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ABSTRACT 

Extreme Value Distribution in Hydrology 

by 

Bill (Tzeng-Lwen) Chen, Master of Science 

Utah State University, 1980 

Major Professor: Dr. Ronald V. Canfield 

Department: Applied Statistics 

The problems encountered when empirical fit is used as the 

sole criterion for choosing a distribution to represent annual 

vi 

flood data are discussed. Some theoretical direction is needed for 

this.choice. Extreme value theory is established as a viable tool 

for analyzing annual flood data. Extreme value distributions have 

been used in previous analyses of flood data. How�ver, no systematic 

investigation of the theory has previously been applied. Properties 

of the extreme value distributions are examined. The most appropriate 

distribution for flood data has not previously been fit to such data. 

The fit of the chosen extreme value distribution compares favorably 

with that of the Pearson and log Pearson Type III distributions. 

(59 pages) 



CHAPTER I 

INTRODUCTION 

Significance of Flood-Frequency-Analysis 

With continuing development of flood plains and rural watersheds 

for urban use, flood control becomes increasingly important. Con­

struction of dams, water needed for irrigational purposes, keeping 

a river within its embankments, etc., all require estimation of 

flood frequency and severity. The design of structures related to 

water resources management and control is heavily dependent on the 

extreme hydrologic event. 

The central hydrologic information to flood control and flood­

plain management planning is the relationship between peak flow and 

return period. (Note that the flood is defined to be the maximum 

annual flow.) The relationship is established by selecting an 

appropriate distribution to represent the-population of peak flows 

from each year of record (the annual flood series) and estimating 

parameters for that distribution that best fit the recorded data. 

Selecting a distribution to describe floods has been essentially 

one of curve fitting. It is very necessary in the application of 

these distributions for design and management decisions to extra­

polated, i.e., to estimate return periods beyond the range of the 

data. Thus, the hydrologist is forced to make decisions in regions in 

which he has no data. 
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Brief History of Flood-Frequency-Analysis 

In the past, empirical fit has been the only criterion for 

choosing from among several candidates, the distribution to describe 

floods. It is sometimes suggested that no distribution is perfect; 

therefore, several may do an adequate job, and certainly the "best" 

fit will be close. This argument may be valid when the distributions 

are used to estimate probabilities or return periods of common events. 

However, when estimates are needed for extreme or rare events, a 

distribution selected on the basis of empirical fit can cause 

serious problems. The problem arises because the probabilities of 

rare events are computed from the tails of a distribution whereas 

empirical fit is dominated by the body of the data set. Complete 

reliance on empirical fit for choosing a distribution for homogeneous 

runoff is potentially dangerous because many distribution can provide 

a good empirical fit in the range of data set and yet have very 

different tail characteristics. It is the tail characteristic of 

the estimated distribution that is used in extrapolating return 

periods. Thus, in addition to empirical fit, the right hand tail 

of a distribution is an extremely important consideration. Since 

there is no data in this region, a theoretical motivation is 

needed. In the studies on rivers with homogeneous sources of runoff 

by Benson (1968), Beard (1974), Bobee and Robitaille (1977) and 

others; the characteristics of the right tail of the distributions 

examined were not even considered. 

Methods of flood-frequency-analysis, which started about 1914, 

have developed along divergent lines, with resulting nonuniformity 
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in methods of analysis and, hence, in results. This and the need 

for the upmost possible uniformity have induced the U.S. Water 

Resources Council to form the Work Group on Flow Frequency Methods 

with the object of developing an uniform technique to determine flood 

frequency. As was reported by Benson (1968) and his work-group, 

the main conclusions of the work-group is that after fitting several 

distributions to many different data sets representing a wide variety 

of condition choose log Pearson Type III distribution as a base method. 

It has been chosen from among several candidate distributions by first 

estimating the parameters of each distribution for each of the large 

number of gaged records. Then a goodness-of-fit criterion which 

emphasizes selected flood flows from 2 to 100 years (U.S. Water 

Resources Council 1976, Appendix 14) was used to select the best 

overall fit. Although selection of the log Pearson Type III is based 

upon fit in the right tail, estimation of parameters for each dis­

tribution is by standard methods which emphasized fit in the body of 

the data. In certain cases, the fit in the right tail is poor. Even 

if the fit is good, blind application of a distribution selected 

on the basis of empirical fit can lead to serious error. According 

to the report by B. B. Bobee and R. Robintaille in 1977 the main 

objective of their study has been the comparison between the Pearson 

Type III and the log Pearson Type III distributions. Different 

methods of fitting have been applied to a group of long-term records 

of annual flood peaks previously tested for independence and homo­

geneity. The conclusion has been that Pearson Type III distribution 



conforms generally better to annual flood data than the log 

Pearson Type III distribution. 

Objective of Study 

4 

One theoretical basis for selection of the distribution for annual 

floods is evaluated in this paper. The annual flood event is the 

maximum or extreme value of all the events occurring during the year; 

therefore, extreme value theory would seem to provide a reasonable 

theoretical base and is the one examined here. Although extreme 

value distributions have been used in hydrology, no systematic 

application of the theory is reported in the literature. The appli­

cation of extreme value theory for homogeneous runoff is suggested 

here as a possible solution which has never been tested. 

Data and Methods 

The data selected by B. B. Bobee and R. Robitaille is used here 

to estimate parameters of the extreme value distribution. The goodness­

of-fit statistics used by them is used in this study. These statis­

tics have the same basis as those used by the Work Group on Flow 

Frequency Methods (Benson, 1968). The statistics are essentially 

the average absolute deviation and the average guadratic deviation 

expressed as a percent between the predicted flow over selected 

recurrence intervals and the observed flow. By comparing the values 

computed from the same data set by Bobee and Robitaille for the 

d�stributions selected in his study, the usefulness of this distri­

butions can be established. 



CHAPTER II 

EXTREME VALUE APPLICATION - HOMOGENEOUS DATA 

The purpose of the research reported was to evaluate extreme 

value theory as a tool in identifying a distribution for annual 

floods. It should be understood that in all likelihood no single 

distribution is correct for all situations. For example, the 

systems with large carry-over storage or rivers which flow only 

intermittently may violate the assumptions of extreme value theory. 

In the first case, flood peaks become dependent on flows in the 

previous year; and in the second, having zero flows for all events 

is not really an extreme value situation. 
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However, if the theory is shown to apply in several cases, the 

hypotheses of the theory are sufficiently general to expect it to 

apply in a wide variety of cases. In this section a theoretical 

distribution is selected by matching physical characteristics of 

stream flow with the mathematical characteristics of the various 

extreme value forms. If the theory applies to stream flows, this 

distribution should provide good (but not necessarily best) fit over 

a wide variety of streams. This extreme value distribution is 

therefore fit to data for selected stations with long periods of 

record from around the world (Table 1) used in the study of Bobee 



Table l. Selected Stations Exhibiting Homogeneous Sources. 

Station River Location 
Drainage 

Record Missing Years 
Years of 

Country 2 Record 
Area, Km 

bB24 Senegal Mali Bakel 218,000 1903-1966 64 

hE60 USA Susquehanna Harrisburg, PA 62,400 1891-1967 1906, 1922, 1927 70 
1935, 1938, 1951 

IB06 India Krishna Vijayawada 251,355 1901-1960 60 

BF40 Czech. Elbe Decin 51,104 1851-1968 1857, 1863, 1866, 1873 108 
1874, 1879, 1884, 1898 

BE38 Germany Danube Hofkirchen 47,495 1901-1968 68 

BF19 Norway Gloma Langnes 40,170 1902-1968 1964 66 

CF25 USSR Neman Smalininkai 81,200 1812-1969 1944, 1945, 1946 155 

mE19 Canada Fraser Hope 203,000 1912-1970 59 

jE792 Canada Headingly Assinibione 162,000 1914-1970 57 

iFOO Canada Medicine Hat S.Saskatchewan 58,400 1913-1970 58 

KF62 Canada Saskatoon S.Saskatchewan 139,500 1912-1970 59 

KF53 Canada Prince Albert N.Saskatchewan 119,500 59 

hE88a Canada Amos Hurricana 3,680 1915-1969 1932, 1933 53 

jF50a Canada Slave Falls Winnipeg 126,000 1908-1970 1909, 1911-1912, 1917 50 

Power Plant 1922-1926, 1931, 1934 
1939-1942, 1949, 1958 
1961, 1962, 1964, 1965 
1967 



and Robitaille (1977). The same measure of goodness-of-fit is used 

in order to compare these results with those obtained from the 

distributions of their study. 

