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ABSTRACT

Comparing Nonlinear and Nonparametric Modeling Techniques
for Mapping and Stratification in Forest Inventories

of the Interior Western USA

by

Gretchen Gengenbach Moisen, Doctor of Philosophy
Utah State University, 2000

Major Professor: Dr. D. Richard Cutler
Department: Mathematics and Statistics

Recent emphasis has been placed on merging regional forest inventory data with
satellite-based information both to improve the efficiency of estimates of population
totals, and to produce regional maps of forest variables. There are numerous ways in
which forest class and structure variables may be modeled as functions of remotely
sensed variables, yet surprisingly little work has been directed at surveying modern
statistical techniques to determine which tools are best suited to the tasks given multiple
objectives and logistical constraints. Here, a series of analyses to compare nonlinear and
nonparametric modeling techniques for mapping a variety of forest variables, and for
stratification of field plots, was conducted using data in the Interior Western United
- States. The analyses compared four statistical modeling techniques for predicting two

discrete and four continuous forest inventory variables. The modeling techniques include

generalized additive models (GAMs), classification and regression trees (CARTS),
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multivariate adaptive regression splines (MARS), and artificial neural networks (ANNS).
Alternative stratification schemes were also compared for estimating population totals.
The analyses were conducted within six ecologically different regions using a variety of
satellite-based predictor variables. The work resulted in the development of an objective
modeling box that automatically models spatial response variables as functions of any
assortment of predictor variables through the four nonlinear or nonparametric modeling
techniques. In comparing the different modeling techniques, all proved themselves
workable in an automated environment, though ANNs were more problematic. When
their potential mapping ability was explored through a simple simulation, tremendous
advantages were seen in use of MARS and ANN for prediction over GAMs, CART, and
a simple linear model. However, much smaller differences were seen when using real
data. In some instances, a simple linear approach worked virtually as well as the more
complex models, while small gains were seen using more complex models in other
instances. In real data runs, MARS performed (marginally) best most often for binary
variables, while GAMs performed (marginally) best most often for continuous variables.
After considering a subjective “ease of use’” measure, computing time and other
predictive performance measures, it was determined that MARS had many advantages
over other modeling techniques. In addition, stratification tests illustrated cost-effective
means to improve precision of estimates of forest population totals. Finally, the general
effect of map accuracy on the relative precision of estimates of population totals obtained
under simple random sampling compared to that obtained under stratified random

sampling was established and graphically illustrated as a tool for management decisions.

(191 pages)
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CHAPTER 1

INTRODUCTION
Problem Description

Forest inventory programs, like those conducted by the USDA Forest Service,
Forest Inventory and Analysis (FIA) program in the Rocky Mountain Research Station,
are under increased pressure to produce more information, more often, at reduced costs.
The traditional objective of FIA has been to estimate statewide forest population totals
(e.g., forest area, volume, growth and mortality) approximately every 10 years.
Historically, this has been accomplished through a two-phase sampling procedure with
phase one consisting of aerial photo-based information collected on a 1-km sample grid,
and phase two consisting of a subset of that grid (usually 5 km) visited in the field
(Chojnacky 1998). Photo-interpreted cover-type and ownership are typically used for
stratification of phase two field points, resulting in improved precision of estimates of
forest population totals. This strategy of combining aerial photo and field data through
double sampling for stratification has been used by FIA in the Rocky Mountain States for
many years.

While the current two-phase sampling procedure used by FIA provides unbiased
and precise estimates of forest resources at regional scales, some problems exist. For
example, aerial photography available in any given state will vary in quality, scale, and
date. Also, inconsistencies exist between photo-interpreters in terms of correct location

of sample points on photos and correct vegetation classification. In addition, the process

is extremely expensive and slow. Consequently, there is a need to develop methods that




use satellite data in lieu of photo-interpretation (PI) that maintain the required precision
in FIA estimates of population totals.

In addition to this need to improve the two-phase estimation process, there is also
a need to expand the forest inventory product line to include maps of forest resources.
The most valuable management tool to many land managers is a map depicting the spatial
arrangement of forest attributes at resolutions finer than those obtainable from current
FIA sampling grids. These can be difficult to generate. While vegetation cover-type
maps produced by programs like the USDI Gap Analysis program (see Homer, Ramsey,
Edwards, and Falconer 1997; Scott et al. 1993) have been useful in meeting the need for
fine-scaled information, these maps are extremely expensive to produce and lack any
spatial depiction of structural attributes (e.g., basal area, canopy closure, stand density)
for their forest types. This reduces their usefulness for identifying suitable wildlife
habitat (Edwards, Deshler, Foster, and Moisen 1996), or for estimating forest
characteristics necessary for sound forest management such as attributes of vegetation
under the trees' canopies (Stenbeck and Congalton 1990), or stand density and volume
(Franklin 1986).

Consequently, recent emphasis has been placed on merging forest inventory data
with satellite information both to improve the efficiency of estimates of population totals
through less expensive stratification, and produce regional maps of forest variables.
There are numerous sources of ancillary data, and tremendous effort has been directed at
acquiring finer resolution data from a wide variety of newly developed air- and space-

borne platforms. There are also numerous ways in which forest class and structure

variables may be modeled as functions of remotely sensed and other ancillary variables,
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yet surprisingly little work has been directed at surveying modern statistical techniques to
determine which tools are best suited to estimation and mapping tasks given multiple

objectives and logistical constraints.

Preliminary Work

Recent work by Moisen and Edwards (1999) explored ways to merge forest
inventory and satellite-based data in Northern Utah. In this study, generalized linear
models (GLMs) were used to construct approximately unbiased and efficient estimates of
population totals while providing a mechanism for prediction to map forest structure in
space. Forest type and timber volume of five tree species groups were modeled as
functions of a variety of satellite-based predictor variables. Predictor variables included
elevation, aspect, slope, geographic coordinates, and vegetation cover-types based on
satellite data from both the Advanced Very High Resolution Radiometer (AVHRR) and
Thematic Mapper (TM) platforms. The relative precision of estimates of area by forest
type and mean cubic-foot volumes under six different models, including the traditional
double sampling for stratification (DSS) strategy, was examined.

The study generated some interesting results. First, only very small gains in
precision were realized using expensive photo-interpreted or TM-based data for
stratification, while models based on topography and spatial coordinates alone were
competitive. This had substantial cost-savings implications for phase one in the two-
phase sampling process. Second, after comparing the predictive capability of the models

through cross-validated map accuracy measures, the models including the TM-based

vegetation were shown to perform best overall, while topography and spatial coordinates
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alone provided substantial information at very low cost. In addition, the study illustrated
that by using a fairly flexible model form, i.e., a GLM with higher order interactions and
polynomial terms, more information could be squeezed out of inexpensive auxiliary
digital data than previously thought possible in these inventories.

The study raised a number of questions. GLMs did well, but would more flexible
models show appreciable improvements in the results? What kind of results would we see
in other ecological regions? What kind of results would we see using data from different
satellite platforms? Could the process be automated to be suitable for a production
environment? (A production environment implies that someone without modeling
experience can push the button that builds the models and produces desired output for
any ecoregion, response variable, or predictor set.) These and other questions motivated

the following dissertation.

Dissertation Overview and Objectives

In this dissertation, nonlinear and nonparametric models were compared for
mapping and stratification in forest inventories of the interior western United States. The
research involved five statistical modeling techniques for predicting two discrete and four
continuous forest inventory variables. The modeling techniques included: generalized
additive models (GAM), classification and regression trees (CART), multivariate
adaptive regression splines (MARS), and artificial neural networks (ANN). In addition, a
simple linear model (LM) was used as a benchmark against which to judge the other

models. The two discrete inventory variables included a forest/non-forest classification,

as well as a binary classification within forested areas. The four continuous




response variables were tree biomass per acre (BIOTOT), average tree age (STAGE),
quadratic mean tree diameter (QMDALL), and percent crown cover (CRCOV). The
analyses were conducted within six ecologically different regions (two each in Arizona,
Montana, and Utah). Predictor variables included topography, spatial position,
unclassified spectral data from the AVHRR sensor, and a national vegetation cover map
derived from TM imagery. Models were first built, refined, and automated using data in
one region. Automated modeling strategies were then applied to data in all regions to
evaluate model performance. Predictive performance (map accuracy) of all discrete and
continuous variables were compared across modeling techniques, ecoregions, and
predictor variable sets using independent test data. In addition, the precision of estimates
of area by forest type, total population tree volume, and total population tree growth were
compared when predicted forest type maps were used as the basis for stratification (i.e.,
predicted vegetation types comprise the strata). All models were evaluated for suitability
in a production environment.
Objectives of this research were:
Objective 1: To develop an automated mapping and stratification system for
forest inventories in the interior west.
Objective 2: To determine which statistical modeling techniques are suitable for a
forest inventory “production environment.”
Objective 3: To determine if introducing more flexible statistical models to forest
inventory mapping and stratification procedures makes an

appreciable difference in accuracy of forest maps and precision in

estimates of population totals, respectively.




The phrase "production environment" above implies that model fitting must be
completely automated requiring nothing more than the push of a button. The phrase
"appreciable difference" is defined by usability standards set by forest managers and
other users of forest inventory information.
Questions answered about modeling two discrete (binary) variables include:
Question 1: How accurately does each modeling technique predict the two
responses by ecoregion?
Question 2: What is the precision of estimates of population totals by ecoregion
when predicted maps are used as the basis for stratification?
Question 3: What is the relationship between classification accuracy of maps and
efficiency of stratification (i.e., reduction in standard errors on
population estimates when maps are used as the basis for
stratification)?
Questions answered about modeling four continuous variables include:
Question 4: How accurately does each modeling technique predict the four
responses by ecoregion?
Question 5: [s there a substantial improvement in map accuracy over simply
assigning stratum means for each response?
The outcomes of this research include:
Outcome 1: Development of less costly strategies for stratifying forest inventory
field data in the interior west.

Outcome2: Development of a methodology for mapping diverse forest inventory

variables that is suitable for the FIA production environment.




Road Map

A technical description and literature review of the modeling techniques and
stratification procedures is provided next in Chapter 2. Chapter 3 contains a description
of the study regions, field response variables, and digital satellite data used as predictor
variables along with data extraction processes. Chapter 4 documents the development of
the objective modeling environment, and describes the evaluation criteria used in
subsequent analyses. Chapter 5 contains mapping and stratification results for discrete

and continuous response variables in all ecoregions. These results and their implications

are discussed in Chapter 6, along with conclusions and ideas for further research.




CHAPTER 2
DESCRIPTION AND LITERATURE REVIEW

OF MODELING TECHNIQUES

In the following chapter, a description of each of the nonparametric or nonlinear
modeling techniques (GAMs, CARTs, MARS, and ANNS) is given, followed by a
technique-specific literature review. To review all the applied literature employing each
technique would fill many chapters. Consequently, the intent of the literature review
following the description of each technique was to reference ecological and remote
sensing applications that illustrated sound model fitting strategies, evaluated strengths
and shortcomings of the techniques, or compared relative performance of one technique
over another in a natural resource setting. DeVeaux, Psichogios, and Ungar (1993) and
DeVeaux (1995) provide more general discussions comparing these modeling techniques,

and Table 2-1 illustrates technique differences at-a-glance.

Generalized Additive Models

GAM Overview

Generalized additive models (Hastie and Tibshirani 1986) are an extension of
generalized linear models (GLMs) (Nelder and Wedderburn 1972), which are, in turn, an
extension of the classical linear model. We assume the response y has an exponential
family density (e.g., gamma, chi-square, beta, binomial, Poisson, negative binomial, etc.)

with mean linked to the predictors via

H =f(x)=g“[a0 +ifi(xi)ja




Table 2-1. Overview of Candidate Modeling Techniques.

Formulation

Strengths

Limitations

i 1@=g"(a+35,@)

CART

MARS

K J
(5 Six)=c ZWZUU Zwljkxj +6,
k=1 J=1

f(x)=a, forxeR,

f(x)=a,+ Zf,.(x,.)+ Zf,.j(xi,xj)
+ D fa (X, X,,X,) +.

