
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

8-2018

Split Latency Allocator: Process Variation-Aware Register Access Split Latency Allocator: Process Variation-Aware Register Access

Latency Boost in a Near-Threshold Graphics Processing Unit Latency Boost in a Near-Threshold Graphics Processing Unit

Asmita Pal
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Pal, Asmita, "Split Latency Allocator: Process Variation-Aware Register Access Latency Boost in a Near-
Threshold Graphics Processing Unit" (2018). All Graduate Theses and Dissertations. 7155.
https://digitalcommons.usu.edu/etd/7155

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/220142201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.usu.edu%2Fetd%2F7155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7155?utm_source=digitalcommons.usu.edu%2Fetd%2F7155&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

SPLIT LATENCY ALLOCATOR: PROCESS VARIATION-AWARE REGISTER

ACCESS LATENCY BOOST IN A NEAR-THRESHOLD

GRAPHICS PROCESSING UNIT

by

Asmita Pal

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Engineering

Approved:

Koushik Chakraborty, Ph.D. Sanghamitra Roy, Ph.D.
Major Professor Committee Member

Amanda Lee Hughes, Ph.D. Mark R. McLellan, Ph.D.
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2018

ii

Copyright c© Asmita Pal 2018

All Rights Reserved

iii

ABSTRACT

Split Latency Allocator: Process Variation-Aware Register Access Latency Boost in a

Near-Threshold

Graphics Processing Unit

by

Asmita Pal, Master of Science

Utah State University, 2018

Major Professor: Koushik Chakraborty, Ph.D.
Department: Electrical and Computer Engineering

Operating a Graphics Processing Unit (GPU) at Near Threshold Computing (NTC)

domain comes with a significant performance variability as a consequence of process vari-

ation (PV). In the emerging era of General Purpose GPUs (GPGPUs), the existence of

a large register file is inevitable. This work investigates the increased sensitivity of the

GPGPU register file to PV and suggests a dynamic allocation of thread blocks based on

register access latency. The variation in maximum operating frequencies of cores in a GPU,

is further exploited to hide the excessive long access latencies. The proposed technique op-

timizes GPU energy consumption by ∼35% over an ideal PV-free GPU operating at Super

Threshold regime. The area and power overhead for Split Latency Allocator is 1.1% and

1.9% respectively.

(38 pages)

iv

PUBLIC ABSTRACT

Split Latency Allocator: Process Variation-Aware Register Access Latency Boost in a

Near-Threshold

Graphics Processing Unit

Asmita Pal

Over the last decade, Graphics Processing Units (GPUs) have been used extensively

in gaming consoles, mobile phones, workstations and data centers, as they have exhibited

immense performance improvement over CPUs, in graphics intensive applications. Due

to their highly parallel architecture, general purpose GPUs (GPGPUs) have gained the

foreground in applications where large data blocks can be processed in parallel. However,

the performance improvement is constrained by a large power consumption. Likewise,

Near Threshold Computing (NTC) has emerged as an energy-efficient design paradigm.

Hence, operating GPUs at NTC seems like a plausible solution to counteract the high

energy consumption. This work investigates the challenges associated with NTC operation

of GPUs and proposes a low-power GPU design, Split Latency Allocator, to sustain the

performance of GPGPU applications.

v

To the memory of Dadu, who always believed in me.

vi

ACKNOWLEDGMENTS

The completion of this thesis could not have been possible without the assistance of

many, who have been by my side over the past two years. First and foremost, I would

like to express my sincere gratitude to my adviser, Dr. Koushik Chakraborty and my co-

adviser, Dr. Sanghamitra Roy, for their insight, guidance and financial support, throughout

my Masters program. I attribute my motivation for engaging in research to them. Also,

I would like to thank my committee member, Dr. Amanda Lee Hughes, for her valuable

comments on this research. I am also grateful to Dr. Todd Moon for introducing me to the

wonderful domain of Neural Networks.

I would like to thank each member of the BRIDGE laboratory for making the journey

of research challenging and enlightening. To Aatreyi, for being there for me right from

my very first day in Logan, to co-authoring me in my first publication. To Prabal, for

patiently listening to my plethora of questions related to research and beyond. I’m grateful

to Pramesh, for inspiring me to question our findings at every juncture and supporting me

in every project I undertook at USU. To Chidham, for the rigorous brainstorming sessions

and critically reviewing my work. Rajesh, for his insights on my writing and for helping

me with my presentation in the second semester. I would also thank Atif for helping me

understand the work-flow of multi-threaded applications and the expanse of tools involved

in a research project. To Sourav for the fun discussions and keeping the lab lively even

during deadlines. Lastly, I would thank Shamik for not only introducing me to the world

of GPUs but more importantly, being by my side since high school.

I would also express my appreciation for the ECE department and all of the staff

members. I would like to acknowledge the efforts of Tricia Brandenburg and Mary Lee

Anderson for her guidance with paperwork and all kinds of administrative matters. I’m

extremely thankful to Faith Spraktes and Steve Meeker for supporting me through various

technical issues.

vii

Without the love and encouragement of my parents, Tapasi Pal and Asoke Kumar Pal,

I would not have been able to sustain through my Master’s program. In addition to this I

would like to thank my friends for making this journey extremely memorable: Bhagyashree,

Anusna, Vidita, Srijanee, Sohum, Bhumika, Kanak and Avik. And, thank you, Sayan, for

encouraging me to take up new challenges in life and assuring that I will do good. Last

but not the least, I would thank a very special person, Anish, for his unconditional support

throughout my grad-school and for inspiring me to strive for the best in life.

