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ABSTRACT 

Measurement of Agriculture-Related Air Pollutant 

Emissions using Point and Remote Sensors 

by 

Kori D. Moore, Doctor of Philosophy 

Utah State University, 2017 

Major Professor: Dr. Randal S. Martin 
Department: Civil and Environmental Engineering 

Measuring air pollution emissions from agricultural sources is complicated by 

their size and variability. Traditional point sensors may not adequately characterize 

plumes as variability in the plume transport may affect which sensors are impacted. 

Remote sensors, such a scanning light detection and ranging (lidar) system, provide 

advantages due to their large sampling volumes, temporal resolution, and spatial scales. 

Both point and remote sensors were used to characterize plumes and estimate 

emissions from multiple agricultural operations. The purposes of this work were to 

further develop methodologies for measuring agricultural air pollution emissions and to 

report emissions for several varying types of operations. 

The body of this dissertation is comprised of five chapters, where each chapter is 

a separate paper submitted for publication in a peer-reviewed journal. Their topics 



iv 

include: an in-depth discussion of the mass conversion factor used to convert optical 

measurements, such as backscatter lidar, to particulate matter (PM) mass 

concentrations; calculating the PM emissions control efficiency of two conservation 

management practices (CMP) over the traditional management practices using lidar, 

particle size distribution, and filter-based PM data; the use of passive diffusion sampler 

and open path-Fourier transform infrared spectrometer measurements to estimate 

ammonia (NH3) emissions from an open-lot dairy; and the development, initial testing, 

and first application of a backwards Lagrangian stochastic (bLS) dispersion model for use 

in inverse modeling that allows particle behavior to deviate from the surrounding flow.  

These papers contribute to emissions measurement methodologies for area 

sources through the publication of the deposition-enabled bLS tested for near-source 

inverse modeling and its impact on emissions estimates, the lidar-based methods used 

in the tillage CMP studies, and the use of a scanning OP-FTIR system to measure NH3 

levels downwind of a dairy. Calculated emissions were published for multiple tillage 

activities, resulting in CMP reductions ranging from 25% to 90% over traditional 

practices. Summer time emissions of NH3 from an open-lot dairy and PM10 from a beef 

feedlot were calculated through inverse modeling and were similar to summer 

emissions found in literature. Including particle behavior in the bLS increased PM10 

emissions by 8-20% over the diurnal cycle. 

(332 pages) 
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PUBLIC ABSTRACT 

Measurement of Agriculture-Related Air Pollutant 

Emissions using Point and Remote Sensors 

Kori D. Moore 

Measuring air pollution emissions from agricultural activities is usually difficult 

because of their large area and variability. Traditional air quality sensors, called point 

samplers, measure conditions in one location, which may not adequately measure a 

plume. Remote sensors, instruments that measure pollution along a line rather than at a 

single point, are better able to measure conditions around large areas. This dissertation 

reports on four agricultural air emissions studies that used both point and remote 

sensors for comparison. The methods used to calculate the emissions are based on 

previous work and are further developed in these studies. In particular, an atmospheric 

dispersion model was developed and tested that can account for a particle behaving 

different than the surrounding gas due to gravity and inertia and depositing out of the 

flow. Particulate matter (PM) emissions values are reported for two agricultural tillage 

conservation management practices (CMPs) and the corresponding traditional tillage 

methods in order to determine how well the CMP reduces emissions. In addition, gas-

phase ammonia (NH3) emissions for a dairy operation and PM emissions from a feedlot 

operation are reported. These studies can help us better measure emissions from 

agricultural operations and understand how much air pollution is being emitted. 
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EXECUTIVE SUMMARY 

The purposes of the work described in this dissertation were to contribute to the 

information on and methodologies for measuring air pollution emissions from large area 

sources, specifically targeted toward agricultural facilities but also applicable to other 

difficult to characterize area sources, and to provide emissions values for several 

different agricultural processes/operations. The size and temporally and spatially 

variable nature of these systems can significantly complicate efforts to quantify 

emissions. Point sensors may be challenged to adequately represent concentrations 

inside large plumes using relatively few sampling points at ground level. Remote 

sensors, such the scanning light detection and ranging (lidar) and open-path Fourier 

transform infrared spectrometer (OP-FTIR) systems employed herein, have an 

advantage due to their large sampling volumes, spatial extents, and temporal 

resolution. This work utilizes both point and remote sensors to measure plume 

concentrations and estimate emissions from multiple agricultural operations. 

The body of this dissertation is comprised of five chapters, where each chapter is 

a separate paper that was submitted for publication in a peer-reviewed journal. The first 

paper presents an in-depth discussion of the mass conversion factor (MCF) used to 

convert optical particle measurements to particulate matter (PM) mass concentrations. 

Examples of information gained through its application were provided, including 

observations of PM dynamics at finer temporal and spatial scales and greater spatial 
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extents. Specifically, vertical PM-calibrated lidar scans mapped the concentrations in 

plumes observed above the point sensor array.  

The second and third papers utilized PM-calibrated lidar and optical particle 

counter data to estimate the emissions control efficiency (η) of two conservation 

management practices (CMP) over the traditional management practices. Emissions 

were calculated with a mass balance method applied to vertical lidar scans and through 

inverse modeling with point sensor data. The first study presented the first known 

investigation of reductions from a combined operations CMP, calculating η of 29%, 60%, 

and 25% for PM2.5, PM10, and TSP, respectively. The second study examined emissions 

from a spring tillage conservation tillage CMP and found η of approximately 90% for 

PM2.5, PM10, and TSP, similar to a previous conservation tillage CMP η measurement. 

The fourth paper reported an NH3 emissions study of an open-lot dairy in the San 

Joaquin Valley (SJV) of California, the first known summer time measurements in that 

climate. Concentration measurements were made using multiple passive samplers and a 

scanning system to achieve multiple OP-FTIR beam paths in a repeating series. This was 

the first known implementation of such a system with OP-FTIR. Emissions were 

estimated through inverse modeling with both datasets, yielding 140.7 ± 42.5 g d-1 

animal-1 (113.5 ± 34.3 g d-1 AU-1) for the passive sampler data and 199.2 ± 22.0 g d-1 

animal-1 (160.8 ± 17.8 g d-1 AU-1) for OP-FTIR data. These values were within the range of 

emissions in the literature for an open-lot dairy. 
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The fifth manuscript presented the formulation and initial testing of a Lagrangian 

stochastic (LS) atmospheric dispersion model for near-field inverse modeling that allows 

for a particle’s movement in the air to deviate from the air motion due to settling 

velocity and deposition. It is the first publication of a deposition-enabled LS model being 

tested in a backward-in-time (bLS) configuration. A bLS has significant computational 

and run time advantages over the forward-in-time (fLS) versions for an area source. 

Initial evaluation of the modified bLS with a validation dataset yielded good results in a 

non-depositional case. In addition, the modified fLS and bLS were applied to a PM 

dataset from a commercial feedlot. Testing showed very consistent results between the 

two for particle sizes ≤ 20 µm. Using the modified bLS produced PM10 emissions 

between 8% and 20% higher than the non-deposition model throughout the diurnal 

cycle, with total daily emissions being 12% larger at 62.5 ± 12.4 g animal-1 day-1. 

This collection of papers fulfills the purposes of this work to contribute to the 

field of emissions measurement methodology for large area sources and publication of 

emissions values for various agricultural operations. First-of-a-kind data were published 

on the deposition-enabled bLS for near-source inverse modeling, the η of a combined 

operations CMP for the fall tillage sequence, the use of a scanning OP-FTIR system to 

measure NH3 levels downwind of a dairy, and NH3 emissions from a SJV dairy during 

summer. Additionally, the conservation tillage CMP η for spring tillage supported the 

findings of the only other known study. PM10 emissions calculated from the feedlot 

using the modified bLS were high compared to most in the literature but in line with 
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another summer time measurement. The ability of the lidar to observe and measure 

plumes not well sampled by point sensors or reproduced in the air dispersion model was 

demonstrated in both tillage studies. 



 

CHAPTER 1 

INTRODUCTION 

Over 100 epidemiological studies published over the past 30 years have linked 

both short-term and long-term ambient air pollution exposure to a long and growing list 

of increased human health and welfare risks, including increased hospitalization and 

mortality rates (see Pope, 1989; Dockery et al., 1993; Davidson et al., 2005; Pope and 

Dockery, 2006; Qian et al., 2007; Geer et al., 2012; Pope et al., 2013; O’Neal et al., 2017; 

Turner et al., 2017; and many others). Exposure to air pollutants can also lead to acute 

and chronic effects in animals, plants, and ecosystems. These effects have led 

governments worldwide to set ambient concentration (C) and/or exposure limits for 

many air pollutants. The limits in the United States are called the National Ambient Air 

Quality Standards (NAAQS) and are set by the Environmental Protection Agency (EPA). 

Currently, there are NAAQS for particulate matter (PM) with aerodynamic equivalent 

diameters (da) ≤ 2.5 µm (PM2.5) and with da ≤ 10 µm (PM10), nitrogen dioxide (NO2), 

sulfur dioxide (SO2), ozone (O3), lead (Pb), and carbon monoxide (CO) (EPA, 2017). If 

these are exceeded, local air regulatory authorities are required to develop and 

implement pollution remediation strategies to reduce concentrations to below the 

NAAQS. Among other things, this necessitates a robust understanding of the emissions 

(Q) of significant air pollutant sources.  

Since the passage of the Clean Air Act in 1970, most anthropogenic pollutant 

sources have been investigated and their emissions drastically reduced (Cooper and 
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Alley, 2002). The agricultural sector is one of few air pollution source categories not 

highly regulated. However, impacts and potential reductions from agricultural sources 

are increasingly being investigated as the cost of emissions reductions in non-

agricultural sectors grow. Agricultural sources of air pollution have been investigated for 

their impact on local, regional, and global atmospheric pollution loadings since the 

1990s. Studies have documented the following pollutants emitted from various 

agricultural sources: particles of various sizes suspended in the air, also referred to as 

PM; ammonia (NH3); hydrogen sulfide (H2S); oxides of nitrogen (NOx); oxides of sulfur 

(SOx); methane (CH4); carbon monoxide (CO); carbon dioxide (CO2); nitrous oxide (N2O); 

and volatile non-methane organic hydrocarbons (NMHCs) (Casey et al., 2006). None of 

these pollutants are exclusive to agricultural activities – all are emitted by other 

anthropogenic and natural sources.  

Agricultural operations, however, may present challenges to determining 

emissions generally not found in other air pollution sources. Difficulties arise due to 

large spatial extents of the source(s), temporal and spatial variations in emissions, and 

influences of meteorological and process conditions on measuring a source’s impact on 

air pollutant levels in an often ill-defined plume. Typical approaches that have been 

developed for estimating emissions of such large and open sources are the inverse 

modeling, flux-gradient profiling, eddy covariance, and flux chamber methods. The first 

three use the difference between measurements of upwind and downwind 

concentrations and relate that value to emissions through different methods of 
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estimating or measuring the strength of atmospheric mixing. The fourth samples a small 

portion of the source surface to measure emissions directly in multiple locations and 

assumes the sample locations are representative of the source.  

Another complication may arise from the use of point samplers due to their 

relatively small sample volume and limited numbers feasibly deployed. Remote sensors, 

such as light detection and ranging (lidar) and open path Fourier transform infrared 

spectroscopy (OP-FTIR) systems, offer an advantage over point sensors in that they can 

measure pollutant concentrations over a much greater volume, distance, and, usually, 

time. This allows for a greater characterization of the downwind plume and emissions. 

The work described in this dissertation includes developments and applications of 

emissions quantification using both point and remote sensors to measure pollutant 

levels. In addition, a modified air dispersion model that has not previously been 

reported is detailed and tested against both validation and real-world datasets. 

Background 

The National Research Council (NRC) released a report in 2003 focusing on the 

state of the science and future needs in livestock agriculture air pollutant emissions 

(NRC, 2003). This document lists 13 findings and sets of recommendations, one of which 

highlighted gaps in emissions measurement methodologies:  
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“FINDING 7: Scientifically sound and practical protocols for measuring air 
concentrations, emission rates, and fates are needed for the various elements 
(nitrogen, carbon, sulfur), compounds (e.g., ammonia [NH3], CH4, H2S), and 
particulate matter. 
RECOMMENDATIONS: 
• Reliable and accurate calibration standards should be developed, 
particularly for ammonia. 
• Standardized sampling and compositional analysis techniques should be 
provided for PM, odor, and their individual components.” 
 - NRC (2003) 

Several research efforts have been carried out in response to the NRC report, 

such as the National Agriculture Emissions Monitoring Study (NAEMS, Heber et al., 

2008). A research effort to address the measurement methodology gap began in 2004 

by the U.S. Department of Agriculture’s (USDA) Agricultural Research Service (ARS), 

Utah State University Research Foundation’s Space Dynamics Laboratory (SDL), and 

Utah State University (USU). A portion of the research efforts of this program, referred 

to as “the Ag Program”, will be the focus of this dissertation.  

SDL entered into a Cooperative Agreement with the ARS with the following 

objectives:  

“1) Develop new methods and improve existing methods to measure emissions 
of particulate matter and gases from animal feeding operations; 2) Develop and 
determine the effectiveness of management practices and control technologies 
to reduce emissions; and 3) Develop tools to predict emissions and their 
dispersion across a range of animal production systems, management practices, 
and environmental conditions.”  
 - Specific Cooperative Agreement, No. 58-3625-4-121 
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SDL and USU have worked to accomplish these objectives in cooperation with the ARS 

and under the direction of Dr. Jerry Hatfield, Laboratory Director for the National 

Laboratory for Agriculture and the Environment, USDA ARS.  

Through the Ag Program, a collection of both point and remote sensors were 

assembled into a system capable of measuring PM and gaseous concentrations around 

large, open agricultural sources. The main gaseous species of interest was NH3, though 

capabilities were tested for NOx and methane (CH4). The PM size fractions the system 

was capable of measuring were PM with da ≤ 1.0 μm (PM1), PM2.5, PM10, and total 

suspended PM (TSP). These measurement systems were deployed in 12 field studies 

between 2005 and 2012, as shown in Table 1-1.  

Methods to estimate emissions have been developed or enhanced as part of the 

Ag Program efforts and applied to most of the datasets in Table 1-1. One focus of the Ag 

Program was to publish these methods and calculated emissions values in peer-

reviewed journals and books in order to contribute to the body of knowledge on 

agricultural air pollutant emissions. To date, one book chapter has been published 

(Wojcik et al., 2012) and nine papers (Bingham et al., 2009; Marchant et al., 2009, 2011; 

Martin et al., 2008; Moore et al., 2013, 2014, 2015a, 2015b; and Zavyalov et al., 2009). 

In addition, results from most of these tests have been presented at various scientific 

conferences and meetings.  
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Table 1-1. Major field deployments within the Ag Program. 

Measurement 
Period 

State Facility/Operation Studied 
Pollutant(s) 
Measured 

August – 
September 2005 

IA Finishing swine facility PM, NH3 

November 2005 UT Research dairy PM, NH3 

September – 
October 2006 

CA Almond harvesting PM 

December 2006 CA Cotton ginning PM 

September – 
October 2007 

ID 
Wastewater holding ponds on a 
commercial dairy 

NH3 

October 2007 CA Fall tillage PM 

May – June 2008 CA Spring tillage PM 

June 2008 CA Commercial dairy PM, NH3 

June 2009 UT Chemical/biological simulant release PM 

October 2009 UT 
Hydrocarbon production wastewater 
evaporation treatments 

PM, NOx, CH4 

July 2011 UT Chemical/biological simulant release PM 

August 2012 CA Commercial dairy PM 

 

Objective 

The objective of this dissertation work is to advance the state of the science 

regarding methods to quantify air pollutant emissions from agricultural sources and to 

contribute to the body of literature on emissions values. These were accomplished using 

Ag Program activities involving both point and remote sensors. Specifically, this work 

will demonstrate:  

1) the development and/or application of variations on emission measurement 

techniques not previously employed in either the Ag Program or by others; 
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2) the establishment of in depth descriptions of the techniques used by the Ag 

Program; and  

3) the publication of air pollutant emissions from various agricultural activities 

in internationally-recognized scientific journals.  

The body of this work is a collection of five manuscripts that have been 

submitted for publication in scientific journals. Four have already been accepted and 

published and the fifth was submitted in April 2017 for consideration. The manuscript 

topics include: (1) a detailed description of the relation between the optical and 

aerodynamic PM measurement techniques, referred to as the mass conversion factor 

(MCF), and examples of how it has been used in Ag Program studies to monitor PM 

levels and emissions in greater temporal and spatial scales versus using traditional 

sensors; (2) differences in PM emissions between a traditional tillage management 

practice and a combined operations conservation management practice (CMP) as 

measured in the 2007 fall tillage study; (3) differences in PM emissions between a 

traditional spring tillage management practice and a conservation tillage CMP as 

measured in the 2008 spring tillage study; (4) dairy NH3 emissions based on NH3 

concentration datasets from both point and remote sensing measurement techniques 

employed in the 2008 commercial dairy study; and (5) the development and initial 

testing of a backward Lagrangian stochastic (bLS) model, including algorithms for size-

dependent deposition, for particles that can be used in estimating PM emission rates 

through inverse modeling. Chapters 2 through 6 of this dissertation present the 
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manuscripts as published (papers 1 through 4) or submitted (paper 5). Each contributes 

new information on measuring plume concentrations and estimating emissions from 

area sources and fulfills at least one stated objective in the Cooperative Agreement.  

Instrumentation 

This section provides a summary description of the instruments used in the Ag 

Program to measure ambient air pollutant levels. The next section describes, generally, 

how these measurements have been employed in the emissions calculation techniques. 

Each field study utilized a different combination of sensors, configurations, and emission 

estimation methodologies, as described in the following chapters. 

The signature instrument of the Ag Program is Aglite, a custom-built elastic lidar 

system described by Marchant et al. (2009) and shown in Figure 1-1. Aglite emits pulses 

of light at three different wavelengths (355 nm, 532 nm, and 1,064 nm) simultaneously 

and measures the amount of energy returned to the instrument from the particles and 

molecules in the atmosphere, which is referred to as backscatter. Combining 

backscatter data from the three wavelengths in a single analysis potentially allows for a 

greater understanding of the physical and optical properties of the particles and 

molecules in the beam. The lidar return signals were calibrated to PM concentrations 

through an algorithm developed as part of the Ag program and described by Zavyalov et 

al. (2009). In summary, the algorithm uses particle size distribution (PSD) data to 

calibrate the lidar return signal to the PSD and the cumulative particle volume 
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Figure 1-1. The Aglite Lidar with the 532 nm laser beam visible. 

concentrations (Vk), up to a particle diameter k. Vk is multiplied by MCFk to yield PMk, 

where MCFk is a simple scalar value relating PMk and Vk. This relationship is the subject 

of Chapter 2. 

The PSDs were measured by battery-powered optical particle counters (OPCs) 

(Aerosol Profilers, Model 9712, Met One Instruments, Inc., Grants Pass, OR). These OPCs 

have eight size bins with lower bin limits ranging from 0.3 µm to 10.0 μm. An OPC 

reports number of particles detected in each size bin over a sample period, usually set at 

20 seconds for Ag Program activities. An OPC measures optical diameter (dop) with a 

laser, utilizing the same measurement principle as an elastic lidar.  
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MiniVol Portable Air Samplers (Models 4.2 and 5.0, Airmetrics, Eugene, OR) were 

used to measure PMk in Ag Program deployments. It is a portable, battery-powered unit 

that collects ambient aerosol onto filters; PMk is calculated by measuring mass 

accumulation on exposed filters and dividing by the volume of sampled air. Separation 

of particles greater than a desired cumulative size k is accomplished by an impactor 

plate assembly upstream of the filter. These systems can be configured to measure PM1, 

PM2.5, PM10, or TSP. 

Gaseous NH3 was measured using both passive samplers and an OP-FTIR. The 

passive samplers employed were from Ogawa USA, Inc. (Pompano Beach, FL), which 

utilize a filter infused with citric acid to collect gaseous NH3 for analysis through ion 

chromatography (IC). The mass of detected NH3 is related to a period-averaged 

concentration through the diffusion equations described by Roadman et al (2003).  

The OP-FTIR was a monostatic unit manufactured by MDA used to measure NH3 

levels within the units beam path (Model ABB-Bomen MB-100, Atlanta, GA, now Cerex 

Monitoring Solutions, LLC, Atlanta, GA). A monostatic unit has the source, 

interferometer, and detector at one end of the path and a retroreflecting mirror at the 

other end to direct the beam back to the detector. A scanning system was designed for 

use with this OP-FTIR with multiple retroreflectors in order to determine NH3 levels 

along multiple path lines from a single instrument location. Quantification of the path-

length averaged concentration was performed using a partial least squares regression 
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technique with instrument-specific calibration parameters (Griffiths et al., 2009; Shao et 

al., 2010). 

Meteorological parameters monitored during system deployments include 

vertical and horizontal wind speeds, wind direction, temperature, relative humidity, and 

incoming solar radiation. This was accomplished through an assortment of 

instrumentation that varied slightly between field studies. Specific configurations are 

described in each paper. 

Calculating Emissions 

The pollutant concentration data were used to derive pollutant emission rates 

(ERs) and emission factors (EFs). The definition of ER and EF generally vary by operation 

type. In the case of the manuscripts, there are two ER and EF definitions utilized. For 

those studies estimating emissions from agricultural tillage operations, EFs are 

emissions based on a quantity of field processed (e.g., g m-2) and ERs are emissions that 

include a time factor (e.g., g m-2 sec-1). In the studies estimating emissions from the 

dairy and feedlot operations, EFs are emission values on a per animal or per animal unit 

(AU) and per unit time basis (i.e., g d-1 animal-1, kg yr-1 AU-1), while ERs are based on 

time but not per animal (i.e., kg d-1, g m-2 sec-1). References to an ER or EF are generic 

through this section and do not have a specific set of associated units.  

ERs and EFs were calculated in the Ag Program using inverse modeling and a 

mass balance method. Inverse modeling uses an initial estimate of the emission rate 
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(Qsim) in an atmospheric dispersion model to predict the resulting downwind 

concentration (Csim). The (C/Q)sim ratio is then used in the following equation with the 

concentrations measured at the facility to calculate the observed emission rate (Qcalc):  

 
sim

upwinddownwind

calc
QC

CC
Q

/




. (1-1) 

In this equation, Cupwind is subtracted from Cdownwind to determine concentrations 

resulting from the source(s). It is this difference that is compared against the modeled 

(C/Q)sim ratio because the models do not generally account for Cupwind, unless a 

background concentration is explicitly used as an input.  

In cases where the dispersion model used yields a proportionally linear response 

in Csim to changes in Qsim, the initial estimate of Qsim will not affect Qcalc as the (C/Q)sim 

ratio describes the slope of the line relating the two terms and has neither local maxima 

nor minima. In cases where the Csim response is not necessarily linear, local maxima or 

minima are possible, requiring a wide range of Qsim to be tested.  

There were two atmospheric dispersion models used to estimate (C/Q)sim. Most 

studies used the American Meteorological Society/US Environmental Protection Agency 

Regulatory Model (AERMOD), which is described by Cimorelli et al. (2005) and is a 

current EPA-recommended regulatory model. The other model was a bLS model 

modified from that described by Flesch et al. (2004) to account for particle settling 

velocity (vs) and deposition. The development and initial testing of this model are the 

subject of Chapter 6 in this dissertation. Flesch et al. validated their model for emissions 
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estimation through inverse modeling, a test that has not yet been applied to AERMOD 

and reported in literature. Application of the model utilized in each emissions 

estimation effort is described in the respective chapters.  

The second method of calculating area source emissions in the Ag Program was a 

mass balance approach applied to the PM-calibrated lidar data. Average upwind levels 

were subtracted from those calculated in and around detected plumes in the downwind 

vertical scans. The difference was multiplied by the component of the average wind 

perpendicular to the vertical scanning plane to calculate the horizontal flux of PM 

through the sampling plane. Fluxes were summed across the plane and averaged over 

the length of the sample period to determine the net flux of particles through the lidar 

measurement area. The emissions were related to the observed operation by dividing 

the flux by a characteristic property (i.e., number of cattle on the feedlot). This method 

of calculating emissions using lidar is described in detail in Bingham et al. (2009). 

Manuscript Summaries 

A brief summary of the papers comprising chapters 2 through 6 is provided in 

this section, with new contributions to science highlighted. The reader is referred to 

each chapter for detailed descriptions of the relevant published literature, the 

concentration measurement and emissions estimation methodologies used, the results, 

and the conclusions for each study. Note that the manuscripts are not presented in 

chronological publication order. The paper describing calculation and use of the MCFk is 
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first to provide a stronger foundation for the two papers using this relationship in 

converting lidar data to PMk. The other four papers are listed in chronological order of 

data collection. The document styles vary slightly as the journal-specific formats have 

been maintained for each paper. 

Field studies reported in Chapters 3 through 5 were conducted in California’s San 

Joaquin Valley (SJV) and the data reported in Chapter 6 were collected at a commercial 

beef feedlot in the panhandle of Texas. Both regions have a very large agricultural 

economy (USDA, 2009). The SJV also has a history of air pollution problems tied to 

agricultural activities (Battye et al., 2003; Chow et al., 1992, 1993).  

The SJV was a non-attainment area for the PM10 NAAQS from 1991 to 2008 (EPA, 

1991, 2008). Designation as a non-attainment area requires an area’s air quality 

governing body to develop and implement plans to reduce anthropogenic emissions to 

the point that ambient pollutant levels meet the NAAQS. In the SJV, rules were put into 

place mandating the use of CMPs, but the η of most CMPs were estimated as they had 

not previously been measured. The two tillage studies in the SJV were conducted to 

quantify η for more CMPs. The NH3 emissions study was conducted because NH3 directly 

contributes to PM levels through photochemistry, and such measurements had not yet 

been conducted in the summer climate of the SJV (Cassel et al., 2005; Finlayson-Pitts 

and Pitts, 1999). The reductions in emissions achieved by various rules contributed 

greatly to lowering ambient PM10 below the NAAQS and the change in the SJV’s PM10 

status to attainment/maintenance in 2008. However, just one year later it was 
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designated as non-attainment for PM2.5, requiring a PM2.5 attainment plan be created 

and implemented (EPA, 2009).  

The data collected in the panhandle of Texas was from a 2015 study designed to 

test the ability of a backscatter lidar to quantify PM levels in feedlot plumes. After a 

successful demonstration, additional funding is being sought for studies to quantify the 

η of various CMPs to reduce feedlot emissions.  

Chapter 2, Paper #1 

Title: Derivation and use of simple empirical relationships between aerodynamic and 

optical particle measurements 

Journal: Journal of Environmental Engineering 

Manuscript Status: Published 2015 (Moore et al., 2015a) 

Description: Several instruments measure optical properties of aerosols and use 

empirical relationships based on historical data to convert to PM concentrations. 

However, differences between the measured aerosol and the historical data aerosol 

may significantly bias the reported PM mass-based levels. This paper presented a simple 

empirical method internally developed for converting optical measurements to PM for 

each individual sample period and locale. This relationship is referred to as the MCF and 

was very briefly described in Zavyalov et al. (2009). However, a more in depth discussion 

was needed. This paper describes the OPC data treatment, how the MCF is calculated, 

what it represents, the potential influential variables it encompasses, and how it has 
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been used to create more temporally and spatially resolved PM level datasets. Issues 

and anomalies found while using this approach are discussed. In the Ag Program, the 

MCF is necessary to convert the lidar Vk data to PMk, which allows for the quantitative 

assessment of particle size-based fluxes and facility/operation emissions. The MCF is 

also used to convert OPC Vk into PMk to examine concentration and emissions trends on 

a much more temporally resolved scale than is possible with the MiniVols. In addition to 

the MCF, this paper also presents results verifying that the MiniVols yield PM 

concentrations similar (usually within ±10%) to Federal Reference Method (FRM) 

samplers under tested conditions.  

Chapter 3, Paper #2 

Title: Particulate emissions calculations from Fall tillage operations using point and 

remote sensors 

Journal: Journal of Environmental Quality 

Manuscript Status: Published 2013 (Moore et al., 2013) 

Description: A rule targeting reductions in primary PM10 emissions from agricultural 

operations in the SJV, Rule 4550, Conservation Management Practices, was adopted in 

2004 and required the use of approved CMPs (SJVAPCD, 2006). However, very little 

literature data were available concerning the actual reductions from the CMPs for crop 

production tillage activities. SDL and ARS partnered with the EPA Office of Research and 

Development, National Exposure Research Laboratory to study the η of the combined 
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operations tillage CMP. The η is the decrease in emissions realized by utilization of the 

CMP instead of the traditional management practice, relative to the emissions from the 

traditional method. The combined operations CMP reduces the number of passes across 

the field by combining two or more operations. Calculating η required deriving EF values 

for both the conventional tillage management practice and the CMP. Measurements 

made in October 2007 yielded η values for the CMP of 29% for PM2.5, 60% for PM10, and 

25% for TSP based on lidar data. The filter based dataset was not sufficiently complete 

to estimate η. These emissions reduction values were the first available in literature for 

the combined operations CMP. Additionally, lidar measurements showed a significant 

portion of the plumes were lofted above the point sensors, with some even detached 

completely from the surface, and AERMOD did not effectively reproduce these elevated 

plumes. This comparison study is the type of test meeting the second objective of the 

Cooperative Agreement between ARS and SDL.    

Chapter 4, Paper #3 

Title: Particulate matter emission estimates from agricultural Spring tillage operations 

using lidar and inverse modeling 

Journal: Journal of Applied Remote Sensing 

Manuscript Status: Published 2015 (Moore et al., 2015b) 

Description: A companion study to the Fall tillage CMP study was funded by the San 

Joaquin Valleywide Air Pollution Study Agency to examine η from a Spring tillage CMP. 
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Field measurements were collected in May and June of 2008. The selected CMP was the 

conservation tillage CMP, which reduces the extent of disturbed soil. The conservation 

tillage CMP in this study consisted of three operations totaling three passes across the 

field. In comparison, the conventional tillage method had nine different operations 

totaling 13 passes. Improper maintenance of the MiniVol sampler size separation 

assemblies through the first portion of the study, combined with the short duration, 

high intensity dust plumes resulting from the tillage activity, led to the rejection of most 

of the downwind filter samples during the May sample periods. Therefore, EFs were 

only estimated from filter-based samples for about half of the sample periods. The OPCs 

deployed on the downwind side of the fields were not overloaded. The upwind MiniVol 

and OPC samples, which were not compromised by the tillage plumes, were used to 

calculate daily average MCFk values to convert both downwind OPC and lidar data to 

PMk data. The η values calculated based on OPC and lidar data were 85% and 91% for 

PM2.5, 87% and 94% for PM10, and 90% and 91% for TSP, respectively. These values were 

similar to the only other conservation tillage CMP study in the literature. Like the 

previous tillage CMP study, this study directly meets the second objective of the 

Cooperative Agreement. 

Chapter 5, Paper #4 

Title: Ammonia measurements and emissions from a California dairy using point and 

remote sensors  
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Journal: Transactions of the ASABE (American Society of Agricultural and Biological 

Engineers) 

Manuscript Status: Published 2014 (Moore et al., 2014) 

Description: A significant portion of the PM2.5 and PM10 in the SJV is ammonium nitrate 

(NH4NO3), which is formed through photochemical reactions in the atmosphere 

involving NH3, NOx, and other compounds (Chow et al., 1992, 1993; Finlayson-Pitts and 

Pitts, 1999). However, only wintertime NH3 emission levels had previously been 

estimated under the SJV climactic conditions. The Ag Program conducted a summer PM 

and NH3 emissions study on a commercial dairy in the SJV, in part to fill this gap in 

knowledge. The passive Ogawa samplers and scanning OP-FTIR system were deployed. 

The results of the PM study were published in Marchant et al. (2011). This paper 

presents the results of the NH3 measurements and emissions calculations. Significant 

improvements to data treatment, modeling inputs, and inverse modeling EF calculation 

methodology were made in this paper compared to previous work in the Ag Program. 

Also, this constitutes the first NH3 EF study published in peer reviewed literature based 

on the scanning OP-FTIR system. A diurnal pattern in downwind NH3 was observed, with 

the highest levels reported in the afternoon despite greater mixing and dilution. EFs 

averaged 140.5 ± 42.5 g d-1 animal-1 from the passive sampler data and 199.2 ± 22.0 g d-1 

animal-1 from OP-FTIR data, which are within the range of summer values from other 

studies with similar housing and manure management practices in other locations. 
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Emissions exhibited a diurnal cycle similar to concentrations, with peak afternoon values 

at least a factor of 10 higher than observed in the morning.    

Chapter 6, Paper #5 

Title: Using a deposition-enabled backward Lagrangian stochastic model to estimate 

particulate matter area source emissions through inverse modeling 

Journal: Atmospheric Environment 

Manuscript Status: Submitted, April 2017 

Description: Simulation of atmospheric dispersion using most dispersion models, 

including AERMOD, assumes the molecule/particle of interest is inert and follows the 

behavior of the carrier fluid. However, this assumption does not always hold with large 

particles (dp ≥ 5 µm) due to effects of gravitational and momentum forces. Large 

particles may have significant vs compared to the vertical wind velocity (w), causing 

them to continually decrease in vertical position (z) relative to the associated carrier 

fluid, thereby affecting both vertical and horizontal dispersion. In addition, particles may 

be removed from the flow through deposition. Accounting for these deviations from the 

carrier flow could be important. A type of model called the Lagrangian stochastic model 

(LS) was used to account for vs and deposition in near-field (generally < 1,000 m) inverse 

modeling.  

An LS attempts to mimic atmospheric turbulence by simulating the movement of 

marked fluid elements (MFEs) in a domain with known mean flow and by adding 
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random variations to the MFE movement to simulate the stochastic nature of 

turbulence (Lin, 2012). Running the LS for thousands of MFEs provides a statistical 

representation of the simulated dispersion and yields the (C/Q)sim ratio required to 

calculate Qcalc using Eq. 1-1. LS models may be run forward in time (fLS), from the source 

to the receptor, or backward in time (bLS), from the receptor towards the source. The 

bLS has been shown to be much more computationally efficient than the fLS, often by 

an order of magnitude or more. Flesch et al. (2004) validated a bLS model (that does not 

take into account vs or deposition) for calculating emissions through inverse modeling. 

This model has been used by many researchers to estimate agricultural emissions for 

various pollutants in recent years (Bjorneberg et al., 2009; Bonifacio et al., 2013; Flesch 

et al., 2009; Todd et al., 2008; Leytem et al., 2011, 2013; Yang et al., 2017; and others). 

Others have accounted for vs and deposition in fLS models (Sawford and Guest, 1991; 

McGinn et al., 2010; Wang et al., 1995, 2008; etc.), but no bLS accounting for particle 

behavior was previously found in literature.  

The last paper in this dissertation presents a modified bLS that allows for particle 

depositional behavior to be taken into account. It is based on the model of Flesch et al. 

(2004) with modifications from several papers on fLS models with vs and deposition. The 

non-depositional case of this model (vs = 0.0 m s-1) was tested against a portion of the 

validation dataset published by Flesch et al. and found to yield similar results with the 

same uncertainty value. The modified bLS and fLS models were compared for a subset 

of sample periods from a Texas panhandle cattle feedlot dataset collected in 2015 by 
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Texas A&M AgriLife Research and SDL. The modified bLS yielded slightly higher 

emissions values at dp ≤ 20 µm with relative results remaining nearly constant across 

sample periods. The modified bLS was assumed to be valid for estimating emissions for 

particles with dp < 20 µm, the size range of interest for QPM2.5 and QPM10 (regulated 

particle classifications). The modified bLS estimated QPM10 from the full feedlot dataset 

at 62.5 g animal-1 day-1 when accounting for vs and deposition, 12% higher than in the 

non-depositional case. Significant contributions to the science of measuring emissions 

from large area sources include another validation of the bLS for use in estimating 

emissions, the description of a modified bLS that can account for vs and deposition for 

dp < 20 µm while yielding results consistent with the fLS, and the results of the model’s 

first tests.  

Literature Review 

A literature review is provided in each chapter of the relevant publications. To 

avoid duplication, only relevant literature published or found since the papers were 

finalized are presented in this section. No additional papers are presented for the 

modified bLS paper as it was submitted for publication consideration in April 2017. 

No new discussions on the MCF or mass conversion algorithms has been 

published recently. However, a conference paper by Shao et al (2016) reported on the 

development and testing of an OPC that utilized instrument response at specific angles 

relative to illumination to size particles. Particle density was not accounted for in the 
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mass calculation; instead, they focused on better measuring the optical diameter 

because the effect of density scales linearly on PM while diameter scales to the third 

power. Initial testing with a reference PM2.5 instrument showed very good correlations. 

The number of publications on estimates of agricultural tillage emissions remains 

small. Only one additional paper was found since Moore et al. (2015b) was published. 

Agricultural tillage PM2.5 and PM10 emissions in northeastern China were estimated by 

Chen et al. (2017) for planting, harvesting, and a combined operations CMP for spring 

tillage. They estimated emissions with the flux profile method described by Holmén et 

al. (2001) coupled with optical sensors utilizing a mass conversion algorithm to produce 

PM2.5 and PM10 concentrations. Spring tillage CMP emissions ranged from 9 to 119 mg 

m-2 for PM10 and 3 to 33 mg m-2 for PM2.5, with lower values associated with higher soil 

moisture content. These values were in the same range as those reported for PM2.5 in 

Table 4-6 in Chapter 4, but lower for PM10. Reported planting emissions had smaller 

ranges than CMP tillage, 4 to 17 mg m-2 for PM10 and 3 to 4 mg m-2 for PM2.5, and were 

smaller than those presented in Table 4-6. Harvesting emissions ranged from 18 to 33 

mg m-2 for PM10 and 6 to 11 mg m-2 for PM2.5. 

A few papers were found and/or published since publication of Moore et al. 

(2014) on the topic of NH3 emissions from dairies. First, a very good review was given by 

Hristov et al. (2011), covering NH3 sources, emissions mechanisms and processes, and 

measurements from both dairy and beef feedlot operations. Included is a table 

comparing dairy NH3 emissions from 26 published studies, many of which were not 
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directly listed in Table 5-5 in Chapter 5 from Moore et al., but some were included in the 

review performed by Arogo et al. (2006). Only four of the studies listed by Hristov et al. 

were from open-lot dairies, the type of facility investigated herein, and all were in Table 

5-5. The mean ± 1 standard deviation (σ) for the values in Hristov et al. was 58.8 ± 65.0 g 

animal-1 day-1.  

An open-lot dairy NH3 emissions study was carried out in the High Plains area of 

New Mexico and reported by Todd et al. (2015). They measured summer time NH3 levels 

with tunable diode laser systems, and combined them with inverse modeling using 

WindTrax to estimate emissions. They found a daily emission of 321 g animal-1 day-1, 

higher than most other published studies except Leytem et al. (2013). A contributing 

factor was postulated to be the herd at this dairy was entirely mature, which differs 

from the study in Chapter 5 that had a mixed herd of calves, heifers, and mature cows. 

Todd et al. found pen emissions dominated the total emissions like in Moore et al., 

accounting for 95% of the total emissions.  

Yang et al. (2016) reported NH3 emissions measurements from pen surfaces at 

two dairies near Beijing, China. The dairies were open-lot with a brick base and had 

weekly manure removal. NH3 concentrations were measured using a tunable diode laser 

system and emissions were estimated with WindTrax in inverse modeling. They found 

average summer time emissions of 210.8 and 177.6 g animal-1 day-1, similar to those 

reported in Chapter 5. The yearly averages were 139.7 and 122.1 g animal-1 day-1. 
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Liu et al. (2017) performed a meta-analysis study of NH3 emissions from beef 

feedlots and dairy housing. They found positive correlations between both air 

temperature and dietary crude protein content and NH3 emissions. They also observed 

that the method used to measure emissions could affect the results, with flux chamber 

methods usually underestimating emissions and the nitrogen balance method 

overestimating them. Another meta-analysis study reported by Bougouin et al. (2016) 

found that the greatest factor affecting NH3 emissions from dairy housing was flooring 

type, followed by season and diet factors. An open-lot dairy was found to produce the 

highest emissions of flooring type. 
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CHAPTER 2 

DERIVATION AND USE OF SIMPLE EMPIRICAL RELATIONSHIPS 

BETWEEN AERODYNAMIC AND OPTICAL 

PARTICLE MEASUREMENTS1 

Abstract 

A simple relationship, referred to as a mass conversion factor (MCF), is 

presented to convert optically-based particle measurements to mass concentration. It is 

calculated from filter-based samples and optical particle counter (OPC) data on a daily 

or sample period basis. The MCF allows for greater temporal and spatial mass 

concentration information than typical filter-based measurements. Results of MCF 

calculations from several field studies are summarized. Pairwise comparisons from a 

collocated study with multiple OPCs and mass samplers suggest the minimum variability 

of the MCF is 5 to 10%. The variability of the MCF within a sample period during a field 

study with distributed samplers averaged 17 to 21%. In addition, the precision of the 

Airmetrics MiniVol Portable Air Sampler for particulate matter (PM) was found to be 

typically < 10%. Comparisons with federal reference method (FRM) samplers showed 

that MiniVols yield PM2.5 concentrations essentially equivalent to FRMs with slightly 

greater deviations from the FRM for PM10 under tested ambient conditions. 
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Introduction 

Many different properties can be used to describe a single particle. These 

include shape, chemical speciation, density, index of refraction, aerodynamic diameter, 

optical diameter, etc. Numerous measurement techniques have been developed to 

quantify various properties, though most are capable of measuring only one or two 

properties. Comparisons between simultaneous measurements of an aerosol mixture 

made using different techniques may provide valuable information about relationships 

between the measurement methodologies and the measured properties, as well as 

additional information not measured. 

Estimating specific particle properties even from a combination of measurement 

techniques may be challenging both theoretically and in practice. For example, Schmid 

et al. (2007) provides a detailed explanation of mathematical relationships between 

density, shape, effective density, and various equivalent diameters for spherical and 

non-spherical particles. Deriving a property from such methods requires significant 

investment in equipment, as well as knowledge or assumptions of other pertinent 

particle properties. However, comparisons between two or more measurement 

techniques may be made in order to derive an empirical relationship that incorporates 

all applicable properties into a more simple expression. While this method does not 

provide insight into the values of specific properties, it can be very useful in calibrating 

the output of a sensor to provide information not directly measured, such as the 
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calibration of an optical particle counter (OPC) to provide particulate matter (PM) mass 

concentration. A significant advantage of an OPC over typical filter-based mass samplers 

is that the OPC can provide a much more temporally resolved dataset and may yield 

valuable information about changes in concentration.  

