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ABSTRACT 

Rotational Structure of Extremely Floppy van der 

Waals Complexes: Adiabatic Separat ion of 

Angular and Radial Motion 

by 

P. Daniel Ward , Mast er of Science 

Utah State University, 2000 

Major Professor: Dr. David Farre lly 

Departme nt: Chemistry and Biochemistry 

lll 

The adiab at ic or Born-Oppenheimer approx imat ion is often used in molecu lar 

calculations to simplify the solution to the Schrod inger equation . The basis of 

the approxim at ion is the large difference in the relative motions of the nucle i and 

electrons in the molecule-t he electrons are able to respond almost inst antly to the 

movements of the nuclei. Thus, the nuclei may be regard ed as being fixed in a 

certain position and the Schrodinger equation can then be solved using the potential 

obta ined by solving the elect ronic problem at fixed nuclear configurat ion. 

A similar argument can be used to decouple the angular and radial motions of 

many van der Waals complexes because, like nuclei in molecules, the rad ial motions 

in many van der Waals complexes are strongly localized. Fixin g the rad ial separation 

between the ato ms and molecules in th e complex to a part icular value results in a 

Schrodinger equat ion that is much simpl er to solve because it is only dependent 

on angles. van der Waals complexes conta ining helium atoms, however, present a 

dilemma because the extreme ly weak interactions present also lead to large amplitude 

rad ial as well as angular motions. Because the basis of the adiabatic approxim at ion 
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is a large difference in time scale between the angular and radial motions, the validity 

of the adiabatic approximation for helium complexes is uncertain. 

In this thesis, the adiabatic separation of angular and radial motion is shown to be 

accurate for extremely floppy complexes of helium by demonstrating its use on the 

van der Waals molecule He-HCN. A major application of this method is expected 

to be the quick calculation of approximate wavefunctions for Diffusion Monte Carlo 

studies of the rotation of impurity molecules inside ultra-cold droplets of helium. 

The method presented here is significantly faster than other methods (e.g., Varia

tional Monte Carlo) that have been used to calculate approximate wavefunctions for 

Diffusion Monte Carlo . 

(136 pages) 
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1.1. Introduction 

CHAPTER 1 

INTRODUCTION AND BACKGROUND 

For millennia, philosophers and scientists have been interested in how matter is 

made up on the small scale. This quest for knowledge about the microscopic has 

been aided by the recent technological explosion of the past century. One example of 

this is a particularly powerful technique, spectroscopy, which has provided numerous 

new insights into the structure and behavior of atoms and molecules. While the 

use of light to study matter is not new, the way it is used in modern spectroscopy 

was only made possible after the invention and refinement of quantum mechanics. 

This improvement in the model of the physical world provides a way to interpret 

the complex interactions between light and matter. These interactions are examined 

using spectroscopy by perturbing the sample of interest with light and recording 

the sample 's response to the perturbation as its spectrum. Analysi s of the sample 's 

spectrum provides valuable information about molecules and their environment , e.g., 

intra- and intermolecular bonding. 

Other influences besides light , of course , exist , which can perturb the sample be

ing studied. These intrusive perturbations lead to broadening of spectral lines and a 

subsequent decrease in spectral clarity , which makes extraction of information from 

spectra more difficult. Many of the undesirable perturbations seen in spectroscopy 

are a result of interactions of the sample molecule with its environment. Mini

mization or, ideally, removal of such perturbations generally leads to much sharper 

spectral lines and an increase in the amount of information that can be extracted 

from molecular spectra. 

An important way to minimize unwanted perturbations and increase spectral res-
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olution is to cool the sample down to extremely low temperatures, thereby reducing 

molecular rotations and vibrations. These molecular motions are especially a prob

lem for large molecules because the many modes present make their spectra difficult 

to interpret. This difficulty, in practice, excludes many large molecules from spectro

scopic study-a significant problem because many of the molecules of medical and 

biological interest fall into this category. 

Ideally, for spectroscopy, the sample molecule would be trapped inside an ultra

cold matrix that interacts only minimally with the sample. A matrix that has these 

properties is a nanometer-sized droplet of liquid helium [l] in a molecular beam. 

Condensed phase (bulk) helium might be expected to work well in this role because 

of its low boiling and melting points and its weak interactions with other molecules. 

However, in practice, using liquid or solid helium as the host matrix for spectroscopy 

is difficult; the extremely cold temperature of the helium leads to condensation of 

the sample onto the container walls immediately when the sample is inserted into 

the matrix [l]. 

Recently, experiments have shown that liquid helium in the form of otherwise gas 

phase droplets (see Fig . 1) may overcome this problem. Many studies and experi

ments have been done to explore the possibility of using helium droplets as spectro

scopic matrices. These studies , which have mostly concentrated on the behavior of 

simple chromophore molecules inside the clusters , have revealed a number of surpris

ing and exciting properties of helium droplets. The pioneering experiments, which 

were carried out primarily by two different research groups ( the Toennies group at 

the Max: Planck Institute in Gottingen and the Scoles group at Princeton), use an 

apparatus like the one shown in Fig. 2 to obtain spectra of molecules in helium 

droplets. 

The spectra collected for these molecules are similar to the respective gas phase 
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Fig. 1. Schematic of a molecule trapped inside a helium cluster in a molecular beam . 

Adapted from [2]. 

molecular spectra although they differ in one key aspect - the rotation of the molecule 

inside a helium droplet is much slower than it is in the gas phase . How the helium 

cluster is able to reduce the rate of the molecule's rotation is an important question 

that needs to be answered in order to bett er understand the prop erties and behaviors 

of these systems . Thus , a major goal of theoretical studies of these systems is the 

calculation of their rotationa l states, which will provide valuable information about 

how the helium environment affects the behavior of impurity molecules trapped 

inside. 

Just as the calculation of wavefunctions and energies for molecules is complicated 

by the presence of many electrons , calculations of the states of molecules inside 

helium clusters are complicated by the many helium atoms in the system. In 

fact , soluti ons to the Schrodinger equation of these systems are not just difficult to 

calculate , they are ana lytica lly impossible to obtain , making the use of approximate 

methods necessary . 
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Fig. 2. Schematic diagram of a typical experimental apparatus. The clusters are 

initially formed by expanding gaseous helium through a cold , sma ll diameter nozzle. 

They are then pass ed through a cell containing gas phase dopant molecules. Impact 

between dopant and drop let results in pick-up of the dopant by the drop let. After 

excit ing the dopant molecule inside the cluster using a laser , helium atoms evaporate. 

This change in the size of the droplet is then detected. 
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A common approach used to calculate approximate solutions for quantum me-

chanical systems is to expand the wavefunction of the system as a sum of basis 

functions, which are approximate eigenfunctions of the Hamiltonian of the system. 

For many-body systems, the wavefunction is dependent on the wavefunctions of the 

individual particles , each of which is expressed as a series expansion in some basis 

set. To calculate wavefunctions and energies for these systems to any reasonable 

degree of accuracy requires the use of extremely large basis set expansions leading 

to matrices that are impractical to diagonalize because of their large size. 

An alternative to basis set expansion methods that is commonly used are the so

called classical ( or semi-classical) methods . There are many problems from classical 

mechanics which can only be solved approximately because they have analytically 

unsolvable Hamiltonians. For example , any realistic system that has more than two 

interacting bodies , such as the Sun , Earth , and Moon, has a solution that can only 

be solved approximately. The Sun-Earth-Moon system can be approximately solved 

by restricting the motion of the three bodies to the same plane and assuming that 

the mass of the moon is negligible compared to the other two bodies. 

Often , the methods used to solve for more complicated classical systems can be 

applied to quantum systems. To do this , the quantum system must be within the 

classical limit , i.e. , the masses of the particles involved must be large and their ve

locity must not be too fast. The small mass of helium causes helium complexes to 

move with very large-amplitude motions. The resulting "floppiness " of helium com

plexes eliminates the possibility of using classical methods to solve for the properties 

of these systems because the centers of mass of the helium atoms cannot be used to 

obtain an approximation to the wavefunction. 

Although direct application of classical methods to helium cluster systems is not 

an acceptable option, a method that is closely related to a classical problem , Diffu-
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sion Monte Carlo , can be used to accurately calculat e the wavefunct ions and energies 

for these systems. As will be described in detail in chapter 2, the similarity between 

the equation which describes the diffusion of particles subject to a "sour ce" or "sink" 

term and the nonr elat ivistic , imaginary time-dependent Schrodinger equat ion allows 

a numerically exact ground state solution to the time-independent Schrodinger equa

tion to be calculated. 

The basis of th e method can easily be seen by comparing the probability distri

bution of charged part icles in solution and in an elect ric field with the wavefunction 

of a quantum system. If the diffusion-electric field system is exam ined a long tim e 

after the electr ic field is turned on , the particles will be located in the areas where 

the ir potential energy is minimi zed. In other words, t he probability of finding a par

ticle is highest in regions of low potential. For quantum systems, this process can 

be simul ated by using theoret ical particles called "walkers" subject to the quantum 

syste m 's potential , which allows the ground state wavefunction of the syste m to be 

calculated. The process works by randomly moving the walkers to new positions 

and then evaluat ing the move to see if it resulted in the particl e being at higher or 

lower potential. Th e walkers that move to regions of lower potential are duplicated 

while those that move to regions of higher potential are removed. After enough of 

these moves , the probability distribution of the walkers is concent rated in regions 

of low pot ent ial. This final probability dist ribution of the walkers represents the 

wavefunction of the system. 

It is important to not e that the prob ability distribution of the hypoth et ical walkers 

represents 'ljJ, not l'!/Jl2
. This limits the basic Diffusion Mont e Carlo method to systems 

that have wavefunctions that do not change sign , i.e., they do not have nod es. This 

is perhap s the major drawb ack to the method because it exclud es excited states 

and fermions from consid erat ion. This hurdl e can be overcome through the use of 



7 

the fixed-node approximation, which works by restricting the random movement of 

the walkers to regions where the wavefunction is either always positive or always 

negative. In other words, it does not allow the walkers to cross the nodes of the 

wavefunction. To fence the walkers into these regions, infinite potentials are placed 

at the nodes , which requires that the location of the nodes be known. As neither the 

wavefunction nor its nodes are known beforehand, an approximate way to accurately 

predict nodal structure is critical. 

In general, the complexity of the nodal surface of the wavefunction increases as the 

number of bodies in the system does. There are several methods which can be used 

to calculate approximate wavefunctions with complicated nodal structure and while 

each has different virtues, all methods are ultimately judged on two factors - accuracy 

and speed. A method that is often used to calculate approximate wavefunctions 

is another Monte Carlo method called Variational Monte Carlo, which uses Monte 

Carlo techniques in conjunction with the variational method. 

The basis of the Variational f'..fonte Carlo method is to first select a "trial " wave

function that contains several parameters. An approximate wavefunction is calcu

lated by adjusting the values of these parameters such that th e Pxpectation value of 

the Hamiltonian , 

(1) 

is minimized. The complex integrals that arise in these calculations are solved using 

Monte Carlo methods. 

In addition to providing an approximate wavefunction, the variational method is 

also useful because the energy calculated using the method is always an upper bound 

to the true energy of the system. In other words , the energy calculated using the 

variational method is always greater than or equal to the true energy of the system. 
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The approximate wavefunctions calculated using Variational Monte Carlo allow 

accurate excited state energies and wavefunctions to be calculated using Diffusion 

Monte Carlo and the fixed-node approximation; however , Variational :tvionte Carlo 

calculations require a significant computational investment , which makes the method 

impractical to use in many circurnstances. The nature of th e bonding in van der 

Waals complexes suggests that there might be a way to calculate wavefunctions for 

these systems using a method that can achieve accuracy comparable to Variational 

Monte Carlo at a much lower computational expense. 

As van der Waals forces are the weakest of all intermolecular forces , comp lexes 

that are held together by them are very weakly bound. This weak bonding allows 

the atoms and molecules in the complex to move with much larger amp litud e motions 

than is seen in complexes held together by other forces. More spec ifically, van der 

Waals complexes exhibit very bro ad angu lar motions with much more localized radial 

motions. The strong directional dependence of these complexes combined with their 

relatively weak dependence on radial separat ion suggests that a decoupling of the 

angular motion from the radial might lead to a highly accurat e approx imate wave

function that is dependent only on angle . This adiabatic separation of ang ular and 

radial motion is similar to the adiabatic separat ion of nuclear and radial motion in 

the well-known Born-Opp enheimer 1 approximation. In this comparison , the angular 

and radial motion of helium complexes are respectively analogous to the nuclear and 

electronic motion in molecules. 

While the adiabatic approximation was previously shown to be valid for the van der 

Waals complex of Ar-HCl by Holmgren [3], whether the approximation will work for 

1To prevent confusion between the adiabatic approximation for angular and radial motion and the 

adiabatic approximation for electro nic and nuclear motion , the latte r is referred to throughout this 

thes is as the "electronic " or "molecular " Born-Oppenheimer ap proxima t ion. 
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helium complexes is not known. Th e approximation works well for argon complexes 

for basically three reasons: 

1. Th eir potentials are strongly anisotropic, 

2. Th ey have relatively deep pot enti al energy wells, and 

3. They have sma ll zero point energies. 

While helium complexes have strongly anisotropi c potenti als, they have much shal

lower potential energy wells and high er zero point energies than the compl exes of 

argon. These differences lead to much less radial localization for helium comp lexes 

than is seen in those of argon. The radial delocalization present in helium com

plexes is easily seen by compa ring the approximate isotropic wavefunctions for a 

helium complex and an argon complex (Fig. 3) . The wavefunction for the argon 

comp lex shown in Fig. 3 is tall and narrow while the wavefunction for the helium 

comp lex is short and broad indicat ing that the helium comp lex is able to move with 

much larger rad ial motions than the argon complex can. 

As the basis of the adiabatic approximat ion for van der ·wa.als comp lexes is t he 

large difference between the rad ial and angu lar motions, whether the approx ima

t ion is still valid for helium complexes is not known . This thes is, which app lies 

the adiab at ic approx imat ion to the van der Waals complex He-HCN, shows that the 

approx imati on is valid for complexes with ext remely floppy rad ial characte r. In ad

dition, t he thesis demonstrates that the method can be used to calculate approx imate 

wavefunctions for Diffusion Monte Carlo studies of rotations of impurity molecules 

inside helium clusters. 

The remaind er of this thesis is organized as outlined below. Chapter 2 describes 

the Diffusion Monte Carlo method , it s applicat ion to excited states , and the im

portance of calculatin g an accurat e approxim ate wavefunction. In addition , a bri ef 

discussion of the Variational Monte Carlo method is given. Chapte r 3 presents a 
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Fig . 3. Approximate radial wavefunctions for Ar-HCl and He-HCN . 

description of the adiabatic method and how it was used to calculate approx imate, 

excited state wavefunctions for the van der Waa ls complex He-HCN . The remainder 

of this chapter provides some background on the properties of helium germane to its 

use as a spectroscopic matrix as well as a descriptio n of how doped helium drop lets 

are produced and spectroscop ically studied . 

1.2. Properties of helium 

Helium is the second most abund ant element in the universe and has the unique 

property of being the only element identified extra terrestrially before it was detected 

on earth . It s discovery came abo ut thro ugh the observat ion of a new line in the yellow 

region of the spectrum of the sun 's chromosphere during a solar eclipse in 1868 [4]. 

This observat ion led J. N. Lockyer (founder of the journa l Nature) and E. Frankland 

to propose the existence of a new element , which they named helium ( after the Greek 
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name for the Sun , Helios). In 1881, L. Palmieri observed the same spectra l line in 

the spectrum of volcanic gas emitted from Mount Vesuvius and a few years later, 

William Ramsay finally confirmed the existence of helium on earth during his studies 

of atmospheric gases. 

Helium consists of two isotopes , 4 He, which comprises 99.999863% of terrestria l 

helium , and 3He, which is produced as a by-product of nuclear reactions. Thus , this 

minor isotope has only been available since the 1950s when nuclear weapon produc

tion began in earnest. The only interatomic interactions of helium are very weak 

van der Waals forces; the absence of any stronger forces results in severa l interest

ing properties , such as a low boiling point ( 4.215 K) and enthalpy of vaporization 

(.6.Hvap=0.08 K J mol- 1 , the lowest value for any substance). 

Perhaps the most interesting property of helium is its beh avior at low tempera

tures. When helium is under its own vapor pressur e (in a vacuum) , it never freezes

additional pressur e must be applied to produce solid helium . The reason for this is 

due to the high zero point energy of helium (caused by its small mass), which allows 

the atoms to vibrate with large amp litude vibrations even at extreme ly low temper

at ures. At these low temperatures , quantum mechanica l effects become important 

and cause helium to behave in a bizarre fashion . 

Below around 2.2 K (the A-point temperature , named after the A-like shape of 

helium 's phase diagram , see Fig. 4) for 4He and 0.003 K for 3He , helium undergoes 

a tra nsition to superflu idit y. As the temperature of the helium is cooled down to TA, 

its tumu ltuou s boiling sudd enly stops, its specific heat increases by a factor of 10, 

its t hermal conduct ivity increases by 106
, and it s viscosity (as measured by it s flow 

thro ugh a sma ll capi llary) approaches zero [5]. In addition , helium at temperatures 

below TA is able to cover all solid surfaces that are also below TA with a film that 

is a few hundred helium atoms th ick. These strange properti es, first observed in 
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the 1930s, led to the recognition of a new state of matter - superfluidit y, so named 

because the minimal resistance it experiences when flowing throu gh a capi llary is 

ana logous to the lack of resista nce electrons experience as they flow through a su

perconductor. 

The reason why superflu idit y occurs at a much lower temperature for 3He than for 

4He ar ises from a difference between the two isotopes that becomes very import ant 

at low temperatures- 4He is a boson (it has integer nuclear spin) while 3He is a 

fermion (it has half-integer nuclear spin). Bosons can all fall into the lowest energy 

state to form a Bose-Einst ein condensate ; fermions, on the other hand , must obey 

the P auli Exclusion Principle , which prohibits two identic al particl es from occupying 

the same stat e. This allows bosons to form superfluids at much higher temperatures 

than fermions. 
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Just as the behavior of bulk 3He and 4He differ, the behavior of droplets of the two 

isotopes is also different. Clusters consisting of only three atoms of 4He are predicted 

to exist [6] while the smallest number of atoms in a 3He clusters is predicted to be 

29 [7- 11] . In addition, the size and temperature of the clusters vary with isotope. 

