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ABSTRACT 

Associations of Armillaria Root Disease in Jack Pine 

with Arceuthobium americanum 

by 

Elizabeth G. Hebertson, Master of Science 

Utah State University, 1995 

Major Professor : Dr . Fred A. Baker 
Department: Forest Resources 

11 

Relationships between jack pine dwarf mistletoe (Arceuthobium americanum Nutt . 

ex Engelm .) and Armillaria root disease (Armillaria ostoyae (Romagn.) Herink) were 

examined to determine how these two disease agents contribute to jack pine (Pinus 

banksiana Lamb.) decline and mortality in the Belair Provincial Forest, Manitoba, Canada . 

The incidence and extent of Armillaria root disease was strongly related to tree vigor. 

Dwarf mistletoe infection did not affect either the incidence of Arm ii/aria or the mean 

percentage of root system coloniz.ation within vigorous, declining, and dead classes of 

trees. However, field observations and other analyses indicate that dwarf mistletoe was 

primarily responsible for jack pine decline and mortality. In dwarf mistletoe mortality 

centers, Armillaria appeared to act opportunistically, extensively colonizing only the 

stressed trees. Analysis of distributions of percent Arm ii/aria coloniz.ation revealed that 
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rapid root system colonization occurred just prior to, or at the time of tree death. 

(106 pages) 
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INTRODUCTION 

Dwarf mistletoe (Arceuthobium americanum Nutt . ex Engelm .) parasitizes jack pine 

(Pinus banksinana Lamb.) throughout the Canadian prairie provinces, and lodgepole pine 

(Pinus contorta var /atifo/ia Dougl .) in Alberta (Hiratsuka 1987). Heavy dwarf mistletoe 

infestation reduces height and diameter growth, decreases seed production, and decreases 

vigor ofhost trees (Kuijt 1955; Knutson and Toevs 1972; Hawksworth and Shaw 1984). 

Branch and stem swellings, knots, and other morphological weakness caused by dwarf 

mistletoe result in deformity and reduce wood quality (Hawksworth and Johnson 1989). 

In commercial stands, extensive dwarf mistletoe infestations have resulted in considerable 

loss of merchantable trees (Hiratsuka 1987). Large witches' brooms and deformities also 

create difficulties during harvesting operations (Baker et al. 1992). Dead trees in addition 

to dead brooms and other woody debris pose safety and fire hazards . Deformity and 

extensive mortality also reduce visual quality in recreational areas (Gilbert and Punter 

1984). 

A characteristic pattern of tree decline occurs in stands where dwarf mistletoe is the 

primary agent responsible for mortality. In stands of young, shade-intolerant species, 

dwarf mistletoe infection centers typically develop around old, mistletoe-infested trees that 

survived fire, or logging (Baranyay 1970). In lodgepole pine, visible signs of tree decline 

and mortality become evident in dwarf mistletoe-infested stands within 50 to 100 years 

(Baranyay and Smith 1972), and jack pine decline and mortality have been observed in 

severely infested stands approximately 35 years old in Manitoba (Baker pers. comm.). In 

dwarf mistletoe-infested jack pine stands in Alberta, Muir and Robbins (1973) observed 



2 

that mostly dead trees with old mistletoe brooms were found within mortality centers . 

Heavily broomed living trees often had reduced height growth and dead tops. Mortality 

caused by this parasite created openings in the forest canopy ranging in size from 50 to 

300 feet in diameter (Muir and Robbins 1973). Dwarf mistletoe-infested trees surrounded 

openings and often had large witches' brooms . Red foliage was characteristic of dead and 

dying trees (Muir and Robbins 1973). The authors concluded that dwarf mistletoe was 

the primary agent responsible for death and decline because all mortality centers were_ 

infested . Similar observations were made regarding the pattern of tree decline and 

mortality in dwarf mistletoe-infested jack pine in Manitoba (Fig. 1 ). 

Dwarf mistletoes reportedly occur with insects and other disease agents in some forest 

pest complexes . Secondary infection by root rotting fungi and insects may contribute to 

tree death (Muir and Robbins 1973; Hawksworth and Shaw 1984). The weakening effects 

of dwarf mistletoe may make heavily infested trees less tolerant of insect defoliation and 

more susceptible to "primary" bark beetle attack including mountain pine beetle 

(Dendroctonus ponderosae Hopkins (Coleoptera : Scolytidae) (Parker and Stipe 1974; 

Johnson et al. 1976; Wagner and Mathiasen 1985). Dwarf mistletoe weakened trees are 

often attacked by "secondary" bark beetles including fps spp. (Coleoptera: Scolytidae) and 

wood borers (Melanophila spp . (Coleoptera : Buprestidae) hastening their death (Stevens 

and Hawksworth 1984). Damage resulting from stem infections may provide entry courts 

for fungal decay pathogens (Hawksworth and Shaw 1984; Filip 1984). Root disease 

associated with dwarf mistletoe accounted for 11 % to 14% of true fir mortality in 



FIG. 1. Extensive decline and mortality caused by jack pine dwarf mistletoe in the 
Belair Provincial Forest, Manitoba , Canada . 

3 
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northern California forests. Root disease and dwarf mistletoe were also associated in 

18%and 28% of the total conifer mortality in the San Bernardino National Forest, and the 

Laguna Mountain area and Cleveland National Forest, respectively (Byler 1978). 

In the Belair Provincial Forest, Manitoba, Canada, Armillaria root disease is believed 

to contribute to jack pine decline and mortality in mature stands heavily infested with A. 

americanum (Baker pers comm.). However, no studies have characterized the 

relationship between these two disease agents in jack pine. The need for research to 

examine the role of Armillaria in dwarf mistletoe mortality centers became apparent when 

young red pine (Pinus resinosa Ait.) established on former jack pine sites began to 

experience extensive mortality caused by Armillaria root disease. 

Because of the severe damage and mortality caused by dwarf mistletoe, past 

management practices in this forest have dealt primarily with dwarf mistletoe control. 

After harvesting, heavily infested stands were converted to red pine, a species with high 

commercial value, and one not susceptible to A. americanum (Knowles pers. comm.) . 

However, young red pine in these plantations currently suffer extensive mortality due to 

Armillaria root disease (Moody and Cerezke 1986). Located near the northwestern limit 

of red pine, young trees in these plantations may experience stress, making them 

susceptible to Arm ii/aria (Hood et al. 1991 ). 

A second explanation of the extensive Arm ii/aria-induced mortality in red pine 

plantations was proposed by Baker (pers. comm.) . He suggested that by reducing host 

vigor, dwarf mistletoe predisposes heavily infected jack pine to Armillaria. Armillaria 
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colonizes declining and dead mistletoe-infected trees in jack pine stands, increasing the 

amount of inoculum . After harvesting, stumps, roots, and debris become food bases, 

providing Armillaria with the energy to infect juvenile red pine. Klein-Gebbinck et al. 

(1991), Whitney (1988), and Stanosz and Patton (1987) have all described the importance 

of these inoculum sources in the spread of Armillaria root disease to juvenile trees in 

young stands. 

My research examined Armillaria root disease associated with jack pine decline in 

dwarf mistletoe mortality centers located in the Belair Provincial Forest. Jack pine 

experiencing stress induced by dwarf mistletoe exhibit visible symptoms of decline 

including open upper crowns, short yellow-green needles, top dieback, and reduced height 

and diameter growth (Hawksworth and Johnson 1989). These symptoms can serve as a 

means to assess host vigor primarily influenced by dwarf mistletoe . Hawksworth (1958) 

showed a relationship between tree vigor and dwarf mistletoe in Rocky Mountain 

lodgepole pine using four vigor classes based on crown condition described by Taylor 

(1939) . The percentage of board-foot volume in vigorous trees decreased from 20% to 

0% as dwarf mistletoe infection increased . Trees with symptoms of poor vigor comprised 

66% of the board-foot volume of heavily infected lodgepole stands (Hawksworth 1958). 

Basal area increment (BAI) can also serve as an index of a tree's past relative growth 

and vigor, and is an important characteristic for describing stand and site quality (Daniel et 

al. 1979). Daniel and others (1979) define BAI as a measure of the capacity of trees or 

stands to produce xylem elements. Genetics, biotic, physical, and chemical factors of the 
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environment all influence BAI (Daniel et al. 1979). Jack pine with visible symptoms of 

decline and reduced BAI resulting from dwarf mistletoe infestation should have greater 

incidence of Armi//aria and more extensive root system colonization than vigorous trees . 

The first objective of this study was to determine how the incidence and percentage of 

Armi//aria colonization was associated with tree vigor as influenced by the incidence of 

dwarf mistletoe. The second objective was to determine how the incidence and 

percentage of Armi//aria colonization was associated with tree vigor as influenced by the 

extent of dwarf mistletoe infestation . Tree vigor was assessed by visual criteria, including 

crown shape, extent of brooming, foliage color, terminal leader growth, and BAI. 

Understanding associations between dwarf mistletoe and Armillaria root disease has 

important implications for the control and management of these two disease agents. 

Information about these associations could lead to the development of systems to identify 

stands at high risk. Harvesting operations, site preparation, and silvicultural treatments 

could be used to reduce potential problems with Armi//aria in future plantations . 



A REVIEW OF JACK PINE, DWARF MISTLETOE, 

AND ARMILLARIA ROOT DISEASE 

7 

Understanding relationships between dwarf mistletoe and Armillaria root disease 

requires a basic knowledge of the biology and ecology of each organism, and how 

parasitism by each organism affects host vigor . The following discussion reviews the 

ecology of jack pine, and biological and ecological characteristics of dwarf mistletoe and 

Armillaria root disease that may influence potential interactions between these two disease 

agents and their host. These characteristics include disease cycles, spread and 

intensification, host effects, and associations with other damaging agents in forest pest 

complexes . 

Jack pine 

Jack pine forests extend from the Northwest Territories , Canada, through the 

Canadian prairie provinces , southward into Minnesota, Michigan, and Wisconsin, and 

eastward to northern New England (Harlow et al. 1979) (Fig. 2) . Throughout most of its 

range , jack pine is an important timber species (French 1967). Jack pine can grow on 

sandy sites where it is a valuable physiographic climax species (Smith 1962). Its best 

development, however, occurs north and west of Lake Superior (Harlow et al. 1979). 

Having evolved in fire;.prone ecosystems , jack pine possess several reproductive 

characteristics that enable them to successfully populate open sites following fire (Rowe 



FIG. 2. General distribution of jack pine (Pinus banksiana Lamb .) in 
North America (adapted from Harlow et al. 1979). 
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and Scotter 1973; Critchfield 1985). Trees produce seed in cones that exhibit varying 

degrees of serotiny (Harlow et al. 1979). The cones of some trees remain closed when 

mature and open with heat, especially that produced by fire (Harlow et al. 1979). Seeds 

retained in closed cones also allow jack pine to regenerate during any part of the growing 

season following fire (Critchfield 1985). Other jack pine produce cones that open upon 

maturity (Harlow et al. 1979). A single jack pine can produce thousands of viable seeds 

that disseminate well and genninate quickly (Critchfield 1985). Being a very shade­

intolerant species (Daniel et al. 1979), jack pine seedlings respond favorably to full-sun 

exposure, have good growth and survival rates, and are frost hardy (Rowe and Scotter 

1973). 

9 

Jack pine succession in North American boreal forests begins with large-scale, high­

intensity fires that recur during prolonged periods of drought (Heinselman 1973). These 

intense fires inhibit the growth of grasses, forbs, and shrubs, and consume duff layers, 

exposing bare mineral soil that provides the best medium for seed germination and 

seedling survival (Pyne 1984; Critchfield 1985). Following germination, a naturally 

regenerated jack pine stand may have thousands of seedlings per acre (Smith 1962). The 

young trees grow rapidly, and as the stand ages, vigorously growing trees outcompete less 

vigorous trees for light, water, and nutrients (Smith 1962). Natural thinning occurs 

quickly as stressed trees become overtopped, pass into suppression, and die (Smith 

1962). 

Fuels begin to accumulate in the stand with increasing numbers of dead trees and 
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woody debris (Critchfield 1985). Diseases and insect damage hasten mortality . Root 

rotting and trunk decay fungi make trees susceptible to wind throw and wind breakage, 

factors that further contribute to fuel loads (Heinselman 1973). In dwarf mistletoe­

infested stands, dead trees, branches, twigs, and needles add to ground fuels, and foliage 

close to the ground and witches' brooms provide ladder fuels capable of carrying fire into 

tree crowns (Gill and Hawksworth 1964). Understory species such as spruce (Picea spp.) 

and fir (Abies spp.) have very flammable foliage that also acts as ladder fuel (Heinselman 

1973). Shrubs, herbaceous plants, mosses, and lichens, in addition to litter, duff, and 

humus, provide other potential sources of fuel (Heinselman 1973). 

With suitable weather conditions and an ignition source, stands eventually bum 

(Heinselman 1973). As with other boreal forest types, vegetation, stand age, successional 

stage, and fuel factors interacting with climate and site characteristics determine the 

pattern and intensity of burns in jack pine stands (Heinselman 1973). Significant fires 

reduce fuels and create openings that allow jack pine succession to begin again 

(Heinselman 1973). 

In the absence of fire, succession in jack pine-dominated communities progresses to 

fir-spruce-birch in well drained sites, or black spruce-moss types in bogs. However, 

scattered jack pine can persist in the overstory of spruce-fir forests for over 200 years 

(Heinselman 1973). On average, jack pine forests have a natural fire return interval of 

about 100 years, and succession to other species is rare (Heinselman 1973). 

The fire ecology of jack pine results in stands of pure composition and even-aged 
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structure, making them susceptible to disease and insect attack (Daniel et al. 1979). 

Dwarf mistletoe, jack pine budworm, and Armillaria root disease cause serious losses of 

jack pine throughout the prairie provinces of Canada (Hiratsuka 1987) . Dwarf mistletoes 

have a particularly unique ecological relationship with jack pine and fire. Dowding (1929) 

suggested that wildfire was the major factor that influenced the distribution of dwarf 

mistletoes on jack pine in the sandhill areas of central Alberta. 

Fires tend to favor the establishment of early successional, mistletoe-susceptible 

species (Gill and Hawksworth 1964). In these stands, high intensity fires can eradicate, or 

impede dwarf mistletoe spread and intensification by simultaneously killing both the host 

tree and parasitic plant (Zimmerman and Laven 1984). With patchy or infrequent fires, 

dwarf mistletoe infected trees survive the fire, and dwarf mistletoe can spread rapidly from 

infected residual trees to regeneration of the same species (Gill and Hawksworth 1964). 