Binnig et al. (2007) describes the calibration of an OPC to yield concentrations of 

PM with an aerodynamic diameter (da) ≤ 2.5 μm (PM2.5) for a well-defined aerosol 

utilizing known particle density and assuming uniform composition across the size 

range. This procedure, however, should not be applied in situations with significant 

fractions of particles that are not well-defined, as is often the case in ambient 

measurements. Instead, researchers tend to rely on historical data to develop these 

empirical relationships for converting optical measurements to PM mass concentrations 

(Grimm and Eatough 2009). Several commercially available ambient PM monitors 

currently utilize mass conversion relationships based on historical data to report PM 

concentrations from optical systems, such as the Aerosol Spectrometer series by 

GRIMM Technologies, Inc. (Ainring, Germany), the TSI Inc. DustTrak series (Shoreview, 

MN, USA), and the Palas GmbH Fidas System (Karlsruhe, Germany).  

The accuracy of PM concentrations calculated from optical data and converted 

using relationships based on historical data is strongly influenced by how closely the 

properties of the monitored aerosol match the properties of the historical dataset. For 

instance, errors in PM estimates at a clean background site, rural site, or a site heavily 

impacted by a single source could be significant if the employed PM calibration was 
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created from measurements in an urban area, all of which have different aerosol 

sources and, thus, optical properties. Estimating this relationship based on 

measurements of the aerosol of interest through an in situ calibration, referred to by 

the authors as the mass conversion factor (MCF), can decrease the error due to 

dissimilar aerosols. This method may also be used to provide a sample period PM 

calibration for instruments that do not have a historical dataset. Zavyalov et al. (2009) 

touched very briefly on how the MCF is calculated and potential uses. In this paper we 

provide more details on calculating the MCF, present data collected during field 

measurements that have been used to calculate MCFs, and give examples of how the 

MCFs have been used to estimate PM mass concentrations from optical sensors on finer 

timescales than filter-based measurements. In addition, results of multiple comparison 

studies between the filter-based PM samplers used in these studies to Federal 

Reference Method (FRM) samplers are presented. 

Methodology 

Instrumentation and Analysis 

PM mass concentration data were collected using filter-based MiniVol Portable 

Air Samplers from Airmetrics (Eugene, OR, USA). These are portable, battery operated 

instruments with programmable sample times. Air is pulled into the sample head at a 

nominal flow rate of 5.0 L min-1 where size separation occurs based on particle inertia 

through the use of a removable impactor plate assembly. This inertial particle 
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separation method is the same principle as that used in FRM samplers for PM with da ≤ 

10 μm (PM10) and PM2.5, although the design is different and the collection efficiency 

curve of the MiniVol assembly is not as steep as that of the FRM samplers (Hill et al. 

1999). The MiniVol can sample PM10, PM2.5, or PM with da ≤ 1 μm (PM1), depending on 

the impactor assembly used; total suspended particulate matter (TSP) may be collected 

if the impactor assembly is not used. Impaction plates were coated with a thin layer of 

high vacuum silicone grease to prevent particles removed from the airstream from 

being re-entrained in the sample flow. A filter holder is located downstream of the size 

separator to collect particles remaining in the airstream.  

Sample flow is not actively maintained at 5.0 L min-1 by the MiniVol. Instead, it is 

set using a calibrated rotameter before each run and verified during sample retrieval. 

Flow calibrations were conducted yearly and prior to deployment for each instrument 

used. The calibration equations and estimated sample period average pressure and 

ambient temperature (Tamb) were used to calculate the sample period specific rotameter 

settings necessary to achieve a sample flow of 5.0 L min-1. Occasional sampling or 

handling irregularities occurred with MiniVol samples, all of which were noted. Any 

sample with a noted issue was excluded from further calculations. 

Teflon filters 47 mm in diameter were used to collect all samples herein 

reported. Filters were pre-conditioned according to the protocols outlined in Title 40, 

Part 50, Appendix J of the U.S. Code of Federal Regulations (40 CFR 50 Appendix J). Final 

average filter weights for both pre- and post-test were calculated from three stable 
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weights within ±5 µg determined using a microbalance, Type MT5 (Mettler-Toledo, Inc., 

Columbus, OH, USA). Calculated concentration values represent a sample period 

average. Balance accuracy was verified every 10 filter measurements using a 1.000 mg 

calibration weight.  

Aerosol Profilers, Model #9722 (Met One Instruments, Inc., Grants Pass, OR, 

USA) were used to measure the optical diameter (dop) of individual particles. These OPCs 

measure the amount of light scattered by a particle and compare that quantity to light 

scattered by calibration particles of various sizes to determine the particle’s dop. 

Measured dop are grouped into eight bins with the following size ranges:  1) 0.3–0.5 µm, 

2) 0.5–0.6 µm, 3) 0.6–1.0 µm, 4) 1.0–2.0 µm, 5) 2.0–2.5 µm, 6) 2.5–5.0 µm, 7) 5.0–10.0 

µm, and 8) > 10.0 µm. The OPC produces total particle counts per size bin over the 

sample period of duration t, ranging from 2 sec to 60 sec. Note that PM mass 

concentration calibrations based on historical data have not been developed for these 

OPCs. OPC flow measurements, usually made before and after experiments using a soap 

bubble displacement system (Gilian Gilibrator2 Calibration System, Sensidyne, LP, 

Clearwater, FL, USA), reported that average flow rates (q) ranged from 0.8 to 1.2 L min-1 

between OPCs but that the q for a given OPC was very stable. Sampled aerosol was not 

preconditioned to control temperature or relative humidity (RH) in measurements 

herein reported as they were made in dry climates. However, preconditioning is 

suggested as high RH may have substantial effects on particle properties and 

measurements, particularly for hygroscopic particles. 
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For a specific OPC (j), number concentration (Nij) per bin (i) is a function of raw 

particle counts (pij), the measured average flow rate (qj), and the sample time (t) as 

shown in Eq. 2-1. 

tq

p
N

j

ij

ij 

   (2-1) 

In this equation the units for N are # cm-3, p is number (#), q is cm3 min-1, and t is min. 

Inter-calibration of OPC particle counts was performed in post analysis to ensure 

comparability between deployment sites. The inter-calibration equations, referred to by 

the authors as Counting Correction Factors (CCFs), were calculated based on data 

collected either as a collocated group before or after an experiment or, if a collocated 

dataset did not exist, from multiple periods over the deployment during which the 

source under study was not active and OPCs were measuring a consistent, uniform 

background aerosol. As instrument response for each upper bin limit in each OPC must 

be factory calibrated individually, so too the CCFs must be calculated for each bin of 

each OPC. A CCFij is estimated through comparison of the average particle number 

concentration (Ňij) over the identified period with the average particle number 

concentration across all OPCs (Ňi). CCFs were applied to all Nij prior to further analysis. 

Both scalar and linear function (y = mx + b) CCFs have been found to greatly 

decrease inter-instrument variability. As an example, the variability between Ňij prior to 

CCF application to a collocated dataset was 18.0%, calculated as the relative standard 

deviation (RSD). Application of scalar CCFij values reduced the RSD to 6.8%, and 
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application of linear function CCFs yielded a RSD of 6.5%. Other types of CCF equations 

may be used as deemed appropriate. 

The volume concentration (V) of sampled particles based on N may be calculated 

based on the following simplifying assumptions:  1) the particles are spheres, and 2) the 

maximum measured dop is 20 µm. The assumption of a maximum measured dop provides 

an upper bound for the largest-sized channel. The geometric mean dop per bin (GMDi) 

was selected as the representative diameter of the particles in a given bin i with the 

assumption of a log-normal distribution of particle counts. The cumulative V (Vk) up to a 

particle diameter k (dk) may be calculated using Eq. 2-2: 


k

dnVk

d

0

3 dd)d(
6



  (2-2) 

where n(d) is the number concentration at diameter d. For application to the collected 

OPC data, Eq. 2-2 is discretized and expressed in the following terms that have been 

previously defined: 
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where GMDi is expressed in µm, Ni is in # cm-3, and Vk is in units of µm3 cm-3. In this case, 

the Vk definition is similar to PMk concentrations: the total volume of particles whose dop 

is ≤ k = 1 μm, 2.5 μm, 10 μm, and ∞ for TSP. 
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MCF Calculations 

The MCF is calculated from optical and aerodynamic particle measurements. The 

Vk data, as calculated in Eq. 2-3, are averaged over the corresponding MiniVol sample 

time. The MCF, with units of density (g cm-3), for each PM size fraction k is calculated as 

shown in Eq. 2-4.  

k

k

k
V

PM
MCF 

 (2-4) 

The MCF is typically averaged across sample locations. Note that this MCF is different 

from the MCF described by Binnig et al. (2007). Binnig et al. include particle shape factor 

and density, which must be supplied by the user. However, this MCF incorporates the 

many properties from the particles, the environment, and the measurement techniques 

that influence the reported PMk and Vk values without requiring explicit consideration. 

Including these factors in the MCF may lead to significantly different values and larger 

variability in MCFk across sample periods and instrumentation than other conversion 

factors or mean density correction methods report.  

Properties of particles that may influence optical and aerodynamic 

measurements include, but are not limited to, chemical composition, effective density, 

shape, and index of refraction, which are interdependent to varying degrees. Chemical 

composition affects both the index of refraction and effective density. As OPC 

measurements are influenced by a particle’s index of refraction, differences in indices of 
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refraction between measured ambient and calibration particles may result in significant 

differences between a particle’s physical diameter (dp) and dop, leading to potentially 

significant differences between calculated and actual V and Vk. The OPC dop sizing 

calibrations were performed by the manufacturer with polystyrene latex (PSL) spheres. 

These calibrations were used for all sample periods. No attempts were made to 

calibrate the OPCs to local aerosol mixtures due to their complex and changing natures. 

This may result in positive or negative biases in sizing, with the degree of impact varying 

with ambient aerosol dp and chemical composition.  

Particle properties also influence filter-based measurements. The MiniVol 

impactor assembly separates particles based on da, which is influenced by dp, effective 

density, and shape, among other factors. Combining optical and aerodynamic 

measurements in calculating the MCF also combines the effects of particle properties, 

with varying impacts. For instance, if a particle has a da larger than a MiniVol assembly 

cut point but a dop smaller than the lower bin limit of the OPC channel corresponding to 

the MiniVol assembly cut point, it may be included in Vk as a smaller particle but not in 

PMk, leading to a smaller MCFk. The inverse situation with dop and da may also occur, 

resulting in a larger MCFk.  

Additional complications may arise from the past and current ambient 

environments in which the particle(s) has (have) been suspended. For instance, Tamb 

may affect chemical composition as volatile and semi-volatile compounds are found as 

both gasses and particles over the typical range of Tamb. Also, some compounds common 
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in ambient particles, such as ammonium sulfate ((NH4)2SO4) and ammonium nitrate 

(NH4NO3), readily absorb water at RH conditions above their deliquescence point, which 

varies between compounds and with Tamb, and thus increase the particle size and 

change the chemical composition (Finlayson-Pitts and Pitts 1999). Effects of Tamb and RH 

will be different between optical- and filter-based samplers and may be large, 

particularly for hygroscopic particles, depending on the similarity of sample period Tamb 

and RH conditions to those used in filter conditioning. The MCF envelops all of these 

effects without requiring their quantification.   

The sampling properties of the instruments used to measure PMk and Vk also 

influence the MCF. One factor is particle aspiration effectiveness, particularly for large 

particles. This refers to how well particles of a given size are drawn into the system at 

the inlet. It is a strong function of a particle’s inertia and da and the inlet design. 

Marchant et al. (2011), based on conversations with Met One Instruments, Inc., stated 

that particles with da larger than about 25 μm are not likely to enter the OPC inlet and 

that the aspiration efficiency of particles down to 5 μm may be affected at wind speeds 

greater than ~3 m s-1. Baldauf et al. (2001) reported that aspiration efficiencies for 

MiniVols for particles with da = 10 μm vary from 100% at a wind speed of 1.4 m s-1 to 

~70% at a wind speed of 16.7 m s-1. 

One factor affecting mass measurement systems is the effectiveness of the size 

selection mechanism. The FRM PM10 and PM2.5 size segregation sample heads have 

been designed to mimic the particle removal efficiency of the human respiratory 
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system, with most utilizing a particle’s inertia for separation if it is above the designed da 

cut point. The removal efficiencies can be represented by an S-curve with some particles 

smaller than the targeted cut point being removed, half the particles at the cut point 

being removed, and some particles larger than the cut point passing through the 

removal mechanism. The MiniVol impactor removal efficiency is designed to be similar 

to FRMs, though the slope is not as steep (Hill et al. 1999). Significant particle loading on 

the MiniVol impactor plate may lead to particles impacting the surface and returning to 

the airstream for collection on the filter. This is known as “particle bounce” and may 

result in higher PMk being reported than is actually present. The manufacturer suggests 

the use of a thin grease film on the impactor plate as a preventative measure, with a 

cleaning and film renewal cycle based on sampling frequency and sampled 

concentrations. If cleaning and renewal cycles are too infrequent, particle buildup may 

occur and result in particle bounce (Tropp et al. 1998).  

MCF values have been calculated from data collected during six field studies 

conducted in the San Joaquin Valley (SJV) of California, in the Cache Valley along the 

border between Utah and Idaho, and on the Colorado Plateau in eastern Utah. 

Measurements were taken during summer and fall seasons between 2007 and 2012 

under the meteorological and potential PM source conditions listed in Table 2-1. Field 

study average Tamb were above 20 °C during all but one, and average RH values were in 

the 30% to 40% range. Maximum RH values were between 60% and 80% and occurred 

for short periods of time in early morning when Tamb was lowest. Typical point sensor 
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deployment on these field studies consisted of collocating an OPC with one to four 

MiniVol samplers. Sampler inlets were arranged at approximately the same elevation 

above ground level (AGL) and within a circle of radius ≤ 1.5 m with a minimum 

separation distance between inlets of 0.3 m to prevent interference. Samples were 

collected between 2 m and 10 m AGL. MiniVol sample periods ranged from 1 to 24 hr, 

depending on sampling objectives, while OPCs recorded data continuously in 20 sec 

intervals. Proper maintenance of the MiniVol impactor plate surface was a priority in 

each deployment.  

MiniVol Accuracy and Precision Tests 

Several collocated ambient tests were conducted in which multiple MiniVols and 

one or two FRM samplers were deployed to determine the precision and accuracy of the 

MiniVols. The FRM instruments used were Anderson Regulated Air Sampler (RAS) units 

operated by the authors for PM10, a Partisol Plus Model 2025 Sequential Air Sampler 

operated by the State of Utah Division of Air Quality (UDAQ) for PM2.5, and a Partisol 

FRM Model 2000 Air Sampler operated by UDAQ for PM10, all of which were 

manufactured by Rupprecht and Patashnick Co., Inc. (now Thermo Fisher Scientific, Inc., 

Waltham, MA, USA). All filter samples collected by the authors were conditioned and 

weighed as previously discussed. Filter treatment by UDAQ followed established U.S. 

National Ambient Air Quality Standards (NAAQS) monitoring protocols. Samples were 
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Table 2-1. Conditions during each field campaign for which the mass conversion factor 
(MCF) has been calculated and included in this manuscript. Meteorological values are 
those recorded during sample periods only. 

Location 
Month(s) 

& Year 
Sample 
Periods 

Meteorological Conditions Potential PM 
Sources References  Avg ± SD Min Max 

Cache 
Valley, 
Utah, 
USA 

July 2007 5 Tamb 
(°C)  

25 ± 7 11 36 
Combustion, small 

industrial processes, 
agriculture, 

construction, mobile 

NA 

RH 
(%) 

40 ± 22 12 86 

Colorado 
Plateau, 
Utah, 
USA 

October 
2009 

4 Tamb 
(°C) 

9 ± 5 -4 18 
Long range transport 
(Malm et al., 2004), 

windblown dust, 
mobile, unpaved 

roads 

NA 

RH 
(%) 41 ± 15 17 71 

San 
Joaquin 
Valley, 
Cal., USA 

 

October 
2007 

7 Tamb 
(°C) 

23 ± 4 14 30 

Samples collected 
around agricultural 

operations 

Others: Combustion, 
industrial processes, 
construction, mobile, 
and others (Held et 

al., 2004) 

Moore et 
al., 2013 

RH 
(%) 

38 ±14 17 79 

May & 
June 
2008 

13 Tamb 
(°C) 

30 ± 4 18 37 
NA 

RH 
(%) 

28 ± 10 11 64 

June 
2008 

7 Tamb 
(°C) 

28 ± 7 15 39 
Marchant 

et al., 2011 

RH 
(%) 

39 ± 17 13 77 

August 
2012 

5 Tamb 
(°C) 

28 ± 6 13 37 
NA 

RH 
(%) 

39 ± 18 20 85 

Note: Avg = average, °C = degrees Celsius, Max = maximum, Min = minimum, NA = not 
applicable, PM = particulate matter, RH = relative humidity, SD = standard deviation  

collected over 23 or 24 hr sample periods, with samplers arrayed to minimize horizontal 

and vertical spread while maintaining a minimum of 0.5 m distance between samplers.  

A PM2.5 comparison test was conducted in early March 2004 utilizing 15 MiniVol 

samplers and UDAQ’s PM2.5 FRM over four days. A PM10 comparison test was then 
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conducted in late March 2004 over four sample periods with six MiniVols and the 

Anderson RAS PM10 FRM. Samples were collected every two to three days to allow for 

filter deployment and collection. Another comparison study was carried out in July 2007 

over five consecutive days. In this test, 20 MiniVol samplers were arranged adjacent to 

the UDAQ PM2.5 and PM10 FRMs. Three MiniVols sampled PM1, seven sampled PM2.5, 

seven sampled PM10, and three sampled TSP. The UDAQ FRMs had multiple filter 

cassettes with automated switching, allowing them to run nearly continuously. The 

MiniVols, however, required manual filter swapping between each sample. Therefore, 

the MiniVols sampled from 0:30 to 23:30, with the 1 hr break to allow time to switch 

sample heads, record elapsed sample run time, and adjust sampler flows. Verified PM2.5 

and PM10 values were obtained from UDAQ for all sample dates. 

The accuracy and precision tests were carried out in the Cache Valley. Silva et al. 

(2007) showed that periods of elevated PM2.5 in Cache Valley in early 2004 were 

dominated by secondary particles, mostly NH4NO3, (NH4)2SO4, and organic carbon (OC), 

with 90% of the mass present in the submicron range. Cache Valley and other nearby 

mountain valleys experience episodic events of air pollution levels above NAAQS limits 

during winter due to a combination of topographical, meteorological, and source 

characteristics (Malek et al. 2006; Silva et al. 2007; Silcox et al. 2012; Lareau et al. 2013). 

Summertime elevated PM has typically occurred due to impacts from wildfire or 

windblown dust events.  
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Results and Discussion 

Field Study MCF Results 

Six field deployments have resulted in a total of 95 samples for comparison 

between reported OPC and MiniVol values for PM1, 380 for PM2.5, 394 for PM10, and 208 

for TSP. Fig. 2-1 presents scatter plots of all the data, separated into the four size 

fractions. PMk was almost always greater than Vk as few points are below the 1-to-1 

dashed line. Linear trends were evident in the k = 1 μm, 10 μm, and TSP graphs, with 

slopes between 1.2 and 1.6 and 0.78 < R2 < 0.82. The linear fit to k = 2.5 μm data had a 

slope of 1.4 but did not represent the data well (R2 = 0.06) due to a collection of low V2.5 

values (< 10 μm3 cm-3) paired with high PM2.5 concentrations (> 100 μg m-3). The 

majority of the high PM2.5/low V2.5 pairings come from a single field study. The cause of 

these unusual values and their grouping is discussed at the end of this subsection. The k 

= 2.5 μm values from this field study were removed and the remaining data were 

plotted in the graph inset in Fig. 2-1b. The linear fit is significantly more representative 

(R2 = 0.66) with a slope of 2.4 (n = 279). 

PM chemical composition analyses were performed on select PM2.5 samples 

from two of the six datasets and on select PM2.5, PM10, and TSP filters from one dataset, 

all collected in the SJV. Water-soluble ions were quantified for all samples, while OC and 

elemental carbon (EC) were quantified in PM2.5 samples only based on the assumption 

that the majority of OC and EC were present in the PM2.5 fraction. The results showed 
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Figure 2-1. Scatter plots of Vk and PMk for the following values of k: a) 1.0 μm, b) 2.5 μm, 
c) 10 μm, and d) TSP. The plot inset in (b) shows the V2.5/PM2.5 pairs after excluding data 
from one field study. 

that most of the mass in analyzed samples (50-85%) was composed of 

elements/compounds not in the list of analytes. Malm and Hand (2007) used six particle 

composition classes to represent PM2.5 dry mass based on the Interagency Monitoring 

of Protected Visual Environments (IMPROVE) protocols: NH4NO3, (NH4)2SO4, OC, EC, 

crustal, and sea salt. As NH4NO3, (NH4)2SO4, and sea salt were quantified in the water-

soluble ion test, the majority of PM during these field studies in the SJV was, therefore, 
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assumed to be associated with crustal material. Particle chemical composition for the 

remaining three field studies is unknown. 

A statistical summary of sample period average MCFk values for all periods with 

more than two collocated comparisons is presented as a box and whisker plot in Fig. 2-

2. As points of reference, the average density of soil is 2.65 g cm-3, the density of 

mercury is 13.5 g cm-3, and Peters (2006) provided several ambient PM density values 

derived from field studies that range from 1.77 to 2.64 g cm-3 (USDA NRCS 2007). Note 

that the y-axis in this figure has been limited in order to show details at the lower 

values—one sample period had an average MCF2.5 of 23.5 g cm-3. Outliers are shown as 

plus signs and calculated as greater than (less than) the 75th (25th) percentile value plus  

(minus) 1.5 times the interquartile range (IQR). The IQR is calculated as the difference 

between the 25th and 75th percentiles, which are shown by the top and bottom lines of 

the boxes. The whiskers extend to the most distant data values from the box edges 

within 1.5 times the IQR. The MCF10 and MCFTSP values were more tightly grouped than 

the MCF1 and MCF2.5 values, as indicated by the smaller IQRs. This is also supported by 

the locations of the mean values for MCF10 and MCFTSP, shown by the dots within circles, 

being much closer to the median, shown by the center line in the boxes. The overall 

mean ± one standard deviation (SD) and the median of the period average values, 

respectively, were as follows: MCF1 = 4.3 ± 2.2 g cm-3 and 3.2 g cm-3 (n = 5); MCF2.5 = 5.0 

± 1.1 g cm-3 and 3.2 g cm-3 (n = 36); MCF10 = 1.6 ± 0.3 g cm-3 and 1.5 g cm-3 (n = 38); and 

MCFTSP = 1.6 ± 0.4 g cm-3 and 1.3 g cm-3 (n = 33). The absence of outliers for MCF1 is 
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likely due the calculations being based on just five data points from a single field 

deployment.  

The RSD between MCF values from different sample locations within a sample 

period averaged between 17% and 21% for MCF2.5, MCF10, and MCFTSP, with maximum 

and minimum values for each size around 60% and 5%, respectively. Samplers were 

spread around various facilities/operations for five studies. The sixth study was 

conducted as a part of the MiniVol precision and accuracy test in July 2007 and had 

lower variability than the others. Seven OPCs were deployed with 20 MiniVols, providing 

Figure 2-2. A box and whisker plot of period averaged MCFk values. 
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multiple pairwise collocated comparisons to determine the minimum variability of the 

calculated MCFs. The RSD averages were 10% for MCF1, 8% for MCF2.5, and 5% for both 

MCF10 and MCFTSP with maximum values of 17%, 11%, 8%, and 6% for MCF1, MCF2.5, 

MCF10, and MCFTSP, respectively. The data from all deployments show that calculated 

MCF values can be expected to have a minimum RSD of 5–10%, an average RSD ≤ 25%, 

and maximum RSDs can be > 50%. High RSDs were found across the range of average 

MCF values and the amount of variability was different across size fractions within a 

sample period.  

High individual MCF values were calculated during multiple field studies, but 

were usually limited to the MCF2.5. Some factors potentially contributing to variations in 

MCFk were discussed earlier, including the properties of the particles, past and present 

environmental conditions, and sampling methodologies. Sample period average MCFk 

values were graphically compared (not shown) with sample period average Tamb, RH, 

wind speed, and percent of OC, EC, ionic, and unknown chemical composition. Trends 

were not evident in any of these plots.  

Sampling errors or irregularities may also influence the MCF. The majority of 

MCF2.5 values above 5 g cm-3, including the maximum of 66.1 g cm-3, were from the field 

study referenced previously with the high PM2.5/low V2.5 pairs. The cause of this 

grouping of high MCF2.5 values is unclear, though sampling irregularities are suspected. 

Meteorological conditions were hot and dry throughout, minimizing potential effects of 

water absorption by hygroscopic particles. There was not a significant PM2.5 
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composition difference between periods with higher and lower MCFs within this study. 

MCF10 and MCFTSP patterns tended to follow MCF2.5, having correlation coefficients (r) of 

0.64 and 0.84, respectively, but with much smaller changes in amplitude. Comparing 

MCF values with sample duration produced good negative correlations (-0.69 ≤ r ≤ -0.64) 

for all MCFk, which means that MCFk tended to increase as sample duration decreased. 

Contamination during filter handling and storage is a possible cause, one to which 

samples with smaller mass catch, i.e. samplers with PM2.5 impactor configurations 

and/or shorter sample times, would be more sensitive. Field and lab blanks, 

unfortunately, were not taken to monitor for and quantify contamination. 

Contamination mitigation and monitoring strategies have since been developed and 

successfully implemented. It is believed that a poor quality PM2.5 dataset resulted in the 

unusually high MCF2.5 values for a portion of this study. 

The MCF method should be applied carefully and the quality of the data used in 

its calculation should be verified, as shown in the example above. In cases with poor 

quality data, the authors have occasionally chosen not to use the calculated MCF and 

instead used density values for the dominant particulate chemical component. In the 

example above, the average density of soil (2.65 g cm-3, USDA NRCS, 2007) replaced the 

calculated MCF2.5 values as measurements were being made of agricultural tillage 

plumes. If all the MCFk values for this field study were removed, the mean ± one SD and 

median values become 3.2 ± 0.6 and 2.7 g cm-3 for MCF2.5 (n = 27), 1.4 ± 0.3 and 1.3 g 
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cm-3 for MCF10 (n = 28), and 1.1 ± 0.2 and 1.1 g cm-3 for MCFTSP (n = 21). MCF1 statistics 

do not change as PM1 measurements were not made during this study. 

Application of the MCF 

Calculated MCFk values have been used to convert Vk data collected by multiple 

optical instruments into PMk. The MCFs were applied to OPC data, allowing the 

examination of temporal changes in mass loadings unresolved by filter-based MiniVols. 

For example, PM10 concentrations measured by a collocated MiniVol and OPC 

downwind of a commercial dairy over two days are shown in Fig. 2-3. The MiniVol 

collected integrated samples from 00:30 to 23:30 each day, yielding a single average 

concentration per sample period. The OPC provided a data point every 20 sec, which 

have been have averaged up to 5 min and 23 hr, corresponding to the MiniVol sample 

time, and multiplied by the average MCF10 for both days of 1.3 g cm-3. Note that the 

diurnal PM10 patterns easily shown by the 5 min averaged OPC data are not evident in 

the 23 hr average data that span the same time period. However, the influence of the 

evening peak is included in the 23 hr average concentrations as they are higher than the 

OPC 5 min average levels throughout most of the sample period. Applying the MCF in 

this case allows for the analysis of PM10 at much smaller temporal scales, which may 

help to explain emissions patterns and lead to more effective and efficient mitigation 

strategies. 
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Figure 2-3. Time series of PM10 concentrations measured immediately downwind of a 
dairy farm over two days as measured by a collocated MiniVol and OPC. 

A main objective of most of the field deployments was to estimate PM emissions 

from a source. In all such cases, an emissions estimation methodology was employed 

that used the difference between downwind and upwind MiniVol concentrations. OPC 

data may also be used for this after the conversion to mass concentration and on a finer 

temporal scale. For instance, Moore et al. (2011) estimated emissions during a wind 

erosion event based on OPC PMk.  

Another optical instrument to which the MCF has been applied is the Aglite 

elastic light detection and ranging (lidar) system, as described by Marchant et al. (2009). 
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The Aglite lidar is a three wavelength system capable of scanning in both horizontal and 

vertical directions that measures laser pulse returns from particles in the atmosphere. 

The lidar data analysis algorithm, described by Zavyalov et al. (2009), utilizes OPC data 

collected during the lidar operation to calibrate the lidar return signal, with the final 

product being an estimate of Vk in each lidar bin. The MCFk values are then used to 

convert lidar Vk to PMk, as shown in Fig. 2-4.  

Figure 2-4. Example of PM10 concentrations calculated from a single lidar scan through 
the use of the MCF. This vertical scan was taken along the downwind edge of an 
agricultural field being tilled. 
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Comparisons between lidar and OPC data converted to PMk with the MCFk and 

MiniVol PMk measurements have been made in most of the field campaigns involving 

the lidar (Bingham et al., 2009; Zavyalov et al., 2009; Marchant et al., 2011; Moore et al., 

2013). In summary, the results have shown good agreement between the three at 

upwind locations with more variability between the lidar and the other two point 

measurements downwind of sources, particularly non-stationary ones such as 

agricultural tillage operations. A large factor contributing to the observed differences is 

that the lidar is normally operated in a scanning mode and, thereby, collects coincident 

data at the downwind OPC and MiniVol location for only 5-10% of a given time period. 

OPC PMk values have usually been closer to MiniVol measurements due to collocation 

throughout the measurement period. For instance, the OPC 5 min average data in Fig. 2-

3 were averaged over the 23 hr MiniVol sample periods and plotted. As can be seen, the 

23 hr average OPC PM10 values are indistinguishable from the MiniVol reported 

concentrations, being only 2% higher. Refer to Moore et al. (2013) for more explanation 

of possible reasons for differences between the three measurements.  

Note that the SD of PMk is calculated as follows (Berthouex and Brown, 2002): 
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In the case of the MCF datasets presented herein, the RSDPMk for the sample period 

average minimum RSDMCFk (5%), RSDMCFk for an arrayed deployment (20%), and 

maximum RSDMCFk (50%) were calculated as 21%, 28%, and 54%, respectively, assuming 
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a RSDVk value of 20%. If a RSDVk value of 10% is used, the RSDPMk values drop to 11%, 

22%, and 51%, respectively.  

Mass calibrated lidar data have also been used to estimate source emissions 

through the application of a mass balance. Bingham et al. (2009) provide a description 

of the sampling and analysis methodology utilized to perform the mass balance 

emission calculations. Several papers have estimated emissions based on this technique 

(Bingham et al. 2009; Marchant et al. 2011; Moore et al. 2011, 2013). A scanning, mass 

calibrated lidar system such as this can provide PM concentration and emissions data 

over a large area in time steps on the order of seconds or minutes, allowing the 

identification of spatial inhomogeneity and temporal fluctuations and patterns on 

horizontal and vertical extents not achievable through point measurements.  

If one desires to use this MCF technique to provide a mass concentration 

calibration for optical systems, it is recommended that the reliability and reproducibility 

of the particle measurement systems be sufficiently characterized, particularly the 

optical systems. The authors use calibrations in concert with collocated tests in typical 

deployment conditions to accomplish this objective. The development and use of the 

CCFij has proven key in normalizing OPC count data to RSD values of ≤ 10%—the 

variability in counts between the OPCs employed by the authors during a collocated test 

challenges the confidence in any one of them to provide the true absolute particle 

count. While this reduces the confidence in calculated V and Vk, the MCFk provides a 
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stable point of reference for PMk. Additionally, the MCF should be applied with care as 

described above. 

MiniVol Precision and Accuracy Test Results 

Collocated comparison tests between filter-based PM sensors were conducted in 

three separate studies, each with replicate MiniVol samplers over four to five sample 

periods. PM2.5 concentrations measured by the FRM units ranged from 7.4 μg m-3 to 

53.4 μg m-3, while PM10 levels ranged from 4.0 μg m-3 to 40.7 μg m-3. The maximum and 

minimum PM10 concentrations being lower than the PM2.5 values are not of concern—all 

but one of the PM10 comparison tests were conducted on separate days from the PM2.5 

tests and, in the case of the coincident test, the reported PM10 level was higher than the 

PM2.5 level. All data were screened for noted sample handling and collection errors. 

Fig. 2-5 presents both PM2.5 and PM10 comparisons with the MiniVol data along 

the x-axis and the FRM data along the y-axis. As can be seen from this graph, most of 

the MiniVol data are fairly well clustered, with most cluster cores within ± 10% of the 1-

to-1 line across the range of observed values. However, there are several points 

significantly outside of the clusters. The extreme value test was used to determine if 

these points were statistical outliers. Nineteen points were found to be statistical 

outliers and have been marked on the graph by a dot inside the marker. Note that all 

but two of the outliers were found in the PM2.5 dataset, and that 12 of those were in the 

PM2.5 comparison test carried out in March 2004. Out of the four sample periods in this 
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study, one sampler contributed four statistical outliers, a second contributed three 

outliers, and a third contributed two outliers. Multiple outliers resulting from a single 

sampler is suggestive of sampler operational issues. Therefore, all data from these 

samplers were removed from further analysis and the outlier analysis for this PM2.5 

dataset was performed again, resulting in only three identified as statistical outliers for a 

total of 10 from all datasets. All other samplers with outlier data points had just one 

each. The following linear regression equations were developed based on the remaining 

points: FRM = 0.99xMiniVol + 0.31, R2 = 0.962, for PM2.5; and FRM = 0.83xMiniVol + 

3.90, R2 = 0.918, for PM10. 

Potential causes of variability and outliers between the MiniVol samples may 

include, but are not limited to, the following: 1) recording errors during weighing or 

operation logging, 2) improper setting of the sample flow, 3) sample contamination, 4) 

improper assembly of the sampler head, 5) non-uniform PM levels across the inlets, and 

6) random variability in sampler operation and mass catch determination. Preventative 

measures were taken to decrease the likelihood of the first five listed causes. Personnel 

were trained on proper instrument assembly, instrument operation, sample handling, 

filter weighing, and datalogging procedures to minimize human error. Filter exposure 

during handling and transport was minimized to prevent contamination. Samplers were 

deployed close together, in the ambient air, and within areas of uniform surface 

andsource conditions to maximize uniformity in average PM concentrations. Random 
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Figure 2-5. Comparison of PM2.5 and PM10 concentrations reported by the MiniVols and 
the respective FRM samplers. 

variability in sampler operation would likely result in relatively small variations in 

reported concentrations, not the large differences seen in the case of some outliers. The 

outliers seen in this study and not removed due to sampler operational issues, as 

previously discussed, are likely the result of a combination of human error, instrument 

operation anomalies, or random variations in PM concentration, though the exact 

cause(s) were not identifiable. Unless otherwise noted, these data were not excluded 

from further calculations due to the lack of an identified cause. 
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Table 2-2 lists various statistical measures of the variability between the MiniVol 

samplers for each size fraction in each study. The variability of reported PM 

concentrations between the MiniVols within a sample period, expressed as the RSD, 

ranged from 1% to 27%. The variability between MiniVols was generally smaller across 

all size ranges during the 2007 study compared to the 2004 studies with all average 

RSDs below 10%. The bias of the MiniVols was calculated by subtracting the sample 

period FRM concentration from the average MiniVol concentration and averaging across 

the sample periods within each study. The average PM2.5 biases were less than ±1 μg m-

3, but the PM10 biases averaged -1.9 μg m-3 during the March 2004 study and +4.9 μg m-3 

for the single PM10 sample period in the July 2007 study with a corresponding FRM 

sample. The results of the FRM and MiniVol comparison from these collocated sample 

periods are presented in Table 2-2 as a ratio. An FRM/MiniVol ratio of 1.0 shows the 

MiniVol reported the same PM concentration as the FRM, while a ratio greater than 1.0 

results from higher MiniVol concentrations and vice versa for ratios less than 1.0. The 

average ratios from the two PM2.5 tests ± the 95% confidence interval (CI) were 1.03 ± 

0.04 and 0.96 ± 0.04 for the 2004 and 2007 studies, respectively. These show the 

MiniVols were, on average, in very good agreement with the PM2.5 FRM under these 

conditions, even that the 95% CIs bound the value 1.00 in both cases. The PM10 ratios 

showed a higher deviation from 1.00 with 1.15 ± 0.14 and 0.88 ± 0.01 for the two 

studies, though the average values are still within 15% of 1.00. 
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Table 2-2. Statistical measures of the intra- and inter-instrument comparability test 
datasets (including outliers) conducted in March 2004 and July 2007. 

Statistic Statistic Units 

March 2004  July 2007 

PM2.5 PM10 PM1 PM2.5 PM10 TSPa 

Sample Periods count 4  5 

FRM PM Concentration        

   Range Min μg m-3 7.6 4.0  --- 7.4 35.0b --- 

    Max μg m-3 53.4 24.9  --- 27.6 --- --- 

MiniVol PM Concentration        

   Range Min μg m-3 6.6 1.8  7.4 7.6 17.9 45.3 

 Max μg m-3 56.5 29.3  25.5 30.2 49.5 78.8 

   RSD Avg % 10 13  8 7 4 3 

 Min % 5 4  3 3 1 3 

 Max % 14 27  14 10 8 3 

   Bias Avg μg m-3 -0.5 -1.9  --- +0.6 +4.9b --- 

 SD μg m-3 0.7 1.9  --- 1.4 --- --- 

   Samples  count 48 18  15 33 33 12 

   Outliers  count 3 2  0 5 0 0 

FRM/MiniVol Ratio        

   Avg  Unitless 1.03 1.15  --- 0.96 0.88 --- 

   SD  Unitless 0.16 0.31  --- 0.11 0.01 --- 

   95% CI  Unitless 0.04 0.14   0.04 0.01  

Note: Avg = average, CI = confidence interval, Min = minimum, Max = maximum, RSD = 
relative standard deviation, SD = standard deviation, --- = no data or insufficient data 
a Based on only two sample periods with three valid samples each 
b Only one PM10 sample collected by the Federal Reference Method (FRM) sampler 

Several previous MiniVol precision and accuracy studies have been reported in 

multiple PM sampling configurations. Heal et al. (2000), Baldauf et al. (2001), and Chen 

et al. (2007) reported very good MiniVol precision. Baldauf et al. (2001), Chow et al. 

(2002), and Chen et al. (2011) found the MiniVols yielded PM levels very similar to the 
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comparison sampling systems. Hill et al. (1999) found that the PM2.5 MiniVol was 

statistically “equivalent” to an FRM only when results were field blank corrected. Chow 

et al. (2006) found differences between PM2.5 MiniVols and FRMs at multiple sites 

ranging from 1.23 to 1.41 and had an overall average of 1.32. Heal et al. (2000) reported 

the MiniVol correlated very well with a FRM PM10 sampler in indoor environments with 

PM10 levels ~ 10 μg m-3, but on average reported mass concentrations 23% greater. 

Salter and Parsons (1999) found a MiniVol did not correlate well in comparisons with a 

tapered element oscillating microbalance (TEOM; Rupprecht & Patashnick Co. Inc., now 

Thermo Fisher Scientific, Inc., Waltham, MA, USA) and a Partisol. Kingham et al. (2006) 

found weak PM10 correlations with data from both a TEOM and a DustTrak during one 

series of measurements and good correlations during a second series of measurements.  

Insights gained through these tests and analyses with respect to obtaining 

accurate and precise PM measurements with MiniVols (or any other PM system) should 

be noted. First, proper maintenance and regular inspection of the MiniVol is required, 

with particular focus on flow calibration and the impactor assembly. Second, occasional 

collocated tests are suggested for comparisons between multiple MiniVols and, if 

possible, an FRM to monitor for operational issues. If possible, these tests should be 

carried out under conditions typical of deployments. Third, proper personnel training is 

key to reducing human error.  
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Summary and Conclusions 

Currently available PM monitoring systems based on optical measurements 

generally use calibration factors calculated from historical data to estimate PM 

concentrations. However, the applicability of these calibrations may be questionable 

when properties of the measured aerosol are different from properties of the aerosols 

used to estimate the calibration factor. In this paper we have presented a simple, on-

site procedure to determine the MCFk that may be used to convert data from an optical 

instrument into PMk levels based on the actual measurement conditions. This procedure 

may also be used with an optical system for which a PM calibration has not been 

developed. Data from field measurements have been presented to demonstrate typical 

MCFk values for k = 1 μm, 2.5 μm, 10 μm, and TSP. MCF1 and MCF2.5 values tend to be 

higher than MCF10 and MCFTSP within a sample period. The average RSDs were about 

20% for arrayed measurements made during multiple field studies and < 10% for 

collocated measurements. The MCFk has been key in converting optical instrument data 

to mass concentration, which has allowed for examination of concentration and 

emissions data on much smaller time scales and, in the case of a scanning lidar, over 

much greater spatial scales.  

Results from studies examining the precision and accuracy of the MiniVol PM 

sampler are given. The sample period RSDs were usually < 10% for PM1, PM2.5, PM10, 

and TSP size fractions. Comparisons at the PM2.5 size fraction between MiniVols and 
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FRMs showed excellent agreement with average FRM/MiniVol ratios ± 95% CI of 1.03 ± 

0.04 and 0.96 ± 0.04 and average biases < ±1 μg m-3. Results of the PM10 comparisons 

were not as strong with average ratios of 1.15 ± 0.14 and 0.88 ± 0.01 and biases of -1.9 

μg m-3 and +4.9 μg m-3. In conclusion, the MiniVols yielded PM2.5 values that were 

essentially equivalent to PM2.5 concentrations reported by FRM samplers under these 

test conditions, and PM10 values were in good agreement with PM10 FRM 

measurements. 
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CHAPTER 3 

PARTICULATE EMISSIONS CALCULATIONS FROM FALL TILLAGE 

OPERATIONS USING POINT AND REMOTE SENSORS1 

Abstract 

Soil preparation for agricultural crops produces aerosols that may significantly 

contribute to seasonal atmospheric particulate matter (PM). Efforts to reduce PM 

emissions from tillage through a variety of conservation management practices (CMP) 

have been made but the reductions from many of these practices have not been 

measured in the field. A study was conducted in California’s San Joaquin Valley to 

quantify emissions reductions from fall tillage CMPs.  Emissions were measured from 

conventional tillage methods and a “Combined Operations” CMP, which combines 

several implements to reduce tractor passes. Measurements were made of soil 

moisture, bulk density, meteorological profiles, filter-based TSP (total suspended PM), 

PM10 (PM with an equivalent aerodynamic diameter ≤ 10 μm), and PM2.5 (PM with an 

equivalent aerodynamic diameter ≤ 2.5 μm) concentrations, and aerosol size 

distribution. A mass-calibrated, scanning, three wavelength lidar estimated PM through 

a series of algorithms. Emissions were calculated via inverse modeling with mass 
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concentration measurements and applying a mass balance to lidar data. Inverse 

modeling emission estimates were higher, often with statistically significant differences. 