Extreme Value Distributions 

As a beginning point for this application, some basic elements 

of extreme value theory need to be reviewed. Extreme value random 

variables are defined as follows. Let x
1

, x
2

, x
3

, ..... , X
n 

be a 

sample of independent, identically distributed, continuous random 

variables. Let 

and 

Y
n 

= min(X
1

, x
2

, .... ,X
n

) .......... (2) 

extreme value theory is concerned with the asymptotic distribution 

of sequences (Z - b )/a and (Y - b ')/a ', n=l, 2, ...... , 00 

n n n n n n 

The norming values a , b ,  a ', b ' are dictated by the theory. 
n n n n 

The interesting result of the theory is that if an asymptotic dis-

tribution exists, there are only three types for z and three types 
n 

for Y . The mathematical characteristics for the random variables 
n 

7 

X. which determine the resulting distribution for Z and Y are given
1. n n 

by Gnedenko (1943). These results are difficult to use because the 

distribution function must be known. A less mathematical but more 

workable approach is suggested here. 

The term "flood" by nature suggests application of extreme 

value theory. Since the primary interest here is in the annual maximum 

flows, only the distribution of Z is considered. Under very general 
n 
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conditions, it has been shown by Gnedenko (1943) that the maximum

of a sufficiently long sequence of independent random variables Z
n 

from a given distribution must be closely approximated by one of the

following three types.

{ -exp[-( x-bFl (X) = exp ) l J -oo<x<oo I c>O ..... (3) 
C 

0 x<b

F
2

(X) -a ..... ( 4)

exp { -( 
x-b 

) } x�b, c>O, a>O
C 

1 x�b

F
3

(X) = ..... (5)

exp { -( b-x 
) 

a 
} x<b, c>O, a>O

C 

The assumption of independence of the x
1

, x
2

, .... , X
n 

random

variables is violated in many applications. However, Watson (1952)

has shown that independence is not a necessary assumption. If the

randomized sequence of X. 's satisfies the assumption for all n, the
l 

theory holds.

The advantage of the theory is that once an extreme value situa­

tion is recognized one can legitimately confine the search for best

fit to three extreme value distributions. The mathematical character-

istics of the three distributions are very different, thus it is

relatively easy to determine the correct one for a given set of data. A

graphical procedure is given below for use in identifying which of the

extreme value distributions should be used with a given set of data.



Determining Extreme Value Type 

The three distributions (3), (4), and (5) for the maximum have 

some easily observed characteristics. 

The function of F
1 

(X) has no bound on X, so it is not appro­

priate in flood analysis. 
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The form F
2

(X) is referred to as a ''Cauchy type" because the 

extreme values for the Cauchy distribution follow distfibution (4). 

Cauchy type distributions are "heavy tailed" and seldom occur in 

nature. Thus, distribution (4) has limited usefulness compared with 

the other two types. There is, however, reference to its use in 

Gumbel (1954). 
� 

� .. The function F3(X) is limited to some maximum value b (i.e.,

F3(X) = 1 for X� b), thus random variables which are limited have

extreme value form F
3(X). The converse of this statement is not

necessarily true, however, and variables which are not limited may 

have this form too (Gnedenko 1943). 

Three simple plots constitute the easiest method of determining 

which of the extreme value distribution is appropriate. Let X(l)
,

x(2) , .•.. , X(N) represent the ordered extreme value date for the

observed maximums. 

For any random variable, the expected value of its distribution 

function evaluated at the ith order statistic is i/(N+l) where the 

sample size is N, (i.e., E(F(X(i)) = i/(N+l)) (Lindgren 1976).

Define E. = i/(N+l). Note that from equation (3)
l 

ln (-ln F
1

(x(i))) = - X
(i)

/c + b/c ...•...•.. (6)
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Note that the relationship in (6) is linear in X
(i)

. Substituting 

E
i 

for F(X
(i)

) in (6) and plotting X
(i) 

vs. ln(-lnF(X
(i)

) identifies 

data from a population with distribution function F
1 

(X). If (3) is 

appropriate the plot will be a straight line as illustrated in Figure 

1. If the data are from any other distribution, the plot will not be

a straight line. 

The plot which identifies data from an F
2

(X) population is

similar. From (4) it follows that 

ln (-ln F 
2 

(X 
(i)

) = -a ln (X 
(i) 

-b) + a ln c ... (7)

Thus if data are from a population with distribution F
2

(X), the plot 

of ln(X
(i) 

-b) vs. ln (-ln E
i

) will be a straight line with negative 

slope as illustrated in Figure 2. The parameter b must be estimated 

before the plot can be made. Estimation of parameters is considered 

later. 

The third plot which identifies F
3

(X) is motivated from (5) in

the same manner, ln(-ln F
3

(x
(i) 

)) = a ln(b-X
(i)

) - a ln c, i.e., the 

plot of ln(b-X
(i)

) vs. ln(-ln E
i

) is a straight line with positive slope 

as illustrated in Figure 3. 

Prior to the observations of Ashkanasy and Weeks (1975), Potter 

(1958) noted the effect of mixture random variables in the statistical 

distribution of floods. He used the standard mixture distribution for 

the case of two components, i.e., 

where F. (X), i = 1, 2 are the distribution functions of the 1st and 
l 

2nd components respectively, p
i

� O, i = 1, 2 and p
1+p

2
= 1. Estimation 
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for mixtures is very difficult. Note that p
1 

and p
2 

must be estimated in 

addition to all of the parameters of both F
1 

(X) and F
2

(X). Additional 

work in this area has been done by Hawkins (1971), (1972) which documents 

some of the problems associated with mixed distributions. 

Without some theoretical guidance as to the choice of distri­

butions for F
1 

(X) and F
2

(X), it is an impossible task to select the best 

fitting forms. The mixture distributions contain so many parameters 

that they can fit almost any data set no matter what is used for F
1 

(X) 

and F
2

(X). If the important tail characteristics of the distributions 

were not different it would matter little what choice is made. Potter 

(1958) chose to use extreme value forms in his analysis of such data. 

This seems a good choice relative to the tail characteristics since 

the data is observed extremes. However, it should be noted at this 

point that although the random variables governing stream flow may be 

mixtures, it does not follow that the flood (extreme event) should 

also be a mixture. 

In fact, the classical extreme value theory suggests it should 

be one of the three forms given previously. However, it can be shown 

that for the case of mixtures, extremely large sample sizes are 

required for an adequate approximation of the distribution of the 

maximum of a sequence of mixtures. 

Work by Canfield and Borgman (1975) on the distribution of the 

extreme in a sequence of mixture random variables in the context of 

reliability theory has provided a much more adequate approximating 

distribution. The results have direct application to the problem 
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of choosing a distribution of maximum yearly river flow in hydrology. 

The results have merit because they provide a theoretical foundation which 

gives primary consideration to the shape of the right tails of the 

distributions involved. The form of the distribution of the extreme 

in a sequence of mixture random variables has been shown to be 

(Canfield and Borgman, 1975) 

F(x) 
P1 P2 

= <t>.(x) cf>.,(x) •••••••••• (9) 
]. ]. 

where the components <fl. (x) and <I>., (x) are extreme value forms (3), 
]. ]. 

(4), or (5). Note that the parameters p
1 

and p
2 

can be absorbed by 

reparameterization so that (9) can be written 

F(x) = <P. (x)<P. 
1 
(x) 

]. 1 
.......... (10) 

thereby reducing the number of parameters in the distribution. 

Since it is theoretically motivated, it seems that if extreme 

value theory applies to floods, a distribution of this form should 

have the correct tail characteristics. Note that the tail shape in 

(8) is a weighted average of the tails of F
1 

(X) and F
2

(X), whereas the 

shape of (10) is a produce of the tails of <I>. (x) and <fl., (x). Even if 
1 1 

extreme value distributions are used in (8), the tail shape is not 

necessarily correct. 

As discussed by Bobee and Robitaille (1977) physical limita-

tions of meteorological phenomena and basic characteristics which 

control river flow seems to indicate that flows are bounded above. 

Thus it seems that the most logical distribution for the statistical 
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description of flood peaks is F
3

(x). Figure 4 verifies this choice 

for the Kymijoki River in Finland. It is very evident from a glance 

that the data are linear in this case. In less obvious cases, standard 

analysis techniques can be used to test for the existence of higher order 

polynomial effects. 