With increasing infestation, witches' brooms, tree decline and mortality results in a build­

up of fuels that predisposes stands to subsequent fires (Brown 1975). 

Dwarf mistletoe 

Dwarf mistletoes parasitize forest trees in all six genera of the Pinaceae in North 

America . In both the United States and Canada, dwarf mistletoes are the single most 

damaging disease agent for many commercially important species, causing unacceptable 

losses of timber products (Baranyay 1970; Hawksworth and Shaw 1984; Wicker 1984; 

Moody and Amirault 1992). In the Northern Rockies, heavily infested lodgepole pine 

stands have reduced rates of height and diameter growth and increased rates of mortality, 
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and produce less volume than comparable mistletoe-free stands (Hawksworth and 

Johnson 1989). Baranyay (1970) estimated approximately 9.6 million cu ft were lost 

annually in lodgepole pine and jack pine stands in Alberta. Significant losses occur in true 

firs (Abies spp .), western larch (Larix occidentalis Nutt.), Douglas-fir (Pseudotsuga 

menziesii (Mirb.) Franco), and western hemlocks (Tsuga spp.) in the Pacific Northwest 

(Knutson and Tinnin 1980), and in ponderosa pine and Douglas-fir in the Southwest 

(Hawksworth and Shaw 1984; Mathiasen et al. 1990). 

Dwarf mistletoe is the most damaging agent of jack pine in the Canadian prairie 

provinces (Hiratsuka 1987). Arceuthobium americanum is the primary dwarf mistletoe 

species that parasitizes jack pine. Figure 3 shows the general distribution of A. 

americanum in North America. Eastern dwarf mistletoe (A. pusi/lum Peck) can also 

infect jack pine when they grow near infested black spruce (Picea mariana (Mill) B.S.P.) 

in southeastern Manitoba (Laut 1967); however, few aerial shoots are produced and 

brooms remain small (Knowles pers. comm). 

Dwarf mistletoes are small, leafless, chlorophyllous angiosperms belonging to the 

genusArceuthobium (Wicker and Hawksworth 1988). Dwarf mistletoes have fruits that 

explosively discharge seeds (Kuijt 1955). On average, seeds are dispersed 15 feet from 

the parent plant (Hawksworth and Hinds 1965). A mucilaginous substance called viscin 

covers the seeds, enabling them to stick to objects in their path (Kuijt 1955). The dwarf 

mistletoe disease cycle begins when seeds adhere to needles of host trees. When moistened 

by rain, the viscin rehydrates, allowing the seed to slide down the needle to the twig 



FIG. 3. General distribution of Arceuthobium americanum in North America 
(adapted from Hawksworth and Johnson 1989). 
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(Hawksworth and Hinds 1965). The germinating seed produces a radicle that elongates 

and grows along the surface of the branch until it reaches a bud or leaf base (Kuijt 1955). 

At the infection site, the radicle flattens and produces a primary haustorium that penetrates 

the bark primarily by mechanical force, although enzymes may be secreted to soften cell 

walls (Kuijt 1955) . From the primary haustorium, haustorial strands extend longitudinally 

and circumferentially through the host cortex and outer phloem. Radial strands called 

"sinkers" extend form the haustorial strands into the host vasculature (Alosi and Calvin 

1984) . The longitudinal strands and radial sinkers comprise the endophytic system of the 

dwarf mistletoe plant. Because sinkers are closely associated with host xylem, they are 

believed to absorb nutrients , and facilitate nutrient transport out of the host vasculature 

(Alosi and Calvin 1984). Pathways for water and nutrients are formed by the apoplastic 

continuity of xylem contacts and cellulose wall free space (Alosi and Calvin 1984). 

The diversion of water , minerals, and photosynthates affects host trees by reducing 

height and diameter growth rates, increasing mortality, decreasing seed production, and 

reducing wood quality (Knutson and Toevs 1972~ Hawksworth and Shaw 1984). Starch 

concentrations in needles of both systemically and locally infected lodgepole pine branches 

are greater than in uninfected branches (Broshot and Tinnin 1986). Wanner and Tinnin 

(1986) determined that rates of dark respiration are greater in uninfected twigs of 

lodgepole pine than in infected twigs . The rates of dark respiration for aerial shoots of 

dwarf mistletoe are greater than in host twigs . Wanner and Tinnin (1986) also found a 

shift in mass allocation from stem to branch wood in heavily infested trees, which 
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contributes to reduced timber volume. 

Dwarf mistletoe spread 

Dwarf mistletoe spreads more rapidly from infested overstory trees to regeneration, 

than within even-aged stands (Hawksworth 1958). In lodgepole pine approximately 10 to 

25 years old, 89% of dwarf mistletoe-infested trees were within 30 feet of infested stands 

(Gill and Hawksworth 1964). In this same study, dwarf mistletoe-infested trees were 

found up to 60 feet from infested residual trees or stands. Dwarf mistletoe can also spread 

more rapidly in open stands than in dense stands. In dense, even-aged lodgepole pine 

stands, Hawksworth (1958) found that lateral spread of dwarf mistletoe occurred at a rate 

of 1.2 feet per year . In more open lodgepole stands, with fewer obstructions, the rate of 

dwarf mistletoe spread increased to 1. 7 feet per year (Hawksworth 1958). Similar rates of 

spread were observed for A. americanum in jack pine (Muir and Robbins 1973). 

Dwarf mistletoe seeds observed on bird feathers, and on the fur of small mammals 

suggest that these animals may contribute to long distance spread of the parasite (Nicholls 

et al. 1984). The occurrence of occasional dwarf mistletoe infection centers in otherwise 

healthy stands supports these observations (Gill and Hawksworth 1964). 

Dwarf mistletoe infection centers typically develop in young stands around old, 

infested trees that survived fire or logging (Baranyay and Smith 1972). Dwarf mistletoe 

seeds have greater chances of striking regeneration oflarger height and diameter, and 

consequently a larger percentage of these trees become infested with dwarf mistletoe 

(Knutson and Tinnin 1980). Initially, infested stands show few signs of dwarf mistletoe 
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effects (Gill and Hawksworth 1964) . In lodgepole pine, broomed trees, trees with spike 

tops, and mortality become evident in dwarf mistletoe infection centers within 50 to 100 

years (Gill and Hawksworth 1964; Baranyay and Smith 1972) . Extensive mortality caused 

by this parasite in heavily infested stands may create openings in the forest canopy. In 

dwarf mistletoe-infested jack pine in Alberta, these openings ranged in size from 50 to 300 

feet in diameter (Muir and Robbins 1973). In stands older than 100 years, heavily 

broomed, dying, and dead trees are found within mortality centers (Gill and Hawksworth 

1964; Baranyay and Smith 1972). In forests experiencing heavy infestations, several large 

infection centers may merge (Gill and Hawksworth 1964). The intensity of dwarf 

mistletoe decreases progressively further from infection center boundary (Gill and 

Hawksworth 1964; Muir and Robbins 1973) . 

Dwarf mistletoes associated with 
other damaging agents 

Potential association between dwarf mistletoe, insects, and disease agents remains in 

question (Stevens and Hawksworth 1984). Associated with insects and fungal pathogens, 

dwarf mistletoes may reduce the longevity of infected trees. In Arizona, ponderosa pine 

mortality resulting from pandora moth ( Coloradia pandora pandora Blake (Lepidoptera: 

Saturniidae)) defoliation was greater in trees heavily infested with dwarf mistletoe than in 

uninfected trees (Wagner and Mathiasen 1985). The authors speculated that trees 

weakened by dwarf mistletoe were less tolerant of defoliation than uninfested trees. 

Defoliation by western spruce budworm (Choristoneura occidentalis Freeman 



17 

(Lepidoptera : Tortricidae)) did not cause additional growth reduction in Douglas-fir for 

any dwarf mistletoe severity class (Filip and Parks 1987). 

Dwarf mistletoe-weakened trees are often attacked by "secondary" beetles including 

fps spp. andMelanophila spp., hastening their death (Muir and Robbins 1973, Stevens 

and Hawksworth 1984). The role of primary bark beetles remains uncertain . Stress 

induced by dwarf mistletoe may predispose trees to aggressive bark beetle attack. 

Mountain pine beetles (Dendroctonus ponderosae Hopkins (Coleoptera : Scolytidae)) 

were more attracted to dwarf mistletoe-infested trees in parts of the Colorado Front 

Range than uninfested trees (Johnson et al. 1976). In an Idaho study, mountain pine 

beetle killed a significantly larger proportion of lodgepole pine weakened by dwarf 

mistletoe than mistletoe-free trees (Parker and Stipe 1974). 

Most studies, however , indicate that the thin phloem of dwarf mistletoe-infected trees 

makes them less attractive to "primary" bark beetles for brood production . Hawksworth 

and others (1983) did not find significant relationships between dwarf mistletoe infection 

and phloem thickness oflodgepole pine. Consequently, these trees were not considered 

suitable for mountain pine beetle brood production . Densities of mountain pine beetle 

attack and brood production were not significantly different between dwarf mistletoe­

infected and -uninfected ponderosa pine (MacCambridge 1980). Per unit area of bark, the 

total egg gallery length was greater in uninfected trees . McGregor (1978) found less 

mortality from mountain pine beetle in stands heavily infested with dwarf mistletoe. He 

attributed the difference to thinner phloem of mistletoe infected trees . The average 
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phloem thickness of dwarf mistletoe-infected lodgepole pine was 0.12 inches for infected 

trees, compared to 0 .17 inches for uninfected trees, making attack by mountain pine beetle 

less likely (Roe and Amman 1970). 

Cytospora canker ( Cytospora abietis Sacc.) established in older dwarf mistletoe 

infections contributed to the mortality of grand fir (Abies grandis (Dougl.) Lindi.) 

branches, especially in stressed trees. Branch mortality in combination with fir engraver 

attacks and root diseases eventually killed trees (Filip 1984). In four California national 

forests, root pathogens in combination with dwarf mistletoes accounted for 11 to 28% of 

total conifer mortality (Byler 1978). Damage resulting from stem infections may also 

provide entry courts for decay fungi (Hawksworth and Shaw 1984). 

Armi/laria root disease 

Armillaria root disease also contributes to significant jack pine mortality in the 

Canadian prairie provinces (Mallett 1990). Three species of Armillaria have been 

identified in Manitoba; Armillaria ostoyae (Romagn .) Henrink ( =Armi/lariel/a obscura 

(Pers . ex Seer .), Armillaria sinapina Berube and Dessureault, and Armillaria ca/vescens 

Berube and Dessureault (Mallett 1990). Armillaria ostoyae appears to be pathogenic on 

all hosts and is the species most frequently isolated from dead and declining conifers 

(Mallett 1990). In young lodgepole, jack, and red pine stands, A. ostoyae is particularly 

prevalent. Little is known about the role and damaging effects of Armillaria in older trees 

(Mallett 1990). With age, trees appear increasingly tolerant of the disease. Armi//aria­

caused mortality is less frequent in older trees and has been associated with tree stress 
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(Hiratsuka 1987). Armillaria sinapina and A . calvescens both infrequently infect conifer 

species; however, the pathogenicity of these two species has not been determined 

(Mallett 1990). 

Armillaria pathogenicity 

The occurrence of Annillaria root disease has been reported throughout coniferous 

and deciduous forests worldwide (Wargo and Shaw 1985; Williams et al. 1986). 

Contradiction surrounded the role of Armillaria root disease in North America until 

morphologic and mating studies lead to the recognition of several different taxonomic and 

biological species (Watling et al. 1991). Basidiome morphology and mating studies have 

shown that the genus Armillaria contains approximately 40 species (Watling et al. 1991) 

with nine biological species of Armillaria currently recognized in North America 

(Anderson 1986; Mallett 1990). These species and genotypes of Armillaria vary in their 

pathogenicity (Rishbeth 1982). "Pathogenicity" means the quality or characteristic of 

being able to cause disease as applied to a genus or species (British Federation of Plant 

Pathologists 1973, in Gregory et al. 1991). Armillaria spp. range in behavior from a 

nonpathogenic saprophyte to a necrotrophic plant pathogen (Rishbeth 1982; McDonald et 

al. 1987b, Kile et al. 1991). 

As with all diseases, interactions among the environment, the pathogen, and host 

influence the expression of Armillaria pathogenicity (Gregory et al. 1991). Following 

pathogenicity tests with four English Armillaria species, Rishbeth (1985) concluded that 

"some degree of specificity is shown by Armillaria species with respect to the type of 
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standing tree attacked and its physiological condition." He found that in the absence of 

any weakening or predisposing factors, A. me/lea (Yahl: Fr.) could kill a number of 

broadleaved trees, including birch (Betula spp.) and ash (Fraxinus spp .). Armillaria 

me/lea could also penetrate intact bark and invade tissues with some residual resistance . 

Armillaria bulbosa (Baria) Kile and Watling was a primary colonizer of weakened 

broadleaved trees. With its ability to induce less exudate production, A. ostoyae killed all 

pines (Pinus spp.) in this same study. Armillaria me/lea and A. bulbosa mainly colonized 

weakened pines (Rishbeth 1985). In other studies, A. me/lea infected and killed larger 

percentages of inoculated lodgepole pine seedlings than either A. sinapina Berube and 

Dessureault or A.ostoyae (Mallett and Hiratsuka 1988). In contrast, A. ostoyae was more 

pathogenic on lodgepole pine and killed a greater percentage of seedlings than other 

Armillaria species (Mugala et al. 1989). White spruce (Picea glauca (Moench) Voss) 

seedlings were more frequently infected and more likely to die than lodgepole pine 

seedlings after being inoculated with both A. ostoyae and A. sinapina (Mugala et al. 

1989) . 

Through enzymatic activity, Armillaria penetrates bark tissues and invades host 

tissues more rapidly than periderm can develop (Rykowski 1975). In experiments 

designed to study the structural responses to wounding and A. ostoyae infection in Scots 

pine seedlings, Arm ii/aria infection delayed the formation of necrophylatic peridenn, and 

reduced the number of cells involved in host tissue structural responses (Wahlstrom and 

Johansson 1992). In oaks (Quercus spp.), phenolic oxidases were greater and oxidized 
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phenol less in both discolored and Armillaria-colonized bark tissue than healthy bark 

(Wargo 1984) . 

A numbtr of host factors influence Armillaria infection . To inhibit rhizomorph 

penetration, vigorous trees form layers of secondary cork beneath the point of infection 

(Monison et al. 1991). The suberization of cells within newly formed secondary periderm 

of broadleaved trees has also been shown to inhibit rhizomorph penetration (Rishbeth 

1985) . Wounded Scots pine (Pinus sylvestris L.) seedlings inoculated withArmillaria 

ostoyae produced more lignified cell layers than wounded uninoculated seedlings 

(Wahlstrom and Johansson 1992). 