Interpretable if original
predictors have intrinsic
meaning to investigator

Exploits low local
dimensionality of functions
Can handle interactions
Interpretable if tree is simple
Rapid to construct and make
predictions from

Final function is smooth

New splits aren't dependent
on previous splits

Graphical displays of main
effects and low order
interactions

Selects predictor variables,
order of interaction, and
amount of smoothing
automatically

Competitive with ANN
when few active
predictors and low
interaction order

Often outperforms all others
for prediction

Can be used directly to
predict multiple responses

No implicit assumptions of
linearity, normal or i.i.d.
errors

Limited to lower order
interactions

Approximation function
discontinuous at sub-region
boundaries

Simple functions can be
difficult to approximate

Interpretation is complex
with many inner branches
representing higher-order
interactions

No predictions intervals
given

All uncertainty estimates
must be done via cross-
validation

Highly collinear predictors
lead to highly erratic
behavior and loss of
interpretability

Un-interpretable

No prediction intervals
given

All uncertainty estimates
must be done via cross-
validation

Caution has to be exercised
to avoid “over-fitting,”
modeling noise as well as
underlying phenomenon

Other methods may be
preferable for low
dimensional or simple
structure
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where the link function may be any monotonic, differentiable function, and

1> f2>--» f, are smooth functions estimated in a nonparametric fashion. A local scoring
algorithm is used to estimate the f,’s. This algorithm uses scatterplot smoothers to

generalize the usual Fisher scoring procedure for computing maximum likelihood
estimates. Any scatterplot smoother can be used, such as a running mean, running
median, Loess, kernel estimate, or spline, (see Hastie and Tibshirani 1990, for a
discussion on smoothers). The resulting smooth functions can be used for data
description, prediction, or to suggest covariate transformations such as polynomial terms
resulting in simplified parametric, or semi-parametric models. GAMs have the advantage
over simple linear models of being able to model nonlinear relationships in the predictor
variables. For large data sets, this flexibility can yield better predictive capability and
provides greater opportunity for exploratory analyses. For those familiar with regression
methods, GAMs may be more easily interpreted than regression trees, and they provide a
continuous predicted response. An open question, however, is how to handle interactions
among the predictor variables. In a case where the number of predictor variables is few,
bivariate functions may be estimated using bivariate smoothers. When the number of
predictor variables is large, deciding which pairs of variables to model simultaneously in
a GAM can be difficult and time consuming (as it is with linear models). In addition,

GAMs require crossvalidation methods to determine appropriate levels of smoothness

(see Hastie and Tibshirani 1990). This, too, can be computationally intensive.
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GAM:s in Natural Resource
Mapping Applications

GAMs have caught the attention of ecologists for mapping applications, and some
of the advantages of this class of models are expressed in Yee and Mitchell (1991). They
have been used to model the presence of several tree species as functions of climatic
variables in New Zealand (Yee and Mitchell 1991), to conduct wildlife viability analyses
in Australia (Norton and Mitchell 1993), to model vegetation composition as functions of
topography and disturbance variables in Glacier National Park (Brown 1994), and to
predict the distribution of Eucalyptus species (Austin, Nicholls, Doherty, and Meyers
1994; Austin and Meyers 1996). In the forest inventory arena, Moisen, Edwards, and
Cutler (1996) used GAMs to model species presence and tree volume as functions of
topography and a TM-based cover type map. Most recently, Frescino, Edwards,and
Moisen (in press) used GAMs to model forest type, basal area, shrub cover, and snag
density as functions of TM- and AVHRR-derived products, temperature precipitation

topography and geology in the Uinta Mountain Range in Utah.

Classification and Regression Trees

CART Overview

Classification and regression trees, also known as recursive partitioning
regression, dates back to Morgan and Sonquist (1963) and has received more recent
attention through Breiman, Friedman, Olshen, and Stone (1984). (My use of the acronym

here is not to be confused with any proprietary software or trademarks.) CARTs

subdivide the space spanned by the predictor variables into regions {R,,} for which the
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values of the response variable are approximately equal, and then estimate the response

variable by a constant, a,,, in each of these regions. That is,

f(x)=a,forxeR .
The tree is called a classification tree if the response variable is qualitative, and a
regression tree if the response variable is numeric. The initial node on a tree is called the
root. From the root, the model is fit using binary recursive partitioning. This means the
data are successively broken into left and right branches with the splitting rules defined

by the predictor variable values. For example, a first split might occur where x; <c¢;,

where ¢ 1s a constant. Then, }(x) =a,,forx, <c,, and }(x) =a,,forx, >¢,. A second
split might occur where x} < cj and x; < ¢, , and so on. Splits are chosen that maximize
the "value" of a split. This value may be computed in many different ways. For
classification problems, splits are chosen that most reduce the impurity of the distribution
at the node, while in regression problems, the value of a split is measured as the reduction
in the residual sum of squares. Splitting continues down to the “terminal” nodes where
response values are all the same within a node or data are too sparse for additional
splitting. At the terminal node, the predicted response is given that is the average or
majority of the response values in that node for continuous or discrete variables,
respectively. Pruning the tree to avoid overfitting the data can be accomplished a number
of different ways, and is discussed further in Chapter 4.

Strengths of CARTs include the facts that interactions are accommodated through

the splitting process and trees with low order interactions, in particular, are easy to

interpret and explain to non-technical audiences. This can be important when
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considering inclusion of auxiliary data from a variety of satellite platforms. However,
disadvantages of CARTs include discontinuity at the nodes and the poor approximation
of simple functions (like straight lines).
CART in Natural Resource
Mapping Applications

Classification and regression trees have received a considerable amount of
attention in the natural resource arena. They have been used in a wide variety of
applications including studying the effect of a variety of factors on the establishment of
oak seedlings (Michaelson, Davis, and Borchert 1987), predicting Christmas tree growth
(Hockman, Burger, and Smith 1990, assessing the effect of human disturbance on
breeding in bald eagles (Grubb and King 1991), extracting the relationship between plant
disease and pine mortality (Baker, Verbyla, and Hodges 1993), and predicting soil
drainage class using remotely sensed and digital elevation data (Cialella, Dubayah,
Lawrence, and Levine 1997). Their specific use in land cover mapping applications has
also grown rapidly. Friedl and Brodley (1997) compared decision trees to maximum
likelihood and linear discriminant function classifiers in land cover mapping applications
and found that the trees consistently outperformed the other methods in classification
accuracy. Vogelmann, Sohl, and Howard (1998) developed decision making rules and
models using several ancillary data layers to resolve confusion in spectral classes that
represented two or more targeted land cover categories. The approach led to adoption of
CART methodology in early national land cover mapping, and modification of CARTS in

conjunction with other modeling techniques for current national vegetation mapping

efforts directed by the US Geological Survey.
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Multivariate Adaptive Regression Splines

MARS Overview

MARS, developed by Friedman (1991) is a flexible nonparametric regression
method that generalizes the piecewise constant functions of CART to continuous

functions by fitting (multivariate) splines in the regions R;, and matching up the values

at the boundaries of the Ry,. An intuitive form for writing the MARS model is

A

HORERDWCHEDWACE PEDIFACHE JERHEN

but the notation requires further explanation. Here, the first sum is over all basis functions

that involve only one variable. Each function in this first sum can be expressed as

fi(xi)z Z amBm(xi)

iV (m)
where V(m) is the variable set associated with the mth basis function, By, that survives

backward selection strategies. The second sum is over all basis functions that involve two

variables, where each bivariate function can be expressed as

fi(x,x;)= > a,B,(x,x,).

i.je¥ (m)
The third sum is over all basis functions that involve three variables, and so on.
MARS is not subject to some of the limitations of GAMs because it automatically
selects the amount of smoothing required for each predictor as well as the interaction

order of the predictors. This makes it perhaps more suitable for a production

environment where time consuming and subjective modeling decisions are undesirable.
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In cases of moderate sample sizes, S0<KN<1000, and moderate to high dimension,
3<n<20, MARS has proven effective for applications where both prediction and
understanding are the objective (DeVeaux 1995). It has the desirable properties of rapid
computability and, unlike CART, offers smoothness as a property as well. Unlike linear
models and GAMs, however, MARS does not provide prediction intervals and all
estimates of uncertainty must computed by crossvalidation.

MARS in Natural Resource Mapping
Applications

Use of MARS in the applied literature is sparse, and apparently nonexistent in
ecological or remote sensing applications. The reason may be in part because user-
friendly software is not readily available, nor has the modeling technique been

“marketed” in high-profile applications.

Artificial Neural Networks

ANN Overview

Neural networks have received considerable attention as a means to build accurate
models for prediction, control, and optimization when the functional form of the
underlying equations is unknown. This modeling technique has permeated literature in
many fields including statistics (e.g., Ripley 1994, 1996; Stern 1996; Cheng and
Titterington 1994), remote sensing (e.g., Atkinson and Tatnall 1997; Skidmore, Turner,

Brinkhof, and Knowls 1997; Wang and Dong 1997) and ecology and engineering

(Paruelo and Tomasel 1997; Wythoff 1993).
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Although there are a variety of ways to construct these models, “backpropagation
networks” appear to be the most frequently used in practice. A backpropagation network

with one hidden layer is a nonlinear statistical model of the form

fi(x)= o{iwwa[i W)X, + 9,‘} -+ 6’,].

The response (output) is a transformation of a weighted combination of the predictor
(inpuf) variables. The o in the above equation is a bounded, monotonic, and

differentiable function, with a logistic function the most common choice. That is,

() = exp(x)
1+exp(x)

The numerous coefficients w (weights) and intercepts 6 (bias terms) are estimated
(also known as training or learning in neural network jargon) through an optimization
method similar to steepest descent (backpropagation). Because so many parameters can
be estimated, there is danger in overfitting the model. By sacrificing an unlimited
number of degrees of freedom, a modeler can eventually get a perfect fit. In that case one
would be modeling noise as well as the underlying phenomenon, and prediction for
unvisited sites could be severely compromised. The preferred method to avoid
overfitting involves using a large enough network to avoid underfitting, then limiting the
number of iterations of the fitting procedure through crossvalidation. Neural networks
are frequently used for prediction in high dimensional problems like those permeating the
engineering fields. As with MARS and CART, no prediction intervals are given and

crossvalidation is necessary to construct measures of uncertainty. Neural networks are

difficult, if not impossible, to interpret. They are hard to visualize, and two very different
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functional forms can yield the same predicted values. In addition, local minima in the
objective function present obstacles to finding a reasonable model.
ANN in Natural Resource Mapping
Applications

A large body of remote sensing literature is dedicated to the use of neural
networks in classification of digital satellite data. Atkinson and Tatnall (1997) described
the use of neural networks in remote sensing literature over the past decade, and review
common approaches. ANNs have received both positive and negative reviews, largely
based on computational issues. Paruelo and Tomasel (1997) compared ANNs to
regression models in their ability to predict functional characteristics of ecosystems,
showing clear advantages to the ANNSs. Skidmore et al. (1997) mapped eucalypt forests
and concluded that ANNs do not offer significant advantages over conventional
classification schemes while Zhang and Yuan (1997) preferred neural networks to
traditional remote sensing approaches for modeling vegetation types using TM data in
northern Arizona. Successes have also been documented by Bruzzone, Conese, Maselle,
and Roll (1997) when using neural networks to identify complex rural areas. Gong, Pu,
and Chen (1996) described the technical aspects of using multiple data inputs at a variety
of scales in mapping ecological land systems through neural networks. Kanellopoulos
and Wilkinson (1997) offered substantial advice on “best practice” techniques to
optimize network training and overall classification performance. They described their
experiences related to network architecture, optimization algorithms, and transformation

of input data to name a few. Foody and Aurora (1997) evaluated some of the factors

affecting the accuracy of classification using neural networks, illustrating how
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dimensionality of a data set and characteristics of the training versus test set affect
classification more than changes in network architecture. Paola and Schowengerdt (1997)
also illustrated hidden layer size made little difference in final classification accuracies.
Other examples include the use of neural networks in cloud classification (Lewis, Cote,
and Tatnall 1997), sub-pixel analysis (Atkinson, Cutler, and Lewis 1997; Foody, Lucas,
Curran, and Honzak 1997), and modeling stand size and density (Wang and Dong 1997).
There is also an increased use in remotely sensed change detection projects. (Dai and
Khorram 1999; Levien et al. 1999).