In order to interpret the plot for F
3

(x) it is useful to examine 

the shape of this plot if the data were to originate from a Pearson 

or log Pearson Type III distribution. Relative to these distribu­

tions, if floods are bounded above the general shape of ln(b - X
(i)

) 

plotted against ln(-ln E.) is a curve, concave as viewed from the left. 
1 

If floods are bounded below, the plot will appear as a curve convex as 

viewed from the left. Note that for this plot an upper bound is estimated 

as if the distribution were F
3

(x) even though it is not.

It is interesting to note that in the work of Bobee and Robitaille 

(1977), both the Pearson Type III and log Pearson Type III distributions 

introduce an apparent inconsistency. In some cases an upper bound for 

annual floods is appropriate and in others a lower bound is used. The 

Pearson and log Pearson distributions are not even consistent for a 

given data set. In some cases the Pearson distribution calls for an 

upper bound while the log Pearson calls for a lower bound. It seems 

that if an upper bound is valid due to meteorological and geographical 

limitations, it would be valid for all systems. The switch in bounded­

ness is due to the inability of the Pearson and log Pearson Type III 

distribution to accommodate both positive and negative skewness for 

a given bound (upper or lower). 
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Estimation of Parameters 

Although the existence of a limiting flood is easily justified, 

it is difficult to determine from geographical considerations. It 

was found that percentile estimates were very insensitive to the 

actual choice of b as long as it is relatively large. Therefore, 

ordinary maximum likelihood estimates of all of the parameters were 

used. 

The distribution F
3

(x) is a transformed Weibull, i.e., if the

F
3 

(x) is transformed by y = -x the distribution of y is Weibull with 

the same parameters as F
3

(x} (b is negative). Therefore, a program 

available for maximum likelihood (ML) estimation of Weibull parameters 

(Harter and Moore 1965) was used. 

Some difficulties were experienced in applying ML methods. 

In general, the computer program was expensive to run and, in 

addition, required several passes to find acceptable scale factors and 

initial values. The resulting estimates were highly dependent on 

these values even when the convergence criterion for the computation 

was met. In some cases, a better fit was obtained using a less 

stringent convergence measure. These problems motivated additional 

research not directly connected with this project. 

Goodness-of-fit Comparisons 

The result of fitting F
3 

(x) to the same data used by Bobee and 

Robitaille (1977) (Table 1) to evaluate the Pearson and log Pearson 

Type III distributions is given in this section. Maximum likelihood 

estimation with the accompanying difficulties described previously 
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was used. The same goodness-of-fit statistics used by Bobee and 

Robitaille (1977) are used herein. Since classical tests of goodness­

of-fit (Chi-square and Kolmogorov-Smirnov) are not powerful enough 

to discriminate between distribution functions or parameter estima­

tion methods; Bobee and Robitaille used another procedure for purposes 

of comparison which has the same origin as the one used by the Work Group 

on Flow Frequency Methods (Benson, 1968). These statistics are essen­

tially the average absolute deviation and the average quadratic deviation 

expressed as a percent between the predicted flow over selected re­

currence intervals and the observed flow. The recurrence intervals or 

return periods are T = 2, 5, 10, 20, 50, 100 years (probability of being 

equaled or exceeded of 0.50, 0.20, 0.10, 0.05, 0.02, and 0.01). 

The predicted flood discharges (value estimated from the fitted 

distribution), Q(T), for these return periods are calculated using 

program FLOOD. (See Table 4.) 

The observed flood data values (the empirical for recurrence 

interval T), D(T) (Table 5), are obtained from the sample I, ranked 

in decreasing order, by using a formula of plotting position and by 

interpolating between the specified probability (or the selected 

recurrence interval). Linear interpolations are done graphically using 

normal probability paper. Three formulae of expected probabilities 

are used to obtain the data values given in Table 5: 



Hazen Pm 
rn-0.5 

.......... (11) = ---

Chegodayev Pm 
rn-0. 3 

.••••••••• (12) = 

N+0.4 

Weibull Pm 
m 

•.•. , •.•••. ( 13) 
N+l 

where m is the rank of the observation in the sample of size N, 

varying from l for the lowest flow to N for the highest. 

and Robitaille, 1977.) 

(Bobee 

For each data set the relative deviation in percent, q(T), is 

17 

computed between Q(T) and D(T) corresponding to each return period T. 

q(T) 
= Q(T) - D(T) 

D (T) 
* 100 ••• , ••••••• (14)

To evaluate the fit for the data set, the following quantities 

are computed: 

A = 

B = 

l 

L 

l 

L 

.......•... ( 15) 

where "A" represents the average of the absolute values of the 

relative deviations over the "L" selected recurrence intervals 

and "B" represents the quadratic deviation averaged over the "L" 

selected recurrence intervals. The goodness-of-fit values for 

the log Pearson Type III distribution and for the distribution and 

N 

- E 2 T q (T) 
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method of fitting judged best by Bobee and Robitaille (1977) 

(Pearson Type III) are also tabulated in Table 2 and 3 for comparative 

purposes. 

A Graphical Technique 

It is impossible to interpret the information on Table 2 and 

3 without viewing plots of these data sets. The plots are shown 

in Figures 5-18. 

Given N years of maximum yearly river flows, the observations 

are ordered low to high, producing the order statistics X(i)
, i = 1, 

2, .... N. This is done using the subroutine ORDER of program PLOT. 

Let 

Then 

From a previous discussion we know 

i 
N+l 

•••••••••• (16) 

.......... (17) 

Y
i

= ln(-ln(E[F(X(i))])

i 
= ln(-ln(N+l)) ........ (18)

= ln(-ln(exp[ -( 
b-X . a _ __,(

'-

l ) ) ] ) ) 
C 

zi = ln(b-x(i)) 



This implies that 

Y. 
l 

= a ln(b-X
(i)

) - a ln(c) 

= az. - a ln(c) 
l 

i 
== ln ( -ln ( 

N+ 1 ) ) 

= az. - a ln(c) 
l 

.....•..... (19) 

19 

Therefore, Y. is a linear function of z. where "a" is the slope 
l l 

and "-a ln(c)" is the intercept. Hence, by plotting Z. against Y. 
l l 

on a graph, the largest maximum yearly floods should form a straight 

line whose slope approximates "a'' with an intercept of approximately 

"-a ln(c)". 

The Z. and Y. of equation (19) are plotted for each of the 
l l 

fourteen stations in this study (see Figures 5-18) using the command 

PLOT from the MINITAB II Reference Manual (1978). The Z. are along 
l 

the Cl axis while the Y. are along the C2 axis in each plot. 
l 

As can be observed from the figures, the data for Mali River 

(Figure 5) manifest almost a straight line indicating a highly linear 

relationship. Therefore the extreme value distribution should provide 

the best fit compared with the Pearson Type III and log Pearson Type 

III distributions. This is evidenced by the deviations tabulated in 

Table 2 and 3. Date from Gloma River (Figure 10) also show a linear 

relationship, and the goodness-of-fit also demonstrates the F
3 

(X) 

to be the best one. 
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The linear relationship between ln(b-X) and ln(-ln(E.)) is 
l 

also found for the Amos River (Figure 17). A good fit was shown for 

this case though not all the deviations from extreme value distribu­

tion are smaller than that from the Pearson Type III and log Pearson 

Type III distribution, it is apparent that data of the above mentioned 

rivers are homogeneous. 

For the plots of Danube River (Figure 9) and Fraser River (Figure 

12), relationships of roughly linearity are observed. However, for both 

plots, there is a data point far apart from the others, located at the 

lower left corner of the graph. This may be an indication of non-

homogeneous sources. Since there is only one observation, it is unmature 

to advance a more conclusive argument. The deviations of the two rivers, 

nonetheless are not too much far off comparing to the deviations from 

the Pearson Type III and log Pearson Type III distributions. But, 

according to the plots, the data do not show a curved relationship and 

therefore Pearson Type III distribution cannot be the correct distri­

bution. In other words, the data seem to be nonhomogeneous and none 

of the distribution (F
3 

(X), Pearson Type III, log Pearson Type III) 

are appropriate. 

The rest of the rivers are found to have a poor fit by the 

extreme value distribution. The plot for Susquehanna River (Figure 6) 

reveals a pattern of two straight lines with the breaking point 

approximately at the position (10.25, -3.0). The plot for Krishna 

River (Figure 7) manifests a "S" shape. This may be a result of at 

least three sources affecting the data. The graph for Elbe River 
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(Figure 8) shows (though not quite apparent) two straight lines. 