Exudate production, including resin, gum, and kino in many hosts , restricts mycelial 

growth (Monison et al. 1991). Phenolics and othe r chemical baniers provide the most 

resistance to penetration and infection by Armillaria (Garraway et al. 1991) . When root 

tissue produced lower concentrations of phenolic compounds and other chemical 

constituents combined with higher sugar production, trees were more susceptible to 

Armillaria (Entry et al. 1991; Entry et al. 1992a) . With age, trees appear to increase in 

both their ability to produce defense compounds and form tissues that provide physical 

baniers to Armillaria colonization (Monison et al. 1991) . 

Soil factors, including pH, soil type, and temperature, affect inoculum survival, 

rhizomorph production, frequency of infection, and tree death . Thus, environment may 

restrict the distribution of Armillaria species . Habitat types characterized by temperature 

extremes and dry conditions were outside of the ecological range of Armillaria species 
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native to the Northern Rocky Mountains (McDonald et al. 1987a). Dry seasonal 

conditions may have affected the growth of A. me/lea rhizomorphs in Britain (Morrison 

1976). The dry weight ofrhizomorphs produced by Armil/aria species was greatest in 

soils with temperatures at 20 C, and lowest in soils with temperatures below 10 C and 

above 26 C (Rishbeth 1978). Several studies have shown that high pH may either inhibit 

or enhance the growth of the fungus in soil. Armillaria me/lea infected a significantly 

larger proportion of coniferous and broadleaved tree species grown in acid sand soils than 

in other soil types (Redfern 1978). The incidence of infection in this same study was 

lowest in alkaline clay. In a different study, total fungal weight and hyphal extension of 

Armillaria in culture increased significantly in soils with a higher pH (Entry and Cromack 

1986). Armillaria ostoyae was more common in acidic soils than alkaline soils in England 

(Rishbeth 1982). After inoculating two-year-old lodgepole pine grown in four different 

soil types with A . ostoyae , Blenis and Mugala (1989) showed that sandy loam was more 

favorable for Armillaria .growth than either a loam or clay loam soil. The authors 

speculated that differences may have been due to different levels of water and oxygen, or 

perhaps the presence of inhibitory substance(s) or organism(s). Common soil bacteria 

isolated from root free soil, including Pseudomonas spp. and Bacillus spp., inhibited 

Armi//aria mycelial growth and rhizomorph production in culture (Dumas 1992). 

Redfern (1978) demonstrated that trees subjected to conditions oflow light intensity 

such as suppression, shading, or shortened day length were more susceptible to 

Armillaria. In inoculation studies conducted by Davidson and Rishbeth (1988), crown 



suppression weakened English oaks and Scots pine, increasing their susceptibility to 

Armi/laria. All suppressed trees were colonized by A. me/lea, A. ostoyae, or A. gal/ica. 

Subdominant oaks and pines were only colonized by A. me/lea and A. ostoyae, 

respectively. 
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McDonald et al. (1987b) found that human activity such as road building or previous 

cutting also increased pathogenicity of Armillaria in study sites. Harvesting, site 

preparation, and planting activities can cut rhizomorphs, stimulate new growth, and 

increase the amount of potential inoculum for infecting tree regeneration (Redfern 1973). 

Disease development and spread 

Morrison ( 1981) discussed Arm ii/aria infection and subsequent disease development . 

In general, Armillaria spreads from diseased trees to uninfected trees along root contacts, 

or by rhizomorphs that grow through the soil. At contact points, mycelia grow from 

diseased roots to healthy roots . Mycelial fans develop in the outer bark and penetrate to 

the cambial zone where continued fungal growth occurs . Rhizomorphs penetrate root 

bark by mechanical and enzymatic means. Eventually, hyphae reach the cambial zone, 

branching in all directions, and mycelial fans develop within the cambial zone 

(Morrison et al. 1991). 

Several factors may contribute to tree death. Extensive physical disruption of the 

host's vascular system eventually girdles the infected root. Continued tissue death occurs 

as the fungus spreads to the root collar and other roots (Morrison et al. 1991). In saplings 

and pole-sized trees, attacks high on the tap root or root collar hasten host mortality 



(Shaw 1980). Host tissues may also die when exposed to metabolic toxins produced by 

Armil/aria (Wargo 1984). 

Damage cm,sed by Armillaria root disease 
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Trees infected by Armillaria experience reduced height and diameter growth, decayed 

wood, and mortality (Morrison et al. 1991). Armillaria root disease resulted in significant 

volume loss in infected Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in 

southeastern British Columbia (Bloomberg and Morrison 1989) and ponderosa pine 

(Pinus ponderosa Dougl. ex Laws.) in Washington (Shaw et al. 1976). Young lodgepole 

pine, jack pine, red pine (Pinus resinosa Ait. ), and white spruce suffer extensive mortality 

due to Armillaria root disease in plantations throughout the Canadian prairie provinces 

(Hiratsuka 1987; Moody and Amirault 1992). Armillaria me/lea was associated with the 

decline and death of red spruce (Picea rubens Sarg. [Picea rubra (Du Roi) Link.]) in 

mixed hardwood, transitional, and montane boreal forests of New England (Carey et al. 

1984). Damage can also leave stands poorly stocked and underproductive, and increase a 

tree's susceptibility to windthrow (Shaw et al. 1976; Mallett 1992). 

Armillaria root disease associated 
with other damaging agents 

Accelerated forest decline and mortality may result from the combined effects of 

Armillaria associated with insect pests and other decay fungi. Root diseases may 

predispose trees to attack by bark beetles (Coleoptera: Scolytidae) (Cobb 1989). 

Chemical compounds produced by host trees in response to Armillaria infection may 
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affect the selection and invasion of these trees by beetles (Madziara-Borusiewicz and 

Strzelecka 1977) . Annillaria me/lea sensu latu was found infecting the root systems of 

lodgepole pine and ponderosa pine infested with endemic populations of mountain pine 

beetle in Utah and the northern Black Hills of South Dakota, respectively (Lessard et al. 

1985; Tkacz and Schmitz 1986). Kulhavy and others (1984) concluded that resistance of 

western white pine (Pinus monticola Dougl. ex D. Don) to bark beetles decreases through 

the combined effects of Armillaria root disease, white pine blister rust ( Cronartium 

ribicola J. C. Fisch), and senescence. The incidence of sugar maple borers (Glycobius 

speciosus Say (Coleoptera: Cerambycidae)) was significantly higher in declining maples 

infected with Annillaria calvescens Berube and Dessureault than in healthy trees (Bauce 

and Allen 1992) . 

Defoliation consistently has been associated with Armillaria root disease in both 

deciduous and coniferous trees. Annillaria ostoyae penetrated more cell layers in Scots 

pine seedlings when stressed by defoliation (Wahlstrom and Johansson 1992) . In the 

Northeastern United States, gypsy moth (Lymantria dispar L. (Lepidoptera : 

Lymantriidae)) defoliation has been associated withAnnillaria since the early 1900's 

(Wargo and Harrington 1991). Rhizomorph density increased in mixed oak stands after 

repeated defoliation by the gypsy moth (Twery et al. 1990). Dead and top-killed jack pine 

defoliated by jack pine budworm (Choristoneura pinus Freeman (Lepidoptera: 

Tortricidae)) had more root system colonization by Annillaria ostoyae than fully foliated 

trees in Saskatchewan (Mallett and Volney 1990). Armillaria root disease was associated 
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with the two-lined chestnut borer (Agrilus bi/ineatus Weber (Coleoptera : Buprestidae)) in 

oaks experiencing stress by defoliation and drought stress (Wargo 1977) . Other foliar 

· pathogens, including powdery mildews, blister rusts, and needle blight, enhance Armil/aria 

attack (Wargo and Harrington 1991). 

Armillaria occurs with other root pathogens, forming root disease complexes 

commonly encountered in Northwest forests . Armillaria me/lea was associated with 

Phel/inus weirii (Murr .) Gilb., Heterobasidion annosum (Fr.) Bref, and Ceratocystis 

wageneri in causing extensive mortality in the Deschutes National Forest, Oregon (Filip 

and Goheen 1982). Associations among root pathogens may exist by chance, as a result 

of successional relationships , or from synergistic interactions between fungi (Hansen and 

Goheen 1989). 
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METHODS 

Site description 

Jack pine stands selected for this study were located within the Belair Provincial 

Forest approximately 100 km northeast of Winnipeg, Manitoba. Formed from the 

meltwater of retreating continental glaciers, ancient Lake Aggassiz once covered this 

region . As a consequence, the present topography is usually gently sloping, or in the form 

of narrow, elongated, gently sloping beach ridges (Smith and Ehrlich 1967) . Average 

temperatures range from -18 C in January to 21 C in July, with approximately 457 mm of 

precipitation annually (Weir 1983). 

The soils of study sites include the Sandilands and the Woodridge series. The 

Sandilands series are Minimal Podzol soils developed on siliceous sandy outwash deposits . 

The Woodridge series are Orthic Grey Wooded soils developed on sand and gravel beach 

and outwash deposits, which may be underlain by gravelly deposits 0.76 m below the 

surface. Both soils are rapidly to well drained, with rapid internal drainage and negligible 

to moderate surface runoff The Sandilands soils have very weakly developed horizons 

distinguished by faint changes in color and reaction. They have a thin discontinuous 

organic layer, a thin, light brownish grey A horizon, and an indefinite Bfj horizon that 

grades gradually into very pale brown fine sand. The Woodridge soils are characterized 

by a thin, organic surface layer, a deep, leached, light grayish brown A horizon, and a 

brown, textural B horizon . The B horizon occurs in the sandy surface mantle and in the 

underlying stratified gravel and coarse sand (Smith and Ehrlich 1967). 
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Jack pine was the dominant cover type of the two stands selected as study sites, which 

comprised 71-100% of the stand. These were mature stands, approximately 50-70 years 

old, with a crown closure of at least 71 %. Understory species used as indicator plants 

included bearberry (Arctostaphylos uva-ursi (L.) Spreng.), creeping savin (Juniperous 

horizontalis Moench .), reindeer moss (Cladonia spp.), and mountain [slender] rice 

(Oryzopsis spp.). 

Establishing transects 

Preliminary ground surveys were done to locate dwarf mistletoe mortality centers 

within jack pine stands . Selected mortality centers were similar with respect to other 

environmental and physical factors . Dwarf mistletoe infestations were sometimes 

extensive, making it difficult to discern individual mortality center boundaries and to find 

trees uninfected by dwarf mistletoe . Consequently, only eight dwarf mi~tletoe mortality 

centers with discernible boundaries were selected . 

Of the eight potential dwarf mistletoe mortality centers , three were randomly selected 

for sampling purposes . The three mortality centers ranged from 18 m to 27 min diameter . 

A transect was established through the middle of each mortality center on a random 

compass bearing . To insure that enough uninfected trees would be included in the sample, 

the transect extended through 20 m of uninfected forest at one end, across the mortality 

center, and through 20 m of uninfected forest at the other end (Appendix A). 
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Tree categorization 

Crown position, using Kraft's tree classification (Daniel et al. 1979), and a dwarf 

mistletoe rating (DMR) (Hawksworth 1977) were determined for all trees within 5 m of 

the transect line. The trees were then categorized into one of six dwarf mistletoe-vigor 

classes . These classes include: (1) vigorous trees with no mistletoe; (2) vigorous trees 

with mistletoe; (3) declining trees with no mistletoe; ( 4) declining trees with mistletoe; 

( 5) recently dead trees with no mistletoe; ( 6) recently dead trees with mistletoe . The 

following visual criteria, similar to those described by Taylor (1939, in Hawksworth and 

Johnson 1989), were used to characterize host vigor as influenced dwarf mistletoe . 

Vigorous trees : Trees with a dense, pointed crown and full foliage with good color . 

Terminal leader growth was among the highest in the stand. 

Declining trees: Trees with a sparse, rounded crown and bunchy foliage with poor 

color . Terminal leader growth was less than one half that of vigorous trees. 

Recently dead trees : Trees with a full complement of brown or reddish needles . 

Five trees in each tree vigor category were randomly selected as sample trees. 

Dominant and codominant trees were primarily selected as sample trees . Dominant trees 

are defined as those with crowns that rise above the general canopy, and are exposed to 

full sunlight above and laterally. Codominant trees comprise the main part of the canopy 

with dominants but are not as tall. They receive overhead light but do not receive as much 

light laterally (Daniel et al. 1979). However, declining and recently dead dominant and 

codominant trees were scarce within mortality centers. To sample enough trees from 
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these vigor categories , intermediate trees were included. The height and diameter at 

breast height (DBH, 1.4 m above ground) were recorded for each sample tree . Increment 

cores were taken 0.3 m above the ground. Diagnostic crown symptoms and other types of 

damage for sample trees were also noted . 

Examination of root systems for Arm ii/aria 

To determine the incidence and extent of Armillaria colonization, the root system and 

. root collar of sample trees were examined. Using pulaskis, vegetation around the sample 

tree was removed . The root collar and lower bole of each sample tree were debarked and 

the cambial zone examined for signs and symptoms of Armillaria . If more than 75 % of 

the root collar was infected, primary lateral roots were considered completely infected . 

Otherwise, primary lateral roots greater than two centimeters in diameter were excavated 

from the root collar to a distance of I m. Once a root was exposed, it was cut at the root 

collar and at 1 m. Beginning at the proximal end of the cut root, 25-cm sections were 

examined for signs and symptoms of Armillaria root disease, including mycelial fans, 

rhizomorphs , and lesions. Other symptoms such as resinosus , atypical staining, and decay 

were also recorded . After each symptomatic root segment was cut and labelled, it was 

placed in a plastic bag and stored in a cooler . Root samples collected in the field were 

retained for culturing . 

Confirming the presence of Armillaria 
in sample roots 

To confirm Armillaria root disease, cultures were made from wood or subcortical 



31 

mycelium aseptically removed from lesions, or from stained and decayed wood. Host 

tissues were initially cultured on Russsell's basidiomycete medium (Russell 1956), 

Kuhlman's medium (1966), and Hutchinson's benomyl medium (Hutchinson unpubl: 2 mg 

/ 1 chlortetracycline HCL (Sigma), or 2 mg/ 1 penicillin G., 30 mg/ 1 streptomycin 

sulfate (Sigma), 4 mg/ 1 Benomyl (Benlate, 50% wettable powder (DuPont) to final 

concentration of2 ppm). Samples of root tissue with Armillaria mycelial fans were also 

cultured on these three media to aid in the identification of Armil/aria in culture and to 

determine if these selective media would inhibit rhizomorph production. Rhizomorph 

production provides an easy, macroscopic means for identifying Armil/aria in culture 

(Morrison et al. 1991). 

