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ABSTRACT 

Estimating Suspended Solids and Phosphorus Loading in Urban Stormwater Systems 

Using High-Frequency, Continuous Data 

by 

Anthony A. Melcher, Doctor of Philosophy 

Utah State University, 2019 

 

Major Professor: Dr. Jeffery S. Horsburgh 

Department: Civil and Environmental Engineering 

 

Understanding the temporal and spatial variability of stormwater runoff and 

pollutant loading patterns is essential to managing stormwater in urban catchments. Recent 

advances in water monitoring technologies and wireless communication allow for data 

collection at much higher frequencies and at multiple locations than can be achieved using 

conventional methods. This research investigated methods for implementing modern 

stormwater monitoring technologies to quantify total suspended solids (TSS) and total 

phosphorus (TP) loads in an urban conveyance system. The research described in this 

dissertation includes the design and implementation of a novel stormwater observatory for 

collecting high-frequency data at multiple points within the Northwest Field Canal 

(NWFC), Logan, UT, USA, a comparison of statistical models that account for rapidly 

changing water quality conditions in stormwater conveyances, and an investigation of how 

high resolution monitoring data derived from the urban observatory can be used to improve 

the simulation of stormwater quantity. The principal findings of this research were that the 

urban observatory was able to capture and characterize short-duration storm events at 
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upstream and downstream ends of the NWFC and at multiple outfalls to the canal 

simultaneously without the use of field personnel. Additionally, we found that regression 

with categorical variables and mixed effects modeling were better suited than classical 

linear regression methods in developing surrogate relationships between suspended solids 

concentrations and in situ observations of turbidity to account for the dynamic nature of 

runoff events in an urban water conveyance. Finally, although data collected solely at the 

outlet of an urban drainage system can aid in the development of simulation models for 

predicting discharge values at the outlet, stormwater models calibrated using only data 

from the outlet location were unable to accurately predict discharge at interior, storm drain 

locations. Models calibrated using data collection from multiple sites within a wireless 

sensor network were able to better predict discharge values at interior points without 

compromising the accuracy of predictions at the model outlet. Results from this research 

are instructive for municipalities, water managers, and modelers for understanding what 

resources to dedicate to monitoring and modeling and what kind of benefits to expect.  

(215 pages) 
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PUBLIC ABSTRACT 

Estimating Suspended Solids and Phosphorus Loading in Urban Stormwater Systems 

Using High-Frequency, Continuous Data 

Anthony A. Melcher 

The introduction of pavement, buildings, and other impervious surfaces to urban 

landscapes greatly influences the quantity and quality of urban stormwater runoff. In this 

study, we designed and implemented modern stormwater monitoring technologies to 

establish a “smart” stormwater sensor network within the Northwest Field Canal (NWFC), 

an urban water conveyance located in Logan, Utah, USA. This network was designed to 

collect flow and water quality data at high frequencies and simultaneously at multiple 

locations. The observatory’s innovative method of inter-site communication and changing 

sampling frequencies during storm events was able to capture short duration events at the 

upstream and downstream ends of the NWFC and at multiple outfalls in the canal 

simultaneously without human intervention. We then investigated statistical regression 

models between turbidity and TSS so as to predict TSS at high frequencies. Finally,  the 

addition of the high-frequency discharge data in the calibration procedure for a stormwater 

simulation model developed using the Environmental Protection Agency’s Stormwater 

Management Model did little to improve model performance at the downstream end of the 

canal, but did provide important insight into the overall contribution of discharge from 

individual stormwater outfalls to the NWFC. The results of this study inform water 

professionals on how to build and operate automated monitoring systems and  how to create 

high-frequency estimates of TSS and TP loads in urban water systems. 
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CHAPTER 1 

INTRODUCTION 

Urban stormwater runoff has been recognized as a major contributor to degraded 

water quality in many water bodies in the United States. The accumulation of pollutants 

and sediments can cause oxygen depletion in receiving waters, reduce reservoir capacities, 

degrade drinking water sources, and render water bodies unusable for recreational purposes 

(Chapra, 2008; Khaba and Griffiths, 2017; National Research Council, 2009; Sawyer, 

1966). As a result, the United States Environmental Protection Agency’s (USEPA) 

stormwater regulations for municipal separate storm sewer systems (MS4) have been 

promulgated to mitigate some of these impacts (Federal Register, 1999). These regulations 

require MS4s to develop a stormwater management program that highlights the stormwater 

control measures (SCM) to be implemented to meet downstream water quality standards. 

In order to accurately estimate constituent loads, select SCMs, and identify optimal 

locations for SCMs in the watershed, knowledge of the temporal and spatial constituent 

loading patterns in stormwater runoff must be obtained. This can be quite challenging due 

to the highly dynamic nature of loading events in urban catchments.  

Changes to natural landscapes, such as the introduction of impervious surfaces, can 

greatly affect the size and shape of stormwater hydrographs and pollutographs (Hvitved-

Jacobsen et al., 2010; Wanielista and Yousef, 1993). Shear stresses that mobilize urban 

sediments are directly related to runoff velocities (Berenbrock and Tranmer, 2008), which 

are increased due to increased imperviousness. Water quality monitoring programs that 

implement sampling plans that do not consider the effects of urban development on 
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constituent loading events are insufficient (Kirchner et al., 2004; National Research 

Council, 2009). Infrequent grab sampling methods that often include sampling at weekly 

or monthly intervals can bias load estimates and do little to characterize loading patterns 

in short-duration events (Harmel and King, 2005; Horsburgh et al., 2010; Jones et al., 2012; 

National Research Council, 2009; Rode et al., 2016). Additionally, sampling at a single 

location (e.g., at the outlet of a watershed) lacks the spatial resolution to draw any 

conclusions on loading patterns or identify locations within the watershed that could 

benefit from management practices like green infrastructure and stormwater treatment. 