The sizes of the two clusters are 2.22N 112 and 2.44N 113 (where N is the number of 

atoms in the cluster) for 4He and 3He, respectively [12]. The temperature inside a 

4He cluster is around 0.4 K while the temperature in a 3He cluster is around 0.15 K 

[12-14]. 

The placement of a strongly interacting impurity , such as SF6 , in a helium droplet 

creates a series of compressed she lls of helium [15- 20]. The first of these shells has 

a density that is roughly four times greater than that of bulk helium and contains 

22 or 23 frozen helium atoms on average [17]. The second salvat ion shell contains 

50 helium atoms and has a density that is around 1 times greater than that of bulk 

helium [18]. In clusters containing a mixture of 3He and 4He atoms, the greater mass 

and resultant lower zero point energy of 4He causes the fraction of 4 He in the cluster 

to coagu late in the center of the cluster forming a 4 He core that is surrounded by 

3He atoms [11]. Any additional impurity or dopant molecule , such as SF6 , is found 

inside this 4He core [11]. 

The next section describes some of the key experimenta l results of studies on these 

systems. 

1.3. Experimental studies of 
helium clusters 

1. 3.1. Production of helium clusters 

Helium droplets , i.e., clusters of helium atoms consist ing of more than 1000 helium 

atoms, were first produced by Kamerlingh Onnes in 1908 durin g his initi al attempts 

to liquefy helium [21]. In 1961, Becker was able to produce a molecular beam of 4He 
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droplets [22,23] and in 1977, Gspann duplicated the feat using droplets of 3He [24]. 

Fig. 2 shows the typical experimental setup used to produce helium beams. The 

droplets are formed in a molecular beam by expanding gaseous helium through a 5-20 

µm diameter nozzle at source temperatures between 5 and 30 K and source pressures 

of 5-80 bar [25-29]. As the gaseous helium passes through the nozzle, it immediately 

expands. This adiabatic expansion results in a precipitous drop in temperature and 

leads to condensation of the gaseous helium into droplets consisting of 103 to 108 

helium atoms [5]. A few millimeters away from the nozzle , collisions between helium 

droplets cease and the droplets are further cooled through the evaporation of more 

helium atoms. At this point, the velocity of the droplets is somewhere between 200 

and 400 m/s [26,28]. 

1.3.2. Doping of helium clusters 

The sample molecule is inserted into the helium droplet using the "pickup " tech

nique first demonstrated by Gough et al. in 1985 [30]. In this method , the clusters 

are passed through a gas cell that contains the molecules of int erest. As the droplets 

pass through the gas cell, collisions between the droplets and the sample molecules 

result in the insert ion of the dopant into the helium droplet. 

The probability of a cluster picking up a molecule is quite good (the pickup cross 

section is on the order of 5000 A) and thus the vapor pressure of the sample in 

the cell need only be approximately 10- 5 to 10- 5 mbar [5]. In fact, Lewerenz et al. 

predict that for a cluster containing 2650 helium atoms with a scattering cell dopant 

(the dopant they used was SF6 ) pressure of 3x 10- 5 mbar , 7.7% of the clusters 

are expected to have captured one dopant molecule [31]. This allows for the easy 

insertion of species, such as amino acids, which are not very volatile. Samples such 

as metals and large organic molecules may be inserted after sublimation in a heated 



15 

cell [5]. 

As the vapor pressure of the samp le in the cell is increased, the likelihood of 

picking up more than one sample molecule increases. The probability of capturing 

k molecules in a given helium cluster is given by the Poisson distribution: 

p - (17nl)k -unl 
k - k! e , (2) 

where n is the density of impurity molecules in the scattering cell, (7 is the capture 

cross section, and l is the length of the scattering cell. The maximum probability 

is achieved when 17 • n · l = k. Assuming that the scattering cell length and the 

capture cross section remain constant, the maximum directly indicates the number 

of captured molecules. The low viscosity of the liquid helium droplet allows the 

captured molecules to move about virtually unimpeded in the cluster. This allows 

molecules to coagulate and form interesting van der ·waals complexes such as (SF 6 ) 4 

[32] and (H2 O) 16 [31] inside the helium droplet. 

The size of these complexes is limited by the fact that the sample 's internal energy, 

the kinetic energy of the collision between the droplet and molecule, and the binding 

energy of the molecule to the droplet lead to evaporation of some of the helium 

atoms from the drop let [5]. Measurements on a 10,000 atom helium droplet before 

and after insertion of a sample molecule reveal that approximately 600 helium atoms 

are lost for each molecule that is inserted [31]. This sets a limit on the minimum 

size of a helium droplet that can be "doped" using this method. 

1.3.3. Spectroscopic study of doped 
helium clusters 

After pickup of the dopant, the droplet of helium is probed using a laser. The laser, 

which is positioned perpendicular or antipara llel to the molecular beam, is used to 

excite the sample in the cluster. The absorption of a photon by the molecule causes it 

to become vibrationally excited and, as it rela,xes back into its ground state, it releases 
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the excess energy into the cluster causing additiona l helium atoms to evaporate from 

the surface. Absorption of a photon can thus be detected by either measuring the 

decrease in the droplet ionization cross section in the mass spectrometer or by using 

a sens itive on-axis semiconductor bolometer 2 located downstream from the lasers [5]. 

1.4. Studies of molecules trapped 
inside helium clusters 

The group of G. Scoles at Princeton performed the first spectroscopic study of a 

molecule trapped inside a helium droplet in 1992 [33]. In this study , a line-tunable 

CO 2 laser was used to excite the v3 , or cage, vibrational mode of SF6 (see Fig. 5). 

The spectrum they obtained is shown in Fig. 6. The two vibrational bands located 

at 945.8 and 946.4 cm- 1 were assigned to a single molecule of SF6 located on the 

surface of the helium cluster. The outer two peaks were later determined to be from 

contamination with nitrogen gas [34]. 

The estimated linewidth they found was approximate ly 0.3 cm- 1 , a value much 

lower than the 1-10 cm- 1 normally seen in other , heavier rare gas clusters , indicating 

that perturbations of the molecule by the matrix of helium atoms are significantly 

reduced compared to other types of clusters. 

Later, Frochtenicht et al. [36] obtained the first high-resolution spectrum of the v 3 

vibrational mode of SF6 (shown in Fig. 7) using diode lasers. The spectrum obtained 

exhib its the P , Q, and R bands characteristic of a spherical top. In addit ion , the 

pronounced sharpness of the central line at 946.3 cm- 1 indicates that most of the 

2 A bolometer is an instrument used to measure sma ll amounts of radiation. It was invented in 1860 

by the American scienti st Samuel Pierpont Langley and is now used primarily to detect heat energy 

from distant sources. In astronomy, for example . bo lometers measure th e heat of stars. In its most 

basic form , the instrument consists of two platinum strips. \,\Then one strip receives radiation , 

the sma ll change in resistance it experiences is compared to the other strip and measured. This 

difference indi cates th e amount of radiation received . 
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perturbations from the host matrix are absent-a surprising find because of the 

significant inhomogeneous broadening that is usually seen in liquid matrices. These 

findings, together with several other experimental and theoretical studies [15,37-39], 

led them to the conclusion that the SF 6 was trapped at the center of the cluster and 

not on its surface as the previous Scoles study suggested. 

Attempts to fit the spectrum to a free rotor Hamiltonian revealed that the ro

tational constant of the SF 6 in the cluster was reduced from its gas phase value. 

Using a rotational constant reduced by a factor of five from its gas phase value, 

Frochtenicht was able to obtain an accurate fit to the spectrum (shown in Fig . 8). 

As the rotational constant of a molecule is inversely proportional to its moment of 

inertia 3 , this reduction in the rotational constant must be the result of an increase 

in the molecule 's moment of inertia . The reasonably good fit to exper imental data 

obtained with the reduced rotational constant led to the hypothesis that a portion 

of the helium density is rigidly attached to the SF6 . 

This assumption was strengt hened in 1995 when the first rotationally resolved 

spect rum of a molecule (SF 6 ) in a helium cluster was obtained directly [34]. The 

spectrum (shown in Fig. 9) shows no observable splittings of the 1.13 spectral lines , 

implying that the molecule resides in a symmetric environment. This rather con

clusively shows that the molecule must be in the center of the cluster (a symmetric 

environment) and not on the surface ( an antisymmetric environment). The spec

trum also allowed the determination of the actual rotational and centrifugal distor

tionconstants of the molecule in the helium cluster. 

By examining the relative intensities of the peaks , the first experimental deter

mination of the temperature (0.37±0.01 K, a temperature in close agreement with 

previous theoretical studies [12-14]) inside a helium cluster was det ermined. Most 

3The rotational constant , B , of a molecule is defined as B = ti/ 4r.cl. 
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Fig. 8. Fit of high resolution spectrum of SF 6 . The spectrum was calculated using 

a rotational constant reduced by a factor of five. Adapted from [36]. 
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importantly, the observation of sharp rotational lines verified that SF 6 apparently 

rotates uninhibited in helium clusters. 

The spacings between transitions in the P and R branches of the spectrum of SF 6 

in a helium cluster are much smaller than the respective spacings in the gas phase 

spectrum, implying that the rotational constant of the SF6 in the helium cluster is 

reduced to a fraction (37%) of its gas phase value. The authors presented a possible 

explanation for this-the rotation of the SF6 is slowed down by the almost-rigid 

attachment of a helium atom at each of the eight global minima of the He-SF 6 

potential (see Fig. 10). 

This idea of eight "frozen" helium atoms surrounding the central molecule is ap

pealing in part because theoretical calculations done by Barnett [18] show that the 

first salvation shell of helium atoms around an impurity molecule is frozen. However , 

Barnett 's calculations suggest that the number of helium atoms in the first frozen 

shell is actually as many as 22 or 23, a number that would give a much smaller rota

tional constant than that actually observed in this spectroscopic study. In addition , 

the model is also weakened by the fact that when the dopant molecule used is OCS , 

the difference between the number of attached atoms and the number in the first 

shell is even more pronounced---only two rigidly attached helium atoms are needed 

to explain the reduction in the rotational constant [5]. 

Since the first rotationally resolved spectrum of SF6 in a helium cluster was found, 

the spectra of other molecules in helium clusters have been obtained. These exper

iments have verified the temperature that was determined in the SF6 experiment, 

indicating that the temperature of the droplet is independent of the molecule inside 

the cluster [14]. In addition, the apparent free rotation of several molecules has been 

verified though the degree by which the rotational constants of these molecules are 

reduced varies from molecule to molecule (see Table 1). 
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Table 1 
The rotational constants of some molecules inside helium clusters. 

Molecule Bo (cm- 1
) Bin 4HeN (% of Bo) Reference 

H20 27.8 , 14.5, 9.3 rv 100 [40] 

HF 20.56 rv 100 [41] 

NH3 9.94 76 [42] 

(CH0)2 1.8 39 [43] 

HCN 1.47 81 [44] 

HCCH 1.17 89 [45] 

DCCH 0.99 88 [45] 

CH3CCH 0.28 25 [45] 

ocs 0.20 33 [46] 

HCCCN 0.15 33 [47] 

HCCCCH 0.146 32 [45] 

CF3CCH 0.096 36 [45] 

SF5 0.091 37 [34] 

(CH3)3CCCH 0.089 33 [48] 

(CH3)3SiCCH 0.065 22 [48] 
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Lee recently presented a compelling argument as to why the degree of reduction 

of the rotational constant of molecules in helium clusters varies from molecule to 

molecule [49]. Her numerically exact diffusion Monte Carlo calculations of the low

lying rotational energy levels of SF6 in a helium cluster revealed that a fract ion of 

the helium density (eight helium atoms) is able to inst ant aneous ly adj ust to the 

rotation of the SF 6 if the rotation of the molecule is slow enough. Conversely , for 

molecules with large enough rotation al consta nts , the helium atom s are un able to 

keep up with the fast rotation of the molecule resulting in the molecule 's rotational 

consta nt being un affected. Thu s, as can be seen in Table 1, t he degree by which t he 

rotat ional constant in a helium cluster is reduced is dependent on the magnitude of 

the molecule's gas phase rotational const ant. 

Another impor tant question which faced researchers was whether the behavior 

of impuri ty molecules in liquid helium clusters is due simply to the extreme ly cold 

temperat ur es of the cluster or to t heir superfluid nature. This question began to be 

answered thr ough a series of experiments done by Grebenev et al. [2], which they 

called the "Microscopic Andronikashvili Experiment. " 

In the original Andronikashvili experiment [50], performed in 1946, a sma ll disk 

torsional oscillator was immersed in superfluid helium. As the temperature of the 

liquid helium was decreased , the rotational constant of the disk did not decrease as 

would be expected in a classical fluid ; rather, it sharply increased as the te mp erat ur e 

went below T>,. 

The Greb enev experim ent replac ed th e disk used in the original experim ent with 

the rod--like molecule OCS and the infrared spectrum of OCS in both 3He and 4He 

was collected. 3He clusters are colder than 4He clusters (T3He= 0.15 K, T 4He=0.40 

K) ; however, as previously ment ioned , the superfluid transition temp erat ur e for 3He 

is much lower than that of 4 He (T>.,3He=3 mK , T>.,4He=2.2 K). Thu s, at the temper-
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atures in the experiment, the 4He clusters are superfluid while the 3He clusters are 

not even though the 3He clusters are considerably colder than the 4He clusters. 

As can be seen from the v3 infrared spectrum of OCS in 4He and 3He (Fig. 11), 

the 3He spectrum does not display sharp rotational peaks as the 4He spectrum does. 

Rather, the spectrum is characteristic of a molecule in a classical fluid, i.e ., it only 

has a broad band indicative of rotational diffusion [51-53]. As the number of 4He 

atoms is increased in the cluster, the rotationally resolved spectrum gradually begins 

to appear (see Fig. 12). When the number of 4He atoms in the cluster approaches 

60, corresponding to two solvation shells surrounding the OCS, the spectrum of 

the freely rotating OCS appears. This experiment conclusively showed that the 

surprising behavior of molecules in liquid helium clusters is due to the superfluid 

character of the clusters although it did not fully explain the mechanism by which 

the helium cluster is able to slow down the rotation of some molecules. 

In addition to this result , the experiment also revealed the minimum number 

helium atoms that are needed to form a superfluid. Their experimental result of 60 

helium atoms necessary for superfluidity closely agrees with the 64 atoms Sindzingre 

predicted in 1989 [54]. 

1.5. Conclusions 

Helium clusters offer a tremendous opportunity in both chemistry and physics. 

From the perspective of chemical physics, helium clusters may become a valuable 

spectroscopic tool that can be used to study molecules which currently elude spec

troscopic study. From the physics standpoint, doped helium clusters provide a way 

to understand superfluidity in finite-sized droplets. More specifically, they offer the 

possibility to explore the role of size on superfluidity. This is an important objec

tive because while there are many different ways to describe superfluidity on the 
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bulk level, not much is known about the behavior of superfluids on a finit e scale. 

To explore these avenues, a better understanding of the behavior and prop ertie s of 

impurity molecules tr apped inside helium clust ers must be reached. 

Th e next chapter deals with a method that can be used to perform calculation s 

on the rotational states of these systems; more specifically, it concentrates on the 

use of the method to calculate excited state wavefunctions and energies for helium 

clusters. To use this method to calculate excited states, an approximate wavefunction 

that can accurat ely predict the locatio n of t he nodes of the wavefunction must be 

calculate d. In addit ion to allowing the calculation of excited states, an approximate 

wavefunction is also useful because it can be used to increase the efficiency of the 

method. 
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In the previous chapter, the properti es and behavior of impurit y molecules inside 

ultra -cold clusters of helium atoms were exam ined. Th e intri guing results found 

from the num erous exp erimental and theoretical st udies of these syste ms suggest 

that a closer theoretical examination could offer valuable insight into the molecular 

properti es of superfluidity. In addition, an improv ed und erstand ing of doped helium 

clusters could lead to t he eventual use of helium clusters as a spectroscop ic matrix 

that can be used to st udy large molecules . 

Th e most surpr ising result of these stud ies was the appearance of rotational st ru c

ture in the spectra of molecules inside liquid helium clusters. To better und erstand 

the cause of th is behavior, a detailed study of the rotationa l dynam ics of impuri ty 

molecules in helium clusters is necessary. 

The calcu lat ion of rotationa l states for these systems is comp licated by the fact 

t hat an ana lytica l solut ion to the Schroding er equat ion , t he equat ion which governs 

the behavior of quantum syste ms at the nonrelativistic level, is imp ossible to obtain 

because of the many interacting bodi es that must be considered. In fact , any realist ic 

syste m, whether it be quantum mechanica l or classical , with three or more int eract ing 

bodies leads to a Hamiltonian that is too complicated to solve analyt ically. Thi s fact 

means that appro ximat ions and num erical methods must be relied on to calculate 

the eigenvalues and eigenfunction s of these systems . 

One of the most useful sets of num erical met hods that can be used to solve for 

many-bod y systems are the Monte Carlo methods. Monte Carlo met hods , named 

after the relian ce on prob abiliti es they share with the games played in the casinos 

of Monte Carlo , are very powerful because of their accur acy and efficiency. This 
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chapter provides a description of two Monte Carlo methods, Diffusion Monte Carlo, 

which can be used to calcu lat e rotational states for impurity molecules in helium 

clusters, and Variational Monte Carlo, which is often used to calculate trial wave

functions for Diffusion Monte Carlo studies. In addition , results of the calculation 

of a tria l wavefunction for the ground state of the van der vVaals complex He-SF 6 

using Variational Monte Carlo are given. 

2.1. Monte Carlo methods 

Monte Carlo methods use statistical sampling to approximate solutions of mathe

matical problems. The use of statistics to solve problems dates back at least to the 

eighteenth century to the work of the French mathematician Georges Buffon who 

used a statistical method to estimate the value of 1r. With a few isolated exceptions, 

fvfonte Carlo methods were not used as a research tool until they were formally de

veloped by von Neumann and Ulam during their work on th e Manhattan project 

[1- 4]. 