To isolate Armil/aria from sample roots, wood chips were taken from sample roots 

and Armil/aria-infected roots and placed onto four plates of each medium. Two plates of 

each medium were incubated at 20 C and two at 25 C for approximately three weeks, or 

until cultures produced rhizomorphs. After this time, cultures were examined 

macroscopically . Armillaria was identified by the presence of rhizomorphs and 

pseudosclerotial plates, and typical crustose appearance . Once it was determined that 

Armillaria cultures could be identified on all three media, only Russell's basidiomycete 

medium was used for subsequent isolations. 

Pure cultures of Armillaria were obtained by extracting hyphal tips from the edge of 

cultures and transferring them onto 2% malt extract agar. These plates were incubated at 

20 C. Pure cultures of Armil/aria were then transferred into vials. Ten cultures were 
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selected at random and sent to Ken Mallett of the Canadian Forest Service, Northern 

Forestry Centre, in Edmonton, Alberta, Canada for species determination . Armillaria 

cultures were identified as A. ostoyae by vegetative compatibility tests with diploid North 

American Biological Species (NABS) testers (Mallett et al. 1989). 

To calculate the proportion of the root system infected, the number of infected root 

segments was divided by the total number of root segments for that tree. If Armillaria 

was present on the root collar, the proportion of the circumference infected by the disease 

was determined . These percentages were calculated only from those roots with visible 

signs of Armillaria, or those where Armillaria isolates were obtained by culturing. 

Determining basal area increment 

Both five- and ten-year BAI were determined from increment cores collected from 

each sample tree. Cores were mounted and sanded using fine-grained sand paper . The 

prepared cores were then placed on a sliding bannister stage, and the ten most recent rings 

were measured using a dissecting scope, and a tree-ring incremental measuring system 

(TRIMS ™Madera Software, Tucson, AZ) with a Model 4 Digital Display unit (Fred C. 

Henson Co ., Mission Viejo, CA). For calculating BAI, the widths for either the five or ten 

most recent rings were summed. This value was doubled, then subtracted from the tree's 

DBH to obtain an estimate of the tree's DBH five or ten years prior to the current year. 

The basal area of the tree five and ten years ago was calculated by multiplying the 

estimated DBH by the constant 0.000078545 . Subtracting the five- or ten-year basal area 

from the current basal area gave the basal area increment for the last five or ten years. 
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Significant growth loss experienced by individual trees may go undetected by 

examining only differences in mean basal area increment of jack pine in dwarf mistletoe 

vigor classe8. Some trees in each vigor class may have grown exceptionally well or poorly 

relative to other trees in the same vigor class. Therefore, the difference in the percentage 

of growth increment during the past five and ten years was determined for each tree . This 

value was calculated by first subtracting the five-year BAI from the ten-year BAI to 

determine the amount of increment from six to ten years . Then the six- to ten-year BAI 

was subtracted from the five-year BAI to determine the difference in increment between 

these two periods . This value was then divided by the six- to ten-year increment to 

determine the percent difference in growth increment between these two periods . 

Data analysis 

A number of relationships between jack pine vigor , dwarf mistletoe , and Armillaria 

root disease were examined using chi-square analysis of row by column proportions 

(Moore and McCabe 1989), and other nonparametric procedures including an odds ratio 

(0) and Goodman and Kruskal's gamma measure of concordance ( y) (Agresti 1990). 

A 95% confidence interval was used to determine the significance of values obtained 

for 0 . If the value of I was contained within the confidence interval, the value of 0 was 

not considered significant, and indicated no association between the variables tested. 

Gamma was also used to test the strength of association between two variables . Values of 

gamma approaching 1, or -1 ± the asymptotic standard error, indicated a strong 

association between variables tested . 
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Small sample size, however, limited the power of chi-square analysis for detecting 

significant results. Because standard chi-square analysis does not accurately estimate P­

values when some expected cell frequencies are small (Cochran 1954), an interactive 

program called CIBTEST (Romesburg and Marshall 1985) was used to give a better 

estimate oftheP-value . Romesburg and Marshall (1985) provide a complete explanation 

of the CIIlTEST program . In summary, to run CillTEST, cell frequencies from the 

observed table were entered into the program . CIBTEST used a Monte Carlo method to 

generate a large number of tables having the same number of rows and columns and total 

frequency (N) as the observed table. For each table within this specified sample space, 

CIBTEST calculated the expected cell frequencies . The N counts were allocated within 

each table in proportion to the expected cell frequencies . Because each table is randomly 

drawn from the defined sample space, the marginal distributions generally do not equal 

those of the observed table . CIBTEST computes a chi-square value for each table, 

computes the mean chi-square value of all tables, and estimates the P-value . This P-value 

is the proportion of all tables generated having chi-square values greater than, or equal to 

the observed table . A large P-value indicates that a small proportion of tables deviates 

from the null hypothesis as much, or more than the observed table . The chi-square value 

and P-value obtained from the observed table are accurate . A small P-value indicates that 

a large proportion of tables deviates from the null hypothesis as much, or more, than the 

observed table, and that the chi-square value and P-value obtained from the observed table 

are inaccurate. 
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Variables used in regression analysis and ANOV A, including the number of root 

segments, basal area, five- and ten-year BAI , percent difference in BAI , and percentage of 

Armillaria colonization were tested for normality and equality of variance . All variables 

with the exception of percent Armillaria colonization and BAI were normally distributed . 

An arcsin transformation was used to normalize percent Armillaria colonization data for 

analysis, and BAI data were normalized by using a log10 transformation . 

Associations between jack pine vigor and 
the incidence and extent of 
Armillaria root disease 

Contingency table analyses, including chi-square analysis and gamma, were used to 

examine relationships between jack pine vigor and the incidence of Armillaria 

colonization . Vigorous, declining, and recently dead jack pine were categorized according 

to the presence, or absence of Annillaria . Obtaining a significant chi-square value would 

indicate that the proportions of Annillaria-infected jack pine within each dwarf mistletoe 

vigor class were not equal, and that a relationship existed between these two variables . A 

significant value of gamma would indicate that jack pine with low vigor tended to have 

greater incidence of Annillaria colonization . 

Chi-square analysis and gamma were also used to measure the strength of association 

between jack pine vigor and the extent of Annillaria colonization . For these analyses, 

four levels of Armillaria colonization were compared within each jack pine vigor class. 

These levels were uninfected (0% colonization), low (1-20% colonization) , moderate 

(21-60% colonization), and high ( > 60% colonization), and were representative of the 
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distribution of percentages of Annillaria colonization obtained from sample trees . If less 

vigorous trees were more susceptible to aggressive Annillaria colonization, then a larger 

proportion of declining and dead trees was expected to have high percentages of root 

system colonization . Again, gamma would indicate that low vigor is associated with 

extensive Annillaria colonization. 

Because reduced growth is indicative of stress induced by dwarf mistletoe, or other 

agents of decline, trees with low BAI were expected to have more root system 

colonization by Annillaria . Relationships between the extent of Annillaria colonization 

and five- and ten-year BAI were determined by simple regression analysis 

(Moore and McCabe 1989). Values of r2 obtained from this analysis were used to 

determine how much variability in percent Annillaria colonization could be explained by 

its relationship with BAI . A strong negative relationship between BAI and percent 

Annillaria colonization would suggest that slowly growing trees were more extensively 

colonized by Annillaria. 

Percent difference in BAI was used as another means to assess tree vigor . A tree with 

a positive percentage grew more during the most recent five years than during the 

previous five-year period , suggesting good vigor . A negative percentage of growth 

increment was assumed to indicate reduced tree vigor . Chi-square analysis was used to 

examine associations between positive and negative percentages of growth increment, and 

the incidence of Annillaria . Annil/aria was expected to have colonized a larger 

proportion of jack pine with negative percentages of growth increment than trees with 



positive percentages of growth increment. 

Effects of dwarf mistletoe on the incidence 
of Armillaria and the extent of 
Armillaria colonization 
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Nonparametric procedures and two-way analysis of variance were used to detennine 

the effect of dwarf mistletoe infestation on both the incidence of Arm ii/aria and the extent 

of root system colonization . Odds ratios (0) were computed from 2 x 2 contingency 

tables of the incidence of both disease agents for vigorous and declining trees . A value for 

0 could not be calculated for dead jack pine because all trees were colonized by 

Armillaria. High values of0 would indicate that jack pine had greater odds ofbeing 

infected by both dwarf mistletoe and Armil/aria, than of being infected by either disease 

agent alone . 

Two-way analysis of variance was used to determine if the incidence of dwarf 

mistletoe significantly affected the mean percentage of Armillaria colonization within each 

jack pine vigor class. If the percentage of Anni Ilaria colonization increased significantly 

with dwarf mistletoe infestation, then dwarf mistletoe-infested jack pine within each vigor 

class would have greater mean percentage of Armillaria colonization than uninfected 

trees . Only vigorous and declining trees were included in the analysis of differences in 

mean percentage of Armillaria colonization because all dead trees were completely 

colonized by Armillaria . Contrasts between means were examined by using Tukey's 

multiple range test (Moore and McCabe 1989). 

The amount of dwarf mistletoe infesting individual jack pine was variable . Trees 



experiencing stress induced by heavy dwarf mistletoe infestation were expected to have 

greater incidence of Annillaria . Chi-square and gamma values were computed from a 

contingency table with uninfected (DMR = 0), low (DMR = 1, 2), moderate 
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(DMR = 3, 4), and high (DMR = 5, 6) levels of dwarf mistletoe infestation by the presence 

or absence of Anni/laria. The same analyses were used to examine associations between 

the extent of dwarf mistletoe infestation and the percentage of root system colonization by 

Annillaria. If heavy dwarf mistletoe infestation caused significant decline, jack pines with 

high DMR's were expected to have higher percentages of root system colonization by 

Anni/laria than uninfested, or lightly infested trees . 

Associations between dwarf mistletoe 
infestation and jack pine vigor 

Contingency table analysis was used to examine the effect of dwarf mistletoe 

infestation on jack pine vigor . A chi-square value and gamma were obtained from a 2 x 3 

table with presence or absence of dwarf mistletoe by jack pine vigor class. A large chi­

square value would indicate that the proportion of jack pine infested with dwarf mistletoe 

in each vigor class was not equal, suggesting a relationship between these two variables. 

A significant value of gamma would indicate that jack pine with low vigor tended to be 

infested with dwarf mistletoe . 

To determine how the extent of dwarf mistletoe infestation affected jack pine vigor, 

the same analyses were conducted using the four levels of dwarf mistletoe infestation 

described above . A one-way ANOVA was also used to determine if the mean DMR for 



trees in each vigor class differed significantly. If heavy dwarf mistletoe infestation was 

associated with decline, declining and dead trees would have higher mean DMR's than 

vigorous tr~s. Because of the small sample size, however, the power of this test for 

detecting significant differences was low. 

Analyses of the number of roots by jack 
pine vigor, dwarf mistletoe, and 
Annillaria root disease 
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Preliminary examination of data collected for each jack pine indicated that vigorous 

trees had more roots within the 1 m area surrounding the bole than either declining, or 

dead trees. Analyses were done to explore relationships between the number of roots, 

jack pine vigor, dwarf mistletoe, and Armillaria root disease. Two-way analysis of 

variance was employed to determine if the mean number of jack pine roots differed 

significantly between trees in each vigor class, and to determine if either Armillaria root 

disease or dwarf mistletoe significantly affected the means in each vigor class. Contrasts 

between means were examined using Tukey's multiple range test. Strengths of 

relationships between the number of roots and BAI were determined by simple regression 

analysis. 
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RESULTS 

A total of 252 jack pine was surveyed within three dwarf mistletoe mortality centers . 

Table 1 gives the percentage of vigorous, declining, and recently dead jack pines in 

dominant/codominant and intermediate crown classes. Thirty-eight percent of vigorous 

trees were infected with dwarf mistletoe. The percentages of declining and recent dead 

trees infected with dwarf mistletoe were 49% and 60%, respectively (Table 1 ). The root 

systems of 46 dominant and codominant trees, and 12 intermediate trees were excavated 

and examined for signs and symptoms of Armillaria root disease. Lateral roots with 

Armil/aria often had resinous, soil-encrusted lesions, and colonized portions of live roots 

distal to these lesions. Rhizomorphs were sometimes found embedded within the resin­

soil matrix. Typical advanced decay and mycelial fans were present . 

Approximately 45% of sampled jack pine were infected with Armillaria root disease, 

and on those trees, the proportion of root system colonized ranged from 

2.1-100 %. Armillaria had completely colonized the root systems of all eight dead trees, 

and one declining tree (Fig. 4). These trees had mycelial fans present on both the taproot 

and root collar . Both Armillaria root disease and dwarf mistletoe were present on 28% of 

the jack pines sampled . Of dwarf mistletoe-infected jack pine, 49% had Armillaria. 

Associations between jack pine vigor and 
the incidence and extent of 
Armillaria root disease 

Both the incidence of Armillaria root disease (Table 2) and the extent of root system 
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colonization by Armi/laria (Table 3) were strongly associated with jack pine vigor 

assessed by visual criteria . CHITEST analysis of the incidence of Armillaria and extent of 

root system colonization by tree vigor gave small probabilities of obtaining a chi-

square value larger than the observed table . The observed chi-square values (18.67, and 

51.76) were not consistent with the null hypothesis of homogeneity of row by column 

proportions . As vigor decreased , a greater proportion of trees and roots was infected by 

Armi/laria. Other nonparametric analysis (gamma) showed that the incidence of 

Armil/aria and extent of root system colonization tended to increase as vigor decreased, 

supporting the results given by CHITEST analysis. 

TABLE 1. Number of vigorous, declining, and recent dead dominant, 
codominant, and intermediate jack pine surveyed along transects of 

three selected dwarf mistletoe (DM) mortality centers 

Vigor class 

Vigorous 

Declining 

Recent Dead 

Total 

Percentage of 
trees infected 
withDM 

Percentage of trees in 
each crown classa 

DIC I 

87% 49% 

11% 41% 

2% 10% 

191 61 

82 (43%) 21 (34%) 

Total 

196 

46 

10 

252 

Percentage of 
trees infected 

withDM 

75 (38%) 

22 (49%) 

6 (60%) 

103 (41%) 

-0, dominant trees; C, codominant trees; I, intermediate trees . 
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TABLE 2. Association between the incidence of Armillaria root disease and jack pine 
vi or . 