For the Neman River (Figure 11) and Slave Falls River (Figure 18), both 

the graphs show a slightly "S" shape while the plot of Headingly River 

(Figure 13) shows a rather clear "S" shape. Finally the plot of Prince 

Albert River (Figure 16) shows a clear curvilinear relationship and the 

plots of Medicine Hat River (Figure 14) and Saskatoon River (Figure 15) 

indicate relationships with several breaking points. For the last 

three rivers, the deviations from extreme value distribution are much 

larger than that from the two alternative distributions. For all the 

rivers discussed in this paragraph, it is clear that the data are from 

nonhomogeneous sources. Moreover, although Pearson Type III and log 

Pearson Type III distributions provide deviations of relatively small 

magnitude comparing to F
3

(X) to these rivers, it does not imply that 

the distributions are appropriate. In other words, none of the 

distributions considered adequately describe the data. Analysis and 

estimation for nonhomogeneous sources have been considered by Olson 

(1979). 

These plots underscore their importance in fitting data. Whenever 

several distributions are fit to a given data, one will always have 

a "best" fit. However, none of these tried may be appropriate. The 

plots very easily point this out. 



Table 2. Mean of the Absolute Relative Deviations. 

Station Pearson TY£e III

H
a 

c
a 

bB24 1.4 1. 7

hE60 3.6 4.0

!806 3.4 2.9

BF40 3.6 4.2

BE38 3.1 2.9

BF19 3.5 4.0

CF25 2.8 2.9

mE19 2.7 2.2

jE792 7.6 5.8

iF00 2.9 4.1

KF62 4.8 4.5

KF53 6.6 4.6

hE88a 1.4 1.8

jF50a 4.4 3.6

a
H = Ha zen Formula 

C = Chegodayev Formula 

W = Weibull Formula 

log Pearson Type III

w
a 

H C w 

2.1 1.8 1.7 2.1 

4.9 3.7 3.5 4.3 

3.4 3.3 3.8 4.7 

4.2 3.8 4.7 4.8 

2.4 2.5 2.4 2.4 

4.0 3.5 4.1 4.1 

3.3 3.3 3.3 3.6 

3.4 2.5 2.1 3.3 

6.1 6.2 5.1 4.8 

5.9 4.2 5.9 7.7 

4.5 4.8 5.8 5.8 

6.8 6.6 4.8 8.5 

2.8 1. 7 2.5 3.5 

4.4 3.8 3.4 4.2 

F
3

(x) 

H C 

1. 6 1.4 

7.5 5.4 

7.4 7.4 

7.7 7.8 

2.7 2.1 

3.4 3.9 

7. 4 6.1 

3.4 2.8 

6.4 6.3 

15.8 17.1 

10.4 11.3 

13. 7 11. 2

1.8 2.3

4.2 4.4

w 

1. 6

5.4

8.3

8.4

3.9

4.0

6.5

3.8

6.8

15.5 

11. 3

14.5

2.5 

5.4 

N 

N 



Table 3. Mean of the Quadratic Deviations. 

Pearson Type III log Pearson Type III F
3

(x) 
Station 

H
a 

c
a 

w
a 

H C w H C w 

bB24 2.9 4.1 9.4 4.3 5.1 11. 2 5.0 3.4 4.6 
hE60 13.4 17.6 32.3 18.9 20.8 41. 3 101.0 56.9 56.9 
IB06 20.4 21. 2 28.2 24.0 32.1 43.6 87.7 95.8 121.1 
BF40 18.0 21. 9 23.7 21. 9 27.7 30.9 75.7 80.1 91.4 
BE38 16.2 10.2 7. 0 11. 0 7.1 8.7 9.6 8.1 20.9 
BF19 14.5 17.7 19.7 15.7 19.6 22.2 14.0 17.2 19.3 
CF25 14.2 15.2 16.0 17. 6 18.4 20.1 95.1 72.45 77.2 
mE19 10.7 6.6 20.7 10.6 5.8 22.7 14. 2 10.7 19.8 
jE792 81.4 47.8 4 9. 5 47.6 33.1 33.7 59.4 63.6 72. 9
iFOO 11.4 19.2 40.9 29.2 45.1 72.8 297.0 351.0 228.9 
KF62 23.9 20.7 21. 7 26.0 34.5 35.8 122.7 157.2 163.6 
KF53 81. 3 41. 3 82.0 55.6 26.8 122.8 312.0 192.4 380.4 
hE88a 2.6 4. 5 11. 5 4.4 7.6 16.5 4.2 6.9 8.2 
jF50a 31. 7 13 .8 21. 7 21. 7 13.3 22.2 22.7 24.1 37.1 

--

a
H = Ha zen Formula 

C = Chegodayev Formula 

W = Weibull Formula 



Table 4. Computed Flood Discharges (m
3

/s) for Selected Return Periods. 

Station 
T, year 

2 5 10 20 

bB24 4655.23635066 6272.89996590 7247.95542250 8117.35581700 

hE60 8027. 23079960 10363.71015940 11821.54383950 13156. 76624720 

IB06 13990. 32594110 17615.19406840 19854.97081710 21890.88496210 

BF40 1802.21725839 2502.53573263 2931. 4368 5430 3318.62328482 

BE38 1745.40536416 2233.58595037 2534. 79673630 2808. 28677428 

BF19 2034.96169358 2486.24995434 2762. 55134177 3011. 92067710 

CF25 2510.38990915 3439.16060698 4010.87103999 4529.01771528 

mE19 8638.36425050 10231. 50331440 11221.44454570 12125.22535810 

jE792 261.12998649 390. 79758282 466.94913456 533. 49377880

iFOO 1157. 47069317 1744.43547696 2105. 72248554 2433.14438486 

KF62 1383.69398129 1980.61646688 2345.32852489 2673.96335685 

KF53 1241.82383925 1765.84557378 2096.54420352 2402.11957186 

hE88a 183.52505580 228.39903791 255.81949763 380. 52965035

jF50a 1448.55935091 1931.61701706 . 2220.09326349 2475.46596313 

50 

9154.20721560 

14797.73328050 

24371. 84126000 

3786.82135218 

3141.14507955 

3313. 38592850 

5158.35140159 

13231. 97626070 

611. 08609254

2830.80467355 

3070.54083848 

2781. 40712678 

310.35129306 

2777. 58237005 

100 

9870.63355980 

15965.91768930 

26123.19515320 

4114.81009459 

3375.82534808 

3524.51698148 

5601.15915400 

14017.05808160 

663.50999960 

3110. 58867341 

3347.78891778 

3054.08241218 

331. 20164 779

2984.66871659 

N 

.p. 



Table 5. Data Values D(T) (m
3

/s) as Interpolated Between Adjacent Observations 

Station T=2 

bB24 4650 

Hazen Chegodayev 
T=5 T=l0 T=20 T=50 T=l00 T=2 T=5 T= l0 T=20 T=50 T=2 

6378 7190 7757 9145 9655 4650 6391 7208 7847 9265 4650 

Weibull 
T=5 T= l0 T=20 T=50 

6410 7235 8004 9538 
hE60 7730 10715 11790 13705 17530 19460 7730 10720,11790 13750 17920 7734 10724 11798 13817 18870 

IB06 13555 17520 20379 26307 27410 29094 13555 17557 20559 26492 27841 13555 17614 20845 26809 28796 
BF40 1630 2596 2964 3771 4215 4522 1630 2600 2970 3772 4271 1630 2605 2986 3775 4374 
BE38 1780 2267 2660 2819 3045 3531 1780 2271 2689 2837 3149 1780 2278 2698 2867 3395 
BF19 2119 2368 2700 3170 3437 3502 2119 2370 2722 3180 3451 2119 2373 2751 3197 3485 
CF25 2500 3400 4200 4873 6200 6568 2500 3400 4215 4892 6200 2500 3400 4238 4954 6200 
mE19 8580 9960 10800 11460 12900 14700 858 0 9960 10800 11510 13400 8580 9970 10800 11600 14300 
jE792 248 392 540 581 598 611 248 397 545 586 602 248 404 550 592 609 
iF00 987 1839 2333 2891 3764 4003 987 1840 2367 2962 3828 987 1847 2413 3082 3967 
KF62 1260 1932 2669 3140 3447 3810 1260 1947 2681 3140 3726 1260 1970 2700 3140 3750 
KF53 1180 1634 2129 2855 3286 4767 1180 1636 2141 2883 3673 1180 1640 2160 2930 4523 
hE88a 179 230 262 279 321 335 179 230 262 284 325 179 230 262 291 334 
jF50a 1390 2004 2397 2559 2788 2807* 1390 2010 2400 2621 2795 1390 2019 2405 2733 2808* 

*Obtained by extrapolation.