The ability to quickly and easily generate random numbers that came as a result 

of the improvement in computing techno logies in the past sixty years has allowed 

Monte Carlo methods to become one of the most widely used approximation methods 

in quantum physics. The motivation for using Monte Carlo methods comes from the 

accuracy the methods afford as well as the relatively minimal computer time they 

require to obtain that high level of accuracy [5]. 

The basic idea of Monte Carlo is easi ly illustrated with the use of an examp le. 

Cons ider any function f(x); the area under f from point a to point b, is given simp ly 

by 

b 

j J(x)dx. (1) 
a 

Suppose that th is integral is impossible to solve analytica lly. I'vionte Car lo methods 
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can be used to estimate the area under th e curve by picking N random, uniforml y 

distributed points in an area A that contains f ( x). Th e ratio of th e number of 

points that lie under the curve, Nunder, to th e total number of points is equal to the 

area und er the curve , Aunder , divid ed by the tota l area, i.e., 

Nunder Aund er 

N A 
(2) 

Solving for Aund er gives 

A _ A Nunder 
under - N (3) 

Thus , by simpl y counting the numb er of random points und er the curve, the area 

und er it can be determined. 

There are severa l different Monte Carlo methods that are often used in quantum 

calculatio ns. One of the most powerful Monte Carlo methods is t he Diffusion Monte 

Carlo method. This method is able to calcu late num erically exact ground state 

energ ies and wavefunctions without any prior knowledge of the wavefunction of the 

system. In add it ion, it is the only viab le opt ion that can be used for calcu lat ions 

on large helium clusters because it is the only method that can deal with the many 

degrees of freedom at a uniform level of accuracy [6,7]. Th e next sect ion outlin es 

the basi s of the DMC method. 

2.2. Diffusion Monte Carlo 

The nam e Diffusion Monte Carlo comes from the similarit y between the t ime

dependent Schrodinger equation and a modified genera l diffusion equation. This 

can be seen by examining the equations, which are shown respect ively in equations 

4 and 5: 
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where C is the concentration of the particles undergoing diffusion and D is the 

diffusional constant. Modification of the diffusion equation by the addition of a 

first-order rate term , 

-kC , (6) 

results in an equation, 

(7) 

that is close to having the same form as the time-dependent Schrodinger equation. 

In fact , the only structural difference between the two equations is the presence 

of imaginary terms in the Schrodinger equation. These terms may be removed 

by replacing the real time, t, with imaginary time , T = * · This transformation, 

also known as a Wick rotation of time [8], leads to the ima ginary-tim e-dependent 

Schrodinger equat ion , 

(8) 

which is an ordinary differential equation of the exact same form as a diffusion 

equation modified by the presence of a first-order rate term ( a "source " or "sink" ). 

As was first suggested by Fermi as cited in [8] and Wigner [9], a diffusion equation 

modified by the addition of a rate term can be solved using a random walk procedure. 

As equations 7 and 8 are completely analogous, any method that can be used to solve 

one can be used to solve the other. 

To use a random walk to solve equation 8, a shift in energy scale is necessary [8]. 

This shift , by an arbitrary energy Eref , results in the following Schrodinger equation, 

8'lj; ri2 2 
~ = -\J 'lp - [V - EreJ]'l/J. 
UT 2µ 

(9) 

After this shift in energy, the probability that a particle "react s" is now proportional 

to -[V - Eref] rather than V. 
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Fig . 13. An initial distribution of walkers. A random distribution of walkers for an 

arbitrary system with a potential minimum located at the origin. 

The random walk procedure begins with an initi al ensemble of theoretical particles 

termed "walkers" that are distributed throughout position space (see Fig . 13). Each 

walker is randomly moved to a new position at each time step , DT; after each move, 

the potential at the new position is evaluated to see if the move resulted in the 

walker being in a region of higher or lower potential. If the potential , V ( r) , at the 

new position is greater than Eref , the walker is destroyed ; alternatively , if the move 

resulted in the walker being in a position that has a lower potential value than Eref 

the walker gives birth to additional 1 walkers. This "birth / death " process the walkers 

undergo eventually results in a "steady-stat e" distribution that fluctuates about an 

1The number of walkers that are produced is dependent on the magnitud e of the difference between 

Er e/ and V . Typically , the maximum number of walkers that are "born " after a "good" move is 

not more than thr ee. If the move results in a potential value equa l to Er e/ , then neither birth nor 

death occurs . 
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Fig . 14. A converged distribution of walkers . A distribution of walkers for an 

arbitrary system with a pot ential minimum located at the origin after many time 

steps. 

average steady-stat e distribution centered around regions where the potential or sink 

term is lowest (see Fig . 14 and Fig . 15). 

This final , converged distribution of the wr1lkers is idfmtical to the solution of the 

time-independent Schrodinger equation. Why this is so can be seen by consider

ing the solution to the imaginary-time-dependent wavefunction , 1/J(r , T) , which is 

obtained by integrating Eq . 8. This solution may be expressed in terms of an 

expansion of the eigenfunctions , c/\ , and eigenvalues , Ei , of the Hamiltonian (i.e., 

He/>= Ee/>), 
00 

'I/J(r , T) = L Cic/>Jr)e - f [E;- EreJ]T_ (10) 
i = O 

Examination of this sum reveals that as T - oo, all time dependence in the solution is 

removed . In addition , the only state that will appreciably contribute at large values 

of T is the one with the lowest eigenvalue- the ground state. Thus as T - oo, the 
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Fig . 15. The probability distribution of th e walkers . The probability of finding a 

walker for an arbitrary system with a potential minimum locat ed at the origin after 

convergence as a function of position . 
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converged walker distribution corresponds to the ground state wavefunction of the 

time-independent Schrodinger equation. 

2.3. Calculation of excited states 

using Diffusion Monte Carlo 

2. 3.1. The fixed-node approximation 

One aim of the study of dopant molecules inside helium clusters is to be able to 

better understand the behavior and properties of excited rotational states of the 

molecule in the cluster. To do this, the energies and wavefunctions of the excited 

states must be calculated. DMC is limited in this regard because it can only be 

applied to systems that have wavefunctions that are positive-definite. 

The reason for this arises from the interpretation of the probability distribution 

of the walkers as the wavefunction, 'l/J, of the system. Physically, the probability 

distribution is represented by l'l/Jl2
, not 'l/J. This fact eliminates any wavefunction 

with negative regions (i.e., excited states and fermions) from consideration because 

a probability distribution with negative regions is nonsensical. 

The problem may be approximately overcome through th e use of the so-called 

fixed-node approximation , first introduced by Anderson in 1975 [10]. The basic idea 

of the approximation is to place an infinite potential at each node of the wavefunction 

and then study each nodal region separately. To illustrate the use of the method, 

consider the well-known and oft-used example of a particle in a one-dimensiona l box. 

The solution to such a system with box of length L is given by 

(2)½ [n1rx] 
'ljJ = L sin L (11) 

where 

n=l , 2,3, ... (12) 
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Fig. 16. Ground state wavefunction for a particle in a box of lengt h L. 

The ground state of this system , 

(2)½ [7fX] - - sin -'lpn=I - L L , (13) 

can easily be solved for using DMC because it has no nodes (see figure 16). However , 

the first excited state, 

(2)½ . [21rx] 01• = - Sln --
'f' n=2 L L , (14) 

has a nod e at ½ and is negative for all x > ½ (see figure 17). 

With the use of the fixed-node approximat ion, DMC can be used to find the 

solution of the first excited state. How to do this can be seen by noti cing that 

for O :::; x :=; ½, the wavefunction for the first excited state is just t he grou nd state 

soluti on for a particle in a box of length ½. Not ing the symmet ry between the two 

halves of the first excited state reveals that t he soluti on for the region ½ :::; x ::; L 
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Fig. 17. First excited state wavefunction for a particle in a box of length L . 

is just the negative of the solution to the first region. Piecing these two solutions 

toget her gives the solution for the first excited state. 

Stated short ly, the fixed-node approx imat ion works by imp osing appropriate bound

ary cond it ions on the excited-state to obta in contin uous and cont iguous regions con

ta ining no nodes themse lves, but whose boundaries are the nodal surfa ces. Of 

cours e, the positions of the nodes are not known beforehand. In these cases , an 

approximat e or t rial wavefunction , Wr, must be used to predict the locat ion of the 

nodes of the wavefunction. A "good" trial wavefunction that can accurat ely pre

dict nod al locat ion is import ant becau se the error in the approxim at ion is directly 

dependent on the differenc e between the predicted node and the true node . In fact , 

the error associated with the fixed-node approx imat ion is zero if the exact locat ion 

of the nod es is known ; otherwise, the approximation will always incr ease the energy 

[11]. 
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2. 3. 2. Importance sampling 

To decrease the amount of time required for a DMC calculation, another mod

ification called importance sampling is often used. Variations in the potential at 

different values of bT make the DMC method inefficient. Using importance sam

pling, which was first introduced by Kalas in 1974 [12], the efficiency of DMC can 

be improved by a factor on the order of two or three orders of magnitude. 

The essence of the method is to sample the function 

(15) 

where 'Yr is a trial wavefunction, instead of the function 'lj;(r , T). :tviultiplication of 

equation 8 by 'Yr and making use of the definition off results in 

of ri2 2 ri2 Hwr 
- = -'v f - -'v' · (f'v ln 'Yr) - [-- - EreJlf(r, T) 
OT 2µ 2µ 'Yr 

(16) 

The term 

'v ln 'Yr 

is a vector field, often called the quantum force [13] that shepherds the walkers to 

regions where I w r 1
2 is greatest , thus modifying the diffusion process in a manner 

ana logous to the way particles undergoing Brownian motion are affected by an ex

ternal field [13]. In addition to reducing variations in the potential, this modification 

also increases the efficiency of DMC by replacing the potential , V, with the "local 

energy," 

(17) 

This causes walkers to be reproduced with a probability that is now dependent on 

[ ~~r - Eref] rather than [V ( r ) - ER]. For a reasonably good trial wavefunction, 

this leads to significant ly smaller fluctuations. 
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As with the fixed-node approximation, importance sampling requires the use of 

a trial wavefunction. Importance sampling is what often makes DivIC the method 

of choice for systems containing hundreds or even thousands of particles (such as 

helium clusters) because it can determine accurate energies and wavefunctions in a 

much shorter time than can other methods that provide similar accuracy. This is 

shown in Table 2, which was adapted from reference [14]. The table compares the 

accuracy and time needed to calculate energies for a cluster of ten carbon atoms 

by comparing the percentage of correlation energy 2 recovered and the relative time 

needed for the calculation. 

2. 3. 3. The trial wave/unction 

For both importance sampling and the fixed-node approximation in DMC, a good 

trial wavefunction is critical. Thus one of the challenges that must be overcome 

for DMC calculations that utilize either of these techniques is the calculation of a 

trial wavefunction that provides a reasonably good estimate of the behavior of the 

true wavefunction of the system. In particular, for calculations of excited states of 

molecules in helium clusters , the location of the nodes of the wavefunction must be 

predicted to a reasonable level of accuracy. 

In importance sampling , the form of the approximate wavefunction in all regions 

is important. With this method , as the trial wavefunction approaches the true 

wavefunction, the local energy approaches the exact eigenvalue quadratically fast 

[14]. Thus, a good trial wavefunction for importance sampling is one that can 

accurately mimic the behavior of the true wavefunction everywhere. 

The requirements for a wavefunction that will be used in the fixed-node approxi 

2The correlation energy , Econ , is defined as the difference between the exact energy , Eexact and the 

Hartree-Fock energy , EHF , i.e. , Ecorr =Eexact-EHF· 
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Table 2 
A comparison of different methods used for many body calculations 

Percentage of correlation Relative time needed 

energy recovered, to calculate the energy 

Method Ecorr =E exact -EHartr ee-Fock of a C10 cluster 

Hartree-Fock 0 14 

Local Density 

Approximation N/A 1 

Variational 

Monte Carlo ::::: 85% 16 

Diffusion 

Monte Carlo ::::: 95% 300 

Coupled Cluster 3 ::::: 75% 1500 

3In the case of infinite basis set , the coupled cluster method is exact and can provid e exact results 

for small, few-atom systems [14]. 
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mation differ slightly from those needed for approximate wavefunctions that will be 

used in importance sampling. While an approximate wavefunction that is able to 

accurately predict the behavior of the true wavefunction in all regions is desirable for 

the fixed-node approximation, it is not necessary. In the fixed-node approximation, 

the accurate prediction of the nodes of the wavefunction is the only real characteristic 

that distinguishes a good trial wavefunction from a bad one. How accurately the 

trial wavefunction mimics the behavior of the true wavefunction between the nodes 

does not matter too much because any deviation of the trial wavefunction from the 

true wavefunction in the non-nodal regions just results in the walkers taking longer 

to converge to the steady-state distribution. 

2.4. Variational Monte Carlo 

There are many different methods which can be used to calculate trial wavefunc

tions to use in DMC calculations. One of the most often used methods is Variational 

Monte Carlo (VMC) . The essence of VMC is the variational method is to vary the 

parameters of a guessed, initial trial wavefunction until a best estimate of the true 

wavefunction is found. This is done by defining £ , called the Rayleigh ratio, to be 

£ = f '1/J;r;atH '1/Jtrial. 

f '1/Jtriat'1/Jtrial 
(18) 

Next , the minimum values of the parameters of '1/Jtriat are found by calculating the 

derivatives of £ with respect to those parameters . The optimal values of the pa

rameters are then used to construct a "best guess" trial wavefunction. 

In VMC , the calculations are done by moving walkers , which are subject to the 

system's potential, random ly to new positions and then calcu lating the expectation 

value in equation 18. Eventually , the walkers are all distributed around the potential 

minimum and the value of the expectation value converges. This converged value 

of the Rayleigh ratio is never less than the system's true energy. 
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Fig. 18 shows the results of VMC calculations of the ground state wavefunction for 

He-SF 6. The eight regions of high density are located at the eight-fold minima of the 

He-SF 6 potential, indicating that the wavefunction calculated using VlVIC is fairly 

accurate. The trial wavefunctions found using VMC are certainly accurate enough 

to use in DMC calculations of excited states; however , VMC requires a significant 

amount of computer time to achieve that accuracy. In addition, VMC is not a 

general method. That is, for each new system , an initial trial wavefunction must be 

calculated. This can be a tremendous investment in human and computer time and 

thus makes the method cumbersome to use. The computational expense of VMC is 

significant enough to warrant a search for other methods that can maintain a similar 

degree of accuracy while minimizing the computer time needed. 

2.5. Conclusions 

DMC is the preferred method to calculate wavefunctions and energies for systems 

with a large number of particles because it can provide accurate results in a relatively 

short period of time. To calculate excited state energies and wavefunctions for these 

systems using DMC, the fixed-node approximation must be used . The fixed-node 

approximation requires the use of a trial wavefunction to predict the location of 

the nodes of the wavefunction. In addition , a trial wavefunction makes the DMC 

method more efficient. Thus , a trial wavefunction must be calculated in many 

different circumstances. 

One way to calculate accurate trial wavefunctions is to use VMC ; however , the 

high computational cost of VMC often makes it impractical to use. The next 

chapter describes an attractive alternative to VMC. The method uses an adiabatic 

separation of angular and radial motion to obtain an approximate wavefunction that 

depends only on angle. The method has the advantage over VMC and other methods 
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Fig. 18. VMC calculation of the ground state wave function of He-SF 6. 
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used to calculate trial wavefunctions because it can be calculated at a much cheaper 

computational cost without sacrificing accuracy. 
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CHAPTER 3 

THE ADIABATIC SEPARATION 

3.1. Introduction 

As noted in the previous chapter , calculations of excited states of systems con

taining an impurity molecule trapped inside a helium cluster using Diffusion Monte 

Carlo (DMC) requires the use of a trial wavefunction. A minimum requirement of a 

trial wavefunction that is to be used for this purpose is that it predict the location of 

the nodes of the true wavefunction to an acceptable degree of accuracy. In addition 

to allowing calculations on excited states to be done using Dl\IC , a trial wavefunc

tion can be used to greatly increase the efficiency of DMC calculations. These facts 

make calculation of a trial wavefunction a necessary and important part of many 

DMC studies. 

The Variational Monte Carlo method provides trial wavefunctions that can prop

erly predict the location of the nodes of the wavefunction ; however , the method is 

quite expensive computationally. In addition , the trial wavefunction that is required 

for Variational Monte Carlo varies from problem to problem , meaning that a new 

form of a trial wavefunction must be found for each new problem. As finding a 

trial wavefunction requires a significant time investment, a more general method is 

desirable. This chapter gives a description of an alternative to Variational Monte 

Carlo-the adiabatic separation of angular and radial motion - as well as the results 

of the application of the method to the van der Waals "molecule" He-HCN. 

3.2. The adiabatic approximation 

The adiabatic approximation is useful for quantum calculations because it can 

greatly simplify the Hamiltonian of the system by decoupling two of its components 

from each other. For the electronic Born-Oppenheimer approximation, the two 
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components that are decoupled are th e molecule's nuclear and electronic motion. 

This approximation is widely used and without it , solutions for even the simplest 

molecules would be impossible to obtain . 

Jus t as the adiabatic approximation is used to simplify molecular electro nic calcu

lations, it can also be used to simplify the calculat ions on van der Waals comp lexes. 

In this case, the approximation utilizes the large difference in the amplitudes of the 

angular and radial motion of the van der Waals complex to decouple their motion 

from each other leading to a much simpler Hamiltoni an. 

For examp le, consider the Hamilt onian for the int eract ion of a rare gas element 

with a linear molecule in the laboratory frame (the same Hamilton ian used in this 

st udy of He-HCN) , 

ri2 EJ2 n2 12 
, ? 

7-{ = - --- +-- + V(R 0) +boJ-
, 2µ8R 2 2µR 2 ' ' 

(1) 

whereµ is the reduced mass of the complex, b0 is t he rotational constant of the linear 

molecule , and V is the int ermolecular potential which is depend ent on both R (the 

distance between the two centers of mass) and 0 ( the angle the lone element makes 

with the molecule , see Fig. 19). The operator j is the angular momentum of the 

rod-like molecule and I is the angular momentum of the element and the molecule 

about each other . 