Derived PM10 emissions for conventional operations generally agree with literature 

values. Sampling irregularities with a few filter-based samples prevented calculation of a 

complete set of emissions through inverse modeling; however, the lidar-based 

emissions dataset was complete. The CMP control effectiveness was calculated based 

on lidar-derived emissions to be 29% ± 2%, 60% ± 1%, and 25% ± 1% for PM2.5, PM10, 

and TSP size fractions, respectively. Implementation of this CMP provides an effective 

method for the reduction of PM emissions. 

Introduction 

Agricultural air emissions of gaseous species and particles, such as ammonia 

(NH3), volatile organic compounds (VOCs), and particulate matter (PM), are being 

increasingly evaluated for their contributions to local and regional atmospheric loading 

and their effects on air quality. Sources of these emissions include animal husbandry, 

waste management, harvesting, and tillage operations. The USEPA has set National 

Ambient Air Quality Standards (NAAQS) for ambient concentrations of designated 

criteria pollutants (CO, NOx, O3, SOx, PM10 and PM2.5, and Pb). Air quality regulatory 

agencies use the NAAQS to regulate emissions of pollutants that contribute to the 

concentration of criteria pollutants, with more stringent emissions requirements in 

areas determined to be in “nonattainment” with the NAAQS.  
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The San Joaquin Valley Air Basin was classified as being in nonattainment for 

PM10 until November 2008, and as such, the San Joaquin Valley Air Pollution Control 

District (SJVAPCD) was required to implement emission controls for all significant PM10 

sources in order to reduce primary PM10 emissions. Agricultural operations above a 

specified size that grow crops and/or have animal feeding operations were included in 

the list of significant sources required to reduce emissions and subject to SJVAPCD Rule 

4550, Conservation Management Practices (CMPs), passed in August 2004. In order to 

meet targeted PM emissions reductions, producers were required to choose at least one 

CMP from a list of several options for each applicable management area, submit the 

planned CMP strategy, and implement it once the plan was approved. The small amount 

of data available in the literature concerning the variety of CMPs for tillage activities 

required that most control efficiencies were estimated from emissions measurements of 

other operations (SJVAPCD, 2006). While the San Joaquin Valley Air Basin is currently 

classified as in attainment with the PM10 NAAQS, its maintenance plan requires the 

same strategies employed to bring it back into attainment continue to be applied. In 

addition, other PM10 non-attainment areas such as Imperial Valley, CA and Phoenix, AZ 

have CMP or best management practice (BMP) rules in place for agricultural tillage 

practices.  

Previous research on PM emissions from agricultural tillage operations (Flocchini 

et al., 2001; Holmen et al., 1998, 2001a, 2001b; Kasumba et al., 2011; Madden et al., 

2008; Wang et al., 2010) have focused almost exclusively on PM10 emission rates (ERs) 
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and factors (EFs). A significant conclusion from Flocchini et al. (2001) found emission 

factors were significantly influenced by environmental conditions, e.g., near-ground 

temperature profile, relative humidity, and soil moisture, and the potential variability of 

emissions from the same implement under opposing extreme environmental conditions 

may be larger than the variation from the type of crop or equipment used for tilling. 

Holmen et al. (1998) used elastic lidar (light detection and ranging) data collected during 

tillage emissions measurements to track plume movements in the downwind vertical 

plane and demonstrate plume depths were greater than the elevated point sensors 

located downwind at 10 m above ground level (agl). They suggested the best method 

for sampling fugitive dust includes a combination of elastic lidar and strategically placed 

point samplers. Marchant et al. (2011) utilized point sensors and a mass calibrated lidar 

to investigate fugitive dust emissions from a dairy. Madden et al. (2008) is the only one 

to report PM10 emissions from standard tillage operations and a CMP (strip-till). The 

California Air Resource Board (ARB) developed area source PM10 emission inventory 

calculation methodologies for agricultural tillage and harvesting operations based on 

the report by Flocchini et al. (California ARB, 2003a, 2003b).  

A Regional Applied Research Effort (RARE) grant was awarded to the USEPA 

Office of Research and Development, National Exposure Research Laboratory (NERL) in 

order to investigate the control effectiveness of one or more of the listed SJVAPCD 

CMPs using advanced measurement technologies in a field scale setting. The research 

questions this study was designed to address were: 1) what are the magnitude, flux, and 
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transport of PM emissions produced by agricultural practices for row crops where tillage 

CMPs are being implemented vs. the magnitude, flux, and transport of PM emissions 

produced by agricultural practices where CMPs are not being implemented?; 2) what 

are the control efficiencies of equipment being used to implement the “combined 

operations” CMP?; and 3) can these CMPs for a specific crop be quantitatively 

compared, controlling for soil type, soil moisture, and meteorological conditions? It is 

important to note that the main focus of this research was to quantify the control 

effectiveness of the selected CMP, which required the emissions to be quantified, and it 

was not an effort to provide representative emission factors for any one of the 

agricultural operations involved. This paper summarizes the results of the PM 

measurements made during a field experiment, the calculated ERs, and addresses these 

research questions. A full report detailing all of the sampling methodology and results is 

given in Williams et al. (2012). 

Materials and Methods 

The fall tillage sequence after harvest of a row crop (cotton) was selected for this 

comparison study. The experiment was carried out near Los Banos, California, during 

October 2007 on two adjacent fields with nearly identical crop and irrigation treatment 

over the previous several years. They were both planted in cotton for the 2007 growing 

season, which had been harvested prior to tillage activities with the stalks shredded and 

left on the ground (cooperating producer, personal communication, 2007). The site was 
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chosen based on producer cooperation, historically dominant northwest winds, and 

field layout. The surrounding landscape was flat and dominated by agricultural crop 

production. USDA-NRCS soil survey data list the soil in both fields as being dominated by 

nearly identical distributions of three clay loam classifications: 103 – Alros clay loam, 

partially drained; 139 – Bolfar clay loam, partially drained; and 170 – Dos Palos clay 

loam, partially drained (Soil Survey Staff, 2007).  

The CMP selected for investigation was the Combined Operations method, which 

reduces the number of passes by combining multiple operations into one. The CMP 

implement used was the Optimizer 5000 (Tillage Management, Tulare, California), which 

incorporates all forms of conventional tillage into a single pass. The CMP was applied to 

Field B (51.8 ha) and standard practices were used in Field A (25.5 ha). The sampling 

schedule is given in Table 3-1, providing the date, operation, sample time, total tractor 

time, total area tilled, and tillage rate. Most of the operations had two tractor and 

implement pairs working the field at one time; total tractor time is the sum of time 

spent by each tractor and implement pair tilling the field. Less than the full field was 

tilled in each measurement period due to environmental, temporal, and equipment 

factors. For example, there were two samples collected for the Disc 2 pass – farm 

equipment malfunctions during the Disc 2A sample period halted the operation and it 

was resumed the following day when the remainder of the field was tilled in the Disc 2B 

sample period.  
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Table 3-1. Sample schedule and sample period tillage and meteorological characteristics. 
Meteorological parameters measured at 5 m above ground level. 

Date 
Tillage 
Operation 

Sample 
time 

Total 
tractor 
time 

Total 
area 
tilled 

Tillage 
rate 

Mean 
temp 
± 1σ 

Mean 
wind 
speed 
± 1σ 

Mean 
wind 
direction 
± 1σ 

  hr hrtractor ha 
ha 
hrtractor

-

1 
C m s-1 ° 

Combined Operations Practice – Field B 

19 
Oct. 

Chisel 5.33 8.5 22.0 2.6 20.5 ± 
2.8 

1.1 ± 
0.3 

43 ± 62 

20 
Oct. 

Optimizer 2.85 4.36 20.0 4.7 16.8 ± 
1.3 

6.9 ± 
2.0 

320 ± 1 

Conventional Practice – Field A 

23 
Oct. 

Disc 1 7.27 11.0 24.8 2.3 26.1 ± 
2.6 

1.6 ± 
0.6 

320 ± 7 

25 
Oct. 

Chisel 4.24 6.5 19.5 3.0 27.4 ± 
1.8 

1.2 ± 
0.8 

338 ± 9 

26 
Oct. 

Disc 2A 5.52 3.4 10.5 3.0 22.0 ± 
1.9 

2.9 ± 
0.8 

328 ± 5 

27 
Oct. 

Disc 2B 4.09 5.75 14.2 2.5 22.7 ± 
1.9 

3.1 ± 
1.3 

10 ± 33 

 Total Disc 
2 

9.61 9.16 24.7 2.7 --- --- --- 

29 
Oct. 

Land 
Plane 

3.49 3.33 8.0 2.4 23.5 ± 
1.6 

1.7 ± 
0.9 

1 ± 19 

 

Sample Layout 

Sensors for PM and meteorology were distributed to measure upwind and 

downwind conditions based on the historically dominant northwest wind. 

Meteorological characterizations were performed at upwind, downwind, and crosswind 
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locations with the instrumentation in Table 3-2. Vertical temperature, humidity, and 

wind speed profiles were measured using two 15.3 m towers, one upwind and one 

downwind as shown in Figure 3-1. Each tower had five humidity/temperature sensors at 

1.5, 2.5, 3.9, 6.2, and 9.7 m above ground level (agl) of and 3-cup anemometers at 2.5, 

3.9, 6.2, 9.7, and 15.3 m agl. Wind direction was measured at 15.3 m using a wind vane. 

Wind direction measurements were made at 15.3 m agl on the towers instead of 10 m, 

as is typical, due to fact that lidar measurements were made at higher elevations (up to 

200 m agl) and the 15.3 m measurement height was reasoned to provide a better 

representation of both ground level and higher elevation wind direction than the 10 m 

height. A meteorological station monitored wind speed, wind direction, temperature, 

relative humidity, precipitation, barometric pressure, and solar radiation at 5 m agl at 

the air quality (AQ) trailer locations in Figure 3-1. Four pairs of three-dimensional sonic 

anemometers and infrared gas analyzers were deployed around the fields to 

characterize upwind and downwind turbulence, as well as vertical fluxes of latent heat 

(evaporation), sensible heat, carbon dioxide, and horizontal momentum. Bulk density 

and soil moisture were quantified prior to each operation, with calculations performed 

as described in Doran and Janis (1996). 

 Particulate matter was characterized by 30 MiniVol Portable Air Samplers 

(AirMetrics, Eugene, Oregon), a filter-based mass concentration sampler, and by nine 

Aerosol Profilers (model 9722, Met One Instruments, Grants Pass, Oregon), also known 

as optical particle counters (OPCs). The MiniVol is a portable, programmable, filter- 
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Table 3-2. Manufacturer, precision, and accuracy information for deployed 
meteorological instrumentation. 

Instrument 
Model Manufacturer 

Measured 
Parameter Accuracy 

HMP45C Vaisala, Oulu, 
Finland 

temperature 0.2 C at 20 C 

relative humidity 2% for values in the range 

0% to 90% and 3% for 
values in the range 90% to 
100% 

Gill 3-cup 
anemometer 

RM Young Co., 
Traverse City, 
Michigan 

horizontal wind 
speed 

0.2 m s-1 over 1 m s-1, 
threshold speed = 0.5 m s-1 

024A Wind Vane Met One 
Instruments, Grants 
Pass, Oregon 

wind direction 5°  

Vantage Pro2 
Plus Weather 
Station 

Davis Instruments, 
Inc., Hayward, 
California 

temperature 0.5 C for values greater 

than -7 C, 1.0 C for values 
less than -7 C 

relative humidity 3% for values 0% to 90% 

and 4% for values 90% to 
100% 

horizontal wind 
speed 

1 m s-1or 5%, whichever is 
greater 

wind direction 3° 

precipitation 3% or 0.02 mm per event, 
whichever is greater 

barometric 
pressure 

±0.8 mm Hg at 25°C 

solar radiation 5% of full scale 

CSAT Campbell Scientific, 
Inc., Logan, Utah 

three dimensional 
wind vector 

Offset error < ± 8 cm s-1 

Gain error  for wind vector 
within 20° of horizontal < 
±6% of reading 

7500 Infrared 
Gas Analyzer 

LI-COR, Lincoln, 
Nebraska  

gaseous H20 and 
CO2 concentrations 

Dependent on calibration 
and environmental 
conditions 
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Figure 3-1. Sample layouts for particulate matter (PM) and meteorological 
measurements made during a) conventional tillage operations in Field A and b) the 
combined operations conservation management practice operations in Field B. 
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based sampler that yields mass concentration averaged over the sample time, with an 

impactor plate assembly employed for a single-sized particle fractionation for PM2.5, 

PM10, and TSP. MiniVol flow calibration was performed prior to deployment. Pre- and 

post-weights for the 47 mm Teflon filters used in the MiniVols were quantified using a 

calibrated microbalance (Type MT5, Mettler-Toledo, Inc., Columbus, Ohio) at the Utah 

Water Research Laboratory in Logan, UT. Filter conditioning was carried out in 

accordance with guidance in 40 CFR 50 Appendix J (USEPA, 1987). The OPCs sums 

particle counts in eight size bins over nominal 20 s sample periods with lower bin limits 

of 0.3, 0.5, 0.6, 1.0, 2.0, 2.5, 5.0, and 10.0 µm; the last channel counts particles greater 

than 10.0 µm. OPC flow and count calibrations were performed on-site and applied in 

post-analysis. These instruments were deployed in a sampling array surrounding the 

field of interest, at 2 and 9 m agl. At most of the locations, multiple MiniVols with 

different size-fractionation configurations and an OPC were collocated in order to 

characterize particle size and mass distributions.  

Particle volume concentrations (Vk) for each size fraction (k) were calculated 

from OPC particle counts assuming a spherical shape. MiniVol-measured mass 

concentrations in each size fraction (PMk) were divided by the corresponding period-

averaged Vk on a location-by-location basis. This ratio was termed a mass conversion 

factor (MCF) by Zavyalov et al. (2009) and is a simple scalar representation of a complex 

and varying relationship between optical and aerodynamic measurements. It 

incorporates many factors, such as particle shape, porosity, density, indices of refraction 



 
81 

 

 

different from OPC calibration aerosols, and instrument sampling efficiencies, into a 

single value. Average MCFs were calculated across sampling locations for each size 

fraction on each day. 

In addition to the point sensors, the Aglite lidar system was employed in 

characterizing particulate emissions from each tillage activity. The Aglite lidar is a 

portable system using a micro-pulsed Nd:YAG laser with three wavelengths (355 nm, 

532nm, and 1064 nm) with the capability to  scan 280° in azimuth and from -5° to +40° 

in elevation. The effective range is 500 m to 15 km range bin size of 6 m. The Aglite lidar 

was placed in a crosswind position 400+ m away from the nearest tillage area border. It 

continuously performed vertical scans on the upwind and downwind sides of the field, 

horizontal scans over the field, and calibration stares throughout tillage observation 

periods. A calibration stare refers to short periods (60-120 s) when the lidar beam is 

held adjacent to the upwind calibration tower, which is instrumented with collocated 

OPC and MiniVols; calibration stares were performed routinely throughout the sample 

period at 15-20 min intervals. In post-processing, lidar return signals were calibrated to 

particle size distribution and particle volume concentrations based on upwind 

calibration stares through Klett’s inversion (Marchant et al., 2009). Conversion from 

particle volume concentration to mass concentration was accomplished through the use 

of MCFs. This calibration method converts lidar data points along the beam path to 

mass concentration, which allows a scanning lidar to estimate PM concentrations in the 

volume of air surrounding an area of interest. Detailed descriptions of the lidar system, 
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inversion technique, and data analysis are provided by Marchant et al. (2009) and 

Zavyalov et al. (2009). 

Emission Calculation Methods 

The ERs and EFs were calculated using two different methods from the collected 

filter and lidar data in order to estimate the control efficiency of the combined 

operations CMP in this study. The PM2.5, PM10, and TSP concentrations measured by the 

MiniVols were coupled with an air dispersion model through inverse modeling. In 

inverse modeling, the measured concentration attributable to the activity is known 

(measured downwind concentrations minus upwind/background concentrations) while 

the ER is unknown. The ER supplied to the model is adjusted in order to best match the 

modeled concentrations to the measured contributions from the activity. AERMOD, the 

current USEPA-recommended steady-state air dispersion model, was utilized to perform 

the inverse modeling estimation of observed emission rates through AERMOD View, a 

commercially available user-interface from Lakes Environmental, Inc. (Waterloo, 

Ontario, Canada), with AERMOD version 07026. On-site measured wind speed, wind 

direction, temperature, humidity, and solar radiation were used by AERMET, the 

meteorological pre-processor for AERMOD, to create both surface and elevated 

meteorological input files. In addition, percent cloud cover was set to zero based on 

visual observations during the measurement periods and default agricultural land 

autumn values of noon-time albedo (0.18) and surface roughness length (0.05 m) were 
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selected. A Bowen ratio value of 1.0 was used instead of the default autumn value of 0.7 

due to the dry, bare soil surface. Tillage areas and sampler locations were measured by 

a hand-held GPS unit and included as AERMOD inputs. Modeled plume edge effects on 

the ER were avoided by eliminating locations with modeled concentrations less than 

10% of the maximum modeled concentration from calculations, as per Arya (1998).  

The second ER and EF calculation approach was a mass balance applied to the 

mass concentration-calibrated lidar data. Assuming uniform background aerosol levels, 

average upwind concentrations were subtracted from concentrations in and around 

detected plumes in the downwind vertical scans. The difference was multiplied by the 

component of the minute-averaged wind perpendicular to the beam, which is a function 

of elevation, to calculate the horizontal flux of PM through the vertical plane. Fluxes 

were summed across the vertical plane, averaged over the length of the sample period, 

and then divided by the size of the tilled area to calculate the mean EF of PM from the 

field surface. The EF was further divided by the total tractor time to calculate the mean 

ER of each operation. This method of calculating ERs and EFs using lidar are provided in 

detail in Bingham et al. (2009). 

Vertical wind speed profiles up to 250 m agl were calculated to estimate the 

horizontal flux of PM through the downwind vertical lidar scanning plane, though most 

sample periods did not require data more than 150 m agl. Profiles were developed using 

cup anemometer measurements from the tower in the northwest corner of Field A and 

the following power law, as given by Cooper and Alley (2002):  
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where z1 is the lower elevation with units of m, z2 is the higher elevation in m, u1 and u2 

are the wind speeds in m s-1 at the lower and higher elevations, respectively, and p is a 

dimensionless number that varies with atmospheric stability. Cooper and Alley list p ≈ 

0.5 for very stable conditions and p ≈ 0.15 for very unstable conditions. Values of p used 

to calculate vertical profiles were estimated by solving the above equation for p and 

using average wind speeds, nominally from the 2.5 and 9.7 m measurement elevations. 

Estimated period-average p values ranged between 0.16 and 0.22 and averaged 0.20. 

Vertical profiles were calculated with u1 values taken from measurements at z1 = 9.7 m.  

Wind direction over the vertical profile was assumed to be constant. Though 

wind direction is known to change in a vertical profile, the influencing factors may be 

complex and the magnitude and direction of change highly variable. Therefore, in the 

absence of measured data, the assumption that wind direction didn’t change with 

increasing elevation over the 250 m profile was used. Wind direction as measured by 

the sonic anemometer on the northwest corner of Field A at 11.3 m agl was used for 

these analyses. 

Results and Discussion 

Observed wind conditions throughout the field study were very similar to the 

conditions observed during the month of October for previous years at Station #56 of 
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the California Irrigation Management Information System (CIMIS) located near Los 

Banos, CA with dominant winds from the northwest. Mean temperature, wind speed, 

and wind direction values ± 1σ for each sample period are given in Table 3-1. 

Unfortunately, light and variable winds delayed and/or impacted sampling on several 

occasions; one example of an impacted period is the 19 Oct. sample period, which had 

an average wind speed of 1.1 m s-1 and a high wind direction standard deviation of 62°. 

In addition, two precipitation events were recorded immediately prior to the first 

sample period and one between the last two sample periods that affected soil surface 

conditions. Evapotranspiration calculations from the downwind latent heat flux 

measurements suggested no residual water was present in the soil from precipitation 

events prior to the first sample period. However, it did suggest residual water was 

present in the soil during the last sample period (land plane operation) from the rainfall 

two days prior. 

Soil bulk densities measured in the furrows and ridges averaged ± 1σ 1.47 ± 0.02 

g cm-3 and 1.37 ± 0.03 g cm-3, respectively, for field B (Combined Methods CMP 

treatment) and 1.52 ± 0.06 g cm-3 and 1.34 ± 0.05 g cm-3, respectively, for field A 

(traditional treatment). Higher average soil moisture conditions ± 1σ were present in 

furrows, at 10.3 ± 0.49 % for Field B and 11.34 ± 0.61% for Field A, while the ridges were 

drier at 9.45 ± 0.06% and 8.08 ± 0.08% for fields B and A, respectively. Soil moisture was 

highest in both fields prior to any tillage activity and decreased as the number of tillage 

operations increased.  
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MiniVol sampler-measured PM2.5 concentrations ranged from 5.8 to 52.9 μg m-3; 

PM10 concentrations ranged from 16.3 to 165.3 μg m-3; TSP concentrations ranged from 

60.5 to 203.3 μg m-3. Filter samples were passed through a rigorous QA/QC process that 

included examination of the filters during handling, of sampler run data, and of 

calculated concentrations to identify potential data outliers. Only those filters that 

passed QA/QC were used in emissions calculations.  

Time-series OPC data were used to examine potential impacts on upwind 

samplers. The majority of observed impacts on upwind samples were due to unpaved 

road traffic associated with logistical support for the tillage operations. However, 

significantly elevated PM levels of short duration were detected during a few periods of 

variable wind conditions and an absence of nearby unpaved road traffic. These 

anomalies are likely due to tillage plumes from the field under study being transported 

to upwind sample locations. Most impacted upwind samples were removed from 

further calculations. However, there were three sample periods in which non-impacted 

background samples did not exist. In these instances, background PM levels for emission 

calculation purposes were estimated through multiplication of the impacted MiniVol 

concentration by a ratio of OPC Vk data (average Vk excluding time periods with impacts 

divided by the period-average Vk). The assumption is that this ratio would remain 

constant between volume and mass concentration and is based on similar chemical 

compositions between the background and plume aerosols, as shown in chemical 

analyses performed on collected particulates not herein reported, and supported by 
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similar MCFs calculated across all sites. These OPC Vk ratios averaged ± 1σ 0.98 ± 0.02 

for PM2.5, 0.82 ± 0.12 for PM10, and 0.84 ± 0.13 for TSP over the three sample periods. 

Period average MCFs for the PM2.5 size fraction ranged from 2.16 to 4.90 g cm-3 

with a mean ±1σ of 2.95 ± 1.25 g cm-3. MCFs for the PM10 size fraction had a mean of 

1.44 ± 0.44 g cm-3, with a range of 1.29 to 1.71 g cm-3, and TSP MCFs ranged from 0.63 

to 2.77 g cm-3 with a mean of 1.53 ± 0.90 g cm-3. Day to day variation in the MCF is not 

fully understood, but is likely due to changes in background aerosol sources and 

composition, as the point samplers collected ambient aerosol for a much larger period 

of the time than the non-stationary tillage plume. Lidar and OPC data were converted 

from particle volume concentration to particle mass concentration using the sample 

period average MCF values. An example of a downwind lidar scan with a tillage plume 

present is given in Figure 3-2. 

Comparisons of PM levels measured or estimated by collocated MiniVols, OPCs, 

and the lidar bin adjacent to the tower were made at both upwind and downwind 

elevated locations to verify estimated lidar and OPC PM concentrations. An example of 

these comparisons is presented in Table 3-3. As can be seen in this example, the 

calculated concentrations agree fairly well for PM2.5 and TSP at the upwind location, 

though upwind PM10 lidar levels were 130% of the adjacent PM sampler concentrations 

and 85% of the adjacent OPC values. Reported downwind concentrations were 

significantly different at all size fractions, with the lidar greater than the adjacent PM 

sampler by 421%, 257%, and 147% for PM2.5, PM10, and TSP, respectively, and greater 
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Figure 3-2. Period-averaged PM10 concentrations (μg m-3) resulting from the tillage 
activity on 23 Oct. along the vertical downwind lidar scanning plane as a) estimated by 
lidar (average downwind minus average upwind) and b) predicted by AERMOD using the 
Lidar-derived emission rate for this sample period. Note that the minimum elevation 
measurement of the lidar was 8 m due to safety concerns. 

than the adjacent OPC by 326%, 305%, and 307% for PM2.5, PM10, and TSP, respectively. 

Differences, particularly in downwind values, may be attributed to several factors, 
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including but not limited to, the following: sample volume differences (OPCs - 1 L min-1; 

MiniVols - 5 L min-1; lidar - 6 m bin length x ~1 m beam diameter sampled at 10 kHz with 

data averaged over 0.5 s), sampling frequency at the comparison location (MiniVol and 

OPC - continuous; lidar - upwind: ~2 min per 15 min, and downwind: ~10 s per 15 min), 

lidar sample timing/frequency with respect to plume location (i.e., simultaneous 

presence of both the lidar beam and transient plume in the bin of interest adjacent to 

the tower versus the total time the plume impacted the instrumented tower), and the 

differences between the MCF values calculated at the comparison site and the average 

MCF across all measurement sites used to convert OPC and lidar particle volume 

concentrations to mass concentration. 

Emissions Calculations 

The average MiniVol-measured upwind PM concentrations were subtracted 

from the individual downwind concentrations in order to determine the impact of the 

operation on measured PM. Only downwind samples with levels greater than the 

average upwind concentration plus the corresponding 67% confidence interval (CI), 

selected to correspond with 1 standard deviation away from the mean, were used in 

emissions calculations. This statistical difference was not achieved by any downwind 

PM2.5 measurements from two sample periods: the chisel pass of the combined 

operations treatment (19 Oct.) and the Disc 1 pass of the traditional treatment (23 Oct.). 

Therefore, no PM2.5 emissions based on inverse modeling were calculated for these 
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Table 3-3. Comparison of average particulate matter (PM) mass concentrations with 
respective 95% confidence intervals (CI) about the mean as reported by collocated 
MiniVol PM samplers, optical particle counters (OPCs), and lidar (light detection and 
ranging) at an upwind and downwind location for the 23 Oct. sample period. 

Measured Concentrations PM2.5 PM10 TSP 

 --------------------------------- μg m-3 --------------------
-------- 

Upwind 

PM sampler 17.0 35.9 60.5 

Upwind PM sampler average ± 95% 
CI 

16.1 ± 1.2 39.6 ± 7.2 60.5 

OPC ± 95% CI 13.9 ± 0.2 54.5 ± 3.9 65.6 ± 6.3 

Lidar ± 95% CI 13.8 ± 0.2 45.9 ± 0.9 60.1 ± 1.4 

Downwind 

PM sampler 9.9 75.5 203.3 

Downwind PM sampler average ± 
95% CI 

11.8 ± 2.5 59.7 ± 8.4 203.3 

OPC ± 95% CI 12.8 ± 0.2 63.5 ± 3.1 97.0 ± 13.0 

Lidar ± 95% CI 41.7 ± 9.0 193.7 ± 47.7 297.7 ± 76.6 

 

operations. Only two downwind PM10 samples passed this statistical comparison from 

the chisel pass of the traditional tillage treatment on 25 Oct. and statistical measures 

about the mean were omitted for that period.  

A ratio of the measured over the modeled impact at each location with valid 

measured values was calculated and then averaged across all locations. The average 

ratio is the required scalar adjustment to the initial ER provided to the dispersion model 

in order to yield an average measured-over-modeled ratio of 1.0, which then becomes 

the estimated ER for that operation. This method was applied to all size fractions with 

statistically significant measured differences between upwind and downwind for all 
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tillage operations using the AERMOD dispersion model. Average estimated ER values, in 

units of mass per unit area per unit time, for each operation are listed in Table 3-4. EFs 

in units of mass per unit area tilled were calculated by multiplying the ERs by total tillage 

time and are listed in Table 3-5.  

It should be noted that the PM2.5 and PM10 ERs and EFs for the Disc 2 pass are 

averages over two sample periods, October 26th and 27th. Tillage equipment 

malfunctions on the 26th delayed completion of the operation until the following day. 

Additionally, due to the absence of a valid downwind TSP sample for October 26th and 

the model predicted concentration at the downwind TSP sample location being about 

7% of the maximum predicted concentration on October 27th, the TSP EF for the Disc 2  

 

Table 3-4. Mean emissions rates (ER) ± 95% confidence intervals (CIs) calculated using 
inverse modeling with AERMOD and filter-based particulate matter (PM) measurements 
and the mass balance technique applied to PM calibrated lidar data. 

Operation 

PM2.5 ER PM10 ER TSP ER 

AERMOD Lidar AERMOD Lidar AERMOD Lidar 

 ---------------------------------------------- μg s-1 m-2 --------------------------------------------------------
- 

Combined Operations CMP Method 

    Chisel - 1.5 ± 0.4 5.2 ± 4.6*** 2.3 ± 0.7*** 9.1 8.7 ± 2.5 

    Optimizer 4.5 ± 7.0*** 2.1 ± 0.3*** 6.6 ± 7.7*** 2.7 ± 0.4*** 24.6 10.8 ± 1.7 

Conventional Method 

    Disc 1 - 0.5 ± 0.1 3.2 ± 1.5*** 2.5 ± 0.3*** 25.7 4.0 ± 0.5 

    Chisel 1.5 ± 4.9ns† 1.5 ± 0.3ns 7.2 3.4 ± 0.6 18.1 10.0 ± 1.7 

    Disc 2 0.7 ± 0.2*** 1.2 ± 0.3*** 4.5 ± 2.8*** 2.4 ± 0.6*** 36.7 4.5 ± 1.2 

    Land 
plane 

1.5 1.2 ± 0.3 3.4 ± 0.9*** 1.8 ± 0.5*** 3.2 2.8 ± 0.8 

*** Difference between emission calculation methods is significant at the 0.001 
probability level 
† ns, nonsignificant at the 0.20 probability level 
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Table 3-5. Mean emission factors (EF) ± 95% confidence intervals (CIs) calculated via 
inverse modeling with AERMOD and filter-based particulate matter (PM) measurements 
and the mass balance technique with PM calibrated lidar data for each operation, as 
well as the calculated control efficiencies of the Combined Operations CMP method. 

Operation 

PM2.5 EF PM10 EF TSP EF 

AERMOD Lidar AERMOD Lidar AERMOD Lidar 

 ---------------------------------------------------------- mg m-2 -------------------------------------------------
----- 

Combined Operations CMP Method 

    Chisel 
- 45.3 ± 13.1 

158.9 ± 
140.1*** 

69.0 ± 
19.9*** 

278.0 
265.9 ± 
76.6 

    Optimizer 71.2 ± 
109.6*** 

32.5 ± 
5.1*** 

103.5 ± 
121.0*** 

42.7 ± 6.6*** 385.4 
169.9 ± 
26.2 

Sum 
- 77.8 ± 14.0 

262.4 ± 
185.1*** 

111.6 ± 
20.9*** 

663.4 
435.8 ± 
80.9 

Conventional Method 

    Disc 1 
- 20.4 ± 2.6 

125.6 ± 
57.9*** 

99.7 ± 
12.5*** 

1018.2 
159.8 ± 
20.0 

    Chisel 34.5 ± 
115.1ns† 

35.8 ± 5.9ns 167.5 79.5 ± 13.1 423.2 
235.1 ± 
38.8 

    Disc 2 
23.3 ± 7.4*** 

39.5 ± 
11.2*** 

149.2 ± 
91.8*** 

80.7 ± 
20.5*** 

1210.0 
149.3 ± 
40.3 

    Land 
plane 

18.4 13.8 ± 3.9 41.3 ± 10.6*** 21.9 ± 6.2*** 38.9 33.4 ± 9.4 

Sum 
- 109.5 ± 13.5 483.6 281.9 ± 28.0 2690.2 

577.6 ± 
60.1 

Control Effectiveness 

 ---------------------------------------------------------- % ------------------------------------------------------- 

η ± 1σ - 28.9 ± 1.6 45.7 60.4 ± 0.7 75.3 24.6 ± 1.3 

*** Differences between emission calculation methods is significant at the 0.001 
probability level 
† ns, nonsignificant at the 0.20 probability level 

pass was calculated by assuming that the PM10/TSP EF ratio observed during the Disc 1 

pass of 0.12 was representative of disc passes under similar conditions and then dividing 

the Disc 2 PM10 EF of 149.2 mg m-2 by 0.12 to yield a TSP EF of 1,210.0 mg m-2 for the 

operation.  
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Emissions from lidar measurements were estimated using a simple mass balance 

technique. Average flux values for each tillage operation were calculated, multiplied by 

total tillage time, and divided by total area tilled to yield EF values in mass per unit area 

tilled. These are presented in Table 3-5 with their associated 95% CIs. The EFs were then 

divided by total tractor time to yield ERs in mass per unit area tilled per unit time of 

operation and are given in Table 3-4. The reported Disc 2 ERs/EFs are weighted averages  

of the two sample periods, with the weights calculated based on the number of total 

valid downwind scans collected each day. 

The lowest EF among the investigated operations for each PM size fractions and 

EF calculation methodologies was derived for the land plane operation in the 

conventional tillage method. EFs available in literature for land planing are generally 

higher than all other activities by a factor of 10. This relationship between the EF for 

land planing and discing/tilling/chiseling was not seen in this study. The much lower EFs 

for land planing are likely due to the water remaining in the soil surface from the 

precipitation event that occurred two days prior, as calculated from downwind latent 

heat measurements.  

Statistical comparisons between the mean reported ERs and EFs from the two 

emission estimation techniques and within a PM size fraction and operation were made 

via independent t-tests for all pairs in which n>2 for the inverse modeling technique, 

i.e., all pairs reporting confidence intervals about both average values. The results are 

presented in Table 3-4 and Table 3-5, showing that the differences between all but one 
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pair of averages with sufficient data points were statistically significant at the 0.001 

probability level. The difference between the lone pair was found to not be significant at 

the 0.20 probability level. Only one instance of tillage method sums with sufficient 

statistical measures to perform an independent t-test exists in this dataset, the 

Combined Operations CMP Method for the PM10 size fraction; the differences between 

the summed emissions for the two techniques were found to be statistically significant 

at the 0.001 probability level. For those pairs without sufficiently large n for the inverse 

modeling technique to report a confidence interval, a more qualitative comparison may 

be made between the inverse modeling estimates with the average lidar values ± the 

95% CI. In the majority of such cases, the estimated inverse modeling value was greater 

than the average lidar-based emission value plus the 95% CI, a pattern present 

throughout the dataset. This pattern of higher inverse modeling emissions estimates 

than lidar estimates is similar to the findings of Marchant et al. (2011) who investigated 

PM emissions from a dairy using inverse modeling with AERMOD and mass balance 

applied to lidar data.  

While inverse modeling emissions are usually a factor of two to three higher, two 

inverse modeling TSP ERs and EFs are significantly higher by factors of six (disc 1 

operation) and eight (disc 2 operation). These large differences in the two disc operation 

EFs lead to a much larger difference between emission estimation techniques in TSP EF 

sums for the conventional tillage method than for the combined operations CMP 

method, which in turn cause a large difference in calculated TSP control efficiencies 
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between emission calculation methodologies. In addition, ERs across tillage operations 

for a given PM fraction and ER calculation method do not generally vary by more than a 

factor of three, with the exception of the land plane TSP ER estimated through inverse 

modeling. The ERs measured and reported for the Optimizer pass of the combined 

operation CMP are among the higher values for each PM fraction herein reported, 

though not always the highest. When the total tractor time is accounted for in the EF 

calculation, the Optimizer emissions move toward the lower end of the measured EF 

values due to its tillage rate being approximately twice that of the other operations (see 

Table 3-1).   

Methodology limitations may contribute, in part, to the differences observed 

between reported ERs and EFs. First, the lidar was unable to monitor plumes below 8 m 

agl in this test due to laser safety concerns, and may have thus underestimated 

emissions due to the unmeasured PM leaving the field below 8 m agl. Second, the ability 

of the model to simulate observed vertical dispersion appears to have been limited in 

some cases, as demonstrated in Figure 3-2. These images compare average PM10 

concentrations along the vertical downwind lidar scanning plane as calculated from lidar 

return signal for the 23 Oct. measurement period and as predicted by AERMOD using 

the lidar-derived PM10 ER from the same period. While the model predicts PM levels 

decreasing exponentially with height, the lidar detected significant PM above 50 m agl. 

The highest concentrations in some plumes were measured far above the surface, as 

seen in Figure 3-3. This limited simulation of observed vertical dispersion decreases 
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predicted concentrations relative to the actual measured impact at elevations above the 

release height, leading to higher inverse modeling estimated emissions to better match 

elevated MiniVol measurements.  

PM10 EFs for conventional tillage operations estimated during this study are 

occasionally in agreement with values reported by Flocchini et al (2001), Kasumba et al. 

(2011), Madden et al. (2008), and Wang et al. (2010), as well as those given by the 

California ARB (2003a). While the values from all the previously published studies are 

generally not in close agreement, they are within the range of the variability expected 

Figure 3-3. Lidar measured downwind PM10 concentrations (μg m-3) from a single 
vertical scan on 23 Oct; a tillage plume is seen crossing the lidar scan at a range of 600 m 
and centered at 50 m above ground level. Note that the minimum elevation 
measurement of the lidar was 8 m due to safety concerns. 
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from measurements made under different meteorological and soil conditions, as 

demonstrated by the wide range of values from Flocchini et al. (2001). 

The EFs for each tillage method were quantified in order to compare the control 

effectiveness (η) of the CMP, as calculated from the following equation based on the 

approach described by Cooper and Alley (2002):  

CT

COTCT

EF

EFEF 


, (3-2) 

where EFCT is the summed EF for the conventional tillage method and EFCOT is the 

summed EF for the combined operations tillage method. Calculated values of η are 

listed in Table 3-5 for each size fraction. The lack of a complete PM2.5 EF dataset from 

the inverse modeling method prevents this comparison and the singular TSP data point 

for each operation in the same method excludes statistical measure estimates. 

However, emissions values based on lidar data are complete and were therefore used to 

represent the CMP control efficiency for all size fractions. The particulate emissions 

control efficiency of the Combined Operations CMP ± 1σ, as monitored by lidar in this 

study, were 29% ± 2%, 60% ± 1%, and 25% ± 1% for PM2.5, PM10, and TSP, respectively.  

Another important result of this investigation is the assessment of the utility of 

lidar for measuring and AERMOD for simulating particulate emissions in an agricultural 

setting. These lidar measurements clearly indicate that lidar is an effective tool for 

visualizing plumes from tillage operations. When mass calibrated, it functions as a 

virtual broad array of fast response point samplers. Specifically, the lidar captured far 
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more particulate matter suspended at heights above 20 m than AERMOD predicts (Fig. 

3-2). This poses larger questions about the role of PM entrainment and transport away 

from the tillage site, a question that is beyond the scope of this manuscript. Also, it is 

difficult to accurately simulate the emission characteristics from these tillage studies 

with AERMOD because it is being used at the limit of its designed performance. The 

analysis of the emissions between the two methods differs in that a point sampler-

based model uses a mathematical function to estimate plume characteristics based on a 

handful of data points whereas the lidar directly sums the results from all bins to 

determine the extent and concentration of the plume and the strength of the source. It 

is clear that the incorporation of lidar measurements is an important complement to 

ground based sensors because ground based sensors cannot measure elevated plumes. 

Conclusions 

Aerosol concentrations resulting from traditional agricultural tillage activities 

and the combined operations CMP were successfully measured with both point sensors 

and a mass-calibrated, scanning lidar system. ERs and EFs for TSP, PM10, and PM2.5 were 

calculated based on both point and the remote sensor datasets in order to quantify the 

control effectiveness of the CMP. These EFs were generally in agreement with and 

within the variability of those found in the literature, except for the EFs estimated for 

the land plane operation. The estimated emissions from the inverse modeling 

methodology were usually higher than those calculated from lidar data; most 
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differences between the two techniques were statistically significant where a statistical 

comparison was possible. The CMP control effectiveness per PM size fraction was 

estimated based on lidar-derived ERs due to dataset completeness. The control 

effectiveness values ± 1σ were 29% ± 2%, 60% ± 1%, and 25% ± 1% for PM2.5, PM10, and 

TSP, respectively.  

The mass-calibrated lidar proved very effective in detecting downwind plumes 

and, in combination with wind vector and upwind PM measurements, quantifying dust 

emissions from the tillage activities. Downwind plumes of significant concentration were 

frequently detected by Aglite at elevations much greater than that predicted by 

AERMOD, even up to 200 m. This suggests that application of such air dispersion models 

to activities similar in spatial and temporal variability to agricultural tillage should be 

done carefully and conservatively. 
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CHAPTER 4 

PARTICULATE MATTER EMISSION ESTIMATES FROM AGRICULTURAL SPRING 

TILLAGE OPERATIONS USING LIDAR AND INVERSE MODELING1 

Abstract 

Particulate matter (PM) emissions from a typical spring agricultural tillage 

sequence and a strip-till conservation tillage sequence in California’s San Joaquin Valley 

were estimated to calculate the emissions control efficiency (η) of the strip-till 

conservation management practice (CMP). Filter-based PM samplers, PM-calibrated 

optical particle counters (OPCs), and a PM-calibrated light detection and ranging (lidar) 

system were used to monitor upwind and downwind PM concentrations during May 

and June 2008. Emission rates were estimated through inverse modeling coupled with 

the filter and OPC measurements and through applying a mass balance to the PM 

concentrations derived from lidar data. Sampling irregularities and errors prevented the 

estimation of emissions from 42% of the sample periods based on filter samples. OPC 

and lidar datasets were sufficiently complete to estimate emissions and the strip-till 

CMP η, which were ~90% for all size fractions in both datasets. Tillage time was also 

reduced by 84%. Calculated emissions for some operations were within the range of



 
104 

 

 

values found in published studies, while other estimates were significantly higher than 

literature values. The results demonstrate that both PM emissions and tillage time may 

be reduced by an order of magnitude through the use of a strip-till conservation tillage 

CMP when compared to spring tillage activities. 