N 

u, 



-

-

w 
-

C 

C: 

1.5+ 

-0.0+

-1.5+

-3.0+

- *

'74.5+ 

* 

* 

2* 

* **

** 

* ..

* 

5 

* 3*

3 * 

4** 

*6

*33

232 

32* 

* 

2 

+---------+---------+---------+---------+---------+Cl 

9.20 9.50 9.80 

9.35 9.55 9.95 

ln(b-x) 

Figure 5. Station bB24--Mali River. 

26 



-

-

w 
-

C: 

...... 

C: 

1.5+ 

-0.0+

-1.5+

2 

-3.0+

* 

- *

-4.5+

25 
33 

22 

-ll-4+ 
44 

¼7 
7 

* 

*2 

4 

� ------+---------+---------+---------+---------+C1 
S.9::, 10.25 10.55 

10. 10 10.40 

ln(b-x) 
10.70 

Figure 6. Station HE60--Susquehanna River. 

27 

._ 
* -f 

* 



28 

1.5+ * 

** 

4 

5 

*6

-0.0+ 32* 

52 

6 

-

*3*

-1.5+ *2

c:: ** 
* * 

* * 

* 

-3.0+ * 

* 

- *

-4.5+
+---------+---------+---------+---------+---------+Cl 

10.30 10.45 10.60 10.75 10.90 11. 05 

ln(b-x) 

Figure 7. Station IB06--Krishna River. 



2.5+ 

1.0+ 

-

--=--- -0 . 5 +

w 
-

C: 

-

C -2. O+

-3.5+

-5.0+

* 

* 

* 

-I * 

*63 

322 

232 

2*2 

3* 

* -I 

* * *

+ 

372 

65 

542 

23 * 

9 

* 

3 

+---------+---------+---------+---------+---------+Cl 

8.45 8.75 9.05 

s. 60 I n ( b _ x) s. so s. 20

Figure 8. Station BF40--Elbe River. 

29 



-

-

w 
-

C 

C 

1.5+ 

-0.0+

-1.S+

-3.0+

-4.S+

* 

* 

** 

*** 

3 

*42

25 

4* 

3** 

6 
*42

35 

* 

** 

23 

+ ------��---------�---------+--------- ---------+Cl

8.25 8.55 8.85 

8.40 8.70 

ln(b-x) 
S.00 

Figure 9. Station BE38--Danube River. 

30 

2-t 



1.5+ 

-0.0+

�-1.5+ 
w 
-

C: 

-

c: -3.0+ 

* 

-4.5+

* 

* 

* 

* 

*** 
* * 

223 
42 

5* 
*3
4 

** 
3** 

*3*
232 

332 

* 

+---------+---------+---------+---------+---------+Cl 

8.15 8.43 8.71 
8.29 8.57 

ln(b-x) 
8.85 

Figure 10. Station BF19--Gloma River. 

31 

-

* 



-

-

w 
--

C 

C 

2.0+ 

0.5+ 

-1.0+

-2.5+

-4.0+

-5.5+

* 

* 

* 

* 

* * 

·f2

34 

65 

4+* 

89 

+7
+5¾

49¼ 

93 

*63

*25

**4 

2** 

2 2 

*** 

* 

+---------+---------+---------+---------+---------+C1 

8.80 9.10 9.40 

8.95 ln(b-x) 9.25 9.55 

Figure 11. Station CF25--Neman River. 

32 

-



-

-

-

C: 

-

1.5+ * 

2 

*2 .. 

4• 

5* 
-0.0+ *6

*5

33 
5 

-1.5+ *2

2• 

* 

** 

* 

-3.0+ * 

* 

-4.5+
+---------•---------·---------+---------+---------+Cl 

9.50 

9.74 
9.88 

ln(b-x) 

10. 16 
10.02 10.30 

Figure 12. Station ME19--Fraser River. 

33 



1.5+ 

-0.0+

-

-

w -1.5+ 
-

C 

-

C 

-3.0+

-4.5+

* 

* 

* 

* 

* * 

3 

* **

*23
22 2 

*4*
*23

* 

** 

* 2

+---------+---------�---------+---------+---------+Cl
6. 40 6. 70 7. 00

6.55 S.85

ln(b-x) 

Figure 13. Station JE792--Headingly River. 

7. 15

34 



1.5+ 

-0.0+

-

-

� -1.5+ 
c:: 

C 

-3.0+

-4.5+

3 

* * 

* 

* 

* 

2 
2*+ 

32 
24 

5¼ 

25 
5 

+++2 

+ . -----+---------+---------+---------+---------+Cl 

8.30 8.50 8.90 
8.45 8.75 

ln(b-x) 

Figure 14. Station IFOO--Medicine Hat River. 

9.05 

35 



-

-

w 
-

C 

I 
-

C 

1.5+ 

-0.0+

-1.S+

-3.0+

* 
-4.5+

* 

* 

* 

* * 

*** 

* 

* ** 

2 
* 3

32 
*32

*6
*5

S* 

*3*
3 * 

.. 

+---------+---------+---------+---------+---------+Cl 

8.25 8.55 8.85 
8.40 8.70 9.00 

ln(b-x) 

Figure 15. Station KF62--Saskatoon River. 
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CHAPTER III 

CONCLUSION 

There is extensive literature describing distribution function 

which provide the "best'' fit for the random variable "maximum yearly 

river flow" to rivers which exhibit a single homogeneous source of 

runoff. But in estimating n-year return periods, it is often necessary 

to extrapolate. Some theoretical guideline should be used when 

working beyond the range of the data to ensure the proper right tail 

characteristics of the estimated distribution function. In this 

research, extreme value theory has been applied to the estimation of 

the flood frequency. 

The following steps are offered as guidelines for flood frequency 

analysis based on extreme value theory as presented in this research. 

1. Select a value b in the order of two or three times the

magnitude of the largest flood of record and plot the date in the form 

of Figure 3. 

2. If the plot in Step One is linear, estimate parameters a,

b, and c (Equation 5) and apply the results for estimating flood 

frequency. 

3. If the plot in Step One is curved, some other distributions

are probably more applicable: and alternatives should be considered. 
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4. If the plot in Step One is two straight lines, it means the

data value are from nonhomogeneous sources (more than one source). 

Finally, two major points can be concluded from the results 

of the study. First, all of the data sets in this study do not 

belong to Pearson Type III or log Pearson Type III distribution. 

Even though these two distributions provide deviations of smaller 

magnitude, it does not,imply that they appropriate for the data. 

This observation is easily confirmed by plotting the data. Straight 

line plots as described in Chapter II indicate our extreme value form 

with homogeneous sources. A broken line plot indicates an extreme 

value form with nonhomogeneous sources. Plots other than those 

considered could be Pearson Type III or log Pearson Type III dis­

tributions if they are either concave or convex but not "S" shaped. 

Very few of the data sets observed could possibly be from a Pearson 

Type III or log Pearson Type III distribution. Secondly, a three 

parameter extreme value distribution is preferable to the two 

alternative distributions, i.e., Pearson Type III and log Pearson 

Type III, if the data are homogeneous. For the nonhomogeneous data, 

the three-parameters model is not so useful. However, a study (Olson, 

1979) indicates that an extreme value distribution for nonhomogeneous 

sources provided excellent food-of-fit for this type of data. 



CHAPTER IV 

FUTURE STUDIES 

Some difficulties were experienced in applying Maximum­

Likelihood methods. In general, the computer program was expen-

42 

sive to run and, in addition, required several passes to find 

acceptable scale factors and initial values. The resulting estimates 

were highly dependent on these values even when the convergence 

criterion for the computation was met. In some cases, a better 

fit was obtained using a less stringent convergence measure. These 

problems motivated additional research which will result in a 

computationally more efficient method of estimation developed for 

all extreme value distributions. This method of estimation should 

not depend upon sensitive convergence criteria. 
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Appendix A 

Data Used in Analysis 

STATION COUNTRY R!l.lER LOCATION 

bBZ4 SENEGAL SENEGAL BAKEL 
------------------------------------------------------------

1040 1740 1880 2290 2750 2850 2850 2890 

31 "'
."tV 3290 3320 3400 3480 3550 3560 3560 

3600 3600 3600 3760 3770 3840 3840 4180 

4200 4200 4300 4350 4400 4460 4620 4620 

4680 4790 4850 4970 5070 5260 5330 5330 

5430 5450 5450 5450 5450 5450 5590 5590 

5520 6030 6310 6410 6430 6570 6640 7000 

7030 7180 7300 7600 7630 8170 9070 9940 

STATION COUNTRY RI 1.JER LOCATION 
hE60 U.S.A SUSGUEHANNA HARRIABURA, PA. 