Asmita Pal

viii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . vi

LIST OF TABLES . x

LIST OF FIGURES . xi

ACRONYMS . xii

1 INTRODUCTION . 1
1.1 Organization . 2

2 BACKGROUND . 3

3 MOTIVATION . 5
3.1 NTC-GPU limitations . 5

3.1.1 Process Variation in NTC circuits 5
3.1.2 Register File(RF) Latency in GPU 5
3.1.3 Criticality in GPGPU applications 6

3.2 Methodology . 6
3.3 Performance Analysis . 7

4 SPLIT LATENCY ALLOCATOR DESIGN . 9
4.1 Overview . 9
4.2 Access Latency Categorization . 9
4.3 Individual CU Clocks . 11
4.4 Split Latency Allocator . 11

4.4.1 Boost Dilemma . 11
4.4.2 Critical Wavefront Priority . 12
4.4.3 SLA operation . 12

5 METHODOLOGY . 14
5.1 Device Layer . 14
5.2 Architecture Layer . 15
5.3 Circuit Layer . 16

6 EXPERIMENTAL RESULTS . 17
6.1 SLA Efficacy . 17
6.2 Sensitivity Analysis . 17
6.3 Comparative Schemes . 18

ix

6.4 Performance Reports . 19
6.5 Energy-Consumption Reports . 20
6.6 Hardware Overheads . 21

7 CONCLUSION . 23

REFERENCES . 24

x

LIST OF TABLES

Table Page

5.1 GPU configuration. 16

xi

LIST OF FIGURES

Figure Page

3.1 NTC-GPU performance characteristics . 7

4.1 Overview of Split Latency Allocator . 10

5.1 Cross-layer Methodology. 14

6.1 IPS Comparison for Static Increment vs SLA-Normalized to STC GPU (Higher
is better). 18

6.2 Performance Variation with change in Fast vs Slow Port Ratio- Normalized
to STC GPU(Higher is better). 19

6.3 Comparative Performance Analysis (Higher is better). 20

6.4 Energy Consumption Analysis-Normalized to STC GPU (Lower is better). . 21

xii

ACRONYMS

GPU Graphics Processing Unit

GPGPU General Purpose Graphics Processing Unit

CPU Central Processing Unit

NTC Near Threshold Computing

STC Super Threshold Computing

PV Process Variation

CU Compute Unit

SLA Split Latency Allocator

RTL Register-Transfer Level

RF Register File

RAL Register Access Latency

SRAM Static Random-Access Memory

AMD APP SDK AMD Accelerated Parallel Processing Software Development Kit

SIMD Single Instruction Multiple Data

VGPR Vector General Purpose Registers

IPS Instructions Per Second

WID Within-Die

BIST Built-In Self Test

PS-DWM Pre-Shifting Domain Wall Memory

DSPL Decoupled SIMD Pipeline

1

CHAPTER 1

INTRODUCTION

In the past decade, Graphics Processing Units (GPUs) have managed to grab the at-

tention of the researchers, owing to their immense performance improvement over Central

Processing Units (CPUs). The performance improvement in GPUs is induced by extensively

exploiting thread level parallelism in highly parallel applications. However, this upswing

is constrained by large power consumption in GPUs [1]. Contrarily, Near Threshold Com-

puting (NTC) has emerged as the promising energy-efficient design point, as opposed to

Super Threshold Computing (STC) [2]. At NTC, the supply voltage is marginally higher

than the threshold voltage. The reduction in power consumption at NTC is a result of both

reduced supply voltage and consequent reduction in operating frequency. Inevitably, GPUs

operating at NTC have evolved as an intriguing research topic [3].

Despite the energy efficiency offered by NTC, there are several design challenges in

this regime. The biggest bottleneck at NTC comprises of 10X performance degradation,

accompanied with extensive process variation (PV) sensitivity [4]. Though performance

degradation is tackled by the parallelism offered by GPUs, the spatial expanse of GPUs

make them more vulnerable to PV. To support the massive thread level parallelism GPUs

employ latency-hiding with the aid of fast context-switching between threads. A huge

register file is required to maintain the latency-hiding ability. Therefore the register file

becomes a potential soft target for PV [5]. The most prominent manifestation of PV in

GPU register files is the variability in the access latency.

This work explores PV sensitivity of register access latency in GPUs. PV can affect the

latency either way, exacerbating the access latency difference between the slowest and fastest

accessible register file. Further, PV can affect the operating frequency of Compute Units

(CUs) thereby inducing significant variability in their performance. Consequently, a PV-

agnostic mapping of register files to CUs can remarkably degrade the processor performance.

2

It is therefore essential to dynamically assess the effects of PV on register access latency as

well as CU frequency.

1.1 Organization

The rest of the thesis is organized as follows:

• Background: The contemporary research related to energy-efficient GPU design is

explored, to validate why a different approach needs to be adopted for GPUs operating

at NTC (Chapter 2).

• Motivation: The factors plaguing the performance of modern GPGPU applications

are investigated. Following which, it is observed that there is a the steady improvement

in performance of GPGPU applications when the effect of those degrading factors is

minimized (Chapter 3).

• Split Latency Allocator Design: Split Latency Allocator, a low overhead tech-

nique is proposed, to mitigate the exacerbating effect of PV in register files of a GPU.

This technique leverages the latency detection in a wavefront to decide their mapping

to CUs to improve the performance and power consumption of NTC GPU (Chapter

4).

• Cross-layer Methodology: In Chapter 5 the tools and simulation parameters in-

volved in developing the proposed design across multiple layers is described to establish

the feasibility of the scheduler design.

• Experimental Results: A comprehensive analysis of SLA, is discussed in Chapter

6. The proposed scheme achieves an improvement in GPU energy by 35.5% over an

ideal PV-free GPU operating at STC. A baseline GPU RTL synthesis, augmented

with SLA gives marginal area and power overheads of 1.1% and 1.9%, respectively.

• Conclusion: Chapter 7 highlights the contribution of this research towards the

greater GPU research community.