Introduction 

As aerosols have been shown to have detrimental effects on human health and 

visibility1, many governments have set regulations on allowable ambient concentrations. 

In the U.S., the Environmental Protection Agency (EPA) has established National 

Ambient Air Quality Standards (NAAQS) for particulate matter (PM) with aerodynamic 

equivalent diameters ≤ 10 μm (PM10) and PM with aerodynamic equivalent diameters ≤ 

2.5 μm (PM2.5). If an area exceeds the NAAQS, the area’s air quality governing body is 

required to identify the causes and restrict anthropogenic emissions in order to reduce 

PM levels below the standard.  

The San Joaquin Valley of California, USA, was designated as noncompliant with 

the PM10 NAAQS in 1991 and given a “serious” classification in 19932,3. Rule 4550, one of 

the regulations enacted by the San Joaquin Valley Air Pollution Control District 

(SJVAPCD) to reduce ambient PM10 levels in the San Joaquin Valley, required agricultural 

production operations to select several conservation management practices (CMPs) 

from a provided list, submit their selections for SJVAPCD approval, and implement 

approved CMPs. The CMPs were designed to reduce PM10 emissions from agricultural 
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animal and crop production activities. However, the small amount of data available in 

the literature concerning the emissions reductions from the CMPs for crop production 

tillage activities required that the control efficiency (η) of most tillage CMPs was 

estimated from emissions measurements of other operations4. The η of a CMP is the 

amount of particle emission reduction achieved relative to the conventional 

management practice. While the San Joaquin Valley Air Basin has since been classified 

as in attainment with the PM10 NAAQS, its maintenance plan requires the same 

strategies employed to bring it back into attainment continue to be applied. In addition, 

other PM10 non-attainment areas such as Imperial Valley, CA and Phoenix, AZ have CMP 

or best management practice (BMP) rules in place for agricultural tillage practices that 

are based on limited emissions measurements. 

Previous agricultural tillage PM emissions studies5-12 have focused almost 

exclusively on measuring PM10 emission rates (ERs) and factors (EFs) from conventional 

tillage operations. For this discussion, EFs are emissions based on a quantity of 

production (e.g., g m-2) and ERs are emissions that include a time factor (e.g., g m-2 s-1). 

The California Air Resource Board (ARB) developed area source PM10 emission inventory 

calculation methodologies for agricultural tillage and harvesting operations based on 

the report by Ref. 513,14. References 10 and 11 are the only instances of reporting PM 

emissions from standard tillage operations and a CMP (strip-till conservation tillage and 

combined operations, respectively). Reference 6 used elastic lidar (light detection and 

ranging) data collected during tillage emissions measurements to track plume 
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movements in the downwind vertical plane and demonstrated plume depths were 

greater than the elevated point sensors located downwind at 10 m above ground level 

(agl). The report suggested the best method for sampling fugitive dust includes a 

combination of elastic lidar and strategically placed point samplers. Reference 11 used 

both filter-based mass concentration point samplers and a lidar system to monitor 

tillage emissions and estimated EFs from both datasets. 

The study described in Ref. 11 was initiated specifically to provide more 

emissions η data with respect to a CMP in Rule 4550. The focus was on a typical fall 

tillage operation after a row crop harvest. A companion study funded by the San Joaquin 

Valleywide Air Pollution Study Agency was conducted to measure η of a spring tillage 

CMP using the same point sensor and lidar methodology. Research questions which this 

study was designed to address include: 1) what are the magnitude, flux, and transport of 

PM emissions produced by agricultural practices for row crops where tillage CMPs are 

being implemented vs. the magnitude, flux, and transport of PM emissions produced by 

agricultural practices where CMPs are not being implemented?; 2) what are the values 

of η of equipment being used to implement the “combined operations” CMP?; and 3) 

can these CMPs for a specific crop be quantitatively compared, controlling for soil type, 

soil moisture, and meteorological conditions? It is important to note that the main focus 

of this research was to quantify η of the selected CMP, which required the emissions to 

be quantified, and it was not an effort to provide representative emission factors for any 

one of the agricultural operations involved. This paper summarizes the results of the PM 
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measurements made during the field experiment, the calculated ERs, and addresses 

these research questions. A full report detailing all of the sampling methodology and 

results is given in Ref. 15.  

Methodology 

Site and Operation Description 

This CMP η study was performed during the spring tillage sequence following the 

harvest of a winter wheat crop in preparation for planting of corn. It was carried out in 

the San Joaquin Valley of California during May and June 2008. Two adjacent fields were 

used with identical crop and flood irrigation treatment over the previous several years. 

Both fields were cultivated in winter wheat in late 2007 and were to be planted in corn 

for the 2008 summer growing season. The wheat was harvested while still green for 

silage four days before the tillage processes began, resulting in standing stubble but 

little plant material left on the surface. The site was chosen based on producer 

cooperation, historically dominant northwest winds, and field layout. 

The surrounding landscape was topographically flat and dominated by 

agricultural production, including grain and corn fields, almond orchards, grape 

vineyards, and commercial dairy operations. Both fields were surrounded on all sides by 

roads. These roads, with the exception of one, were unpaved roads used for field access 

by farm machinery. The paved road, which was downwind of the fields during all 

measurements, was heavily travelled. Railroad tracks were located to the north of this 
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site, with two to three trains passing by per day with a varying numbers of cars. USDA 

NRCS soil survey data list the soil in both fields as soil type 130 – Kimberlina fine sandy 

loam, saline-alkali16. 

The CMP selected for this study was the Conservation Tillage method. As 

described in Ref. 4, this CMP “involves using a system in which the soil is being tilled or 

cultivated to a lesser extent compared to a conventional system” and it is “intended to 

reduce primary soil disturbance operation such as plowing, discing, ripping, and 

chiseling.” The Conservation Tillage CMP under study was a strip-till method which 

combines multiple operations to reduce the number of passes required and only 

disturbs the soil in strips 0.2 m wide centered every 0.8 m instead of disturbing the 

entire surface. Strip-till reduced both the number of passes and the tilled surface by 

about 75%, as well as left most of the wheat stubble still standing for ground cover. The 

strip-till implement used in this study was the Orthman 1-tRIPr. The cooperating farm 

had been using the Orthman 1-tRIPr for seedbed preparation on all of its fields for 

several years, with the exception of Field 4 which was prepared by conventional tillage 

methods. 

The conservation tillage CMP applied in this study consisted of three tillage 

activities totaling three operations across the field, excluding the building and removal 

of ditches. All three were monitored in separate sample periods. In comparison, the 

conventional tillage method as applied here had nine different tillage activities totaling 

13 operations, excluding the building and removal of a ditch and field edge borders. 
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Monitoring of 12 of the operations occurred over nine sample periods. Note that not all 

operations were active throughout sample periods in which multiple operations 

occurred. Also, not all of the conventional tillage operations are intended to work the 

entire field, such as breaking down in-field borders. The term in-field borders as used 

here applies to low ridges of soil that separate the field into smaller areas for flood 

irrigation. The conventional tillage method was employed in Field 4, shown in Fig. 4-1, 

and the conservation tillage CMP was used in Field 5. The operations that were 

performed in each management practice are shown in order in Table 4-1, with their 

corresponding dates, equipment utilized, number of passes over a given area, tractor 

run time, total area worked, and sample period length. In cases where multiple tractors 

and implements were used within a sample period, they are listed in the order of use 

with the area worked and tractor time being summed. The lister, also called a double 

plow, prepares the soil for planting by creating furrows and ridges. The cultivator passes 

in the conventional tillage sequence function as mechanical weed control, whereas a 

chemical weed control (herbicide) is used in the CMP sequence.  

During the first part of the lister operation, plant material not harvested along in-

field borders caused clogging of the lister, decreasing effectiveness. A second tractor 

with the disc set was brought in to repeat the effort along the border lines to further 

reduce the size of residual plant material. Also note that the cultivator passes 1 and 2 

and the roller pass for the first sample period on 5 June were not finished when planting 

in Field 4 began and the second sample period was started. The combination of the 
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Figure 4-1. Map of fields under study and the sample layout for each field. L1 and L2 
represent lidar locations used during sampling and dashed lines emanating from L1 and 
L2 show positions of vertical lidar scans. 

cultivator and roller positions and meteorological conditions prevented significant 

impacts from these operations on downwind samples located near the southern end of 

the field. 

 Additionally, cultivator pass 4 was carried out the day after cultivator pass 3, but 

the emissions were not measured due to scheduling conflicts. It is assumed, in 

calculating the total PM emissions, that the ERs of both passes 3 and 4 were equal. In 
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Table 4-1. Information for each sample period regarding tillage operations, equipment 
used, tractor operation time, area worked, and sample time. 

Date Tillage 
Operation 

Tractor 
Make 
and 
Model 

Implement 
Make and 
Model 

Number 
of 
Passes 

Sample 
Time 
(hr) 

Tractor 
Time 
(hrtractor) 

Area 
Worked 
(ha) 

Tractor 
Operation 
Rate 
(hrtractor/ 

ha) 

Conservation Tillage (Field 5) 

17 
May 

Strip-Till Case 
MX255 

Orthman 1-
tRIPr, 6 row, 
0.8 m 
spacing 

1 3.92 3.05 9.1 0.34 

7 
June 

Plant and 
Fertilize 

Case 
MX255 

Monosem 
Twin-Row 
Planter 
Model 6x2, 6 
rows, 0.8 m 
spacing 

1 5.33 3.82 9.1 0.42 

11 
June 

Herbicide 
Application 

Kubota 
B-Series 

Hardi ATV 
Sprayer, 12.2 
m boom 

1 1.58 0.93 9.1 0.10 

Conventional Tillage (Field 4) 

17 
May 

Break 
down in-
field 
irrigation 
borders 

Case 
Puma 
195 

Custom 
border 
buster (2 
sets of 3 
discs that 
move soil 
from center 
to edges) 

2, in-
field 

border 
areas 
only 

0.92 0.92 2.0 0.46 

18 
May 

Chisel Case 
MX255 

Custom 
chisel, 4.0 m 
wide, 0.6 m 
depth, w/ 
edged roller 

1 6.58 6.18 8.5 0.73 

19 
May 

Disc 1 Case 
Puma 
195 

International 
Offset Disc, 
5.8 m wide, 
pulling a 
single axle (2 
smooth road 
tires), pulling 
a 5.8 m wide 
spiked roller 

1 4.92 4.83 10.1 0.48 
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Table 4-1 (continued) 
Date Tillage 

Operation 
Tractor 
Make 
and 
Model 

Implement 
Make and 
Model 

Number 
of 
Passes 

Sample 
Time 
(hr) 

Tractor 
Time 
(hrtractor) 

Area 
Worked 
(ha) 

Tractor 
Operation 
Rate 
(hrtractor/ 

ha) 

19 
May 

Disc 2 Case 
Puma 
195 

International 
Offset Disc, 
5.8 m wide, 
pulling a 
single axle (2 
smooth tires) 
pulling a 5.8 
m wide 
spiked roller 

1 5.25 4.73 10.1 0.47 

20 
May 

Lister Case 
MX255 

Custom 
lister, 6 row, 
1.0 m 
spacing 

1 

3.83 5.07 12.5 0.41 
Case 
Puma 
195 

International 
Offset Disc, 
5.8 m wide 

3, only 
in-field 
border 
areas  

5 
June 

Break 
down ditch 
and field-
edge 
borders, 
Cultivator 
passes 1 
and 2, and 
Roller 

Kubota 
M8030DT 

Custom 1-
way disc (1 
set of 3 discs 
that move 
soil from one 
side to the 
other) 

8, east 
side 
edge 
only 

7.25 7.43 23.9 0.31 

Case 870 Custom 
border 
buster (2 
sets of 3 
discs that 
move soil 
from center 
to edges) 

4, east 
and 
west 
side 

edges 
only 

Case 
Puma 
195 

Lilliston 
Rolling 
Cultivator, 6 
rows wide, 
1.0 m 
spacing 

2 

Case 
2290 

Flat roller, 6 
rows wide 

1 
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Table 4-1 (continued) 
Date Tillage 

Operation 
Tractor 
Make 
and 
Model 

Implement 
Make and 
Model 

Number 
of 
Passes 

Sample 
Time 
(hr) 

Tractor 
Time 
(hrtractor) 

Area 
Worked 
(ha) 

Tractor 
Operation 
Rate 
(hrtractor/ 

ha) 

5 
June 

Plant Case 
Puma 
195 

Lilliston 
Rolling 
Cultivator, 6 
rows wide, 
1.0 m 
spacing 

2 

2.00 3.82 13.2 0.29 

Case 
2290 

Flat roller, 6 
rows wide 

1 

John 
Deere 
4055 

John Deere 
MaxEmerge 
2 Row 
Planter, 
single row, 6 
rows wide, 
1.0 m 
spacing 

1 

18 
June 

Fertilize Case 
2290 

Custom side-
dress 
fertilizer, 6 
rows wide, 
1.0 m 
spacing, 
pulling a 
fertilizer tank 
(1 axle, 2 
small 
smooth 
tractor tires) 

1 2.17 1.08 3.8 0.28 

25 
June 

Cultivator 
pass 3 

Case 
1370 

Lilliston 
Rolling 
Cultivator, 6 
rows wide, 
1.0 m 
spacing 

1 4.25 4.02 10.1 0.40 
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general, two cultivator passes are performed in sequence in opposite directions down 

the rows to ensure adequate weed control. 

Ditches and field-edge borders were built and then broken down in both fields 

between 20 May and 5 June to allow for flood irrigation prior to planting. Water for 

irrigation was taken from the earthen holding pond of the adjacent dairy; drainage 

ditches on the east side of both fields returned excess water to the same holding pond. 

As the ditch and field-edge border construction and removal were not measured in the 

CMP field, the corresponding step for the conventional tillage method was not 

considered in the total emissions per method. Prior to any spring tillage activities, both 

Fields 4 and 5 had in-field borders running in roughly an east/west direction. The in-field 

borders in Field 5 were not broken down and smoothed out, but instead were used for 

the summer corn crop. However, in Field 4 they were removed and the irrigation water 

moved in the furrows created by the lister. 

Field personnel observed operations continually and recorded notes on tractor 

operation times, potential contamination issues due to traffic on surrounding dirt roads 

and wind-blown dust, general meteorological observations, etc. 

Instrumentation and Sample Layout 

A very dominant northwest wind was found in historical data for the months of 

May and June from a representative meteorological monitoring station in Stratford, CA, 

in the California Irrigation Management Information System (CIMIS). Therefore, the PM 
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and meteorology sampling layouts were configured to measure upwind conditions to 

the north and west and downwind conditions to the south and east.  

Meteorological measurements were made at upwind and downwind locations 

with the instrumentation in Table 4-2. Vertical temperature, humidity, and wind speed 

profiles were measured using two 15.3 m towers, one upwind and one downwind as 

shown in Fig. 4-1. Each tower had five humidity/temperature sensors at 1.5, 2.5, 3.9, 

6.2, and 9.7 m agl and 3-cup anemometers at 2.5, 3.9, 6.2, 9.7, and 15.3 m agl. Wind 

direction was measured at 15.3 m using a wind vane instead of the typical 10 m due to 

fact that lidar measurements were made at higher elevations (up to 200 m agl) and the 

15.3 m measurement height was reasoned to provide a better representation of both 

ground level and higher elevation wind direction than the 10 m height. Additionally, a 

meteorological station monitored wind speed, wind direction, temperature, relative 

humidity, precipitation, barometric pressure, and incoming solar radiation at 5 m agl at 

the air quality trailer (AQT) location. Three pairs of three-dimensional sonic 

anemometers and infrared gas analyzers were deployed, one at an upwind location and 

one each downwind of the two fields of interest, to characterize upwind and downwind 

turbulence, as well as vertical fluxes of latent heat (evaporation), sensible heat, carbon 

dioxide, and horizontal momentum. Bulk density and soil moisture were quantified 

several times throughout the study, with calculations performed as described in Ref. 17.  
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Table 4-2. Manufacturer, precision, and accuracy information for deployed 
meteorological instrumentation. 

Instrument 
Model 

 
Manufacturer 

Measured 
Parameter Accuracy 

HMP45C  Vaisala, Oulu, 
Finland 

temperature 0.2 C at 20 C 

 relative humidity 2% for values in the range 

0% to 90% and 3% for 
values in the range 90% to 
100% 

Gill 3-cup 
anemometer 

 RM Young Co., 
Traverse City, 
Michigan 

horizontal wind 
speed 

0.2 m s-1 over 1 m s-1, 
threshold speed = 0.5 m s-1 

024A Wind Vane  Met One 
Instruments, 
Grants Pass, 
Oregon 

wind direction 5°  

Vantage Pro2 
Plus Weather 
Station 

 Davis Instruments, 
Inc., Hayward, 
California 

temperature 0.5 C for values greater 

than -7 C, 1.0 C for values 
less than -7 C 

 relative humidity 3% for values 0% to 90% 

and 4% for values 90% to 
100% 

 horizontal wind 
speed 

1 m s-1or 5%, whichever is 
greater 

 wind direction 3° 

 precipitation 3% or 0.02 mm per event, 
whichever is greater 

 barometric 
pressure 

±0.8 mm Hg at 25°C 

 solar radiation 5% of full scale 

CSAT  Campbell Scientific, 
Inc., Logan, Utah 

three dimensional 
wind vector 

Offset error < ± 8 cm s-1 

Gain error  for wind vector 
within 20° of horizontal < 
±6% of reading 

7500 Infrared 
Gas Analyzer 

 LI-COR, Lincoln, 
Nebraska  

gaseous H20 and 
CO2 
concentrations 

Dependent on calibration 
and environmental 
conditions 
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PM mass concentrations were monitored by 20 MiniVol Portable Air Samplers 

(models 4.2 and 5.0, AirMetrics, Eugene, Oregon), referred to hereafter as MiniVols. 

They are a portable, programmable, filter-based sampler that is battery-powered and 

yields an integrated sample over the exposure period. Filters were exposed for the 

duration of each sample period (see Table 4-1), yielding a single mass concentration 

measurement per sampler per sample period. Cumulative samples of particles up to 

PM2.5 or PM10 is accomplished via an impactor plate assembly inserted just upstream of 

the filter; TSP may be sampled without an impactor assembly in place. The MiniVol 

impactor assembly is designed to operate a flow of 5.0 L min-1, though the flow rate is 

neither actively monitored nor actively controlled by the system. It is set prior to 

deployment by the user via a calibrated rotameter. Rotameter flow calibration was 

performed prior to deployment. While several studies have found that PM2.5 and PM10 

levels reported by MiniVols are very similar to concentrations measured by federal 

reference method (FRM, see 40 CFR 50.6 and 50.7) monitors, the slope of the particle 

removal efficiency versus particle size curve of the MiniVol impactor assembly is less 

steep than required by FRM samplers18-21. Therefore, PM levels reported by the 

MiniVols should be considered as close approximations to those that would be given by 

FRM samplers.  

Pre- and post-weights for the 47 mm Teflon filters used to collect particles were 

quantified using a calibrated microbalance (Type MT5, Mettler-Toledo, Inc., Columbus, 

Ohio). Filter conditioning was carried out in accordance with guidance in 40 CFR 50 
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Appendix J. Sample period average mass concentrations were calculated by dividing the 

total mass catch (average post-weight minus average pre-weight) by the volume of air 

sampled. 

Particle size distribution (PSD) was measured by eight Aerosol Profilers (model 

9722, Met One Instruments, Grants Pass, Oregon), also known as optical particle 

counters (OPCs). The OPC sums particle counts in eight size bins over nominal 20 s 

sample periods. The particle diameters (dp) for lower bin limits were 0.3, 0.5, 0.6, 1.0, 

2.0, 2.5, 5.0, and 10.0 µm, with the last channel counting all particles ≥ 10.0 µm. The 

factory calibrations of signal strength versus particle size using polystyrene latex (PSL) 

beads of known size were used due to varying atmospheric aerosol composition. The 

sample flows were not conditioned prior to passing through the sampling chamber 

during these measurements due to the dry conditions, though this is suggested in 

atmospheres with high relative humidity. OPC flow measurements and inter-OPC count 

calibrations were performed on-site and applied in post analysis. Particle volume 

concentrations (V) per bin were calculated from the counts, assuming spherical particles 

and using the geometric mean diameter (GMD) as the representative dp. Values of V in 

bins up to dp = k were summed to estimate the cumulative volume concentration (Vk). 

The MiniVols and OPCs were deployed on towers and tripods upwind and 

downwind of the fields, as shown in Fig. 4-1. Most downwind sensors were moved 

between the downwind layouts, depending on the field being tilled. The AQT and the 

associated samplers did not move. The AQT is a 5 m x 2.5 m x 2.5 m cargo trailer used as 



 
119 

 

 

the base of operations and equipped with tables, a refrigerator and dessicator for 

sample storage, and a rooftop platform for sensor deployment. Samplers were placed 

on tripods at 2 m agl at all locations except for those on top of the AQT at 5 m and those 

at the top of the towers at 9 m. Not all sample sites shown for a given setup were used 

in each sample period due to instrument availability limitations. However, samples were 

collected at a minimum of two upwind and six downwind locations during each sample 

period.  

At most of the locations, multiple MiniVols with different impactor 

configurations and an OPC were collocated in order to characterize particle size and 

mass distributions. These data were used to calculate mass conversion factors (MCFs) 

for each size fraction (k), as described in detail by Ref. 21. In summary, the MCFk is 

calculated using PMk reported by MiniVols and Vk, averaged over the MiniVol sample 

time, from each sample location through the following equation: 

k

k

k
V

PM
MCF 

 (4-1) 

where the units for PMk are µg m-3, Vk are µm3 cm-3, and MCFk are g cm-3. Daily average 

MCFs were calculated across sampling locations.  

The MCF is a simplified method to account for several complex and possibly 

interdependent variables that affect how an aerosol mixture is measured/detected 

based on both optical and aerodynamic properties. It incorporates many factors, such as 

particle shape, density, indices of refraction different from OPC calibration aerosols, and 
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instrument sampling efficiencies, into a single scalar value. The MCF also includes effects 

due to optical systems measuring particles in ambient conditions while mass 

concentrations are calculated based on conditioned filters. This effect may be significant 

in humid environments, but the effect is assumed to be negligible in warm and dry 

conditions such as those found during this study. The MCFk values were used to convert 

the OPC Vk into PMk to examine concentrations on a much finer temporal scale than 

possible with the filter data.  

The Aglite lidar system was deployed to characterize PM concentrations in 

addition to point sensors. The Aglite lidar is a portable system using a micro-pulsed 

Nd:YAG laser with three wavelengths (λ), 355 nm, 532nm, and 1064 nm. It has the 

capability to scan 280° in azimuth and from -10° to +45° in elevation. The effective range 

is 500 m to 15 km with each range bin approximately 6 m in length22. The lidar was 

placed in crosswind positions 550 m away from the nearest tillage area border. It was at 

L1, as shown in Fig. 4-1, from 17 May through 11 June and at L2 for the 18 June sample 

period. Critical component failures prevented its use for the 25 June sample period.  

The lidar continuously performed vertical scans on the upwind and downwind 

sides of the field, horizontal scans over the field, and calibration stares throughout 

tillage observation periods. Lines of approximate vertical scan locations are shown in 

Fig. 4-1 by the dashed lines emanating from L1 and L2; horizontal scans moved between 

upwind and downwind vertical scan positions at 0.75 degrees from horizontal. Vertical 

scans started at 0.75 degrees and extended up to between 15 to 45 degrees. The 
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maximum vertical angle varied between sample periods but was usually ≤ 25 degrees. 

Images resulting from vertical scans were monitored throughout each sample period to 

ensure that the maximum vertical extent of the plumes were entirely captured; 

modifications to the maximum vertical extent were made as needed. The lidar beam 

was about 10 m agl at the closest edge of the fields at 0.75 degrees in elevation. The 

beam was kept at or above this level due to eye safety concerns. The lidar system did 

not measure plumes below this level and, therefore, may underestimate PM flux. 

A calibration stare refers to short periods (60-120 s) when the lidar beam is held 

adjacent to an upwind tower with collocated point sensors. Calibration stares were 

performed routinely throughout the sample period at 10-20 min intervals. In post-

processing, lidar return signals collected during calibration stares were calibrated to PSD 

and Vk measurements. The process used to accomplish this is described in detail by Refs. 

23 and 24 and will now be summarized. The calibration process is illustrated in Fig. 4-2 

and was carried out through the following steps: 

1. The raw lidar signal was preprocessed to yield range (R) and background 

corrected return power with R.  

2. Relationships between backscatter (β), extinction (α), and Vk of the aerosol 

components were established based on OPC data from both upwind and 

downwind locations. The PSD of both the background and plume aerosol as 

a function of time were calculated, after which the α and β coefficients at 

the calibration range (Rc) at each lidar λ were calculated using Mie scattering 
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theory applied to the PSDs. Assumptions made in these calculations were 1) 

all particles were spherical and 2) the bulk aerosol had a complex index of 

refraction equivalent to a mineral particle type (1.53 – 0.008i; Ref. 25).  

3. The inversion of the lidar data was performed using a form of Klett’s 

solution25.a for two scatterers where α is proportional to β using the 

relationships found in step 2, resulting in α and β as function of R and λ 

(α(R,λ), β(R,λ)). The backward integration Klett method was applied to R < Rc 

and the forward integration method was used for R > Rc. The backward 

integration method yields more stable solutions than the forward 

integration method and is, therefore, preferred. The calibration point Rc was 

placed at the farthest range possible within property ownership/field of 

view limitations to maximize the extent of the range of interest subject to 

backward integration.  

4. The relationships from step 2 were used to convert β(R, λ) into Vk(R) through 

a least-squares method in the aerosol concentration retrieval step.  

5. Conversion from Vk(R) to PMk(R) was accomplished through the use of MCFk.  

This calibration method allows a scanning lidar to estimate PMk concentrations 

surrounding an area/source of interest at a much finer spatial scale than possible with 

point sensors. 
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Figure 4-2. Process diagram for lidar PM calibration algorithm. 

Emission Calculation Methods 

The PMk data from the point sensors and lidar were used to the estimate η of 

the conservation tillage CMP in this study. The point sensor PMk concentrations were 

coupled with an air dispersion model through inverse modeling. In typical air dispersion 

model applications, a source ER is supplied to a model which then calculates the 

resulting concentration (Csim) at a given receptor location. Inverse modeling involves 
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using a dispersion model and concentrations measurements around a source activity 

(Cdownwind, Cupwind) in order to estimate the observed ER (Qmeas). An initial ER (Qsim) is 

supplied to the model to calculate Csim, then the following equation is used to calculate 

Qmeas: 

 
sim

upwinddownwind

meas
QC

CC
Q




. (4-2) 

If the model used has a proportionally linear response in Csim to changes in Qsim, the 

ratio (C/Q)sim is a scalar value independent of the given Qsim value, i.e. there are no local 

maxima or minima that might influence the resulting value of Qmeas.  

AERMOD (American Meteorological Society and U.S. EPA Regulatory Model), a 

Gaussian air dispersion model that estimates Csim at a given receptor point based on 

meteorological conditions, source strength, and the horizontal and vertical distance of 

the receptor from the source, was selected to perform the inverse modeling estimation 

of Qmeas
26. It is an air dispersion model currently recommended for regulatory modeling 

by the U.S. EPA. It operates in one hour time steps, has a proportionally linear response 

in Csim to changes in Qsim, and assumes steady-state conditions, continuous emissions 

during a time step, conservation of mass, and Csim resulting from multiple sources are 

additive. Pollutant distribution is modeled as Gaussian in the stable boundary layer in 

both the horizontal and vertical directions. In the convective boundary layer, horizontal 

dispersion is modeled as Gaussian while vertical pollutant distribution is modeled as bi-

Gaussian. The spatial resolution of Csim is controlled by the user through discrete and/or 
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gridded receptor points. The commercially available user-interface AERMOD View from 

Lakes Environmental, Inc. (Waterloo, Ontario, Canada), with AERMOD version 13350, 

was employed.  

On-site measured wind speed, wind direction, temperature, humidity, and solar 

radiation were used by AERMET, the meteorological pre-processor for AERMOD, to 

create both surface and elevated meteorological input files. Wind, temperature, and 

humidity data were used from the upwind meteorology tower dataset, with wind speed 

from 9.7 m agl and temperature and relative humidity from 2.5 m agl. Incoming solar 

radiation was measured at the AQT location. Percent cloud cover was set to zero based 

on visual observations during the measurement periods.  

The land use classification on all sides of the site was cultivated land. Values 

provided to AERMET for midday albedo and Bowen ratio of 0.18 and 1.5, respectively, 

were suggested as average summer values under dry conditions for a fallow agricultural 

field in Ref. 27. The surface roughness length (z0), also required by AERMET, was 

calculated based on wind profile measurements at the upwind meteorological tower 

using the following equation which relates wind speeds (u1, u2 in m s-1) at two heights 

(z1, z2 in m) and was derived from the integrated logarithmic wind speed profile 

equation:  
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A least sum of squares of residuals methodology was used to determine the value of z0 

that best fit measured wind speeds at the higher elevation of two paired wind speed 

time series over the study period. A z0 value of 0.02 m was calculated as the arithmetic 

average of the values that best fit six pairings of wind speeds measured at 2.5 m, 3.9 m, 

6.2 m, and 9.7 m agl, i.e. 2.5 m and 3.9 m, 2.5 m and 6.2 m, 2.5 m and 9.7 m, 3.9 m and 

6.2 m, 3.9 m and 9.7 m, and 6.2 m and 9.7 m. The cup anemometer at 15.3 m 

malfunctioned during this deployment, rendering the data unusable for this analysis. 

The upwind location was selected for this analysis as the downwind tower was removed 

on 12 June to support another study nearby. The AQT was also removed from the 

southern edge of Field 5 at this same time. 

Tillage operations were modeled as ground level area sources with initial plume 

heights of 0 m and areal extents equal to the actual tilled portions of the field. Most 

operations covered all or most of the field within a sample period, but some, such as the 

break down in-field borders operation, were intended to only work a small portion of 

the field surface. Tilled areas and sampler locations were measured using a hand-held 

GPS unit. The Qsim values for each modeled operation were based on a preliminary 

average ER value across all tillage operations from Ref. 11 of 8.6 μg s-1 m-2 per operation 
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per pass multiplied by the number of passes over the field within a sample period. 

Sources were activated or deactivated in hourly time steps throughout a simulated 

sample period according to the tractor operation times as monitored by on-site 

personnel. Discrete receptors were set at each sampling location to yield Csim for inverse 

modeling comparisons. Uniform Cartesian receptor grids at 2 m agl and 15 m spacing 

between points were set from upwind sampling locations to several hundred meters 

downwind of the fields to visualize predicted plume movement, shape, and 

concentration. Hourly Csim values were averaged over the modeled sample period. 

Modeled plume edge effects were avoided by eliminating those locations with Csim less 

than 10% of the maximum Csim, adapted from suggestions by Ref. 28, from emissions 

calculations. 

The second ER and EF calculation approach was a mass balance applied to the 

lidar PMk data. Assuming uniform background aerosol levels, average upwind 

concentrations were subtracted from concentrations in and around detected plumes in 

the downwind vertical scans. The difference was multiplied by the component of the 

wind perpendicular to the beam to calculate the horizontal flux of PM through the 

downwind vertical scanning plane. Fluxes were summed across the vertical plane, 

averaged over the length of the sample period, and then divided by the size of the tilled 

area to calculate the mean EF of PMk from the field surface. The EF was further divided 

by the total tractor time to calculate the mean ER of each operation. This method of 

calculating ERs and EFs using lidar is described in detail in Ref. 29. 
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Vertical profiles of PM mass concentration, horizontal wind speed, and wind 

direction are required to use the mass balance approach. The PM profile was provided 

by the lidar PMk data. Profiles of wind speed were calculated using the wind speed 

power law, as given by Ref. 30  

p
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where z1 and z2 are the lower and upper elevations (m), respectively, p is a 

dimensionless number that varies with atmospheric stability, and u1, u2, z1, and z2, have 

been defined previously. Ref. 30 lists p ≈ 0.5 for very stable conditions and p ≈ 0.15 for 

very unstable conditions. The horizontal wind speeds recorded at the upwind tower 

were used to find the values of p that best fit the time series of measured profiles up to 

9.7 m agl, with imposed minimum and maximum limits of 0.1 and 0.6, respectively. 

Derived values of p across all sample periods ranged from 0.10 to 0.60 and averaged 

0.19. These p values were then combined with the minute-averaged wind speeds in the 

wind speed power law to calculate the vertical profile of horizontal wind speed up to 

250 m agl, though most sample periods did not require data more than 150 m agl. 

Wind direction over the vertical profile was assumed to be constant. Though 

wind direction is known to change in a vertical profile, the influencing factors may be 

complex and the magnitude and direction of change highly variable. Therefore, in the 

absence of measured data, the assumption that wind direction didn’t change with 

increasing elevation over the 250 m profile was used. 
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Results and Discussion 

Results of the soil analyses were almost identical between the two fields, 

suggesting little to no difference in the influence of soil properties on airborne PM 

emissions. Bulk densities averaged 1.57 ± 0.05 g cm-3 for Field 4 and 1.57 ± 0.08 g cm-3 

for Field 5. Unless otherwise noted, error values represent one standard deviation (σ). 

Average soil moisture values in both fields measured immediately prior to May sample 

periods varied between 1.0% and 3.3%, showing very little change across operations. 

However, average soil moisture measured on June 5 in Field 4 was 6.1% and 8.2% in 

Field 5 on June 7. This increase was likely due to flood irrigation in both fields shortly 

after the May 20 sample period. A precipitation event occurred shortly after irrigation, 

but the quantity was not measured and the effect was assumed to be masked by the 

flood irrigation. 

Wind conditions were favorable for the designed sampling layouts throughout 

the study period, as shown in Fig. 4-3 and Table 4-3. The median, minimum, and 

maximum values for sample period average winds were 4.0, 1.9, and 5.6 m s-1, 

respectively, for speed and 321, 315, and 335°, respectively, for direction. Sample 

periods were generally hot and dry, with median, minimum, and maximum sample 

period average temperatures and relative humidity values of 31.4, 24.7, and 36.8 °C and 

27, 16, and 40%, respectively. 
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Figure 4-3. Wind rose for the hourly averaged wind observations during the days on 
which samples were collected. 

PM Concentration Measurements 

A total of 296 filter samples were collected: 116 PM2.5 (39%), 116 PM10 (39%), and 64 

TSP (22%). Calculated PM2.5 concentrations based on filter catch ranged from 23.2 to 

3244.9 μg m-3; PM10 concentrations ranged from 38.1 to 1458.4 μg m-3; TSP 

concentrations ranged from 73.6 to 2276.9 μg m-3. The average method detection limit 

(MDL, n = 13), calculated based on sample period duration, the targeted flow of 5.0 L 

min-1, and the minimum detectable difference between pre- and post-test filter weights  
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Table 4-3. Period-averaged meteorological measurements ± 1σ made at the upwind 
meteorological tower. Temperature, relative humidity, and wind speed were measured 
at 9.7 m agl and wind direction was measured at 15.3 m agl. 

Date Operation, Field Ambient 
Temperature 
(C) 

Relative 
Humidity 
(%) 

Wind 
Speed 
(m/s) 

Wind 
Direction 
(°) 

17 May Strip-till, Field 5 32.3 ± 2.1 33 ± 4 3.6 ± 
0.6 

321 ± 15 

17 May Break down in-field 
borders, Field 4 

36.8 ± 0.2 24 ± 0.3 4.3 ± 
0.6 

321 ± 8 

18 May Chisel, Field 4 33.8 ± 2.8 29 ± 4 4.3 ± 
1.2 

325 ± 16 

19 May Disc 1, Field 4 31.4 ± 2.5 27 ± 3 2.9 ± 
0.8 

318 ± 22 

19 May Disc 2, Field 4 35.3 ± 1.5 21 ± 3 3.3 ± 
0.5 

319 ± 16 

20 May Lister, Field 4 29.1 ± 2.2 30 ± 10 5.1 ± 
1.1 

320 ± 10 

5 June Break down ditch, 
Cultivator 1 and 2, and 
Roller, Field 4 

24.7 ± 2.6 34 ± 7 3.3 ± 
1.3 

320 ± 30 

5 June Plant, Field 4 27.6 ± 0.5 26 ± 2 4.0 ± 
0.9 

315 ± 7 

7 June Plant and Fertilize, Field 5 22.5 ± 2.7 40 ± 9 4.0 ± 
1.0 

335 ± 20 

11 
June* 

Herbicide, Field 5 29.1 ± 0.1 19 ± 1 3.8 ± 
0.6 

326 ± 17 

18 June Fertilize, Field 4 34.1 ± 0.3* 16 ± 1* 5.6 ± 
0.7 

326 ± 4 

25 
June* 

Cultivator 3 30.2 ± 2.5 29 ± 5 1.9 ± 
0.8 

328 ± 29 

* Data taken from downwind tower due to missing data at upwind tower 

of 5 µg, was 6.6 ± 4.9 µg m-3 and the median was 4.3 µg m-3, with a range of 2.3 µg m-3 

for a run length of 7.3 hr to 17.3 µg m-3 for a run length of 1.0 hr. 

Of the 296 filter samples collected, 98 (33%) did not pass quality analysis (QA) 

checks applied to the dataset. QA checks included visual inspection of filter surfaces, 
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sample log inspection for noted problems, OPC time series examination for 

contamination (used mostly at upwind sites), concentration consistency across sampling 

locations, and concentration comparisons between PM2.5, PM10, and TSP at each sample 

location. In-depth descriptions of the QA checks are found in Ref. 15. An investigation 

into the cause(s) of this high rate of failure was conducted and a summary of 

conclusions is provided in the following paragraph. A large number of failures of near-

source, downwind samples relative to the total number of downwind samples collected 

were found in the sample periods from May 18 to May 20. This, when combined with 

the results from the investigation into the large number of failures, cast doubt on the 

validity of the remaining near-source downwind samples from those runs. Therefore, all 

near-source downwind MiniVol samples for these sample periods were removed from 

MCF and ER calculations, rendering the upwind and far-source downwind samples that 

passed QA unusable for estimating PM emissions. The filter dataset used to calculate 

ERs and EFs totaled 131 samples (44%). Concentration ranges for this dataset were 26.7 

to 149.8 μg m-3 for PM2.5, 47.4 to 489.4 μg m-3 for PM10, and 102.9 to 1,896.9 μg m-3 for 

TSP. The size fraction distribution of filters used to estimate emissions was nearly 

identical to the total sample set: 51 (39%) were PM2.5, 50 (38%) were PM10, and 30 

(23%) were TSP.  

Filters that did not pass QA were found to have been contaminated during one 

or more of the following stages: sampling, filter handling, and filter storage. Evidence of 

“particle bounce” was found on many PM2.5 and PM10 samples collected during May 
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sample periods. Particle bounce occurs when particles that collide with the impactor 

plate are re-entrained in the airstream and collected on the filter downstream and 

result in higher reported levels than actually existed. This issue is most likely due to 

exposing the MiniVol samplers to dust plumes exceeding the maximum recommended 

exposure level and improper instrument maintenance and cleaning through the May 

sample periods. Corrective action in the form of inspection after each deployment and 

cleaning, if needed, was taken during the June sample periods; no issues associated with 

particle bounce were observed in the second portion of the study. Additionally, some 

particles were observed on top of and imbedded into the plastic annular ring around the 

Teflon filter material – the plastic ring is covered by the filter holder assembly during 

deployment. This was likely due to contamination during on-site filter storage or 

handling. Efforts were made to minimize this issue throughout, especially during the 

June sample periods. However, windblown dust did impact the handling and storage 

area on May 20.  

The collected OPC data were used to calculate PSD, V, and Vk values. Unlike the 

downwind MiniVol samplers, the downwind OPCs were not overwhelmed by the dust 

plumes from the tillage activities – the manufacturer specified range of the OPC of 0 to 

3.18 x 108 particles m-3 was never exceeded – and thus provided usable data throughout 

all sample periods. Background and downwind PSD and V profiles varied throughout the 

study, as shown in Fig. 4-4. The particle concentrations in this figure were calculated as 

the change in number (N) per change in natural logarithm of dp (dN/d(ln(dp))) where dp 
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is the GMD per bin. The particles emitted by the tillage activities were generally large (dp 

> 5 μm) and, therefore, strongly dominated the volume and mass contributions of the 

activity to near-source atmospheric particle loadings. Three to four OPCs were in 

positions immediately downwind of the field under study in each sample period, with 

between one and four OPCs in upwind locations. 

OPC time series data at upwind locations were examined for contamination from 

upwind activities, such as unpaved road traffic. Contamination was found in six of the 12  

Figure 4-4. Sample period-averaged upwind and downwind PSDs as measured by OPCs 
for (a) 17 May, strip-till operation, Field 5, (b) 18 May, chisel operation, Field 4, (c) 5 
June, plant operation, Field 4, and (d) 7 June, plant and fertilize operation, Field 5. Error 
bars represent the 95% confidence intervals about the average. 
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sample periods, with five of those occurring at the sample site adjacent to the upwind 

meteorological tower and immediately downwind of an unpaved road. Large, short-

duration spikes indicative of contamination were removed from the upwind data in 

these instances to estimate the background aerosol concentration. In each instance this 

was performed, the estimated background levels were in very good agreement with 

those measured by an OPC at a different, uncontaminated upwind location. Filter 

samples collected at upwind locations with contamination indicated by OPC data were 

removed from ER estimation. 

Those filter samples that passed QA, including the upwind and far-source 

downwind samples from May 18 to May 20, were used to estimate MCFk values if 

collected adjacent to an OPC. Most of the daily average MCF10 and MCFTSP values were 

within the expected range of 1 to 3 g cm-3. However, the daily average MCF2.5 values 

were much larger than expected, with individual values ranging from 3.2 g cm-3 to 28.2 g 

cm-3, having a mean of 14.6 ± 3.7 g cm-3 and a median of 10.1 g cm-3. For comparison, 

the densities of pure nickel and mercury are 8.9 g cm-3 and 13.5 g cm-3, respectively. In 

past field campaigns MCF2.5 has generally been higher than MCF10 and MCFTSP values, 

but these MCF2.5 values were much higher than those seen before and account for the 

majority of values above 5 g cm-3 reported in Ref. 21. Due to the non-physically large 

numbers, the calculated MCF2.5 were not used. Instead, the average soil density of 2.65 

g cm-3 given in the USDA NRCS National Soil Survey Handbook was used as a constant 

MCF2.5 for all sample periods31. Using a constant MCF2.5 may affect the accuracy of 
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calculated PM2.5 concentrations, ERs, and EFs and the value of η2.5. However, as will be 

shown later, the effect on η2.5 was assumed to be small as the values were very close to 

those of η10 and ηTSP. Table 4-4 presents the daily MCFk values used to convert Vk 

calculated from lidar and OPC measurements to PMk. 