Rewriting the Ham iltoni an in a body-fix ed frame 1 [1] gives 

n, 2 32 n, 2 ( J - j )2 · 2 
'H = - 2µ 8R2 + 2µ R2 + V(R , 0) + boJ ' (2) 

where j is now the rotational angular momentum operator for the diatomic in the 

molecule-fixed coordinate syste m and J is defined as the total angular momentum , 

1T he body-fixed frame is fixed on the molecule and thus rotates with respect to the laborato ry 

frame. The two reference frames are relate d to each other by the Euler ang les. 
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Fig. 19. Definition of terms used in Eq. 1. 

i.e. ' 

J=j+l. (3) 

If the radial motion is assumed to be much smaller than the angular motion, R may 

be parameterized which allows the first term in the Hamiltonian , 

ri,2 32 
----

2~l8R2 ' 

to be ignored leading to a modified Hamiltonian , 

ri,2 (J - ·)2 
H(R;0)=- R/ +V(R ,0)+b 0j2. 

2µ 

(4) 

(5) 

Here , the notation H(R; 0) denotes a Hamiltonian that is dependent on 0 and para-

metrically dependent on R. Now, instead of solving the full Schrodinger equation , 

H'lj;(R, 0) = E 'lj;(R , 0), (6) 

the much simpler approximate Schrodinger equation, 

H(R; 0)\J! A(R; 0) = U(R)w A(R; 0), (7) 

can be solved by constructing and diagonalizing H(R; 0) in an appropriate basis. 

As the adiabatic separation for van der Waals complexes is based entirely on 

the assumption that the radial motion of the complex is localized , whether the 
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Fig . 20. Radial probabilit y distribution for He-HCN . 

approximation is valid for complexes that do not have highly localized radia l motion 

cannot be determin ed without testing it on a radially floppy complex. Th e large 

amplitude ra dial motions and the extreme ly weak interact ions which cause them can 

be seen by compar ing Fig . 20 and Fig. 21, which show the potential energy curves , 

ground state energ ies, and radia l probability distr ibu tions2 for Ar-HCl (a classical 

van der Waals complex) and He-HCN (a radially floppy or quantum van der Waals 

complex) respect ively. Th e shallow pot enti al energy well and large zero point energy 

of He-HCN lead to a radial dist ribution that is much broad er than that of the argon 

complex. 

2The approximate radia l wave function used to dete rmin e th e probab ility distribution s for He-HCN 

and Ar-HCl shown in Fig. 20 and Fig . 21 were calculat ed by solving the respect ive Hamiltonians 
0 

for I-Ie-HCN and Ar-I-ICl using the isotropi c pot ential , i.e., V = L C11 (R)P11 (cos0) = Co(R) . 
n= O 
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In spite of the large amplitude radial motions , the wavefunctions for radially floppy 

van der Waals complexes are still much more sensitive to changes in angle than they 

are to changes in distance. This is shown in Fig. 22, which shows the interaction 

potential of He-HCN at fixed angle (Fig. 22a) and fixed radial separation (Fig . 

22b). The fact that there is still a significant difference between the angular and 

radial motions of helium complexes leaves open the possibility of using the adiabatic 

approximation on them. 

By showing that the adiabatic approximation is valid for helium van der Waals 

complexes, the work presented in this thesis demonstrates that the adiab at ic approx

imation can be used to calculate approximate wavefunctions accurate enough to be 

used in DMC studies of impurity molecules trapped inside helium clusters. Using 

the method for this purpose offers significant improvements over other methods (such 
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as Variational Monte Carlo) commonly used to calculat e approximat e wavefunctions 

because of the relativ ely short amount of time it requires . Th e time improv ement 

over Variation al Monte Carlo this method provid es comes not only from a decrease in 

act ual computer t ime needed , but also from the fact that an initial tr ial wavefun ct ion 

does not need to be calculated for each new system. 

Th e next sect ion describes how the ad iabat ic approx imat ion was app lied to the 

He-HCN van der Waals complex. 

3.3. Application of the adiabatic 

approximation to He-HCN 

The Ham iltonian matrix for the He-HCN van der V/aals complex in the Y!, basis 3 

is given by 

(Y!, I H(R ; 0) I Yi) = 

(yo lb J•2 + n~ (J - j )2 ' V(R 0)1 yo) 
m I O 2µ R2 T , n . 

(8) 

Using 

(9) 

leads to the following express ion for the matrix elements of the b0j2 term: 

(10) 

The matrix elements for the ;: (J ~~)2 term can be simplified by expanding ( J - j) 2 , 

( Y! I;: ( J ~} ) 21 Y,?) = \ Y!, I J2 - j2 - 2J . j I Yi) ' (11) 

and then repla cing the operators J2 and j 2 with their respective eigenvalues, J( J + 1) 

and n(n + 1), giving 

n,2 

2µ [n {J (J + 1) + n(n + 1)} om ,n - 2 (Y!, 1J -j l Yi)] . (12) 

3 Y,?(0) are the sp herical harmonics , Y;,(0 , ¢), with l=O. 
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Th e final term in this expression, (Y~ IJ · j J Y~), can be shown to be negligible using 

perturbation theory [2], which gives 

(Y! I H(R; 0) I Yi) = bo[n(n + l)]bm,n + 

ri2 
- [n {J (J + 1) + n(n + 1)} 8m n] + (Y! JV(R, 0)1 Yi ). 
2µ ' 

(13) 

Unlike the matrix elements of b0 and (J - j) 2
, the V(R; 0) matr ix elements do not 

have an analytical form that can be used. To overcome thi s obstacle, the pot ential 

was expressed as an expans ion of the associated Legendr e funct ions , i.e. , 

N 

V(R , 0) = L, Cn(R)Pn(cos 0). (14) 
n=O 

Using this expa nsion , the matrix elements of the potential are 

(Y!IV(R,0)1Yi) = (Y!lt,ck(R)Pk(cos0)1Yi) = (15) 

[(2m + 1)(2n + 1)]112 t Ck(R) (m k on) 
2

' 
k=O Q Q 

(16) 

where (r;;-; ;) is a Wigner 3-j symbol and Ck(R) is the k th expans ion coefficient 

for the potential expressed in terms of the Legendr e polynom ials. Thus , the final 

express ion for the approximate Hamiltoni an matrix was 

(Y~ I H (R; 0) I Yi) = 
n,2 

b0 (n(n+ l ))Dmn+ -[n{J (J + 1) +n(n+ l )}bmn] + 
' 2µ ' 

K (m k n) 2 

✓[(2m + 1)(2n + 1)] L, Ck(R) , 
k=O O O 0 

(17) 

The matrix was diagonalized using the Jacobi method , which , like most numerical 

eigensyste m routines , nudges the matrix to diagonal form by performing a series of 

similarit y transformations , i.e. , 
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In the Jacobi method , each similarity transformation is act ually a rot at ion that elim-

inates one of the off-diagonal matrix elements. After enough of these transforma

tions, all off-diagon al matrix elements are removed. The method has the advantage 

of being virtually foolproof-it will diagonalize any n x n real symmetr ical matr ix 

[3]. 

After diagonalizatio n, the matrix elements remaining on the diagonal are the eigen

values; the eigenvectors are found by expressing them in an expansion of the basis 

funct ions (in this case, Yi0). The coefficients for this expansion are found by multi

plying the column s of the accumul ate d transformat ion together as follows: 

(19) 

The eigenvectors found from diagona lizing the matrix are the approximate wave

function of the He-HCN van der Waals complex. The eigenvectors were checked for 

normalization and convergence by exam ining the sum of the square of the expansion 

coefficients , i.e., 

(20) 
n 

Converge nce was checked by exam ining this sum as the numb er of basis vectors 

increased. Assuming the wavefunction is normaliz ed, t he sum will converge to one 

when the expa nsion of the basis vectors is equal to the wavefunction . As can be 

seen in Fig . 23, which shows a plot of I:n ICnl2 versus n , t he expa nsion is converged 

after approximately n = 15; therefore , th e numb er of terms that ·were used in these 

calculations was twenty. This examination of the expansion coefficients also allowed 

a check for norm alizat ion because the sum is only equal to one if the wavefunction 

is normalized since the basis vectors themselves are norm alized. 

The He-HCN potential used in this study was obta ined from a recent paper by 

Atkins and Hut son [4]. Th eir potenti al was found by fitti ng param eterized functional 
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forms to high-resolution microwave and millimet er wave spectroscopic data that was 

collected by Drucker et al. in 1995 [5]. In the Atkins paper, there are several 

different potential forms presented ; the one used in this study was the one termed 

"1E8" (the ES signifies the potential was fit to eight experimental data). 

Th e expression for the potential consists of three terms: 

V(R, 0) = V,.ep + Yind + vdis· 

The first term, V,.ep, the intermolecular repulsion, is given by 

the intermolecular induction , Yind, is given by 

and the dispersion energy , Viis, is 

8 

vdis = - L Cn(0)Dn(R)R - n, 
n=6 

where 

C~l) COS 0 + C~
3

) COS3 0, 

and Dn(R) are the Tang-Toennies damping functions [6], 

(21) 

(22) 

(24) 

(25) 

D
11
(R) = 1 - e-f3R t (f3R(m (26) 

m=O m. 

The values of the parameters used are shown in Table 3. A(0) and c8 (0) were 

calculated by expanding the depth, c:(0), and the position , Rm(0), of the minimum 

of the potential well as Legendre series , 

3 

c:( 0) 

Rm(0) 

L E>..P>-. ( cos 0) and 
>-.=O 

3 

L R::nP>-.(cos0). 
>--=0 
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Table 3 
Parameters used in the He-HCN potential 

Parameter Potential 1E8 

O'.He (ao) 01.383 

µHCN (eao) 01.174 

8HCN (ea5) 01.77 

f3 (A -1) 03.901 (15) 

Eo (cm- 1) 24.825(139) 

t:1 (cm- 1) 03.402 

t:2 (cm- 1 ) 00.385(3) 

E3 (cm- 1 ) 00.854 

R~ (A) 03.715 

R~ (A) 00.200 

R~ (A) 00.071 
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Using these expansions, the definition of the derivative of a Tang-Toennies damping 

function , 

D~(x) = /3[Dn-1(x) - Dn(x)], (27) 

and defining VJ;x to be 

(28) 

allows cs(0) and A(0) to be found, 

(0) 
_ /3[1:(0) + V1;x(Rm)] + VJ;x(Rm) Rs d 

Cs - [ ] man 
D8(Rm) - Ds(Rm) L - /3 

A(0) = ( cs(0)Ds(Rm)H;/ - 1: - vfix(Rm)) e-{3Rm. 

The final form of the potential is shown in Fig. 24. 

The associated Legendre polynomials used to obtain an ana lytica l function for 

the potential were calculated using the following recursion relation to calcu late the 

polynomials: 

(l - m)Pt = x(2l - l)P/_'.\ - (l + m - l)P/~2 - (29) 

Although there are many different recurrence relations that the associated Legendre 

functions satisfy, this one was chosen because it is stable and because it has a closed

form expression that can be used to find a starting 4 value. 

The expansion coefficients, Cn(R), used to expand the pot ential were found by 

integrating the potential with the Legendr e polynomials, i.e. , 

7r 

Cn(R) = (Vn(R) IPn(cos0)) = j V(R,0)Pn(cos0)d0. (30) 
0 

4 T he closed-form express ion is P,r;: = (-l )m(2m -1)!!(1- x2 )ml2 , where n !! denotes the sum of all 

odd integers less than or equal ton. If l = m + 1 and P:;:_1 = 0, then P,~~+1 = x(2m + l)P:;:. 
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He4-ICN potent ial and potential expansion 
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Fig. 25. Th e expansion of the potential in Legendr e polynomial s. 

Fig. 25 shows th e pot enti al plotted with an expansion of the first fifteen terms at 

several values of 0. As can be seen from Fig. 26, which shows th e percent error in the 

pot ential expansion , most of the error in the expansion occurs along the minimum 

of th e potential well with the largest error of 2.18% occurring at approxim ately 3.3 

A and 118°. 

3.4. Discussion 

The ground stat e angular wavefunction , Wang ( R ; 0) found from diagona lizing the 

approximate Hamiltonian , H(R ; 0), is shown in Fig. 27. The fact that a reasonable 

wavefunction was found shows that the adiabatic approximation is indeed valid for 

extreme ly floppy van der Waals complexes. As shown in Fig . 28a, which shows 

Wang ( R ; 0) plotted at different fixed values of R , the angular wavefunction does a 

good job of matching up with the He-HCN pot ential. However, Fig. 28b, which 
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shows the ground state angular wavefunction plotted with the potential at 0 = 0, 

reveals that the angular wavefunction does not accurately match up with the He

HCN potential radially. 

To improve the form of the angular wavefunction radially , it was multiplied by a 

radial wavefunction calculated using the radially dependent eigenvalues, U(R) (found 

from diagonalizing approximate Hamiltonian matrix) , as an effective radial potential , 

i.e. , 

[ n
2 

v 2 + U(R)] x(R) = [ER] x(R). 
2µ, 

(31) 

This equation was solved using the Fourier Grid Hamiltonian :; method. The radial 

wavefunction, x(R), and the radial potential , U(R) , are both shown in Fig. 29. 

The modified ground state wavefunction, 

cp(R, 0) = Wan 9 (R; 0)x(R), (32) 

is shown in Fig. 30. This modified wavefunction is a much bette r approxima

t ion than the angular wavefunction because in addition to accurately describing the 

system angularly, it also gives a reasonable radial description of the system. The 

radial improvement this modification provides can be seen by comparing the modi

fied wavefunction at fixed 0 (Fig. 31) with the angular wavefunction at fixed 0 (Fig. 

28b). 

As the major motivation for this study was the development of a method that 

can be used to calculate excited state trial wavefunctions for DMC studies, the 

approximation was also tested on the excited states of He-HCN. As shown in Figs. 

32-34 , which show Ill ang for the first three excited states of He-H CN , the adiabatic 

approximation is also valid for the excited states of extremely floppy van der Waals 

complexes. 

5 A description of the Fouri er Grid Hamiltonian method is given in Appendix A. 
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As w:::is the case with the ground stat e wavefunctions , the rad ial description pro

vided by Wang is lacking. To impro ve the form of the excited stat e wavefunct ions, 

the angular wavefunctions were aga in multiplied by x(R) . Figs . 35-37 show the 

result of this modification . 

Calculat ion of excited states using DMC and the fixed-node approximation only 

require the nodes of the wavefunct ion to be approx imate ly known . Thus , the nod al 

struct ures of the excited state trial wavefunctions are of part icular interest. Fig. 

38 shows th e nod al structure of the angular wavefunction for the first three excit ed 

states of He-HCN. Th ese plot s reveal the stro ng angular loca lization of the nod es 

of the angular wavefunction. Th e nod al stru ct ure for the first three excit ed states 

of the modified wavefunction , ¢ , is shown in Fig . 39. Th ese gra phs aga in reveal the 

rad ial improv ement provid ed by multip lying the angular wavefunction by the ra dial 

wavefunction . 
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3.5. Conclusion 

Use of the adiabatic separation to determine trial wavefunctions that can be used 

in Diffusion Monte Carlo to calculate excited state energies and wavefunctions has 

been shown here to be an attractive alternative to other met hod s curr ently used 

to calculate trial wavefunctions such as Variational rvionte Carlo. This is the first 

time the adiabatic approximation has been applied to an extremely radially floppy 

complex such as He-HCN. 

As shown here , the angular wavefunction calculated using the adiab atic separation 

is a reasonabl e approximation to the true wavefunction that can be calculated at a 

computational cost significantly less than Variational Monte Carlo. The form of this 

wavefunction can be improved by multiplyin g it by the radial wavefunction found 

by solving the radial equation. This calculation is minimall y expe nsive and greatly 

improves the form of the approximate wavefunction. This improv ement in form is 

important because it can speed up the DMC calculation while decreasing the error 

assoc iated with calculation of excited states using DMC. 
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Ultra-cold droplets of helium are interesting for at least two reasons. First , as finite 

sized superfluids, they offer the opportunity to study superfluidity on a microscopic 

level. This is important because it could lead to a more complete and fundamental 

description of superfluidity. Second, helium droplets in a molecular beam could be 

used to obtain high-quality spectroscopic data for molecules that are currently too 

large to study using spectroscopy because their many modes of motion lead to spectra 

that are impossible to interpret. Helium droplets are ideal matrices for spectroscopy 

because they are very cold and interact very weakly with other molecules. Thus, a 

better understanding of the behavior and properties of helium droplets will lead to 

significant advances in both chemistry and physics. 

An important part of the study of helium cluster s is the Lehavior of molecules 

with well und erstood properties inside the clust ers. A molecule inside a helium 

cluster can be used as a probe that relays information about the helium cluster 

environment back to the macroscopic world. Experimental studies of these systems 

have revealed some fascinating results about the properties of helium clusters. One 

of these results was the apparent free rotation of the molecule in the droplet of 

helium. This free rotation is a result of the superfluid nature of the helium cluster. 

To better understand the properties of helium droplets , a detail ed study of molecular 

rotation inside the cluster is necessary. 

Any theoretical study of these systems reqmres the use of approximate meth

ods because analytical solutions are not possible. A particularly powerful numer

ical method that can be used for many body calculations is the so-called Diffusion 

1vionte Carlo method , which can calculate numerically exact ground state energies 
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and wavefunctions. To calculate excited states using Diffusion Monte Carlo. an 

approximation-the fixed-node approximation - is necessary. The error associated 

with this approximation is directly dependent on how well the nodes of the wave

function are known. This makes the calculation of approximate wavefunctions that 

can accurately predict nodal structure a critical component of Diffusion 1'Ionte Carlo 

studies. 

Typically , the many-body wavefunction for Diffusion Monte Carlo is written as 

a product of the helium-impurity molecule dimer wavefunctions, i.e., for a helium 

cluster consisting of n helium atoms, the wavefunction is written as 

'lt = II 1PH e-1 , 
n 

where ?j; H e- I is the helium-impurity molecule wavefunction and '¥ is the total wave

function. Thus , a form for the dimer wavefunction is first necessary. One of the 

most common methods used to calculate approximate wavefunctions for Diffusion 

Monte Carlo studies is the so-called Variational Monte Carlo method. This method 

provides wavefunctions that are accurate enough to use for Diffusion Monte Carlo; 

however, they are computationally costly. Thus, a method that can calculate ap

proximate wavefunctions at a reduced computational cost is highly desirable. 