While some studies of urban stormwater have used high-frequency sampling (Ackerman 

et al., 2011; Halliday et al., 2015; Viviano et al., 2014), much is still unknown about how 

high-frequency data collected simultaneously at multiple locations can be used to resolve 

temporal and spatial heterogeneity and help to better quantify the contribution of pollutants 

from urban stormwater runoff.  

An emerging field of research is the use of automated technology with knowledge 

of engineered and natural systems to develop “smart” monitoring infrastructure that is able 

to collect high-frequency data at multiple locations and adapt according to changing 

conditions (Kerkez et al., 2016; Mullapudi et al., 2017; Wong and Kerkez, 2016). Because 

stormwater runoff and constituent loading events in urban catchments are highly dynamic, 

stormwater monitoring programs stand to benefit greatly from new techniques for detecting 

runoff events, adapting sampling frequencies based on predefined criteria, and 

communicating among monitoring sites to anticipate loading events at downstream 

locations. This type of monitoring infrastructure can improve the ability to estimate 

pollutant loads resulting from urban stormwater runoff by: 1) improving the understanding 
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of hydrologic processes, flows, and constituent loads in stormwater conveyances, 2) 

enhancing the ability to derive surrogate relationships between constituent concentrations 

and parameters measured in situ, and 3) increasing our ability to simulate urban stormwater 

systems.  

Common in the western United States are water conveyances that serve multiple 

purposes. Base flows in urban streams and waterways may represent flows influenced 

primarily by groundwater and snow melt runoff, while flows during storm events might 

represent runoff from urban surfaces. Additionally, water diverted for agricultural purposes 

and return flows may be present in combined conveyances during irrigation seasons (City 

of Grand Junction, 2016; City of Logan, 2010; City of Sequim, 2016). The challenge of 

determining what fraction of the total constituent load measured at a catchment outlet can 

be attributed to stormwater runoff is not trivial. One widely accepted practice for making 

continuous estimates of constituent concentrations and loads is using high-frequency, in 

situ data as surrogates for concentration values typically obtained in a laboratory (e.g., 

turbidity as a surrogate for TSS) (Jones et al., 2011; Rasmussen et al., 2011; Ryberg, 2006; 

Viviano et al., 2014). This involves fitting a regression model with the in situ parameter(s) 

as the explanatory variable and the constituent concentration of interest as the response 

variable. Fitting a surrogate relationship with a single regression model, however, makes 

the assumption that the surrogate relationship is constant under all conditions. This has 

been found to not always be the case (Grayson et al., 1996; Jones et al., 2011; Ryberg, 

2006), especially in water bodies that receive constituent loads from multiple sources, as 

is the case within combined urban/irrigation/stormwater conveyances.    
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High-frequency data collected via “smart” monitoring protocols are unique in that 

they represent multiple catchments’ simultaneous responses to a storm event. Typical 

urban stormwater modeling procedure is to calibrate and validate a model based on 

hydrographs and pollutographs observed at a catchment outlet. However, calibrating a 

model based on data collected at a single point is at risk of high model uncertainty and 

misrepresentation of the hydrologic processes at other locations within the catchment 

(Beven and Binley, 1992; Chiang et al., 2014; Neilson et al., 2010; Sun et al., 2013). Yet 

to be determined is how data collected at high temporal and spatial resolutions can affect 

stormwater model calibration and performance. While some research exists that considers 

the advantages and disadvantages of using multi-site data to calibrate and validate models 

(Lerat et al., 2012; Leta et al., 2017; Wang et al., 2012), much is still unknown about the 

degree to which high-resolution stormwater data collection using in situ sensors within an 

urban observatory can improve modeling procedures. 

As many studies have attributed the degradation of water quality in receiving water 

bodies to urban stormwater runoff, the focus of the research described in this dissertation 

is on demonstrating the necessary monitoring and modeling efforts to substantiate those 

claims. It is hypothesized that high-frequency data collection at multiple monitoring sites 

within an urban catchment is necessary for identifying some of the processes and spatial 

heterogeneities that govern constituent loading events, as well as for advancing methods 

for making more accurate estimates of constituent loads in stormwater runoff. This 

hypothesis is tested in this dissertation by the design and deployment of an urban 

stormwater sensor network, or urban observatory.  The high-frequency data collected by 

the urban observatory was then used to explore statistical and numerical modeling 
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procedures to estimate stormwater contributions of phosphorus and suspended solids to an 

urban receiving water body. The following research objectives were chosen to test the 

above hypothesis: 

• Objective 1: Design and establish an urban observatory for studying the effects of 

stormwater inputs on urban water systems. Understanding the spatial and temporal 

variability in the fluxes of constituents in an urban stormwater system requires a 

coordinated plan for sampling and instrumentation. Under this objective, we 

designed and deployed a multi-node environmental sensor network capable of 

generating the high-frequency and high-resolution data required to better estimate 

urban runoff quantity and quality. In situ measurements of water quality (e.g., 

turbidity, specific conductance, dissolved oxygen, pH, and water temperature) and 

water quantity parameters (e.g., stage and precipitation) were coupled with periodic 

grab samples and in-stream discharge measurements to derive high-frequency 

constituent concentrations and load estimates. Due to the short duration of 

stormwater runoff events we developed algorithms that enabled upstream 

monitoring sites to detect stormwater runoff events in real-time and message 

downstream monitoring sites to better anticipate and ensure that loading events 

were monitored at adequate frequencies. 