--------------------------------,-------------------------

3250 4330 4390 5010 5012 5040 5100 5150 

5250 6000 6060 6116 6230 6460 5500 6513 

6540 13650 6850 6853 6910 6540 5990 7050 
7050 7051 7079 7140 7150 7390 7500 7500 
7620 7646 7G5Ci 7820 7870 7957 8i00 8160 

8210 8330 8410 8410 8440 8670 8720 8920 
9160 9170 9170 9175 9400 9571 10100 10700 

10730 10817 11100 11400 11600 11700 11780 11800 

12000 12700 13705 14000 17400 21000 

STATION COUNTRY Rit.1ER LOCATION 

mos INDIA KRISHNA VIJAYA:.iADA 

-------------------------------------------------------------

7190 9058 9915 10017 10204 10212 10360 10458 

10478 10495 10613 10793 10813 10878 10882 10916 

11105 11122 11374 11500 12091 12399 12560 12912 

12979 13059 13113 13260 13465 13528 13582 13586 

14033 14132 14220 14242 14503 14520 15396 15514 

15647 15816 15872 15009 16380 16524 16782 17372 

17680 17908 17970 18511 18888 19879 20970 23501 

25902 26873 27073 29768 



STATION COUNTRY RIVER LOCATION 

BF40 CZECHOSLm'AK I A ELBE DECIN 

------------------------------------------------------------

543 587 595 610 726 1038 1046 1058 

1112 1117 1138 1138 1149 1160 1166 1172 

1175 1181 1181 1198 1205 1207 1234 1246 

1265 1265 1269 1270 1282 1293 1300 1312 

1317 1350 1354 1350 1372 1396 1429 1454 

1462 1474 1492 1498 1522 1527 1546 1561 

1555 1565 1575 1601 1610 1518 1643 1702 

1717 1742 1768 1845 1848 1853 1874 1915 

1930 1930 1940 2038 2040 2040 2083 2109 

2124 2146 2158 2250 2284 Z301 2373 2379 

2385 2400 2410 2515 2540 Z565 2500 2526 

2643 2666 2725 2815 2850 2876 2937 2937 

2940 2975 3100 3172 3343 3600 3770 3779 

4058 4143 4450 4822 

STATION COUNTRY RIVER LOCATION 

8E38 GERMANY DANUBE HOFKIRCHEN 
---------------------------------------------------------

947 956 1090 1090 1100 1120 1230 1230 

1250 1250 1260 1260 1310 i310 1320 1320 

1340 1350 1380 1400 1440 1450 !450 1460 

1460 1480 1540 !580 1600 1640 !550 1720 

1730 1760 1800 1810 1810 1850 1550 1880 

1890 1900 1920 1930 1980 2020 2030 2040 

2050 2070 2150 2170 2180 2240 2270 2310 

2390 2400 2450 2540 2500 2690 2780 2780 

2810 2930 3000 3880 

STATION COUNTRY RIVER LOCATION 

BF!9 NORwAY GLOMA LANGNES 
---------------------------------------------------------

1157 1267 1351 1358 1413 1504 1504 1518 

1533 1557 1568 1580 1643 1650 1675 1707 

1734 1738 1770 1783 1817 1822 1839 1872 

1878 1910 1916 1953 2031 2050 2050 2100 

2106 2133 2168 2172 2180 2195 2232 2240 

2255 2256 2258 2260 2288 2299 2302 2311 

2312 2321 2346 2359 ,,,,,...'1 �..Jb� 2380 2385 2390 

2515 2582 2585 2715 2850 2877 3160 3224 

3429 3543 



STATION COUNTRY RHJER LOCATION 

CF25 USSR NEMAN SMALIN1NKAI 
-----------------------------------------------------------

810 870 980 1050 1100 1150 1150 1200 

1240 1250 1300 1350 1400 1400 1400 1400 

1450 1500 1550 1550 1600 1600 1600 1650 

1650 1700 1700 1700 1700 1700 1750 1750 

1750 1800 1800 1800 1800 1850 1850 1900 

1900 !950 1950 1950 1950 1950 2000 2000 

2000 2000 2100 2100 2100 2100 2100 2100 

2100 2100 2100 2100 2100 2200 2200 2200 

2300 2300 2300 2300 2300 2300 2300 2300 

2400 2400 2400 2400 2400 2500 2500 2500 

2500 2500 2600 2600 2500 2500 2600 2600 

2700 2700 2700 2700 2700 2700 2700 2700 

2700 2800 2800 2800 2800 2900 2900 2900 

3000 3000 3000 3000 3000 3000 3000 3.)00 

3100 3100 3!00 3100 3200 3200 3200 3200 

3200 3200 3300 3400 3400 3400 3400 3400 

3500 3500 3500 3600 3500 3700 3700 3800 

3S00 3900 4100 4200 4300 4300 4300 4500 

4600 4700 4800 4900 5200 5500 5800 6200 

6200 6600 6800 

STATION COUNTRY RIVER LOCATION 
:nE19 CA:"lADA FRASER HOPE 
---------------------------------------------------------

5130 5810 6000 6050 5830 7080 7220 7220 
7420 7480 7550 7520 7700 7820 7820 7820 
7840 7900 8040 8040 8040 8150 8210 8330 
8470 8500 8500 8520 8550 8580 8670 8670 
8720 8840 8980 9010 9060 9250 9290 9350 
9520 9540 9690 9590 9770 9770 9910 9970 

10300 10300 10500 10600 10800 10800 11100 11300 
11500 12500 15200 

STATION COUNTRY RII.JER LOCATION 
JE792 CANADA ASSINIBOINE HEADINGLEY 

-- ---------------------------------------------------

48 54 61 62 65 92 114 116 
117 129 1-q .J� 146 146 153 174 185 
191 202 204 205 '?1 '"' 

.:...0 216 217 27? 
"'?A 230 ?'1'? 

235 248 264 269 275 L-� _...,...; 

275 281 286 289 292 300 305 317 
320 340 345 350 382 388 430 473 
473 481 518 547 554 566 5q7 595 
615 



STATION COUNTRY RIVER LOCATION 

iFOO CANADA s. SASKATCHEWAN MrnICINE HAT 

---------------------------------------------------------

230 317 379 391 524 572 575 581 

649 683 683 688 7"" 725 731 733 

821 824 827 889 912 940 540 952 

957 960 Cl�") 
...,b..., 974 983 991 991 1030 

1040 1040 1070 1090 1090 1090 1130 1290 

1370 1520 1550 1630 1690 1830 1840 1880 

2080 2090 2170 2200 2400 2550 2710 3060 

3710 4080 

STATION COUNTRY RIVER LOCATION 

KF62 CANADA s. SASKATCHEWAN SASKATOON 

----------------------------------------------------------

399 541 583 583 595 532 793 816 

852 855 855 861 901 926 980 994 

1050 1070 1070 1080 1110 1120 1140 1150 

1170 1180 1190 1210 1250 1250 1270 1280 

1370 1370 1420 1420 1420 1420 1530 1540 

1540 1570 1630 !750 1780 1820 1E50 1970 

2180 2330 2420 2490 2530 2700 3060 3140 

3140 3370 3940 

STATION CC'..!NTRY RIVER, LOCATION 

ttF53 CANADA N. SASKATCHEWAN PR!NCE ALBERT 

---------------------------------------------------------

4i37 527 589 620 623 683 685 755 

759 762 765 770 790 756 799 875 

q�--Lb 940 952 954 991 1010 1010 1050 

1070 1110 1120 1130 1140 1180 1190 1200 

1230 1250 1250 1270 1280 1340 1350 1510 

1540 1560 1570 1570 1570 1620 1620 1640 

1550 1790 !800 1980 2090 2150 2460 2790 

2930 2970 5300 



STATION COUNTRY RIVER LOCATION 

hE88a CANADA HURRICANA AMOS 

-----------------------------------------
----------------

99 99 117 118 125 132 132 135 

142 146 150 154 158 158 161 161 

161 164 164 166 167 172 172 173 

173 174 179 183 183 185 192 194 

195 195 201 202 204 205 213 213 

216 229 230 230 235 240 244 262 

262 254 283 317 337 

STATION COUNTRY RIVER LOCATIOt� 

jF50a CANADA W!NNIPEG SLAVE FALLS 

------------------------------------
------------------------

555 658 658 901 98G 1000 1020 1030 

1050 1060 1060 1090 1100 1140 1200 1250 

1250 1270 1290 1370 1390 1420 1450 1450 

1510 1590 1720 1720 1750 1790 1920 1970 

1990 2040 2190 2260 2390 2410 2450 2780 

28GO 



Appendix B 

Program Flood 

C THIS PROGRAM FINDS ESTIMATES FOR THE PARAMETERS 

51 

C PA, PB, AND PC IN TRANSFORMED WEIBULL DISTRIBUTION 

C FUNCTION. WHICH PA rs SHAPE PARAMETER, 

C PB rs LOCATION PARAMETER AND PC rs SCALE PARAMETER. 