The cause of the high MCF2.5 values is unknown. No significant differences in 

PM2.5 chemical composition were observed between sample periods with higher and 

lower MCF2.5. While PSDs varied between sample periods, no trends in PSDs sufficient to 

explain high/low MCF2.5 groupings were observed. Higher average MCF2.5 values were 

not restricted to sample periods in which evidence of particle bounce was found (18-

20May); those filters exhibiting evidence of particle bounce were removed prior to MCF  

Table 4-4 Mass conversion factors (MCFs) used to convert optical particle 
measurements to mass concentrations for each sample day and averaged for the whole 
campaign. Error values represent the 95% confidence interval for n ≥ 3. A constant 
MCF2.5 value equal to the average density of soil was used due to non-physically high 
values calculated for most of the sample days31. 

Date 

MCF2.5 MCF10 MCFTSP 

Avg n Avg ± 95% CI n Avg ± 95% CI n 

 (g cm-3) count (g cm-3) count (g cm-3) count 

17 May 2.65 --- 2.6 ± 1.3 9 4.4 ± 4.0 7 

18 May 2.65 --- 1.6 2 1.6 ± 0.1 3 

19 May 2.65 --- 1.7 ± 0.3 5 1.6 ± 0.3 8 

20 May 2.65 --- 1.6 ± 0.5 5 1.4 ± 0.2 4 

5 June 2.65 --- 1.8 ± 0.3 5 1.5 2 

7 June 2.65 --- 1.5 ± 0.3 5 1.4 ± 0.2 4 

11 June 2.65 --- 4.3 ± 1.2 4 2.9 ± 0.5 4 

18 June 2.65 --- 1.8 ± 0.5 6 2.3 ± 1.0 4 

25 June 2.65 --- 2.0 ± 0.3 6 2.2 ± 0.6 5 

 All --- --- 2.1 ± 0.3 49 2.3 ± 0.7 44 
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calculations. MCF10 and MCFTSP patterns tended to follow MCF2.5 patterns, having 

correlation coefficients (r) of 0.64 and 0.84, respectively, but with much smaller changes 

in amplitude. Good negative correlations (-0.69 ≤ r ≤ -0.64) were found when comparing 

all MCFk with sample duration. This means that MCFk tended to increase as sample 

duration decreased.  

One potential explanation consistent with these relationships is contamination 

during filter handling and storage. If filters were equally contaminated, the greatest 

effect would be found on those samples with the smallest mass catch, i.e. samplers with 

PM2.5 impactor configurations or shorter sample times. Unfortunately, field and lab 

blanks were not collected to monitor for and quantify such contamination; this 

oversight has been corrected in subsequent studies.  

An alternate contamination test is a comparison with independent and 

proximate PM measurements, though conclusions from this test are limited by 

comparability of sample characteristics. The closest independent monitoring site was a 

suburban monitoring station operated by the SJVAPCD, which reported 24-hr average 

PM10 concentrations on three days during which tillage monitoring occurred. The 

SJVAPCD 24-hr average PM10 and study site mean background PM10 pairs were, 

respectively, 38 and 38 µg m-3 for 18 May, 34 and 47 µg m-3 for 5 June, and 38 and 163 

µg m-3on 11 June. Differences in sample period (24-hr vs. 1.5-hr to 7.5-hr and limited to 

daylight hours only), location setting and local sources (suburban vs. rural), and 

instrumentation (FRM vs. MiniVol) existed between the two datasets and contributed to 
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observed differences. The differences in concentration between the two sites on 18 

May and 5 June were within the range of expected values and do not support the 

sample contamination hypothesis. At first glance, the large difference on 11 June may 

be interpreted to support this hypothesis. However, all filters collected during this 

sample period easily passed the visual filter inspection for particle bounce and particles 

on and/embedded into the annular ring. If filter contamination did occur during this 

field study, it does not appear to have been consistent based on the comparison with 

proximate PM10 measurements nor evident in the applied QA tests. Therefore, the 

cause of the high MCF2.5 values is unknown and no further data exclusions were made.  

Sample period-averaged OPC PMk data ranged from 4.3 to 60.2 μg m-3 for PM2.5, 

41.2 to 641.1 μg m-3 for PM10, and 95.3 to 3,271.9 μg m-3 for TSP. OPC PMk values at the 

native 20 s averaging period had much higher ranges across all k as the plumes emitted 

by the roving tillage activities impacted the point samplers in short bursts, the impact of 

which was reduced when averaged with intervals measuring lower levels. Lidar-derived 

PMk also had a high variability for the same reason. This is evident in Fig. 4-5, which 

presents PM10 reported by all three systems at 9 m agl at the downwind tower for the 

18 June sample period (14:00 – 16:10). The dashed black line represents the sample 

period average PM10 value based on the MiniVol filter sample, the red line represents 

the PM10 based on 20 s OPC data, and the blue markers represent the lidar-derived 

PM10 for each 0.5 s signal averaging period. The higher temporal sampling frequency of 

the optical systems show the timing and magnitude of individual plumes impacting the 
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collocated group not resolved by the single MiniVol sample. The lidar beam was not 

continuously adjacent to the point sensors as it was performing upwind calibration 

stares and downwind vertical scans, leading to the gaps seen the in the lidar time series. 

The lidar reported elevated PM10 levels when collocated during plume impaction events. 

It also reported elevated levels when the point sensors did not – this was due to part of 

a plume being within the 6 m long lidar bin but not significantly impacting the tower. 

Negative PMk values were occasionally reported by the lidar, as seen here. These were 

artifacts of the optimization in the calibration procedure and are not real – negative PM 

concentrations are not possible. 

Figure 4-5. Time series of PM10 concentrations as reported by the collocated OPC, 
MiniVol filter sampler, and lidar at 9 m agl on the downwind side of the tillage activity 
for the 18 June sample period (14:00 – 16:10). 
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While the scanning lidar was at a disadvantage compared to the point sensors in 

monitoring PM continuously at a given location in Fig. 4-5, a significant advantage of the 

lidar over the point sensors is its ability to monitor plumes over a line or area. For 

instance, the data shown in Fig. 4-6 were collected in a stare adjacent to the downwind 

tower (location indicated by the solid black line at constant range) over approximately 

one minute of the sample period in Fig. 4-5. The lidar detected multiple, highly-

concentrated plumes at varying distances, only one of which appears to impact the 

tower. The bottom plot shows the average PM10 concentration with range during this 

time. The vertical scanning profiles used to monitor plumes emitted by the tillage 

activities allowed measurement of vertical and cross-beam horizontal plume extents. 

Monitored plumes reached elevations up to 150 m agl at the downwind lidar scanning 

plane, though most remained below 100 m. Plume widths also varied. Fig. 4-7 provides 

an example of two plumes captured in a single vertical scan on 5 June when two 

different tillage operations were performed in different areas of the field. The plume 

closer to the lidar is lower and denser than the plume farther away.  

Comparisons between PMk concentrations from MiniVol, OPC, and lidar data at 

upwind and downwind locations were performed for each sample period as a check on 

the use of the MCFk and the lidar calibration procedure. Accurate estimates of PMk are 

necessary for accurate estimates of PM emissions. The MiniVol, as it measures PMk 

directly at each point, is assumed to be more representative of the actual PMk than the 

OPC and lidar. Most inter-instrument comparisons revealed upwind values agreed fairly  
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Figure 4-6. Lidar-derived PM10 in a time versus distance from the lidar concentration 
map (top) and a time series average concentration versus distance from the lidar graph 
(bottom). Data were collected in a stare past the downwind tower during the 18 June 
sample period. 

well, but greater differences were found in comparisons at downwind sample sites. 

Potential reasons for the similarities and differences at both upwind and downwind 

point sampler locations will be discussed in the following paragraphs, with an example 

comparison provided as well. 

The similarity of PMk estimated by the OPC and lidar at the upwind site was 

expected as this is the calibration point in the lidar PM retrieval algorithm and both are 

converted to PMk through the same MCFk. The downwind sites, however, were not used 

as direct calibration points and, thus, may exhibit greater differences between lidar and  
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Figure 4-7. Image of plumes in a vertical scan on 5 June. 

OPC period-averaged values. On a side note, the proximity of all upwind OPC and lidar 

PMk demonstrates the selected time interval between lidar calibration stares was 

sufficient to adequately characterize changes in upwind PM. It also supports the 

assumption made in the flux calculations that upwind PMk is relatively constant. 

Differences in calculated PMk between instruments may result from a variety of 

factors, including but not limited to, the following: sample volume differences (OPCs - 1 

L min-1; MiniVols - 5 L min-1; lidar - 6 m bin length x ~1 m beam diameter sampled at 10 

kHz with data averaged over 0.5 s); sampling frequency at the point sensor location 

(MiniVol and OPC - continuous; lidar - upwind: 3-5 min per 15 min, and downwind: 1-3 

min per 15 min); lidar sample timing with respect to plume location (i.e., simultaneous 

presence of both the lidar beam and a transient plume impacting the instrumented 

tower versus the total time the plumes impacted the tower); and the differences 
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between the MCFk values calculated at the comparison site and the average MCFk across 

all measurement sites used to convert Vk to PMk. Lidar stare time used in the 

comparison with continuously running, stationary OPCs and MiniVols was limited by the 

need to perform vertical scans for flux estimation. Better agreement is expected on the 

downwind side with an increasing proportion of time spent adjacent to downwind 

samplers.  

The error introduced in this inter-instrument comparison associated with using a 

spatially-averaged MCFk was generally less than ±30% during this study based on the 

95% CIs reported in Table 4-3. Large differences in PM2.5 between the filter- and optical-

based methods were observed across all sample periods due to the use of a constant 

MCF2.5 value that was not derived from on-site PM measurements. However, OPC and 

lidar PM2.5 levels were close. 

An example of an inter-instrument comparison is provided in Table 4-5 for the 18 

June sample period, the period shown in Fig. 4-5. In this instance, average upwind OPC 

and lidar PM10 and TSP concentrations were within 15% and 7%, respectively, of the 

values reported by the MiniVol. Downwind lidar PM10 and TSP values were 73% and 64% 

of OPC levels, respectively, while the OPC PM10 was 6% higher than the PM10 

concentration from the filter sample. The differences at the downwind location were 

likely caused, in large part, by the relatively small amount of time the lidar sampled 

adjacent to the point sensors. Longer stare periods at downwind locations are expected 

to yield better PMk accuracy and are planned for future deployments. 
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Table 4-5. Comparison of period average PM mass concentrations as reported by 
collocated MiniVol filter samplers and OPCs, as well as the adjacent lidar bin, at 
measurement heights of 9 m agl at upwind and downwind tower locations for the 18 
June sample period. Error values provided for OPC and lidar PMk represent the 95% 
confidence interval (CI). 

 PM2.5 (µg m-3) PM10 (µg m-3) TSP (µg m-3) 

Upwind (T1) 

MiniVol PM sampler 30.1 56.5 195.4 

OPC ± 95% CI 4.9 ± 0.1 48.2 ± 1.1 185.4 ± 8.5 

Lidar ± 95% CI 5.1 ± 0.1 50.8 ± 1.3 200.0 ± 6.7 

Downwind (T2) 

MiniVol PM sampler 63.2 87.5 --- 

OPC ± 95% CI 6.4 ± 0.5 93.0 ± 15.1 442.3 ± 95.2 

Lidar ± 95% CI 6.3 ± 0.1 68.1 ± 2.1 284.5 ± 10.2 

 

Estimated Emissions and Control Efficiencies 

The PMk data from the lidar, OPCs, and MiniVols were all used to calculate PM 

emissions using mass balance and inverse modeling techniques. Table 4-6 provides the 

results of these calculations, as well as the summed emissions from each tillage 

management practice. Stated uncertainties are the 95% confidence intervals (CIs) about 

the average and have been provided for cases where n ≥ 3. 

The summed conservation tillage sequence emissions (EST) consists of the 

following three passes: strip-till, plant, and herbicide application. The lidar did not 

detect plumes in downwind vertical scans during the herbicide application, as indicated 

by the no plumes observed (NPO) designation. However, downwind PM samplers 
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reported small increases in concentrations over background levels during this sample 

period, leading to small EFs relative to the other operations investigated. The herbicide 

application operation was performed by a small tractor pulling a spray applicator; as no 

subsurface disturbance occurred, the only active PM sources were the tractor and 

implement tires and the spray droplets. 

The summed emissions for the conventional tillage method (ECT) includes the 

following 13 passes in order: two break down in-field border passes, chisel, two disc 

passes, lister, two cultivator passes, roll, plant, fertilizer injection, and two more 

cultivator passes. The EFs for the break down in-field borders operation have been 

distributed over the entire field area (10.1 ha) instead of just the area worked (1.0 ha) to 

represent the emissions over the entire field in the ECT calculation. As the lidar system 

was unavailable to take measurements during the last sample period for the third 

cultivator pass, the emissions of the last two cultivator passes were assumed to be equal 

to the observed emissions for the first two cultivator passes. The inverse modeling 

method found that the third cultivator pass emitted from 0.6 to 3.6 times as much PM 

as calculated for the first and second cultivator passes, with an average of 2.1.  

Some of the lidar-derived EFs were much higher than those calculated by inverse 

modeling within an operation and PM size fraction, particularly for the chisel, disc 1, and 

lister passes. Others were not statistically different due to overlapping CIs. ECT and EST 

EFs from the lidar dataset were significantly higher, based on the CIs, than those 

calculated through inverse modeling in all cases but the PM2.5 EST. The lidar- and OPC-   
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based PM2.5 EFs were smaller than the MiniVol-based PM2.5 EFs in all cases, which is 

likely related to the use of the average soil density as the MCF2.5 in place of calculated 

values as discussed earlier.  

While the EFs from published studies are generally not in close agreement, a 

high range of variability is expected from measurements made under different 

meteorological and soil conditions, as demonstrated in Ref. 5. Some of the PM10 EF 

values calculated from this study were in agreement with those given by Ref. 5 and Ref. 

10, such as the cultivate, roll, strip-till, conventional tillage planting, and conservation 

tillage planting passes. Other EFs were much larger than values previously reported, 

especially the disc 1, disc 2, chisel, and lister passes. The results from this campaign 

were, in general, not in as good agreement as previous studies have been. 

The η values were also included in Table 4-6. They were calculated using the 

following formula based on a collection efficiency equation found in Ref. 30 and 

represents the PM emissions reduction of the conservation tillage compared to the 

conventional tillage:  

CT

STCT

E

EE 


. (4-5) 

The strip-till conservation tillage reduced PM emissions in all size fraction by about 90%. 

The reduction in total tractor operation time per unit area of field was similar to PM 

reductions at 84% (see Table 4-6). The η results had a small range of < 6% across 



 
149 

 

 

methodologies and size fractions, despite large differences in summed emissions 

between methodologies. 

Limitations of the PM sensors and AERMOD contribute to limitations and 

uncertainties in the estimated EFs. For instance, the scanning lidar system did not 

collect data below about 10 m agl at the range of the fields due to eye-safety concerns, 

which results in portions of plumes not being sampled and included in EF estimates. Vice 

versa, the inability to locate point sensors above 10 m limits their ability to characterize 

the plume depth. In this case, the lidar and point sensors complement each other in 

mapping the emitted plumes, as previously demonstrated by Ref. 6. In addition, 

measurements at a few points may or may not represent the plume characteristics 

sufficiently to accurately determine the EF, particularly for a roving source such as in 

agricultural tillage. This was mitigated by deploying as many samplers at different sites 

within the downwind plume as possible. Another limitation that was identified by Ref. 

11 and was also present in this analysis is AERMOD’s poor simulation of elevated plumes 

from agricultural tillage, particularly plumes completely detached from the ground. 

Conclusions 

A study was conducted in California’s San Joaquin Valley to estimate the PMk 

emissions η of a CMP relative to the conventional tillage practices. PMk concentrations 

resulting from a spring tillage sequence transitioning from a winter wheat silage crop to 

a summer corn crop were monitored. The strip-till conservation tillage CMP, consisting 
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of three operations in three passes, was compared against the conventional tillage 

sequence, consisting of nine operations in 13 passes. The CMP reduced the amount of 

tractor operation time per unit area by 84%. Emissions were estimated through inverse 

modeling with filter-based PMk and through a mass balance applied to mass-calibrated 

lidar PMk. 

A significant portion of the filter-based samples were rendered unusable for 

emissions calculations due to sampling irregularities and errors. The incompleteness of 

this PMk dataset prevented the calculation of total EFs per management practice and 

the CMP η. However, the OPC- and lidar-based PMk and EF datasets were sufficiently 

complete to calculate η values, which were all about 90%. Some of the calculated EFs 

were within the range found in the literature, but others were significantly higher. The 

total emissions per management practice and PM size fraction varied significantly, 

based on the 95% CIs, between the measurement and emissions estimation 

methodology combinations. This study demonstrated that the strip-till CMP can 

significantly reduce PM emissions and tractor operation time during the investigated 

spring tillage sequence. 
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CHAPTER 5 

AMMONIA MEASUREMENTS AND EMISSIONS FROM A CALIFORNIA 

DAIRY USING POINT AND REMOTE SENSORS1 

Abstract 

Ammonia (NH3) is an important trace gas species in the atmosphere that can 

have negative impacts on human, animal, and ecosystem health. Agriculture has been 

identified as the largest source of NH3, specifically livestock operations. NH3 emissions 

from a commercial dairy in California were investigated during June 2008. Cattle were 

held in open lot pens, except for young calves in hutches with shelters. Solid manure 

was stored in the open-lot pens. Liquid manure from feed lanes was passed through a 

solids settling basin and stored in a holding pond. Passive sensors and open path Fourier 

transform infrared spectrometers (OP-FTIR) were deployed around the facility to 

measure NH3 concentrations. Emissions from pens and the liquid manure system (LMS) 

were estimated using inverse modeling. Mean emission factors (EFs) for the entire 

facility were 140.5 ± 42.5 g d-1 animal-1 from the passive sampler data and 199.2 ± 22.0 g 

d-1 animal-1 from OP-FTIR data, resulting in the facility’s summer time emissions 

calculated at 265.2 ± 80.2 kg d-1 and 375.4 ± 27.1 kg d-1, respectively. These EFs are 

within the range of values reported in the literature. Both concentrations and emissions
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exhibited a strong diurnal cycle, peaking in the late afternoon. Total facility emissions 

exhibited significant positive correlations with temperature and wind speed. The 

findings of this study show that NH3 emissions from a commercial dairy 1) can vary by a 

factor of 10 or more throughout the day and 2) EFs can vary by two orders of magnitude 

when compared to other U.S. dairies, based on literature values. 

Introduction 

Gaseous ammonia (NH3) is a significant basic species in the atmosphere and a 

compound of environmental concern based on two potentially major impacts. First, it 

may combine with nitric or sulfuric acids to form small particles that contribute to fine 

particulate matter (PM) concentrations, which has been shown to have adverse health 

effects in humans and animals and impacts on visibility and climate (Davidson et al., 

2005). The second potential impact of NH3 is through deposition, either dry or wet, to 

the land/water surface that may significantly contribute to local nitrogen budgets, which 

in turn affect ecosystem health and stability (Paerl, 1985; Duce, 1991).  

Ammonia is a by-product of the microbial degradation of substances containing 

organic nitrogen, i.e. any plant or animal material. It is also manufactured for industrial 

and fertilizer uses. Various emissions inventories estimate that agriculture related 

activities contribute the largest portion of total NH3 emissions, with 50 to 75% from 

livestock production (Battye et al., 2003; EPA, 2003). Livestock feed contains nitrogen 

(N) for conversion to animal product, but the utilization of that N is relatively inefficient 
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– between 50 to 80% of N intake is excreted in urea and manure. Gaseous NH3 

emissions originate from the excreted material, with substantial portions of it 

potentially volatilized as NH3 within hours. Emission locations include animal housing, 

manure storage and treatment facilities, and manure land application. Many different 

factors have been shown to affect NH3 emissions and include, but are not limited to: pH, 

temperature, wind speed, chemical and microbiological activities, total ammoniacal 

concentration (TAN), and transport and dispersion characteristics (Arogo et al, 2006).  

Given the potential negative environmental effects of NH3 and the large 

contribution to total emissions from agricultural livestock operations, focus has 

increased on quantifying emission rates (ERs) and emission factors (EFs) from a variety 

of livestock facilities. For the purposes of this discussion, EFs are emission values on a 

per animal or per animal unit (AU) and per unit time basis (i.e., g d-1 animal-1, kg yr-1 AU-

1), while ERs are based on time but not per animal (i.e., kg d-1, g m-2 s-1). This paper will 

focus on NH3 emissions from a dairy cattle facility; dairies were estimated to contribute 

24% of the total U.S. livestock NH3 emissions in 2002 (EPA, 2005). There is a wide variety 

of climate, feeding, housing, facility operation, and manure management conditions in 

the dairy industry, all of which potentially affects NH3 emissions and complicates 

estimating the industry’s impacts on the environment. It is therefore important that 

emissions measurements be made under as many conditions as possible. Several 

published studies have investigated emissions from U.S. dairies under different 

conditions and over varying periods of time, with estimated EFs ranging over two orders 
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of magnitude (Schmidt et al., 2002; Cassel et al., 2005; Moore, 2007; Mukhtar et al., 

2008; Rumburg et al., 2008a, 2008b; Bjorneberg et al., 2009; Flesch et al., 2009a; 

Adviento-Borbe et al., 2010; Leytem et al., 2011, 2013). Note that only one study, 

reported by Cassel et al. (2005) based on winter measurements, was conducted in 

California, the state with the largest milk cow population in the U.S. at 20% of the 

national population and with areas of significant air quality issues related to fine PM 

formed from NH3 (Chow et al., 1993; USDA, 2009).  

In an effort to contribute to the body of knowledge on air pollutants originating 

from California dairies and their potential environmental impacts, a study was 

conducted at a commercial dairy in the San Joaquin Valley to 1) characterize PM and 

NH3 concentrations in and around the dairy using both point and remote sensors and 2) 

quantify summer time PM and NH3 emissions from each source type present and from 

the facility as a whole. The results of the PM portion of the study have been published in 

Marchant et al. (2011). This paper reports on the NH3 measurements and emissions 

calculations. 

Materials and Methods 

Ammonia concentrations and meteorological conditions were monitored in and 

around a dairy operation in the San Joaquin Valley of California in June 2008. ERs and 

EFs were estimated using an inverse modeling technique coupled with data from two 

sampling techniques: 1) passive NH3 samplers, and 2) open path Fourier transform 
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infrared spectroscopy (OP-FTIR). The NH3 emissions were estimated for two potential 

source groups, pens and a liquid manure system (LMS), and normalized by the number 

of animals in the facility. 

Site Description 

The dairy was located in northern Kings County, California and was surrounded 

by agricultural land. The dairy facility covered 24.7 hectares (ha), including all associated 

storage areas and access roads, which were mostly unpaved. A paved county road 

bordered the dairy on the east side, with crop land on the three other sides. Milking 

cows, dry milking cows, bulls, steers, and heifers uniformly distributed between birth 

and two years old were all housed on the dairy during the study period. Table 5-1 lists 

the number of animals, number of AU, and the average mass in each animal category. 

One AU is defined as one heifer, steer, or bull cattle and 0.7 milking or dry cattle (EPA, 

2001), yielding a total of 2,335 AU on this dairy with 1,885 animals. The average size of a 

cattle farm in Kings County in 2007 was 1,021 animals, while the average dairy had 

1,169 milk cows (USDA, 2009).  

The youngest calves were housed in individual small hutches, each with a 

shelter. Milking cows, bulls, steers, dry cows, and heifers older than about four weeks 

old were housed in open lot pens with a dirt base. Stocking density during this study 

averaged 64.1 m2 animal-1. Most open lot pens were equipped with a canopy shelter 
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Table 5-1. Animal count, average animal mass, average feed characteristics, and 
estimated manure and nitrogen excreted for cattle on this dairy during the study period. 
Excretion values were estimated based on information provided by Nennich et al. (2005) 
as part of standards revisions to ASAE D384.1 (2005), Manure Production and 
Characteristics. 

Animal 
Type 

Animal 
Count 

Animal 
Unit 
(AU) 

Average 
Mass 
(kg) 

Dry 
Matter 
Intake 
(kg d-1 
animal-
1) 

Dietary 
Crude 
Protein 
(%) 

Manure 
Excreted 
(kg d-1 
animal-1) 

Nitrogen 
Excreted 
(kg N d-1 
animal-1) 

Milking 
Cow 

950 1,357 748 25.2 18.4 75.7 0.537 

Dry Cow 100 143 748 14.8 17 49.8 0.334 
Bull[a] 30 30 857 14.8 17.7 49.8 0.353 
Heifer 740 740      
    Large 
(1-2 yrs 
old) 

400 400 435 10.1 17 31.3 0.186 

    Small 
(< 1 yr 
old) 

340 340 195 8.9 17 32.4 0.170 

Steer[b] 5 5 435 10.1 17 31.3 0.186 
Calf 60 60 64 4.8 17 16.4 0.091 

Farm 
Total 

1,885 2,335 NA 
33,308 
kg d-1 

NA 
103,103 
kg d-1 

693 kg d-1 

[a] Dry matter intake and manure excreted for bulls was assumed to be equal to dry 
cows. Dietary crude protein for bulls represents an average between milk cow and 
heifer diets, based on the assumption bulls were evenly distributed between pens with 
milk cows and larger heifers, and nitrogen excretion was calculated based on the 
average crude protein content.  
[b] Steers were assumed to be fed the same ration as larger heifers and have equal dry 
matter intake, manure excretion, and nitrogen excretion. 

consisting of a corrugated metal roof elevated about 6 m above ground level (agl) on 

poles. The total pen area was 13.0 ha, about 53% of the dairy footprint, with a total of 

0.8 ha covered by shelters. The dairy layout is presented in Fig. 5-1, with the group of 
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pens for each animal category labeled and the locations of feed, equipment, and 

manure storage locations also shown. It should be noted that the five steers occupied 

only a quarter of the northwestern most pen.  

The cows were milked twice a day, with a milking schedule from 08:00 h to 17:00 

h and from 20:00 h to 05:00 h local time. Milk production averaged 34.1 kg d-1 animal-1 

during June 2008. A feed truck delivered feed to all pens from 05:30 h to 12:00 noon 

and from 15:00 h to 17:00 h local time along concrete feed alleys adjacent to pens. Feed 

 

 

Figure 5-1. Map of dairy pens, storage, and sampling locations. 
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lanes, areas where the cattle stand while feeding and along which cattle are moved, 

were concrete and sloped for drainage. The remaining pen surfaces were unpaved. Feed 

lanes in pens holding milking cows were flushed several times per day, while feed lanes 

in the other open lots were scraped on a weekly basis with one scraping occurring 

during this study on 18 June. Unpaved pen surfaces were scraped on an as-needed 

basis; corral scraping occurred during equipment setup but not during the measurement 

period. Gathered manure from both the feed lane and pen area were stored in each pen 

for later removal. The liquids generated from both milk parlor washing and milking cow 

feed lane flushing were first passed through an earthen solids settling basin (0.1 ha) and 

was then stored in an earthen holding pond (0.6 ha). Separated solid manure was stored 

in windrows. The windrows present at the time of the study were in the southwest area 

of the solid manure handling area and dry at the surface. These windrows were not 

disturbed during the measurement period, nor were solids removed from the separator 

basin and windrowed.  

Animal diets have been shown to be a significant factor in NH3 emissions (Smits 

et al., 1995; Cole et al., 2005). As this study examined NH3 emissions from all cattle on 

the dairy, the diets for each animal type should be considered. Cattle were fed different 

mixed ration diets based on gender, age, and milking status, though all diets were based 

on alfalfa and silage (green wheat silage for all animal types, with milking cows receiving 

corn silage as well) with additives to meet energy and nutrient targets. Dry matter fed 

(DM) and dietary crude protein content (CP) for each animal category are listed in Table 
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5-1. Milking cow DM and CP averaged higher than all others at 25.2 kg d-1 animal-1 and 

18.4%, respectively, while CP for all others averaged 17%. Manure excreted (ME) and 

nitrogen excreted (NE) were estimated per animal based on equations for different 

categories of dairy cattle developed by Nennich et al. (2005) as part of standards 

revisions to ASAE D384.1 (2005), Manure Production and Characteristics, and summed 

over all cattle on the facility, as shown in Table 5-1. Due to a small dataset, Nennich et 

al. did not provide equations for dry cows. It is unlikely that the average excretion values 

provided by Nennich et al. would be representative for this dairy since the average DM 

and CP for dry cows on this dairy were 43% and 28% greater, respectively, than mean 

values reported by Nennich et al., though less than the maximum values reported. 

Therefore, ME and NE were calculated based on linear fits to the reported mean, 

minimum, and maximum values for ME and NE against the mean, minimum, and 

maximum values of DM and CP, respectively, resulting in the following equations:  

 9967.0,63.878.2 2  RDMM E  (5-1) 

 000.1,15.082.2 2  RCPNE  (5-2) 

ME and DM have units of kg d-1 animal-1, NE has units of kg N d-1 animal-1, and CP has 

units of g of CP g-1of DM. Bulls were assumed to have similar DM intake and ME and NE 

excretion rates as dry cows, but with an average CP of 17.7% based on the assumption 

that bulls were evenly divided between pens with milking cows and older heifers. Steers 

were assumed to have intake and excretion rates equal to the larger heifers. All of the 
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dry dietary components were stored in the feed storage area in the northern portion of 

the dairy. 

In order to meet PM10 emissions reductions required to bring the San Joaquin 

Valley into compliance with PM10 National Ambient Air Quality Standards, the San 

Joaquin Valley Air Pollution Control District (SJVAPCD) directed agricultural facilities 

above a threshold size to select and implement Conservation Management Practices 

(CMPs) designed to reduce PM10 emissions (Siong and Sheikh, 2006). The SJVAPCD-

accepted CMP plan for this dairy operation consisted of the following management 

practices: 1) manure from open corrals shall be frequently scraped and/or removed; 2) 

pull-type manure harvesting equipment shall be used; 3) shaded areas shall be provided 

for cattle in open corrals; 4) wet material shall be placed in the feed wagon prior to 

mixing; and 5) feed shall be wetted during mixing. While these target reducing direct 

PM10 emissions, potential positive or negative impacts on NH3 emissions may occur. For 

example, frequent scraping and or removal of manure in open corrals may produce 

short bursts of NH3 releases due to the manure disturbance. Shaded areas provided for 

cattle may affect cattle behavior and result in greater inhomogeneity in excretion 

deposition across the pen surface. The CMPs dealing with feed mixing and the manure 

harvesting equipment type are not expected to affect NH3 emissions. 
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Instrumentation 

Historical wind measurements from June 2005-2007 were obtained from station 

#15 of the California Irrigation Management and Information System (CIMIS) near 

Stratford, California, as a representative site. These records showed that wind 

conditions during the month of June were very consistent, with winds coming 

dominantly from the northwest quadrant. Instruments were deployed to measure 

background concentrations north and northwest of the facility and emission plumes 

south and southeast of the dairy (Fig. 5-1). On-site measurements of wind direction 

during the experiment confirmed the dominant wind direction to be from the 

northwest. An air quality instrumentation trailer (dimensions approximately 5 m by 2.5 

m by 2.5 m), located near the downwind OP-FTIR unit as shown in Figure 5-1, was used 

for sample preparation, collection, and storage as well as data storage.  

Two 15.3 m towers were erected at the site to hold meteorological instruments. 

One was located 400 m west of the dairy and the other located just inside the southern 

boundary of the dairy. Each tower was equipped with five cup anemometers mounted 

at heights of 2.5, 3.9, 6.2, 9.7, and 15.3 m agl and five temperature and relative 

humidity sensors at heights of 1.0, 2.5, 3.9, 6.2, and 8.2 m agl. A wind vane was 

positioned on top of the towers at 15.3 m. Campbell Scientific (Logan, Utah) data-

loggers were used to record and store the data from instruments on the towers as one 

minute averages. Incoming solar radiation, temperature, relative humidity, barometric 
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pressure, precipitation, wind speed, and wind direction were measured and reported as 

five minute averages by a weather station at 5.0 m agl at the air quality trailer near the 

downwind 15.3 m tower. Details for meteorological instruments used in this study are 

presented in Table 5-2. Reported meteorological values and hourly averaged data used 

for modeling were taken from measurements made downwind of the dairy. Due to an 

error discovered in post analysis in the wind direction averaging procedure for the wind 

vanes on the towers, wind directions reported by the weather station were used in all 

calculations and modeling. 

Ammonia concentrations were measured with two methods. The first method 

was passive absorption onto citric acid-coated filters using passive samplers and pre-

coated filters from Ogawa USA, Inc. (Pompano Beach, Fla.). An in-depth description of 

the sampler, the NH3 concentration calculation procedure, and results from 

comparisons with an NH3 scrubber during collocated deployments in ambient air and 

inside a poultry production house are provided by Roadman et al. (2003). Collection of 

NH3 onto the pad is driven by a concentration gradient between the ambient air and the 

filter surface; the concentration at the filter surface is maintained at zero due to its 

reaction with the acid-coated filter surface and formation of a stable compound 

(ammonium citrate) for subsequent analysis. Total sorption of NH3 is determined by the 

ambient concentration, the exposure time, and the mass transfer coefficient. Calculated 

concentrations represent the average concentration over the period of exposure. 

Roadman et al. conducted two saturation and deployment time studies and found that  
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Table 5-2. Meteorological instruments employed in this study. 

Instrument 
Company, City, 
State/Country 

Parameter 
Measured 

Accuracy 

Gill 3-Cup 
Anemometer 

R.M. Young 
Company, 
Traverse City, 
Mich.  

Wind speed ±0.2 m/s over 1 m/s, 
threshold speed 0.5 m/s 

HMP45C Vaisala, Oulu, 
Finland 

Temperature ±0.2 °C at 20 °C 

Relative 
Humidity 

±2% for values in the range 
0-90%, ±3% for values in the 
range 90-100% 

024A Wind 
Vane 

Met One 
Instruments, 
Grants Pass, Ore. 

Wind Direction ±5 ° 

Pro2 Plus 
Weather 
Station 

Davis 
Instruments, 
Hayward, Cali. 

Temperature ±0.5 °C for values greater 
than -7 °C, ±1.0 °C for values 
less than -7 °C 

Relative 
Humidity 

±3% for values 0-90%, ±4% 
for values 90-100% 

Solar Radiation ±5% of full scale 

Precipitation ±3% or 0.02 mm per event, 
whichever is greater 

Barometric 
Pressure 

±0.8 mm Hg at 25°C 

Wind Speed ±1 m/s or 5%, whichever is 
greater 

Wind Direction ±3 ° 

 

the diffusion and sorption of NH3 on the pad is linear for total collected masses up to 

12.1 μg of NH3, after which the mass transfer coefficient decreases with increasing mass 

collected. In cases where the total mass collected exceeded the 12.1 μg threshold, the 

estimated concentration would be lower than the actual average concentration.  
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The passive sampler exposure time selected for this study was 12 hours based on 

the optimum time ranges (see Figure 5-2 in Roadman et al. (2003)) for background 

concentrations assumed to be close to zero and instantaneous samples of up to 2 ppm 

during active pumping into and taken immediately downwind of the solids separator 

basin with a handheld NH3 gas sensor (Toxi Pro Biosystems, Middleton, Conneticut; 0 – 

100 ppm range, 1 ppm resolution). Passive sampler sites were arrayed upwind, 

downwind, and inside the dairy area as shown by the filled circles in Figure 5-1. Six were 

established as upwind sites and located to the north and northwest of the dairy with 

measurement heights of 1-2 m agl. The remaining 17 sites were placed at downwind 

locations, based on the prevailing winds, along the southern dairy border, the eastern 

dairy border, and between the pens with young heifers and the holding pond. Fourteen 

of the downwind sites sampled at 1-2 m agl heights and three were set at 9 m agl on 

towers at both ends of the southern dairy border and adjacent to the air quality trailer. 

Note that passive samplers were located at both 2 m and 9 m on the towers, leading to 

23 deployed samplers and 20 sites shown in Figure 5-1. 

Analysis of the mass of NH3 collected on the pads as ammonium (NH4
+) was 

performed within the 28 day manufacturer suggested period of time after exposure. It 

was accomplished via extraction through sonication in 8 mL de-ionized water and 

quantification via ion chromatography (IC) at the Utah Water Research Laboratory 

(UWRL) in Logan, Utah. The IC instrument (Dionex Corporation) was equipped with an 

AS 40 Automated Sampler, CE20 Conductivity Detector, GP 40 Gradient Pump, 
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Membrane Suppressor, LC Chromatography Oven, IonPac® CS12A cation column, CG12A 

cation guard column, and a 500 μL sample loop. The IC method used a 0.03 N sulfuric 

acid (H2SO4) solution as eluent. Chemical standards, blanks, and continuous calibration 

verification (CCV) standards utilized de-ionized water and reagent grade chemical 

stocks. Blanks and CCVs were analyzed every 10 samples. A lab and field blank were 

collected for each sample period and analyzed in the same manner. The mass of NH3 

collected per sample and used to determine the period average concentration was 

calculated as the total detected mass minus the average mass detected on the 

corresponding lab and field blank. Duplicate analyses were run on 9% of the samples, 

with the two concentration values averaged for further calculations; the average 

differences between duplicate analyses, expressed as the percent of the average value, 

was 1.4% and the median was 0.0%. The average method detection limit (MDL) ± 1σ for 

the 12 h sample periods was 11.4 ± 0.4 ppbv (7.8 ± 0.4 μg m-3).  

OP-FTIR was the second method of measuring ambient NH3 concentrations 

utilized at the dairy. OP-FTIR is a real-time monitoring technique for remote detection 

and quantification of multiple compounds simultaneously. The principle of operation is 

based on the absorption of energy at different wavelengths by different compounds. 

The OP-FTIR unit projects an infrared (IR) beam of light through a volume to be analyzed 

and then captures this beam, generating a full infrared spectrum which can be used in 

conjunction with reference spectra to identify the gases present and allows for their 

concentration to be measured to ppb levels. 



 
172 

 

 

For this study, two OP-FTIR instruments were employed, with one located on 

each of the dominantly upwind and downwind sides. The upwind OP-FTIR instrument, 

manufactured by Industrial Monitoring and Control Corporation (IMACC, Round Rock, 

Texas), was operated in a monostatic mode in which a single unit containing the IR 

beam source, detector, and associated optics was used at one end of the path and a 

passive corner-cube array retroreflecting mirror was at the other end. It consisted of a 

0.125 cm-1 FTIR modulator, a zinc selenium beam splitter, a mercury cadmium telluride 

detector cooled with liquid nitrogen, a helium neon laser for dynamic alignment control 

and a 25 cm diameter Cassegrain telescope. The upwind measurement path was 2 m agl 

along a transect from the northwest corner of the dairy over a field and totaling 250 

meters (Fig. 5-1).  

Spectra were collected at 1, 3, and 5 minute intervals and analyzed using the 

IMACC FTIR Software Suite, Ver. 01/2005. The IMACC software was used to define an 

analytical method for the selected analyte that was applied to each spectra to: 1) 

perform a point-by-point comparison with a reference spectra to determine the spectral 

line shift required to obtain the maximum correlation coefficient; 2) select portions of 

the spectra for further analysis that contains minimal impacts from compounds with 

potential interferences, based on comparisons between the collected spectra and 

reference spectra for potentially interfering compounds; 3) account for background 

levels of other compounds and dynamic changes in the measurement environment; and 

4) calculate the path length concentration of the analyte of interest through a 
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calibration equation that accounts for response non-linearity over the full range of 

analyte concentrations through a best fit curve fitted to reference standard 

measurements across the full range.  Background spectra were collected onsite during 

times the system was upwind of the dairy using a 25 m path length to minimize NH3 

absorption. The algorithm developed for NH3 was applied to each recorded transmission 

spectra to generate a quantitative value of NH3 concentration.  

The OP-FTIR on the downwind side of the dairy was a monostatic unit 

manufactured by MDA (Atlanta, Ga., now Cerex Monitoring Solutions, LLC, Atlanta, Ga.) 

that utilized a Bomem Michelson 100 interferometer, a 25 cm telescope, and a mercury 

cadmium telluride detector cooled by a Stirling engine. Spectra were collected every 70 

s. This OP-FTIR was set in a scanning system with multiple retroreflectors in order to 

determine NH3 concentrations along multiple lines. The scanning system consisted of a 

covered set of scaffolding, a rack upon which the OP-FTIR was positioned with the 

output beam directed vertically through a hole in the roof and then onto a mirror 

capable of rotational (270°) and elevational (-5° to +45° from horizontal) movement. The 

mirror height was approximately 2.5 m agl. The IR beam was pointed toward each of 6 

retroreflectors along the downwind side of the dairy using the steering mirror, with the 

OP-FTIR centrally located on the southern border of the facility as shown in Figure 5-1. 

Retroreflectors were located at about 140 m and 290 m away from the FTIR along an 

east-west line, with far retroreflectors stationed at both 2-3 m agl and 9 m agl and near 

retroreflectors at 2-3 m agl. Six spectra were collected at each position, with the first 
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two spectra collected not used due to interference from movement of the mirror 

between positions and to allow system stabilization. Therefore, four consecutive 70 s 

spectra were collected along each beam path on a 42 min cycle.  Return signal strength, 

expressed as a percent of the outgoing signal, varied between 50% and 15%, depending 

on path length, alignment, and retroreflector cleanliness. Retroreflectors were cleaned 

every two to three days as needed. Spectra analysis and quantification of the path-

length averaged NH3 concentrations were performed using a data analysis software 

created by Dr. Peter Griffiths at the University of Idaho utilizing a partial least squares 

regression technique (Griffiths et al., 2009; Shao et al., 2010) with instrument-specific 

calibration parameters.  