• Objective 2: Investigate methods for quantifying suspended solids loads within 

urban water systems. Making accurate constituent load estimates in a combined 

irrigation/stormwater conveyance requires a method that accounts for loads during 

base flow conditions as well as short duration storm event conditions. Under this 

objective, we used high-frequency data from in situ sensors and the collection of 
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periodic and event-based water quality samples to derive surrogate relationships to 

estimate TSS concentrations and loads in a combined irrigation/stormwater 

conveyance. Three regression methods were then evaluated, namely classical linear 

regression, linear regression with categorical variables, and linear mixed effects 

modeling for their ability to accurately predict base flow and storm event TSS 

concentrations and estimate TSS loads for two irrigation seasons.  

• Objective 3: Quantify the contributions of stormwater to suspended solids and 

phosphorus loading to the urban water system. Information from field data 

collection campaigns and sensor deployments can be used to populate, calibrate, 

and validate rainfall-runoff models. However, with the recent availability of high 

resolution datasets, we are just now beginning to test how these datasets can be 

used to better inform and drive the models we use to simulate environmental 

systems. Under this objective, we built a U.S. Environmental Protection Agency’s 

(USEPA) Storm Water Management Model (SWMM) of the NWFC drainage area. 

In addition to calibration at the outlet of the drainage area, we calibrated separate 

models of the drainage areas for the six monitored subcatchments. We then 

subsequently inserted each calibrated subcatchment model into the larger NWFC 

model to assess how predictions at the model outlet were affected by the availability 

of high resolution monitoring data.  

These objectives were chosen to address the difficulties related to estimating 

constituent concentrations and loads in relatively small, urban catchments. By 

accomplishing these objectives, we created valuable information about the spatial and 

temporal loading patterns of water quality constituents with urban stormwater runoff and 
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we demonstrated valuable new techniques that can be used by other researchers and 

developers of urban water quality and stormwater sampling programs. Each of the above 

objectives is addressed within one chapter of this dissertation as follows. 

Chapter 2 addresses the first objective by presenting the design and development 

of an urban environmental observatory within the Logan River watershed in northern Utah, 

USA. The purpose of the observatory was to capture stormwater runoff events at multiple 

locations and to synchronize the collection of water quality (in situ and grab samples) and 

quantity data so that better estimates of TSS and total phosphorus (TP) loads could be 

made. This was accomplished by detecting stormwater runoff events in real-time, using 

radio telemetry to communicate event detections between monitoring sites, and adapting 

both in situ and automated sample collection frequencies according to changing 

environmental conditions. Chapter 2 describes the monitoring infrastructure required, as 

well as the data collection and algorithms required to deploy an urban observatory and 

collect high-frequency water quality and quantity data. Results are presented 

demonstrating the observatory’s capabilities to capture the spatial variability of TSS and 

TP event mean concentrations (EMC) between multiple monitoring sites, and to capture 

temporal variabilities such as the short duration, first flush phenomenon.  

Chapter 3 addresses the second objective and compares multiple regression 

methods for deriving continuous estimates of TSS concentrations and loads for the duration 

of the study period in an urban catchment subject to stormwater runoff. In this chapter, we 

compare classical linear regression models to linear regression with categorical variables 

and linear mixed effects models, which use additional explanatory variables related to 

storm event characteristics to account for changes in the surrogate relationship and 
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undersampled event conditions. While common practice is to assume that surrogate 

relationships are unchanging (i.e., the classical linear regression method), we report how 

alternative regression methods that consider episodic constituent source changes can affect 

TSS load estimates.   

Chapter 4 addresses the third research objective and describes techniques for 

incorporating high resolution monitoring data from multiple monitoring locations into 

urban stormwater modeling efforts to better estimate TSS and TP loads generated from 

urban stormwater runoff.  SWMM was selected for this research because it is one of the 

most widely used stormwater models and currently represents the state of the practice in 

stormwater modeling (Niazi et al., 2017). Our work was focused on how the state of the 

practice could be advanced by combining urban stormwater modeling with high resolution 

data. We assessed how a semi-distributed stormwater model was affected by using 

additional time series datasets to calibrate subcatchments of the larger model domain. 

Specifically, we looked at how the addition of calibration datasets at the subcatchment 

scale affected the uncertainty of water quantity and quality predictions at the model outlet, 

or the outlet of the NWFC drainage area. Incorporating observational data from multiple 

locations within the watershed helped to justify monitoring efforts via an urban observatory 

and provided valuable information that stormwater managers may use in informing 

monitoring site selection based on stormwater modeling benefits.  