3

CHAPTER 2

BACKGROUND

Previous works in the field of energy-efficient GPU design primarily focus on the STC

regime. However, recent researches in this area, related to this work, can be broadly clas-

sified into two categories: (a) remodelling GPU register file architecture for energy-efficient

GPGPUs, and (b) mitigating process variation impact in GPGPUs. In the first category,

Jing et al. proposed an embedded-DRAM architecture to reduce the ever increasing cost

and power overheads of SRAM based register files [6]. Majeed et al. exploited the inter-

access latency of GPGPU register files to propose a tri-modal control unit [7]. Mao et

al. proposed a nonvolatile racetrack memory to improve the scalability of GPGPUs [8].

Jeon et al. presented a register file virtualization technique to reduce the physical area as

well as power consumption of architected register files [5]. In the second category, Liang

et al. proposed variable latency register files to mitigate the effects of process variation in

CPUs [9]. Basu et al. designed a dynamic parallelization scheme to address the performance

variance introduced in GPGPUs due to process variation in the NTC regime [3]. For GPUs

capable of incorporating spatial multitasking, Aguilera et al. proposed the assignment of

variable resources based on the nature of applications [10]. The effects of PV on CPUs

have been addressed in several works. Teodorescu et al. proposed a linear programming

algorithm to tackle the differential static power due to within-die PV [11]. The power con-

sumption of each cache was reduced by sourcing them at individual voltages, according to

their vulnerability to PV, in the Variation Trained Drowsy Cache [12]. Seo et al. examined

the effects of accentuated PV sensitivity in near-threshold operated SIMD architectures,

where the number of critical paths increased manifold [13]. ReCycle applies time slack

management in pipelines to overcome the effects of PV on pipeline delays [14]. Further,

several researchers have proposed architectural models to counteract parametric variation

at NTC [15–17]. GPUs and CPU-GPU heterogeneous systems exhibit a marked difference

4

in architecture and operation. With an increased usage of these systems, it is crucial to

check the portability of existing techniques and in fact, come up with newer designs, to

curb the effects of variability and make them energy-efficient.

However, to the best of my knowledge, this is the first work to explore the effects of

process variation at NTC on register access latency in GPGPUs.

5

CHAPTER 3

MOTIVATION

This chapter, shows that the register file is a potential soft target for process variation

in a GPU at NTC (Section 3.1). Using a cross layer methodology (Section 3.2), it is observed

that any change in access latency, due to PV, can affect the overall performance of a GPU

(Section 3.3). Additionally, there is a steady improvement in performance with shorter

register access latency.

3.1 NTC-GPU limitations

Individually, GPUs and NTC have emerged as promising design areas. However, their

combined potential as a high performance and energy-efficient design paradigm has hardly

been explored [3]. NTC operation reduces power consumption but hampers performance

due to aggravated PV sensitivity. The following sections address the effects of this variability

and its potential in evolving as a performance bottleneck in GPUs.

3.1.1 Process Variation in NTC circuits

The large spatial spread of GPUs makes them inherently vulnerable to PV. The degree

and effects of PV on different components of a GPU can be largely different. However, the

most prominent manifestation of PV at NTC is in the form of transistor delay variability.

The progressive miniaturization of technology nodes further adds to this variability [18]. As

a result, PV transpires into a significant performance bottleneck in multicore architectures

like GPU.

3.1.2 Register File(RF) Latency in GPU

The size and expanse of RFs in modern GPUs make them prone to PV. The shallow

logic depth and large number parallel critical paths of SRAM structures enhances their

6

vulnerability [19]. The SRAM access, read and write times can display marked variation

from cell to cell, owing to the effects of PV. The cumulative latency of SRAM read/write

access is referred to as register access latency (RAL). This PV induced RAL variability at

NTC makes the RFs an intriguing design optimization challenge in NTC-GPUs. Section 3.3

explores how speeding up the overall access latency preserves the performance of a GPU.

3.1.3 Criticality in GPGPU applications

GPUs exploit thread-level parallelism to mask the performance bottlenecks of a single

thread. AMD defines a wavefront as the set of threads executing the same instruction

with different data. For certain applications, there is an execution time disparity between

wavefronts of the same work group1 and the execution time is dominated by the slowest

wavefront. All the wavefronts in a work group need to finish execution before the next work

group can be scheduled and the slowest wavefront in the work group imposes a wait time

on other wavefronts [20]. Therefore, it becomes an indispensible determinant of overall

system performance and for the rest of this work, it is defined as the critical wavefront.

However, these critical wavefronts do not arise due to lack of synchronization among CUs.

The criticality factor primarily springs from varying latencies and pipeline hazards within a

work group. Thread criticality is a similar approach for multi-threaded CPU applications to

tackle load imbalance on constrained resources, which in turn determines the overall multi-

core performance [21]. In the shift from STC to NTC, access latency variation is exacerbated

by the increasing parallel bottlenecks at NTC. Hence, RAL would be a controlling factor in

determining the critical wavefronts, for a certain timeline2 in a GPU.

3.2 Methodology

The approach adopted for this work is briefly outlined here. The microarchitectural

model of VARIUS-NTV is used for modelling PV in the NTC regime [4]. AMD’s Southern

1Work Group refers to a group of threads/work-items. It is similar to a thread block defined by NVIDIA.
Henceforth, these terms are used interchangeably.

2GPGPU applications use timelines instead of intervals, as they capture overlap and illustrate critical
path.

7

Islands architecture based GPU - HD Radeon 7970 model is simulated on Multi2Sim 4.2 [22].