The use of ANNSs in ecology has also grown rapidly over the last decade.
Colasanti (1991) and Edwards and Morse (1995) saw the potential for ANNs in modeling
complex ecological systems. Recent applications of neural networks in the ecological
literature are quite diverse. They have been used in predicting the presence of a
Himalayan river bird (Manel, Dias, and Omerod 1999), estimating the daily pH of a river
as a function of river discharge and solar radiation (Moatar, Fessant, and Poirel 1999),
studying the relationship between lead concentration in grass and urban descriptors
(Dimopoulos, Chronopoulos, Chronopolous-Sereli, and Lek 1999), selecting a minimal
set of driving variables to model water vapor and carbon exchange of coniferous forest
ecosystems (Van Wijk and Bouten 1999), estimating phytoplankton production (Scardi
and Harding 1999), modeling ocean color (Brosse, Guegan, Toureng, and Lek 1999),
modeling the abundance and diversity of arthropods (Lek-Ann, Deharveng, and Lek
1999), discriminating between natural and hatchery brown trout (Aurelle, Lek, Giraudel,

and Berrebi 1999), predicting primary production in a coastal embayment (Barciela,

Garcia, and Fernandez 1999), and the list goes on.
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CHAPTER 3

DATA DESCRIPTION
Study Regions and Sample Design

Portions of six ecologically different regions defined by Bailey, Avers, King, and
McNab (1994) were selected for analyses and are illustrated in Figure 3-1. Ecoregions
range from the coniferous forests of northwestern Montana, to the Chihuahuan Desert of
southeastern Arizona. MT1 and MT2 refer to two ecoregions in Montana, UT1 and UT2
are two within Utah, and AZ1 and AZ2 are in Arizona. Table 3-1 summarizes
characteristics of each of the ecoregions along with available field plot data from FIA
databases. Dates of forest inventory, sample grid intensity, and field plot layout differ by
ecoregion as well as by land owner and vegetation type. Figures 3-2 and 3-3 illustrate the
different types of grid patterns and plot layout, respectively. In MT1 and MT2, field data
were collected in 1988-1989 on a 5-km grid across all ownerships except National Forest.
Timberland areas (characterized by tree species normally preferred for commercial
harvest) were sampled with 10-point variable radius plots, while forests not dominated by
commercial species were sampled with fixed radius plot shapes. Data on National
Forests in these two ecoregions were collected 4 years later, also on a 5-km grid, using 5-
point variable radius plots on timberland locations. In UT1 and UT2, data were collected
in the mid-1990's on a double 5-km grid on National Forest lands and a 5-km grid
elsewhere. The phrases “double 5 km” and “double 10 km” imply twice as many plots as

on a 5- or 10-km grid, respectively (see Figure 3-2). A new fixed radius plot was

introduced in Arizona, and data were collected on a 5-km grid on National Forests and
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LI

| MT1: M333: Northern Rocky Mountain Forest Steppe
Coniferous Forest - Alpine Meadow Province

i MT2: M332: Middle Rocly Mountain Steppe -
Coniferous Forest - Alpine Meadow Province

(] uT1: M331: Southern Rocky Mountain Steppe -
OpenWoodland - Coniferous Forest -
Alpine Meadow Province

. UT2: M341: NV/UT Mountains Semi-Desert -
Coniferous Forest - Alpine Meadow

B AZ1: M313: AZ/NM Mountains Semi-Dssert -
Open Woadland - Coniferous Forest -
Alpine Meadow Province

[ AZ2: 321: Chihuahuan Semi-Desrt Province

Figure 3-1. Six Study Ecoregions Within the Intermountain West.
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Table 3-1. Description of Six Study Ecoregions, Sampling Intensity, and Plot Layout. '

Size Inventory Grid Plot # Plots # Plots
Label Description (ha) Dates Intensity Layout 13 (Tot)
MTI Northern Rocky Mountain 443 M NF: All: 5k Other 1393 1677
Forest Steppe - Coniferous 1993-1996 Tmbr:10pt
Forest - Alpine Meadow
Province Other: NF
1988-1989 Tmbr: 5/7
wdld:
old fixed
MT2 Middle Rocky Mountain 9.45M NE: All: 5k nonNF 1634 3727
Steppe - Coniferous Forest 1996-1998 Tmbr:10pt
- Alpine Meadow
Province Other: Other
1988-1989 Tmbr: 5/7
Wwdld:
old fixed
UT1 Southern Rocky Mountain 3.18M All: NF: Tmbr: 5 pt 531 968
Steppe - Open Woodland - 1992-1996 double 5 k
Coniferous Forest - Alpine wdld:
Meadow Province Other: 5 k old fixed
UT2 NV/UT Mountains Semi- 3.16 M All: NF: Tmbr: 5 pt 829 1320
Desert - Coniferous Forest 1993-1996 double 5 k
- Alpine Meadow Wwdld:
Province Other: 5k old fixed
AZ1 AZ/NM Mountains Semi- 2.85M NF,res, NF, res, All: 664 1141
Desrt - Open Woodland - Tmbr: Some IR: New fixed
Coniferous Forest - Alpine 1996-1997 Sk
Meadow Province
Other: Timber/
1983 Other:
double 10 k
AZ2 Chihuahuan Semi- Desert 2.85M NF,res, NF, res, All: 165 1129
Province Tmbr: Some IR: New fixed
1996-1997 5k
Other: Timber/
1983 Other:
double 10 k

! NF=National Forest; Other=lands outside NF; res=reserved lands; 7mbr=Timberland; /R=Indian
reservations; Wdld=Woodland; F=Forested; Tor=Forested and Non-forested plots combined.
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Figure 3-3. Four Different Plot Layouts.
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within timberland strata, with a double 10 km grid visited elsewhere. Plot layout and
sample design differences are more complicated than what Table 3-1 indicates, but

standardized per-acre responses were retrieved under each layout.
Response Variables

At each FIA field location, extensive stand- and tree-level measurements were
collected. Individual tree measurements were compiled and combined with stand-level
variables to produce location-level summaries that comprise phase two of this two-phase
design. Commonly used estimates of population totals include area by forest type, total
tree volume, and total annual tree volume growth. Other variables of particular interest to
forest _p]anners and ecologists include forest type, biomass, crown cover, tree size, and
stand age. Response variables and variables used to produce estimates of population

means/totals are shown in Tables 3-2 and 3-3, respectively.

Predictor Variables

Predictor variables were extracted from four sources: (1) elevation, aspect, and
slope from 1000-m digital elevation models produced by the Defense Mapping Agency
(DMA); (2) spectral and positional data from a biweekly AVHRR composite; (3)
vegetation cover type from the National Land Cover Data (NLCD) based on a 30-m
resolution TM imagery; and (4) site-specific data including field-collected topographic

information as well as UTM coordinates. Daily observations from the AVHRR platform

are compiled biweekly to produce maximum normalized difference vegetation index




Table 3-2. Response Variables.

Type Name Description
Discrete response FORTYP.2 0 = Non-forest
on all plots 1 =Forest
Discrete response FORTYP.3 1 = Woodland (Other forest in MT)
on forested plots only 2 = Timberland (Spruce-fir in MT)
Continuous response BIOTOT Total tree biomass (Ibs/acre)
on forested plots only
Continuous response CRCOV Tree crown cover (%)
on forested plots only
Continuous response QMDALL Quadratic mean tree diameter (in)
on forested plots only
Continuous response STAGE Average age of dominant trees (yrs)

on forested plots only

Table 3-3. Variables Used for Population Estimates.

Type Name Description

Discrete response FORTYP.2 0 = Non-forest

on all plots 1 = Forest
Discrete response TWN 0 = Non-forest

on all plots 1 = Woodland (Other forest in MT)

2 = Timberland (Spruce-fir in MT)

Continuous response NVOLTOT Live tree volume (cuft/ac)

on all plots 0 on non-forest plots
Continuous response

on all plots NGRWCF Net growth (cuft/yr)

0 on non-forest plots




26

(NDVI) composites of the U.S. These composites result in a near cloud-free image
depicting maximum vegetation greenness for the compositing period. One such
composite dated (June 1986) was used in these analyses and contains six bands of “least
cloud” information including five spectral channels [one visible, one near infrared (NIR),
and 3 infrared (IR)] as well as a Normalized Difference Vegetation Index (NDVI) that is
computed NDVI=(NIR-IR)/(NIR+IR). These composites are distributed by USGS EROS
Data Center.

The NLCD (http://edewww.cr.usgs.gov/programs/lccp) is a land cover data set

produced through a cooperative effort involving the U.S. Environmental Protection
Agency, U.S. Geological Survey, U.S. Forest Service, and National Oceanic and
Atmospheric Administration. This Thematic Mapper (TM)-based national data set
(released in 2000) provides 21 mapped cover-types at 30-m resolution. In this study,
cover-types were collapsed to a simple forest, shrubland, and non-forest type. A list of

predictor variables and their descriptions is provided in Table 3-4.

Data Processing

Acquiring and processing data for modeling and analysis involved a considerable
amount of work. Acquiring imagery and other auxiliary data sets involved cooperation
with numerous government and private entities. Retrieval of response variables from the
large and complex FIA database and extracting predictor variables from images required

programming in SAS, Oracle, ArcInfo, ArcGrid, ArcView, and Imagine. Nine steps are

described below, but the processes are changing rapidly to make them more efficient and
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Table 3-4. Predictor Variables.

Type Name Description

Discrete predictor NLCD 0 = Non-forest
40 = Forest
50 = Shrubland with trees

Continuous predictor EASTING UTM Easting — Zone 12

Continuous predictor NORTHING UTM Northing — Zone 12

Continuous predictor ELEV.1K Elevation (m) from 1km DMA

Continuous predictor TRASP.1K Radiation index derived by
transforming aspect from 1km DMA

Continuous predictor SLOPE.1K Slope (%) from 1km DMA

Continuous predictor AVH.1 Visible spectral band 1 from AVHRR
composites

Continuous predictor AVH.2 Near-IR spectral band 2 from AVHRR
composites

Continuous predictor AVH3 IR spectral band 3 from AVHRR
composites

Continuous predictor AVH 4 IR spectral band 4 from AVHRR
composites

Continuous predictor AVH.5 IR spectral band 5 from AVHRR
composites

Continuous predictor NDVI NDVI from AVHRR composites
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well suited to the FIA production environment. The point in describing them here is to
document the complexity in generating “simple” ASCII files of response and predictor
variables for modeling and analysis. Most data retrieval and pre-model processing were
performed on an IBM RS6000 F50 server with two processors and two gigabytes of
memory. Some functions were also performed on a Pentium II PC with 64 megabytes of

memory.

Choose Projection

A projection system is the mechanism for locating points, lines, or polygons on
the earth using x and y coordinates. There are many projections to choose from, but the
FIA sampling frame is based on the Universal Transverse Mercator, or UTM, grid. The
earth is divided into a set of grid zones, within which UTM coordinates are unique, but
between which they are not. As one moves away from the equator, the distance between
zones is squeezed down in the east-west direction. Points on an equidistant grid in UTM
units are actually much closer together when one gets closer to the poles of the earth. For
modeling on a regional scale, this projection works well, but is unworkable on a National
or global scale. Consequently, images or other geographic data sets come in a wide
variety of projections and must be standardized to one projection in order to merge the
spatial data together. Projection is a simple but sometimes computationally intensive
process in ArcInfo. Commands for doing this and many other procedures in ArcInfo are

bl

given in Appendix A-1. Despite its discontinuity between zones and east-west “squeeze,’

the UTM projection results in “prettier” (less distorted) regional maps, and is the
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these analyses. All the ecoregions fell within UTM zone 12 (UTM-12) except MT1 and
MT? that span 2 and 3 zones, respectively.

Locate Ecoregion and State Boundary
Coverages

Ecoregion boundaries developed by Bailey, Avers, King, and McNab (1994) were
available as vector coverages, and were modified in Utah to more closely follow
ecological zones. State boundary coverages were readily available from the US Census
Bureau, having been digitized from 1:100,000 scale maps. Both ecoregion and state
boundaries were projected in UTM-12 and used throughout these data extraction
processes.

Identify Sample Plots Within Ecoregions
and Generate Point Coverages

UTM Easting and Northing coordinates on sample plots within an ecoregion were
extracted from Oracle using an SQL query. A point coverage was then generated in ARC
from these coordinates. Both the resulting ASCII files and point coverages were then
used to extract response and predictor variables from these analyses.