The urban observatory along with the statistical methods and numerical modeling 

presented in this dissertation take advantage of technological advancements in the fields of 

stormwater monitoring and water resource management. The description of the 

observatory’s infrastructure and sampling logic can be of benefit to water managers and 
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municipalities wanting to design a next-generation monitoring program and researchers 

seeking a greater understanding of processes governing pollutant loading in the built 

environment. The statistical and numerical modeling methods presented in this dissertation 

reveal valuable techniques for estimating TSS and TP loads to a receiving water body, as 

well as for providing insight into identifying optimal monitoring site locations. These 

techniques can be implemented in water quality and total maximum daily load (TMDL) 

studies.  
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CHAPTER 2 

AN URBAN OBSERVATORY FOR QUANTIFYING PHOSPHORUS AND 

SUSPENDED SOLIDS LOADS IN COMBINED NATURAL AND STORMWATER 

CONVEYANCES
1 

Abstract 

Water quality in urban streams and stormwater systems is highly dynamic, both 

spatially and temporally, and can change drastically during storm events. Infrequent grab 

samples commonly collected for estimating pollutant loadings are insufficient to 

characterize water quality in many urban water systems. In-situ water quality 

measurements are being used as surrogates for continuous pollutant load estimates; 

however, relatively few studies have tested the validity of surrogate indicators in urban 

stormwater conveyances. In this paper we describe an observatory aimed at demonstrating 

the infrastructure required for surrogate monitoring in urban water systems and for 

capturing the dynamic behavior of stormwater driven pollutant loads. We describe the 

instrumentation of multiple, autonomous water quality and quantity monitoring sites within 

an urban observatory. We also describe smart and adaptive sampling procedures 

implemented to improve data collection for developing surrogate relationships and for 

capturing the temporal and spatial variability of pollutant loading events in urban 

watersheds. Results show that the observatory is able to capture short-duration storm events 

within multiple catchments and, through inter-site communication, sampling efforts can be 

synchronized across multiple monitoring sites. 

 
1Melcher, A.A. and J.S. Horsburgh, 2017. An Urban Observatory for Quantifying 
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Phosphorus and Suspended Solids Loads in Combined Natural and Stormwater 

Conveyances. Environmental Monitoring and Assessment June 2017, 189:285. The final 

publication is available at Springer via https://doi.org/10.1007/s10661-017-5974-7 

 

2.1. Introduction 

Urban stormwater runoff has proven to be a major contributor of sediment and 

nutrients to receiving water bodies (Sawyer, 1966; National Research Council, 2009; Utah 

Division of Water Quality, 2010). In many cases, this results in oxygen depletion and 

cultural eutrophication (Roy-Poirier et al., 2010). Stormwater regulations promulgated by 

the United States Environmental Protection Agency (USEPA) have charged municipal 

separate storm sewer systems (MS4s) with the responsibility of developing a stormwater 

management program that highlights the stormwater control measures (SCM) planned for 

mitigating loads of pollutant such as sediments and nutrients in stormwater runoff (Federal 

Register, 1999). In order to develop effective SCM plans, managers of MS4s need 

information on the quantity and quality of stormwater runoff to enable them to assess the 

impact of urban growth and land use changes and identify locations that will benefit the 

most from SCM implementation. However, monitoring for the estimation of pollutant 

loads is often one of the weakest parts of stormwater management programs and is often 

excluded or goes unreported (National Research Council, 2009; Aguilar and Dymond, 

2015). Aguilar and Dymond (2015) state that of the 90 MS4s they surveyed in Virginia, 

USA, none reported the measurement of any water quality or water quantity parameters. 

Common in urbanized areas of the western United States are drainage pipes, canals, 

and stream conveyances that serve multiple purposes (Douglas County, 2011; City of 
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Grand Junction, 2016; City of Sequim, 2016). Often, natural stream flows are combined 

with stormwater runoff and irrigation return flows within a single conveyance. Combined 

flows from multiple sources can make the quantification of pollutant loads from each 

specific source difficult. The overall pollutant concentration determined by sampling 

combined flows must be disaggregated, or sources must be monitored separately in order 

to attribute the pollutant contribution to a particular source. Fingerprinting or source 

tracking methods, which attempt to identify the chemical signature of a pollutant or another 

water constituent derived from each potential source (e.g., different land uses), have been 

used successfully to track sources of suspended sediment or microbial loading in rural, 

agriculturally dominated watersheds (Walling et al., 1999; Walling, 2005;  Poleto et al., 

2009). These methods have been less successful when applied within urban catchments 

and for a broad range of pollutants (Poleto et al., 2009). The unreliability of chemical 

fingerprinting and traditional sampling methods has emphasized the need for alternative 

methods for quantifying pollutant loads within urban catchments and conveyances.  

Another challenge in quantifying pollutant loads resulting from stormwater runoff 

is characterizing the temporal and spatial scales of pollutant loading events (Tiefenthaler 

et al., 2001; Goonetilleke et al., 2005). Spatial and temporal variability are caused by 

variability in rainfall, which is especially important in urban settings where the varying 

hydrologic response from urban land uses depends on differing levels of impervious 

surface and the type and characteristics of urban stormwater infrastructure. Recent 

advances in water quality and quantity monitoring technology have produced in-situ 

sensors capable of deployment for long periods of time at a relatively low cost due to the 
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low maintenance required (Kirchner et al., 2004). The high frequency measurements made 

possible by in-situ sensors have allowed for a greater understanding of the temporal and 

spatial variability within storm events as well as seasonal and year-to-year trends (Kirchner 

et al., 2004). However, urban water systems present some unique challenges for automated, 

continuous monitoring.  