Pre-compiled benchmarks from AMD APP SDK [23] suite is run on this GPU model. The

register access latency is 8 cycles for PV-free STC and NTC. Due to the effect of PV the

frequency at NTC is reduced upto 75% [24]. Compute Units are scaled upto 4 times at

NTC as compared to STC.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Bin
ar

ySe
ar

ch

Bin
om

ia
lO

ptio
n

Bito
nic

So
rt

Bla
ck

Sc
hole

s
D

CT

D
w

tH
aa

r1
D

Eig
en

V
al

ue

Fas
tW

al
sh

Tra
nsf

orm

M
at

rix
M

ulti
plic

at
io

n

M
at

rix
Tra

nsp
ose

M
er

se
nneT

w
is

te
r

Pre
fix

Su
m

Rad
ix

So
rt

Rec
urs

iv
eG

au
ss

ia
n

Red
uct

io
n

Sc
an

Lar
geA

rr
ay

s

Si
m

ple
Convolu

tio
n

So
bel

Filt
er

A
ver

ag
e

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

NTC-no PV

NTC with PV

NTC with PV-2X decrease in RAL

NTC with PV-4X decrease in RAL

Fig. 3.1: NTC-GPU performance characteristics for : NTC-no PV; NTC with PV; NTC
with PV and 2X improvement in register access latency ; NTC with PV and 4X improvement
in register access latency (Normalized to STC GPU).

3.3 Performance Analysis

Figure 3.1 shows how register access latency can be exploited to improve the perfor-

mance of the GPGPU applications. The GPGPU application performance is modelled as

8

the inverse of the execution time. All performance values are normalized to a PV-free STC

GPU. The applications display maximum variation in performance when run on an NTC

GPU affected by PV. The cases of 2X and 4X improvement in RAL is considered, for the

PV-affected GPU. As observed from figure 3.1, there is a pronounced performance uplift.

As observed from figure 3.1, a pronounced performance uplift is observed. The average

performance goes up by ∼33% when the register access latency is reduced to 25% of PV-

induced value(16 cycles in this work). Reducing the access latency further, by a factor

of 8X, shows no appreciable change in performance, as compared to its 4X counterpart.

The minimum time taken for access by an SRAM limits this amelioration. With the RAL

improvement, BlackScholes, MersenneTwister and SobelFilter achieve almost comparable

performance to an NTC system without PV. PV being a greater concern in NTC than in

STC [25], Figure 3.1 clearly shows the scope of register access latency improvement in high

performance GPUs operating at NTC. To recuperate this performance loss, it is essential

to devise a dynamic paradigm, which can overcome the aforementioned limitations. For

further design, this work will be continued to contrive a technique which can give us an im-

proved performance, without jeopardising the power efficiency offered by a GPU operating

at NTC.

9

CHAPTER 4

SPLIT LATENCY ALLOCATOR DESIGN

4.1 Overview

This chapter presents a circuit-architectural technique, Split Latency Allocator (SLA),

to adaptively overcome the limitations presented in Section 3.1. In Section 4.1, a brief

overview of SLA is given, followed by Sections 4.2 and 4.3 which highlight the key aspects

of the technique. It concludes with the allocator working principle in Section 4.4.

Figure 4.1 gives an overview of SLA. The proposed scheme, works in three stages.

First, it categorizes registers according to their access latencies. Subsequently, it performs

a dynamic assessment of the compute unit frequencies and accordingly assigns independent

clocks to them. Finally, it maps the wavefronts, to the next available CU, according to the

access latency of the register file associated with it. The SLA efficacy lies in its dynamic

nature of monitoring the register file usage. In the following sections, each stage of the

proposed technique is described in detail.

4.2 Access Latency Categorization

Post-fabrication, PV affects register files diversely. While some register files may expe-

rience increased access latency, others may speed up. This randomness of PV effects cannot

be predicted at design time. To address this, a dynamic runtime categorization of register

files based on their access latencies is proposed. For a register file with multiple read and

write ports, the entry speed will deviate considerably. Using the RF port entry speed in-

formation reported by a BIST unit [26], it is observed that 80% RFs have fast entries and

20% have slow entries. The categorization of RFs allows for cognizant mapping of the RFs

to CUs, such that there is maximum frequency benefits.

In a GPU, each SIMD unit has Vector General Purpose Registers (VGPRs) containing

10

Fig. 4.1: Overview of Split Latency Allocator : CUs are individually clocked with frequency
ratio relative to that of the slowest CU. The wavefront categorization is done when an
instruction is waiting in the Issue Queue, using the port speed bits. These categorized
wavefronts are then mapped to CUs, where the CU to be chosen is decided by the range of
operating frequency values from Equation 4.1 (Section 4.4.3).

64 lanes that are upto 32-bit wide. When a wavefront is scheduled, a single operand read

in an instruction reaches out to 64 registers, corresponding to each thread/work-item in

the wavefront. The dominance of one slow register in the SIMD unit extends the register

access latency of the entire CU. This addition of stalls incurs an average Instructions Per

Second (IPS) loss of 14% (discussed in Section 6.1). To impede the IPS loss, the PV induced

frequency variation in CUs needs to be taken into account. The upcoming section outlines

a technique to address this issue.

11

4.3 Individual CU Clocks

Dynamically clocking individual CUs makes room for managing the performance vari-

ability among them. The effect of PV makes the frequency of the fastest CU upto 40% faster

than the slowest CU [27]. The maximum operating frequency(Fmax), for each CU is de-

cided by the slowest SIMD unit in that CU. The Fmax ratio for each CU is assigned relative

to the slowest CU. This performance variability affects the power performance negatively.

While faster CUs consume greater power owing to their frequency, slower CUs affect the

overall execution time. Hence, a global frequency for all the CUs will dwindle the effective

performance of a GPU, as it will operate at the frequency of the slowest Compute Unit.

When a GPU is operated at NTC, this frequency variation in CUs becomes more promi-

nent. Individual CU clocking allows maximum throughput even under RAL variations.