Generate Intensive Grid for Mapping
and Stratification

In addition to the ASCII file of UTM coordinates of field locations, an ASCII file
of UTM coordinates on a 1-km grid was first generated from existing 1-km photo-
interpretation data sets. Alternatively, these files can be generated through the ArcGrid

sample command applied to any 1-km grid (like AVHRR data). In addition, finer

resolution grids can be generated from existing 1-km grids through the ArcGrid resample
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command. The UTM coordinates on this much more intensive grid (like 90 m) can be
written to an ASCII file again through the ArcGrid command sample (Appendix A-1).
These very intensive grids are useful for predicting a response over fine resolution
predictor variables. The maps are not necessarily more accurate, but “prettier.”
Extract Response Variables from
FIA Databases

Several different methods were used to get response variables for these analyses.
In AZ1 and AZ2, the ASCII files containing UTM coordinates for sample plots within
the ecoregion of interest were merged with SAS data tables of compiled Arizona data to
extract select variables from the database. An example of this approach is given in
Appendix A-2. In Utah and Montana, plot-level data were first extracted using an
ArcInfo Arc Macro Language (AML) (Appendix A-3). The AML then generated a point
coverage of these plots with selected location-level variables (like forest type) as
attributes. The AML was not able to summarize tree-level information (like biomass and
volume) and was replaced by a streamlined ArcView project with multiple Avenue
scripts Appendix A-4). The project generates point coverages from spatial coordinates in
Oracle and adds any selected variables to those points as attributes, simultaneously
delivering an ASCII file (Appendix A-4).
Clip Statewide Grids from National
AVHRR Images

Procedures for loading and viewing data from the 2-week composite AVHRR

CDs in Imagine are given in Appendix A-5. Complications arose over incompatibility of

Imagine and ArcInfo boundary coverages but following these instructions alleviated the
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problem. Once these data were loaded, an “area of interest” (AOI) layer (like a state or
ecoregion) was created and used to subset the multi-band AVHRR image. Because this
nationwide image came in a Lambert Azimuthal equal area projection, the state
boundaries had to be reprojected to Lambert Azimuthal before subsetting. (“Rebuilding”
polygon coverages is also necessary following projection.) Subsetted images for each
band and NDVI values were then converted to GRID format and reprojected to UTM-12
for further processing in ArcInfo. This process of subsetting an image is documented in
Appendix A-6 and resulted in six grids representing the five AVHRR spectral bands and
NDVI for each state.

Clip Statewide Grids from National
1000 m DMA Files

This nationwide elevation grid was also projected in Lambert Azimuthal, so state
boundary coverages in that same projection were used. Arizona, Montana, and Utah were
clipped from the nationwide grid using Arc Jatficeclip and reprojected into UTM-12.
Slope and aspect grids were created for each state using the DEM (elevation) through
ArcGrid’s slope and aspect commands. (Again, see Appendix A-1 for miscellaneous
commands.)

Clip Statewide Grids from Regional
NLCD Grids

The NLCD data was distributed as images in regional blocks. These images were

converted to grids using imagegrid and came in an Albers NAD83 projection. Zero

values in each regional grid had to be converted to NoData or Null values prior to

merging regional grids using the command merge. After merging the grids to areas that




would encompass each state, state boundaries in Albers NAD83 clipped the state using
ArcGrid gridclip. The resulting grids were finally converted to UTM-12 projection.
Extract Predictor Variables at FIA
Plot Locations

The ArcGrid sample command was used to extract predictor variables from the
assortment of grids at field and intensified grid locations, specified in ascii files of UTM

coordinates. An example of commands used to extract predictor variables in Montana is

given in Appendix A-7.

32
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CHAPTER 4

SYSTEM DEVELOPMENT

The following chapter describes the development of an objective mapping and
stratification system (or “box”) within the S-Plus environment. An objective (or
production) environment implies that someone without modeling experience can push the
button that builds the models and produces desired output for any ecoregion, response
variable, or predictor set. Prior to the construction of this box, input data had to be
collected and prepared, and ancillary programs obtained and installed. A schematic
overview of the system including data collection, ancillary code, and the S-Plus modeling
box is shown in Figure 4-1. The initial data collection process (described in Chapter 3)
was conducted in a variety of computing environments including ArcInfo, ArcView,
Imagine, Oracle, and SAS. Data were extracted from original formats, filtered and put in
a standard flat file format. Ancillary programs were imported from a variety of sources
documented below, and installed in the S-Plus environment. The box itself was
developed in S-Plus and was run on a SUNW Ultra-1 Sparc workstation with 128
megabytes of RAM and 602 megabytes of swap. The modeling system contains five key
programs that are described in detail in this chapter. The first program, p1l.data
(Appendix C-1), prepares the input data. Objective model building and evaluation using
the five different techniques takes place in p2.model (Appendix C-2) while p3.map
(Appendix C-3) produces predictions for import into ArcView for mapping. Stratification

based on select predicted maps is applied and population estimates and variances

produced in p4.strat (Appendix C-4). Finally, pS.results (Appendix C-5) compiles
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Figure 4-1. Schematic Overview of Modeling System.
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performance measures and prepares graphical synopses of the resuits by ecoregion,
response variable and predictor set. Program p2x.model supported the development of
p2.model and p4x.boot (Appendix C-4x) provided additional information for variance
calculations in p4.strat. In addition, p0.functions (Appendix C-0) is a file of customized

functions, and the box itself runs from a program called p.go (Appendix C-00).
Data Input

This first program, p1.data, prepares the data for input into subsequent programs.
Response and predictor variables from the designated ecoregion are first read from asciii
files and put in standard format. Predictor variables from imagery are checked for
missing values and merged with the appropriate field file, or saved as separate mapping
files on a more intensive grid.

Transformations on predictor variables are kept to a minimum. Only the NLCD
and circular aspect variables are modified. The NLCD classes are collapsed to one forest,
one shrubland, and one non-forest class to avoid having only a handful of observations in
the rare classes. The circular aspect variable is transformed to a radiation index (TRASP)
used by Roberts and Cooper (1989). This takes the form

_1= cos((z /180)(aspect —30))
3 :

TRASP

This transformation assigns a value of zero to land oriented in a north-northeast direction,

(typically the coolest and wettest orientation), and a value of one on the hotter, drier

south-southwesterly slopes.
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The two discrete response variables, FORTYP.2 and FORTYP.3, are created by
collapsing forest type (FORTYP) into forest/non-forest (FORTYP.2) and
timberland/woodland within forested areas (FORTYP.3), respectively. Data files for
modeling the discrete FORTYP.2 include all data from forest and non-forest locations
while data for modeling FORTYP.3 includes only data from forested field locations. This
1s analogous to applying a forested “mask’ over the data set to focus modeling on within-
forest conditions. One of the last tasks of pl.data is to split the total and masked data
files into 70% of the data for modeling and 30% for testing. This 30% was chosen
because this is the approximate proportion of plots collected on an intensified (not the
standard 5 km) sampling grid and withholding this additional amount gives an indication
of predictive abilities given “standard” sample sizes. Response and predictor variables
used in p2.model were given in Tables 3-2 and 3-4, respectively. Files used in p3.map
for predicting response variables over an intensified grid contain all the predictor
variables listed in Table 3-4 as well. Variables used to construct estimates of population
means/totals in p4.strat are listed in Table 3-3.

An early concern involved the potential effect of spatial autocorrelation on the
deterministic functions chosen for these analyses. As part of the preliminary modeling
described in Moisen and Edwards (1999), directional variograms were constructed on a
set of variables revealing large-scale spatial patterns driven largely by elevation. By
fitting GLMs that included elevation, aspect, slope, and general geographic position as
predictor variables, the data were ‘““detrended” and nothing but noise was left in

directional variograms of the residuals. An important point here is that responses are

collected on a 5-km grid. In the interior west, field plots collected at this distance are
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likely to change drastically in elevation, slope, and aspect, and so the primary concern is
modeling large-scale spatial variation through a deterministic model. The purpose in
including UTM coordinates as predictor variables is to capture broad trend as opposed to

trying to smooth the response in a small geographic area.
Modeling Strategies

Objective model building using the five different techniques takes place in
p2.model. The following sections describe the development strategy for each of the five
techniques. Models were first built, refined and automated using data in UT2 and
p2x.model. These automated models were then applied to data from all ecoregions to test
model performance, and results are reported in Chapter S. Initial model fitting strategies
were developed based on literature review, correspondence and discussions with a variety

of experts, S-NEWS discussions, and trials in UT2.

NLCD Benchmark Models

By far, the simplest mapping and stratification strategy that could be adopted in
these analyses is to simply “map” discrete variables by collapsing NLCD cover types,
and “map” continuous variables by assigning the mean of the continuous variable within
each NLCD class. This approach is implemented in p2.model though a function that
collapses cover type classes, and through the use of the s-Plus function Im() for

continuous variables. This is the simple benchmark against which other models are

judged.




GAMs

The S-Plus functions gam(), step.gam(), and plot.gam() are used here. Both the
binary forest/non-forest (FORTYP.2) and timberland/woodland (or spruce-fir/other)
within forest (FORTYP.3) classifications are modeled using a binomial family.

Selection of an appropriate link function and variance-to-mean relationship for
continuous variables, however, can be difficult. In Moisen and Edwards (1999),
exploratory work revealed that the variances appeared proportional to the means (after
adjustment for predictor variables), with proportionality constants substantially larger
than one. The variance of volume by species (within bins defined by combinations of
predictor variables) was plotted against mean volumes of those bins revealing linearly
increasing patterns. Consequently, in earlier work, quasi-likelihood estimation was used
in a “Poisson-like” model with a log link and variance proportional to the mean.
Although this type of model is typically applied to count data, McCullagh and Nelder
(1989, pp. 200-204) discuss an example application to continuous data.

This same approach was first adopted in p2x.model. However, one problem
encountered in Moisen and Edwards (1999) was the large number of zeros (on non-forest
lands) and this likely dominated the mean/variance relationship. In pl.data, a non-forest
mask was applied as described above in the data input section, and only continuous
variables on forested plots were modeled, assuming the mask could be reapplied at time
of mapping to black out non-forest areas. The variance of continuous variables on
forested plots (within bins defined by combinations of predictor variables) was plotted

against mean values of those bins revealing no detectable patterns. Consequently, in

p2.model a simple Gaussian family is specified for continuous responses, but an option
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can be implemented within the program to run a regression of variances on means and
make a choice of family automatically by determining if the variance is proportional to 1,
w, p2 or p’and then assigning a Gaussian, Poisson, gamma, or inverse Gaussian family,
respectively.

For both continuous and discrete responses, predictor variables enter the model
individually using a smoothing spline with a relatively large smoothing parameter to
avoid fitting noise. Final models were selected by stepwise procedure invoked by
step.gam. The function steps through various combinations of models along a path that is
specified using an argument called scope in the step.gam function. This argument is a list
whose elements correspond to terms in the original model. The step.gam interprets
candidate forms for each model term based on their order of appearance in the scope

function. For example, suppose the initial gam object looks like

Y ~ s(ELEV.1K) + s(TRASP.1K) + s(SLOPE.1K).

Then, a possible scope function is

$ELEV.1K:
~ 1+ ELEV.1K + s(ELEV.1K)

$TRASP.1K:
~ 1 + TRASP.1K + s(TRASP.1K)

$SLOPE.1K:
~ 1+ SLOPE.1K + s(SLOPE.1K).

Starting with the current model, a series of models is then constructed by moving each

term up or down one step in the scope function. The first few candidate models would be
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Start: Y ~ S(ELEV.1K) + s(TRASP.1K) + s(SLOPE.1K); AIC= 1197.427
Trial: Y ~ ELEV.1K + S(TRASP.1K) + S(SLOPE.1K); AIC= 1197.444
Trial: Y ~ S(ELEV.1K) + TRASP.1K + s(SLOPE.1K); AIC= 1192.541
Trial: Y ~ S(ELEV.1K) + s(TRASP.1K) + SLOPE.1K; AIC= 1207.651
Step : Y ~ S(ELEV.1K) + TRASP.1K + s(SLOPE.1K) ; AIC= 1192.541 .

The model that results in the biggest decrease in AIC, where
AIC = D +2df¢
is selected as the new current model and the updating continues. Here, D is the residual

deviance, df the effective degrees of freedom, and ¢ the dispersion parameter.

CARTs

The S-PLUS functions tree(), cv.tree(), prune.tree(), and ps.tree() are used for
both classification models (classification trees) and for modeling continuous variables
(regression trees). An initial tree is fit using all the predictor variables. Tree pruning,
analogous to variable selection in regression, is the methodology used to prevent
overfitting the training data with too many splits. Although many methods of pruning are
available, pruning through cross-validation is most popular. By using cv.tree(), the
optimal size is identified via 10-fold cross-validation. While this process was repeatable
for classification in UT2, the “optimal size” was very different under different cross-
validation runs for continuous variables. Consequently in p2.model, 20 cross-validatory

splits are run and “majority rule,” ie optimal size getting the most votes, used to

determine pruning size for continuous variables.
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MARS

Not part of the packaged S-Plus functions, Hastie and Tibshirani's mars() function
is available through StatLib in the "mda" library. Because the library of functions was
constructed for use in S-Plus-3 versions, getting the library up and running involved
developing a new installation procedure to update old S-Plus version libraries and
helpfiles, and replace S-Plus function calls to dyn./oad within the scripts. Appendix B-1
gives the modified installation procedures.