First, the spatial and temporal scales at which important processes occur vary 

greatly. For example, monitoring at a lower frequency (e.g., every 30 minutes or even 

hourly) may be adequate for capturing seasonal water quality trends in urban conveyances 

with natural streamflow, but is insufficient to characterize the impact of short duration, 

high intensity pollutant loading events from storms that may last only minutes. In-situ 

monitoring at multiple locations provides comparative time-series datasets that allow for a 

greater understanding of the spatial variability of pollutant loading events and has been 

successfully used in hydrologic and environmental observatories (e.g., instrumented 

watersheds) for quantifying loads and identifying pollutant sources from short duration, 

high intensity events (Horsburgh et al., 2010; Cassidy and Jordan, 2011; Jones et al., 2011). 

These wireless sensor networks (WSN) are able to collect data via in-situ sensors at 

multiple monitoring nodes and then transmit them to a centralized location for storage, 

post-processing, and analysis. While the architecture and infrastructure of WSNs for 

environmental observatories have been defined (Corke et al., 2010; Horsburgh et al., 2010), 

there are fewer examples of using WSNs to characterize the quantity and quality of 

stormwater runoff within urban water systems (Wong and Kerkez, 2016). 
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Several recent studies have successfully used in-situ measurements as surrogates 

for pollutant concentrations and loads (Ryberg, 2006; Settle et al., 2007; Jones et al., 2011; 

Viviano et al., 2014; Hannouche et al., 2016; Nasrabadi et al., 2016). However, key to 

developing strong surrogate relationships (e.g., using turbidity to predict TSS or TP) is the 

collection of physical samples representative of the range of hydrologic conditions and 

constituent concentrations experienced in a catchment. This minimizes the potential for 

using derived relationships to extrapolate beyond the range of measured conditions. 

Manually collecting a large number of samples over time can accomplish this; however, 

the cost, effort, and timing required for field crews to collect and process a large number 

of samples can be prohibitive for many MS4s. There is an opportunity, therefore, to 

combine in-situ sensors and adaptive sampling logic to not only adjust sensor 

measurements to rapidly changing hydrologic conditions but to also trigger collection of 

physical samples to strategically capture important characteristics of storm events, reduce 

the number of samples required to capture a broader range of conditions, and better support 

development of surrogate relationships.  

In this paper we describe the infrastructure, adaptive sampling logic, and 

communication requirements for collecting high frequency stormwater quantity and 

quality data in urban catchments. We then describe a case study in which an urban 

observatory, or an environmental sensor network located in an urban stormwater drainage 

system, was constructed. Within this observatory, we implemented an adaptive sampling 

logic to collect both high frequency, in-situ sensor observations and automated, pumped 

samples for laboratory analysis in an effort to quantify TP and TSS loading from rainfall 
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events. Results of the case study demonstrate the value of an urban observatory for 

quantifying pollutant loads in stormwater conveyances.  

The following section includes a description of the temporal and spatial 

requirements for monitoring stormwater quality. We then describe the infrastructure, 

programming logic, and communication requirements for an adaptive, urban observatory 

that monitors water quantity and quality in urban stormwater runoff. Following our 

description of requirements, we describe a case study in Logan, Utah, USA in which an 

urban observatory that uses an adaptive sampling algorithm was installed to monitor the 

flux of TSS and TP in an urban stormwater conveyance. In the final section we summarize 

our results. 

2.2. Quantifying Pollutant Loads in Urban Stormwater Runoff 

Within urban water systems, precipitation is the driving force for runoff generation 

and pollutant mobilization. Data collection efforts can reveal how stormwater quantity and 

quality vary both within storm events and on a longer-term scale (e.g., seasonally and 

yearly). Additionally, data collection that targets characterization of multiple land use areas 

and/or pervious/impervious areas can reveal important spatial patterns. In the following 

sections we provide requirements and considerations for effective design of monitoring 

systems aimed at better characterizing both temporal and spatial characteristics of urban 

stormwater. 
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2.2.1. Temporal Variability of Pollutant Loads in Stormwater Runoff and the Need 

for High Frequency Data 

Quantifying pollutant loads in urban runoff requires observations at a high temporal 

resolution. Hydrographs from urbanized watersheds have a shorter time-to-peak and higher 

runoff volumes per unit area when compared to watersheds with more natural landscapes 

due to their larger percentage of impervious area (M. P. Wanielista and Yousef, 1993; M. 

Wanielista et al., 1997; Hvitved-Jacobsen et al., 2010). Kirchner et al. (2004) noted that 

water quality and quantity measurements should be made at a temporal resolution greater 

than or equal to that of a catchment’s hydrologic response (e.g., the rate at which flow and 

water quality change), which may be on the order of minutes in urban catchments with 

high levels of imperviousness. Data obtained at a high frequency can provide better 

understanding of the processes that drive pollutant loading on the catchment and 

subcatchment scale than grab samples obtained at a lower frequency.   