Number of trees in each vigor class 

Armi/laria infection Vigorous Declining Dead Total 

+ 5.0 (12 . 1) 13.0 (10.3) 8.0 (3 .6) 26 

22.0 (14 .9) 10.0 (12 .7) 0.0 (4.4) 32 

Total 27 23 8 58 

NOTE: Expected cell frequencies given in parentheses . 
-Chi-square value of the observed table,18 .7 (P = 0.000); CIBTEST mean chi-square 

value, 2.04 (P ~ observed table, 0.000), n = 10,000; y = - 0.831 ± 0. 184. 

TABLE 3. Association between the extent of Annillaria colonization and jack pine 
vi or 

Number of trees in each vigor class 

Extent of Vigorous Declining Dead Total 
colonization 

Uninfected 22 (15.2) 10 (12.4) 0 (4.5) 32 

Low(0< 20%) 4 (4.3) 5 (3.5) 0 (1.3) 9 

Med (21% < 60%) 1 (2.8) 5 (2.3) 0 (0 .8) 6 

High (61% < 100%) 0 (4.7) 2 (3.9) 8 (1.4) IO 

Total 27 22 8 57 

NOTE: Expected cell frequencies in parentheses . Fifty-seven trees were used in this 
analysis. 

-Chi-square value of the observed table, 51.76 (P = 0.000); CIBTEST mean chi­
square value, 6.07 (P ~ observed table, 0.000), n = 10,000; y = 0.848 ± 0.156. 



The effect of dwarf mistletoe on the incidence 
of Annil/aria and the extent of 
Anni//aria colonization 
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Given the present understanding of both dwarf mistletoe and Anni//aria biology, 

ecology, and host effects, relationships between these two disease agents in the Belair 

Provincial Forest seemed likely. However, associations were not apparent in the field 

during data collection. Examination of transect maps suggested a random distribution of 

Anni//aria (Appendix A). For example, some jack pine with extensive brooms, sparse 

foliage, and stunted growth had root systems with no signs of Anni//aria or other decay 

fungi . Other trees, with little or no dwarf mistletoe, had visual symptoms of decline, and 

at least 25% root system colonization by Anni//aria. 

Contingency table analysis provides no evidence of a relationship between the 

incidence of dwarf mistletoe and the incidence of Anni//aria (Table 4) . The same tests 

conducted to examine the strength of association between the incidence of dwarf mistletoe 

and Ann ii/aria within vigorous and declining classes of trees yielded similar results 

(Tables 5 and 6, respectively) . All eight dead trees were colonized by Anni//aria; 

consequently, no chi-square statistic, odds ratio, or gamma was computed for this vigor 

class . 

Although no associations were detected between the incidence of both disease agents, 

dwarf mistletoe-infested trees were expected to have more Anni//aria colonization than 

uninfested trees . Figure 5 shows the mean percentage of Anni//aria colonization on roots 

of dwarf mistletoe-infested trees and -uninfested trees by vigor class . 



TABLE 4. Association between the incidence of Armillaria root disease and dwarf 
mistletoe infection for all jack pine sampleda 

Incidence of Armi/laria 

+ 

Total 

Incidence of dwarf mistletoe 

+ 

16 (14 .8) 

17 (18 .2) 

33 

10 (11.2) 

15 (13.8) 

25 

NOTE: Expected cell frequencies in parentheses . 

Total 

26 

32 

58 

-Chi-square value of the observed table, 0.414 (P = 0.520); CHITEST mean chi­
square value, 3.0 ( P ~ observed table, 0.94), n = 10,000; y = 0.171 ± 0.522; 
0 = 1.412, 95% confidence bounds (0.493, 4.042) . 
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Two-way ANOV A indicated that the mean percentage of Armillaria colonization was 

significantly greater in declining jack pine than vigorous jack pine (Table 7). The 

incidence of dwarf mistletoe had no significant effect on percent Arm ii/aria colonization 

within each vigor class, and there was no significant interaction . 

Gamma indicated that increasing levels ofDMR were weakly associated with 

increased incidence of Armillaria . However , the chi-square value of the observed table 

and P-value given by CHITEST was consistent with the null hypothesis of homogeneity of 

row by column proportions (Table 8). 

Associations between jack pine vigor 
as measured by BAI and 
both disease agents 

Basal area increment varied significantly with tree vigor (Table 9) . Vigorous trees had 

greater mean five- and ten-year BAI than either declining or dead trees. No significant 



TABLE 5. Association between the incidence of Annillaria and dwarf mistletoe in 
vigorous jack pine sampled• 

Incidence of dwarf mistletoe 

Incidence of Annillaria + Total 

+ 3 2 5 

12 10 22 

Total 15 12 27 

•y = 0.111 ± 0.996; 0 = 1.25, 95% confidence bounds (0.173, 9.019). 

TABLE 6. Association between the incidence of Annillaria and dwarf mistletoe in 
declining jack pine sampled• 

Incidence of Annillaria 

+ 

Total 

Incidence of dwarf mistletoe 

+ 

8 

5 

13 

5 

5 

10 

•y = 0.231 ± 0.806; 0 = 1.60, 95% confidence bounds (0 .302, 8.490) . 

Total 

13 

10 

23 

46 
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TABLE 7. Effects of jack pine vigor and dwarf mistletoe infection on the percentage of 
Annillaria colonizaton• 

Sourceb df MS F p>F 

V 1 0.808 9.34 0.004 

I 1 0.01-1 0.13 0.722 

V* I 1 0.001 0.01 0.915 

Error 46 0.087 

NOTE: Only vigorous and declining trees were analyzed (n = 50). Mean percentage 
of Annillaria colonization for vigorous and declining trees, 2. 0% and 17. 0%, 
respectively. 

-Percentage of Annillaria colonization was normalized using an arcsin 
transformation. 

by, jack pine vigor class; I, the presence or absence of dwarf mistletoe . 

TABLE 8. Association between the incidence of Annillaria and the extent of dwarf 
mistletoea 

DMR.b 

48 

Incidence of Annil/aria 0 1-2 3-4 5-6 Total 

+ 10(11.2) 4 (5.4) 5 (4.5) 7 (4.9) 

15 (13.8) 8 (6.6) 5 (5.5) 4 (6.1) 

Total 25 12 10 11 

NOTE: Expected cell frequencies in parentheses . 
•chi-square value of the observed table, 2.56 (P = 0.465); CIIlTEST mean 

chi-square value, 7.04 (P ~ observed table, 0.932), n = 10,000; y = -0.243 ± 0.392. 
bSix-class dwarf mistletoe rating system. 

26 

32 

58 
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differences in mean five- and ten-year BAI were found between declining and dead trees. 

The results of analysis to examine relationships between the percentage of Armillaria 

colonization and BAI were inconclusive . Scatterplots of five- and ten-year BAI and the 

percentage of Armillaria colonization revealed an apparent relationship between these two 

variables (Figs. 6 and 7, respectively) . However, simple regression analysis of percent 

Armillaria colonization and BAI gave ,2 values of 0.07, 0.05 for five- and ten-year BAI, 

respectively . Other analysis of these data has been considered to examine potential 

relationships further . 

The difference between one- to five- and six- to ten-year BAI percentage calculated 

for all jack pine sampled was highly variable. Values ranged from 183% more increment 

growth, to 70% less increment growth during the past five-year period as compared with 

the previous five-year period . Forty-four percent of vigorous jack pine grew less during 

the past five-year period, but the average tree had 2% positive mean growth 

TABLE 9. Comparisons of mean five- and ten-year basal area increment (BAI 5, and 
BAI I 0, respectively) for vigorous , declining, and recently dead jack pine sampled 

in the three selected dwarf mistletoe mortality centers• 

Vigor class n BAI 5 (m2
) BAI 10 (m2) 

Vigorous 27 0.0019 (0.0013)a 0.0036 (0.0024)a 

Declining 23 0.0007 (0.0005)b 0.0017 (0.00ll)b 

Dead 8 0.0005 (0.0003)b 0.0014 (0.0009)b 

All trees 58 0.00012(0.0011) 0.0025 (0.0021) 

NOTE: Means (with standard deviations given in parentheses) followed by the 
same letter are not significantly different (Tukey's studentized range test, P ~ 0.05). 

8Basal area increment data normalized using a log10 transformation. 
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TABLE 10. Association between percentages of growth increment and the incidence of 
Armillaria root disease for all jack pine sampleda 

Incidence of Armi//aria 

52 

Growth + Totals 

+ 6 (9.0) 

20 (17.0) 

Totals 26 

NOTE: Expected cell frequencies in parentheses . 
-Chi-square value, 2.71, df= 1, (P= 0.10). 

14(11.0) 20 

18 (21.0) 38 

32 58 

TABLE 11. Association between percentages of growth increment and the incidence of 
Armillaria root disease for dominant and codominant jack pine sampleda 

Incidence of Armi//arla 

Growth 

+ 

Totals 

+ 

4 (7.0) 

15 (12 .0) 

19 

NOTE: Expected cell frequencies in parentheses . 
achi-square value, 3.5; df= 1; P = 0.07. 

13 (10 .0) 

14 (17.0) 

27 

Totals 

17 

29 

46 
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increment (sd = 33, Median= 1 %). Eighty-four percent of declining and dead jack pine 

sampled grew less during the past five-year period, with 23% decrease in mean growth 

increment (sd = 32, Median= 31%) . 

Chi-square analyses of the association between growth increment and the incidence of 

Armillaria for all jack pine sampled (P = 0.10), and for dominant and codominant trees 

only (P = 0.07), suggest that a small proportion of jack pine has both positive growth 

increment and Armillaria (Tables 10 and 11, respectively) . Unexpectedly, the numbers of 

uninfected trees with either positive or negative percent increment growth, and infected 

trees with negative percent increment growth were approximately equal. These results 

may suggest that Armillaria randomly attacked jack pine in dwarf mistletoe subsequent 

colonization. 

The incidence of dwarf mistletoe also had no effect on the mean five-and ten-year BAI 

for trees within each vigor category (Tables 12 and 13, respectively) . However, one-way 

analysis of variance to determine mean differences in BAI between uninfected, low, 

moderate, and high levels ofDMR provided evidence that trees with D:MR's ~ 5 had 

significantly reduced tree growth (Tables 12 and 13, respectively) . Small sample size 

greatly reduced the power of this test for detecting significant results . 

Dwarf mistletoe associations with tree vigor 

Deleterious effects of dwarf mistletoe infestation on jack pine varied . Contingency 

table analysis revealed no relationship between the incidence of dwarf mistletoe and tree 
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TABLE 12. Analysis of the effects of jack pine vigor and the incidence and extent of 
dwarf mistletoe on mean five-year basal area increment (BAI 5} 

BAI 5 {m2
) 

Source 1 df MS F p>F 

1. Effects of vigor and the 
incidence of dwarf mistletoe 
(+/-) on mean 5 year BAI. 

V 2 1.088 9.92 0.000 

I 1 0.055 0.50 0.483 

V * I 2 0.040 0.37 0.694 

Error 52 5.701 

2. Effects of vigor and the extent 
of dwarf mistletoe on mean 5 
year BAI 
(DMR = 0, 1-2, 3-4, 5-6). 

V 2 0.617 5.62 0.007 

I 3 0.175 1.60 0.203 

V * I 5 0.071 0.65 0.664 

Error 47 5.163 

NOTE: Basal area increment data were normalized by using a log10 transformation . 
1V, jack pine vigor class; I, dwarf mistletoe infection . 
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TABLE 13. Analysis of the effects of jack pine vigor and the incidence and extent of 
dwarf mistletoe on mean ten-year basal area increment (BAI 10} 

BAI 10 (m2
) 

Sourcea df MS F P>F 

1. Effects of vigor and the 
incidence of dwarf mistletoe 
(+/-) on mean 10 year BAI. 

V 2 0.730 8.15 0.001 

I 1 0.129 1.44 0.236 

V * I 2 0.036 0.41 0.669 

Error 52 0.090 

2. Effects of vigor and the extent 
of dwarf mistletoe on mean 10 
year BAI 
(DMR = 0, 1-2, 3-4, 5-6). 

V 2 0.384 4.41 0.018 

I 3 0.167 1.92 0.139 

V * I 5 0.089 1.02 0.417 

Nore: Basal area increment data were normalized by using a log10 transformation. 
•v, jack pine vigor class; I, dwarf mistletoe infection. 
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vigor (Table 14). However, both chi-square and CIIlTEST analysis suggest that a higher 

proportion of vigorous trees are associated with low DMR (Table 15). A larger sample 

might have increased the power of these tests for detecting potential relationships between 

jack pine vigor and dwarf mistletoe . 

Analysis of the number of roots by 
jack pine vigor, dwarf mistletoe, 
and Armillaria root disease 

Two-way ANOV A indicated that vigorous trees had significantly more roots than 

either declining or dead trees {Table 16). The mean number of roots within each 

vigorclass did not vary significantly between trees infected by either dwarf mistletoe, or 

Armil/aria (Table 17). The number of roots was moderately correlated with both five­

and ten-year BAI (r = 0.43 and r = 0.45, respectively). These results suggest that jack 

pine growth and vigor are related to root system condition . 

The lack of association between the number of roots, and dwarf mistletoe and 

Armillaria root disease may have been misleading. Seventy-one percent of the declining 

and recently dead jack pines sampled had fewer than the average number of roots . Thirty­

seven percent of the vigorous jack pine sampled had fewer than the average number of 

roots for all trees sampled. These vigorous trees had no signs of Armillaria root disease in 

the portion of the root system examined, and little dwarf mistletoe ( x DMR = I). Of 

declining and recently dead trees with more than the average number of roots for all trees 

sampled, six of nine had more than 28% Annillaria colonization, or were heavily infected 



TABLE 14. Association between jack pine vigor and dwarf mistletoe 
infectiona 

Number of trees in each vigor class 

Dwarf mistletoe Vigorous Declining Dead Total 

+ 15 (15.4) 13 (13.1) 5 (4.6) 33 

12 (11.6) 10 (9.9) 3 (3 .4) 25 

Total 27 23 8 58 

N0IB: Expected cell frequencies in parentheses. 
•chi-square value of the observed table, 0.124 (P = 0.94t CHITEST 

mean chi-square value, 2.04 ( P t!. observed table, 1.00), n = l 0,000; 
y = - 0.064 ± 0.46. 