A method that has been used to calculate approximate wavefunctions for van 

der Waals complexes in the past is the adiabat ic approximation. In general, this 

approximation decouples one component of the system from another based on the 

large difference between the amplitudes of the two components. For example, the 

adiabatic approximation for molecules uses the fact that nuclei move much more 

slowly than electrons to decouple the nuclear motion from the electronic. In the 

case of van der Waals complexes, the approximation is based on the large difference 

in the radial and angular motions of the complex. 
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The approximation has never before been applied to the van der Waals comp lexes 

of helium because, unlike other complexes, those of helium do not have highly lo

calized radial motion. As the essence of the adiabatic approximation is the large 

difference in the relative motions of the angular and radia l components of the van der 

Waals complex , whether it is valid for complexes that have large radial and angular 

motions could not be determined without testing it on a radially floppy complex. 

The results presented here show for the first time that the adiabatic approximation 

is valid for He-HCN and other radially floppy complexes. 

By showing that the adiabatic approximation is appropriate for helium van der 

Waals complexes , this thesis shows that the adiabatic approximation can be used 

to calculate approximate wavefunctions for these systems. The major application 

of the method is expected to be in the approximation of helium-impurity molecule 

dimer wavefunctions. These approximate wavefunctions can then be used to con

struct wavefunctions for Diffusion Monte Carlo calculations of excited state helium 

clusters. The code for the program written to calculate these wavefunctions is given 

in Appendix B. 
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Appendix A. The Fourier Grid Hamiltonian Method 
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The radial wave function, x(R), is found by solving the "radial " Schri:idinger 

equation, 

[~: v2 + U(R)] x(R) = [ER] x(R). (1) 

In this equation , the potential, U ( R), is the effective radia l potential , which is repre

sented by the eigenvalues that are found by diagonalizing the approximate Hamilto

nian matrix. To solve this equation, the Fourier Grid Hamiltonian method developed 

by Balint-Kurti was emp loyed [1, 2]. 

The Fourier Grid Hamiltonian method utilizes the fact that the Hamiltonian 

is comprised of a kinetic and a potential term and that these two terms are best 

treated in different representations. The kinetic operator is most easily treated in 

the momentum representation, where it is diagonal, while the potential operator 

is easiest to handle in the coordinate representation in which it is diagonal. The 

essence of the method is to express each of these terms in the representations that 

are easiest to use and then connect them using the Fourier transform , 

1 .k (k Ix) = - e- i x _ 

~ 
(2) 

This method allows bound state eigenvalues and eigenfunctions for a one-dimensional 

Schrodinger equation to be easily found. 
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PROGRAM Adiabatic_ Approximation_ for_ He-HCN 
!C This program calculates a trial wave function for the van der Waals 
!C molecule He-HCN using an adiabatic separation of angular and radial 
!C motion. A description of the theory behing the adiabatic method is 
!C given in Holmgren , Waldman , and Klemperer , J. Chem. Phys. 67 (1977) 
!C 4414. The angular wave function calculated using the method can be 
!C made to be a better approximation if it is multiplied by the radial 
!C wave function. Thus, the final wave function this program calculates 
!C is a product of the radial wave function and the angular wave function. 
! C The radial wavefunction was calculated here using the Fast Fourier 
!C Grid Hamiltonian method developed by Balint-Kurti and Marston. The 
!C potential for He-HCN was taken from a paper by Atkins and Hutson. 
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!C Many of the subroutines used were found in Numerical Recipes in FORTRAN , 
!C 2nd edition by Press, Teukolsky, Vetterling , and Flannery, Cambridge 
!C Press, Cambridge. The files that are output and what they correspond 
!C to are listed in the program. Most of the calculations in the program 
!C are done in atomic units although there were some necessary conversions 
!C betweeen subroutines that were necessary. 
!C - Dan Ward 
!C 
INTEGER size !size=size of matrix 
INTEGER np,uu,zz,pp ,vv,ff 
INTEGER rinit ,rfinal !initial and final values of r in angstroms 
INTEGER i,j ,ii,jj ,n,nn ,intr,kk ,npoint ,qq,q,intangle ,intscal e.intscale2 
INTEGER xxmin ,xxmax !xxmin and xxmax provide a way to use a spline routine 
PARAMETER (size=20) 
PARANIETER (np=size) 
PARAMETER (npoint=20) 
PARAMETER ( intscale= 100) 
PARAMETER (intscale2=100) 
PARAMETER (rinit=3*intscale) 
PARAMETER (rfinal=7*intscale) 
PARAMETER (uu=rfinal-rinit+l) 
PARAMETER(xxmin=3*intscale2) 
PARA METER( xxmax= 7*intscale2) 
PARAMETER ( vv=4) 
PARAMETER ( ff =rfinal-rini t+ 1) ! ( ff=xxmax- xxrnin + 1) 
!These are the integer variables from the Fast Fourier Grid Y.1ethod Program 
(FFG:tvI) 
'******************************************************************************* 
INTEGER NX,ITEST,NFACT1,NFACT2,IJD,IERR,NWRIT ,NPRIN 
PARAMETER (nx=xxmax-xxmin,NWRIT=4 ,NPRIN=l) !xxmax-xxmin 



90 

'******************************************************************************** 
REAL *8 a(size,size) ,d(np) ,v(np,np ),moe,e(np) ,pot ,cn ,cni ,w(npoint) ,x(npoint) 
REAL*8 de !dc=kronecker delta(i,j) 
REAL*8 b0,bigJ,angle,pi,mu ,mHCN,mHe,twopi 
REAL*8 threejterm ,threejtermi,hbar 
REAL*8 aa,bb ,funct ,THREEJ,plgndr ,term0 ,potex ,potexi 
REAL *8 expandthreej ,expandthreeji ,psiq,psi ,scale 
REAL *8 xa( uu) ,ya( uu) ,y2( uu) ,ypl ,ypn ,xx 
REAL *8 scale2 ,xal(uu) ,yal ( uu) ,xa2( uu) ,ya2( uu) ,xa3( uu) ,ya3( uu) 
REAL *8 aaa , bbb,ccc,ddd ,psiq 1,psil ,psiq2,psi2 ,psiq3 ,psi3 
!These are the real variables from the Fast Fourier Grid Method Program 
(FFGM) 
'******************************************************************************* 
REAL*8 
R0 ,WCH(NX) ,ZR(NX ,NX) ,FVl(NX),FV2(NX) ,AR(NX ,NX) ,Rl ,RMIN ,RivIAX,ZL,DX,CO 
REAL*8 
CONST2 ,DARG ,RATIO,VVV ,NEWX,PSQ ,XXAA(UU) ,YYAA(UU),YYP1 ,YYPN,YY2(U 
REAL *8 eee,fff,ggg,hhh,IXA(NX) 
PARAMETER (R0=l.d0) !7329D0) 
'******************************************************************************* 
EXTERN AL funct ,pot ,plgndr ,ocspotential ,HCN potenti al 
!***Set values of parameters (in atomic units). 
b0=6.698d-6 !6.698d-6 Hartree = 1.47 wavenumber 
mHe= 7. 29629343490d3 
mHCN=4.92646549378d4 
pi=2 .d0*dasin(l.d0) 
mu=6.3550804 7048d3 
aa=0 .d0 
bb=pi 
twopi=2.d0*pi 
hbar= 1.d0 
scale= 1.d0*intscale 
scale2= 1. d0*intscale2 
!***Convert from degrees to radians 
do int angle= 1,ff 
ang=180.d0/ (rfinal-rinit) 
angledeg=intangle*ang-ang 
angle=angledeg*pi/180.d0 
write(6,*) 'theta= ' ,angledeg ,'degrees ' 
do intr=rinit,rfinal 
moe=(intr / scale)/.529d0 !moe is the value of r in atomic units 
pp=intr-rinit+ 1 
psi=0.d0 



psil=0.d0 
psi2=0.d0 
psi3=0.d0 
do ii=l ,np 
i=ii-1 
do jj=l,np 
j=jj-1 
cn=0.d0 
threejterm=0.d0 
leg=O.d0 
potex=O.d0 
expandthreej=0.d0 
!************This segment calculates en and threej ~ 
2*********************************** 
do nn=l,15 
n=nn-1 
expandthreeji=0.d0 
cni=0.d0 
threejtermi=0.d0 
potexi=0.d0 
!***calculate three j symbols 
threejtermi = (THREEJ(i,n,j))**2 
!***Integrate to find the expansion coefficients*** 
call gauleg(aa ,bb,x,w,npoint) !* This is the inte grat ion of 
!* potential(r,theta)* 
do kk=l ,npoint !* LegendreP[n,Cos[theta]l 
cni=cni+w(kk)*funct(x(kk),moe,n) !*to find the expansion coeff. 
enddo 
'************************************************** 
potexi=cni*plgndr(n,0 ,angle) 
potex=potex+potexi 
expandthreeji=cni*threejtermi 
expand threej =expand threej +expand threej i 
enddo 
expandthreej=expandthreej*4.55635d-6 !converts en from cm-1 to hartree 
! *3.16683d-6 kelvin 
!***This segment calcu lates the matrix 
elements******************************** 
if (i.ne.j) then !This "if" loop calcu lates dc=kroneckerdelta(i ,j) 
dc=0.d0 
else 
dc=l.d0 
endi f 

91 



92 

bigJ=0 .d0 
term0=dsqrt( 4.d0*i*j+2.d0*i+2.d0*j+ l .d0) 
a(ii ,jj)= b0*((j**2)+j)*dc + & 
term0*expandthreej + & 
((0.5d0)/(mu*((moe)**2)))* & 
( (hbar**2)*( (bigJ**2)+bigJ +(j**2)+j) )*de 
expandthreej=0.d0 
enddo 
enddo 
!***Diagonalize the matrix 
call jacobi(a,size,np,d,v,nrot) !Jacobi diagonalizes the matrix, a, 
!and then puts the eigenvalues in the array d. 
!The eigenvectors (in the legendre polynomi al 
!basis) are in the array v. 
!***Convert eigenvalues (radial potential from a.u. to wave# 
do j=l ,np 
e(j)=d(j)*219474.d0 !This converts from Eh to wave# 
enddo 
!***Calculate angular wave functions 
do qq=l ,np 
q=qq-1 
psiq=v(qq,l)*plgndr(q,0,angle) !psi is the ground state angular 
psi=psi+psiq !wave function. 
psiql=v(qq ,2)*plgndr(q,0,angle) !psil is the first excited state 
psil=psil+psiql !angular wave function . 
psiq2 =v( qq,3)*plgndr(q,0,angle) !psi2 is the first excited state 
psi2=psi2+psiq2 !angular wave function . 
psiq3=v(qq ,4)*plgndr(q ,0,angle) !psi3 is the first excite d state 
psi3=psi3+psiq3 !angular wave function. 
enddo 
!***get x and y values for wavefunction spline 
xa(pp) =moe*. 529d0 
ya(pp)=psi 
xal (pp) =moe*. 529d0 
yal (pp )=psil 
xa2(pp) =moe* .529d0 
ya2 (pp) =psi2 
xa3(pp) =moe* . 529d0 
ya3 (pp) =psi3 
!***This segment puts the radial potential into an array for the FFGH method. 
XXAA(pp)=moe 
YYAA(pp)=d(l) 
'********************************* ****************************************** 
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!***Write to file 
write(lO,*) moe*.529d0 , angledeg, psi 
write(ll ,*) moe*.529d0, angledeg, psil 
write(12 ,*) moe*.529d0, angledeg , psi2 
write(13 ,*) moe*.529d0, angledeg, psi3 
write(99 , *) moe*0.529,angledeg,HCNpotential(moe* .529d0,angle) 
write(98, *) moe* .529,angledeg,potex 
!***Reset values of angular wave functions 
psi=0.d0 
psil=0.d0 
psi2=0.d0 
psi3=0.d0 
enddo !end of r loop 
!**********BEGINNING OF FFG I"vI********************************************* 
!C .... TEST THE EFFECTIVE POTENTIAL 
DO J =xxmin ,xxmax !200 
Rl =dfloat ( J) / scale2 /. 529d0 
call SUB(Rl,xxaa ,yyaa,uu,poten) 
!write(6,*) rl *.529d0,pote n*2.19474d5 
vVRITE(30 ,*) rl *.529d0,POTEN*2.19474D5 
poten=0.d0 
!call morsepot(rl ,VVV) 
!write(6 ,*) 'r l ',' VVV ' 
!write(31 ,*) rl,VVV 
ENDDO 
!C .... TEST THAT NX IS EVEN 
ITEST =MOD(NX,2) 
IF(ITEST.N E.0) THEN 
WRITE(6,*) '**** NX MUST BE EVEN - FATAL ERROR**** ' 
STOP 
ENDIF 
!C .... SET UP GRID 
WRITE(6 ,*)'GRID PARAMETERS :' 
WRITE(6 ,*)' NUMBER OF GRID POI NTS = ',NX 
RMIN=xxmin /sca le2/0.529 d0 !rinit /scale /. 529d0 !xxmin/ 100.d0/.529d0 
RMAX=xxmax /sca le2/ 0.529d0 !rfinal/sca le/.529 d0 !xxmax/10 0.d0/.529d0 
ZL=(RMAX-RMIN) 
WRITE(6,*)' GRID LENGTH = ',ZL 
DX=ZL / dfloat(NX) 
WRITE(6,*) 'GR ID SPACINGS= ' ,DX 
!C .... COMPUTE CONSTANTS 
PSQ=PI *PI 
CONST1=PSQ/(MU*(ZL**2)) 
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NFACTl=(NX-l)*(NX-2) 
NFACT2=(NX-2)/2 
CONST2=CONST1 * ( dfloat(NFACTl) /6.D0+ 1.D0+dfloat(NFACT2)) 
DARG=PI/ dfloat(NX) 
!C .... NOW COMPUTE HAMILTONIAN MATRIX 
NEWX=RMIN 
DO I=l ,NX 
ixa(I)=NEWX 
DO J=l,I 
IJD=(I-J) 
IF(IJD.EQ.0) THEN 
AR(I ,J)=CONST2 
ELSE 
RATIO=l.D0 / DSIN(DARG*dfloat(IJD)) 
AR(I ,J)=( (-l)**IJD)*CONSTl *(RATIO**2) 
ENDIF 
ENDDO 
!C .... FIND THE POTENTIAL VALUE AT X 
call SUB(newx ,xxaa,yyaa ,uu,VVV) 
!call morsepot(newx ,VVV) 
!C .... ADD THE POTENTIAL VALUE vVHEN THE KRONECKER DELTA 

FUNCTION 
!C .... EQUALS ONE, I.E . WHEN I AND J ARE EQUAL 
AR(I ,I) =AR(I,I) + VVV 
NEWX=NEWX+DX 
ENDDO 
!C .... NOW FILL OUT HAMILTONIAN MATRIX 
DO I=l ,NX 
DO J=l ,I 
AR(J ,I)=AR(I ,J) 
ENDDO 
ENDDO 
!C .... NOvV CALL EIGENVALUE SOLVER 
CALL FLUSH(6) 
CALL RS(NX ,NX,AR, WCH,NPRIN ,ZR,FVl ,FV2,IERR) 
!C .... PRINT OUT E'VALUES AND E'VECTORS 
WRITE(6,12) 
12 FORMAT(/) 
WRITE( 6, *)' THE FIRST ' ,NWRIT,' ENERGY LEVELS FOR He-HCN MOLECULE 

DO I=l ,NWRIT 
WRITE(6 ,*)' ENERGY LEVEL NO. ',I,'E-VAL(l /c m)= ' ,vVCH(I)*2.19474D5 
!PAUSE 
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ENDDO 
WRlTE(6,12) 
WRlTE(6,*)' THE CORRESPONDING EIGENFUNCTIONS ARE: ' 
DO I=l ,NWRlT 
WRlTE(6,*)' ENERGY LEVEL NO. ',I ,' EIGENVALUE= ',\i\TCH(I) 
IF (NPRIN.EQ.l) THEN 
DO J=l ,NX 
WRlTE(6 ,*)' R = ',ixa(J)*.529 ,' \i\TAVEFUNCTION=',ZR(J ,I) 
WRlTE(20+i-l ,*) ixa(J)*.529d0 ,ZR(J ,I) 
ENDDO 
ENDIF 
ENDDO 
!***This segment calculates the modified wave functions*** ******************* 
do i=l ,pp-1 
write(75, *) xa(i) ,angledeg,ya(i)*zr(i , 1) 
write(81, *) xal (i) ,angledeg ,yal(i)*zr(i ,2) 
write(82, *) xa2(i) ,angledeg ,ya2(i)*zr(i ,3) 
write(83 , *) xa3(i) ,angledeg,ya3(i)*zr(i,4) 
enddo 
'**************************************************************************** 
write(lO , *) !ground state angular wave funct ion= psi 
write(ll ,*) !first excited state angular wave function =psil 
write(12 ,*) !second excited state angular wave function =ps i2 
write(13 ,*) !third excited state angular wave funct ion =ps i3 
write(75,*) !modified ground state wave funct ion= 
! (ground state angular wf =psi)* (ground state radial wf) 
write(81 ,*) !modified first excited state wave function= 
!(1st excited state angular wf=psil)*(lst excited state radial wf) 
write(82, *) !modified second excited state wave function = 
! (2nd excited state angular wf=psi2)*(2nd excited state radial wf) 
write(83 , *) !modified third excited state wave function = 
!(3rd excited state angular wf=psi3)*(3rd excited state radial wf) 
write(98 , *) !He-HCN potential expansion 
write(99,*) !He-HCN potential 
enddo !end of angle loop 
'******************************************************************************* 
!*This program outputs the following files: * 
!* 1. Angular 'Nave Function (fort.10) * 
!* 2. Potential (fort.99) * 
!* 3. Potential Expansion (fort.98) * 
!* 4. Radial Potential (fort.30) * 
!* 5. Radial Wave Function (fort.20) * 
!* 6. Trial Wave Function - Radial Wave Function* Angular Wave Function 
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(fort. 75) * 
'************ ******************************************************************** 