Pollutant loading from urban stormwater runoff is greatly affected by human 

behavior (National Research Council, 2009). Some examples of practices that can increase 

runoff loads include land development and the introduction of impervious surfaces, 

sediments and other pollutants generated from construction sites, and anthropogenic 

pollutant sources based on land use (Waschbusch et al., 1999; National Research Council, 

2009). As stormwater collection systems are typically dry between storm events, loading 

to receiving water bodies occurs during a short time window when water is actually 

flowing. In the semi-arid, western region of the United States, it is not uncommon to have 

weeks of dry period between very short and intense storm events. Combined stormwater 

conveyances, such as canals and urban rivers, may experience long periods of relatively 
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constant flow and water quality, interrupted by storm events that cause rapid changes in 

both. Effective stormwater monitoring efforts must be able to adapt sampling frequencies 

in order to quantify these short duration, high intensity inputs of pollutant loads while also 

capturing longer term conditions in the receiving waterbodies for assessing longer term 

impacts.  

2.2.1.1.   Monitoring for Characterizing the First Flush 

Sampling during storm events has been conducted by many researchers using 

multiple different methods (Ackerman et al., 2011; Leecaster et al., 2002). One approach 

is to collect a composite or multiple composite samples during a storm event. This includes 

the collection of multiple sample aliquots at time or flow-weighted intervals that are then 

combined into fewer composite samples. Often, these composite samples are then analyzed 

to determine the concentrations of constituents of interest, thus obtaining what are 

effectively event mean concentrations (EMCs) – or the average concentration of each 

constituent over the course of the entire event. Another approach to storm event sampling 

is to collect discrete samples throughout the event that characterize how constituent 

concentrations change over time. It has been found in many cases that a majority of 

pollutant loading occurs during the first part of a runoff event, before the peak of the 

hydrograph. This phenomenon has been termed the “first flush” of the storm event 

(Bertrand-Krajewski et al., 1998; Sansalone and Cristina, 2004). The intensity and duration 

of the first flush has been observed to be watershed specific and is affected by the drainage 

area, land use of the catchment, and the amount of time that has passed since the last storm 

event (Lee et al., 2002; National Research Council, 2009). The first flush can be observed 
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and characterized when discrete samples are collected during a storm event. Studies that 

have compared multiple sampling methods for pollutant load estimation have found that 

the collection of discrete samples throughout the duration of the event, rather than 

composite sampling, introduces the least bias to an estimate of the total pollutant load 

occurring within a storm event (Ackerman et al., 2011; Leecaster et al., 2002). 

2.2.1.2.   Monitoring for the Development of Surrogate Relationships 

It is currently difficult and costly to create high frequency datasets for constituents 

like TSS and TP from grab sampling alone. While in-situ phosphorus analyzers exist, they 

are expensive, require maintenance to ensure proper operation, and have been found to be 

prone to malfunction (Cassidy and Jordan, 2011). Many examples exist where variables 

monitored in-situ and at high frequencies have been used as surrogates for TSS and TP 

(Christensen et al., 2002; Fisher et al., 2016; Jones et al., 2011; Nasrabadi et al., 2016; 

Rasmussen et al., 2011; Ryberg, 2006). The majority of these examples, however, 

developed surrogate relationships (e.g., regression models between a surrogate such as 

turbidity and TSS or TP concentrations) in natural or agriculturally dominated watersheds. 

Many of these studies found that turbidity and streamflow were good predictors of TSS 

and TP. Fewer studies have investigated the use of surrogate monitoring techniques in 

systems affected or dominated by urban stormwater runoff (Fisher et al., 2016; Miguntanna 

et al., 2010; Settle et al., 2007; Viviano et al., 2014).  

To obtain reliable parameters in a surrogate regression model, in-situ observations 

and physical samples for laboratory analysis must be collected across the range of expected 

values for water quality constituent concentrations (Lewis, 1996; McKee and Gilbreath, 
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2015). For example, when high frequency measurements of in-situ turbidity are used as the 

independent variable and TP concentrations are used as the dependent variable, TP samples 

should be collected over as much of the range of observed turbidity values as possible. 

Once developed, a surrogate relationship could then be used to create continuous estimates 

of TP concentrations for the period in which in-situ and sample data were collected if it 

can be reasonably assumed that the relationships remained constant (Rasmussen et al., 

2011).  

The selection of appropriate in-situ sensors is essential in the development of 

surrogate relationships and in collecting continuous observations of surrogate values for 

estimating pollutant concentrations. In-situ sensors are able to measure parameters such as 

turbidity and conductivity at high frequencies (e.g., on the order of seconds to minutes) 

that can then be used with surrogate methods to create continuous estimates of the 

concentrations of pollutants such as TP and TSS. A “continuous” dataset is one that 

accounts for all changes and variations in the pollutograph. If additional measurements will 

not provide any additional information about these variations, one can verify that the data 

set is continuous (Kirchner et al., 2004). Given a continuous dataset, the total pollutant 

mass loading (M) during a loading event can then be calculated by: 

𝑀 = ∫ 𝐶(𝑡)𝑄(𝑡)𝑑𝑡            (2.1) 

where C(t) is the pollutant concentration as a function of time and Q(t) is the stormwater 

discharge as a function of time. High frequency measurements must be made for both water 

quality and quantity to obtain continuous estimates of mass loads during a storm event. 

Using surrogate methods, C(t) is calculated based on the surrogate relationship. Thus, in 
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order to obtain accurate estimates of pollutant mass loads from the calculated datasets, 

surrogate measurements (e.g., turbidity) must be correlated with the concentrations of the 

pollutants that they are serving as surrogates for and must be frequent enough to 

characterize local minima and maxima in the pollutograph (Lewis, 1996) to ensure that 

peaks or valleys are represented in the integral calculation. 