TABLE 15. Association of jack pine vigor and the extent of dwarf mistletoea 

Number of trees in each vigor class 

DMR.b Vigorous Declining Dead 

0 12 (11.6) 10 (9.9) 3 (3.4) 

1-2 8 (5.6) 4 (4.8) 0 (1.7) 

3-4 6 (4.7) 1 (4.0) 3 (1.4) 

5-6 1 (5.1) 8 (4.4) 2 (1.5) 

Total 27 23 8 

NOTE: Expected cell frequencies in parentheses. 

Total 

25 

12 

10 

11 

58 

•chi-square value of the observed table, 13.903 (P = 0.031); CHITEST mean chi­
square value, 6.142, (Pt!. observed table, 0.030), n = 10,000; y = 0.227 ± 0.316. 

bSix-class dwarf mistletoe rating system. 

57 



TABLE 16. Mean comparisons of the number of root segments 
for vigorous , declining, and dead jack pine sampled in the three 

selected dwarf mistletoe mortality centers 

Vigor class n Root segments 

Vigorous 27 51 (18 .8)a 
Declining 23 35 (14.3)b 
Dead 8 30 (13.4)b 
All trees 58 43 (18.6) 

NOTE: Means (with standard deviations in parentheses) 
followed by the same letter are not significantly different 
(Tukey's studentized range test, P ~ 0.05) . 

TABLE 17. The mean number of root segments for trees uninfected or infected by 
dwarf mistletoe and for trees uninfected of infected by Annillaria 

Annillaria 

+ 

Dwarf mistletoe 

+ 

Mean number of root segments 

40a 

44a 

43a 

42a 

NOTE : Means followed by the same letter are not significantly different (Tukey's 
studentized range test, P ~ 0.05) . 

58 
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with dwarf mistletoe (DMR = 5, 6) (Appendix B). These data suggest that vigorous trees 

with more roots than average remain vigorous until they become weakened by high levels 

of stress caused by abiotic or biotic factors . Trees with fewer roots than average may be 

vigorous, but can succumb to the effects of stress more rapidly. 



DISCUSSION 

Effects of heavy dwarf mistletoe infestation on host vigor have been reported in 

numerous studies (Hawksworth 1958; Hawksworth and Hinds 1964; Baranyay 1970; 

Hawksworth and Shaw 1984; Moody and Amirault 1992). Throughout the Belair 

provincial forest, dwarf mistletoe was believed to weaken infested jack pine, increasing 

their susceptibility to Annillaria root disease. Dwarf mistletoe-infested trees exhibiting 

poor color, sparse foliage, and reduced growth were expected to have both higher 

incidence of Anni/laria attack and greater root system colonization . The incidence of 

Anni/laria attack and the percentage of root system colonization were also expected to 

increase with heavy dwarf mistletoe infestation . 

60 

My study shows that jack pine heavily infested with dwarf mistletoe experienced 

reduced growth and were less vigorous than uninfested or lightly infested trees . As 

hypothesized, strong associations were found between Armillaria root disease and trees 

with visible symptoms of decline and mortality. Effects of dwarf mistletoe infestation on 

either the incidence of Annillaria or the percentage of root system colonization were not 

detected. The small sample size limited the power of some statistical tests for detecting 

significant associations between dwarf mistletoe and Ann ii/aria. Methods used to 

categorize trees, assess the impact of dwarf mistletoe, and determine the extent of 

· Anni/laria colonization may also explain some of the contradiction in the results . Finally, 

root system condition and other growth-related factors could have masked the effect of 

Annillaria, dwarf mistletoe, or both disease agents on jack pine vigor and growth . The 
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potentially confounding effects of each of these factors are discussed below. 

Tree categorization 

The categorization of trees was based on the assumption that dwarf mistletoe 

infestation was primarily responsible for visible symptoms of decline. Careful measures 

were taken to control for other factors having the potential to influence jack pine vigor 

and subsequently crown condition . The effect of any factor that causes decline and 

subsequently influences crown condition might have confounded the categorization of jack 

pine. Annillaria root disease itself can produce crown symptoms similar to dwarf 

mistletoe. As Armillaria develops throughout the root systems of infected trees, the 

foliage gradually becomes chlorotic, stunted, and sparse (Morrison et al. 1991). These 

symptoms could explain the strong association observed between Armillaria root disease 

and jack pine vigor as assessed by foliage color and density. In studies of growth loss and 

mortality in Douglas-fir associated with laminated root rot, Bloomberg and Reynolds 

(1988) noted that categorizing trees using visual symptoms may give unreliable results, 

especially when attempting to assess the severity of a disease or its effects on host vigor. 

They found that declining trees actually had greater radial increment than healthy trees on 

the same plot (Bloomberg and Reynolds 1988). 

Assessing the impact of dwarf mistletoe 

Several dwarf mistletoe rating systems have been developed that quantify the degree 

of dwarf mistletoe infestation, and provide an estimate of potential growth loss and 
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mortality (Hawksworth 1977). Several criteria have been used in these systems to assess 

the severity of infestations and impact on host trees. To consolidate the various rating 

systems, and to reduce their subjectivity, Hawksworth (1977) developed the six-class 

dwarf mistletoe rating system, which has become the most generally applied method for 

quantifying dwarf mistletoe impacts in the western United States and Canada. 

Although the system has been shown to work well for some tree species, including 

southwestern ponderosa pine (Hawksworth and Johnson 1989) and Rocky Mountain 

lodgepole pine (Hawksworth 1961 ), the six-class dwarf mistletoe rating system has two 

shortcomings . The first is that it does not directly account for the degree of brooming, 

especially in host/ parasite combinations where the majority of infections develop into 

systemic brooms (Hawksworth 1977). Consequently, broomed trees are often underrated . 

Studies have shown that extensive brooming causes significant loss of growth in trees, and 

decline in vigor. In Newfoundland , Singh and Carew (1989) found that heavily broomed 

black spruce had significantly reduced diameter growth as compared to non-broomed 

trees . All dead black spruce with dwarf mistletoe brooms were killed prematurely (Singh 

and Carew 1989). With ponderosa pines of the same infection class, Hawksworth (1961) 

found similar results. In another study, pruning large brooms from the lower portions of 

infected ponderosa pine was shown to improve the vigor of trees and increase their 

longevity (Lightle and Hawksworth 1973). 

Conversely, this rating system tends to overrate trees with numerous light infections, 

because it only considers the proportion of the crown that is infected, not the type of 
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infection (Hawksworth 1977). In ponderosa pine and lodgepole pine, heavy infections 

located in the lower portion of the crown, or light infections distributed throughout the 

crown, do not always cause a large reduction in growth and an increase in mortality 

(Parmeter 1978) . 

For these reasons, in the mortality centers I studied, the six-class dwarf mistletoe 

rating system might be sensitive to the varied impacts of different types of dwarf mistletoe 

that infects individual jack pines . This could account for why my observations differed 

from those ofBaranyay and Safranyik (1970). They found that lodgepole pine with 

individual branch swellings experienced reductions in diameter growth similar to those 

observed in heavily broomed trees of like dwarf-mistletoe-infection classes, whereas in 

jack pine, I observed large differences in growth that were a function of the size and 

number of brooms, of branch swellings, and of the location of infections. On the one 

hand, the entire crown of severely stunted trees typically consisted of one or two large, 

dense brooms; on the other hand, some dominant or codominant trees had numerous local 

infections throughout their crowns . When assigning a dwarf mistletoe rating to each tree, 

however, I made no attempt to differentiate between types of infection, or to record the 

exact numbers and locations of infections within tree crowns . I assigned the same DMR 

to trees with numerous local infections in the crown as I did to trees with one or two 

dense brooms, even though the effect of the infection on tree growth and vigor was 

obviously quite different. Therefore, this argues for a decreased likelihood of detecting 

potential associations between dwarf mistletoe infection and Armillaria root disease. 
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The second shortcoming of the six-class dwarf mistletoe rating system is that in 

instances where dwarf mistletoe causes rapid decline and mortality, the ratings do not 

always relate to the severity of the disease . I did not study the spread of A. americanum 

and rates of disease intensification and mortality in jack pine. However, tree damage and 

extensive mortality appeared to have occurred rapidly in infected stands. 

Generally, the DMR. of an infected tree increases by one severity class in 

approximately 15 years (Hawksworth and Johnson 1989). This rate of disease 

intensification agrees with A. americanum infecting lodgepole pine (Hawksworth and 

Johnson 1989), and A. cryptopodum (Engelm .) infecting ponderosa pine (Hawksworth 

and Geils 1990) . These western dwarf mistletoe species, however , appear to kill trees 

slowly . In lodgepole pine, prior to mortal ity, the intensificaton of dwarf mistletoe with 

time causes detectable loss of growth (Hawksworth 1961 ) . For light to moderately 

infected (DMR. = 2, 3) ponderosa pines, it took dwarf mistletoe approximately 57 years to 

kill 50% of these trees (Hawksworth and Geils 1990). In comparison, Baker and French 

found that A. pusillum more rapidly kills infected black spruce : Specifically, they found 

only small differences between the mean diameter growth of dwarf mistletoe -infected 

black spruce and uninfected trees . This was interpreted to suggest that black spruce dwarf 

mistletoe killed trees before their diameter growth differed from uninfected trees . Using a 

disease model based on compound interest, Baker and French (1980) also estimated that 

in 8.3 years, black spruce dwarf mistletoe kills 50% of the infected trees . After 17 years 

following infection, nearly 75% tree mortality results . In sum, for black spruce, the rate 
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of dwarf mistletoe-induced mortality is more rapid than that predicted from DMR, 

specifically by one DMR severity class. 

Arceuthobium americanum also appears to kill jack pine rapidly, particularly when the 

incidence and intensity of the infestation are severe . Seventy years was the mean age of 

jack pine sampled in dwarf mistletoe mortality centers. Using DMR to predict the rates of 

dwarf mistletoe intensification and mortality of jack pine after 70 years , I would expect to 

observe only those trees initially infected by dwarf mistletoe to have DMR.s as high as 5 or 

6. I would also expect to observe little tree mortality . However, I observed that in 70 

years, dwarf mistletoe had killed sufficient numbers of jack pine to create large, expanding 

openings within the forest canopy . Surviving trees within these openings mostly had 

DMR.s of 4 to 6. This observation is similar to the level of infestation and the percentage 

of mortality caused by A. pusillum in black spruce in Newfoundland (Singh and Carew 

1989). Mean ages of black spruce in these stands ranged from 72 to 76 years. Most 

infestation levels fell within the range ofDMR.s of 4 to 5, with mortality averaging 20 to 

38% . 

Also indicative of the severity of this disease in jack pine is the rapid death of 

uninfected portions of tree crowns in dwarf mistletoe-infected trees. Some trees with low 

to moderate DMR.s had large, vigorous brooms as indicated by their good foliage color 

and needle retention. However, uninfected portions of the crowns of these same trees had 

sparse foliage with poor color. As with other dwarf mistletoe species, this suggests that 

the diversion of photosynthates, water, and other nutrients to dwarf mistletoe infections 



produced severe decline and mortality in uninfected portions of the crowns (Singh and 

Carew 1989). Because these trees had surviving brooms and large losses in the 

uninfected crowns, they could have been assigned inflated DMRs . These observations 

indicate again that the six-class dwarf mistletoe rating system might not be the best 

method for quantifying the impacts of dwarf mistletoe on infected jack pine. 

Determining the extent of Armillaria colonization 
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Obtaining Armillaria isolates from resin-impregnated, or extremely decadent root 

tissue was difficult. Armillaria confirmation was based solely on culture appearance and 

rhizomorph production. The possibility exists that some Annillaria isolates did not 

produce rhizomorphs in culture or develop characteristics unique to the fungus. Without 

these characteristics, fungal isolates were not considered to be Anni//aria . Consequently, 

the actual percentage of jack pine and jack pine roots infected with Annillaria root disease 

may have been greater in some cases . 

Confounding effects of root system condition 
and other growth-related factors 

Extensive functional root systems may help trees tolerate stress-inducing agents 

(Bloomberg and Reynolds 1985). Dieback in older stands of jack pine attributed to 

drought and jack pine budworm was more dramatic in trees with less developed lateral 

and vertical root systems (MacAloney 1944). Following jack pine budworm defoliation, 

Mallett and Volney (1990) found that dead jack pine or top-killed trees had significantly 

reduced radial growth. Healthy trees had greater annual volume increment, and larger 
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root volumes and root weights than trees with dead tops or dead trees. The authors 

speculated that trees with smaller root volume and root weight did not have adequate food 

reserves to recover from defoliation easily, leaving them vulnerable to attack by 

Armillaria (Mallett and Volney 1990). Even with 50-60% of their root system infected by 

decay fungi, balsam fir with extensive root systems were able to maintain growth 

increment (Whitney and MacDonald 1985). 

I found that vigorous jack pine in the three mortality centers sampled had significantly 

more roots than either declining or dead trees . A large number of roots may have enabled 

vigorous trees to withstand stress caused by either Armillaria or dwarf mistletoe . 

In determining tree growth response to infection by laminated root rot, Bloomberg and 

Reynolds (1985) discussed other sources of variation . Tree size at the time of infection 

can potentially mask the effects of the disease . Although they may suffer some growth 

retardation, infected dominant trees can potentially outgrow uninfected trees in lower 

crown classes . Effects of competition in intermediate and suppressed trees may confound 

those of root rot. As trees die within mortality centers, the growth of remaining trees may 

improve due to decreased competition. These types of growth responses have also been 

observed in laminated root rot-infected Douglas-fir as surrounding trees died (Oren et al. 

1985), and in Armillaria-infected ponderosa pine after thinning (Filip et al. 1989). Other 

factors accounting for the high degree of variability in tree growth would include 

understory vegetation, climate, topography, soils, and genetics (Whitney and MacDonald 

1985) . 
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Although associations were not found between Armillaria root disease and dwarf 

mistletoe, the results of this study help explain the ecological roles of Armillaria root 

disease and dwarf mistletoe in this forest. Lack of associations between these two disease 

agents does not necessarily imply that Annillaria has a primary role in causing decline and 

mortality within these dwarf mistletoe mortality centers. The nature of jack pine decline 

and mortality observed in the Belair forest, and the observed sequence of Annillaria 

development in the root systems of infected trees, indicated that dwarf mistletoe was the 

primary agent of decline. Other trends in the data suggest that weakening effects of biotic 

or abiotic stress-inducing agents, including dwarf mistletoe, allowed for successful 

Anni/Iaria attack and subsequent colonization. Annillaria may have contributed to the 

ultimate death of individual trees . 