END 
REAL*8 FUNCTION funct(theta,rr,o) !funct with r in Angstroms 
REAL *8 r , theta ,functi,rr 
INTEGER o 
r=rr*0.529d0 
functi=plgndr( o,0, theta) *HCN potential(r , theta) 
funct=functi*( dsin( theta)*(2 .d0*o+ 1.d0) /2.d0) 
RETURN 
END 
REAL*8 FUNCTION pot(r ,theta) 
REAL*8 r ,theta,alpha ,rm ,eps ,p0r ,plr,p2r,p3r ,p0a,pla,p2a ,p3a,K,G,L,Va ,Vr 
REAL *8 terml, term2, term3, term 4, term5 ! , terma, termb 
alpha=l3.5d0 
eps=202.d0 
rm=3 .805d0 
p0r=l.d0 
plr=0.650d0 !0.35d0 
p2r=0.919d0 !0.65d0 ! 
p3r=0.d0 
p0a=l.d0 
pla=0.313d0 !0.35d0 ! 
p2a=0.400d0 !0.09d0 ! 
p3a=0.d0 
K=eps* ( (6.d0/ alpha)/ (1.d0-(6.d0 /a lpha))) 
G=alpha/rm 
L=(-eps/ (1.d0-(6 .d0/ alpha)) )*rm**6 
terml=(K*dEXP(13.5d0-G*R)) 
term2=(1.d0+ PlR *dCOS( theta)+ P2R * (1.5d0* ( dCOS( theta) **2)-0.5d0)) 
term3=(L/ (r**6)) 
term4=1.d0+PlA *dCOS(theta) 
term5=P2A *(1.5d0* ( dCOS( theta)**2)-0.5d0) 
!POT=terml *term2+term3*(term4+term5) 
Va= -eps*( alph a/ ( alpha-6.d0) )*( (rm/r )**6)* (p0a+pla * (rm / r )*dcos( theta)+ & 
p2a * (-0.5d0+(3.d0*dcos(theta)**2) /2.d0)+p3a*( ( (-3.d0*dcos( theta)) /2.d0) + & 
(5.d0*dcos( theta)**2) /2.d0)) 
Vr= 
eps*(6.d0 / ( alph a-6.d0) )*( dexp( alph a*(l.d0-(r/rm))) )*(p0r + plr* ( dcos( theta))+ 
& 
p2r*(-0.5d0+(3.d0*dcos( theta)**2) / 2.d0)+p3r* ( ( (-3.d0*dcos( theta)) / 2.d0) + & 
(5.d0*dcos( theta) **2) / 2.d0)) 
POT=Va+Vr 
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RETURN 
END 
REAL*S FUNCTION HCNpotential(R ,theta) 
!He-HCN potential from Atkins and Hutson in JCP vol. 105, p. 440 (1996) 
! Distances enter in a. u .; angles in radians and energies leave in cm~ -1 
real*S 
R, theta ,alpha ,mu, thetabig , beta ,eps0 ,epsl ,eps2,eps3,eps,rm ,rm0 ,rml .rm2 ,rm3 , & 
c6, c60,c62,c7 ,c71,c73, d6 ,d 7, vfix,d8 ,d8prime ,c8 ,A, vrep , vind , vdisp , & 
bl ,b2 ,b3,b4 ,b5,b6,b7,b8,d6rm ,d7rm ,d8rm ,vindrm 
alpha=l.383d0 
mu=l.l 74d0 
theta big= 1. 777 d0 
c60=13.067d0 
c62=1 .864d0 
c71=9 .939d0 
c73=9.40ld0 
beta=3.90115d0 
eps0=24.825139d0 
epsl=3.402d0 
eps2= 0.3853d0 
eps3= 0.854d0 
rm0=3. 715ld0 
rml=0.200d0 
rm2=0.4582d0 
rm3=0.07ld0 
eps= eps0+ epsl *dcos(theta)+eps2*(-0.5d0 + (3.d0*dcos(t heta)**2) / 2.d0)+ & 
eps3*( (-3.d0*dcos(theta) )/ 2.d0 + (5.d0*dcos( theta)**3) /2. d0) 
rm=rm0+rml *dcos(theta)+rm2*(-0.5d0 + (3.d0*dcos(theta)**2)/2.d0)+ & 
rm3*( (-3.d0*dcos(th eta )) / 2.d0 + (5.d0*dcos(theta)** 3) /2. d0) 
vindrm=-(alpha*(mu**2)*(1.d0+(-0.5d0 + 
(3.d0*dcos( theta)**2) / 2.d0) )*rm** (-6) )- & 
(6*alpha *mu*thetabig* ( ( dcos( theta) )**3)*rm **(-7)) 
c6=c60+c62*(-0 .5d0 + (3.d0*dcos(th eta)**2)/2 .d0) 
c7=c71 *dcos(theta)+c73*( ( dcos(theta)) **3) 
bl=beta 
b2=(beta**2) / 2.d0 
b3=(beta**3) / 6.d0 
b4=(beta**4) / 24.d0 
b5=(beta**5) / 120.d0 
b6= (beta **6) / 720.d0 
b7=(beta**7) / 5040.d0 
b8=(beta**8) / 40320.d0 



& 

& 

& 

& 

& 
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d6rm=l-( dexp(-beta*rm) )* (1 +(bl *rm)+(b2*rm**2)+(b3*rm**3)+(b4 *rm**4)+ 

(b5*rm**5)+(b6*rm**6)) 
d7rm=l-( dexp(-beta*rm) )*(1 +(bl *rm)+(b2*rm**2)+(b3*rm**3)+(b4 *rm**4)+ 

(b5*rm**5)+(b6*rm**6)+(b7*rm**7)) 
d8rm= 1-( dexp(-beta *rm) )*(1 +(bl *rm)+(b2*rm**2)+(b3*rm**3)+(b4 *rm**4)+ 

(b5*rm**5)+(b6*rm**6)+(b7*rm**7)+(b8*rm**8)) 
d8prime= beta* ( d 7rm-d8rm) 
vfix=vindrm-( c6*d6rm*rm**(-6) )-( c7*d7rm*rm**(- 7)) 
c8=( (beta*eps*rm**8)+(beta*vfix*rm**8)+( vfix*rm**8)) / ( (8.d0*d8prime/rm) & 
-(beta *d8prime )-(8.d0*dSrm/rm) +(beta*d8rm)) 
A=( c8*d8rm* (rm** (-8) )*dexp(beta *rm))-( eps*dexp(beta *rm))-( vfix*dexp & 
(beta*rm)) 
d6=1-( dexp(-beta *R) )* (1 +(bl *R)+(b2*R **2)+(b3*R **3)+(b4 *R **4)+(b5*R **5) 

+(b6*R**6)) 
d7=1-( dexp(-beta *R) )*(1 +(bl *R)+(b2*R **2)+(b3*R **3)+(b4 *R **4)+(b5*R **5) 

+(b6* R**6)+(b7 *R**7)) 
d8= 1-( dexp(-beta *R) )* (1 +(bl *R)+(b2*R **2)+(b3*R **3)+(b4 *R **4)+(b5*R **5) 

+(b6*R **6)+(b7*R **7)+(b8* R **8)) 
vrep=A *dexp(-beta*R) 
vind=-alpha*(mu**2)*(0.5d0 + (3.d0*dcos(theta)**2)/2.d0)*(R**(-6))- & 
6*alpha*mu*thetabig*( ( dcos(theta) )**3)*(R**(-7)) 
vdisp=-( c6*d6*(R **(-6)) )-( c7*d7*(R ** (-7)) )-( c8*d8*(R **(-8))) 
H CN potential= ( vrep+vind +vdisp) 
RETURN 
END 
REAL*8 FUNCTION ocspotential(r,theta) 
implicit real*8(a-h ,o-z) 
! MMSV fit to Higgins/ Klemperer Pot entia l. JCP vol. 110, p. 1383 (1999) 
! Distances come in in a. u. , angles in radians and 
! energies exit in cm-1. 
! All internal calculations are done in Angstroms /c m-1 
rlim=12.25d0 
c6= -5.518337819784241d6 - & 
2.815526194265673d7*dcos(theta) - & 
1.222022540841727d6* & 
dcos(theta)**2 + & 
9.28433189859905d7*dcos(theta)**3 - & 



5.147503485810399d7* & 
dcos(theta)**4 - & 
2.371545691135376d8* & 
dcos(theta)**5 - & 
4.298021781056592d7* & 
dcos(theta)**6 + & 
3.356904207752721d8* & 
dcos(theta)**7 + & 
3.711123257316639d8* & 
dcos(theta)**8 - & 
2.187342071289152d8* & 
dcos(theta)**9 - & 
4.779521200196144d8* & 
dcos(theta)**lO + & 
5.369489863099884d7* & 
dcos(theta)**ll + & 
2.052905607 46981 ld8*dcos( theta)**12 
c7=8.11427571093064d7 + & 
6.915953104421285d8*dcos(theta) - & 
3.302620601496621d6* & 
dcos(theta)**2 - & 
2.469508814138928d9* & 
dcos(theta)**3 + & 
7.862550115104378d8* & 
dcos(theta)**4 + & 
6.917741424386369d9* & 
dcos(theta)**5 + & 
2.361213150132689d9* & 
dcos(theta)**6 - & 
l.056687114337185dl0* & 
dcos(theta)**7 - & 
1.131235010642686d10* & 
dcos(theta)**8 + & 
7.64480838222211ld9* & 
dcos(theta)**9 + & 
l.340802869471866d10* & 
dcos(theta)**lO - & 
2.110569758270181d9* & 
dcos(theta)**ll - & 
5.555319238436844d9*dcos( theta)** 12 
c8=1.772439907199721d8 - & 
3.640726069925961d9*dcos(theta) + & 
3.75432581972346d8*dcos(theta)**2 + & 
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1.455420403849449dl0* & 
dcos(theta)**3 + & 
1. 0000033 78656614d9* & 
dcos(theta)**4 - & 
4.617315309215618d10* & 
dcos(theta)**5 - & 
2.797291174372391d10* & 
dcos(theta)**6 + & 
7.628291799349615d10* & 
dcos(theta)**7 + & 
8.72010434775106d10* & 
dcos(theta)**8 - & 
6.021553008035978d10* & 
dcos(theta)**9 - & 
9.29303148210638d10* & 
dcos(theta)**lO + & 
l.798370591378436d10* & 
dcos(theta)**ll + & 
3. 658316840255752dl0*dcos( theta) **12 
eps= 26.56028761259177d0 - & 
66.0941125423105ld0*dcos(theta) + & 
113.7818762706877d0*dcos(theta)**2 + & 
253.9842073871831d0*dcos(theta)**3 - & 
861.492606088799d0*dcos(theta)**4 - & 
372.9912295962823d0*dcos(theta)**5 + & 
2377.068086446698d0*dcos(theta)**6 + & 
205.2388974075886d0*dcos(theta)**7 - & 
3252.98701566141d0*dcos(theta)**8 + & 
12.69015656350256d0*dcos(theta)**9 + & 
2231.436969104492d0*dcos(theta)**lO - & 
31.65780133613179d0*dcos(theta)**ll - & 
607. 0829551078825d0*dcos (theta)** 12 
rm=6.92914426071697d0 + & 
3.120064333769215d0*dcos(theta) + & 
0. 726653820333434 7 d0* dcos (theta)* *2 - & 
9.33193775575554d0*dcos(theta)**3 + & 
12.48406119957126d0*dcos(theta)**4 + & 
9.27208587287942d0*dcos(theta)**5 - & 
30.3186120249881d0*dcos(theta)**6 + & 
0.1118890543344939d0*dcos(theta)**7 + & 
33.45333098260939d0*dcos(theta)**8 - & 
6.833790407369015d0*dcos(theta)**9 - & 
18.5896707305704d0*dcos(theta)**10 + & 
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3.376275567894582d0*dcos(theta)**ll + & 
4.162194568737 485d0*dcos(theta)**l2 
alphal=0.840448904141149d0 - & 
0.3277295205015458d0*dcos(theta) + & 
0.475391590899880ld0*dcos(theta)**2 + & 
2.02453682068988ld0*dcos(theta)**3 - & 
3.3499513477514d0*dcos(theta)**4 - & 
6.291793710168604d0*dcos(theta)**5 + & 
9.84880899105184d0*dcos(theta)**6 + & 
10.26389067511479d0*dcos(theta)**7 - & 
13.62883386586445d0*dcos(theta)**8 - & 
8.36423058246549d0*dcos(theta)**9 + & 
9.18459266695318d0*dcos(theta)**lO + & 
2.668208793886965d0*dcos(theta)**ll - & 
2. 404330940098348d0* dcos (theta)** 12 
alpha2= 0.818336538913902d0 - & 
0.2992044234243529d0*dcos(theta) + & 
0.4697371433769803d0*dcos(theta)**2 + & 
l.665773063318903d0*dcos(theta)**3 - & 
3.089373409988408d0*dcos(theta)**4 - & 
4.735292584383614d0*dcos(theta)**5 + & 
8.62422346889475d0*dcos(theta)**6 + & 
7.247704748785174d0*dcos(theta)**7 - & 
ll.55703899826573d0*dcos(theta)**8 - & 
5.664708797189565d0*dcos(theta)**9 + & 
7.619667615634005d0*dcos(theta)**lO + & 
1. 764938759546422d0*dcos(theta)* *ll - & 
1. 952200596603219d0*dcos( theta)** 12 
! Region I of MMSV potential 
if(r.lt.rm) then 
vvl=dexp(-2.d0*alphal *(r-rm)) 
vv2=dexp(-alphal *(r-rm)) 
vv=eps*(vvl-2.d0*vv2) 
endif 
rtest=rm+dlog(2.d0) / alpha2 
! Region II of MMSV potential 
if(r.gt.rm.and.r.lt.rtest) then 
vvl =dexp(-2.d0*alpha2* (r-rm)) 
vv2=dexp(-alpha2*(r-rm)) 
vv=eps*(vvl-2.d0*vv2) 
endif 
xl=rtest/rm 
x2=rlim/rm 

101 



x=r/rm 
! Region III of MMSV potential 
if(x.ge.xl.and .x.lt.x2) then 
dx=x2-xl 
terml =dexp (-rm* al pha2* ( xl-1.d0)) 
betal=eps*terml *(term l-2.d0 ) 
term2=1.d0/(rm**2*x2**2) 
term3=-( c8/ (rm**8*x2**8)) - & 
c7 /(rm**7*x2**7) - & 
c6 / ( rm **6*x2**6) 
beta2 = ( term3- betal) / dx 
term4=-2.d0*rm*alpha2*eps*terml *(terml-1.d0) 
beta3=-( term4-beta2) / dx 
term5=(8*c8)/(rm**8*x2**9) + & 
(7*c7)/(rm**7*x2**8) + & 
(6*c6)/ (rm**6*x2**7) 
beta4 = ( term5-dx* beta3- beta2) / dx* * 2 
term6=x-xl 
term7=x-x2 
vv= bet al+ term6* (beta2+ term 7* (beta3+ term6 *beta4)) 
VV=VV 