As mentioned earlier, MARS automatically selects the amount of smoothing
required for each predictor as well as the interaction order of the predictors. It is
considered a projection method where variable selection is not a concern but the
maximum level of interaction needs to be determined. Preliminary runs in UT2 for all
response variables and levels of interaction ranging from 1 to 5 showed little
improvement in fit and a tendency to produce unrealistic predictions for higher orders of
interaction. Taking a conservative approach, only 2-level interactions are specified in
p2.model. Because the MARS function as imported from StatLib did little more than fit
the model and produce predictions, p2.model provides supplemental code that displays

the contributing variables and identifies interactions so that the models are more

interpretable.

ANNs

Nychka's FUNFITS S-PLUS function library was obtained by ftp for fitting

ANN's from http://www.cgd.ucar.edu/stats/Funfits/index.shtml. As with the MARS
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library, getting FUNFITS up and running posed some challenges and required

modifications to the installation procedure (Appendix B-2).

The neural networks sum of squares surface is probably best described as
“pathological,” having a very large number of local minima that easily trap
unsophisticated search procedures and result in poor, non-reproducible models. The
developers of FUNFITs took care in developing their search procedure for realistic
starting values. This procedure proceeds as follows. For each of M hidden units in a
single layer neural network, a rectangular region of feasible (with respect to the logistic
function) parameter values is divided into a set of 250 (ngrind) boxes about the origin.
Within each of these boxes, 100 (ntry) parameter sets are randomly generated from a
uniform distribution. These parameters define initial models from which RMSEs are
computed. The parameter set with the lowest RMSE of the 100 sets in each of the 250
boxes is identified, and the 250 parameter sets are used as starting values in an initial 250
“grinds” attempting to minimize the RMSE. The convergence tolerance for this first pass
is set fairly high. Next, the parameters resulting from the best 20 (npolish) grinds based
on RMSE are used as starting values in a second more refined set of minimizations where
the convergence tolerance is set much lower. The “final” model is defined by the
parameters resulting from the best of these 20 “polished” parameter sets.

Although the computing time can be quite slow for full search options, the often
subjective choices about starting values, convergence criteria, and number of hidden units
are done automatically, and the results are reproducible. However, running nnreg at the

default ngrind, ntry, and npolish of 250, 100, and 20, respectively, resulted in painfully

slow computing time. FUNFITS provides a “fast” option where ngrind, ntry, and npolish
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assume values of 100, 50, and 5. Initial runs in UT2 for all response variables for both
the default and fast options revealed little if any gain in performance measures but
tremendous differences in computing time. FUNFITS also selects the optimum number of

hidden units based on cross-validation.
Evaluation Criteria

Several global measures were used to assess the predictive performance of the
models. Let x be an 7 x » contingency table or error matrix set out in rows and columns
that express the number of sample plots (of which there are n) predicted to belong to one
of r classes relative to the true ground class (on the diagonal). The percent of correctly

classified (PCC) plots is calculated

PCC = (l'Zx“}x 100%

n

i=1
The Kappa (KHAT) statistic (Cohen 1960) measures the proportion of correctly

classified units after the probability of chance agreement has been removed, and has been

used extensively in map accuracy work (Congalton 1991), and is calculated

KHAT = (6, -6,)/(1-6,),

,
where 6, = le.;. /n and
i=1

,
2
0, = Zx,._x,l. /n”.
i=1

Predictive performance of models of the continuous variables were evaluated through

independent estimates from test sets of global root mean squared error (RMSE),
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and proportion of plots within some user-specified range (PWI),

<R},

(e.g., proportion of plots predicted to within 50 cubic feet of the true volume). In

n | A
PWI = lZI{|_vl.— ¥,
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addition, the correlation coefficient (p) between observed and predicted values

p= Zy; ;’,-—Zy,-z;,/n 7
(S Sl TS

was calculated for each model.

In addition to the evaluation criteria above, the amount of time it took to run each
model was recorded and considered in discussions about suitability of each of the models

for a production environment.

Mapping

This program produces predictions for each response variable within ecoregion
over an intensified grid of predictor variables. Predictions are exported to ascii files in
format suitable for input into ArcView for display and analysis. The scale of the resulting
maps is a function of the intensity at which predictor variables (as ArcInfo grids) are
resampled. Here, a coarse 1-km grid was used for mapping to keep size and prediction

times in check. A more visually appealing 90-m grid will be resampled for production of

“pretty” maps following completion of these analyses.
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When mapping over large geographic areas, one is guaranteed to run into values
of predictor variables outside the range seen in the modeling dataset and extrapolation is
unavoidable. In addition, high dimensional models with interaction confound the
extrapolation problem and it is likely that nonlinear and nonparametric models produce
unrealistic estimates. To prevent these few extreme values from completely
overpowering evaluation criteria and map color schemes, model predictions were

restricted from going below zero or above the maximum value seen in the model data set.

Stratification and Variance Reduction

For reasons discussed in Chapter 6, predicted FORTYP.2 from the NLCD and
MARS models in each ecoregion were used as the basis for stratification of field plots in
that ecoregion. Population estimates and variances were obtained in two different ways.
The first uses a stratified random sampling (STR) formula. This is appropriate for the
NLCD-based stratification but is a leap of faith for the MARS-based stratification
because strata come from models driven by the very field data to be stratified, and the
problem has the flavor of poststratification. Consequently, bootstrap variance estimates
were constructed and compared to those obtained under STR. Further discussion of the

bootstrap variance estimates follows the “Stratified Random Sampling” section.

Stratified Random Sampling
Following the notation of Cochran (1977), let the subscript # denote the strata,

suffix 7 the unit within the stratum, and L the total number of stratum. An unbiased

estimate of a population mean (Cochran, Equation 5.1) is
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\—5, = i Wh ;h ’
h=1
where

N, is the total number of units in stratum #,
n 1s the number of sample units,
n, 1s the number of sample units in stratum 4,
Vhi 1s the value obtained for the ith secondary point in stratum 4,
W, = % 1s the weight for stratum #,

e 1 & .
Y, =— Z."m 1s the sample mean for stratum 4.

h i=1
When the finite population correction factor is negligible, the estimated variance

(Cochran, Equation 5.13) is

S T WZSZ
‘,r("~”) — Z_M -

h=1 Ny

where

1 & —

2 2

Sp = Z(yhi—yh)
i=1

n,—1%
is the sample variance for stratum 4 for continuous y, that reduces to

2 nhyh(l“,";,)
s, =——t—=2

(nh _1)

when y, s assume values of 0 and 1.
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Bootstrap Estimates

In the second approach, bootstrap estimates of the variances on select population
estimates were generated using the MARS models for FORTYP.2 and FORTYP.3 in
each ecoregion. A sample of size n was selected with replacement from the original
modeling data. The MARS models were fit, predictions made over a 1-km grid using
FORTYP.2, and further classification done using FORTYP.3 for points predicted to be
forested by FORTYP.2. These two-step MARS predictions over the 1000-m grid formed
the population of strata for determining stratum weights. Then, estimates of mean
population area, volume, and growth for this bootstrap sample were calculated using
stratum weights from above. Another sample of size n was selected with replacement and
the process repeated 100 times. The variances of these 100 population estimates were

then compared to those obtained using the STR formulation.

Results

The program pS5.results compiles mapping and stratification performance

measures and prepares graphical synopses of the results by ecoregion, response variable,

and predictor set using trellis graphics functions within S-Plus.
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CHAPTER 5

RESULTS

System Tests

Before running data from all the ecoregions through the modeling system, a
simple test was conducted to insure that the modeling techniques were operational.
Following DeVeaux et al. (1993), 1000 each of ten uniformly distributed predictor
variables X1-X10 were generated. Next, a response Y was specified as a function of only
X1-X5,

Y = 2sin(7* X1*X2) +.4(X3-.5)* +.2(X4) +.1(X5),
with no error term. A simple linear model along with the GAM, CART, MARS and ANN
from the modeling box were used to fit the relationship between Y and the X1-X10.
Residual plots under each of the modeling techniques are shown in Figures 5-1 a-d.
These plots, generated from test data, illustrate the effectiveness of MARS and ANNSs in
deciphering complex relationships. Table 5-1 also reveals some of the strengths and
weaknesses of the different techniques. CART models identified the contributing
predictor variable (X1-X5), but had an RMSE that was 10% higher than a linear model,
and 10 times the RMSE of ANNs. LM too had a high RMSE because of its inability to
detect the nonlinearity or interaction between terms. GAM residuals were considerably
better, but the model’s stepwise procedures incorrectly identified X8 and X10 as
contributing predictor variables in addition to the correct ones. Both MARS and ANN did

exceptionally well, and MARS correctly identified the contributing variables and order of

interaction. Recall the performance measures for continuous variables included root mean
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Table 5-1. Modeling Results for Continuous Test Data.

PWI
Model Contributing variables RMSE (25%) RHO TIME
CART X4, X1, X3, X5, X2 .030 76 .843 202
LM All .027 &3 873 1
GAM s(X1), s(X2), s(X3), X4, 014 95 .966 201
X5, s(X9), s(X10)
MARS X1*X2, X3, X4, X5 .004 100 997 43
ANN All with 7 hidden units .001 100 1.000 336
selected

squared error, correlation between truth and predicted, percent of predicted plots with
25% of the truth, and computational run time. Again, ANNs and MARS performed best
overall but MARS had a much faster computing time.

Next, simulations were run to illustrate the effect of random noise on the
performance of each modeling technique. Following from the example above, the
response was generated as

Y = .4sin(7* X1*X2) +.8(X3-.5)* +.2(X4) +.2(X5)-.05+ ¢,
with error terms generated from a normal distribution with mean equal to zero, and
standard deviations of .05, .5, and 1. Table 5-2 and Figure 5-2 illustrate the diminishing
differences between performance measures with increasing noise in the system.

Next, simulations were designed to illustrate strengths and weaknesses of the
modeling techniques. One thousand sets of three uniformly distributed predictor variables
X1-X3 were generated. Response variables Y1-Y5 were specified as functions of X1-X3
given in the first column of Table 5-2 with no error term. As before, 300 of the 1000

simulated response and predictor variable combinations were withheld as a test set. A

simple linear model along with a GAM, CART, MARS and ANN were used to fit the
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Table 5-2. Effect of Adding Normally Distributed Error with Increasing Standard

Deviations (in parentheses).

RMSE PWI RHO
MODEL (30) €50) (1) (50 (300 (1) (30) (.50) 1)
LM 0.199 0.358 0.579 0.183 0.103 0.087 0.836 0.650 0.421
GAM 0.148 0.328 0.577 0.240 0.130 0.077 0913 0.717 0.439
CART 0.136 0.318 0.586 0.340 0.127 0.053 0.929 0.738 0.421
MARS 0.047 0.297 0.603 0.767 0.133 0.077 0.992 0.775 0.429
ANN 0.037 0.292 0.556 0.870 0.160 0.097 0.995 0.784 0.508

model along with a GAM, CART, MARS, and ANN were used to fit the relationship
between Y!-Y5 and the X1-X3. Models were tested using independent test data and the
resulting values for RHO, percent within .1, and RMSE are shown in Tzible 5-3. In
addition, residual plots (again using test data) for all response variables and models are
shown in Figure 5-3. Y1 illustrates how each of the models performs when the response
is a simple linear function of predictor variables. All models predict quite well over the
test set with the exception of CART that is known to have trouble approximating linear
functions. Next, Y1 illustrates a response that assumes values of 0 or 1 based on a simple
bivariate step function. Here, CART excels because of its ability to assign values above
and below simple threshold values, while the other models did quite poorly. Y3 is an
illustration of data generated from a gamma distribution, with predictor variables
affecting the mean in a nonlinear fashion. Here, the LM fails, CART perform on slightly
better, GAMs with a log link performed much better (as it should), as did MARS and

ANN. Y4 allows for a 2-way interactions and both linear and nonlinear terms. The

nonlinearity causes trouble with the LM, the linear term confuses CART, and the
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Table 5-3. Modeling Results for Five Simulated Data Sets.