Additionally, individual CU-clocking is a viable technique to bypass the effects of PV, as

the thread blocks in each CU have rarefied interactions with other CUs, impairing the need

for synchronization. Therefore, a faster CU can independently execute more thread blocks

than a slower CU. The challenge of dynamically mapping of RFs to CUs with frequency

variations is resolved by the adaptive nature of SLA.

4.4 Split Latency Allocator

Split Latency Allocator is faced with certain design challenges to eliminate the perfor-

mance deficit caused by RAL variation and inefficient usage of CU resources in a given time

line. The SLA operation is outlined next, using the strategies mentioned in Section 4.2 and

Section 4.3.

4.4.1 Boost Dilemma

In Chapter 3 it was observed that a static increment or boost in the RAL can achieve

high performance gain. However, uniform frequency modeling for all CUs dilutes this gain.

This contradiction necessitates a PV-aware CU-allocation model, in addition, to RAL vari-

ation management, to ensure an overall performance benefit. SLA addresses this need.

It resolves the boost dilemma by a critical-path-counter based scheduling. The detailed

12

operation of SLA is discussed in Section 4.4.3.

4.4.2 Critical Wavefront Priority

The designation of priority counter to wavefronts essentially deals with the boost

dilemma. As discussed in Section 4.3, the key to better performance is executing more

thread blocks on a faster CU. The varying access latency of register files is leveraged to

define slow and fast wavefronts. The slowest wavefronts in a thread block are designated

as critical wavefronts. These critical wavefronts have longer execution time due to their

longer RAL. SLA uses a counter based on critical wavefronts to schedule them in different

CUs. This counter decides the priority of the wavefront to be scheduled and equalizes the

execution time of all threads across a CU. A smaller value indicates that the wavefront

needs more time resource. The counter has the same value as the ratio of slow and fast RFs

used in Section 4.2.

4.4.3 SLA operation

When an instruction is issued, the port speed information is pulled up along with the

register entry address. This allows us to classification as a fast or slow entry. SLA then

decides the critical wavefronts from each CU and assigns a counter as discussed in Section

4.4.2. The use of individual CU clocks imparts different frequencies to each core, expressed

by the Fmax ratio stated in Section 4.3. With the knowledge of wavefront priority from the

counter, the SLA maps the faster wavefronts to the cores with Fmax ratio greater than a

value decided by Equation (4.1)

ratiofast = 1 + percentage of slow RFs (4.1)

For example, for 80% fast and 20% slow entries, the faster wavefronts are mapped

to CUs with Fmax ratio greater than 1.2. Thus, the fast CU then becomes available for

the next thread block in the queue and the critical wavefronts do not block the hardware

resources. SLA assigns the critical wavefronts to the slower cores, which in turn, gives them

13

more time resource to finish their execution. As per this technique, 80% of the thread

blocks are executed faster than other thread blocks, owing to their operation in faster

cores. The remaining 20% continue to run in the slower cores with Fmax ratio less than

1.2. SLA is specifically effective when the thread blocks mapped to a certain CU have no

critical wavefronts. Thus, the jeopardizing effects on performance due to critical path are

successfully alleviated, by hiding the long latency dominated register accesses.

14

CHAPTER 5

METHODOLOGY

This chapter brings out the cross-layer methodology to validate the feasibility of the

proposed design. Figure 5.1 depicts the multiple layers (device, architecture and circuit

layer) which are described in detail next.

Fig. 5.1: Cross-layer Methodology.

5.1 Device Layer

In this study, VARIUS-NTV [4] is used to model a PV-affected GPGPU register file.

The WID correlation distance coefficient φ is set to 0.5 and Vth’s σsys = 3.2% - 6.4% of the

nominal Vth value. A 24-stage fan-out-of-4(FO4) inverter chain is used to model the com-

15

binational logic used in GPUs. The STC and NTC GPU register files are represented using

a 6T-SRAM cell and 10T-SRAM cell [28], respectively, with provision for implementing

BIST [26]. The RAL variation distribution so obtained is fed to the architectural simula-

tor. The Fmax of each CU is obtained by simulating with a 32nm technology node [29].

HSPICE simulations for the 32nm node, on fundamental gates and circuits, gives us the

power consumption at NTC, with the aforementioned simulation parameters.

5.2 Architecture Layer

The architectural simulations, for this work, are performed on an augmented Multi2Sim

[22] supporting independent operating frequency for each Compute Unit. The frequency

variation caused by 80% variable latency technique is modeled into the simulator where

the Fmax of each CU is obtained using the within-die(WID) PV model outlined in Section

5.1. For each time line, based on the overlap and critical paths, the dynamic allocation of

registers is done. The kernel is executed for 1 iteration for 21 benchmarks from the AMD

APP SDK [23] suite, considering all 4 wavefront assignment strategies to CUs as discussed

in Section 4.4. The simulations of each timeline gives us the performance accomplished by a

certain application using SLA. Power consumption is calculated by combining the cycle level

usage information from Multi2Sim with the dynamic and leakage power characteristics of

the synthesized hardware. Table 5.1 enumerates the key hardware configuration parameters

used for STC and NTC GPUs. At NTC, the frequency is scaled down by a factor of

4X and the number of available compute units is increased by the same factor. During

migration from STC to NTC domain, the CU usage for different benchmarks reflect that

the global memory configuration remains unaltered. It is acquired from state-of-the-art

GPGPU architecture, Southern Islands, developed by AMD.

16

Parameter STC NTC

CU Frequency 1GHz 250MHz

No. of CUs 32 128

Register Access Latency 8 cycles 16/8/4 cycles

Supply Voltage 0.85V 0.45V

Process Node 32nm 32nm

L2 cache 8x768KB ; 16-way; la-

tency:20 ns

8x768KB ;16-way; la-

tency:20 ns

Global Memory B/W: 264GB/s ;

latency∼300 ns

B/W: 264GB/s ;

latency∼300 ns

Wavefront Scheduling Policy Round-Robin Critical-Wavefront-Aware

Table 5.1: GPU configuration.