During the setup period, the OP-FTIR units were placed adjacent to each other at 

the upwind OP-FTIR location for a collocated comparison test using adjacent beam 

paths. Two tests, each 1.5 to 2.0 h in duration, were conducted. The units measured 

incoming background levels during one test, averaging (±SD) 39.0 ± 7.7 ppb and 35.7 ± 

4.7 ppb for the upwind and downwind units, respectively. Incoming background levels 

were spiked by exposed liquid ammonium for the other test, resulting in average 

concentrations of 120.3 ± 28.8 ppb and 121.1 ± 23.5 ppb for the upwind and downwind 

units, respectively. These tests show that the units agreed very well at the higher level 

and slightly less well at the lower background level. 
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Data Treatment and Filtering 

Concentrations measured by the OP-FTIR instruments were averaged over 2 h 

intervals throughout the measurement period for EF estimation. This averaging time 

was selected to minimize the smoothing of potential trends in emissions while providing 

two or more groups of samples on which to base a period average. Due to the low 

cumulative sampling of the downwind scanning system along a given path (~4.5 min 

every 42 min), the representativeness of an average value for the entire 2 h period was 

of concern. Representativeness was assessed based on a period’s relative standard 

deviation (RSD). Exclusion of data due to RSD levels > than 25%, 33%, 40%, 50%, and 

75% was examined. Average values with a RSD > 33% were excluded from EF 

calculations because the 33% level provided a conservative assessment of 

representativeness. This resulted in the removal of ≤ 30% of the averaged data in six of 

the seven employed OP-FTIR measurement paths from emissions calculations. 

As previously stated, the sampler layout during this experiment was designed to 

measure the dairy facility’s impact on downwind concentrations to the south and east. 

However, winds from directions other than the prevailing northwest sector would 

diminish the effectiveness of this setup. Dairy and sample layout geometry indicated 

that periods with wind directions outside of -70 to +50° from North should be excluded 

from EFs calculations. Hourly averaged wind direction measured on-site was used to 

screen data periods. While wind direction may vary considerably over an hour and 
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render the hourly averaged wind direction insufficient for screening purposes, the wind 

directions recorded during this study were very consistent over time spans of several 

hours with periods of higher variability almost always resulting in hourly averages 

outside of the optimal range. Therefore, hourly averaged wind direction values were 

sufficient for screening in this instance. Additionally, determination of the upwind or 

downwind status of each sample location/path was made based on hourly averaged 

wind direction.  

Values reported at upwind sites were averaged to calculate the background NH3 

levels (CB) entering the facility.  Concentrations resulting from the dairy activities (Cmeas) 

were calculated on a location-by-location basis by subtracting CB from the measured 

downwind concentration. This difference was determined to be significant if Cmeas was 

greater than the 67% confidence interval (CI) about CB, corresponding to one SD. Only 

Cmeas values found to be significant in this way were used in emissions calculations. 

About 18% of the downwind OP-FTIR measurements lacked a corresponding OP-FTIR CB 

value. In these cases, the average passive sampler CB and corresponding 67% CI were 

used to estimate Cmeas. 

Emissions Calculations 

A dispersion model requires a user-input emission rate for a source in order to 

predict downwind concentration values. However, this study seeks to determine the 

dairy emission rate that resulted in the measured impact on downwind NH3 
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concentrations. This was accomplished through inverse modeling, a process of 

comparing a measured impact on concentration (Cmeas) at a downwind site with a model 

predicted impact on concentration (Csim) based on an initial emission rate supplied to 

the model (Qsim) in order to estimate the actual emission rate (Qmeas). As given by 

Faulkner et al. (2007) and Flesch et al. (2009b), the relationship for deriving Qmeas from a 

single source, assuming a proportionally linear response between Qsim and Csim in the 

model, may be mathematically expressed as:  

 
sim

meas

meas
QC

C
Q 

 (5-3) 

Note that the ratio of (C/Q)sim is dependent upon both the source-receptor spatial 

relationship and the meteorological conditions over the modeled period, and, therefore, 

is only valid for the modeled scenario.  

In the case where multiple sources are active and additive properties between 

the impacts of the different sources on the total concentration at a given location may 

be assumed, the multi-source inverse modeling technique described by Flesch et al. 

(2009b) may be used to simultaneously estimate the emissions from each source. In 

summary, a system of linear algebraic equations is created to estimate the emission rate 

of each source i by calculating the modeled proportional impact on the total predicted 

concentration at each receptor j. A system of linear equations with three sources and 

three measurements is given in Equation 5-4 as an example, with number subscripts 
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representing different sources and letter subscripts representing different 

measurement/receptor locations: 
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 (5-4) 

If there are fewer measurements than sources (j < i), the system is under-determined 

and a unique solution cannot be found. If more measurements exist than contributing 

sources (j > i), the system is over-determined and the solution may be found through an 

optimization approach. See Flesch et al. (2009b) for a more detailed description, as well 

as a discussion on the effect of source-receptor spatial relationships on emission 

estimates. 

There are a variety of atmospheric dispersion models available for use in inverse 

modeling. The one selected to carry out this inverse modeling exercise was the 

American Meteorological Society/US Environmental Protection Agency Regulatory 

Model (AERMOD) software, executable file Version 12345. It was chosen because it is a 

current U.S. EPA recommended regulatory model, it has a proportionally linear 

relationship between Qsim and Csim (see Cimorelli et al., 2005), and to maintain 

continuity within the study (Marchant et al., 2011). Some recent agricultural NH3 

emissions studies utilizing an inverse modeling methodology have used WindTrax 

(Thunder Beach Scientific, www.thunderbeachscientific.com), a backward Lagrangian 

stochastic model (Bjorneberg et al., 2009; Flesch et al., 2009a; Todd et al., 2008; Leytem 
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et al., 2011, 2013). Faulkner et al. (2008) utilized both AERMOD and WindTrax, in 

addition to two other air dispersion models, to estimate NH3 emissions from a beef 

cattle feedyard. They found that ERs and EFs were model specific, and that a simple 

relationship did not exist between the estimated emissions. However, Bonifacio et al. 

(2013) found strong linear correlations between AERMOD and WindTrax in estimating 

PM emissions from a beef cattle feedyard and calculated AERMOD/WindTrax conversion 

factors ranging between 1.3 to 1.6, depending on meteorological inputs.  

The AERMOD model operates in one hour time steps and assumes steady-state 

conditions, continuous emissions, conservation of mass, and concentrations predicted 

at a receptor resulting from different sources are additive. Pollutant distribution is 

modeled as Gaussian in the stable boundary layer in both the horizontal and vertical 

directions and in the horizontal direction in the convective boundary layer; vertical 

pollutant distribution in the convective boundary layer is modeled as bi-Gaussian 

(Cimorelli et al., 2005). The interface used to run this model was the commercially 

available AERMOD View package by Lakes Environmental Software (Waterloo, Ontario). 

AERMOD requires hourly averaged meteorological data such as wind speed, 

wind direction, temperature, and solar radiation. These data were supplied by 

measurements made just south of and predominantly downwind of the dairy. Wind 

direction and incoming solar radiation data recorded at 5.0 m agl by the Davis weather 

station were utilized, along with wind speed data collected by the cup anemometer 

mounted at 6.2 m on the nearby tower, the closest level corresponding to the wind 
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direction measurements at 5.0 m. Temperature data were taken from the 2.5 m agl 

level on the tower. Cloud cover was set at zero for the entire study period, as there 

were clear skies throughout the measurement campaign.  

The meteorological preprocessor for AERMOD, AERMET, also requires that 

values for Bowen ratio (β), noon-time albedo (α), and surface roughness length (z0) be 

specified by the user. The average z0 was calculated from vertical wind speed profiles 

measured downwind of the dairy using the following equation which relates wind 

speeds (u1, u2 in m s-1) at two heights (z1, z2 in m) and was derived from the integrated 

logarithmic wind speed profile equation: 
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  (5-5) 

A least sum of squares of residuals methodology was used to determine the value of z0 

that best fit measured wind speeds at the higher elevation of two paired wind speed 

time series over the study period. A z0 value of 0.09 m was calculated as the arithmetic 

average of the values that best fit six pairings of hourly averaged wind speeds measured 

at 3.9 m, 6.2 m, 9.7 m, and 15.3 m agl, i.e. 3.9 m and 6.2 m, 3.9 m and 9.7 m, 3.9 m and 

15.3 m, 6.2 m and 9.7 m, 6.2 m and 15.3 m, and 9.7 m and 15.3 m. 

Unlike z0, data were not collected that could be used to calculate the β and α 

values. Instead, summer-time values were selected from tables with seasonal values 
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provided in EPA (2008). The selected β value was 4.0, the suggested summer-time value 

for bare rock/sand/clay in an arid region under average soil moisture conditions. Despite 

soil moisture measurements from pen and road surfaces revealing dry conditions at the 

sample locations, the deposition of urine to pen surfaces by cattle and the presence of 

the LMS were used as justification for selecting the suggested value for average soil 

moisture conditions. The suggested noon-time α value of 0.20 for bare rock/sand/clay in 

an arid region was used in this study.  

Faulkner et al. (2008) found that maximum Csim as predicted by AERMOD from a 

ground level area source were sensitive to, among other input parameters, α and z0 but 

it was not sensitive to β. The lack of sensitivity to β was theorized to be due to the 

dominance of mechanical mixing in the planetary boundary layer in their application. 

Based on these findings, the sensitivity of Csim and the resulting Qmeas estimates in this 

inverse modeling application to variations in α and β was investigated. The sensitivity to 

z0 was not tested as it was calculated from measured data. Summer α values selected 

were 0.18, the suggested value for fallow fields and supported by Hansen (1993) for 

light colored, dry soil such as that in fields surrounding the dairy, and 0.25, the 

suggested value for shrublands in an arid region. Two summer values for β were 

selected as 1.5, suggested for both wet conditions in a bare rock/sand/clay surface in an 

arid region and for fallow fields under dry conditions, and 6.0 for dry conditions in a 

bare rock/sand/clay surface in an arid region (EPA, 2008).  
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Four consecutive passive sampler measurement periods, two morning and two 

afternoon, were selected for the comparison. Changes in Csim and Qmeas were calculated 

as a percentage of Csim and Qmeas calculated at the base case of α = 0.20, β = 4.0. Values 

of Csim at all downwind sites varied between -3% and +5% from the base case, though 

most were within ± 1%. Estimates of Qmeas under the different values of α and β varied 

most for the LMS (-6% to +4%), while the changes in pen and combined EFs estimates 

were about equal at -2% to +1%. Values of Csim increased, resulting in decreased Qmeas 

estimates, with increasing α at constant values of β. Holding α constant while increasing 

β had the opposite effect, leading to lower Csim values, and thus higher Qmeas estimates. 

Therefore, in the case of this dairy and sampling layout, neither the Csim nor the Qmeas 

estimated through inverse modeling with AERMOD were sensitive to the selected 

ranges of α and β. 

AERMOD requires the source type, size, location, and emission rate be specified, 

as well as sampler/receptor locations. The pens, settling basin, and holding pond were 

specified as ground level area sources with areal extents equal to their respective 

dimensions and with an initial plume height of 0 m. The vertices of the sources and the 

receptor locations were taken from multiple hand-held GPS measurements made during 

the study and available satellite imagery. Pens not occupied by cattle were not included 

in the model; for example, only the quarter of the northern-most group of pens that 

was occupied by steers was specified as an active source.  
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Note that the value of the (C/Q)sim ratio in Equation 5-3 is the same across all 

ranges of Qsim when using a model with a proportionally linear response in Csim to 

changes in Qsim; this also applies to the ratio of each source/receptor pairing in Equation 

5-4. This means that the ratio describes the slope of a straight-line relationship without 

local maxima or minima and eliminates the dependency of the results on the input Qsim 

values. However, the method used to determine the initial Qsim values for each source i 

for this study is important to note as it was integrated into the optimization procedure. 

An initial estimate of the pen EF (f) of 1.5 mg animal-1 s-1, the yearly average NH3 EF 

reported for an open lot dairy by Leytem et al. (2011), was combined with animal 

occupancy (m, number of cattle) and area (A, m2) as shown in Equation 5-6 to calculate 

Qsim,i values (g s-1 m-2) for the pens: 

i

i

isim
A

fm
Q ,

 (5-6) 

The emission rates of the solids settling basin and the holding pond were assumed to be 

equal and given an initial value of 0.1 mg m-2 s-1, an average of the lower and upper 

ranges reported by Rumburg et al. (2008b). The initial estimates of Qsim for each source 

were supplied to AERMOD, which was then run for each sample period. Calculated 

hourly Csim values were averaged over a sample period, for instance from 12 noon until 

12 midnight to correspond with a p.m. passive sample period, for comparison with Cmeas. 

The presence of the trailer on the downwind side of the dairy may have affected 

measurements at that location due to flow disruption. However, the potential effects on 
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dispersion and nearby concentrations could not be modeled within AERMOD because 

the software does not allow the modeling of building effects with area sources. In 

addition, NH3 is known to deposit readily to most surfaces. Deposition likely occurred 

during this study, to some degree, in the short distance between the sources and 

measurement locations and resulted in lower Cmeas than if some NH3 had not deposited. 

However, deposition was neither measured nor simulated in this study. As a lower Cmeas 

results in a lower Qmeas, any depositional loss occurring between the source and the 

measurement location that is not accounted for in emissions calculations would lead to 

estimated EFs and ERs being lower than the actual values. In such cases, the calculated 

EFs and ERs should be considered as effective ERs and EFs.  

A total of 10 active sources were specified in the model. A sufficient number of 

downwind passive sampler measurements existed to calculate an emission rate for each 

individual source, but a maximum of six downwind OP-FTIR measurement paths yielded 

an under-determined system. Simplification of the system was performed and reduced 

the total number of emission rates solved for in the system to two based on the 

following: 1) as the solids settling basin and the holding pond Qsim were assumed to be 

equal, the change in Csim at a given location resulting from the entire LMS was assumed 

to be linear compared to the change in the sum of the LMS emissions per area per unit 

time (Qsim,LMS); and 2) as m and A in Equation 5-6 are constants for a given pen source i, 

leaving only changes in f to change Qsim,i, and the same value of f was applied to each 

pen, a linear change in Csim resulting from all the pens at a given location to a change in 
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the sum of the pen Qsim,i per unit area per unit time was assumed. Both assumptions 

were verified to be true through modeling with different f and Qsim,LMS values.  

Therefore, the system of linear algebra equations used to estimate the dairy NH3 

ERs was designed to solve for fmeas and Qmeas,LMS, yielding an over-determined system for 

both passive and OP-FTIR sampling configurations. The optimization method employed 

to solve these systems was a least sum of squares of residuals comparing Csim and Cmeas. 

Reported EFs on a per animal basis were calculated for the LMS by relating the 

estimated ERs to the number of contributing animals, which was assumed to be limited 

to those in the milking cow pens due to the lack of feed lane flushing in other pens. The 

EF per animal for those in the milking cow pens was calculated as the sum of the pen EF 

and the LMS EF. The average NH3 EF across the facility was calculated as a weighted 

average of the pen EF and the summed EF for cattle in the milking cow pens, with 

weights assigned based on the number of cattle in the two categories. In addition, the 

overall study average EFs were calculated as weighted averages according to the 

number of EF estimates during each sample period time throughout a day. For example, 

the reported OP-FTIR based averages represent the sum of the estimated emissions 

over a 24 h period using the average EFs for each 2 h block. 

Results and Discussion 

The measurement campaign began at 12:00 noon Pacific Standard Time (PST) on 

13 June 2008, and ended at 00:00 h PST on 21 June 2008. A total of thirteen sample 
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periods, approximately 12 h each, were conducted using the passive samplers, with all 

previous samples being collected and the next samples being deployed within 30 min of 

00:00 h and 12:00 noon PST. The upwind OP-FTIR unit operated nearly continuously 

from 14 June 04:20 h to 19 June 08:30 h. Data were collected by the downwind OP-FTIR 

unit from 13 June 13:30 h to 21 June 00:00 h, operating for 118.9 h out of 178.5 total 

hours (66.6%).  

Meteorological conditions throughout the field study were hot and dry, with 

diurnally consistent wind patterns. Low wind speeds with highly variable direction were 

recorded each morning shortly before sunrise. The wind speed at 6.2 m agl from 05:00-

06:00 h varied between 0.6-1.5 m s-1 with a campaign average ± 1 SD of 1.1± 0.2 m s-1. 

The SD is reported in this paper for all measurements unless otherwise noted to show 

the variability in the reported values. During the remainder of the day winds came from 

the northwest. Figure 5-2 shows the dominance of winds from the northwest sector 

throughout the study, accounting for 74% of recorded values. Cloud cover was either 

absent or extremely light and at high altitudes throughout with no recorded 

precipitation events. Samples of the soil on unpaved roads and in dry-lot pens were 

collected on 16 June and analyzed for percent moisture, resulting in averages of 0.56% ± 

0.50% (n = 3) and 5.3% ± 5.1% (n = 7) for the unpaved roads and pens, respectively. 

Campaign average meteorological conditions measured on-site are presented in 

Table 5-3, as well as average conditions measured at the Stratford CIMIS site during the 

study period, for all of June 2008, and for the month of June from 1998-2007. Average  
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Figure 5-2. Hourly average wind conditions measured at the dairy during the 
measurement periods, 13-20 June 2008. 

Table 5-3. Comparison of average meteorological conditions (±1 SD) measured at the 
dairy from 13-20 June 2008 and at a site in Kings County for the same period, the full 
month of June 2008, and June from 1998-2007. 

 On-site 

13-20 June 2008 

Off-site 

13-20 June 2008 

Off-site 

June 2008 

Off-site 

June of 1998-2007 

Temperature (C) 26.5 ± 6.7  26.7 ± 7.4 24.8 ± 7.2 24.2 ± 6.7 

Relative Humidity (%) 41 ± 18 30 ± 16 33 ± 17 45 ± 18 

Wind Speed (m/s) 2.4 ± 1.1  2.9 ± 1.2 3.2 ± 1.7 2.8 ± 1.3 

Wind Direction (°) 325 ± 42  326 ± 42 329 ± 42 330 ± 45 

Total Precipitation (mm) 0.0 0.0 0.3 16.2 

 

conditions on-site were indistinguishable from those measured at Stratford for 

temperature, wind direction, and precipitation; wind speeds were slightly lower and 
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relative humidity values were higher at the dairy, with little difference between upwind 

(data not shown) and downwind measurements. Comparison of the study period 

conditions at Stratford with the remainder of the month and during previous years 

reveals this period was slightly warmer and drier than monthly averages, but with 

similar wind conditions. June 2008 was similar to past years in temperature and wind 

direction, with slightly higher average wind speeds and lower relative humidity values. It 

should be noted that the total precipitation in each column is a summation of all data 

considered and that the sum of 16.2 mm comes from three recorded events from 1998-

2007 during the month of June and is strongly driven by a single event totaling 14.0 mm. 

Concentration Measurements 

A total of 298 samples were successfully collected upwind, downwind, and 

within the dairy using the passive samplers deployed at 23 locations. The average 

upwind concentration was 84.5 ± 19.2 ppbv (57.4 ± 13.4 μg m-3, n = 86) with a range of 

52.9 to 128.3 ppbv. Concentrations measured downwind varied much more, with a 

range of 69.3 to 1879.2 ppbv and an average of 412.4 ± 281.1 ppbv (280.0 ± 188.6 μg m-

3, n = 209). No passive samples exceeded the 12.1 μg collected NH3 threshold, after 

which the collection efficiency becomes non-linear. There was a significant difference in 

NH3 concentrations measured between morning (sampled from roughly 0:00 h to 12:00 

noon) and afternoon (sampled from roughly 12:00 noon to 0:00 h) periods. Average 

morning levels were 99.3 ± 16.5 ppbv (n=25) at upwind sites and 308.5 ± 181.0 ppbv 
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(n=89) at downwind sites. Afternoon concentrations averaged 78.7 ± 16.9 ppbv (n=60) 

and 489.4 ± 315.3 ppbv (n=120) at upwind and downwind locations, respectively. The 

highest concentrations in each period were measured between the holding pond and 

the young heifer pens and downwind of the milking cow pens. These concentrations 

were in the range of values reported by Cassel et al. (2005), Bjorneberg et al. (2009), 

and Leytem et al. (2009) at open lot dairies in California and Idaho. 

Ammonia concentrations recorded by the OP-FTIR units were more frequent 

than the passive sampler measurements, thus providing more information about the 

diurnal pattern and temporal variation in concentrations. However, these values are 

volumetrically averaged concentrations across the beam area (diameter ≈ 0.3 m) and 

along the length of the beam path (140 to 290 m, depending on pointing position). Thus, 

the OP-FTIR units provide less spatial information than the passive samplers. Figure 5-3 

presents a five-day time series of data collected at 2 to 2.5 m agl along five different 

beam paths (see Figure 5-1 for beam path locations). Reported levels of NH3 are in the 

same range as those calculated from passive sampler measurements, as well as 

measurements given in literature from dairies with similar housing and manure 

management systems (Cassel et al., 2005; Bjorneberg et al., 2009; Leytem et al., 2009).  

Note that the highest NH3 concentrations throughout the period were detected to the 

east of the centrally-located downwind OP-FTIR unit, which is immediately downwind of 

both the LMS area and milking cow pens. Additionally, the highest concentrations 

detected downwind of the dairy were recorded in the evening and shortly after 
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midnight while the lowest NH3 levels were measured from dawn until at mid-day. Sharp 

increases and decreases in NH3 levels at the upwind beam path correspond with the 

05:00-06:00 h periods of light winds of variable direction discussed previously. 

The concentrations reported at upwind sites from both measurement 

methodologies are high for ambient levels not immediately adjacent to a source, which 

is indicative of the size and density of NH3 sources in the region. Kings County, the 

county in which this dairy is located, and Fresno County, the county north and 

northwest of Kings County, had a combined 2007 animal population (with animal 

density given in parenthesis) of 789,612 cattle (41.1 km-2), including 278,368 milk cows  

 

 

Figure 5-3. NH3 concentration (ppbv) measured by both the upwind and downwind OP-
FTIR instruments at ~ 2m agl. Downwind beam paths are described by the direction 
from the monostatic unit to the retroreflector and the relative distance to the 
retroreflector. 
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(14.5 km-2) and 26,999 beef cows (1.4 km-2); 9,809 hogs (0.5 km-2); and 89,860,417 

broiler chickens, all in Fresno County (4,682.9 km-2) (USDA, 2009). Battye et al. (2003) 

provided a summary of three NH3 emissions inventories for the Fresno County area, all 

of which estimated livestock’s contribution at 50 to 75% of the total emissions, which 

ranged from 71,000 to 99,000 Mg yr-1. Winter time background NH3 measurements in 

the San Joaquin Valley of California ranged from 16 to 96 μg m-3 (Cassel et al., 2005). 

Robarge et al. (2002) reported a summer average NH3 concentration of 10.5 μg m-3 from 

measurements taken in the agriculture-rich Inner Coastal Plain of North Carolina. 

Walker et al. (2004) summarized literature values collected in agricultural, non-

agricultural, and urban land use settings from 11 studies, with average concentrations 

ranging from 0.02 μg m-3 at high elevation during summer to 10.48 μg m-3 during fall at a 

swine facility. Moore (2007) reported winter and summer average concentrations 

throughout the Cache Valley, a heavily agricultural valley along the Utah/Idaho border 

with significant dairy cattle and layer hen populations, of 28.8 and 24.7 μg m-3. Leytem 

et al. (2009) reported background NH3 levels ranging from 10 to 60 μg m-3 in another 

area of Idaho with a high dairy density. 

On a path-by-path comparison, passive sampler NH3 levels were higher than OP-

FTIR measurements by an average of 1.38 ± 0.15 (n=50). One possible explanation for 

the difference between the reported concentrations in the passive and OP-FTIR datasets 

is the difference in methodology. Another possible cause is the effectiveness of a limited 

number of discrete sampling points to represent a concentration field in close proximity 
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to strong sources, which is somewhat related to the first possible explanation. To 

conduct these comparisons, the two to four passive samplers located along each OP-

FTIR beam path were used to calculate the path length average passive sampler 

concentration, and OP-FTIR measurements were averaged over the passive sampler 

deployment time to calculate the period average OP-FTIR concentration. The sample 

heights of the passive samplers were set as close to the height of the OP-FTIR beam 

path as possible, although some were up to 1 m lower. The crosswind scale of the 

source in relation to the distance between sampling points, as well as the distance from 

the source to the sampling points, could have significant impacts on how representative 

the measured concentration field derived from a few sample points is compared to the 

actual concentration field. While the spatial scales of most of the sources on the dairy 

are large compared to the distances between samplers, the homogeneity of the 

emissions from the pen and LMS surfaces may vary significantly on scales smaller than 

the distance between sampling points and create emissions hotspots. The result is a 

non-uniform concentration profile across the plume that may or may not be effectively 

sampled by the point samplers. The path-integrated sample of the OP-FTIR has the 

advantage in that it can sample the entire width of the plume, but spatial information 

available from an adequate number of point sensors is sacrificed.  

Going et al. (2008) found that passive sampler measurements were on average 

55% greater than OP-FTIR measurements when the passive samplers were deployed as 

directed by the manufacturer. Meng et al. (2011) compared seven-day NH3 
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concentration averages reported by Ogawa passive samplers and an active NOx/NH3 

analyzer and found a strong correlation, yielding a linear fit slope of 1.21 with the active 

analyzer as the independent variable and the passive sampler as the dependent 

variable. Puchalski et al. (2011) compared two and three week long average NH3 

concentrations from Ogawa passive samplers against other passive samplers and an 

active analyzer over a 0.5 to 9.0 g m-3 range and found that the Ogawa sampler 

reported values not statistically different from the other passive samplers in one study 

and 36% lower than the active sampler in another study. 

Estimated Emissions 

The ERs and EFs for this study were estimated through inverse modeling. 

Screening of the datasets to identify periods in which the wind direction was outside of 

the optimal range of -70 to +50° from North yielded a total of 12 hours (8%) during 5 of 

the 13 passive sampler deployment periods. One period, June 14 a.m. had six hourly 

average wind direction values outside the optimal range; the remaining four periods had 

1 to 2 hours each. The June 14 a.m. period was removed from ER and EF calculations, 

while the other four passive sampler periods were not removed due to the limited 

amount of time in each period that the sites were not impacted by the dairy and the 

ability of the model to simulate the effects of these non-ideal wind directions on period 

average concentrations.  



 
194 

 

 

The Cmeas values calculated for the two locations between the young heifer pens 

and the holding pond, the locations with the largest reported concentration values 

during all sample periods, were excluded from emissions estimation calculations 

because of doubt that they were only influenced by the pens. It is hypothesized that the 

feed lane fencing on the south side of the pen immediately upwind likely presented a 

flow disturbance sufficient to allow some of the holding pond plume to be circulated in 

the upwind direction. The samplers were located within a few meters of the northern 

edge of the holding pond and had a sample height of 1 m. Removal of these two points 

resulted in EF estimates with better fits to the remaining Cmeas data.  

There were 78 potential OP-FTIR sample periods during the field study based on 

2 h averages. Irregularities with instrument operation, alignment, and retroreflector 

cleanliness reduced the number of periods with valid data from two or more downwind 

beam paths to 48, or 62%. Of these, six were removed due to wind directions outside of 

the optimal range, yielding a total of 42 sample periods from which to calculate ERs and 

EFs. These irregularities and non-optimal wind directions disproportionately affected 

the morning blocks (00:00 h through 12:00 noon), which had only two or three valid 

datasets in most 2 h blocks for ER and EF calculations, about half as many as in the 

afternoon. This likely contributed to the greater RSD in the average emissions from the 

pens and the entire facility for morning blocks when compared to the afternoon blocks. 

As previously mentioned, light and variable winds were observed each day during 05:00-

06:00 h, resulting in no valid data points for the block ending at 06:00 h. To provide an 
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emissions estimate for this period, a gap filling technique was used based on the 

average of the 04:00 h and 08:00 h blocks.   

The unconstrained least squares optimization method initially used in estimating 

ERs and EFs generally performed well, but it yielded negative emissions from either the 

pens or the LMS in a few instances. This phenomenon was neither observed in 

measured data nor is it considered to be real. It is instead assumed to be an artifact of 

the optimization method. Flesch et al. (2009b) suggests setting a minimum ER value in 

such cases. This recommendation was applied to our emissions calculations, using a 

minimum pen fmeas value of 0.5 g d-1 animal-1 and a minimum Qmeas,LMS value of 0.5 mg 

m-2 d-1, which were estimated from minimum values shown in Leytem et al. (2011), an 

NH3 and greenhouse gas emissions study conducted at an open lot dairy.  

Flesch et al. (2009b) also suggests designing sampling layouts for multiple 

sources in such a way that each measurement location is impacted by only one source. 

If that ideal situation is not possible, as in the case of this dairy, and assuming at least 

the same number of measurements as sources, they suggest that the measurement 

sites be located such that the first site be impacted by only one source, the second site 

by the first source plus the second source, the third site by the first, second, and third 

sources, and so on. Emissions can then be estimated in a progressive manner. This 

sequential ER estimation methodology was applied to the passive sampler dataset. 

Some sites were impacted only by pens, while others were impacted by both pens and 

the LMS, allowing first the pen fmeas and then the Qmeas,LMS to be calculated. 
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Determination of the sources impacting a given sample was made based on the range of 

hourly average wind directions measured during the sample period. The number of sites 

used to estimate the pen fmeas ranged from 3 to 7, while 6 to 13 sites were used to 

estimate Qmeas,LMS. This sequential method was not applied to the OP-FTIR dataset 

because the downwind OP-FTIR unit in the center of the configuration was rarely not 

downwind of the LMS, resulting in all beam paths being impacted by both the pens and 

the LMS most of the time.  

Another important point discussed by Flesch et al. (2009b) concerns the matrix 

conditioning number (κ), which is a measure of the sensitivity of the estimated Qmeas 

vector in Equation 5-4 to changes in the (C/Q)sim ratios. If a change in Qmeas is 

proportional to the change in a (C/Q)sim value, the system is referred to as well-

conditioned and has a low κ value (minimum κ = 1.0). A system is said to be ill-

conditioned if a large change in Qmeas is found from a small change in (C/Q)sim, which 

would result in a large κ value. The value of κ also is related to the relative error in 

estimates of Qmeas. The reader is referred to Flesch et al. (2009b) for an in depth 

discussion with examples. An important conclusion was that accurate emissions 

estimates in controlled release experiments with various source/receptor configurations 

were strongly dependent on κ. Good ensemble averaged estimates of the total amount 

released were calculated for (C/Q)sim matrices with κ values less than 50 and good 

estimates of the individual source contributions were found for matrices with κ values 

less than 10-20. Values of κ calculated for the matrices in this dairy emissions study 
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based on passive sampler data ranged from 1.5 to 2.7, suggesting good confidence in 

the emissions estimates. Values of κ calculated for matrices based on OP-FTIR data 

ranged from 4.5 to 25.6, again suggesting good confidence in the emissions estimates.  

The averages, SDs, minimums, and maximums of the EFs calculated using the 

three optimization methods discussed above for both datasets are presented in Table 5-

4. Average EF values estimated from the passive dataset for the unconstrained and 

constrained values were very similar, but greater differences were found between 

methodologies in the EF values based on OP-FTIR data. All reported statistics for the pen 

and whole facility EFs predicted by the progressive methodology based on passive 

sampler data were lower than for the other two methods; average estimated LMS EFs 

were higher for the progressive method and had a greater range in individual values. 

Average EFs based on OP-FTIR data for the pens, LMS, and the whole facility were 

higher than those based on passive sampler data and had a wider range between 

minimum and maximum values. One factor likely contributing to the larger range 

between maximum and minimum values based on OP-FTIR data is the greater temporal 

resolution in the OP-FTIR dataset, 2 h averages versus 12 h averages for passive 

samplers, allowing it to show greater diurnal variation in estimated EFs with smaller 

minimum values and larger maximum values that are smoothed out in the passive 

sampler EFs. 

As previously stated, negative EFs were calculated from both passive sampler 

and OP-FTIR data using the unconstrained methodology. Negative EFs values are not 
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Table 5-4. Statistics of emission factors (EFs) calculated for both NH3 measurement 
datasets using the following three optimization procedures: Unconstrained – EF values 
for pen and liquid manure system (LMS) are unconstrained; Constrained – constraints 
are imposed on the minimum values for pen and LMS EFs, based on minimum values 
found in literature; and Sequential – pen EF estimated first from samples impacted only 
by pens, then the LMS EF is estimated from samples impacted by both pens and LMS. 

 Pen EF[a] 

(g d-1 animal-1) 

 LMS EF 

(g d-1 animal-1) 

 Facility EF 

(g d-1 animal-1) 

Avg SD Min Max Avg SD Min Max Avg SD Min Max 

Passive Sampler Data 

Unconstrained 134
.2 

41.
4 32.5 

313.
0 

 12.
7 9.9 -3.6 63.1 

 140.
7 

42.
5 33.4 

324.
2 

Constrained[b] 133
.3 

41.
5 30.1 

313.
0 

 13.
6 9.9 0.0 63.1 

 140.
2 

42.
6 30.1 

324.
2 

Sequential 
106
.4 

25.
5 8.4 

230.
8 

 
18.
8 

14.
5 

-
12.
1 85.7 

 
116.
1 

26.
6 13.2 

251.
2 

OP-FTIR Data 

Unconstrained 158
.7 

37.
6 

-
213.
7 

661.
4 

 53.
3 

23.
1 

-
40.
2 

521.
2 

 186.
0 

28.
7 

-
109.
4 

661.
6 

Constrained[b] 177
.8 

27.
3 

0.5 661.
5 

 41.
6 

17.
7 

0.0 455.
7 

 199.
2 

21.
9 

8.4 661.
6 

Sequential NA NA NA NA  NA NA NA NA  NA NA NA NA 

[a] EF = emission factor, Avg = average, SD = standard deviation, Min = minimum, Max = 
maximum, NA = not applicable. 
[b] Optimization methodology selected as yielding the best EF estimates from this facility 

considered to be real and are assumed to be an artifact of the optimization method. 

Therefore, the EFs estimated through the constrained methodology were considered to 

be better estimates despite having imposed minimum values, a conclusion supported by 

the findings of Flesch et al., 2009b. Surprisingly, negative LMS EF values were also given 

by the progressive methodology based on passive sampler data. These results may 

suggest shortcomings in this inverse modeling procedure, including the following: 1) the 

assumption of homogenous source strength across a pen or liquid surface is not valid for 

this case; 2) the assumption of equal emissions per animal is not valid for this case; 3) 
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the combined dairy and sample layout employed in this study are not conducive to 

estimating NH3 emissions from individual components; or 4) another factor not 

accounted for in this analysis influenced NH3 emissions. The first assumption is required 

without prior knowledge of the magnitude and spatial patterns of the inhomogeneity. 

The second assumption is also required as this study seeks to determine emissions from 

the entire facility and it is impractical to examine emissions from individual cattle. The 

third shortcoming may have merit, though the low calculated κ values suggest the 

systems of linear algebraic equations are, for the most part, very well-conditioned and 

should yield good estimates of the total and individual source emissions. It is likely that 

not all factors affecting NH3 emissions are accounted for in this analysis as there are 

many factors that contribute (e.g., Arogo et al., 2006 and Rumburg et al., 2008a, 2008b). 

Future NH3 emissions experiments should be designed to account for as many factors as 

feasibly possible. 

The negative results for individual components may cast doubt on the ability of 

the present modeled scenario to quantify the emissions from individual sources. 

However, as shown by Flesch et al. (2009b), application of a minimum EF limit can 

significantly improve the ER estimation of individual components. In addition, the ER of 

the facility as a whole can be estimated well even when negative ERs are calculated for 

individual components. Therefore, the optimization methodology selected to best 

represent the actual EFs from the individual components and from the dairy as a whole 

was the constrained methodology. This resulted in an estimated summer time total 



 
200 

 

 

facility NH3 emission of 265.2 ± 80.2 kg d-1 and an average EF of 140.7 ± 42.5 g d-1 

animal-1 based on the passive sampler dataset. Calculated values based on the OP-FTIR 

dataset were 40% higher with a total facility emission of 375.4 ± 27.1 kg d-1 and an EF of 

199.2 ± 21.9 g d-1 animal-1. These EF values are listed in Table 5-5, along with EF values 

reported in other dairy NH3 emissions studies. The type of facility, geographical location, 

methodology used to estimate EFs, and season of the year and ambient temperatures in 

which measurements were made are also provided to allow for comparison between 

the different housing, climate, and manure storage and treatment conditions that may 

affect NH3 EFs. Seasonal EFs, specifically summer time EFs, are provided where available 

for comparison against the values derived from the limited summer time dataset herein 

described. 

The summer time facility EFs calculated for this dairy based on data collected 

over seven days are near the top of the range of EFs found in the literature, which spans 

2 orders of magnitude, but within the range of values reported for facilities with open 

lot pens and holding pond configurations (Mukhtar et al., 2008; Bjorneberg et al., 2009; 

Leytem et al., 2011). Specifically, the summer EFs derived herein are close to the 

summer EFs reported by Bjorneberg et al. (2009) and Leytem et al. (2011) from open lot 

dairies, but generally higher than summer EFs reported for other housing and manure 

management configurations. Not all studies found in the literature estimate emissions 

from the entire dairy facility (housing, exercise area, manure storage and treatment 

system) as was measured in this study, which is necessary in order to estimate 
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Table 5-5. Comparison of dairy NH3 emission factors (EFs) estimated from this study 
with EFs reported in literature. When necessary, conversions between reported 
emissions units and those used in this table were made. 

Source 
Facility 
Type 
Studied 

Location Methodology 
Measurement 
Period  

Average 
TAmb 

(°C)[a] 

EF (g d-1 
animal-1) 

Arogo et 
al., 2006 

Literature 
review of 
published 
EFs (n=11) 

Europe Various Average 

Minimum 

Maximum 

---[b] 22.7 

18.0 

28.5 

Ngwabie 
et al., 
2009 

Free stall 
barn with 
manure 
gutter 
under a 
slatted 
floor 

Sweden Ventilation rate 
(barn only) 

Winter and 
Spring 

1 to 16 29 

Schrade et 
al., 2012 

6 with 
similar 
facilities: 
barn and 
outdoor 
exercise 
area 

Switzerland Tracer method 
(barn and 
outdoor exercise 
areas only) 

Range of 
annual values 

--- 28.9 to 
32.6 

Schmidt et 
al., 2002 

Free stall 
barn 

Minnesota, 
U.S. 

Ventilation rate 

(barn only) 

Winter 

Summer 

-1.8 

14 

4.2 

9.1 

Cassel et 
al., 2005 

Open lots 
with free 
stall and 
lagoon  

California, 
U.S. 

Micrometeorolo
gical integrated 
horizontal flux 

Winter 8 to 15 50 

 Free stall 
barn with 
corrals and 
open lots 
with 
lagoon 

   7 to 18 103 

Moore, 
2007 

Free stall 
barn and 
open pens 
with 
covered 
free stall 
with 
lagoon 

Utah, U.S. Inverse modeling 
(ISCST3) with 
passive sampler 
measurements 

Late Fall 1.0 193.0 
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Table 5-5 (continued) 

Source 
Facility 
Type 
Studied 

Location Methodology 
Measurement 
Period  

Average 
TAmb 

(°C)[a] 

EF (g d-1 
animal-1) 

 Mixed 
concrete 
and soil 
surface 
pens with 
partial 
covers and 
straw 
bedding 

Utah, U.S.   1.0 235.0 

Mukhtar 
et al., 
2008 

Open lots 
with 
lagoon 

Texas, U.S. Flux chamber Winter 6 to 11.6 
[c] 

17.0 

Summer 27 to 
33.7 

31.8 

Annual --- 25.8 

Rumburg 
et al., 
2008a 

Free stall 
barn only 

Washington, 
U.S. 

Nitrogen balance 
model  verified 
with Summer 
remote sensor 
measurements 

Annual 
simulation 

--- 109.6 

Rumburg 
et al., 
2008b 

Anaerobic 
lagoon 
only 

Same dairy Nitrogen balance 
model verified 
with Summer 
remote sensor 
measurements 

Annual 
simulation 

--- 150.7 

Sum of Rumburg et al., 2008a and 
2008b 

 260.3 

Bjorneber
g et al. 
2009  

Open lot 
pens with 
lagoon and 
compostin
g 

Idaho, U.S. Inverse modeling 
(WindTrax) with 
remote sensor 
measurements 

Winter -8.3 to 
9.3 

40 

Spring -1.3 to 
15.5 

250 

Summer 7.7 to 
43.3 

190 

Fall 0.8 to 
25.9 

150 

Annual --- 156 

Bluteau et 
al., 2009 

Tie-stall 
barn 

Quebec, 
Canada 

Ventilation rate 
(barn only) 

Winter nd[b] 5.5 

Tie-stall 
barn 

Summer nd 14.3 
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Table 5-5 (continued) 

Source 
Facility 
Type 
Studied 

Location Methodology 
Measurement 
Period  

Average 
TAmb 

(°C)[a] 

EF (g d-1 
animal-1) 

Flesch et 
al., 2009a 

Free stall 
barn with 
lagoon 

Wisconsin, 
U.S. 

Inverse modeling 
(WindTrax) with 
remote sensor 
measurements 

Annual --- 54.8 

Summer 17.5 to 
19.7 [c] 

93 

Free stall 
barn with 
lagoon 

Annual --- 52.1 

Summer 21.2 to 
22.0 

93 

Free stall 
barn with 
lagoon 

Annual --- 54.8 

Summer 20.2 100 

Adviento-
Borbe et 
al., 2010 

Free stall 
barn 

Pennsylvania
, U.S. 

Flux chamber 
(barn only) 

Winter/Spring nd 22.1 

Summer/Fall  35.5 

Leytem et 
al., 2011 

Open lot 
pens with 
lagoon and 
compostin
g 

Idaho, U.S. Inverse modeling 
(WindTrax) with 
remote sensor 
measurements 

Winter -4.0 to 
4.8 

136 

Spring 5.0 to 
20.6 

157 

Summer 20.8 to 
24.4 

146 

Fall 8.4 to 
15.3 

162 

Annual --- 150 

Leytem et 
al., 2013 

Free stall 
barn with 
exercise 
lots, 
anaerobic 
digester, 
and 
lagoons 

Idaho, U.S. Inverse modeling 
(WindTrax) with 
point and 
remote sensor 
measurements 

Winter -8.3 to -
1.4 [c] 

27 

 

Spring 8.2 to 
13.2 

266 

 

Summer 16.1 to 
23.8 

332 

 

Fall 1.8 to 
10.8 

181 

 

Annual --- 201 

This study Open lot 
pens with 
lagoon 

California, 
U.S. 