cndif 
! Region IV of MNISV potential 
if(r.ge.rlim) then 
vv=(-c6/r**6-c7 /r**7-c8/r**8) 
endif 
ocspotential=vv 
return 
end 
SUBROUTINE gau leg(xl,x2,x,w,n) 
INTEGER n 
REAL*S xl ,x2 ,x(n) ,w(n) ,EPS 
PARAMETER (EPS=3.d-16) 
INTEGER i,j ,m 
REAL*S pl ,p2,p3,pp,x l,xm,z,zl 
m=(n+l)/2 
xm=0.5d0*(x2+xl) 
xl=0.5d0*(x2-xl) 
do 12 i=l ,m 
z=cos(3.141592654d0*(i-.25d0) / (n+.5d0)) 
1 continue 
pl=l.d0 
p2=0.d0 
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do 11 j=l,n 
p3=p2 
p2=pl 
pl=( (2.d0*j-l.d0)*z*p2-(j-1.d0)*p3) /j 
11 continue 
pp=n*(z*pl-p2) / (z*z-1.d0) 
zl=z 
z=zl-pl/pp 
if( abs(z-zl) .gt.EPS)goto 1 
x(i) =xm-xl *z 
x(n+ 1-i)=xm+xl*z 
w(i)=2.d0*xl/ ( (l .d0-z*z)*pp*pp) 
w(n+ 1-i)=w(i) 
12 continue 
return 
END 
FUNCTION plgndr(l,m,xx) 
INTEGER l,m,i,11 
REAL*8 plgndr 
REAL*8 x,xx 
REAL *8 fact ,pll,pmm,pmmp l ,somx2 
x=dcos(xx) 
if( m.lt.0.or.m .gt.1.or.dabs(x) .gt.1.d0) then 
!pause 'bad arguments in plgndr' 
endif 
pmm=l.d0 
if(m.gt.0) then 
somx2=dsqrt( (1.d0-x)*(l.d0+x)) 
fact=l.d0 
do 11 i= l ,m 
pmm=-pmm*fact*somx2 
fact=fact+2.d0 
11 continue 
endif 
if(l.eq .m) then 
plgndr=pmm 
else 
pmmpl=x*(2.d0*m+ l)*pmm 
if(l.eq.m+l) then 
plgndr=pmmpl 
else 
do 12 ll=m +2 ,l 
pll=(x* (2.d0*ll-1 )*pmmpl-(ll+m-1.d0)*pmm) / (11-m) 
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pmrn=pmmpl 
pmmpl=pll 
12 continue 
plgndr=pll 
endif 
end if 
return 
END 
SUBROUTINE jacobi(a ,n ,np ,d,v,nrot) 
INTEGER n,np ,nrot ,NMAX 
REAL *8 a(np,np) ,d(np ),v(np,np) 
PARAMETER (NMAX=500) 
INTEGER i,ip ,iq,j 
REAL*8 c,g,h,s,sm,t,tau,theta,tresh ,b(NMAX) ,z(NMAX) 
do 12 ip=l ,n 
do 11 iq=l,n 
v(ip,iq)=0.d0 
11 continue 
v(ip,ip )=1.d0 
12 continue 
do 13 ip=l ,n 
b(ip )=a(ip,ip) 
d(ip)=b(ip) 
z(ip)=0 .d0 
13 continue 
nrot=0 
do 24 i=l,50 
sm=0.d0 
do 15 ip=l ,n-1 
do 14 iq=ip+ l,n 
sm=sm+dabs( a(ip,iq)) 
14 continue 
15 cont inue 
if(sm.eq.0.d0)return 
if(i.lt.4)then 
tresh=0.2d0*sm/n**2 
else 
tresh=0.d0 
endif 
do 22 ip=l,n-1 
do 21 iq=ip + l ,n 
g= 100.d0*dabs( a(ip, iq)) 
if( (i.gt.4) .and . ( dabs( d(ip) )+g .eq.dabs( d(ip))) .and. & 
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( dabs( d(iq) )+g.eq.dabs( d(iq))) )then 
a(ip,iq)=0.d0 
else if( dabs( a(ip ,iq)) .gt. tresh)then 
h=d(iq)-d(ip) 
if( dabs(h)+g.eq.dabs(h) )then 
t=a(ip,iq) /h 
else 
theta=0.5d0*h / a(ip,iq) 
t=l.d0 / ( dabs(theta)+dsqrt(l.d0+theta**2)) 
if( theta.lt.0.d0)t=-t 
endif 
c=l.d0/dsqrt(l +t**2) 
s=t*c 
tau=s/(1.d0+c) 
h=t*a(ip ,iq) 
z(ip )=z(ip )-h 
z(iq)=z(iq)+h 
d(ip )=d(ip )-h 
d(iq)=d(iq)+h 
a(ip ,iq)=0.d0 
do 16 j=l ,ip-1 
g= a(j ,ip) 
h=a(j ,iq) 
a(j ,ip )=g-s*(h +g *tau) 
a(j ,iq)=h+s* (g-h*tau) 
16 continue 
do 17 j=ip + l,iq-1 
g=a(ip ,j) 
h=a(j ,iq) 
a(ip ,j)=g-s*(h+g*tau) 
a(j ,iq)=h+s*(g-h*tau) 
17 continue 
do 18 j=iq+l ,n 
g=a(ip,j) 
h=a(iq ,j) 
a(ip,j)=g-s*(h+g*tau) 
a(iq,j)=h+s* (g-h*tau) 
18 continue 
do 19 j=l,n 
g=v(j,ip) 
h=v(j,iq) 
v(j ,ip )=g-s*(h+g*tau) 
v(j ,iq)=h+s* (g-h *tau) 
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19 continue 
nrot=nrot+ 1 
endif 
21 continue 
22 continue 
do 23 ip=l ,n 
b(ip )=b(ip )+z(ip) 
d(ip)=b(ip) 
z(ip)=0.d0 
23 continue 
24 continue 
!pause 'too many iterations in jacobi ' 
return 
END 
REAL*8 FUNCTION THREEJ (Jl,J2 ,J3) 
!IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
!C 
!C COMPUTATION OF SPECIAL WIGNER 3J COEFFICIENT \tVITH 
!C VANISHING PROJECTIONS. SEE EDMONDS , P. 50. 
!C 
!C THIS VERSION EVALUATES BINOM AND PARITY IN-LINE 
!C SHOULD IMPROVE EFFICIENCY , ESPECIALLY ON CRAY; 
!C ALSO GIVES IMPROVEMENT ON AMDAHL (SG: 20 DEC 92) 
!C 
!C STATEMENT FUNCTION FOR DELTA ASSOCIATED W / RACAH AND 

SIXJ SYMBOLS 
!C DELTA(I ,J,K)= SQRT(l.D0 / ( BINOM(I+J+K+l,I+J-K) * 
!C 1 BINOM(K+K+l ,I-J +K) * DBLE(K+J-I+l))) 
!C 
INTEGER Jl ,J2,J3 , Il ,I2,I3,I4,I5,I6,N,M,NM,MNM,FN 
REAL*8 SIGN ,F ,C,B,Bl ,B2,B3,B4,DELTA 
Il=,Jl + J2 +J3 
IF (Il-2*(11 / 2).NE.0) GO TO 8 
1 I2=Jl-J2 +J3 
IF (I2.lt.0.d0) goto 8 
if (i2.eq.0.d0) goto 2 
if (i2.gt.0.d0) goto 2 
2 I3=Jl +J2-J3 
IF (I3.lt.0.d0) goto 8 
if (i3.eq.0.d0) goto 3 
if (i3.gt.0.d0) goto 3 
3 I4=-Jl +J2+J3 
IF (I4.lt.0.d0) goto 8 



if (i4.eq.0.d0) goto 4 
if (i4.gt.0.d0) goto 4 
4 I5=Il/2 
I6=I2/2 
SIGN=l.D0 
IF (I5-2*(I5/2).NE.0) SIGN=-SIGN 
!C 7 THREEJ=SIGN*DELTA(Jl,J2 ,J3)*BINO M(I5,Jl )*BINOM(J l,I6 ) 
!C B1,B2 ARE BINOM ASSOCIATED vV / DELTA 
N =Jl +J2+J3+ 1 
M=Jl+J2-J3 
NM= N-M 
MNM = MIN(NM,M) 
IF(MNM.LE .0) THEN 
Bl=l.D0 
ELSE 
FN = N+l 
F = 0.D0 
B = l.D0 
DO I = 1,MNM 
F = F+l.D0 
C = (FN-F)*B 
B = C/F 
enddo 
Bl= B 
ENDIF 
N=J3+J3+1 
M=Jl-J2+J3 
NM= N-M 
MNM = MIN(NM ,M) 
IF(MNM.LE.0) THEN 
B2=1.D0 
ELSE 
FN = N+l 
F = 0.D0 
B = l.D0 
DO I= 1,MNM 
F = F+l.D0 
C = (FN-F)*B 
B = C/F 
enddo 
B2 = B 
ENDIF 
DELTA=dSQRT(l.D0 /( B1 *B2*(J3+J2-Jl + 1))) 
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!C B3=BINOM(I5 ,Jl), B4=BINOM(Jl ,I6) 
N=I5 
M=Jl 
NM= N-M 
MNM = MIN(NM ,M) 
IF(MNM.LE.0) THEN 
B3=1.D0 
ELSE 
FN = N+l 
F = 0.DO 
B = l.D0 
DO I= 1,MNM 
F = F+l.D0 
C = (FN-F)*B 
B = C/ F 
enddo 
B3 = B 
ENDIF 
N=Jl 
M=I6 
NM= N-M 
MNM = MIN(NM ,M) 
IF(MNM .LE .0) THEN 
B4=1.D0 
ELSE 
FN = N+ l 
F = 0.D0 
B = l.D0 
DO I = 1,MNM 
F = F+ l.D0 
C = (FN-F)*B 
B = C/ F 
enddo 
B4 = B 
ENDIF 
THREEJ=SIGN*DELTA *B3*B4 
RETURN 
8 THREEJ = 0.D0 
RETURN 
END 
SUBROUTINE RS(NivI,N,A,'vV,MATZ,Z,FVl ,FV2 ,IERR) 
IMPLICIT real*S(A-H ,O-Z) 
DIMENSION A(NM ,N) ,W(N) ,Z(NM ,N) ,FVl(N) ,FV2(N) 
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!C **************************************************************** 
!C THIS SUBROUTINE CALLS THE RECO?\H.;IENDED SEQUENCE OF 
!C SUBROUTINES FROM THE EIGENSYSTEM SUBROUTINE PACKAGE 

(EISPACK) 
!C TO FIND THE EIGENVALUES AND EIGENVECTORS (IF DESIRED) 
!C OF A REAL SY1v1METRIC MATRIX. 
!C 
!CON INPUT: 
!C 
!C N,M MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL 
!C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM 
!C DIMENSION STATEMENT , 
!C N IS THE ORDER OF THE MATRIX A, 
!C A CONTAINS THE REAL SYMMETRIC MATRIX , 
!C MATZ IS AN INTEGER VARIABLE SET EQUAL TO ZERO IF 
!CONLY EIGENVALUES ARE DESIRED , OTHERvVISE IT IS SET TO 
!C ANY NON-ZERO INTEGER FOR BOTH EIGENVALUES AND EIGEN-

VECTORS. 
!C 
!CON OUTPUT: 
!C 
!CW CONTAINS THE EIGENVALUES IN ASCENDING ORDER , 
!CZ CONTAINS THE EIGENVECTORS IF MATZ IS NOT ZERO , 
!C IERR IS AN INTEGER OUTPUT VARIABLE SET EQUAL TO AN 
!C ERROR COMPLETION CODE DESCRIBED IN SECTION 2B OF THE 
!C DOCUMENTATION. THE NORMAL CO:MPLETION CODE IS ZERO , 
!C FVl AND FV2 ARE TEMPORARY STORAGE ARRAYS. 
!C 
!C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GAR

BOW , 
!C APPLIED MATHEMATICS DIVISION , ARGONNE NATIONAL LABORA-

TORY 
!C ******************************************************************* 
IF (N .LE. NM) GO TO 10 
IERR = 10 * N 
GO TO 50 
!C 
10 IF (MATZ .NE. 0) GO TO 20 
!C ********** FIND EIGENVALUES ONLY ********** 
CALL TRED1(NM ,N,A,W ,FV1 ,FV2) 
CALL TQLRAT(N ,W,FV2,IERR) 
GO TO 50 
!C ********** FIND BOTH EIGENVALUES AND EIGENVECTORS********** 
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20 CALL TRED2(NM,N,A,vV,FV1 ,Z) 
CALL TQL2(NM,N,W,FV1,Z,IERR) 
50 RETURN 
!C ********** LAST CARD OF RS ********** 
END 
!C 
!C 
SUBROUTINE TRED1(NM ,N,A,D,E,E2) 
IMPLICIT real*8(A-H,O-Z) 
DIMENSION A(NM ,N) ,D(N) ,E(N) ,E2(N) 
!C *************************************************************** 
!C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE 

TREDl , 
!C NUM. MATH. ll , 181-195(1968) BY mArTIN , REINSCH , AND WILKIN-

SON. 
!C HANDBOOK FOR AUTO. COMP. , VOL.II-LINEAR ALGEBRA , 212-226(1971). 
!C THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX 
!C TO A SYMMETRIC TRIDIAGONAL MATRIX USING 
!C ORTHOGONAL SIMILARITY TRANSFORMATIONS. 
!C 
!CON INPUT: 
!C 
!C NM MUST BE SET TO THE ROW DIMENSION OF TvVO-DIMENSIONAL 
!C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM 
!C DIMENSION STATEMENT , 
!C 
!C N IS THE ORDER OF THE MATRIX, 
!C A CONTAINS THE REAL SYMMETRIC INPUT MATRIX. ONLY THE 
!C LOvVER TRIANGLE OF THE MATRIX NEED BE SUPPLIED. 
!C 
!C ON OUTPUT : 
!C 
!C A CONTAINS INFORivIATION ABOUT THE ORTHOGONAL TRANS
!C FORMATIONS USED IN THE REDUCTION IN ITS STRICT LOWER 
!C TRIANGLE. THE FULL UPPER TRIANGLE OF A IS UNALTERED , 
!C 
!C D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL 

IvIATRIX , 
!C 
!CE CONTAINS THE SUBDIAGONAL ELEtIENTS OF THE TRIDIAGONAL 
!C MATRIX IN ITS LAST N-1 POSITIONS. E(l) IS SET TO ZERO , 
!C 
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!C E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS 

OFE. 
!C E2 MAY COINCIDE WITHE IF THE SQUARES ARE NOT NEEDED. 

!C 
!C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GAR-

BOW , 
!C APPLIED MATHEMATICS DIVISION , ARGONNE NAT IO NAL LABOR.1\.-

TORY 
!C **************************************************************** 

!C 
DO I = 1, N 
D(I) = A(I ,I) 
enddo 
!C ********** FOR I=N STEP -1 UNTIL 1 DO - ********** 

DO 300 II = 1, N 
I = N+l-II 
L = I - 1 
H = 0.0D0 
SCALE = 0.0D0 
IF (L .LT. 1) GO TO 130 
!C ********** SCALE ROW (ALGOL TOL THEN NOT NEEDED) ********** 
DOK= 1, L 
SCALE = SCALE+ DABS(A(I ,K)) 
enddo 
!C 
IF (SCALE .NE. 0.0D0) GO TO 140 
130 E (I) = 0.0D0 
E2(I) = 0.0D0 
GO TO 290 
!C 
140 DO 150 K = 1, L 
A(I ,K) = A(I ,K) / SCALE 
H = H + A(I ,K) * A(I ,K) 
150 CONTINUE 
!C 
E2(I) = SCALE * SCALE * H 
F = A(I ,L) 
G = -DSIGN(DSQRT(H) ,F) 
E(I) = SCALE * G 
H=H-F*G 
A(I ,L) = F - G 
IF (L .EQ. 1) GO TO 270 
F = 0.0D0 



!C 
DO 240 J = 1, L 
G = O.ODO 
!C ********** FORM ELEMENT OF A *U ********** 
DOK= 1, J 
G = G + A(J ,K) * A(I ,K) 
enddo 
!C 
JPl = J + 1 
IF (L .LT. JPl) GO TO 220 
!C 
DOK = JPl , L 
G = G + A(K ,J) * A(I ,K) 
enddo 
!C ********** FORM ELEMENT OF P ********** 
220 E(J) = G / H 
F = F + E(J) * A(I ,J) 
240 CONT INUE 
!C 
H =FI (H + H) 
!C ********** FORM REDUCED A ********** 
DO 260 J = 1, L 
F = A(I ,J ) 
G = E(J) - H * F 
E(J) = G 
!C 
DOK = 1, J 
A(J,K) = A(J ,K) - F * E(K) - G * A(I ,K) 
enddo 
260 CONTINUE 
!C 
270 DOK = 1, L 
A(I ,K) = SCALE * A(I ,K) 
enddo 
!C 
290 H = D(I) 
D(I) = A(I ,I) 
A(I,I) = H 
300 CONTINUE 
!C 
RETURN 
!C ********** LAST CARD OF TREDl ********** 
END 
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!C 
!C 
SUBROUTINE TRED2(NM,N,A,D ,E,Z) 
IMPLICIT real*8(A-H,O-Z) 
DIMENSION A(NM,N) ,D(N) ,E(N) ,Z(NM,N) 
!C **************************************************************** 
!C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE 

TRED2, 
!C NUM. MATH. 11, 181-195(1968) BY MARTIN , REINSCH , AND vVILKIN-

SON. 
!C HANDBOOK FOR AUTO . COMP. , VOL.II-LINEAR ALGEBRA , 212-226(1971). 
!C 
!C THIS SUBROUTINE REDUCES A REAL SYMMETRIC ?vIATRIX TO A 
!C SYMMETRIC TRIDIAGONAL MATRIX USING AND ACCUNIULATING 
!C ORTHOGONAL SIMILARITY TRANSFORMATIONS . 
!C 
!CON INPUT: 
!C 
!C NM MUST BE SET TO THE ROW DIMENSION OF TvVO-DIMENSIONAL 
!C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM 
!C DIMENSION STATEMENT, 
!C 
!C N IS THE ORDER OF THE MATRIX, 
!C 
!CA CONTAINS THE REAL SYNIMETRIC INPUT ?vIATRIX. ONLY THE 
!C LOvVER TRIANGLE OF THE MATRIX NEED BE SUPPLIED. 
!C 
!C ON OUTPUT : 
!C 
!C D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL 

MATRIX, 
!C 
!CE CONTAINS THE SUBDIAGONAL ELENIENTS OF THE TRIDIAGONAL 
!C MATRIX IN ITS LAST N-1 POSITIONS. E(l) IS SET TO ZERO , 
!C 
!C Z CONTAINS THE ORTHOGONAL TRANSFOR ivIATION MATRIX 
!C PRODUCED IN THE REDUCTION, 
!C 
!C A AND Z MAY COINCIDE. IF DISTINCT , A IS UNALTERED. 
!C 
!C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GAR

BOW , 
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!C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORA-
TORY 

!C ************************************************************* 
DO 100 I= 1, N 
DO J = 1, I 
Z(I ,J) = A(I,J) 
enddo 
100 CONTINUE 
!C 
IF (N .EQ. 1) GO TO 320 
!C ********** FOR I=N STEP -1 UNTIL 2 DO - ********** 
DO 300 II = 2, N 
I=N+2-II 
L = I - 1 
H = 0.0D0 
SCALE = 0.0D0 
IF (L .LT. 2) GO TO 130 
!C ********** SCALE ROW (ALGOL TOL THEN NOT NEEDED) ********** 
DOK= 1, L 
SCALE = SCALE+ DABS(Z(I ,K)) 
enddo 
!C 
IF (SCALE .NE. 0.0D0) GO TO 140 
130 E(I) = Z(I ,L) 
GO TO 290 
!C 
140 DO 150 K = 1, L 
Z(I,K) = Z(I ,K) / SCALE 
H = H + Z(I ,K) * Z(I ,K) 
150 CONTINUE 
!C 
F = Z(I ,L) 
G = -DSIGN(DSQRT(H ),F) 
E(I) = SCALE * G 
H=H-F*G 
Z(I,L) = F - G 
F = 0.0D0 
!C 
DO 240 J = 1, L 
Z(J ,I) = Z(I ,J) I H 
G = 0.0D0 
!C ********** FORM ELEMENT OF A *U ********** 
DOK = 1, J 
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G = G + Z(J ,K) * Z(I ,K) 
enddo 
!C 
JPl = J + 1 
IF (L .LT. JPl) GO TO 220 
!C 
DOK= JPl , L 
G = G + Z(K ,J) * Z(I ,K) 
enddo 
!C ********** FORM ELEMENT OF P ********** 
220 E( J) = G / H 
F = F + E(J) * Z(I ,J) 
240 CONTINUE 
!C 
HH = F / (H + H) 
!C ********** FORM REDUCED A ********** 
DO 260 J = 1, L 
F = Z(I ,J) 
G = E( J) - HH * F 
E(J) = G 
!C 
DOK = 1, J 
Z(J ,K) = Z(J ,K) - F * E(K) - G * Z(I ,K) 
enddo 
260 CONTINUE 
!C 
290 D(I) = H 
300 CONTINUE 
!C 
320 D(l) = 0.0D0 
E(l) = 0.0D0 
!C ********** ACCUMULATION OF TRANSFORMATION MATRICES********** 
DO 500 I = 1, N 
L = I - 1 
IF (D(I) .EQ. 0.0D0) GO TO 380 
!C 
DO 360 J = 1, L 
G = 0.0D0 
!C 
DOK= 1, L 
G = G + Z(I ,K) * Z(K ,J) 
enddo 
!C 
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DOK= 1, L 
Z(K,J) = Z(K,J) - G * Z(K,I) 
enddo 
360 CONTINUE 
!C 
380 D(I) = Z(I,I) 
Z(I ,I) = l.0DO 
IF (L .LT. 1) GO TO 500 
!C 
DO 400 J = 1, L 
Z(I,J) = 0.0D0 
Z(J,I) = 0.0D0 
400 CONTINUE 
!C 
500 CONTINUE 
!C 
RETURN 
!C ********** LAST CARD OF TRED2 ********** 
END 
!C 
!C 
SUBROUTINE TQLRAT(N ,D,E2,IERR) 
IiVIPLICIT real*8(A-H ,O-Z) 
DIMENSION D(N) ,E2(N) 
REAL*8 MACHEP 
!C ***************************************************************** 
!C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE 