Model PWI
True Formula Technique RHO (.1) RMSE
Y1=2X1+3X2 LM 1.00 100  0.00
GAM 1.00 100  0.00
CART 0.95 ¢ 190 017
MARS 1.00 100  0.00
ANN 1.00 100  0.00
Y2=ceiling((X1-.5)(X2-.5)) LM 0.01 0w 428
GAM 0.05 0 027
CART 1.00 100  0.00
MARS 084 ° 33 " 015
ANN 0.89 48  0.12
Y3 ~ gamma(10 +sin(27 X1) + (20X2-10)*)/100 LM 011 21 0.16
GAM 097 87 0.04
CART 097 81 0.04
MARS 097 84  0.04
ANN 098 8  0.04
LM 091 27 0.17
Y3 ~ gamma(10 + sin(27 X1) + (20X2-10)*)/100 GAM 096 31 0.11
CART 094 29 0.14
MARS 1.00 97  0.03
ANN 1.00 100  0.01
Y5 =500((X3-.5)0(X1-.5X2-.13X3)) LM 1.00 37 0.16
GAM 099 36 0.17
CART 098 18 0.21
MARS 1.00 100  0.02
ANN 1.00 100  0.00
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Figure 5-3. Illustration of Strength and Weaknesses of Different Modeling
Techniques.
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and ANN clear leaders for this illustration. Finally, Y5 illustrates how well ANNs

perform with nested logistic functions, with MARS trailing as a distant second.

Mapping Results

Discrete Variables

Results from predictive mapping of the discrete variables are displayed in Figures
5.4-5.6, and presented in Appendix D-1. Figures 5-4, 5-5, and 5-6 show results for the
three performance measures PCC (percent correctly classified), Kappa, and total
computing time, respectively. Each individual dotplot on a page illustrates results by
modeling technique (y axis) by variable (columns) within ecoregion (rows). The trellis
graphics allow for quick visualization of a very large number of total model fits.
Modeling techniques were ordered from best to worst (descending down Y axes in each
plot) according to the median value of each performance measure across all variables and
ecoregions.

The PCC (percent correctly classified) and Kappa results (Figures 5-4 and 5-5)
suggest little difference between modeling techniques for identification of forest/non-
forest but illustrate substantial gains over the NLCD approach in finer separation into
three classes (FORTYP.3). These gains are made regardless of the nonlinear or
nonparametric model chosen. The top two techniques (based on median values for
individual performance measures) are MARS and GAMs for PCC (by a very slim

margin), and GAMs and MARS for Kappa. By looking at the run time plot (Figure 5-6),

there is a clear computational advantage in the NLCD and MARS models.
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To further simplify the numerous graphs, a ranking scheme was devised whereby

models were given a value from 1 (worst) to 5 (best) by variable and ecoregion for each
of the performance measures. These values were then summed across performance
measures and model ranks displayed in Figure 5-7. For discrete variables, the order using
this strategy is MARS at the top, followed by GAM, CART, ANN, and NLCD. Of
course, this gives equal weight to all performance measures and does not reflect the tiny
differences that ultimately determine rank.

An example of a 1-km resolution map of predicted forest/non-forest in UT2 is
given in Figure 5-8. An ascii file of UTM coordinates and predicted values were brought
into a pre-made ArcView layout, easing the chore of generating map displays. “Prettier,”

finer resolution maps are currently in production for all variables in all ecoregions.

Continuous Variables

Results from predictive mapping of the continuous variables are tabled in
Appendix D-2 and displayed in Figures 5-9 through 5-12. The layout in these figures is
the same as in results for discrete variables. Results for the four performance measures
(RMSE, RHO, PWI-25%, and computational run time) appear on the four separate
figures. Figures 5-9 and 5-10 suggest that all five models often perform competitively for
RMSE and PWI, but occasional erratic behavior by ANN, MARS, and CART can be
anticipated. AZ2 was a good example where the small number of forested plots (165) and
tremendous variability in total biomass made for unrealistic model prediction by ANN

~and MARS. However, better predictions were obtained in other ecoregions. GAM, ANN,

and MARS appeared to perform best based on median values of RMSE, PWI, and RHO.
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Variables Using Test Data.
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Figure 5-12. Computational Run Time for Models of Continuous Variables Using
Test Data.
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Values for RHO reflect the ability of GAMs and MARS to produce much more

reasonable residual plots. An example of these plots for each modeling technique and
response variable within UT2 is shown in Figure 5.13. These residual plots are
representative of patterns seen in other ecoregions and, like the simulation examples in
the first section of this chapter, illustrate the magnitude of the noise in the data as well as
the small gains realized through alternative modeling techniques. As with the discrete
variables, run time plots shown in Figure 5-12 illustrate the speed with which the simple
NLCD and MARS models run relative to the others. Using the same ranking scheme as
for models of discrete variables, Figure 5-14 puts GAMs first, followed by MARS, ANN,
NLCD, and CART. Finally, Figure 5-15 is another example of a 1-km resolution map

displaying predicted values for BIOTOT in UT2.

Stratification Results

Precision on Population Estimates

Figure 5-16 illustrates percent standard error in estimates of the four different
population totals by stratification scheme within ecoregion. Figure 5-17 presents the same
information using a different measure. Here, results are expressed as a ratio of the
standard error under simple random sampling to the standard error under the scheme of
interest. Recall the four population means include percent forest area, percent forest type
within forested area, tree volume, and net annual growth. The stratification schemes
include simple random sampling, stratification based on forest/non-forest calls from the

NLCD data, and stratification using FORTYP.2 non-forest mask along with the

FORTYP.3 classification of forested areas from MARS models in each ecoregion.
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Figure 5-15. Map of Total Biomass Predicted from a MARS Model in UT2.
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In UT1, UT2, AZ1 and AZ2, this is stratification based on modeledtimberland/woodland/
non-forest. In MT1 and MT2, stratification is based on modeled spruce-fir/other
forest/non-forest. Variances for this MARS as well as the NLCD approaches were
obtained using stratified random sampling (STR) formulae as described in Chapter 4.
Bootstrap estimates for the MARS strategy are discussed in the next paragraph. In Figure
5-16, stratification schemes are listed along the y-axis of each graph in the panels in order
(best to worst) of percent standard error for each of the population variables. The figure
shows the large gains in precision through NLCD stratification over SRS, and illustrates
further gains using a more complex MARS stratification over the simple NLCD
approach. As an example, Figure 5-17 illustrates how variance under simple random
sampling may be 1.5 times larger than that under a MARS stratification in MT1 for
estimating proportion of forest. This may seem like a substantial gain until one looks at
the miniscule reduction in standard error when expressed as a percent of the mean (i.e.,
sample sizes are very large and standard errors small to begin with, Figure 5-16).
Bootstrap estimates of the variances under the MARS-based stratification scheme
were run to see if the STR formulation was appropriate. Figure 5-18 illustrates results for
four population estimates in AZ1. One hundred bootstrap samples were generated as
described in Chapter 4, and bootstrap standard errors plotted for increasing number of
iterations. The circles on the plots are the variances obtained for MARS-based
stratification using STR formulation. The triangles are variances under the NLCD

approach, and p/us indicated variance using simple random sampling. The circles,

triangles, and pluses are not related to number of bootstrap iterations, and are placed on




i

FOREST IN AZ1 TIMBERLAND IN AZ1
8 | 8
o o
o =
s v s w
E 5 i BB
o o +
: W 5 M
L 3
€ L]
a © a © O
g 5 - g 5
¥ o » o
S 8 {
20 40 60 80 100 20 40 60 &80 100
Number of bootstrap samples Number of bootstrap samples
NVOLTOT IN AZ1 NGRWCF IN AZ1
~ 8
o
Z 2
S <]
5 © 7 + s v
B o E =
T
E O A g g \W\/\\ *®
7] ) A
g g 2 | ol
s 3
'9]
® A S
T T T —T T ( aw ] T
20 40 60 80 100 20 40 60 80 100
Number of bootstrap samples Number of bootstrap samples
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the plots to simply indicate values obtained using stratification or simple random
sampling formulation of variances directly. Certainly, more investigation is needed
before one can use STR formulation without reservation, but these initial runs are
compelling. The ability to use sample plots in modeling strata that are in turn used to

produce estimates of population totals would greatly enhance the current estimation

process in forest inventories.
Relationship Between Map Accuracy and
Precision Gains Through Stratification

One would expect that stratification based on the more accurately classified maps
would result in smaller variances for estimates of population totals, particularly in
estimates of area by forest type. However, Moisen and Edwards (1999) demonstrated that
surprisingly small gains in efficiency in population estimates might be realized using
“better” maps for stratification. The point was driven home again in Figure 5-16. Here,
the general effect of map accuracy on the relative precision of estimates of population
totals obtained under simple random sampling (SRS) to those obtained under stratified

random sampling (STR) is explored analytically.

Estimating Population Proportions

In order to begin exploring the general relationship between map accuracy and the
relative precision of estimates of population proportions obtained under the two designs,
we need to make some simplifying assumptions. First, assume one of the strata (say h=1)

is defined to closely mimic the class whose proportion we are interested in estimating.

For example, if we are interested in estimating the proportion of timberland in a
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population, stratum 1 may be land thought to be timberland, stratum 2 may land thought
to be woodland, and stratum 3 may land thought to be non-forest based on classified
satellite imagery. Next, assume all the other strata are of approximately equal size, e.g., a
100,000 ha population may be divided into 50,000 ha of timberland, and 25,000 ha each
of woodland and non-forest. Then for each of L strata we may write
O<W, <1, and W, =(1-W))/(L-1),for2<h<L. (5.1
Also assume classification accuracies are the same for all vegetation classes and

that the misclassification is evenly distributed between classes. These accuracies will

affect the proportion of the class of interest (P5) within each of the strata as follows:

P, =PCC, and
P, =(1-PCC)/(L-1),for2<h<L.

(5.2)
For example, if overall PCC for the map is 80%, then the PCC for timberland equals the
PCC for woodland, which equals that for non-forest, namely 80%. If 80% of mapped
timberland locations are indeed timberland, then 10% are misclassified as woodland and
10% as non-forest under the simplifying assumptions above. Table 5-4 illustrates what a
confusion matrix might look like given 100 accuracy points collected in each stratum.

Recall that the true population proportion is the weighted sum of proportions

across strata, so using Equation 5.1 we may write
L
P:ZWhPh =W\A+(L-DW,P, =W\P+(1-W,)P, =W,P, + P, -W\F,, (5.3)
h=1

where 2<h< L.

Now, the relative precision (RP) of SRS to STR is
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Table 5-4. Confusion Matrix Given 100 Accuracy Points Collected in Each Stratum.

True True True User’s
Timberland Woodland Non-Forest Accuracy
Mapped
Timberland 80 10 10 80%
Mapped
Woodland 10 80 10 80%
Mapped Non-
forest 10 10 80 80%
Producer’s
Accuracy 80% 80% 80% 80%
%4 »
RP:V“":LJI;/Q P)/n .
- Z —L A h (1 - P, ;.)
h=1 1y
W 2 W 2
Because —- = 7 h_ = _—*_  under proportional allocation the expression for the relative
n, W
precision simplifies to
RP = P(1-P)

Z .
ZWhPh(l _Ph)
h=1

Under the assumptions and relationships stated in equations 5.1 — 5.3, the RP can
be expressed as a function of #; and PCC alone by substituting for P, W}, and P,. The
final equation is complicated and uninformative, but graphing the relative precision
between SRS and STR for given W; and PCC values, as in Figure 5-19, sheds a
considerable amount of light on the problem. From this graph we see relatively small

gains in efficiency for PCC values below 70%. However, much more dramatic gains are

realized for very high accuracy levels and mid-range primary stratum weights. The shape
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Figure 5-19. Ratio of Standard Errors Obtained Under Simple Random Sampling to

Those Obtained under Stratified Random Sampling for Estimating
Population Proportions.
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of this graph remains unchanged regardiess of the number of strata. Increasing the
number of strata improves relative precision only if it effectively increases the “accuracy”
of mapped classes for the proportion of interest. As an example, changing from a simple
forest/non-forest stratification to a timberland/woodland/non-forest stratification might
help distinguish timberland from other forested areas, thus improving an estimate of total
area of timberland.

Estimating Population Means for
Continuous Variables

The relative precision of STR to SRS when we are interested in estimating
population means or totals from continuous variables may also be expressed as a function
of the PCC and the percent reduction in variance in “pure” (100% accurate classes). For
example, suppose we are interested in the total volume of wood in a region. Assume
stratification into perfectly classified hardwood forest and softwood forest results in
within strata variances that are some proportion (call it R) of the overall population
variance for volume. As strata become less perfect in terms of their classification
accuracy, that (1-R) gain in precision is reduced further. The following analysis
quantifies that reduction.