5.3 Circuit Layer

The power obtained from Section 5.2 is scaled to NTC range using the device-layer

simulation results. A reference GPU RTL [30] is synthesized using Synopsys Design Com-

piler to estimate the power consumption of SLA and the initial GPU design. This GPU

RTL has close resemblance to the baseline GPU used in this paper. It is augmented to

implement the proposed technique and thereby evaluate the overheads of SLA.

17

CHAPTER 6

EXPERIMENTAL RESULTS

This chapter demonstrates a comprehensive analysis of SLA on the NTC GPU. The

efficacy of SLA based on IPS for the various stages in the design is depicted in Section

6.1. For different degrees of PV affecting the RAL, the performance variation of the pro-

posed technique is studied in Section 6.2. Various comparative schemes (Section 6.3), and

their corresponding performance and energy consumption is analyzed (Section 6.4 and 6.5).

Finally, the hardware implementation overheads of SLA are outlined in Section 6.6.

6.1 SLA Efficacy

Figure 6.1 shows the improvement in Instructions Per Second, due to SLA as opposed

to a static boost in RAL. Also, when solely RAL categorization is implemented, IPS is lower

than that of SLA. The IPS values for SLA reflect the runtime efficacy for this technique,

primarily due to individual clocking of each CU compared to a global GPU clock. The

IPS is normalized to that of an ideal PV-free STC GPU. This effective gain shows that

SLA exploits the time resource for slow wavefronts and executes a greater number of fast

wavefronts in a given timeline.

6.2 Sensitivity Analysis

As stated in Section 4.2, a single ratio is obtained for fast and slow entries of RFs.

Different degrees of PV affecting the register access latency, will alter the ratio of fast and

slow entries. Figure 6.2 presents the comparative performance characteristics of SLA for

four different access latency categorizations. It is observed that SLA performance decreases

for some benchmarks with the increase in the ratio of slow RFs. For benchmarks like DCT

and Reduction, considerable performance variation is not exhibited. This anomaly can be

leveraged on the varying number of critical wavefronts in a thread block.

18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Bin
ar

ySe
ar

ch

Bin
om

ia
lO

ptio
n

Bito
nic

So
rt

Bla
ck

Sc
hole

s
D

CT

D
w

tH
aa

r1
D

Eig
en

V
al

ue

Fas
tW

al
sh

Tra
nsf

orm

M
at

rix
M

ulti
plic

at
io

n

M
at

rix
Tra

nsp
ose

M
er

se
nneT

w
is

te
r

Pre
fix

Su
m

Rad
ix

So
rt

Rec
urs

iv
eG

au
ss

ia
n

Red
uct

io
n

Sc
an

Lar
geA

rr
ay

s

Si
m

ple
Convolu

tio
n

So
bel

Filt
er

A
ver

ag
e

N
o

rm
al

iz
ed

 I
n

st
ru

ct
io

n
s

p
er

 S
ec

o
n

d
STATIC-2X Only RAL SLA

Fig. 6.1: IPS Comparison for Static Increment vs SLA-Normalized to STC GPU (Higher is
better).

6.3 Comparative Schemes

• Pre-Shifting DWM (PS-DWM): This scheme averages the predictive shift poli-

cies, while using a Domain Wall Memory(DWM), by exploiting register locality across

threads, as suggested by [31]. A history table keeps a record of registers accessed and

shifts track heads, in the next occurence of same instruction.

• Decoupled SIMD Pipeline (DSPL): A decoupled SIMD pipeline is used for detect-

ing timing violation error probabilities, independent of adjacent lanes. This technique

relies on a stall based recovery for each lane similar to the approach proposed in [32].

• SLA: This is the proposed technique, comprising register file categorization based

on access latency followed by dynamic mapping of wavefronts to individually clocked

19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Bin
ar

ySe
ar

ch

Bin
om

ia
lO

ptio
n

Bito
nic

So
rt

Bla
ck

Sc
hole

s
D

CT

D
w

tH
aa

r1
D

Eig
en

V
al

ue

Fas
tW

al
sh

Tra
nsf

orm

M
at

rix
M

ulti
plic

at
io

n

M
at

rix
Tra

nsp
ose

M
er

se
nneT

w
is

te
r

Pre
fix

Su
m

Rad
ix

So
rt

Rec
urs

iv
eG

au
ss

ia
n

Red
uct

io
n

Sc
an

Lar
geA

rr
ay

s

Si
m

ple
Convolu

tio
n

So
bel

Filt
er

A
ver

ag
e

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

60%-40% 70%-30% 75%-25% 80%-20%

Fig. 6.2: Performance Variation with change in Fast vs Slow Port Ratio- Normalized to
STC GPU(Higher is better).

CUs.

6.4 Performance Reports

Figure 6.3 exhibits the performance variance of the different comparative schemes dis-

cussed in Section 6.3. The performance of all the schemes are normalized with respect

to a PV-free STC GPU. SLA performs better than PS-DWM and DSPL for most of the

GPGPU applications. SLA efficacy can be attributed to the efficient utilization of hard-

ware resources, as a result of the critical wavefront mapping strategy. Due to the track

head shift operation overhead, SLA delivers an average performance improvement of 16%

over PS-DWM. Even the pipeline recovery mechanism of DSPL, gives us 15% lower perfor-

mance on an average, for the NTC GPU. Due to larger number of cores at NTC, and the

20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Bin
ar

ySe
ar

ch

Bin
om

ia
lO

ptio
n

Bito
nic

So
rt

Bla
ck

Sc
hole

s
D

CT

D
w

tH
aa

r1
D

Eig
en

V
al

ue

Fas
tW

al
sh

Tra
nsf

orm

M
at

rix
M

ulti
plic

at
io

n

M
at

rix
Tra

nsp
ose

M
er

se
nneT

w
is

te
r

Pre
fix

Su
m

Rad
ix

So
rt

Rec
urs

iv
eG

au
ss

ia
n

Red
uct

io
n

Sc
an

Lar
geA

rr
ay

s

Si
m

ple
Convolu

tio
n

So
bel

Filt
er

A
ver

ag
e

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

NTC GPU-no enhancement

DSPL

PS-DWM

SLA

Fig. 6.3: Comparative Performance Analysis (Higher is better).

increasing SIMD units the decoupling technique has degraded performance than SLA. All

the GPGPU applications perform better in an SLA-enhanced NTC GPU. On an average,

the performance improvement is lower than that of a STC GPU, but there is a notice-

able improvement of 31% over that of a NTC GPU affected by PV and no enhancement.