Patterns of jack pine decline and mortality 

Extensive jack pine decline and mortality only occurred in parts of the forest 

experiencing severe dwarf mistletoe infestations . The apparent pattern of decline and 

mortality I observed in the Belair was similar to jack pine dwarf mistletoe-related mortality 

observed in Alberta (Muir and Robbins 1973). Mortality centers were roughly circular 

openings within the canopy created by fallen dead trees . Living and dead jack pines with 

extensive brooming occurred in the center of decline and mortality . These trees also often 

exhibited stunted growth. Extensive brooming was also evident on fallen, older dead 

trees . In discrete mortality centers, the association between decline and heavy dwarf 

mistletoe infestations was very apparent. The number of declining and recently killed trees, 
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and trees heavily infested with dwarf mistletoe decreased progressively outward from the 

center of mortality (Appendix A). 

Also ind1cative of dwarf mistletoe-induced decline in dwarf mistletoe mortality centers 

was the presence of secondary organisms in heavily infested trees. Examination of the 

root collar often revealed secondary beetles and blue stain. Dwarf mistletoe-stressed trees 

have reportedly been attacked by fps spp. and Melanophila spp. (Stevens and 

Hawksworth 1984). Burnes and others (1985) found that scolytid bark beetles and 

cerarnbycid beetles infested jack pine killed by dwarf mistletoe . With scolytid beetle 

attack, blue stain fungi were also present in these trees (Burnes et al. 1985). Secondary 

insects and root rotting fungi ( species not identified) were believed to hasten mortality of 

dwarf mistletoe-infested jack pine in Alberta (Muir and Robbins 1973 ). 

Where Annillaria acts as a lethal, primary pathogen in forest ecosystems, it causes 

large expanding mortality centers (Wargo and Shaw 1985). This was not typical of the 

pattern of tree decline and death in jack pine mortality centers that I studied. Rather, the 

distribution of Armillaria-infected trees was variable with single trees, or small groups of 

trees scattered throughout the study area (Appendix A). This random pattern of 

Annil/aria-related mortality typifies that associated with dieback and decline caused by 

drought and general tree stress (Kile et al. 1991 ). Additionally, although all dead trees 

were colonized by Armillaria, extensive colonization was not evident in a number of live 

dwarf mistletoe-infested trees inhabited by secondary bark beetles and infected with blue 

stain fungi . These observations support speculations that Armillaria acts as an ecosystem 



scavenger or secondary pathogen able to successively colonize stressed hosts 

(McDonald et al. 1987a) . 

Armi//aria development in jack pine root systems 
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The distribution of percent root system colonization also suggests that Armi//aria 

behaves opportunistically in this forest . A histogram of percent Armi//aria colonization in 

jack pine roots revealed that 55% of jack pines sampled were uninfected by Armi//aria. 

Nineteen percent of the trees sampled had little (1-20%) Armi//aria colonization, and 

13% of sampled jack pine were moderately infected (21-60% ). All jack pine in the third 

group were dead and completely colonized by Armi//aria (Fig. 4) . There is an apparent 

absence of trees having approximately 61-99% root system colonization. While chance 

may account for the lack of trees in this part of the distribution, this gap may be evidence 

of a threshold between decline and tree death . Once such a threshold is exceeded, 

Armi//aria rapidly colonizes the entire root system. 

Shaw (1980) proposed a sequence of Armi//aria (A. me/lea) infection and subsequent 

disease development for ponderosa pine in south-central Washington . Young trees near 

edges of root disease mortality centers become infected by rhizomorphs from old-growth 

stumps colonized by Armi//aria. Lesions develop at infection sites and girdle the root. 

The fungus colonizes dead tissue distal to the girdling lesion, with no proximal 

colonization along roots of living trees. Rhizomorphs from lateral root lesions could 

initiate lethal tap root and root collar infections in larger, living trees. Attacks high on the 

taproot and root collar can develop into lethal lesions. Rapid root system and root collar 



colonization occurs just prior to, or following tree death. Adverse environmental 

conditions causing additional stress would hasten tree death (Shaw 1980). Klein­

Gebbinck and others ( 1991) made similar observations of the spread of A. ostoyae in 

young lodgepole pine stands in central Alberta . 
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In some ways, the observations I made of Armillaria colonization on jack pine root 

systems were similar to Shaw's (1980) proposed sequence of Annillaria development. 

Rhizomorphs were present in the soil and had established epiphytic associations with the 

lateral roots of living trees . Annillaria had initiated infections with successful 

colonization restricted to distal portions of infected roots. In contrast to Shaw's study, 

however, I did not observe rhizomorphs penetrating the taproots or root collar of infected 

trees . Colonization of these portions of root systems was only evident on dead trees and 

one declining tree, while the taproots and root collars of all other trees were not 

colonized . 

If Annillaria behaved as aggressively in jack pine as it does in ponderosa pine, I would 

have expected fewer uninfected jack pine, and more trees with moderate to high 

percentages of root system colonization . The distribution of percent Annillaria 

colonization obtained from my data suggests that Armillaria infecting live jack pine root 

systems probably exists at low levels as a weak, secondary pathogen, perthophyte, or 

saprophyte . Conceivably, rapid root system colonization occurs after trees have been 

subjected to stress and lose their ability to resist the fungus and death is imminent. 



Stress-inducing agents associated 
with Armil/aria colonization 
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The lack of declining, dominant, and codominant jack pine uninfested with dwarf 

mistletoe in these mortality centers provided further evidence that Armil/aria colonized 

only stressed trees. Initially, only dominant and codominant jack pine were considered for 

sample trees . However, very few declining dominant and codominant jack pine uninfested 

with dwarf mistletoe were encountered along transect lines. Due to the scarcity of these 

trees, intermediate jack pine were included in the sample. Fifty-one percent of the 

intermediate jack pine surveyed were either declining or dead, and all twelve intermediate 

trees selected for sampling were either declining or dead . Only one of these trees was 

heavily infested with dwarf mistletoe, suggesting that light stress due to suppression, or 

other site-related factors, may have increased these tree's susceptibility to Annillaria . 

Crown suppression can weaken trees allowing Annillaria to colonize root systems 

(Davidson and Rishbeth 1988). Because suppressed and intermediate trees occupy a 

subordinate position within the canopy, they receive less light than neighboring dominant 

and codominant trees (Smith 1962, Daniel et al. 1979). Light stress experienced by these 

trees results in a reduction of the amount of available energy for defense (Wargo and 

Harrington 1991). In greenhouse experiments, grand fir (Abies gram/is Lindi.) and red 

oak (Quercus robur L.) subjected to low light intensities had decreased resistance to 

Armil/aria (Redfern 1978). Disease severity increased in conifer seedlings when light and 

nitrogen were limited as compared to seedlings grown in full light and balanced nitrogen 

(Entry et al. 1991). 



Conversely, 87% of all dominant and codominant jack pine surveyed were vigorous. 

Of these trees sampled, 85% were uninfected by Armillaria. Sixty percent of declining 

and dead, dominant and codominant jack pines sampled were moderately to heavily 

infested with dwarf mistletoe, and more than half of these trees were also extensively 

colonized by Annillaria . These findings suggest that dominant or codominant trees are 

not susceptible to Arm ii/aria unless they become stressed by dwarf mistletoe, or other 

agents. 

Relationships between Armillaria root disease 
and jack pine vigor as assessed by BAI 
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Regression analysis revealed little correlation between BAI and the percentage of 

Annillaria colonization . However, because the distributions observed in these 

scatterplots were not linear, regression analysis was not appropriate for determining 

correlations between these two variables. Scatterplots of five- and ten-year BAI and the 

percentage of Annillaria colonization do suggest a relationship between Armillaria and 

growth loss (Figs . 6 and 7, respectively) . The nine jack pines with 100% Armillaria 

colonization had low five- and ten-year BAI . The distributions show that no trees with 

more than 50% root system colonization had high BAI. To support evidence of the 

observed relationship between Armillaria colonization and BAI, an additional statistical 

test has been considered. This analysis would involve randomly pairing each BAI value 

with a percentage of Annillaria colonization value producing a new distribution . After 

numerous runs, the probability of obtaining distributions with high BAI values paired with 



high percentages of Annillaria colonization values would be calculated . If extensive 

Annillaria colonization was associated with low BAI, the resulting probability would be 

small (P < 0.05). A high probability would suggest that the percentage of Annillaria 

colonization and BAI were associated by chance. 
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Evidence of an association between extensive Annillaria colonization and low BAI 

does not imply that Annillaria was primarily responsible for poor tree growth. These 

distributions also show that many uninfected jack pine and trees with low percentages of 

root system colonization had low BAI. Additionally, eight of the nine jack pine with 

extensive Annillaria colonization and low BAI were either intermediate trees , or were 

heavily infested with dwarf mistletoe (Appendix B) . Growth loss caused by crown 

suppression, dwarf mistletoe , or other stress-inducing agents may explain the low BAI 

observed in trees . 

Other analysis and observations also provide evidence to suggest that Annillaria did 

not contribute to significant growth loss. The percent difference in BAI analysis showed 

that only 24% of jack pine with an increasing growth increment were infected by 

Annillaria . However , for all jack pine with decreasing growth increment, the percentage 

of trees colonized by Annillaria was approximately equal to the percentage of uninfected 

trees . 

Finally, numerous studies show that host trees with a significant number of roots killed 

by Annillaria or other decay fungi experience reduced height growth and diameter 

increment (Morrison et al. 1991 ). In northern Ontario, the mean height and radial 
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increments of balsam fir with ground level decay were significantly less when compared 

with trees having no ground level decay after three years (Whitney and MacDonald 1985). 

Laminated root rot decreased the average stem size and periodic annual increment of 

infected second-growth Douglas-fir in mortality centers on Vancouver Island (Bloomberg 

and Reynolds 1985). Young radiata pine (Pi nus radiata ) with 50-100% root collar 

infection by Armillaria (A. limonea, or A. novae-zelandiae) experienced 19-20% less 

cumulative mean increment than uninfected control trees (Shaw and Toevs 1977). 

Douglas-fir in southern British Columbia experienced significant reductions in percent 

stem volume growth attributed to basal resinosus due to increased mycelial colonization of 

Annillaria (Bloomberg and Morrison 1989). Armillaria-infected Norway spruce had 

significantly iess diameter growth than healthy trees (Sokolov 1964 in Morrison et al. 

1991) . 

Contrary to the above studies, examination of excavated roots in my study showed 

that only one declining and all recent dead trees had extensive Armillaria colonization . 

Annillaria did not extensively colonize root systems of vigorous jack pine and cause 

significant root system mortality . The sequence of Armillaria development I observed in 

jack pine root systems indicates that extensive root system colonization and subsequent 

root mortality occurred at the onset of tree death . 

Based on the results of these findings, a probable explanation for the observed 

relationship between extensive Armillaria colonization and low BAI may be that both 

Armillaria root disease and poor growth are indicative of tree decline. 
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Associations between dwarf mistletoe and tree vigor indicate that dwarf mistletoe has 

an important role as a stress-inducing agent in these jack pine stands . Although 

associations of dwarf mistletoe with Annillaria root disease were not detected, tree 

mortality and damage experienced in stands heavily infested with dwarf mistletoe have 

important implications for the control of Armillaria root disease in future stands . Woody 

substrates provide food bases capable of maintaining Annillaria saprophytically in the soil 

(Redfern and Filip 1991). From sources including dead roots, stumps, slash, and other 

woody debris, Annillaria can spread and infect young trees (Shaw and Calderon 1977; 

Redfern 1978; Stanosz and Patton 1987) . High rates of Annillaria infection in Ontario 

plantations were attributed to the close proximity of infected trees to stumps (Whitney 

1988) . In young lodgepole pine stands in Alberta , woody debris and stumps from the 

previous stand were the major inoculum sources (Klein-Gebbinck et al. 1991) . Only 22% 

of the young trees had been infected by Arm ii/aria rhizomorphs growing from the roots 

of previously infected regeneration. 

Because all dead jack pine in my study were completely colonized by Annillaria, the 

root systems of dead trees in dwarf mistletoe mortality centers can potentially become a 

Jarge inoculum source. I also observed other sources of woody debris that were colonized 

by Annillaria . The buildup of Anni Ilaria inoculum in dead trees and woody debris may 

allow the fungus to spread to root systems of vigorous trees within surrounding mortality 
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centers. With high inoculum potential, young trees, or dwarf mistletoe-stressed trees 

appear extremely susceptible to the disease (Hood et al. 1991) . The increased probability 

of Armillaria infecting a larger proportion of roots may supercede requirements for stress 

for successful attack and colonization . In this manner, Armillaria root disease may 

contribute to the expansion of mortality centers . 

The buildup of Armillaria within dwarf mistletoe mortality centers , in addition to to 

the buildup of Armi/laria in stumps created after harvesting jack pine may also explain the 

prevalence of Armillaria in Belair red pine plantations established on these former jack 

pine sites. The effects of site-related stress experienced by planted red pine and the 

prevalence of Armillaria may increase the susceptibilty of young red pine to the disease 

resulting in the high mortality observed . 

Supposing that this is the case, several management options could minimize losses due 

to Armillaria root disease in these plantations. First, following harvest stands, heavily 

infested with dwarf mistletoe should not be converted to red pine . In Belair plantations, 

volunteer jack pine regeneration has demonstrated greater vigor and resistance to 

Armillaria root disease than red pine . In Armillaria infection centers, red pine are killed 

by the fungus, whereas jack pine typically have uninfected root systems . Hall and others 

(1971) found that natural fir regeneration had more well-developed root systems than 

planted seedlings. Well-developed root systems may give young trees competitive 

advantages on the site, and the ability to withstand adverse environmental conditions and 

recover from the effects of stress (Hood et al. 1991) . Selecting species more suited to 



these sites would minimize volume loss that results from poorly stocked stands due to 

Armil/aria-caused mortality. 
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Secondly, utilize management strategies that maintain forest health . In jack pine 

stands, dwarf mistletoe control may significantly improve tree vigor, thus reducing 

mortality and resulting in less Armillaria inoculum . Wicker and Hawksworth (1988) 

described a number of strategies and tactics useful for dwarf mistletoe control that will 

minimize losses. In stands where jack pine occurs with a mixture of other tree species, 

selection cutting favors retention of the species mixture over a pure jack stand, and 

reduces dwarf mistletoe spread . If the management objective is to regenerate jack pine, 

then the preferred strategy is to remove all overstory trees from the cutting unit, and leave 

a 70-foot buffer strip between residual stands and regenerated stands . If taking this 

amount of forested land out of production is not economically feasible, edge infections of 

the residual stand may be removed . If infested overstory trees are retained for seed trees , 

they should be cut within the first five years of seedling establishment to prevent spread to 

young trees . In residential, or recreational areas, where tree removal may not be an 

option, pruning dwarf mistletoe-infested branches may delay dwarf mistletoe spread . In 

addition to reducing dwarf mistletoe damage within the stand, the costs associated with 

these control strategies are considerably less than the costs of stump removal and other 

inoculum control strategies during site preparation. 