If within “pure strata” variance is a proportion R of the overall population

variance in a SRS, and the same as the SRS variance elsewhere, then we can write

S,> = PCC(R)S* +(1- PCC)S*

for equal strata sizes. Then, under proportional allocation, the RP can be written
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1/
RP: '/SrS

Bt o
2.,

P

g
%(PCC(R)SE +(1-PCC)S*)L

1
~ PCC(R)+(1-PCC) "

Here, the number of strata itself does not affect the RP unless it results in higher PCC
values for the class of interest, or greater homogenization of continuous variables.

This relationship is illustrated in Figure 5-20. Note the flatness of the graph until
variance within pure classes is around 30% or less of the population variance, or the
accuracy extremely high.

Potential Reduction in Sample Size
Through Stratification

For both estimation of population proportions and means of continuous variables,
the percent reduction in sample size that would be possible under STR, if one only had to
achieve the same precision as SRS, may be calculated as follows. Given

P(1-P)

= = an expression involving #;.
2 W.A(1-5)

Setting this expression equal to 1 and solving for #in terms of the relative precision, RP,

and n,, one gets

L pi-p)
n n,

1: ] = —

Y W,Aa-B) ™
n,
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Figure 5-20. Ratio of Standard Errors Obtained under Simple Random Sampling to
Those Obtained under Stratified Random Sampling for Estimating
Continuous Population Variables.
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So, n, = ]Z—}) This relationship is illustrated in Figures 5-21 and 5-22 for proportions and

continuous variables, respectively.




82

1
o
[

T
e
=

TR T N T ITIRN IO vT

“t o8

08 - 05

;04

% Reduction ig:n

02

08

04 o7

Stratum 1 Weight

02 " PCC

Figure 5-21. Percent Reduction in Sample Size Through Stratification for Estimating
Population Proportions.




83

53

el LT TFTTIITITITY

08

~08

% Reduction ¥ n

02

08 08

04 02

% Reduction in SE in Pure Classes

Figure 5-22. Percent Reduction in Sample Size Through Stratification for Estimating
Continuous Population Variables.




84
CHAPTER 6

DISCUSSION AND CONCLUSIONS

Discussion

Objectives

Recall that the first objective of this research was to develop an automated
mapping and stratification system for forest inventories in the Interior West. The
objective was accomplished and the system developed in an S-Plus computing
environment. This modeling “box” serves as a key component in an interdisciplinary
system for integrating ancillary data with forest inventories for delivery of new products
and more cost-effective information (Figure 6-1). Any predictor variables in grid or
ASCII format can be merged with FIA data using any of the five modeling techniques
within the box. The outputs include predictions and potential for analysis using five
modeling techniques, a report of map accuracy for discrete and continuous variables,
estimates under an assortment of stratification strategies, as well as flat files for building
predictive maps. The box also provides the machinery for a tremendous amount of future
research using real and simulated data.

In addition, development of this modeling box prompted rapid development of
other boxes in the interdisciplinary system shown in Figure 6-1. Data extraction
processes from both the “Field” and the “Digital” boxes have come a long way, as
described in Chapter 3. In addition, the rapid output of predictive maps made possible

through the modeling box, as well as interest from forest managers, has prompted further
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DELIVERY

Figure 6-1. Interdisciplinary System.
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development of the “Delivery” box for hard and softcopy maps, analysis tools, and web-
based production.

The second objective was to determine which of the modeling techniques were
best suited for a forest inventory production environment. All techniques tried here
proved themselves workable in an automated environment, although ANNs were a bit
more problematic. Computation run time is one area the modeling techniques differed
substantially. Naturally, the simple NLCD model was extremely fast with no
computational “glitches.” GAMs and CARTSs are normally quite fast but were
considerably slower here because of the stepwise procedures for GAM and iterative runs
searching for best tree size for CART. ANNs were the slowest in these applications, and
have the potential to be cripplingly slow for “slow but safe” parameter optimization
procedures in FUNFITS. Obviously, the simplest NLCD approach or another simple
linear model is most readily incorporated into a production process. But of the more
flexible techniques, MARS showed promise in a production environment because of its
fast computing rate, little need for user “steering,” and tendency to produce reasonable
models when ANN failed. Certainly, any of the models could be made production
suitable, and a sensible strategy may well be to keep all the tools in the toolkit, using
several for each application.

The final objective was to determine if introducing more flexible statistical
models into forest inventory mapping and stratification procedures makes an appreciable
difference in accuracy of forest maps and precision in estimates of population totals,

respectively. Many valuable lessons were learned through this work as discussed below.
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Mapping

This simple simulation described in the beginning of Chapter 5 illustrated that use
of a flexible and powerful modeling technique can make a huge difference in predictive
performance when the signal-to-noise ratio is high. The test also shed some light on the
character of each technique. It was surprising that CART performed worse than a simple
linear model. It was also surprising that GAM’s stepwise procedure was not able to
exclude all the noncontributing variables. In addition, the ease with which both MARS
and CART established the relationship of Y to the predictor variables was very
informative.

The differences between modeling techniques using real data were far less
impressive. In fact, for a number of variable/ecoregion combinations, only small
differences were realized using any of the modeling techniques over a simple NLCD
approach, particularly for distinguishing forest/nonforest, or in RMSE for continuous
variables. Larger gains were realized, however, for further classification of forested areas
(FORTYP.3) and in getting predictions that fell within a user-specified ballpark. In
addition, slightly higher correlations were realized for MARS and GAMs. This was seen
in residual plots where more realistic predictions were obtained for extreme lows (in both
MARS and GAMs) and extreme highs (for MARS).

When starting this analysis with the real data, I had anticipated seeing marked
differences between modeling techniques. The small gains seen with these data sets were
at first disheartening, but understandable given the tremendous amount of noise in the
data. Sources of noise are numerous and include: positional error in field plots,

registration difficulties between plots and images, scale differences between data
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collected in the field and the imagery, differences in date, definitional differences, and the
list goes on. Based on the results one might be inclined to stick with a simple NLCD
model from mapping. Yet, the data are in a constant state of change. GPS coordinates
with national standards are now being collected on all field plots, better resolution
imagery with standardized registration procedures are becoming available, softcopy low
altitude photography is under development, and better resolution topographic information
will be available shortly. Given all that, the true benefit of a new predictor variable might
be overlooked if only linear models were in place. So, building MARS or ANN into a
predictive mapping system up front is likely to have big payoffs down the road, even if

differences between that and a much simpler approach are only marginal right now.

Stratification

Finding that use of the simple NLCD data alone for stratification results in
estimates of population totals that substantially improved SRS estimates, and meet
National standards for precision, is very useful. This results in substantial cost savings
over the prior two-phase sampling procedures using expensive and labor-intensive photo
interpretation for stratification. The analyses also illustrate the additional gains that can
be realized when using ancillary data and a modeling technique like MARS. These gains
might provide some cost savings in annual inventory systems in the future where as much
information as possible needs to be squeezed out of ancillary data.

Another valuable result is that an increase in accuracy in a map used for
stratification does not translate linearly into gains in precision in estimates of population

totals. The last section of Chapter 5 provides graphical tools for managers trying to
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decide how accurate a map is needed for stratification, and what the trade-off is between
sampling size and precision in lieu of known accuracy for stratification maps. These are
very helpful pieces of information for management decisions and tough choices on where

sampling money should go.

Conclusions

Here, I developed an automated mapping and stratification system well suited for
regional forest inventories in the interior west, but portable to other applications. Any
predictor variables in grid or ASCII format can be merged with response variables using
any of the five modeling techniques in the box. The outputs include predictions and
potential for analysis using five modeling techniques, a report of map accuracy for
discrete and continuous variables, estimates under an assortment of stratification
strategies, as well as flat files for building predictive maps.

In comparing the different modeling techniques, all proved themselves workable
in an automated environment, though the simple NLCD and MARS required the least
amount of user input or “tinkering.” When explored through a simple simulation,
tremendous advantages were seen in use of MARS and ANN for prediction, but much
smaller differences were seen when using real data because of noise or possible lack of
nonlinear relationships between the response and predictor variables. The simple NLCD
model had the computational advantage, but MARS performed (marginally) best most
often for binary variables, while GAMs did (marginally) better most often for continuous
variables. Ranking was based on measures of map accuracy, predictive performance, and

computing run time. Although little appreciable difference was seen between the models,
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as better predictor variables become available, tremendous advantages may be realized
using more flexible statistical techniques.

For stratification, using the simple NLCD data alone for stratification resulted in
estimates of population totals that improved SRS estimates, and met National standards
for precision. This results in substantial cost savings over the prior two-phase sampling
procedures using expensive and labor-intensive photo interpretation for stratification. The
analyses also illustrate the additional gains that can be realized when using ancillary data
and a modeling technique like MARS. In addition, the general effect of map accuracy on
the relative precision of estimates of population totals obtained under simple random
sampling (SRS) to those obtained under stratified random sampling (STR) was

established for simple sampling scenarios.
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Appendix A: Data Extraction Procedure
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Appendix A-1. Frequently used commands in Arclnfo.

list grids
eg: lg

describe grid spec
eg: describe usa grid alb

list elements in a coverage
eg: list <coverage>.pat

delete a grid or coverage
eg: kill mt2 1z all

convert grid or coverage to a new projection

eg: project grid usa grid_alb usa grid lamaz
gis/projections/utml22lamaz.prj

eg: project cover azl azl lz autml22lamaz.prj

copy from one coverage to another
eg: copy st_boundary mtbnd

build poygon coverage after projection
eg: build spatial/data/coverages/bound/azbnd lz poly

clip grid with boundary and make sep grid file
Usage: LATTICECLIP <in lattice> <clip cover>
<out_lattice> {MINIMUM|EXTENT}{z_ factor}
eg: latticeclip /fsfiles/unit/fia/spatial/data/factory/usa_grd 1z
/fsfiles/unit/fia/spatial/data/coverages/bound/azbnd 1z
azdeml000 1z

extract point values from grid and add to point cover
Usage: LATTICESPOT <in_lattice> <in_cover> {spot_item} {z_factor}
eg: latticespot ../dma/azdeml1000 ul2 az2 fctl deml000

Arc: identity

Usage: IDENTITY <in_cover> <identity cover> <out_cover>
{POLY | LINE | POINT}
{fuzzy tolerance} {JOIN | NOJOIN}

display a grid

ap

Arcplot: display 9999
Arcplot: mape utdeml000_lz
Arcplot: image utdeml000 1lz

q

generate slope and aspect from elevation grid
grid

Grid: ../dma/azslpl000 ul2
Grid: ../dma/azaspl000_ul2

q

slope(../dma/azdeml1000 ul2,degree)
aspect(../dma/azdem1000_ul2)
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##make ascii file from a coverage w/ plotid,variables (comma delim)
tables
tables: select <coverage>.pat
UNLOAD <outfile> {$recno,iteml,...,itemn..no bracks}
{DELIMIted | columnar <format file>}
q stop

## join item
Usage: JOINITEM <in_info_ file> <join_info_file> <out_info_file>
<relate item>
{start_item} {LINEAR | ORDERED | LINK}

## change name of attribute in coverage
tables
tables: select <coverage>.pat
tables:items or list
tables: alter
itemname: <newname>
<return what left unchanged>

q stop

## extract values from multiple gridsat points using various
interpolation options (or none for discrete grids)
Grid: sample
Usage: (T) SAMPLE (<mask>, {grid, ..., grid})
(T) SAMPLE (<* | point_file>, {grid, ..., grid},
{NEAREST | BILINEAR | CUBIC})

eg: Grid: ../../../ascii/ut2/mapl1000/ut2 gaplk.dat =
sample(../../../ascii/ut2/mapl000/ut2 1k.txt,
ut2elv90 ul2,ut2asp90_ul2,ut2s1lp90 ul2,
ut2tm b3 ul2,ut2tm b4 ul2,
ut2tm b5 ul2,utgap90 ul2, nearest)

(from /spatial/data/ascii)

transfer/ut2 nlcdSk.dat =
sample (ut2/responses/ut2 xy5 ul2.dat,../factory/nlcd/ut _nlc
d_ul2,nearest)

transfer/mt2 nlcdSk.dat =
sample (mt2/responses/mt2 xy5 ul2.dat,../factory/nlcd/mt nlc
d_ul2,nearest)

transfer/utl nlcdlk.dat =
sample (ut1l/mapl000/utl_1k.txt,../factory/nlcd/ut_nlcd ul2,n

earest)

## generate an intensive grid for mapping then sample
## from other grids to create an ascii file

LATTICECLIP inlattice clipcover outlattice
outgrid=RESAMPLE (grid, cellsize)
outascii=SAMPLE (mask_grid,grid, grid,...,grid)




ex:latticeclip dma/utdeml000_ul2 bound/ut2 ul2 dma/ut2demlk ul2
grid
dma/ut2deml100_ul2 resample (dma/ut2demlk ul2,100,nearest)
dma/ut2dem500 ul2 resample (dma/ut2demlk ul2,500,nearest)
../ascii/map.pts/ut2samp500.txt =
sample (dma/ut2dem500 ul2,dma/ut2demlk ul2)

## project to new projection
project cover mtbnd ul2 mtbnd_ lam
/fsfiles/unit/fia/gis/projections/utml22lam.prj
build mtbnd_lam poly

BHHHHHHHHAHERHEHH AR B H AR
# extract data from usa 1000m dems #

SR R R R

describe grid to get correct projection parameters
project spatial/data/factory/usa grd 1z in lamaz
project state boundaries in lamaz
rebuild boundaries as polygon coverages
latticeclip AZ, MT, and UT from demgrid
and project as ul2
create slope and aspect grids for each of 3 states
6. latticespot ecoregion point coverages to extract elv1000,
s1pl000, and aspl000

B w KK o

w
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Appendix A-2. SAS program to extract plot and tree level variables from SAS data
sets from plots given file of UTM coordinates.
(Written by Shirley Waters.)