Inverse modeling 
(AERMOD) with 
point and 
remote sensor 
measurements 

Summer 26.5 Passives 

141  

 OP-FTIR 

199 

[a] Average ambient temperature (Tamb) or temperature range only given for seasonal 
measurement periods if provided by the source 
[b] nd = no data or insufficient data, --- = data not provided for annual periods 
[c] Ranges provided for all seasons represent the range of sample period average Tamb. 
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emissions for an entire facility. If this dairy’s summer time emissions were calculated 

based on literature EFs from the U.S. that reported EFs for the entire facility without 

regard for housing, climate, and manure management system, it would range from 59.9 

kg d-1 (from Mukhtar et al., 2008) to 625.8 kg d-1 (from Leytem et al., 2013). Note that 

Mukhtar et al. utilized a flux chamber, a methodology that yields results for the 

environment within the chamber and may not represent actual ambient conditions, as 

well as being susceptible to insufficient sampling of the high variability in urine and 

manure deposition, soil moisture, soil temperature, and other influential surface 

conditions such as typically found in an open lot dairy configuration.  

Pen emissions estimated during this study accounted for 95% of the total 

emissions based on passive sampler data and 89% of the total based on OP-FTIR data. 

This result is supported by both Cmeas datasets. Ammonia levels were consistently 

highest immediately downwind of the milking cow pen areas on the eastern side of the 

measurement layout and Cmeas from sites downwind of the LMS were also impacted by 

the pen areas. As the optimization methods were designed to yield the best fit of Csim to 

Cmeas, this lead to pen emissions accounting for a large portion of the facility’s emissions. 

(Cmeas values from between the young heifer pens and the holding pond were excluded 

from ER/EF calculations as previously described; however, if they were included the 

pens had a higher contribution to total emissions.)  As stated previously, NH3 emissions 

originate from N excreted in the manure and urine (Arogo et al., 2006). The dominance 

of the pens in total NH3 emissions may be explained by reviewing where manure and 
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urine are deposited and stored in this open lot system. Feces from about half of the 

cattle on the facility, basically all but the milk cows, remain in the pen for up to one year 

and do not enter the LMS. Only the feed lanes in the milk cow pens and the milking 

parlor floors are flushed, which is a very small percentage of the potential feces 

deposition area in the milking cow pen area. In addition, the feed lanes are not shaded, 

which may affect cattle behavior by decreasing time spent in the feed lane eating and 

increasing time spent in the shade on the open lot area of the pen, especially during the 

summer. Direct solar radiation on the feed lane increases available energy at the surface 

and likely increases emissions from deposited feces. Furthermore, intermittent flushing 

throughout the day allows for the accumulation of feces in the feed lane and may 

provide sufficient time for a significant portion of the N in the urine to volatilize as NH3 

before being flushed into the LMS (Arogo et al., 2006).  

Bjorneberg et al. (2009) and Leytem et al. (2011) also found that pen areas 

produced most of the NH3 emissions on dairies with open lots and holding ponds, with 

summer contributions of 88% and 70%, respectively. However, Rumburg et al. (2008a, 

2008b), Flesch et al. (2009a), and Leytem et al. (2013) found that summer emissions 

were generally dominated by the LMS for dairy systems using barns and holding 

ponds/treatment lagoons and, in the case of Leytem et al. (2013), an anaerobic digester. 

The difference in the manure management between the dairy systems would help 

explain the difference in dominant sources between these groups. Manure is usually 



 
206 

 

 

stored in the open lot pens, with removal occurring once or twice yearly, while manure 

is generally removed daily from the barns and stored or treated elsewhere.  

The LMS ERs estimated from this dairy averaged 1.7 ± 1.3 g d-1 m-2 and 5.5 ± 2.3 

g d-1 m-2 based on the passive sampler and OP-FTIR datasets, respectively, as calculated 

from the daily total emissions. Both calculated ERs are within the range of values found 

for dairy lagoons in literature. Mukhtar et al. (2008) measured a summer average ER of 

0.45 g d-1 m-2 and a winter average of 0.03 g d-1 m-2. The range of NH3 ERs for an 

anaerobic dairy lagoon reported by Rumburg et al. (2008b) was from 2.6 g d-1 m-2 to 

13.0 g d-1 m-2. Flesch et al. (2009a) measured no emissions from lagoons that were 

frozen over during winter and reported a range of 2.3 g d-1 m-2 to 8.7 g d-1 m-2 during 

summer and fall. Moore (2007) calculated ERs for two holding ponds in series during 

late fall to be 4.1 g d-1 m-2 and 1.3 g d-1 m-2 for the first and second ponds, respectively. 

An average emission of 8.8 g d-1 m-2 was reported by Sheffield and Louks (2006). Zhao et 

al. (2007) measured an average ER of 6.2 g d-1 m-2, a minimum of 0.5 g d-1 m-2, and a 

maximum of 15.1 g d-1 m-2 from measurements collected one day per month over 10 

months. 

Similar to NH3 concentrations measured downwind of the dairy, a diurnal profile 

was evident in the estimated emissions from both datasets. Figure 5-4 shows the 

estimated emissions diurnal profile for the pens, the LMS, and the entire facility based 

on the OP-FTIR data. Note that no 2 h block periods ending at 06:00 h were available 

and the values shown in this figure for that time of day were calculated as the average 
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of the mean emissions values from the periods ending at 04:00 h and 08:00 h. Average 

calculated facility NH3 emissions during early morning hours were 15 times lower than 

peak emissions in the late afternoon and early evening. LMS emissions peaked during 

mid-day and contributed a greater amount of the total hourly emissions during those 

hours relative to the rest of the day. Cassel et al. (2005), Flesch et al. (2009a), and 

Leytem et al. (2011, 2013) also reported diurnal NH3 emissions patterns, but with peaks 

occurring during early afternoon and with emissions remaining high through the late 

afternoon and early evening. Bjorneberg et al. (2009) reported peak pen emissions 

during the evening in the spring and during late afternoon in the summer.  

 

 

Figure 5-4. Estimated diurnal emissions profiles for the pens, liquid manure system 
(LMS), and the entire facility based on 2 h averaged OP-FTIR data. 
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Good temporal correlations were found between facility NH3 emissions and 2 h 

block averaged ambient temperature (r=0.65) and wind speed (r=0.63), based on the 

Pearson correlation coefficient (r). The LMS emissions did not have significant  

correlations with temperature and wind speed, but it had a moderate correlation with 

incoming solar radiation (r = 0.45). As incoming solar radiation directly affects several 

surface and atmospheric properties, it is likely that this correlation exists because 

ofsolar radiation’s effect on a property that more directly influences NH3 volatilization 

but was not monitored, such as, for example, liquid surface temperature. Assuming that 

the emissions calculated for individual source types are representative, these results 

suggest different diurnal emissions cycles between the pens and LMS during this study. 

The temporal emissions patterns and correlations found at this dairy may or may not 

hold under different seasonal patterns – measurements at this dairy during other 

seasons are needed to investigate the applicability of these patterns and correlations 

throughout the year. 

Air temperature and wind speed have been shown to be significant factors, 

among others, that affect NH3 volatilization (Beauchamp et al., 1982; Sommer et al., 

1991; Sommer et al., 2003; Cassel et al., 2005; Arogo et al., 2006). Temperature is also a 

factor in estimating volatilization based on Henry’s Law. The demonstrated effect of 

temperature on NH3 emissions raises the question of the representativeness of the EFs 

and total emissions calculated during this short period in June as representative for the 

summer period. Daily and weekly temperature averages and ranges during the months 
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of July and August may be higher than those measured during this study. However, the 

mean monthly average values reported by the CIMIS station near Stratford, California 

for July and August 1998-2007 for the average temperature, average daily maximum 

temperature, and average daily minimum temperature were each within 2° C of the 

corresponding statistical values calculated from on-site measurements made during this 

study. Therefore, the facility emissions and EFs herein presented are assumed to be 

representative of monthly average summer values. 

Conclusions 

Summer gaseous NH3 concentrations were measured upwind, downwind, and 

within an open lot dairy over seven days using passive samplers and OP-FTIR units to 

estimate the facility’s total emissions and EFs. These are the first reported summer time 

NH3 emissions measurements for California, the state with the nation’s largest dairy 

cattle population. Background NH3 concentrations measured during this study were high 

relative to ambient concentrations found in the literature, suggesting the San Joaquin 

Valley is a very rich source area for NH3 which is supported by agricultural livestock 

statistics reported in the 2007 Census of Agriculture (USDA, 2009). Emissions from both 

the pens and the LMS were estimated from both concentration datasets using inverse 

modeling with AERMOD and least squares optimization methods. Average emissions ± 

one SD for the entire facility were calculated as 140.7 ± 42.5 g d-1 animal-1 (113.5 ± 34.3 

g d-1 AU-1) from the passive sampler data and 199.2 ± 22.0 g d-1 animal-1 (160.8 ± 17.8 g 
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d-1 AU-1) from OP-FTIR data. The facility’s calculated summer emissions were 265.2 ± 

80.2 kg d-1 and 375.4 ± 27.1 kg d-1 based on EFs calculated from passive and OP-FTIR 

datasets, respectively. The pens were estimated to contribute 95% and 89% of the total 

facility emissions for the passive sampler and OP-FTIR based EFs, respectively. Derived 

EFs were within the range of EF values from U.S. dairies found in literature, a range 

which spans two orders of magnitude. Mean LMS ERs were 1.7 ± 1.3 g d-1 m-2 based on 

passive sampler data and 5.5 ± 2.3 g d-1 m-2 based on OP-FTIR data, which are within the 

range of literature values from other dairy lagoons and holding ponds. A strong diurnal 

cycle was observed in both concentrations and emissions datasets, with the highest 

values occurring in the late afternoon and evening. Calculated daily maximum emissions 

were 15 times greater than daily minimum values based on OP-FTIR data. Good 

correlations between facility emissions and temperature and wind speed were found 

with the 2 h block averaged OP-FTIR emissions data, while LMS emissions had a 

moderate correlation with incoming solar radiation. 
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CHAPTER 6 

USING A DEPOSITION-ENABLED BACKWARD LAGRANGIAN STOCHASTIC 

MODEL TO ESTIMATE PARTICULATE MATTER AREA SOURCE  

EMISSIONS THROUGH INVERSE MODELING1 

Abstract 

Inverse modeling is a commonly used technique for estimating air pollutant emissions 

(Q) from large area and volume sources, such as agricultural operations. This method 

calculates Q based on pollutant measurements and atmospheric dispersion modeling. 

Models frequently employed in inverse modeling are not capable of simulating dry 

deposition or pollutant trajectory deviations from the carrier fluid trajectory, both of 

which are common for particles with diameters (dp) > 1 µm. This work presents a 

modified 3D Lagrangian stochastic (LS) model that accounts for particle settling velocity 

(vs) and deposition in dispersion calculations. It can be run either forward (fLS) or 

backward (bLS) in time, setting it apart from other LS models accounting for vs and 

deposition that are fLS only; the advantage of a bLS is greatly reduced computational 

time. 
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In non-depositional mode, the modified bLS was evaluated against a validation 

dataset for the original bLS and reported nearly equal results. Application of the bLS and 

fLS models to data collected at a commercial feedlot demonstrated the following: 1) the 

similarity of the bLS deposition results to those of the fLS for dp ≤ 10 µm was dependent 

on the proximity of their particle release heights (zrel); 2) the bLS:fLS ratio for Q was 

consistently 1.15 to 1.3 during operational testing for dp ≤ 10 µm, including the non-

depositional case of dp = 0.0 µm; 3) Q for dp < 5 µm were equal to the value of Q at dp = 

0.0 µm in both bLS and fLS; and 4) the upper dp limit for consistent bLS:fLS ratios in this 

test scenario was 20 µm. These results suggest that for dp < 20 µm, the modified bLS 

may be used to simulate the dispersion of particles, which is the range of interest for 

PM2.5 and PM10.  

The modified bLS was used to estimate QPM10 for the feedlot in both deposition 

and non-deposition modes. The Deposition QPM10 was 62.5 ± 12.4 g animal-1 day-1, 12% 

larger than the 55.9 ± 11.2 g animal-1 day-1 for Non-deposition QPM10. These are higher 

than literature values based on year-round sampling, but are similar to that reported for 

another summer-only sample period. The diurnal QPM10 profiles show Deposition QPM10 

was always larger than Non-deposition QPM10, with a range from 8% to 20%. 

Introduction 

Greater focus on agricultural air quality impacts over the past two decades has 

yielded a dramatic increase in the number of studies examining emission source 
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characteristics from various agricultural operations. Quantifying emission rates (Q) for 

the large area and volume agricultural sources has generally been carried out using 

inverse modeling, flux profile, eddy covariance, or flux chamber techniques. The first 

three methods are similar in that each requires one or more measurements of the 

source’s impact on ambient downwind concentrations of the pollutant/molecule of 

interest (C), but they differ in the methodology for relating C to Q. The fourth encloses 

multiple small areas within the source to measure Q from each location in order to 

characterize Q of the entire system. Each method has strengths and weaknesses, as well 

as limitations for proper use. In this paper, we will use the inverse modeling method. 

Specifically, we examine inverse modeling of particulate matter (PM) Q from an 

agricultural area source on a near-source scale (100s m).  

Inverse modeling uses an atmospheric dispersion model to relate C measured 

near a facility/operation of interest (Cdownwind, Cupwind) to Q (Cowherd, 2005). An initial Q 

estimate is provided to the model (Qsim) in order to predict the C (Csim) at a given 

location. The (C/Q)sim ratio can then be used with measured C to estimate Qcalc:  

 
sim

upwinddownwind

calc
QC

CC
Q

/




. (6-1) 

In cases where the dispersion model used yields a linear response in Csim to changes in 

Qsim, the initial estimate of Qsim will not affect Qcalc because the (C/Q)sim ratio describes 

the slope of the line relating the two terms and has neither local maxima nor minima. 

Careful selection and testing of Qsim is required for models without such a linear 
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response. The (C/Q)sim ratio is unique to a given spatial source-receptor relationship and 

must be calculated for each unique meteorological condition. 

There are several air dispersion models that have been used in near-source 

inverse modeling in agricultural settings (AERMOD, ISCST3, WindTrax, and other custom 

models), but most have not been validated. However, Flesch et al. (1995, 2004) 

described a 3D Lagrangian stochastic (LS) model that can be run forward (fLS) or 

backward (bLS) in time and validated the bLS form for near-source inverse modeling for 

a ground level area source with gaseous emissions. This is the basis of the modeling 

software WindTrax (www.thunderbeachscientific.com). An LS model is intended to 

mimic atmospheric transport and dispersion by simulating movement of tiny carrier 

fluid parcels or marked fluid elements (MFE), each with a different path due to the 

stochastic term. Running the LS model for many thousands of MFEs provides a 

statistically robust simulation of the dispersion and yields the (C/Q)sim ratio required to 

calculate Qcalc. LS models have been successfully used in a wide array of applications and 

at a variety of scales (Lin et al., 2012). 

Many agricultural ER studies of both gaseous and PM emissions have used the 

3D WindTrax bLS model in inverse modeling (Bjorneberg et al., 2009; Bonifacio et al., 

2012, 2013a; Flesch et al., 2007, 2009; Leytem et al., 2009, 2011, 2013; Todd et al., 

2008, 2015; and others). Others have proposed 2D fLS formulations to model heavy 

particle transport and dispersion for spores and pollen (Aylor et al., 2006; Aylor and 

Ferrandino, 1989; Aylor and Flesch, 2001; Boehm and Aylor, 2005; Boehm et al., 2008; 
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Wilson, 2000). Particles may behave differently than the surrounding fluid due to a 

gravity-induced settling velocity (vs). This may result in lower vertical positions relative 

to the carrier MFE associated with the particle at the beginning of a given time step, 

which may also change horizontal position based on changing wind speed with height 

above ground level (agl). In addition, particles may deposit out of the flow. Neither vs 

nor deposition are accounted for in the bLS from Flesch et al. (2004). McGinn et al. 

(2010) included modifications for heavy particles from Wilson (2000) in the Flesch et al. 

(2004) 3D fLS formulation to estimate PM10 (PM with aerodynamic equivalent diameters 

≤ 10 µm) emissions from feedlots. The fLS model was run for a single particle diameter 

(dp) of 7 µm, which was used as the mass median diameter of the plume based on 

literature. Wang et al. (2008) estimated PM10 emissions from agricultural tillage 

operations using a 3D fLS that accounted for vs and deposition. They modeled particle 

transport for a particle with dp = 2 µm by calculating the 3D downwind C for that size 

and then estimating the cumulative PM10 concentration contribution of particles with dp 

from 0.007 to 10 µm by their respective number density relative to the 2 µm particle 

density. In effect, these models accounted for vs and deposition for a single particle and 

assumed it was representative of all dp ≤ 10 µm.  

The bLS model has a significant computational efficiency advantage over the fLS 

model, as reported by Flesch et al. (1995). However, a 3D bLS with modifications for 

modeling particle dispersion is not found in the literature. In this paper, we present a 

modified LS to account for vs and deposition of particles for use in inverse modeling that 



 
222 

 

 

can be run as both fLS and bLS. The results of the modified bLS are compared with the 

fLS results for dp ranging from 1 µm to 50 µm. The modified bLS model is then used to 

estimate PM10 Q (QPM10) based on summer time measurements at a commercial beef 

feedlot.  

Model Formulation 

The 3D LS model selected for modification in this work is that described in Flesch 

et al. (1995, 2004). A brief summary is provided here; the reader is referred to Flesch et 

al. (1995, 2004) for an in-depth derivation and discussion. The discretized LS model 

equations are the same for both fLS and bLS, as follows:  

  

wwwvvvuu RbtawRbtavRbtau

twztvytuzUx





, (6-2) 

where u, v, and w are the instantaneous wind velocities in the x, y, and z directions, 

respectively; U(z) is the period average wind velocity at height z; U is aligned with the +x 

axis; Δt is the model time step; Ru, Rv, and Rw are independent random numbers chosen 

from a Gaussian distribution with a mean of zero and a variance of Δt; and au, av, aw, bu, 

bv, and bw are functions of position, instantaneous velocity, and properties of the flow. It 

is assumed that the mixing/turbulent state of the atmosphere can be described from 

observations using Monin-Obukov similarity theory (MOST) through the friction velocity 

(u*), Obukov length (L), surface roughness length (z0), and wind direction (θ) 
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parameters. While this assumption does not always hold, the application of this LS 

model should be limited to conditions in which MOST is valid. 

Forward Model 

Unique equations for the a and b values in Eq. 6-2 do not yet exist for 

multidimensional models and generally constitute the largest differences between 

proposed LS models. Flesch et al. (2004) use the following equations for the fLS model, 

which are derived for an ideal atmospheric surface layer and based on the well-mixed LS 

model for Gaussian turbulence given by Thomson (1987):  

𝑎𝑢 =  −
1

2(𝜎𝑢
2𝜎𝑤

2 − 𝑢∗
4)
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 (6-3) 

and 

𝑏𝑢 =  𝑏𝑣 =  𝑏𝑤 = 𝑏 =  √𝐶0𝜀. (6-4) 

𝜎𝑢
2 (𝜎𝑣

2, 𝜎𝑤
2 ) is the standard variance of the u (v, w) wind component. The variables ε and 

C0 in Eq. 6-4 are, respectively, the turbulent kinetic energy dissipative rate and a 

constant with reported values that range between 2 and 9. Flesch et al. (2004) 

calculated C0 = 4.41 for their model. Δt is calculated as a fraction of the velocity 

decorrelation time scale for a MFE, also known as the Lagrangian time scale τL, and 

varies with z and the turbulent state of the atmosphere,  



 
224 

 

 

∆𝑡 =  0.025𝜏𝐿 where 𝜏𝐿 =  
2𝜎𝑤

2

𝐶0𝜀
. (6-5) 

Assumptions made in deriving Eqs. 6-3 and 6-4 include: horizontally homogeneous 

turbulence in which the MOST parameters are valid throughout the modeled domain; a 

stationary atmosphere with average vertical wind component velocity W = 0; 𝑢′𝑤′̅̅ ̅̅ ̅̅  = -𝑢∗
2, 

where u’ (w’) is the instantaneous deviation from U (W) and 𝑢′𝑤′̅̅ ̅̅ ̅̅  is the covariance; and 

𝑢′𝑣′̅̅ ̅̅ ̅ = 𝑣′𝑤′̅̅ ̅̅ ̅̅  = 0 because y is perpendicular to U. As formulated, this model assumes no 

changes in elevation within the domain.  

In the fLS, the (C/Q)sim ratio was calculated using the following equations: 

(𝐶 𝑄𝑣𝑜𝑙⁄ )𝑠𝑖𝑚 =  
𝑉𝑠𝑟𝑐

𝑉𝑠𝑒𝑛𝑠

1

𝑁
∑ (𝑡𝑟𝑒𝑠)𝑉𝑠𝑒𝑛𝑠,𝑖

𝑛
𝑖=1  (6-6) 

for a volume source, where Vsrc is the volume of the source; and  

(𝐶 𝑄𝑎𝑟𝑒𝑎⁄ )𝑠𝑖𝑚 =  
𝐴𝑠𝑟𝑐

𝑉𝑠𝑒𝑛𝑠

1

𝑁
∑ (𝑡𝑟𝑒𝑠)𝑉𝑠𝑒𝑛𝑠,𝑖

𝑛
𝑖=1  (6-7) 

for an area source with area Asrc. In both Eqs. 6-6 and 6-7, Vsens is the volume of air 

sampled by the sensor, N is the total number of MFEs released, n is the number of MFEs 

that passed through Vsens, and (𝑡𝑟𝑒𝑠)𝑉𝑠𝑒𝑛𝑠,𝑖 is the residence time of MFE i within Vsens. The 

units for Qvol are mass length-3 time-1 and the units for Qarea are mass length-2 time-1. 

Note that both the fLS and bLS models have linear responses in Csim to changes in Qsim. 
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Backward Model 

As per Flesch et al. (2004), the bLS model equations differ from the fLS in only 

two ways: 1) Δt is negative; and 2) the signs on the first terms on the RHS of Eq. 6-3 are 

reversed. In addition, the (C/Q)sim ratio calculation in Eq. 6-7 is simplified to  

(𝐶 𝑄⁄ )𝑠𝑖𝑚 =  
1

𝑁
∑ |

2

𝑤𝑖
|𝑛

𝑖=1  (6-8) 

when a ground level area source is assumed. In this case, the model tracks particles 

backward in time and records instances when z < z0, i.e., the particle crosses the level at 

which u = 0.0 m s-1. This is referred to as a touchdown. The x, y, and w values are 

recorded for each touchdown, after which the particle is reflected above the z0 plane 

and the model continues tracking it backwards in time. In Eq. 6-8, n is the total number 

of touchdowns within the source area and the wi term is the w value recorded for 

touchdown i within the source area. Touchdowns occur in the fLS and are reflected in 

the same way, but their locations are not used to calculate (C/Q)sim. 

Modeling Particle Motion 

The LS model in Eqs. 6-2 through 6-4 describes the flow of a fluid, and applying 

this formulation to model movement of emissions into the atmosphere requires the 

assumption that the substance of interest adheres to the behavior of the fluid. 

However, solid and liquid particles may behave differently than the carrier gas in the 

atmosphere due to greater mass, inertia, and gravitational effects. Therefore, 
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adjustments to the model formulation were required to account for a particle’s 

deviation from the fluid movement. Wilson (2000) and Aylor and Flesch (2001) 

accounted for these effects by making several changes to the LS model formulation. 

These same changes were applied to the Flesch et al. (2004) 3D model and the result 

will be referred to as the modified LS model hereafter.  

First, the vs (m s-1), as calculated in Hinds (1999), of a particle of diameter dp and 

particle density ρp was added to the 𝛥𝑧 calculation in Eq. 6-2, becoming 

∆𝑧 =  (𝑤 − 𝑣𝑠)∆𝑡. (6-9) 

Second, ∆𝑡 was reduced to minimize errors associated with differences between the 

carrier fluid flow characteristics at the particle’s final z position and the final z position 

of the MFE with which the particle was initially associated. Following Sawford and Guest 

(1991) and Aylor and Flesch (2001), the new time step, ∆𝑡𝑝, was calculated as: 

 ∆𝑡𝑝 =  𝑓∆𝑡

 𝑓 =  1 √1 +  (𝛽𝑣𝑠 𝜎𝑤⁄ )2⁄
. (6-10) 

β is an empirical constant with a value of 1.5. The magnitude of f for a constant vs varies 

with z based on σw and reaches a minimum near z=0.  

The final change was to allow the particle to be removed from the flow to 

simulate deposition. Flesch et al. (2004) assume each MFE that crosses the z0 boundary 

is reflected back into the atmosphere and continues within the domain. Aylor and Flesch 

(2001) allowed dry deposition within a plant canopy and to the ground, as well as 

washout by rain. In this application, only dry deposition to the ground as simulated 
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following Aylor and Flesch (2001) and Aylor and Ferrandino (1989) was employed. When 

a particle’s z position dropped below the z0 plane, the probability of deposition (G) was 

calculated as 

𝐺 =  {

2𝑣𝑠

𝑣𝑠−𝑤
for 𝑤 < −𝑣𝑠

1 for |𝑤| < 𝑣𝑠

. (6-11) 

G was then compared to a random number selected from a uniform distribution 

between 0 and 1. If G is greater than the random number, the particle is deposited. If 

not, the particle is reflected and the particle position and surrounding air velocity were 

modified through 

𝑧𝑛𝑒𝑤 =  𝑧𝑜𝑙𝑑 − 2𝑣𝑠∆𝑡

𝑢𝑛𝑒𝑤 =  −(𝑢𝑜𝑙𝑑 − 𝑈(𝑧𝑜𝑙𝑑)) + 𝑈(𝑧𝑛𝑒𝑤)
𝑤𝑛𝑒𝑤 =  −𝑤𝑜𝑙𝑑

. (6-12) 

where the “old” subscript represents the values before crossing the z0 plane and “new” 

is for the values after reflection. Note that this is a different reflection method than 

used by Flesch et al. (2004).  

The modified fLS model stops simulating a particle’s movement if it is deposited, 

logging the deposition in addition to x, y, and w. Deposition, therefore, potentially limits 

the number of released particles that can pass through the downwind sensor volume, 

which would decrease the (C/Q)sim ratio for a constant N and lead to a higher Qcalc. An 

increase in N may be required to maintain the same level of confidence in the 

simulation results.  
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However, the modified bLS model must reflect the particle in order to determine 

the previous path and origin of the deposited particle. The deposition is logged and Eq. 

6-12 is used to calculate the particle’s new position and instantaneous velocities. 

Regardless of the number of depositions, a particle’s movement in the modified bLS is 

simulated until it reaches an upwind distance beyond the area of interest.  

Accounting for the effect of deposition in the bLS on Q was performed through 

the use of a unitless scalar multiplier (adep) to the Qcalc estimated in Eq. 6-1, 

𝑄𝑐𝑎𝑙𝑐,𝑑𝑒𝑝 =  𝑎𝑑𝑒𝑝𝑄𝑐𝑎𝑙𝑐.  (6-13) 

The reasoning behind this approach is as follows: each MFE/particle trajectory in a bLS 

simulation represents a path that one or more gas molecules or particles could have 

followed to arrive at the sampling volume of the sensor. The use of many thousands of 

MFEs/particles in the bLS provides a statistically robust representation of the pathways 

and/or origins of those detected by the sensor. As a result, the (C/Q)sim ratio calculated 

with Eq. 6-8 and the corresponding Qcalc from Eq. 6-1 are representative of those 

particles. When the bLS simulates a deposition, it is not simulating the deposition of the 

particle that passed through the sensor volume but of a different particle with a similar 

trajectory that did not pass through the sensor volume due to being deposited. 

Therefore, the number of depositions associated with trajectories of particles having 

touchdowns within the source volume must be examined for use in adjusting Qcalc to 

Qcalc, dep. In this application, adep is calculated as: 
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𝑎𝑑𝑒𝑝 = 1 +
𝑛𝑑𝑒𝑝

𝑛𝑡𝑑
  (6-14) 

where ntd is the number of touchdowns within the source area and ndep is the number of 

depositions recorded after (in time) a touchdown within the source area. As adep ≥ 1.0, 

Qcalc, dep will be ≥ Qcalc. 

Emissions Calculations 

The use of the modified models to estimate the emission rate of a PM mass 

fraction of interest k, where k = 2.5 for PM2.5 or 10 for PM10, requires information about 

the particle size distribution (PSD) and ρp in addition to Qcalc for fLS or Qcalc, dep for bLS 

applications. These are used to estimate particle count emissions for each particle size 

bin m (Qm, count), calculated with a variation of Eq. 6-1 in which C has units of particles 

volume-1 instead of mass volume-1 and Q has units of particles volume-1 (or area-1) time-1 

instead of mass volume-1 (or area-1) time-1. The (C/Q)sim values calculated from Eqs. 6-6 

through 6-8 remain valid as the units for Q can be either mass or count. Then, QPMk is 

calculated using the total particle volume in each size bin up to M, the bin containing dp 

= k.  

𝑄𝑃𝑀𝑘 =  𝜌𝑝 ∑ (
4

3
𝜋

𝐺𝑀𝐷𝑚
3

8
𝑄𝑚,𝑐𝑜𝑢𝑛𝑡)𝑀

𝑚=1 . (6-15) 
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Model Testing 

Site Description 

The modified LS models were tested using PM measurements collected at a 

commercial cattle feedyard operation located in the panhandle of Texas, USA (Figure 6-

1). The feedyard had a capacity of 45,000 head with approximately 40,000 head on-site 

during data collection. The entire facility had an area of 2.0 km2 with 0.9 km2 for the 

pens, a rectangle of about 800 m x 1200 m with the long sides oriented roughly along 

longitudinal lines. Feed was mixed onsite and distributed by truck twice daily. Manure 

management practices consisted of scraping pens to move accumulated manure into 

one mound in each pen, with mound removal occurring annually. Liquid runoff was 

stored in an on-site evaporation pond, located to the east of the pens in Figure 6-1. 

Historical meteorological observations have shown dominant wind directions in this 

area are from the southern quadrant in summer, with most deviations related to low 

pressure systems. Previous gaseous ammonia Q studies at this site were reported by 

Flesch et al. (2007) and Todd et al. (2008), both of which used the bLS WindTrax 

software. In addition, an open-path PM study at this site was reported by Upadhyay et 

al. (2008).  
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Data Collection and Processing 

Multiple sensors to measure particle and meteorological variables were deployed 

around the facility, as shown in Figure 6-1. PM and meteorological data were collected 

June 3-12, 2015. Seven tapered-element oscillating microbalance (TEOM) units, Model 

1400a from Thermo Scientific, Inc., were set on the northern (downwind) and southern 

(upwind) sides of the feedlot to measure PM10 concentrations. The TEOMs were 

deployed at sampling sites 1-7. An Optical Particle Sizer (OPS), Model 3330 from TSI, 

Inc., was collocated with a TEOM at Site 3 on the northern side and used to measure the 

PSD. The OPS was deployed from June 10-12 during an intensive operation period (IOP). 

TEOM data were recorded as 5-minute averages from June 3 through mid-day June 9, 

then as 1-minute averages through the end of collection early on June 12; the OPS data 

were recorded as 1-minute averages. All inlets were located at approximately 2 m agl. 

TEOM and OPS data were aggregated into 30 minute averages for this analysis. 

Meteorological variables were measured by two integrated weather stations and 

a 3D sonic anemometer. One weather station and the 3D sonic anemometer were 

located at 10 m agl on the northern side of the feedyard adjacent to Site 4. The second 

weather station was deployed 800 m to the west of Site 4 at 2 m agl during the IOP. 

Both weather stations provided values for barometric pressure, precipitation, air 

temperature, relative humidity, solar radiation, wind speed, and wind direction. The 

sonic anemometer reported the average and standard deviation of the sonic 
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Figure 6-1. Satellite image of the feedlot under study with particle and meteorological 
measurement locations shown, as well as the facility and pen borders.  

temperature, u, v, and w components of the wind, wind speed, and wind direction. 

Weather station data were archived as 1-minute averages throughout the study. Sonic 

data were recorded as averages and standard deviations over 30 minutes for June 3 

through early June 10 and over 1 minute for early June 10 through June 12 during the 

intensive operating period. These values were averaged into 30 minute periods for 

further calculations and analysis. 
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Meteorological inputs required by the LS model include period average wind 

speed (U), wind direction (θ), surface roughness (z0), Monin-Obukov length (L), and the 

shear velocity (u*). Raw, high frequency sonic anemometer data is typically used to 

calculate this set of parameters using the eddy covariance method. Unfortunately, the 

raw data were not saved during this experiment and these parameters were not 

calculated by the datalogger, resulting in only U and θ being provided for a given sample 

period and averaged over 30 minutes. Therefore, alternative methods for calculating u*, 

z0, and L were required that did not require high frequency sonic anemometer data.  

First, z0 = 0.08 m was set as a constant based on z0 values from Figure 7 in Flesch 

et al. (2007), which presents a five-day time series of z0, u*, and L for this same facility in 

June 2004. In addition, a displacement value of zero was assumed following Flesch et al. 

(2007). Next, u* was calculated using Eq. 6-16 derived from the diabatically corrected 

logarithmic wind profile equation with U from the sonic anemometer height of 10 m 

𝑢∗ =  
𝑈𝑘

𝑙𝑛(
𝑧

𝑧0
)+𝜑(

𝑧

𝐿
)
 (6-16) 

where k is the von Karman constant with a value of 0.4, z is the measurement height 

(m), and ψ(z/L) is the correction term for stability. ψ(z/L) was calculated based on the 

following equations from Dyer (1974) for stable conditions (L > 0) and Dyer and Hicks 

(1970) for unstable conditions (L < 0). 

𝜑 (
𝑧

𝐿
) = 1 + 5

𝑧

𝐿
for 𝐿 > 0

𝜑 (
𝑧

𝐿
) =  (1 − 16

𝑧

𝐿
)

1/4

for 𝐿 < 0
 (6-17) 
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L was calculated with the following equation, which is dependent on the heat flux (H, W 

m-2), among other parameters,  

𝐿 =  −
𝑇𝑎𝑢∗3

𝜌Cp

𝑘𝑔𝐻
. (6-18) 

Ta, ρ, and Cp are mean ambient temperature (K), air density (kg m-3), and specific heat of 

air at constant pressure (J kg-1 K-1). The average sonic temperature (Ts) was used in place 

of Ta, and ρ and Cp were calculated using TS and the data collected by the weather 

station. H, which may be calculated through the eddy covariance method using raw 

sonic data, is the last unknown parameter in Eq. 6-18. Prueger and Kustas (2005) 

summarized a method to calculate H during daytime, convective conditions using the 

variance of potential temperature θ (σθ): 

𝐻 =  𝜌Cp (
𝜎θ

𝑐
)

3 2⁄

(
𝑘𝑔𝑧

𝑇𝑆
)

1 2⁄

, (6-19) 

where c is an empirical constant assigned a value of 0.95 and g is the constant 

acceleration due to gravity (m s-2).  

As H is always positive when calculated using Eq. 6-19, an additional method for 

calculating negative values of H was required for periods with low insolation. First, the 

distinction between periods with positive and negative H values was made. The solar 

elevation angle (β) was calculated at the center time of each sample period. These were 

compared with the critical solar elevation angle (βcr), the point at which the changing 

incoming solar radiation causes the heat flux to change signs. This was calculated as: 
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𝑠𝑖𝑛(𝛽𝑐𝑟) = (
1

990
) (

−𝑐1𝑇6+𝜎𝑆𝐵𝑇4+𝑐2𝑁𝑐𝑐

(1−𝑟𝛼)(1−3 4⁄ 𝑁𝑐𝑐
3.4)

+ 30)

𝑟𝛼 =  𝛼 +  (1 − 𝛼)𝑒𝑎𝛽+𝑏
  (6-20) 

where β and βcr have units of degrees, c1 is a constant with value 5.31 W m-2 K-6, c2 is a 

constant with value 60 W m-2, T has units of Kelvin and Ta is used here, σSB is the Stefan-

Boltzmann constant with a value of 5.67 x 10-8 W m-2 K-4, Ncc is fraction of cloud cover, α 

is albedo as a fraction, a is a constant with a value of -0.1 deg-1, and b = - (1-α2)/2. Cloud 

cover was not measured on-site. Instead, observations from two meteorological stations 

50-65 km away in opposite directions were averaged and assumed to be valid at the 30-

minute time scale in this application. 

The methodology outlined in Eqs. 6-16 through 6-18 for calculating u* and L was 

used for those sample periods for which β ≥ βcr. For sample periods with β < βcr, these 

parameters were calculated with the method used for stable boundary layers in 

AERMET, the meteorological preprocessor for the regulatory air dispersion model 

AERMOD, as described by Cimorelli et al. (2005) and Hanna and Chowdhury (2014).  

First, the turbulent temperature scale (θ*, K) was calculated based on Ncc as 

follows as 

𝜃∗ =  0.09(1 − 0.5𝑁𝑐𝑐
2 ). (6-21) 

The θ* value was used to calculate u* according to Eq. 6-22, and both are used to 

calculate L and H using the following equations derived from a combination of Eqs. 6-18, 

6-19, and 6-21:  
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𝑢∗ = (
𝑢√𝐶𝐷𝑁

2
) (1 + √1 − (

2𝑢0 𝑢⁄

√𝐶𝐷𝑁
)

2

)

𝐶𝐷𝑁 =  (𝑘 ln(𝑧 𝑧0⁄ )⁄ )2

𝑢0 =  √𝛽𝑚𝑔𝑧𝜃∗ 𝑇⁄

 (6-22) 

𝐻 =  −𝜃∗𝜌𝑐𝑝𝑢∗  (6-23) 

𝐿 =  
𝑇𝑠𝑢∗2

𝑘𝑔𝜃∗ . (6-24) 

The period wind speed scale (u0) was then compared against the critical wind 

speed (ucr), the minimum wind speed needed to maintain turbulence in a stable 

atmosphere and below which MOST is not applicable (Hanna and Chowdhury, 2014).  

𝑢𝑐𝑟 =
2𝑢0

√𝐶𝐷𝑁
. (6-25) 

If u0 < ucr for a given sample period, u* and θ* were recalculated using the following 

ratio equations and the H and L were then recalculated. 

𝑢∗ =  𝑢∗ (
𝑢𝑟𝑒𝑓

𝑢𝑐𝑟
)

𝜃∗ =  𝜃∗ (
𝑢𝑟𝑒𝑓

𝑢𝑐𝑟
)

. (6-26) 

Weather station data collected downwind of the feedlot and adjacent to Site 4 were 

used in the calculations above, except for a period of six hours on June 10 due to a data 

gap. This gap was filled using data from the second weather station.  

Extreme values for L, u*, and z0 have been shown to indicate potential for an 

inaccurate description of atmospheric conditions under the MOST assumptions, leading 

to potentially large model errors. Therefore, the following criteria were used to identify 
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and exclude such periods following the methodology of Flesch et al. (2004, 2007). 

Sample periods were removed from the ER calculation if u* ≤ 0.15 m s-1 (low wind 

conditions) or |L| ≤ 10 m (strongly stable/unstable atmosphere). The measured wind 

direction was used to identify sample periods in which the pens did not likely impact the 

PM instrumentation sufficiently to yield a good ER estimate. To be designated a sample 

period with sufficient upwind fetch within the source area, θ had to be such that the ray 

drawn from a given sample site in the upwind direction (θ - 180°) was required to 

intersect the east (west) edge of the overall pen area ≥ 250 m south of the northeast 

(northwest) corner, approximately ¼ the length of the eastern/western edges. 

Therefore, θ had to be between 112° and 251°. This criterion for θ differs from Flesch et 

al. (2007) due to different C measurement types (point vs. line C measurement). 

Modified LS Model Application 

The modified LS models were run with the measured and calculated U, θ, L, and 

u* values for the 10 m sonic anemometer height. The vs for each dp of interest was 

calculated for use in the model using the following assumptions: the particles are 

spherical; particles have a ρp of 1.71 g cm-3 following Sweeten et al. (1998) and McGinn 

et al. (2010); and, if using data from the OPS, the geometric mean diameter (GMDi) is 

representative of the mean dp for a given bin i. The modified models were run for each 

dp of interest and for the non-depositional case of dp = 0.0 µm (vs = 0.0 m s-1) to provide 

a reference (C/Q)sim value. 
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LS Model Sources. Homogeneous surface and meteorological conditions at a 

given height z of 10 m were assumed throughout the area of interest. Therefore, the 

modeled touchdowns from the bLS and the 3D tres matrix output by the fLS were 

translatable in the [x,y] plane. This significantly increased computational efficiency by 

allowing both models to be run for a single, small release volume per sample period. 

The results were then copied and translated horizontally for application to each 

source/receptor relationship. In the fLS, this allowed great flexibility in source number 

(S) and location, allowing for a test of the minimum value of S that achieves the same 

results as using a source covering the full pen extents. In the case of the bLS model, the 

single generic configuration was run while logging touchdown and deposition positions 

relative to the particle release point. This dataset was then applied to each sampling site 

with valid TEOM data. 

When running the bLS model, the MFEs were released from a cube with a center 

located at [x,y,z] = [0.0,0.0,2.0] m, with the z value set to the PM sensor inlet heights. 

Each side of the cube was 0.25 m in length and initial MFE locations within the cube 

were set randomly using normal distributions in each direction. Particles were tracked 

backwards in time until the x position was < -1,400 m to ensure the entire feedlot pen 

surface area was contained within the modeled upwind fetch.  

The source used with the fLS model had several similarities with the bLS 

application: a cube with each side measuring 0.25 m in length; MFEs randomly placed 

throughout the volume based on normal distributions in each direction; and particles 
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were tracked until x > 1,400 m. However, the cube was centered at [x,y,z] = 

[0.0,0.0,0.205] m to represent the near-ground dust created by animal hoof action 

assumed to be the main feedlot PM source. The bottom of the cube was placed at the z0 

plane. 

Emissions Quantification. The emission area for the feedlot facility was specified 

as the pen areas. The pen vertices were determined using satellite imagery. The sensor 

locations were measured with a hand-held GPS unit during the field study and adjusted 

with values taken from Google Earth satellite imagery to ensure correct source-receptor 

spatial relationships in the emissions quantification procedure. The feedlot pens were 

divided into nine rows, each separated by feed lanes, as shown in Figure 6-1. The 

emissions from on-site support activities, such as feed mixing, feed distribution, wind-

blown dust, and unpaved road emissions, were attributed to the animals and included in 

this emissions calculation as their impact on downwind PM10 was indistinguishable from 

the pen emissions.  