Finally, if red pine is the preferred species for planting, reducing inoculum sources in 

sites prone to Armi/laria root disease by removing stumps and roots during site 
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preparation has been shown to provide benefits exceeding the costs (Shaw and Calderon 

1977) . Delaying planting to allow sources of inoculum to decay may also reduce the 

amount of Armillaria available to infect young trees . 
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SUMMARY 

This study did not find evidence of associations between jack pine dwarf mistletoe and 

Annillaria root disease in the Belair Provincial Forest . Trends in the data, however, 

indicate that dwarf mistletoe was primarily responsible for jack pine decline and mortality . 

Extensive decline and mortality were only observed in dwarf mistletoe-infested areas of 

the forest. The pattern of tree death in mortality centers and the subsequent colonization 

of dwarf mistletoe infested trees by Armil/aria was indicative of dwarf mistletoe-induced 

stress . Severely stunted jack pine often had crowns comprised of large brooms . Analysis 

of basal area increment data also provided evidence that heavy dwarf mistletoe infestation 

reduced jack pine growth . 

Although two-way analysis of variance and nonparametric procedures showed strong 

associations between Armillaria colonization and jack pine vigor, extensive colonization 

appears to be related to tree stress . Only dominant and codominant jack pine heavily 

infested with dwarf mistletoe were extensively colonized by Armillaria . Crown 

suppression caused by light stress or other site-related factors may have predisposed 

intermediate trees to Armillaria . 

Patterns of decline and mortality , and the random distribution of Armillaria-infected 

trees in jack pine mortality centers suggest that Armillaria acts as an ecosystem scavenger 

able to successfully colonize stressed trees. Associations between growth increment 

percentage and the incidence of Armillaria support this observation. Only a small 

proportion of vigorously growing trees was infected by Armillaria . Armillaria did not 
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appear to contribute to reduced BAI . Only 24% of jack pine with increasing growth 

increment were infected with Annillaria. For jack pine with decreasing growth increment, 

the percentage of Annillaria-infected trees was approximately equal to the percentage of 

uninfected trees. Vigorously growing trees are more likely to resist random Annillaria 

attacks, while declining trees succumb to attack and subsequent root system colonization. 

Finally, root system examination and distributions of percent Annillaria colonization 

suggest that the fungus probably persists in localized areas of jack pine root systems until 

trees become stressed. As trees approach death, Annillaria rapidly colonizes the 

remaining root system. Most vigorous and declining jack pine had low percentages of 

root system colonization. The root collars and taproots of vigorous jack pine were not 

colonized. Only the root systems of dead jack pine were extensively colonized with 

mycelial fans present at the root collar and on taproots . Colonization of these portions of 

the root system was also concurrent with infestation by secondary bark beetles and blue 

stain fungi, which is again indicative of the secondary nature of Annillaria in these 

mortality centers. 

As a secondary disease agent, the potential contribution of Annillaria in increasing 

rates of decline and mortality within heavily infected jack pine stands should remain a 

concern. The extensive colonization observed in dead trees, stumps, and woody debris 

has important management implications regarding future losses to the disease in Belair 

forest plantations. Consideration of these factors could affect decisions regarding the 

location of future plantations, harvesting operations, and site preparation. Most 
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importantly, young jack pine grows best on these sites and demonstrates greater resistance 

to Armi/laria than red pine. Measures to control dwarf mistletoe are easier and less 

expensive than stump removal, and will allow optimal jack pine growth on these sites. 

This study also demonstrates the limitations of the six-class dwarf mistletoe rating 

system to accurately assess the effect of dwarf mistletoe on individual trees, particularly in 

host/parasite combinations where brooming is extensive and mortality great. Further 

research is needed to investigate how large brooms and other types of dwarf mistletoe 

infection divert photosynthates, water, and nutrients from host tissues; how dwarf 

mistletoe stresses host trees measured in terms of productivity, from individual needles of 

infested branches, to overall productivity of the entire tree; how dwarf mistletoe affects 

the formation of phenolic compounds and other defense chemicals in roots; how dwarf 

mistletoe infections influence the number of roots, root system volume, and root system 

weight; and, how dwarf mistletoe affects the growth and development of the root systems 

of seedlings and juvenile trees. Other studies could examine relationships between the 

location of large brooms in tree crowns and their effect on these same factors. This 

information could lead to the development of methods and rating systems better able to 

quantify the true impact of dwarf mistletoe infections on individual trees. 
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Appendix A: 
Transect Maps of Dwarf Mistletoe Mortality Centers Sampled 



A 1. Distribution of the 20 sampled jack pine in mortality center 1, and 
their dwarf mistletoe and crown class status . 

• Transect bearing : 90 degrees . 
• 6 Dl\1Raof0 
e • Dl\1R of 1-3 
e Q Dl\1R of 4-6 
• Shading indicates intermediate trees . 
• Solid circles around trees indicate mortality . 
• Dashed circles around trees indicate decline . 
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NOTE : In mortality center 1, only trees sampled for Armillaria root disease were 
mapped . Maps of mortality centers 2 and 3 show the distributions of all jack pine 
surveyed along transect. 

anl\1R; six-class dwarf mistletoe rating system . 

97 



A 2. Distribution of the 20 sampled jack pine in mortality center 1, and their 
Annillaria root disease status. 

• Transect bearing: 90 degrees. 
e 6 DMRaofO 

e • DMRofl-3 
e Q DMRof4-6 
• Shading indicates Annillaria infections 
• Solid circles around trees indicate mortality. 
• Dashed circles around trees indicate decline. 

anMR; six-class dwarf mistletoe rating system. 
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A 3. Distribution of 109 jack pine surveyed in mortality center 2, and their dwarf 
mistletoe and crown class status . 

• Transect bearing : 14 degrees . 
e 6DMR.8c)f0 

e O DMR.ofl-3 
e Q DMR.of4-6 
• Shading indicates intermediate trees . 
• Solid circles around trees indicate mortality . 
• Dashed circles around trees indicate decline . 

aD.l\.1R six-class dwarf mistletoe rating system. 

27m 
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A . 4. Distribution of 29 jack pine sampled in mortality center 2, and 
their Annillaria root disease status. 

• Transect bearing : 14 degrees . 
e 6 DMRaof0 

e • DMRofl-3 
• OnMRof4-6 
• Shading indicates Armillaria infections . 
• Solid circles around trees indicate mortality. 
• Dashed circles around trees indicate decline . 

an:MR six-class dwarf mistletoe rating system. 
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A 5. Distribution of 95 jack pine smveyed in mortality center 3, and their 
dwarf mistletoe and crown class status. 

• Transect bearing : 360 degrees. 
• 6 Dl\.1R.aof 0 
e D Dl\.1R. of 1-3 
e O Dl\.1R. of 4-6 
• Shading indicates intermediate trees . 
• Solid circles around trees indicate 

mortality . 

• Dashed circles around trees indicate 
decline . 

aDMR.; six-class dwarf mistletoe rating system. 
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A.6. Distribution of 11 jack pine sampled in mortality center 3, and 
their Annillaria root disease status. 

Om 

~ : -·· 

• 

• Transect bearing : 360 degrees. 
e 6DMR~f0 0 
e • DMRofl-3 
e ODMRof4-6 
• Shading indicates Annillaria infections . (j ) 
• Solid circles around trees indicate mortality. 
• Dashed circles around trees indicate decline . • 

-:· : 

27m 

aDMR; six-class dwarf mistletoe rating system . 
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AppendixB : 
Table of Data Collected for Sampled Jack Pine 



Aeeendix B. Data collected for individual jack eine sameled in the three selected dwarf mistletoe mortalit~ centers• 

IDb vcc ccd dbh (cm) HT (m) · BA(m 2
) BAI 5 (m2

) BAJ 10 (m2
) · Root Segs DMR ¾Arm 

3-93 vu C 21.0 15.0 0.035 0.0028 0.0052 66 0 0 

2-105 vu C 16.6 15.5 0.023 0.0025 . 0.0044 78 0 0 

1-28 vu C 19.9 11.3 0.031 0.0016 0.0023 65 0 0 

2-104 vu C 13.0 15.5 0.013 0.0008 0.0015 24 0 0 

1-1 vu C 15.1 13.5 0.018 0.0030 0.005 36 0 0 

2-111 vu C 14.5 15.6 0.017 0.0019 0.0040 45 0 0 

3-28 vu C 14.5 12.5 0.017 0.0008 0.0015 39 0 0 

3-62 vu C 10.8 12.5 0.010 0.0005 0.0012 27 0 0 

2-109 vu C 18.0 17.0 0.025 0.0025 0.0050 63 0 0 

2-118 vu C 11.7 14.0 0.011 0.0002 0.0004 24 0 0 

1-12 vu D 19.9 14.0 0.031 0.0019 0.0034 64 0 12.5 

1-27 vu C 19.5 13.0 0.030 0.0042 0.0077 59 0 28.8 

3-16 VI C 19.9 16.0 0.030 0.0056 0.0113 95 3 0 

1-5 VI D 15.8 11.5 0.020 0.0034 0.0052 36 3 0 

2-37 VI C 10.8 13.8 0.010 0.0002 0.0006 25 1 0 

..... 
~ 



IDb vcc ccd dbh (cm) HT(m) BA (m2
) BAI 5 (m2

) BAJ 10 (m2
) Root Segs DMR ¾Arm 

1-6 VI D 16.4 13.0 0.021 0.0031 0.0051 64 1 0 

3-74 VI C 14.2 10.0 0.016 0.0006 0.0019 74 4 0 

2-95 VI C 14.9 16.4 0.017 0.0022 0.0045 55 1 0 

3-22 VI C 18.0 10.0 0.025 0.0009 0.0016 57 3 0 

2-75 VI C 12.4 15.5 0.012 0.0008 0.0015 25 3 0 

2-89 VI C 17.5 15.0 0.024 0.0023 0.0044 65 5 0 

1-4 VI C 12.5 11.3 0.012 0.0004 0.0010 40 1 0 

2-14 VI C 16.5 17.8 0.021 0.0027 0.0060 56 1 0 

2-81 VI C 12.8 15.3 0.012 0.0007 0.0015 33 3 0 

2-64 VI C 18.5 16.0 0.030 0.0012 0.0030 50 1 2.0 

1-3 VI D 15.5 12.5 0.018 0.0027 0.0050 65 1 3.1 

1-14 VI C 17.8 12.0 0.025 0.0011 0.0031 63 4 6.4 

1-19 DU I 11.5 8.6 0.010 0.0012 0.0045 44 0 0 

2-99 DU C 12.5 16.0 0.012 0.0003 0.00084 36 0 0 

1-22 DU I 11.8 10.8 0.011 0.0003 0.0008 27 0 0 

2-96 DU C 13.0 16.5 0.013 0.0005 0.0013 44 0 0 

...... 
0 
Vl 



IDb vcc ccd dbh (cm) HT(m) BA(m 2
) BAI 5 (m2

) BAJ 10 (m2
) Root Segs DMR %Ann 

2-19 DU I 9.5 20.0 0.007 0.0003 0.0009 19 0 0 
2-102 DU C 14.2 15.6 0.016 0.0006 0.0014 38 0 2.6 

2-11 DU C 14.0 15.8 0.015 0.0008 0.0016 64 0 3.1 

1-7 DU C 14.3 11.0 0.016 0.0010 0.0016 43 0 27.9 

1-20 DU I 12.7 10.0 0.013 0.0004 0.0009 16 0 50 

3-3 DU I 11.9 11.8 0.011 0.0006 0.0015 * 0 100 

2-98 DI C 13.0 14.5 0.013 0.0008 0.0021 29 1 0 

1-15 DI I 11.0 8.3 0.010 0.0013 0.0030 24 6 0 

1-2 DI I 12.6 9.5 0.012 0.0004 0.0007 16 2 0 

2-31 DI C 16.5 15 0.021 0.0014 0 .0027 63 5 0 

2-38 DI C 11.0 13.3 0.010 0.0008 0.0012 27 6 0 
1-16 DI C 13.5 10.0 0.014 0.0010 0.0026 47 6 2.1 

2-88 DI C 12.7 15.0 0.013 0.0004 0.0011 35 5 5.7 

1-17 DI I 11.0 7.0 0.010 0.0005 0.0011 25 6 16.0 

2-86 DI C 12.9 16.0 0.013 0.0003 0.0009 20 1 25.0 

2-48 DI C 16.0 16.5 0.020 0.0022 0.0047 36 3 27.8 

..... 
0 

°' 



IDb vcc ccd dbh (cm) HT(m) BA (m2
) BAI 5 (m2

) BAI 10 (m2
) Root Segs DMR %Ann 

3-20 DI C 10.7 8.5 0.009 0.0003 0.0010 19 6 31.6 

3-72 DI C 13.5 8.3 0.014 0.0006 0.0012 52 5 32.7 

3-27 DI C 12.6 11.0 0.012 0.0003 0.0010 47 1 58.5 

1-37 MU I 9.0 7.0 0.006 0.0003 0.0005 34 0 100 

1-18 MU I 9.9 7.0 0.008 0.0004 0.0010 12 0 100 

3-33 MU C 13.2 11.3 0.013 0.0006 0 .0012 • 0 100 

2-34 MI C 15.1 14.0 0.018 0.0005 0.0023 48 6 100 

2-36 MI C 15.5 14.0 0.019 0.0006 0.0019 • 4 100 

2-80 MI I 11.0 14.0 0.010 0.0003 0 .0006 • 3 100 

2-78 MI I 10.3 12.0 0.008 0.0007 0.0011 24 3 100 

2-40 MI C 14.6 15.0 0.017 0.0010 0.0030 34 6 100 

•m, tree identification number; VC, tree vigor class; CC, crown class; dbh, diameter at breast height; HT, tree height; BA, 
basal area; BAI 5, five year basal area increment; BAI 10, ten year basal area increment; Root Segs, the number of 25 cm root 
segments within 1 m of the bole examined; DMR, the six-class dwarf mistletoe ra1ting system;% ARM, the percentage of 
root segments infected with Annillaria . 

bThe first number designates the mortality center, the second, designates the individual tree within the mortality center. 
cv, vigorous; D, declining; M, dead; U, uninfected; I, infected. 
~. dominant; C, codomimant; I, intermediate. 
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