C REQUIRED INPUT INCLUDES U, PROBABILITIES OF 

C RECURRENCE INTERVALS. F(K), THE OBSERVED 

C FLOOD DATA VALUE. 

DIMENSION T(200) ,X(200l,AA(200l ,88(200),F(200), 

*G(200) ,U(Gl ,XX(200) ,Y(200)

DATA U/.5, .8, .9, .95, .98, .99/

CALL ORDER<X,XLAR,Nl

D=2*XLAR

WRITE(6,/l (X(I),!=1,Nl,XLAR,D,N

C USE CC AS A SCALE FACTORS.

CC=-X(ll+D

DO 1 J = 1, N

NJ=N-J+1 

T(NJ):::--X(NJ)+D 

WRITE(6,4)T(NJ),X(J) 

4 FORMAT(2(X,E15.4)) 

1 CONTINUE 

8=1 

C THE FOLLOWING 19 STATEMENTS ARE FOR FINDING 

C INITIAL VLAUES FOR THE THREE PARAMETERS FOR 

C TRANSFORMED WEIBULL DISTRIBUTION. 

XSUM=O 

YSLJM=O 

XSUM2=0 

SUMl=O 

DO 1001 J=l ,N 

XJ=J 

Y(Jl=ALOG(-ALOG(XJ/(N+l.l)) 

XSUM=XSUM+ALOG(T(J)) 

YSUM=YSUM+Y(J) 

XSUM2=XSUM2+(ALOG(T(J))l**2 

SUMl=SUMl+ALOG(T(Jll*YCJ) 

1001 CONTINUE 

XSUM3=(XSUM**2)/N 

SUM4=(XSUM*YSUMl/N 

A�<SUM1-SUM4l/(XSUM2-XSUM3l 

ALOGC=<-CYSUM/N)/A+CXSUM/N)) 

C=EXP(ALOGCl 

B=B/CC 



C=C/CC 

DO 1002 J=1,N 

NJ=N-J+1 

T(NJ)=(-X(J)+D)/CC 

1002 CONTINUE 

CALL EST(T,N,A,N,C,D,PC,PA,PB) 

WRITE(G,/)PA,PB,PC 

PC=PC*CC 

PB=D-PB*CC 

WRITE(G,/)PA,PB,PC 

READ(5, /) <F(K) ,K=1,G) 

TEMPB=O 

TEMPA=O 

C THE FOLLOWING STATEMENTS ARE FOR FINDING AA(I), 

C THE AVERAGE OF THE RELATIVE DEVIATIONS AND 

C 88(!), THE AVERAGED QUADRATIC DEVIATION. 

DO 100 K=1,G 

C X(K) rs THE PREDICTED FLOOD DISCHARGES. 

X<K>=PC-PA*(-ALOG(U(K)))**(1.0/PB) 

C QCK) IS THE RELATIVE DEVIATION IN PERCENT. 

QCK>=CXCK)-FCK))/F(K)*100 

TEMPA=TEMPA+ABS(GCK>> 

100 TEMPB=TEMPB+QCK>**2 

AA(I)=TEMPA/6 

BBCI)=TEMPB/6 

200 WR I TE C 6, /) ( X ( K) , K = 1 , 6 > , AA ( I) , 88 (I) 

STOP 

END 

52 



C THIS SUBROTINE READS THE YEARLY MAXIMUM FLOOD 

C DATA OF A RIVER, ORDERS THIS DATA INTO ASCENDING 

C ORDER, THE SMALLEST X(1) TO LARGEST X(N). 

C NECESSARY INPUT IS THE NUMBER OF YEARS OF THE 

C RECORD N, AND THE ACTUAL DATA IN ARRAY X. 

SUBROUTINE ORDER<X,XLAR,N) 

DIMENSION X<200) 

C N, THE NUMBER OF YEARS OF DATA rs READ. 

READ(5,l)N 

53 

C THE DATA rs READ FREE FORMAT AND STORED IN ARRAY X. 

READ(S,/)(X(I),r=l,N) 

NM=N-1 

DO 30 I=1,NM 

JM=N-I 

DO 20 J=1,JM 

IFC<CJ).LE.X(J+l»GO TO 20 

TEMP=X(J) 

X(J)=X(J+1) 

>�(J+l )=TEMP

20 CONTINUE 

30 CONTINUE 

XLAR=X(N) 

RETURN 

END 



SUBROUTINE EST(T,N,A,B,Cl,D,PA,PB,PC) 

C INPUT 

C N=SAMPLE SIZE (BEFORE CENSORING),N=100 OR LESS 

C AS DIMENSIONED 

C SSl=O IF SCALE PARAMETER THETA IS KNOWN 

C SS1=1 IF SCALE PARAMETER THETAIS TO BE ESTIMATED 

C SS2=0 IF SHAPE PARAMETER K IS KNOWN 

C SS2=1 IF SHAPE PARAMETER K IS TO BE ESTIMATED 

C SS3=0 IF LOCATION PARAMETER C IS KNOWN 

C SS3=1 IF LOCATION PARAMETER C IS TO BE ESTIMATED 

C T<I)=I-TH ORDER STATISTIC OF SAMPLE <I=l,N) 

C (SUBSTITUTE BLANK CARDS FOR UNKNOWN CENSORED 

C OBSERVATIONS) 

C M=NUMBER OF OBSERVATIONS REMAINING AFTER 

C CENSORING N-M FROM ABOVE 

C C(l>=INITIAL ESTIMATE (OR KNOWN VALUE) OF C 

54 

C THETA<l)=INITIAL ESTIMATE (OR KNOWN VALUE) OF THETA 

C EK(l)=INITIAL ESTIMATE (OR KNOWN VALUE) OF K 

C MR=NUMBER OF OBSERVATIONS CENSORED FROM BELOW, 

C NORMALLY O INITIAL 

C OUTPUT 

C N, SS 1 , 552, SS3, M, C ( 1 ) , THETA ( 1 > , EK< 1 ) , MR-

C SAME AS FOR INPUT 

C C<J>=ESTIMATE AFTER J-1 ITERATIONS <OR KNOWN 

C VALUE) OF C 

C THETA<J>=ESTIMATE AFTER J-1 ITERATIONS <OR KNOWN 

C VALUE) OF THETA 

C EK(J>= ESTIMATE AFTER J-1 ITERATIONS <OR KNOWN 

C VALUE> OF K 

C <MAXIMUM VALUE OF J AS PRESENTLY DIMENSIONED 

C IS 550) 

C EL=NATURAL LOGARITHM OF LIKELIHOOD FOR C(J), 

C THETA(J), EK(J) 

C REFERENCE 

C HARTER,H. LEON AND MOORE, ALBERT H., 

C MAXIMUM-LIKELIHOOD ESTIMATION OF THE 

C PARAMETERS OF GAMMA AND WEIBULL POPULATIONS 

C FROMCOMPLETE AND FROM CENSORED SAMPLES, 

C TECHNOMETRICS, 7 (1865), 639-643. ERRATA,9 (1967) 

C 195 

DOUBLE PRECISION SLK 

DIMENSION T(200),C(550),THETA(550),EK<S50), 

*>�<56) ,Y(55) 



S51=1. 

S52=1. 

S53=1. 

CCll=Cl 

THETAC1l=A 

EK(l)=B 

M=N 

MR=O 

EN=N 

32 WR I TE ( G, 5 l M, D-C ( 1 ) , THETA ( 1 l , EK C 1 ) , MR 

5 FORMAT (!4,3F10.4,I4l 

EM=M 

31 ELNM=O. 

EMR=MR 

MRP=MR+1 

33 NM=N-M+1 

DO 34 I=NM,N 

EI=I 

34 ELNM=ELNM+ALOG(Eil 

IFCMR) 66,35,74 

74 DO 75 I=l,MR 

EI=I 

75 ELNM=ELNM-ALOG(EI) 

35 DO 30 J=l,550 

IF<J-1) 66,25,37 

37 JJ=J-1 

SK=O. 

SL=O. 