This performance loss is compensated for an energy consumption improvement, which is

discussed next.

6.5 Energy-Consumption Reports

Figure 6.4 depicts the energy consumption comparison of the schemes discussed in

Section 6.3. Both DSPL and PS-DWM consume more energy than SLA, owing to the

static power constraints prevalent in NTC operation. The distribution of wavefronts by

21

 0

 0.5

 1

 1.5

 2

Bin
ar

ySe
ar

ch

Bin
om

ia
lO

ptio
n

Bito
nic

So
rt

Bla
ck

Sc
hole

s
D

CT

D
w

tH
aa

r1
D

Eig
en

V
al

ue

Fas
tW

al
sh

Tra
nsf

orm

M
at

rix
M

ulti
plic

at
io

n

M
at

rix
Tra

nsp
ose

M
er

se
nneT

w
is

te
r

Pre
fix

Su
m

Rad
ix

So
rt

Rec
urs

iv
eG

au
ss

ia
n

Red
uct

io
n

Sc
an

Lar
geA

rr
ay

s

Si
m

ple
Convolu

tio
n

So
bel

Filt
er

A
ver

ag
e

N
o

rm
al

iz
ed

 E
n

er
g

y
NTC GPU-no enhancement

PS-DWM

DSPL

SLA

Fig. 6.4: Energy Consumption Analysis-Normalized to STC GPU (Lower is better).

SLA alleviates this problem, leading to overall reduction in energy consumption. For some

benchmarks such as, RadixSort, Reduction and ScanLargeArrays, SLA does not reflect

much energy gain over the other techniques, when compared to the NTC GPU-with no

enhancement. This aberration rises because the number of critical wavefronts is not very

high and SLA behaves like a default scheduler. The slow register file usage is fairly minimal

in these cases. SLA shows about 35.5% improvement in average energy consumption over

the baseline STC GPU.

6.6 Hardware Overheads

The hardware overhead comes from the latency adaptive infrastructure of SLA. Behav-

ioral change of the wavefront schedular has minimal area overhead, owing to the existing

22

issue priority mechanism of the scheduler. SLA shows an energy improvement of 35% over

DSPL and 38% over PS-DWM. Using synthesized hardware (see Section 5) the area and

power overheads for SLA implementation are estimated as 1.1% and 1.9% respectively, as

compared to the baseline GPU.

23

CHAPTER 7

CONCLUSION

The various performance limitations of a GPU operating at NTC are analyzed in this

thesis and a cross-layer approach is improvised to mitigate their effects. The proposition

of SLA is based on the high degree of access latency variation exhibited by a PV-induced

NTC GPU. SLA relies on efficient allocation of registers based on their access latency and

exploits the existing GPU principles to ensure better performance in comparison to other

contemporary schemes. When compared to other contemporary techniques, SLA performs

32% better, on an average for a PV-affected NTC GPU. SLA thus, emerges as a promising

design with a staggering 35% improvement in energy consumption as compared to an ideal

PV-free, globally clocked STC GPU.

24

REFERENCES

[1] J. Lucas, S. Lal, M. Andersch, M. Alvarez-Mesa, and B. Juurlink, “How a single chip
causes massive power bills gpusimpow: A gpgpu power simulator,” in ISPASS, April
2013.

[2] R.G.Dreslinski, M.Wieckowski, D. Blaauw, D.Sylvester, and T.Mudge, “Near-threshold
computing: Reclaiming moores law through energy efficient integrated circuits,” in
Proc. IEEE, Feb. 2010.

[3] P. Basu, H. Chen, S. Saha, K. Chakraborty, and S. Roy, “Swiftgpu: Fostering energy
efficiency in a near-threshold gpu through tactical performance boost,” in Proc. of
DAC, 2016.

[4] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and J. Torrellas, “Varius-ntv: A microarchi-
tectural model to capture the increased sensitivity of manycores to process variations
at near-threshold voltages,” in DSN, 2012, pp. 1–11.

[5] H. Jeon, G. S. Ravi, N. S. Kim, and M. Annavaram, “Gpu register file virtualization,”
in Proc. of MICRO, 2015, pp. 420–432.

[6] N. Jing, Y. Shen, Y. Lu, S. Ganapathy, Z. Mao, M. Guo, R. Canal, and X. Liang, “An
energy-efficient and scalable edram-based register file architecture for gpgpu,” in ACM
SIGARCH Computer Architecture News, vol. 41, no. 3, 2013, pp. 344–355.

[7] M. Abdel-Majeed and M. Annavaram, “Warped register file: A power efficient register
file for gpgpus,” in HPCA, 2013, pp. 412–423.

[8] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. H. Li, “Exploration of gpgpu register file
architecture using domain-wall-shift-write based racetrack memory,” in Proc. of DAC,
2014, pp. 1–6.

[9] X. Liang and D. Brooks, “Mitigating the impact of process variations on processor
register files and execution units,” in Proc. of MICRO, 2006, pp. 504–514.