2.2.2. Spatial Variability of Pollutant Loads in Stormwater Runoff 

Many studies have attempted to characterize and predict loading based on land uses 

within drainage areas (USEPA, 1983; Ahearn et al., 2005; Goonetilleke et al., 2005; 

Gunaratne et al., 2014). One of the earliest efforts to incorporate land use into pollutant 

load modeling and prediction was the nationwide urban runoff program (NURP) completed 

by the USEPA in 1979-1983. This program included 28 separate monitoring programs 

across the United States. Unfortunately, correlations between land use and pollutant loads 

were weak (USEPA, 1983), which may have been due to the variability in sampling 

methods and frequencies carried out by each individual monitoring program. Since the 

completion of NURP, however, new advances have been made in stormwater monitoring 

technology that allow for multi-nodal, high frequency sampling (Kirchner et al., 2004; 

Corke et al., 2010; Horsburgh et al., 2010; Cassidy and Jordan, 2011).  

Similar to the inability of infrequent grab sampling to characterize temporal 

dynamics, the collection of water quality and quantity data at a single location is 

insufficient for characterizing the spatial variability in runoff and quality. Sampling at a 

single catchment outlet might provide an end-of-pipe snapshot of the pollutant 

concentrations within that catchment, but does not provide all of the information needed to 



 

 

25 

understand how pollutant loading changes across a range of catchments and urban 

landscapes. Instead, sampling at the outlets of a variety of catchments strategically chosen 

to represent a range of both catchment size and land cover composition can provide better 

understanding of the temporal and spatial scales on which processes occur and can lead to 

more accurate estimates of pollutant loading.  

While it is infeasible to simultaneously sample every outfall to a larger stormwater 

conveyance, it is advantageous to simultaneously sample outfalls from a small number of 

catchments of varying size, slope, land use, and land cover to observe multiple catchments’ 

responses to multiple storm events with differing characteristics (i.e., intensity, total 

volume, antecedent dry period, etc.). Mobile sampling equipment designed to be moved 

from outfall to outfall can aid in characterizing catchment responses, such as pollutant 

buildup during dry periods, hydrograph and pollutograph characteristics, and pollutant 

loading patterns. 

2.3. Infrastructure Required for Quantifying Pollutant Loads from Urban 

Stormwater Runoff 

Robust and automated sensing and data management infrastructure are required for 

quantifying pollutant loads from urban stormwater runoff given: 1) the “flashy” nature of 

the system being observed; 2) the need to create continuous records with sampling 

intensities high enough to capture storm events; and 3) the large volume of data generated. 

Adaptive sampling (e.g., automated collection of physical samples based on flow or other 

water quality conditions, or adaptation of the frequency of sensor observations during 

events) is a strategy that can be used to better characterize these types of systems that can 
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exhibit relatively long periods of unchanging flow and water quality followed by rapid 

changes during storms. Adaptive sampling poses multiple challenges, including 

synchronization of physical sample collection with in-situ sensing at individual sites, and 

synchronization of sampling across monitoring sites. In the following section, we describe 

the requirements that have been identified for sensing and data management infrastructure 

that enables automated, adaptive sampling, storm event detection, and in-network 

communications to quantify pollutant loads in urban water systems. 

2.3.1. Requirements for Event Detection, Adaptive Sampling, and Site 

Communications 

Urban monitoring sites designed to quantify pollutant loads from flashy runoff 

events must be able to detect those events in near real-time. For best results, sensor scan 

rates, or the rates at which observations are made, must be high enough to characterize the 

highest rate of change in discharge and pollutant concentrations at each monitoring site. 

Monitoring stations located at the outlet of smaller catchments generally require a high 

scan rate, whereas stations located within larger urban streams and canals may be effective 

using a slower scan rate. Additionally, the suite of sensors used must be able to distinguish 

storm events from other events that may generate discharge (e.g., lawn irrigation and other 

outdoor water use). For example, velocity/flow sensors and precipitation gages can be 

combined to ensure that sampling occurs during storm events (i.e., there is flow in a storm 

drain and rainfall is occurring).  

An urban observatory designed for the estimation of TSS and TP loads in 

stormwater runoff needs to be capable of making adaptive observations triggered by 
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changing environmental conditions, such as sudden changes in turbidity, flow, or other 

parameters measured in-situ that would signal the beginning of an event to be sampled. 

This functionality can be supported when in-situ sensors are paired with automated 

samplers and a programmable datalogger. Programmable dataloggers provide the benefit 

of onsite data storage and the development of customizable programming logic to control 

sensor scanning rates, data recording intervals, and the triggering of automated sample 

collection. For example, Lewis and Eads (2001) describe a sampling logic that allows for 

water samples to be collected by an automated sampler when turbidity values rise above or 

fall below a specified threshold. This turbidity threshold sampling (TTS), which has been 

used for monitoring sediment loading from catchments affected by logging and other 

forestry practices, was designed to enable development of a strong surrogate relationship 

between turbidity values and suspended sediment concentrations (SSC). Likewise, in urban 

water systems, interfacing in-situ water quality and quantity sensors with automated 

samplers using custom programming logic can be critical for strategically collecting 

physical samples required for establishing surrogate relationships for TSS and TP.  