As stated previously, the bLS and fLS model results were translatable in the [x,y] 

plane, allowing a simulation with a small sensor or source volume to be applied 

throughout the domain. The use of multiple fLS sources required the following 

modification to Eq. 6-6 to calculate the (C/Q)sim ratio: 

(𝐶 𝑄𝑣𝑜𝑙⁄ )𝑠𝑖𝑚 =  
𝑉𝑠𝑟𝑐𝑆

𝑉𝑠𝑒𝑛𝑠

1

𝑁𝑆
∑ (∑ (𝑡𝑟𝑒𝑠)𝑉𝑠𝑒𝑛𝑠,𝑖

𝑛
𝑖=1 )

𝑉𝑠𝑒𝑛𝑠,𝑗

𝑠
𝑗=1  (6-27) 
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where N is the total number of particles released per source, S is the total number of 

small volume sources spread throughout the pen area, and n is the number of particles 

that passed through Vsens from source sj. Unlike the fLS, no changes were required to 

calculate the (C/Q)sim ratio for the bLS. However, accounting for deposition simulation in 

the bLS required the use of adep and Eq. 6-13 to yield Qcalc, dep.  

Information on the PSD during each sample period was required in order to 

estimate QPM10. As the OPS was deployed from only June 10 through June 12, the PSD 

was estimated for the remaining sample periods by assuming the measured PSDs were 

representative of PSDs throughout the study. Relationships were found to relate 

changes in OPS channel counts to changes in PM10. Both first order and second order 

polynomial fits were calculated using TEOM data from sites 2 and 4. Site 3 TEOM data, 

the TEOM collocated with the OPS, were invalid due to an inlet obstruction found at the 

end of the study. Changes in particle counts in channels 1 and 2 varied relatively little 

compared to changes observed in other channels and were very weakly correlated with 

changes in PM10 levels. Therefore, particle counts in the first two channels were 

attributed entirely to background aerosol and were not included in the emission 

estimate. Second order polynomials provided better fits for channels 3 through 17, 

particularly for PM10 < 1,000 µg m-3, and were selected instead of the first order 

polynomials. These relationships were applied at each location, including the upwind 

Site 7, to estimate the PSD based on measured PM10.  
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The PSDs were used to calculate QPM10 using two slightly different methods. First, 

values for Qm, count and QPM10 were calculated as described in above and will be referred 

to as the Deposition QPM10. Second, QPM10 was estimated through the typical method 

used with a model that does not account for vs or deposition in inverse modeling 

calculations. The (C/Q)sim ratios for dp = 0.0 µm from the modified model and PM10 

calculated from the estimated PSDs were used in Eq. 6-1. The PSD-derived PM10 was 

calculated by multiplying the volume per particle, based on the GMD of each size bin, by 

the number of particles emitted by the facility in the respective size bin, and then 

multiplied by ρp. The PSD-derived PM10 and the modified model results for dp = 0.0 µm 

were employed in order to examine differences in Q solely due to account for vs and 

deposition in the model and to avoid additional confounding factors introduced by a 

different model or PM10 dataset. This second emission rate is termed the Non-

deposition QPM10. 

Results and Discussion 

Particulate Matter and Meteorological Characteristics 

The wind and stability values measured and calculated for use in the models are 

presented in Figure 6-2. Note that the full time series of these variables is shown, 

including the extreme values of u* and L and θ outside of the limits required for 

sufficient plume impact on the downwind TEOM sensors, as described above. Note that 

many sample periods had u* below the criteria level of 0.15 m s-1. A total of 121 sample 
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periods passed all the meteorological filter specifications, 77 in unstable conditions (L < 

0) and 44 in stable conditions (L > 0).  

The PM10 time series reported by five of the seven deployed TEOMs are shown in 

Figure 6-3. Sites 1, 2, 4, and 6 were generally downwind of the feedlot and Site 7 was 

upwind, except early on June 8 when winds were briefly from the northern quadrant. 

Concentrations at Site 7 averaged 10.1 µg m-3 throughout the study, with a standard 

 

 
Figure 6-2. Measured values for wind speed (u) and direction (θ) and calculated values 
for shear velocity (u*) and the inverse of Monin-Obukov length (1/L) as 30 min averages 
throughout the collection period. Note that the dash-dot lines (--- -) parallel to the x-axis 
in the θ, u*, and 1/L graphs represent the criteria levels used to filter out periods for 
modeling with either insufficient impact on the sensors due to θ or meteorological 
periods with extreme values of u* and L. 
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deviation of 11.8 µg m-3. Examining the 121 sample periods that passed all the 

meteorological filters, Site 7 averaged 14.1 ± 13.3 µg m-3. However, seven of those 

periods did not have an upwind PM10 measurement, leaving 114 sample periods (70 

with L < 0, 44 with L > 0) over which to calculate QPM10. As has been reported by others 

at feedlots, downwind PM10 levels show a consistent diurnal pattern, peaking in the 

evening and at a minimum in the early morning (Bonifacio et al., 2012, 2013a, 2013b; 

McGinn et al., 2010; Purdy et al., 2007; Upadhyay et al., 2008; and others). Irregularities 

found in data from TEOMs at Sites 3 and 5, related to a sample line obstruction and 

instrument health invalidating the calibration, respectively, resulted in their exclusion 

from calculations. Site 6 PM10 generally tracked other downwind levels until early  

 

 

Figure 6-3. PM10 concentrations measured at the feedlot by the upwind (Site 7) and 
downwind (Sites 1, 2, 4, and 6) TEOMs as 30 min averages. 
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evening on June 11, after which it deviated substantially. Site 6 data after this point 

were not used to estimate QPM10. 

 Several PSDs measured during the June 10-12 OPS deployment are presented in 

Figure 6-4 (a), selected to represent the PSDs across a range of PM10 concentrations as 

observed in the time series plot in (b). The greatest changes in particle counts with 

increasing PM10 were in the channels with larger GMDs; also, counts in channels 1 and 

2, with the smallest GMDs, did not appear correlated to changes in PM10. Note that Site 

2 and Site 4 were used for comparison against the OPS-derived PM10 in Figure 6-4 (b). 

The OPS PM10 follows the TEOM trends and matches the concentrations from the 

adjacent sites fairly well throughout the OPS data record. 

 

 

Figure 6-4. (a) Example particle size distributions (PSDs) measured by the OPS at Site 3 
averaged over 30 min periods and (b) the PM10 concentration calculated from the OPS 
PSD measured at Site 3 compared with TEOM PM10 from adjacent sites 2 and 4. 
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Modified LS Model Testing 

Testing of the modified LS model was conducted to: 1) test if the non-

depositional mode of the model yielded results similar to Flesch et al. (2004); 2) 

examine the impact of including deposition on model results; and 3) determine optimal 

configurations regarding application to the feedlot.  

The first test was to determine if the modified bLS yielded similar results as the 

bLS in Flesch et al. (2004) for a common dataset. A subset of their published data, the 

TA3-5 sample run with eight 15-minute sample periods, was selected. Flesch et al. 

report an average Qcalc:known Q ratio of 0.96 with a standard deviation of 0.10. The 

modified bLS yielded a slightly higher average ratio of 1.15 but with the same standard 

deviation of 0.10. While these results are slightly different, they provide evidence the 

modified bLS does a good job at estimating emissions. Few differences exist between 

the model formulations, the largest likely being how the new position of a particle that 

crosses the z0 boundary is calculated. The significance of this and other differences were 

not investigated but could be part of future work. 

The remaining tests were conducted using a subset of 30 sample periods from 

the full Texas feedlot dataset described above. Fifteen sample periods were randomly 

selected from both stable (L > 0) and unstable (L < 0) conditions. Both bLS and fLS 

models were run for each period with N = 50,000 and using the dp values in Table 6-1. A 

range of dp were selected to test the models’ response across a range of vs. The vs values 
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shown in Table 6-1 are the average of the 30 sample periods and change by four orders 

of magnitude between 1 and 50 µm.  

One test examined the number of particle touchdowns and depositions for bLS 

and fLS results as a function of dp. In addition to the formula differences between bLS 

and fLS models, there was a difference in the height agl of the release point (zrel) under 

normal operation. As shown in Figure 6-5, a difference of a factor of approximately 2 

was found between touchdown counts averaged across the sample period subset at dp < 

10 µm for fLS with zrel = 0.205m and bLS with zrel = 2.0m. Note that the touchdown and 

deposition results for dp = 0.0 µm are shown in the graphs at 0.5 µm since a value of 0.0 

cannot be shown on a log scale. If the bLS model is run with zrel = 0.205 m, the number 

of average touchdowns is essentially equal to the fLS model for dp from 0 to 5 µm, but 

then approaches the lower values of bLS with zrel = 2.0 m as dp increases.  

The relative results between models for average deposition counts are very 

similar to average touchdowns for dp < 10 µm, including the counts for fLS and bLS, with 

zrel = 0.205 m being roughly twice as much as depositions for bLS with zrel = 2.0 m. The 

behavior of deposition counts for dp > 10 µm is markedly different between the bLS and 

fLS results. The fLS deposition counts approach 50,000, the maximum number of 

depositions possible in the fLS model runs because a total of 50,000 particles were 

Table 6-1. The dp and the average vs values used in configuration testing of the LS 
models. 

dp (µm) 0 1 2.5 5 10 20 30 40 50 

vs (m s-1) 0 6.4x10-5 3.5x10-4 1.3x10-3 5.2x10-3 2.0x10-2 4.6x10-2 8.1x10-2 1.3x10-1 
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Figure 6-5. Touchdown and deposition counts as a function of dp for the fLS model and 
two bLS model runs with different particle release heights (zrel). Note that results at dp = 
0.5 µm are actually those for non-depositional case of dp = 0.0 µm as 0.0 µm is not 
shown on a logarithmic axis. 

released. The vs values at higher dp become sufficient to overcome nearly all w values 

and lead to general downward particle movement and near-total deposition with fewer 

total touchdowns. The same cause leads to slightly different results from the bLS.  As vs 

increases with increasing dp, the particles generally move upward due to the use of a –

Δt in Eq. 6-9, resulting in the bLS number of touchdowns and depositions at dp > 10 µm 

decreasing relative to the fLS results. 

In addition to total counts, the number of touchdowns and depositions as a 

function of distance from the release point were examined for similarity between the 

fLS and bLS models. Figure 6-6 presents the average counts as a function of radius, 
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binned in 100 m intervals, for dp = 10 µm. Note that the left figures give the total 

touchdown and deposition counts while the right figures show the counts per bin 

relative to the counts in the 0-100 m bin. The fLS logged more touchdowns and 

depositions than both bLS models at all radii; both bLS models had similar counts per bin 

at distances > 100 m and the number of fLS touchdowns was within 10% of the bLS 

counts for distances > 800 m. Looking at the counts per bin relative to the first bin for 

both touchdowns and deposition, the bLS and fLS with zrel = 0.205 m showed very 

similar levels. The bLS with zrel = 2.0 m had the lowest counts per bin, but recorded 

higher relative values. Histograms for dp < 10 µm (not shown) have better agreement 

between the bLS with zrel = 0.205m and the fLS results, while those for dp > 10 µm (not 

shown) have greater divergence between the fLS and bLS models. 

The results of these two analyses on touchdown and deposition patterns suggest 

small differences between touchdowns and depositions from fLS and bLS models with 

the same zrel for dp ≤ 10 µm and non-depositional cases. In addition, for cases with 

different zrel values, the touchdown and deposition counts have a similar ratio for dp < 

10 µm and the differences between the two models are strongly influenced by 

differences in zrel. As dp increases above 10 µm, the logarithmically increasing vs rapidly 

gains influence on particle motion to yield varying differences between bLS and fLS 

model results. Therefore, the use of a fLS is recommended for modeling particles with vs 

approaching or greater than the magnitude of w. In the case of the feedlot 

measurements, this effect was noticeable at dp = 10 µm and strong for dp ≥ 20 µm. 
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Figure 6-6. Histograms of touchdowns and depositions versus distance from the source 
volume at [0,0,zrel] for bLS models with zrel = 2.0 m and 0.205 m and the fLS with zrel = 
0.205 m for dp = 10 µm and a bin width of 100 m. The left two graphs show average 
counts across the subset and the right two figures show average counts per bin relative 
to the 0-100 m bin. 

Another test investigated the number of small, surface-based volume sources (S) 

needed in the feedlot fLS application to represent the pens like one large source 

covering each pen. As stated previously, the fLS model was run for a single volume 

source at [x,y,z] = [0,0,0.205], the resulting tres matrix was applied at each source 

location, and the overall (C/QVol)sim value for a given sampler location was calculated 

using Eq. 6-6. The metric used for this test was the spread of the relative individual 

(C/QVol)sim values between the 30 sample periods using a range of source densities 

(sources per 100 m2 of pen area) for each dp. The relative (C/QVol)sim values for each 
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sample period were found by dividing the (C/QVol)sim calculated at each source density 

by the value from the greatest density tested; a relative value of 1.0 would provide the 

same answer at the lower source density as at the highest density. Sources were 

approximately equally spaced within the total source area, with tested densities varying 

from 0.01 to 33 sources per 100 m2. The results are presented in Figure 6-7. Note that 

the average (C/QVol)sim ratio approaches 1.0 as source density increases and the density 

at which all individual sample period ratios are within 10% of 1.0 increases with 

increasing dp. For dp ≤ 20 µm, all sample period ratios are within 5% of 1.0 by 1.1 sources 

per 100 m2 and within 2% of 1.0 by 6.6 sources per 100 m2. Based on this, remaining 

feedlot applications of the fLS were conducted at a source density value of about 5 

sources per 100 m2, corresponding to an S value of 38,411, evenly distributed 

throughout the pen areas. 

The final test was to determine how well the bLS Qm, count solution matched the 

fLS Qm, count solution for the feedlot across the test dp using the 30 sample subset. The 

modified fLS was used as the standard based on the good agreement with measured 

spore concentration profiles and accurate calculated emissions by the fLS in Aylor and 

Flesch (2001), and all other applications of an LS accounting for vs and deposition having 

been fLS formulations (Aylor and Ferrandino, 1989; Aylor and Flesch, 2001; Boehm et 

al., 2008; McGinn et al., 2010; Wilson, 2000; and others). The Qm, count values were 

calculated using a particle concentration of 1.0 particles m-3 for each dp. 
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Figure 6-7. The relative fLS (C/QVol)sim values for randomly selected sample periods for 
particles with dp of (a) 0 µm, (b) 1 µm, (c) 2.5 µm, (d) 5.0 µm, (e) 10 µm, (f) 20 µm, (g) 30 
µm, (h) 40 µm, and (i) 50 µm. The relative (C/QVol)sim values were calculated by dividing 
by the (C/QVol)sim at each source density by the (C/QVol)sim at the highest density for each 
sample period. 

The results in plots (a) and (b) of Figure 6-8 show Qm, count for dp ≤ 10 µm nearly 

equal to Qm, count for the non-depositional case at dp = 0.0 µm (shown at 0.5 µm due to 

the lack of a zero value on a log scale). The bLS results begin to show departures from 

the non-depositional values at slightly lower dp than the fLS. It is interesting to note that 

Qm, count as Qcalc from Eq. 6-1 for the bLS is more similar in shape to the fLS Qm, count than 

the Qm, count as Qcalc, dep from Eq. 6-13 as shown here. This due to the use of the scalar adep 

to account for deposition adjustment, which increased logarithmically from 1.00 at dp = 

2.5 µm to average values of 1.01, 1.04, 1.11 and 1.17 at dp = 5, 10, 20, and 30 µm, 
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respectively. Despite the more similar shape of the bLS Qcalc, the Qm, count as Qcalc, dep is 

reported in order to directly account for the effects of deposition. Qm, count lines at all dp 

were grouped into stable and unstable atmospheric conditions, with the average value 

lying between them. 

The bLS Qm, count were divided by the fLS Qm, count to yield the unitless ratios in 

Figure 6-8 (c). The ratios were stable between 1.15 and 1.3 for dp ≤ 10 µm and increased 

in both mean and spread thereafter. The ratio statistics show the bLS model, as herein 

applied in this subset, yields Qm, count consistently 15-20% higher than the fLS Qm, count for 

all dp ≤ 5 µm, including the non-depositional case. The bLS Qm, count for dp = 10 µm and 20 

 

 
Figure 6-8. Emission rates (Qm, count) calculated from the (a) fLS and (b) bLS models as 
applied to the Texas feedlot for a subset of 30 sample periods and assuming a particle 
concentration of 1.0 particles m-3 for each dp. The ratios of the Qm, count are presented in 
(c) to show comparability for this dataset. Note that results for dp = 0.0 µm (vs = 0.0 m s-

1) are shown at 0.5 µm. 
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µm were 31% and 56% higher than fLS Qm, count. The ratio behavior changes drastically 

for dp > 20 µm between the two stability classifications, diverging significantly and bLS 

results differing from the fLS by factors of up to 10. This could be attributed, at least in 

part, to the relative sizes of w and vs at those dp and the general downward and upward 

particle movement induced in the fLS and bLS models, respectively, as noted previously 

in regard to total touchdown and deposition count. The use of the fLS is, therefore, 

suggested for modeling larger dp. The upper dp at which the modified bLS can be 

effectively used will vary based on particle and meteorological characteristics, as well as 

other potential factors not investigated here. Based on these results, the bLS is assumed 

to be valid for dp < 20 µm for the Texas feedlot used for this study. 

Feedlot PM10 Emissions 

The Deposition QPM10 and Non-deposition QPM10 values were estimated for each 

downwind sampling site with an estimated PSD in the 114 sample periods. These values 

were then grouped by sample period position in a 24-hour day to calculate the diurnal 

profiles of QPM10, as shown in Figure 6-9. The bars represent the number of data points 

in each 30-minute sample period. These were aggregated into 2-hour averages for 

display and further calculations. Deposition QPM10 was larger at all times, with averaged 

values ranging from 8% higher around midday to 20% higher in the late evening and 

middle of the night. Accounting for vs and deposition is most influential on QPM10 at the 

highest number concentrations of large particles. 
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Figure 6-9. Diurnal pattern of calculated Deposition feedlot PM10 emissions (QPM10) and 
Non-deposition QPM10 as two hour averages (left axis) and the number of QPM10 values in 
each half hour sampling period throughout the day (right axis). The empty markers 
represent the values estimated to fill the 04:00-06:00 data gap. 

Diurnal patterns are present in the QPM10 datasets, as was observed in the TEOM 

PM10 levels during this study and reported in both PM concentrations and Q in other 

published studies. The maximum values in the evening are approximately a factor of 20 

greater than the minimum values estimated in the early morning. The dip present at 

10:00-12:00 in both profiles is atypical of smoother patterns reported by others. This 

may be due to a small sample size (n = 3) from a single sample period on June 4. 

Unfortunately, the meteorological filter removed most, if not all, of the sample periods 

for early morning (02:00-06:00), midday (10:30-13:00), and during the evening 

atmospheric transition period from unstable to stable conditions (19:00-20:00), limiting 

the robustness of the dataset on which these diurnal profiles are based. However, the 
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pattern consistency with other studies, coupled with the similarity to the measured 

PM10 concentrations, justify its use in calculating an integrated daily emission. The lack 

of data for the 04:00-06:00 period required estimates to complete the diurnal profile. 

Using the PM10 concentrations shown in Figure 6-3 as a guide, missing values for both 

the Deposition QPM10 and Non-deposition QPM10 were estimated as the average of the 

two adjacent data points in each respective dataset. These values are shown in Figure 6-

9 as the hollow markers.  

The daily summer emissions calculated for this feedlot were 62.5 ± 12.4 g animal-

1 day-1 for Deposition QPM10 and 55.9 ± 11.2 g animal-1 day-1 for Non-deposition QPM10. 

The corresponding surface fluxes were 3.23 ± 0.65 g m-2 day-1 for Deposition and 2.89 ± 

0.58 g m-2 d-1 for Non-deposition. The integrated Deposition values were 12% higher 

than the Non-deposition ones. These QPM10 and surface flux values are higher than most 

found in the literature, as shown in Table 6-2. Note that those from Bonifacio et al. are 

for 17 or 24 month datasets. The QPM10 at the same level was measured during summer 

conditions at one of the feedlots investigated by McGinn et al. (2010), which had a QPM10 

of 60 g animal-1 d-1. Note that both QPM10 and surface fluxes can vary based on, among 

other characteristics, measurement technique, emissions estimation technique, stocking 

density, surface moisture content, feedlot surface type, and manure management.  

The uncertainty values in the reported daily QPM10 represent the standard 

deviation of the spread of the data about the average. The uncertainty of the inverse 

modeling method using the modified LS model was not quantified. It is not expected to 
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Table 6-2. Comparison of feedlot PM10 emissions (QPM10) and surface fluxes calculated in 
this study with some found in literature. 

Source QPM10 [g animal-1 d-1] Flux [g m-2 d-1] Notes 

This study 

62.5 ± 12.4 3.23 ± 0.65 
Texas, USA; Summer 2015; 
Deposition (± 1σ) 

55.9 ± 11.2 2.89 ± 0.58 
Texas, USA; Summer 2015; Non-
deposition (± 1σ); 

McGinn et al., 
2010 

Feedlot 1 - 60 ± 100 

Feedlot 2 - 31 ± 52 

Feedlot 1 – 1.45 

Feedlot 2 – 1.61 

Queensland, Australia; Feb-Mar 
2008, Summer; Method – Inverse 
Modeling with fLS with deposition 

Bonifacio et al., 
2012 

Median Values: 

Feedlot 1 - 27 

Feedlot 2 - 30 

Median Values: 

Feedlot 1 - 1.60 

Feedlot 2 - 1.10 

Kansas, USA; Jan 2007 – Dec 2008; 
Method – Inverse Modeling with 
AERMOD 

Bonifacio et al., 
2013a 

Median Values: 

26.0 to 41.3 

Median Values: 

1.32 to 2.10 

Kansas, USA; May 2010 – Sept 
2011; Method – Inverse Modeling 
with AERMOD and WindTrax 

Bonifacio et al., 
2013b 

Median Values: 

35.6 

Median Values: 

1.81 

Kansas, USA; May 2010 – Sept 
2011; Method – Flux-Gradient 

 

be better than the ±20% standard deviation values from the dataset due the uncertainty 

contributed by meteorological and PM measurements, parameter calculations, and 

deviations of modeled dispersion from actual conditions, any one of which could be 

larger than 20%. Specifically, issues regarding the accuracy of and errors in reported 

values from typical PM sensors measuring ambient PM near sources with significant 

mass fractions at dp > 5 µm, such as the TEOM and OPS deployed here, has not been 

taken into account (for examples, see Auvermann et al., 2006; Buser et al., 2007; 

andWanjura et al., 2008). This is beyond the scope of this analysis and could be pursued 

in future work. Another potential subject of future work is the use of this modified 

model to test the simulation of dry deposition of gasses. 



 
257 

 

 

Conclusions 

This manuscript presents the formulation and initial test results of a 3D LS model 

modified to account for vs and deposition of particles in order to estimate area/volume 

source emissions through inverse modeling. The base model is that presented by Flesch 

et al. (1995, 2004), with changes based on the fLS models of Aylor and Ferrandino 

(1989), Wilson (2000), and Aylor and Flesch (2001). The modified LS model allows for 

simulating the dispersion and deposition for particles across a range of dp, including the 

non-depositional case of dp = 0.0 µm (vs = 0.0 m s-1). The novel contribution of this work 

is the development and use of the modified LS in a backward-in-time simulation, 

including developing an emissions quantification method to account for deposition 

estimates. The bLS is preferred over the fLS when possible due to significant 

computational and memory-usage savings. 

The modified bLS formulation was run in a non-depositional mode for a subset of 

the validation dataset from by Flesch et al. (2004). The modified bLS yielded an average 

emission estimate for the subset that was slightly larger than Flesch et al. but still in 

close proximity to the actual value and with the same standard deviation. This 

demonstrated its ability to estimate emissions based on the near-field dispersion 

simulation. 

An initial application of the modified LS model to data collected during the 

summer at a commercial feedlot also yielded promising results. For a 30 sample subset, 
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the bLS model yielded similar touchdown and deposition counts to those of the 

modified fLS for the same zrel and dp ≤ 10 µm. Touchdown and deposition counts were 

reduced relative to the fLS when the bLS release height was set at the higher 

operational zrel. The bLS consistently yielded emission estimates 1.15 to 1.30 times 

higher than the fLS model for all tested dp ≤ 10 µm, including dp = 0.0 µm. The Qm, count 

values for dp < 5 µm in both bLS and fLS were nearly equal to the value at dp = 0.0 µm, 

suggesting that vs and deposition were not significant for smaller particles. In addition, 

the upper dp limitation for behavioral consistency between bLS and fLS results was 

found to be about 20 µm in this test scenario, above which they produced very different 

results. The test results suggest that for dp < 20 µm the bLS may be used to simulate 

dispersion of particles. This is the range of interest when estimating Q of PM2.5 or PM10. 

The daily summer mean QPM10 values were estimated using both deposition-

enabled and non-depositional model runs. The Deposition QPM10 was 62.5 ± 12.4 g 

animal-1 day-1, 12% larger than the 55.9 ± 11.2 g animal-1 day-1 calculated for Non-

deposition QPM10. These are higher than QPM10 in the literature based on year-round 

sampling but are similar to that reported for another summer-only sample period. The 

diurnal profiles show Deposition QPM10 was always larger than Non- deposition QPM10, 

with a range of 8% to 20%. Calculated diurnal profiles were similar to those previously 

reported. 
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CHAPTER 7 

CONCLUSIONS 

The purposes of this dissertation work were to enhance the methods and tools 

available for measuring air pollution emissions from large agricultural sources and to 

quantify emissions for different agricultural processes/operations. These were 

accomplished through work presented in a collection of five chapters that were papers 

submitted to peer-reviewed scientific journals for publication. Each paper makes a 

contribution to methodology, reports emissions estimates based on field data, or both. 

This work was carried out through the Ag Program at the Space Dynamics Laboratory 

and Utah State University, in part accomplishing two of the program’s purposes of 

improving emissions quantification methods and determining the effectiveness of 

management practices and control technologies to reduce air emissions.  

The first paper described the mass conversion factor (MCF) and demonstrated its 

usefulness in Ag Program activities. The MCF is a simple, empirical relationship between 

collocated optical and mass concentration measurements that can be used to convert 

optical measurements to PM concentrations. The MCF allows PM concentration 

dynamics to be investigated at the optical instrument’s finer sampling resolution. The 

MCF also enables the use of an elastic backscatter lidar, like Aglite, to quantify PM mass 

concentrations and emissions over a much greater spatial extent (100s to 1,000s of m), 

both horizontally and vertically, and at both finer spatial and temporal scales than 
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possible with point sensors alone. This paper provides examples of how the MCF and 

lidar together provide greater insight into PM concentration and emission dynamics. 

The next two papers utilize the MCF to produce PM mass-calibrated OPC and 

Aglite lidar, which are used to estimate the emissions control efficiency of agricultural 

tillage management practices that are designed to reduce total emissions, referred to as 

Conservation Management Practices (CMP). The first field study measured emissions 

from fall tillage operations after a row crop harvest for the traditional management 

practice and the combined operations CMP. The traditional method made six passes 

across the field and the CMP made two passes. Emissions were calculated using a mass 

balance applied to the PM-calibrated lidar data and inverse modeling in combination 

with filter based PM measurements. The results showed the combined operations CMP 

reduced PM2.5 emissions by 29%, PM10 emissions by 60%, and TSP emissions by 25%. 

The lidar provided a full set of emissions estimates even when the point sensors were 

unable to resolve downwind impacts in a couple of instances. In addition, the lidar 

observed plumes far above the sampling heights of the point sensors, plumes not 

reproduced by in inverse modeling. 

The other tillage study compared operations in spring tillage after harvest of a 

winter wheat and in preparation for planting corn. The traditional method consisted of 

nine different operations with a total of 13 passes over the field. The conservation 

tillage CMP, designed to reduce the field area disturbed through tillage by >80%, was 

comprised of three operations in three passes. Issues with sampler maintenance after 
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exposure to some high-intensity plumes and windblown dust contaminated nearly one 

third of the downwind filter samples. Therefore, PM emissions were estimated using the 

PM-calibrated lidar and OPC datasets through the mass balance and inverse modeling 

approaches, respectively. The conservation tillage CMP reduced emissions by 

approximately 90% for PM2.5, PM10, and TSP. The lidar provided more evidence of the 

temporally and spatially non-homogeneous nature of tillage plumes.     

The third emissions study was for summer time NH3 from an open-lot dairy in 

the SJV of California. Despite having 20% of the national dairy herd, only one previous 

NH3 emissions study had previously been conducted in the state of California, and that 

study was performed during winter months on a dairy with similar management 

practices. NH3 does not have a NAAQS, but it reacts with other gases in the atmosphere 

to form particles and has been shown to be an important factor in SJV PM. 

Concentration measurements were collected using passive samplers and open path-

Fourier transform infrared spectrometers (OP-FTIR). The OP-FTIR on the downwind side 

of the facility measured NH3 along multiple paths in a repeating series with a scanning 

system, the first known implementation of such a system with OP-FTIR. Inverse 

modeling was performed with AERMOD to estimate atmospheric dispersion, which was 

then combined with the two NH3 concentration datasets to estimate the emissions 

using a least sum of squares optimization approach. This approach yielded NH3 

emissions of 140.7 ± 42.5 g d-1 animal-1 (113.5 ± 34.3 g d-1 AU-1) from the passive 
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sampler data and 199.2 ± 22.0 g d-1 animal-1 (160.8 ± 17.8 g d-1 AU-1) from OP-FTIR data, 

both within the range of summer time values reported for other open lot U.S. dairies. 

The last paper presented the formulation and initial testing of a Lagrangian 

stochastic (LS) atmospheric dispersion model that accounts for a particle’s deviation 

from the behavior of the carrier fluid due to settling velocity and deposition. While the 

modified model was based on work by others, this is the first instance in published 

literature where a deposition-enabled LS was run in both forward-in-time (fLS) and 

backward-in-time (bLS) configurations – all other such models are exclusively fLS. Initial 

testing of the modified bLS demonstrated its ability to estimate emissions through 

inverse modeling, yielding an average estimated-to-known emission ratio of 1.15 for a 

validation dataset when run in a non-deposition mode. Testing of the fLS and bLS on a 

subset of a PM dataset collected at a commercial beef feedlot revealed the bLS has an 

upper particle size limitation of about 20 µm for results to be consistent with the fLS. 

Behaviors between the model configurations diverged dramatically above this diameter. 

The impact of accounting for settling velocity and deposition in the bLS was an 

enhancement of between 8% and 20% throughout the diurnal PM10 emissions profile 

over the non-depositional run. The deposition-enable daily emissions were 62.5 ± 12.4 g 

animal-1 day-1, 12% larger than the 55.9 ± 11.2 g animal-1 day-1 calculated for the non-

deposition case.  

In summary, contributions to the knowledge and practice of the science of 

measuring emissions from large area sources made in this dissertation include the 
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description and examples of applying the MCF, a demonstration of the ability of the 

lidar to observe and measure tillage emissions plumes not reproduced in the air 

dispersion model, the use of a scanning system with the OP-FTIR to measure NH3 levels 

downwind of a dairy, and the results showing the deposition-enabled bLS yielded similar 

results as the fLS for particles ≤ 20 µm. In addition, the tillage study papers present two 

more examples of the application of the mass balance method to PM-calibrated lidar 

data to estimate emissions. The lidar produced a full dataset when the deployed point 

sensors were unable to do so. These papers also contributed emissions estimates of 

agricultural operations to literature. The fall tillage study yielded the first set of 

emissions reduction measurements for the combined operations CMP and the spring 

tillage study confirmed results from a similar study; both herein reported showed 

significant reductions in PM emissions by the investigated CMPs. The NH3 emissions 

value were the first reported for a California dairy during the summer, helping to 

provide a better picture of yearly emissions. The last paper reported summer time 

emissions from a beef feedlot in Texas, contrasting calculated emissions when particle 

behavior is taken into account versus when it is not.   
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CHAPTER 8 

ENGINEERING SIGNIFICANCE 

The work described in this dissertation advances scientific knowledge in the field 

of emissions measurement and estimation, particularly for large area sources. The use 

of the MCF allows PMk to be calculated with optical instruments, including an elastic 

lidar system. This was key to developing the mass balance approach to estimate 

emissions with the Aglite elastic backscatter lidar, as applied in the papers examining 

emissions from agricultural tillage operations. The tillage PM emission control efficiency 

studies provided measurements of the reductions in PM emissions, which can replace 

estimated values previously used in CMP rule development. The dairy NH3 emissions 

study represents the first peer-reviewed publication of the scanning OP-FTIR system, as 

well as presenting significant improvements over previous Ag Program analyses in the 

inverse modeling methodology (data filtering; optimization of data fitting using least 

sum of squares; and using multiple sources). In addition, this was the first published 

summer time NH3 emissions study from the state of California; combined with the 

winter time value from literature, an estimate of the yearly average NH3 emissions can 

be calculated. The last paper presents the first bLS model found in literature that 

accounts for settling velocity and deposition – other LS models accounting for these 

terms in order to model particle dispersion are fLS models. In addition, the results of 

evaluating the modified bLS with a validation dataset have shown it estimates emissions 
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well in near-field inverse modeling. Another important finding of testing the modified 

bLS was that the modified bLS may be used in inverse modeling for dp < 20 µm. 

Accounting for deposition in the feedlot dataset increased emissions by 8% to 20% in 

the diurnal emissions cycle, with the daily emission rate being 12% greater than the 

non-depositional case.  
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Appendix A: Data 

The data supporting the published papers is not supplied in this document due 

to the enormous amount collected. In addition, some datasets require approval for 

release from the Space Dynamics Laboratory. Interested parties should contact the 

author, Kori Moore, at kori.moore@sdl.usu.edu. 
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Appendix D: List of Acronyms and Symbols 

3D Three dimensional 

α Noon-time albedo, unitless fraction 

β Bowen ratio, unitless ; solar elevation angle above the horizon 

βcr Critical solar elevation angle 

Δt Time step in LS, sec 

Δtp Time step in LS for particles, sec 

ε Turbulent kinetic energy dissipative rate 

η Control efficiency, unitless 

θ Average wind direction, °; potential temperature 

θ* Turbulent temperature scale, K 

κ Matrix conditioning number 

λ Wavelength, units vary 

ρ, ρ Air density, kg m-3 

ρp, ρp Particle density, kg m-3 

σ (also SD) Standard deviation, units vary 

σθ Standard deviation of potential temperature 

σSB Stefan-Boltzmann constant, 5.67 x 10-8 W m-2 K-4 

σu, σv, σw Standard deviation of instantaneous wind velocity in x, y, and z 
directions  

τL Lagrangian time scale, sec 

ϕ(z/L) Correction term for stability in wind speed profile equation 

µg Microgram =   1x10-6 g 

µm Micrometer =  1x10-6 m 

° Degrees 

a Constant, -0.1 K-1 

Ai Area of pen i 

ai Variables for i = u, v, and w in the LPDM equations 

adep Scalar multiplier for Qcalc to account for depositions in bLS 

Asrc Area of an area source 

AERMET Meteorological preprocessor for AERMOD 

AERMOD American Meteorological Society/EPA Regulatory Model 

AGL, agl Above ground level 

AQ, AQT Air quality trailer 
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ARB State of California, Air Resources Board 

ARS Agricultural Research Service, USDA 

ASAE, ASABE American Society of Agricultural and Biological Engineers 

AU Animal unit 

Avg Average 

b Calculated based on fraction of α, unitless 

bi Variables for i = u, v, and w in the LPDM equations 

bLS backward Lagrangian stochastic dispersion model 

BMP Best management practice 

C, °C Degrees Celsius 

C Concentration of a pollutant 

C0 Constant in equation for b in LS model 

c1 Constant, 5.31 W m-2 K-6 

c2 Constant, 60 W m-2 

Cdownwind, Cmeas Concentration measured downwind of a source 

Cp Specific heat of air at constant pressure, J kg-1 K-1 

Csim Concentration predicted by an air dispersion model 

Cupwind, CB Concentration measured upwind of a source 

CCF Counting correction factor 

CCV Continuous calibration verification sample 

CFR U.S. Code of Federal Regulations 

CH4 Methane 

CI Confidence interval 

CIMIS California Irrigation Management Information System 

cm Centimeter = 1x10-2 m 

CMP Conservation management practice 

CO Carbon monoxide 

CO2 Carbon dioxide 

CP Crude protein, in a dairy cattle diet 

d Day 

da, da Aerodynamic particle diameter 

dk, dk Particle diameter of size k 

dop, dop Optical particle diameter 

dp Physical particle diameter 

DM Dry matter 
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EC Elemental carbon 

EF Emission factor, various units 

EFCMP Summed EF for a CMP 

EFCOT Summed EF for combined operations tillage CMP 

EFCT Summed EF for conventional tillage management practice 

EFST Summed EF for strip-till tillage CMP 

EPA U.S. Environmental Protection Agency 

ER Emission rate, various units 

f Initial estimate of pen NH3 emissions; Δt adjustment factor for 
particles 

fLS Forward Lagrangian stochastic dispersion model 

FRM Federal Reference Method 

G Probability of particle deposition 

g Gram  

g, g Constant acceleration due to gravity, m s-2 

GMD Geometric mean diameter, µm 

GPS Global positioning system 

H Heat flux, W m-2 

ha Hectare = 1x104 m2 

Hg Mercury 

H2SO4 Sulfuric acid 

h, hr Hour 

hrtractor Hour of tractor operation 

H2S Hydrogen sulfide 

IC Ion chromatography 

IMPROVE Interagency Monitoring of Protected Visual Environments 

IOP Intensive operating period 

IQR Interquartile range 

IR infrared 

J Joule,  

k Placeholder for various particle diameters 

K Degrees Kelvin 

kg kilgogram 

kHz kilohertz = 1x10-3 sec 

km Kilometer = 1x103 m 
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L Monin-Obukov length, m 

L Liter 

lidar Light detection and ranging 

LMS Liquid manure system 

LS Lagrangian stochastic dispersion model 

M Upper size bin for calculating volume from a PSD 

m Size bin indicator 

mi Animal occupancy in pen i 

m Meter  

ME Manure excreted 

Max Maximum  

MCF Mass conversion factor 

MCFk MCF for k size fraction 

MDL Method detection limit 

MFE Marked fluid element 

mg Milligram = 1x10-3 g 

Min Minimum 

min Minute 

mm Millimeter = 1x10-3 m 

N, n(d) Number concentration, units vary 

N Number of particles/MFEs released in LS model 

Ň Average number concentration over a sample period 

n Number of samples 

N Nitrogen 

Ncc Fraction of cloud cover 

NE Nitrogen excreted 

NA Not applicable 

NAAQS National Ambient Air Quality Standards 

NAEMS National Agriculture Emissions Monitoring Study 

nd No data 

ndep Number of depositions recorded downwind of a touchdown within 
a source 

Nd:YAG Neodymium-doped yttrium aluminium garnet 

NERL National Exposure Research Laboratory 

NH3 Ammonia 
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NH4NO3 Ammonium nitrate 

(NH4)2SO4 Ammonium sulfate 

nm Nanometer = 1x10-9 m 

NMHC Non-methane hydrocarbon  

NO2 Nitrogen dioxide 

NOx Oxides of nitrogen 

N20 Nitrous oxide 

NPO No plumes observed 

NRC National Research Council 

NRCS National Resource Conservation Service, USDA 

ns Not significant, nonsignificant 

ntd Number of touchdowns logged within the source area of an LS 

O3 Ozone 

OC Organic carbon 

OPC Optical particle counter 

OP-FTIR Open path-Fourier transform infrared spectrometer 

p Dimensionless constant in wind speed power law 

pij Raw particle counts provided by OPC i for size channel j 

Pb Lead  

PM Particulate matter 

PM1 PM with da ≤ 1 µm 

PM2.5 PM with da ≤ 2.5 µm 

PM10 PM with da ≤ 10 µm 

PMk Cumulative PM for particles with da ≤ k 

ppb, ppbv Parts per billion volume 

PSD Particle size distribution 

PSL Polystyrene latex sphere 

PST Pacific standard time 

q Flow rate, units vary  

Q Emission rate, emissions 

Qarea ER from an area source 

Qcalc, Qmeas, 
Qcalc,dep 

Calculated ER 

QLMS  

Qm, count ER per PSD bin m, counts per volume or area per time 
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QPM2.5 ER for PM2.5 

QPM10 ER for PM10 

QPMk ER for PMk 

Qsim ER used in an air dispersion model 

Qvol ER from a volume source 

QA Quality assurance 

QC Quality control 

r Correlation coefficient 

R Lidar range bin 

Ri Independent random numbers in LPDM equations for i = u, v, and w 

R2 Coefficient of determination 

RARE Regionally Applied Research Effort 

Rc Calibration range for lidar 

RH Relative humidity, % 

RSD Relative standard deviation, % 

S Number of LS sources used to model emissions from an operation 

s, sec Seconds  

SD (also σ) Standard deviation 

SDL Space Dynamics Laboratory 

SJV San Joaquin Valley 

SJVAPCD SJV Air Pollution Control District 

SO2 Sulfur dioxide 

SOx Oxides of sulfur 

t Sample time, units vary 

T, Ta, Tamb Ambient temperature, C 

TAN Total ammonical nitrogen concentration 

TSP Total suspended particulate 

u' Instantaneous wind velocity in x direction or measured wind 
velocity 

u* Shear velocity, m s-1 

u0 Period wind speed scale 

ucr Critical wind speed 

ū(z), U(z) Period average wind speed at height z 

UDAQ State of Utah, Division of Air Quality 

USDA U.S. Department of Agriculture 
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USEPA,  

U.S. EPA 

U.S. Environmental Protection Agency 

USU Utah State University 

UWRL Utah Water Research Laboratory 

V Particle volume concentration; period average wind velocity in y 
direction  

v' Instantaneous velocity in y direction 

Vk Cumulative volume of particles with dop ≤ k 

vs Particle settling velocity, m s-1 

Vsens Volume of the sensors in LS model 

Vsrc Volume of the source in LS model 

VOC Volatile organic compounds 

W Period average vertical wind velocity 

w' Instantaneous vertical wind velocity 

wi Instantaneous vertical wind velocity of MFE/particle i that touched 
down within a source area 

x Along-wind position 

y Cross-wind position 

yr Year 

z Vertical position 

z0 Surface roughness 

zrel Particle/MFE release height in LS model 
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