[10] P. Aguilera, J. Lee, A. F. Farahani, K. Morrow, M. J. Schulte, and N. S. Kim,
“Process variation-aware workload partitioning algorithms for gpus supporting spatial-
multitasking,” in Proc. of DATE, 2014, pp. 1–6.

[11] R. Teodorescu and J. Torrellas, “Variation-aware application scheduling and power
management for chip multiprocessors,” in Proc. of ISCA, 2008, pp. 363–374.

[12] A. Sasan, K. Amiri, H. Homayoun, A. Eltawil, and F. Kurdahi, “Variation trained
drowsy cache (vtd-cache): A history trained variation aware drowsy cache for
fine grain voltage scaling,” TVLSI, vol. 20, pp. 630–642, 2012. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5712204

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5712204

25

[13] S. Seo, R. G. Dreslinski, M. Woh, Y. Park, C. Chakrabarti, S. A. Mahlke, D. Blaauw,
and T. N. Mudge, “Process variation in near-threshold wide simd architectures,” in
Proc. of DAC, 2012, pp. 980–987.

[14] A. Tiwari, S. R. Sarangi, and J. Torrellas, “Recycle: pipeline adaptation to tolerate
process variation,” in Proc. of ISCA, 2007, pp. 323–334.

[15] U. Karpuzcu, N. S. Kim, and J. Torrellas, “Coping with parametric variation at near-
threshold voltages,” IEEE Micro, vol. 33, no. 4, pp. 6–14, July 2013.

[16] J. Torrellas, N. S. Kim, and R. Teodorescu, “Parameter variation at near threshold
voltage: The power efficiency versus resilience tradeoff,” University of Illinois, Tech.
Rep., 2012.

[17] X. Liang, G.-Y. Wei, and D. Brooks, “Revival: A variation-tolerant architecture using
voltage interpolation and variable latency,” in Proc. of ISCA, 2008, pp. 191–202.

[18] L. Chang, D. J. Frank, R. K. Montoye, S. J. Koester, B. L. Ji, P. W. Coteus, R. H.
Dennard, and W. Haensch, “Practical strategies for power-efficient computing tech-
nologies,” Proc. IEEE, vol. 98, no. 2, pp. 215–236, 2010.

[19] K. Bowman, S. Duvall, and J. Meindl, “Impact of die-to-die and within-die parameter
fluctuations on the maximum clock frequency distribution for gigascale integration,”
Solid-State Circuits, IEEE Journal of, vol. 37, no. 2, pp. 183 –190, feb 2002.

[20] S. Lee and C. Wu, “Caws: criticality-aware warp scheduling for gpgpu workloads,” in
PACT, 2014, pp. 175–186.

[21] K. D. Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout, “Criticality stacks: identifying
critical threads in parallel programs using synchronization behavior,” in Proc. of ISCA,
2013, pp. 511–522.

[22] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “ Multi2Sim: A Simulation
Framework for CPU-GPU Computing ,” in PACT, Sep. 2012.

[23] “ AMD Accelerated Parallel Processing (APP) Software Development Kit ,” 2016.
[Online]. Available: http://developer.amd.com/sdks/amdappsdk/

[24] C. Silvano, G. Palermo, S. Xydis, and I. S. Stamelakos, “Voltage island management
in near threshold manycore architectures to mitigate dark silicon,” in DATE, Dresden,
Germany, March 24-28, 2014, 2014, pp. 1–6.

[25] M. Seok, G. Chen, S. Hanson, M. Wieckowski, D. Blaaw, and D. Sylvester, “Cas-fest
2010: Mitigating variability in near-threshold computing,” in J. Emerg Selec. Topics
Cir. Sys, vol. 1, no. 1, 2011, pp. 42–49.

[26] M. H. Tehranipour, Z. Navabi, and S. M. Fakhraie, “An efficient BIST method for
testing of embedded srams,” in Proc. of ISCAS, 2001, pp. 73–76.

[27] J. Lee, P. P. Ajgaonkar, and N. S. Kim, “Analyzing throughput of gpgpus exploiting
within-die core-to-core frequency variation,” in ISPASS, 2011, pp. 237–246.

http://developer.amd.com/sdks/amdappsdk/

26

[28] B. Calhoun and A. Chandrakasan, “A 256-kb 65-nm sub-threshold sram design for
ultra-low-voltage operation,” in J. of Solid-State Circ., vol. 42, no. 3, March 2007, pp.
680–688.

[29] W. Zhao and Y. Cao, “Predictive technology model,” June 2012. [Online]. Available:
http://ptm.asu.edu/

[30] MIAOW GPU, http://miaowgpu.org.

[31] E. Atoofian, “Reducing shift penalty in domain wall memory through register locality,”
in Proc. of CASES, 2015, pp. 177–186.

[32] E. Krimer, P. Chiang, and M. Erez, “Lane decoupling for improving the timing-error
resiliency of wide-simd architectures,” in Proc. of ISCA, 2012, pp. 237–248.

http://ptm.asu.edu/

	Split Latency Allocator: Process Variation-Aware Register Access Latency Boost in a Near-Threshold Graphics Processing Unit
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Organization

	BACKGROUND
	MOTIVATION
	NTC-GPU limitations
	Process Variation in NTC circuits
	Register File(RF) Latency in GPU
	Criticality in GPGPU applications

	Methodology
	Performance Analysis

	SPLIT LATENCY ALLOCATOR DESIGN
	Overview
	Access Latency Categorization
	Individual CU Clocks
	Split Latency Allocator
	Boost Dilemma
	Critical Wavefront Priority
	SLA operation

	METHODOLOGY
	Device Layer
	Architecture Layer
	Circuit Layer

	EXPERIMENTAL RESULTS
	SLA Efficacy
	Sensitivity Analysis
	Comparative Schemes
	Performance Reports
	Energy-Consumption Reports
	Hardware Overheads

	CONCLUSION
	REFERENCES