$Let STATE=arizona;
$Let SA=all;
Titlel Arizona;

*Filename gretchen_az.sas;
* SAS program to create a file of variables and merge with
* a file created by gretchen;
$Let CALPATH2 =%STR(/calcul);
$Let CALPATH1 =%STR(/fsfiles/unit/fia/data/prelimdat/):;
$Let CALCDIR =&CALPATH1&STATE&CALPATHZ2;
$Let DIRSEP=/; * Directory separator;
Libname LIBRARY
"/fsfiles/unit/fia/data/prelimdat/&STATE/formats";

Libname TAB "/fsfiles/unit/fia/data/prelimdat/&STATE/calcul”;
Libname DAT "/fsfiles/unit/fia/data/prelimdat/&STATE/field";

Options Linesize=200;
*OPTIONS OBS=20;

Data NULL ; File '?Footnote';
Length RUNDATE $8;
RUNDATE = Put (DATE () ,MMDDYYS8.) ;
Put "Footnote H=.9 J=R

'/fsfiles/unit/fia/data/prelimdat/arizona/calcul/
gretchen az.sas--"RUNDATE"';";
Run;

$Include '?Footnote’;
Footnote2 H=.1;

Data PLOTS (Drop=DIA TRHIS BA NGRWBA BAACC NVOLTOT NVOLMER
NGRWCF BIOTOT TPALOQC) ;
Set TAB.TOTAL&SA (Keep=SA PLOTID CO LOC GRDCOV LNDUSE OWNER

FOREST DAY
MONTH YEAR A_FORTYP A _STSZCL CRCOV ELEV PHYSCL QMD ASPECTAZ
SLOPE
CURVECL BAACC MAICF A STAGE SAMPKND CNDPROP LNDUSE GRDCOV
A_FORTYP

DIA TRHIS TPALOC BA BIOTOT NVOLTOT NVOLMER NGRWCF NGRWEBA) ;
Retain STPALOC SBA SBIOTOT SNVOLTOT SNVOLMER SNGRWCF
SNGRWBA O0;
By PLOTID;
If CNDPROP Ge 1;
If FIRST.PLOTID Then Do;
STPALOC = 0;
SBA = 0;
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SBIOTOT = O0;
SNVOLTOT = O0;
SNVOLMER = 0;
SNGRWCF = 0;
SNGRWBA = 0;

End;

If TRHIS Eq 1 And DIA Ge 1 Then Do;
STPALOC = STPALOC + TPALOC;

SBA = SBA + BA;
SBIOTOT = SBIOTOT + BIOTOT;
SNVOLTOT = SNVOLTOT + NVOLTOT;

End;

If TRHIS Eq 1 And DIA Ge 5 Then Do;
SNVOLMER = SNVOLMER + NVOLMER;
SNGRWCF = SNGRWCF + NGRWCEF;
SNGRWBA = SNGRWBA + NGRWBA;

End;

If LAST.PLOTID Then Output PLOTS;
Run;

Proc Sort Data=PLOTS;

By CO LOC;
Run;
Data GRET1;

Filename GRET1
"/fsfiles/unit/fia/gis/factory/anal/azl_fldplts.txt";
Infile GRET1 DLM=',"';
Input CO LOC UTME UTMN;
Run;

Data GRET2;
Filename GRET2
"/fsfiles/unit/fia/gis/factory/anal/az2_ fldplts.txt";
Infile GRET2 DLM=',';
Input CO LOC UTME UTMN;
Run;

Proc Sort Data=GRET1;
By CO LOC;
Run;

Proc Sort Data=GRET2;
By CO LOC;
Run;

Data VARS;
Merge DAT.CTRL (Keep=CO LOC GLU GRIDZONE LONGTUDE LATITUDE

PLOTID GRIDZONE EASTING NORTHING)
DAT.COND (Keep=PLOTID CNDPROP PCTBARE SZCND)
DAT.LOC (Keep=PLOTID SZFOR RSCOV1) ;
By PLOTID;
If CNDPROP Ne 1 Then Delete;
If GLU Ge 96 Then Delete;
Run;




Proc Sort Data=VARS;
By CO LOC;
Run;

Data PLOTS1l; Merge PLOTS GRET1 (In=A) VARS (In=B);
If A and B;
By CO LOC;
If GLU Ge 96 Then Delete;

Run;

Data PLOTS2; Merge PLOTS GRETZ2 (In=A) VARS (In=B);
If A and B;
By CO LOC;
If GLU Ge 56 Then Delete;

Run;

Data _NULL ; Set PLOTS1 END=LAST;
File
"/fsfiles/unit/fia/data/prelimdat/arizona/calcul/
azl fldplts_sum.txt"
Put (ASPECTAZ A FORTYP A STAGE A STSZCL CNDPROP CO CRCOV
CURVECL DAY
EASTING ELEV FOREST GLU GRDCOV GRIDZONE LATITUDE LNDUSE
LOC LONGTUDE
MAICF MONTH NORTHING OWNER PHYSCL PLOTID QMD SA
SAMPKND SLOPE UTME UTMN YEAR)
(210, 4 (=1)%, %) +(-1) %"
(SBA SBIOTOT SNGRWBA SNGRWCF SNVOLMER SNVOLTOT STPALOC)
(:10.2 + (-1)"',"):
If LAST Then Put 'END';
Run;

Data NULL ; Set PLOTS2 END=LAST;
File
"/fsfiles/unit/fia/data/prelimdat/arizona/calcul/
az2_fldplts_sum.txt";
Put (ASPECTAZ A _FORTYP A STAGE A STSZCL CNDPROP CO CRCOV
CURVECL DAY
EASTING ELEV FOREST GLU GRDCOV GRIDZONE LATITUDE LNDUSE
LOC LONGTUDE
MAICF MONTH NORTHING OWNER PHYSCL PLOTID QMD SA SAMPKND
SLOPE UTME UTMN YEAR)
{:10. + {(=1)",') +(=1) "*,°*
(SBA SBIOTOT SNGRWBA SNGRWCF SNVOLMER SNVOLTOT STPALOC)
(:30.2 + (—~1)%,"%):
Run;

Proc Contents Data=PLOTS1;
Run;

Options Obs = 50;

Proc Print Data=PLOTS1;
titlel first 50 records of
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/fsfiles/unit/fia/data/prelimdat/arizona/calcul/
az2_fldplts_sum.txt;

title2 warning: Arizona has 2 gridzones;

run;

Proc print Data=PLOTS2;

titlel first 50 records of
/fsfiles/unit/fia/data/prelimdat/arizona/
calcul/az2_ fldplts_ sum.txt;

title2 warning: Arizona has 2 gridzones;

run;
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Appendix A-3. AML to generate a point coverage with attributes from Oracle tables
(Written by Ron Tymcio and Tracey Frescino)

/*HEHHHHHH S R R R H A R A H A
/*

/* TITLE: ORACLE_LLGEN.AML

/* DESCRIPTION: To generate a point coverage using latitude/longitude

[* coordinates and plotid

/* data that resides in Oracle with user-specified
Ve attributes.

/*

/* Written by Ron Tymcio 10/3/95.
/* Seriously modified by Tracey Frescino 6/28/99
/* Then re-seriously modified by Ron Tymcio 2/26/00.

/> - Modified to use Geographic Coord.

/*

/*

/* INPUTS: .table Oracle user.table that has coordinate
f* info to build coverage

s .cover Output coverage name

¥ .where Oracle WHERE clause specifying boundary
Vi criteria

[* .more Additional variables, if desired

/% .out Output filename for ASCII info, if
1> desired

/*

/* OUTPUTS: A point coverage including additional variables
[* if specified

/1* A comma delimited ASCII file if asked for.

/% (The point coverage is projected to UTM zone 12)
/*

/*HHHH B R R R R R R R R T R R R e

/*

/* Set variables

/*

&args .table .where .cover newsell newsel2 newsel3 .more atts atts2

.more2 outatts .out

/**********************************************************************
khkhkkhkhkhdhkhhkkhkhkhkdhkhdhkhhk

/* Begin - prompt for Oracle user.tablename
/**********************************************************************

Jde d dk % d ok gk ke %k ok ke ke ke ok ok ok ke ok ke ok
&do &while [null %.table%]
&setvar .table [response 'Enter the Oracle user.table that has
coordinate information - fia.rllocs']
&end
/*&do &while [null %.where$%]
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&type Enter WHERE clause to delineate coverage boundary

&setvar .where [response ' (Include WHERE in statement - ex. where
forest = 3) ']
/*&end
/*
/* Prompt for point coverage name.
/*

&do &while [null %.cover%]
&setvar .cover [response 'Enter the name of ouput coverage']

&end

/**********************************************************************
% k& vk d de de g ek gk de ok ok e ok ok ke ke ok

/* Erase any existing INFO tables or ASCII files

/**********************************************************************

hhkdkhkdkdkhkhkkkdkhkdkdkhkdhkxkdhik

rm tempcoord.dat
rm newtempl.dat
rm newtemp2.dat
rm newtemp3.dat
&data arc tables
kill tempcoord
kill tempatts
kill tempatts2
kill newtempl
kill newtemp2
kill newtemp3

q stop;

&end

/*********************i************************************************
e d d e d de de e gk e g ok gk ke gk ke ke ke ke

/* Set Oracle SELECT statement using inputted table and where clause

info.
/**********************************************************************

d d %k %k %k gk kb ke %k ek ok ko ok ok ke ke ok
&if [NULL %.where%] &then

&setvar .select := [quote SELECT plotid, longtude*-1 longtude,
latitude FROM %.table%]
&if not [NULL %.where%] &then

&setvar .select := [quote SELECT plotid, longtude*-1 longtude,
latitude FROM $%.table% [unquote %.where%]]

/*********************************************************

/* Connect to Oracle and define variables for INFO
/*********************************************************
&data arc
connect oracle fia/rre
dbmsinfo oracle %.select% tempcoord define

plotid %.cover%-id 8 8 I;

longtude longtude 11 11 N 6;

latitude latitude 10 10 N 6;

end;
tables

sel tempcoord;
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reselect longtude = 0;

purge;y;
sel tempcoord;
unload tempcoord.dat %.cover%-id, longtude, latitude, delimited;

q stop;

/*********************************************************

/* Kill old coverage if it exists and create new coverage
/*********************************************************

&if [exists %.cover®% -cover] &then kill %.cover$% all

generate tempcover
input tempcoord.dat
peint

q

build tempcover point
/*quit
/*&end

/-A-********************************************************

/* Project cover to UTM 12

/*********************************************************

project cover tempcover %.cover$%
/fsfiles/unit/fia/gis/projections/dd2utml2.prj

build %.cover$% point

kill tempcover all

quit

&end

/**********************************************************************

d de gk de ke ok ek k% %k e ok ke ke ke ok

/* Add the plotid attribute to the point coverage by adding an
additional column
/* called plotid and copying the cover-id values to the plotid column.

/*************************************i********************************

e d e de e de gk ke kg ok ok ke ke ok ke ok

&data arc
tables
additem $%.cover%.pat plotid 10 10 I
sel %.cover$%.pat
calc plotid = %.cover%-id
q stop:;
&if [exists templ -cover] &then kill templ all
&if [exists temp2 -cover] &then kill temp2 all
&if [exists temp3 -cover] &then kill temp3 all
&if [exists templprj -cover] &then kill templprj all
&if [exists temp3prj -cover] &then kill temp3prj all
quit
&end

/************************************************<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>