TQLRAT, 
!C ALGORITHM 464, COMM. ACM 16, 689(1973) BY REINSCH. 
!C 
!C THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC 
!C TRIDIAGONAL TvIATRIX BY THE RATIONAL QL r.IETHOD. 
!C 
!CON INPUT: 
!C 
!C N IS THE ORDER OF THE MATRIX , 
!C 
!C D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX' 
!C 
!C E2 CONTAINS THE SQUARES OF THE SUBDIAGONAL ELEMENTS OF 

THE 
!C INPUT MATRIX IN ITS LAST N-1 POSITIONS. E2(1) IS ARBITRARY. 
!C 
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!CON OUTPUT: 
!C 
!C D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN 
!C ERROR EXIT IS MADE , THE EIGENVALUES ARE CORRECT AND 
!C ORDERED FOR INDICES 1,2, .. .IERR-1 , BUT :tvIAY NOT BE 
!C THE SMALLEST EIGENVALUES , 
!C 
! C IERR IS SET TO 
!C ZERO FOR NORMAL RETURN , 
!CJ IF THE J-TH EIGENVALUE HAS NOT BEEN 
!C DETERMINED AFTER 30 ITERATIONS. 
!C 
!C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GAR

BOW, 
!C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORA-

TORY 
!C ************************************************************** 
!C 
!C ********** MACHEP IS A MACHINE DEPENDENT PARA!vIETER SPEC-

IFYING 
!C THE RELATIVE PRECISION OF FLOATING POI NT ARITHl\IETIC. 
!C 
!C 
MACHEP = 2.D0**(-26) 
!C 
IERR = 0 
IF (N .EQ . 1) GO TO 1001 
!C 
DO I = 2, N 
E2(I-1) = E2(I) 
enddo 
!C 
F = 0.0D0 
B = 0.0D0 
C = 0.0D0 
E2(N) = 0.0D0 
!C 
DO 290 L = 1, N 
J=O 
H = MACHEP * (DABS(D (L)) + DSQRT (E2(L))) 
IF (B .GT. H) GO TO 105 
B=H 
C = B * B 
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!C ********** LOOK FOR SMALL SQUARED SUB-DIAGONAL ELEi\IENT 
********** 

105 DO 110 M = L, N 
IF (E2(M) .LE. C) GO TO 120 
!C ********** E2(N) IS ALWAYS ZERO, SO THERE IS NO EXIT 
!C THROUGH THE BOTTOM OF THE LOOP ********** 
110 CONTINUE 
WRITE(6,*)' **** FATAL ERROR IN TQLRAT ****' 
WRITE(6 ,*)' **** FALLEN THROUGH BOTTOM OF LOOP 110 *** ' 
STOP 
!C 
120 IF (M .EQ . L) GO TO 210 
130 IF (J .EQ. 30) GO TO 1000 
J=J+l 
!C ********** FORM SHIFT ********** 
11 = L + 1 
S = DSQRT(E2(L)) 
G = D(L) 
P = (D(Ll) - G) / (2.0D0 * S) 
R = DSQRT(P*P+ 1.0D0) 
D(L) = S / (P + DSIGN(R ,P)) 
H = G - D(L) 
!C 
DO I= Ll , N 
D(I) = D(I) - H 
enddo 
!C 
F=F+H 
!C ********** RATIONAL QL TRANSFORMATION ********** 
G = D(M) 
IF (G .EQ. 0.0D0) G = B 
H=G 
S = 0.0D0 
MML = M-L 
!C ********** FOR I=M-1 STEP -1 UNTIL L DO - ********** 
DO 200 II = 1, MML 
I=M-II 
P = G * H 
R = P + E2(I) 
E2(I+l) = S * R 
S = E2(I) / R 
D(I+l) = H + S * (H + D(I)) 
G = D(I) - E2(I) / G 
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IF (G .EQ. 0.0D0) G = B 
H=G*P/R 
200 CONTINUE 
!C 
E2(L) = S * G 
D(L) = H 
!C ********** GUARD AGAINST UNDERFLOvV IN CONVERGENCE TEST 

********** 
IF (H .EQ. 0.0D0) GO TO 210 
IF (DABS(E2(L)) .LE.DABS(C/H)) GO TO 210 
E2(L) = H * E2(L) 
IF (E2(L) .NE. 0.0D0) GO TO 130 
210 P = D(L) + F 
!C ********** ORDER EIGENVALUES ********** 
IF (L .EQ. 1) GO TO 250 
!C ********** FOR I=L STEP -1 UNTIL 2 DO - ********* 
DO 230 II = 2, L 
I=L+2-II 
IF (P .GE. D(I-1)) GO TO 270 
D(I) = D(I-1) 
230 CONTINUE 
!C 
250 I = 1 
270 D(I) = P 
290 CONTINUE 
!C 
GO TO 1001 
!C ********** SET ERROR - NO CONVERGENCE TO AN 
!C EIGENVALUE AFTER 30 ITERATIONS ********** 
1000 IERR = L 
1001 RETURN 
!C ********** LAST CARD OF TQLRAT ********** 
END 
!C 
!C 
SUBROUTINE TQL2(NM ,N,D,E,Z ,IERR) 
IMPLICIT real*S(A-H ,O-Z) 
DIMENSION D(N) ,E(N) ,Z(NM ,N) 
REAL*8 MACHEP 
!C *********************************************** *************** 
!C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE 

TQL2 , 
!C NUM. MATH. 11, 293-306(1968) BY BOWDLER, MARTIN, REINSCH, AND 
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!C WILKINSON. 
!C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA , 227-240(1971). 
!C 
!C THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS 
!C OF A SYMMETRIC TRIDIAGONAL MATRIX BY THE QL l'v1ETHOD. 
!C THE EIGENVECTORS OF A FULL SYMfv1ETRIC I\IATRIX CAN ALSO 
!C BE FOUND IF TRED2 HAS BEEN USED TO REDUCE THIS 
!C FULL MATRIX TO TRIDIAGONAL FORM. 
!C 
!CON INPUT: 
!C 
!C NM MUST BE SET TO THE ROW DIMENSION OF T\:VO-DIMENSIONAL 
!C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM 
!C DIMENSION STATEMENT, 
!C 
!C N IS THE ORDER OF THE MATRIX , 
!C 
!C D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT IvIATRIX , 
!C 
!C E CONTAINS THE SUBDIAGONAL ELE!vIENTS OF THE INPUT MA-

TRIX 
!C IN ITS LAST N-1 POSITIONS. E(l) IS ARBITRARY 
!C 
!C Z CONTAINS THE TRANSFORMATION l\IATRIX PRODUCED IN THE 
!C REDUCTION BY TRED2 , IF PERFORMED. IF THE EIGENVECTORS 
!C OF THE TRIDIAGONAL MATRIX ARE DESIRED , Z MUST CONTAIN 
!C THE IDENTITY MATRIX. 
!C 
!CON OUTPUT: 
!C 
!C D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN 
!C ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT BUT 
!C UNORDERED FOR INDICES 1,2, ... ,IERR -1, 
!C 
!C E HAS BEEN DESTROYED , 
!C 
!CZ CONTAINS ORTHONORMAL EIGENVECTORS OF THE SYMMETRIC 
!C TRIDIAGONAL (OR FULL) MATRIX. IF AN ERROR EXIT IS MADE, 
!CZ CONTAINS THE EIGENVECTORS ASSOCIATED 1NITH THE STORED 
!C EIGENVALUES , 
!C 
! C IERR IS SET TO 
!C ZERO FOR NORMAL RETURN , 
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!CJ IF THE J-TH EIGENVALUE HAS NOT BEEN 
!C DETERMINED AFTER 30 ITERATIONS. 
!C 
!C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GAR-

BOW , 
!C APPLIED NIATHEMATICS DIVISION , ARGONNE NATIONAL LABORA-

TORY 
!C 
!C *************************************************************** 
!C ********** MACHEP IS A MACHINE DEPENDENT PARAivIETER SPEC-

IFYING 
!C THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC . 
MACHEP = 2.D0**(-26) 
!C 
IERR = 0 
IF (N .EQ. 1) GO TO 1001 
!C 
DO I = 2, N 
E(I-1) = E(I) 
enddo 
!C 
F = 0.0D0 
B = 0.0D0 
E(N) = 0.0D0 
!C 
DO 240 L = 1, N 
J=0 
H = MACHEP * (DABS(D(L)) + DABS(E(L))) 
IF (B .LT. H) B = H 
!C ********** LOOK FOR SMALL SUB-DIAGONAL ELEMENT ********** 
DO 110 M = L, N 
IF (DABS(E(M)) .LE. B) GO TO 120 
!C ********** E(N) IS ALWAYS ZERO , SO THERE IS NO EXIT 
!C THROUGH THE BOTTOM OF THE LOOP ********** 
110 CONTINUE 
120 IF (M .EQ. L) GO TO 220 
130 IF (J .EQ. 30) GO TO 1000 
J=J+l 
!C ********** FORM SHIFT ********** 
11 = L + 1 
G = D(L) 
P = (D(Ll) - G) / (2.0D0 * E(L)) 
R = DSQRT(P*P+ l.0D0) 



D(L) = E(L) / (P + DSIGN(R,P)) 
H = G - D(L) 
DO I= Ll, N 
D(I) = D(I) - H 
enddo 
!C 
F=F+H 
lC ********** QL TRANSFORMATION ********** 
P = D(M) 
C = 1.0D0 
S = 0.0D0 
MML = M-L 
!C ********** FOR I=M-1 STEP -1 UNTIL L DO - ********** 
DO 200 II = 1, MML 
I=M-II 
G = C * E(I) 
H = C * P 
IF (DABS(P) .LT. DABS(E(I))) GO TO 150 
C = E(I) / P 
R = DSQRT(C*C+l.0D0) 
E(I+l) = S * P * R 
S=C / R 
C = 1.0D0 / R 
GO TO 160 
150 C = P / E(I) 
R = DSQRT(C*C+l.0D0) 
E(I+l) = S * E(I) * R 
S = 1.0D0 / R 
C = C * S 
160 P = C * D(I) - S * G 
D(I+l) = H + S * (C * G + S * D(I)) 
!C ********** FORtvI VECTOR********** 
DO 180 K = 1, N 
H = Z(K ,I+l) 
Z(K,I+l) = S * Z(K,I) + C * H 
Z(K,I) = C * Z(K,I) - S * H 
180 CONTINUE 
200 CONTINUE 
E(L) = S * P 
D(L) = C * P 
IF (DABS(E(L)) .GT. B) GO TO 130 
220 D(L) = D(L) + F 
240 CONTINUE 
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!C ********** ORDER EIGENVALUES AND EIGENVECTORS ********** 
DO 300 II = 2, N 
I=II-1 
K = I 
P = D(I) 
!C 
DO 260 J = II , N 
IF (D(J) .GE. P) GO TO 260 
K=J 
P = D(J) 
260 CONTINUE 
!C 
IF (K .EQ. I) GO TO 300 
D(K) = D(I) 
D(I) = P 
DO 280 J = 1, N 
P = Z(J ,I) 
Z(J,I) = Z(J ,K) 
Z(J ,K) = P 
280 CONTINUE 
300 CONTINUE 
GO TO 1001 
!C ********** SET ERROR - NO CONVERGENCE TO AN 
!C EIGENVALUE AFTER 30 ITERATIONS ********** 
1000 IERR = L 
1001 RETURN 
!C ********** LAST CARD OF TQL2 ********** 
END 
SUBROUTINE splint(xa,ya,y2a,n,x,y) 
INTEGER n 
REAL*8 x,y,xa(n) ,y2a(n) ,ya(n) 
INTEGER k,khi ,klo 
REAL a,b,h 
klo=l 
khi=n 
1 if (khi-klo. gt .1) then 
k=(khi+klo)/2 
if(xa(k) .gt.x)th en 
khi=k 
else 
klo=k 
endi f 
goto 1 



endif 
h=xa(khi)-xa(klo) 
if (h.eq.0.d0) then 
write(6, *) 'bad xa input in splint ' 
stop 
endif 
a=(xa(khi)-x) /h 
b=(x-xa(klo)) / h 
y=a*ya(klo )+b*ya(khi)+( ( a**3-a)*y2a(klo )+(b**3-b )*y2a(khi) )*(h**2) /6. 
return 
END 
SUBROUTINE spline( x,y,n,yp l ,ypn ,y2) 
INTEGER n,NMAX 
REAL*8 ypl,ypn,x(n),y(n),y2(n) 
PARAMETER (NMAX=500) 
INTEGER i,k 
REAL *8 p,qn,sig, un, u(NMAX) 
if(ypl.gt .. 99e30) then 
y2(1)=0.d0 
u(l)=0.d0 
else 
y2(1)=-0.5d0 
u(l) =(3. / (x(2)-x(l)) )* ( (y(2)-y(l)) / (x(2)-x( 1) )-ypl) 
end if 
do i=2 ,n-l 
sig=(x(i )-x(i-1)) / (x(i + 1 )-x(i-1)) 
p=sig*y2(i-l )+2.d0 
y2(i)=(sig-l.d0) /p 
u(i) =( 6.d0* ( (y(i+ 1 )-y(i)) / (x(i + 1 )-x(i) )-(y(i )-y(i-1)) / (x(i)- & 
x(i-1))) / (x(i+ 1 )-x(i-1) )-sig*u(i-1)) /p 
end do 
if(ypn.gt..99e30) then 
qn=0.d0 
un=0.d0 
else 
qn=0.5d0 
un=(3.d0 / (x(n)-x(n-1))) *(ypn-(y(n)-y(n-1)) / (x(n)-x(n-1))) 
endif 
y2(n)=(un-qn*u(n-l) )/ ( qn*y2(n-l)+ l.d0) 
do k=n-1,1 ,-1 
y2(k)=y2(k)*y2(k+ 1 )+u(k) 
enddo 
return 
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END 
SUBROUTINE SUB(x ,xa,ya,n,V) 
INTEGER n 
REAL*8 x,xa(n),ya(n),V,a,b,ypl ,ypn ,y2(n) 
!if (x.lt.2.d0) then 
! b= ( dlog(ya( 4) )-dlog(ya(5))) / (xa( 4)-xa(5)) 
! a=dexp(0.5d0*dlog(ya( 4) )+0.5d0*dlog(ya(5) )- & 
! 0.5d0*b*xa( 4)-0.5d0*b*xa(5)) 
! V=a*dexp(b*x) 
!elseif (x.gt.8.d0) then 
! b=( dlog(ya(n-5) )-dlog(ya(n-4))) / (xa(n-5)-xa(n-4)) 
! a=dexp(0.5d0*dlog(ya(n-5) )+0.5d0*dlog(ya(n-4) )- & 
! 0.5d0*b*xa(n-5)-0.5d0*b*xa(n-4)) 
! V=a*dexp(b*x) 
!else 
ypl=(ya(3)-ya(l)) / (xa(3)-xa(l)) 
ypn=(ya(n)-ya(n -3)) / (xa(n)-xa(n-3)) 
call spline(xa ,ya,n ,ypl ,ypn ,y2) 
call splint(xa ,ya,y2 ,n,x,V) 
!endif 
RETURN 
END 
SUBROUTINE morsepot(x ,V) 
REAL*8 x,V ,De,Re,a 
De=60.d0 
a= l.d0 
Re=3.d0 
V = De*(l-dexp( -a*(x-Re)) )**2 
RETURN 
END 
SUBROUTINE gauher(x ,w,n) 
INTEGER n ,MAXIT 
REAL*8 w(n),x(n) ,EPS ,PIM4 
PARAMETER (EPS = 3.D-14,PIM4 =.75 11255444649425D0,MAXIT=10) 
INTEGER i,its,j ,m 
real*S pl ,p2,p3,pp ,z,zl 
m=(n+l)/2 
do 13 i=l ,m 
if(i.eq. l )then 
z=s qrt(float(2*n + 1) )-1.85575*(2*n+ 1 )**(-.16667) 
else if(i.eq.2)then 
z=z -1.14*n** .426/z 
else if (i.eq.3)then 
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z=l.86*z-.86*x(l) 
else if (i.eq.4)then 
z=l.91 *z-.91 *x(2) 
else 
z=2. *z-x(i-2) 
endif 
do 12 its=l ,MAXIT 
pl=PIM4 
p2=0.d0 
do 11 j=l ,n 
p3=p2 
p2=pl 
pl=z*sqrt(2.d0 /j) *p2-sqrt( dble(j-1) / dble(j) )*p3 
11 continue 
pp=sqrt ( 2. d0*n) *p2 
zl=z 
z=z l-pl/pp 
if(abs(z-zl).le.EPS)goto 1 
12 continue 
pause 'too many iterations in gauher' 
1 x(i)=z 
x(n+ 1-i)=-z 
w(i)=2.d0/(pp*pp) 
w(n+ 1-i)=w(i) 
13 continue 
return 
END 
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