DO 6 I=MRP,M 

G SK=SK+(T(Il-C(JJll**EK(JJ) 

IF<SS1)7,7,8 

7 THETA(Jl=THETA(JJ) 

GO TO 9 

8 IFCMRl 66,19,20 

19 THETA<J>=<<SK+<EN-EM>*CT(Ml-C(JJll**EKCJJ)l 

*/EM>**( 1. /EK ( JJ l > 

GO TO 9 

20 X<l>=THETA(JJ) 

LS=O 

DO 21 L=!,55 

LL=L-1 

LP=L+1 

X<LPl=X(l) 

ZRK = ( ( T ( MR P > -C ( J J) ) / X ( L l > **EK ( J J > 

55 



Y(l)=-EK(JJ)*(EM-EMR>IX(L)+EK(JJ)*SK/X(l)**(EK 

*(JJ)+l.)+EKCJJ)*CEN-EM)*(T(M)-C(JJ))** 

*EK(JJ)/X(l)**<EK(JJ)+l.)-EMR*EK(JJ>*ZRK*

2EXP(-ZRK)/(X(l)*(1.-EXP(-ZRK))) 

IF(Y(l)) 53,73,54 

53 LS=LS-1 

IF <LS+L) 58,55,58 

54 LS=LS+1 

IF <LS-L) 58,5G,58 

55 X(LP)=.5*X(l) 

GO TO 61 

56 X(LP)=l.S*X(l) 

GO TO 61 

58 IF(Y(L)*Y(ll)) 60,73,59 

59 LL=LL-1 

GO TO 58 

60 X(LPl=X(l)+Y(l)*(X(L)-X(Ll))/(Y<LL)-Y(L)) 

61 IF<ABS(X(LPI-X(l))-1.E-3) 73,73,21 

21 CONTINUE 

73 THETA(J)=X(LP) 

9 EK(J)=EK(JJ) 

10 IF<SS2) 12,12,11 

11 DO 17 I=MRP,M 

17 SL=SL+ALOG(T(Il-C(JJ)) 

X < 1 ) = EK ( J) 

LS=O 

DO 51 L=l,55 

SLK=O. 

DO 18 I=MRP,M 

18 SLK=SLK+(ALOG(T(Il-C(JJ))-ALOG(THETA(J)))* 

* < T ( I ) -C ( J J ) ) ** X ( L l

LL=L-1

LP=L+l

X(LP)=X(L)

ZR K = ( ( T ( MR P ) -C ( J J ) ) /TH ET A ( J ) ) * * X ( L )

Y(L)=(EM-EMR)*(l./X(L)-ALOG<THETA(J)))+SL-SLK/

56 

*THETA(J)**X(L)+(EN-EM)*(ALOG(THETA(J))­

+ALOG(T(M)-C(JJ)))*(T(M)-C(JJ))**X(l)/

2THETA(J)**X<Ll+EMR*ZRK*(ALOG(ZRK)/X(l) )*EXP<-ZRK)/ 

3(1.-EXP<-ZRK)) 

IF(Y(l)) 43,52,44 

43 LS=LS-1 

IF(LS+L) 47,45,47 

44 LS=LS+l 

IF(LS-L) 47,46,47 

45 XCLP)=.5*X(l) 



GO TO 50 

46 XCLP)=1.5•X<L> 

GO TO 50 

47 IF<Y<L>•Y<LL)) 49,52,48 

48 LL=LL-1 

GO TO 47 

49 X<LPJ=X<LJ+Y(Ll*(X(LJ-XCLL))/(Y(LL>-Y<L> J 

50 IF<ABS(X(LPJ-X(L) )-1.E-3) 52,52,51 

51 CONTINUE 

52 EK ( J ) = >( (LP) 

12 C(J)=C<JJ) 

62 IF(SS3) 25,25,14 

14 IF ( 1 . -EK< J) ) 16, 78, 78 

78 IFCSSl+S52) 57,57,16 

16 }((l)=C(JJ 

LS=O 

DO 23 L=l,55 

SKl=O. 

SR=O 

. DO 15 I=MRP,M 

SKl=SKl+<T<I>-X<L>>**<EK<Jl-1.) 

15 SR=SR+l./(T(!)-X(L)) 

39 

40 

LL=L-1 

LP=L+l 

X<LPJ=}((l) 

ZRK=( <T<MRPl-X(L) )/THETA<J> >**EK(J) 

Y(l)=(l.-EK(J))*SR+EK(J)*<SKl+(EN-EM)*(T(M)-

*X(L)l**<EK(J)-1.))/THETA(J)**EK(J>-EMR*EK<J>

**ZRK*EXPC-ZRK)/((T<MRP)-X(l))*Cl.-EXP 

2<-ZRK>>> 

IFCYCL)) 39,24,40 

LS=LS-1 

IF<LS+L) 70,41,70 

LS=LS+l 

IFCLS-LJ 70,42,70 

41 X<LP>=.5*X<L> 

GO TO 22 

42 XCLP)=.5*X(l)+.5*TC1) 

GO TO 22 

70 IFCYCL)*Y<LL)) 72,24,71 

71 LL=LL-1 

GO TO 70 

72 X<LP)=X<L>+YCL)*(X<L>-X<LLJ)/(Y(LL)-Y<LJ) 

57 



22 IF(ABS(X(LP)-X(l))-1.E-3) 24,24,23 

23 CONTINUE 

24 C(J)=X<LP) 

GO TO 25 

57 C<J)=T(l) 

25 IF(MR) 66,38,69 

38 DO G3 I=l,M 

IF(C(J)+l.E-4-T<I)) 68,67,67 

67 MR=MR+l 

63 C(l)=T(l) 

68 IF(MR) 66,69,31 

GS SK=O. 

SL=O. 

DO 36 I=MRP,M 

SK=SK+(T(I)-C(J))**EK<J) 

36 SL=SL+ALOG<T(I)-C(J)) 

ZRK=< <T<MRP)-C(J) )/THETA(J) )**EK(J) 

EL=ELNM+(EM-EMR)*(ALOG(EK(J))-EK(J)*ALOG 

* ( THETA ( J) ) ) + ( EK ( J) -1. ) *SL-

1 <SK+ (EN-EM)* ( T ( M) -C ( J)) **EK ( J)) / ( THETA ( J) 

***EKCJ))+EMR*ALOG(l.-EXP 

2(-ZRKl> 

WRITECG,26>D-C(J) ,THETA<J> ,EK(J) ,El 

26 FORMAT(4X,3F10.4,E18.8) 

IF(J-3) 30,27,27 

27 IF(ABS(C(J)-C(JJ)l-1.E-3> 28,28,30 

28 IF(ABS(THETA(J)-THETA(JJ))-1.E-3> 29,29,30 

29 IFtABSCEK(Jl-EK(JJ))-1.E-3) 66,66,30 

30 CONTINUE 

C PC IS ESTIMATED LOCATION PARAMETER. 

GS PC=C(J) 

C PA IS ESTIMATED SCALE PARAMETER. 

PA=THETA(J) 

C PB IS ESTIMATED SHAPE PARAMETER. 

PB=EK(J) 

RETURN 

END 
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Appendix C 

Program Plot 

C THIS PROGRAM GETS THE VALUE OF AXIS Z AND Y. 

C ORDERS THE FLOOD DATA IN ASCENDING ORDER FIRST, 

C THEN FROM THE EXTREME VALUE DISTRIBUTION 

C EXP(-((8-X)/C**A> WE KNOW THE EXPECTED VALUE OF 

C ITS DISTRIBUTION FUNCTION EVALUATED AT THE I-TH 

C ORDERED STSTISTICS rs I/(N+l) WHERE THE SAMPLE 

C SIZE rs N. ALSO FROM THE DISTRIBUTION FUNCTION 

C WE KNOW LN<-LN F(X))=A LN<B-X)-A LNCC) WHICH IS 

C A LINEAR IN X AND F(X). LET Z=LNCB-X(J) > 

C AND Y=LN-LN(J/(N+l)). THEN WE CAN USE THESE 

C VALUES IN MINITAB AND PLOT THE DATA. 

DIMENSION XC200) 

CALL ORDER(X,XLAR,N) 

READCS,/l B 

DO 10 J=l,N 

XJ=J 

Y=ALOG(-ALOGCXJ/(N+l.0))) 

Z=ALOG(B-X(J)) 

WRITE<S,101) Z,Y 
10 CONTINUE 

101 FORMATC2F10.5) 

WRITECS,102) (X(I),I=l,N) 

102 FORMAT(SX, 817> 

STOP 

END 
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