGER i,its,j,m

real*8 pl,p2,p3,pp,z,zl

m=(n+1)/2

do 13 i=lm

if(i.eq.1)then
z=sqrt(float(2*n+1))-1.85575*(2*n+1)**(-.16667)
else if(i.eq.2)then

z=2-1.14"n**.426 /7

else if (i.eq.3)then




z=1.86*z-.86*x(1)

else if (i.eq.4)then
2=1.91*z-.91*x(2)

else

z=2.%z-x(i-2)

endif

do 12 its=1,MAXIT
pl=PIM4

p2=0.d0

do 11 j=1.n

p3=p2

p2=pl
pl=z*sqrt(2.d0/j)*p2-sqrt(dble(j-1)/dble(j))*p3
11 continue
pp=sqrt(2.d0*n)*p2
zl=z

z=z1-pl/pp
if(abs(z-z1).le.EPS)goto 1
12 continue

pause 'too many iterations in gauher’
1 ®bi)=2

x(n+1-1)=-2
w(i)=2.d0/(pp*pp)
w(n+1-i)=w(i)

13 continue

return

END
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