Wireless communication allows sensor nodes to routinely transmit data to a 

centralized location for quality control and further analysis. The addition of a telemetry 

system to urban sensor nodes also provides flexibility and functionality for inter-nodal 

communications (Corke et al., 2010; Horsburgh et al., 2010; Kerkez et al., 2016). 

Advanced urban stormwater monitoring applications go beyond simple “sample and send” 

functionality by enabling in-network processing such as event detection and actuation of 

physical sample collection or adaptation of in-situ measurement timing (Corke et al., 2010). 
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This includes the ability to detect precipitation and runoff events at upstream sites, and then 

communicate event detection to downstream monitoring sites. Downstream monitoring 

sites are then able to “anticipate” changing water quality and quantity conditions and 

modify their data collection and sampling procedures accordingly. Facilitating this type of 

inter-network communication and processing requires that each monitoring node be 

equipped with appropriate communication infrastructure.  

An obvious challenge and tradeoff for this type of operation is the increase in power 

required to operate nodes that may be remote and must be autonomously powered. 

However, in-network processing and event detection can be extremely beneficial for 

monitoring stormwater quality and quantity. In locations where storm events occur 

sporadically, it is often difficult or impossible to mobilize field personnel in time to sample 

the first flush of storm events and maintain them in the field for the duration of a storm at 

multiple sites. Additionally, automated sampling logic based on data from integrated 

sensors can detect and respond to conditions that humans cannot easily observe (e.g., 

triggering sample collection when a particular flow or turbidity threshold is reached). Thus, 

it is important that sample collection be automated. 

2.4. An Urban Observatory for Monitoring Suspended Solids and Phosphorus – 

A Case Study 

An urban observatory was established in the Northwest Field Canal (NWFC) in 

Logan, Utah, USA that demonstrates a specific implementation of the infrastructure and 

data collection scheme described in the previous sections. Much of Logan City’s 

stormwater is conveyed out of the city through canals that were originally designed to carry 



 

 

29 

water diverted from the Logan River for agricultural irrigation. These combined 

conveyances are still used for this purpose, but in addition to return flows from agricultural 

irrigation, they also receive stormwater runoff from Logan City during storm events. This 

configuration is common in many parts of the western U.S. where larger municipalities 

grew within areas that were originally used for agriculture (City of Grand Junction, 2016; 

City of Sequim, 2016). Our specific case study was designed to test the hypothesis that 

continuous monitoring and surrogate relationships developed at the upstream and 

downstream ends of a study reach could be used to quantify pollutant loads contributed by 

stormwater runoff between the two sites. This hypothesis is addressed more in-depth in 

Chapter 3. 

Combined flows in the NWFC eventually discharge to Cutler Reservoir, which is 

an impoundment on the Bear River originally built for irrigation, flood control, and 

hydropower generation. According to the recent Middle Bear River and Cutler Reservoir 

Total Maximum Daily Load (TMDL) study (Utah Division of Water Quality, 2010), Cutler 

Reservoir is impaired for low dissolved oxygen and excessive TP concentrations, with 

pollution from canal discharges and urban stormwater runoff identified as being significant 

nonpoint sources. The urban observatory described in this case study was designed to 

collect high frequency data for generating continuous estimates of TSS, TP, and total 

dissolved phosphorus (TDP) loads from urban stormwater runoff to the NWFC and, 

ultimately, to Cutler Reservoir. 
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2.4.1. Monitoring Site Selection and Infrastructure 

The NWFC flows continuously during the irrigation season, which typically 

extends from April to October. Baseflows in the canal are diverted from the nearby Logan 

River, which originates in the Bear River Mountain range east of Logan City. The NWFC 

receives stormwater runoff from much of Logan’s residential and commercial districts 

(Figure 2.1). The transition from residential land uses near the upstream end of the canal 

to commercial land uses toward the downstream end of the canal made the NWFC 

especially interesting as an observatory for investigating the effects of land use and spatial 

variability on stormwater quality.   

Six monitoring sites were installed during the 2015 and the first half of the 2016 

irrigation seasons in or near the NWFC to monitor stormwater quality and quantity. The 

monitoring sites fall into two site types: continuously monitored canal and continuously 

monitored stormwater outfall sites (Figure 2.1). The outfall sites were equipped with a 

sensor suite that allowed for the collection of flow via the area/velocity method, 

precipitation using a tipping bucket rain gage, and an automated sampler that allowed for 

physical sample collection during storm events (Table 2.1). Given the multifunction (e.g., 

irrigation, return flows, and stormwater) nature of many of the outfalls to the NWFC, storm 

event detection required both a rain gage to detect precipitation and a flow module to detect 

resulting discharge, as discharge measurements alone would have been insufficient for 

distinguishing between the multiple flow sources. 

The two canal sites were located at the upstream and downstream ends of our study 

reach, which extended from the beginning of the NWFC to where it leaves Logan City’s 
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boundary. Both sites were equipped with a suite of water quality and quantity monitoring 

sensors. Water quality parameters were measured in-situ via a multi-parameter sonde with 

DO, water temperature, pH, fluorescent dissolved organic matter (fDOM), and electrical 

conductivity sensors. The DO, pH, fDOM, and conductivity sensors required regular 

calibration (YSI EXO, 2012), and this was performed biweekly. A turbidimeter was also 

installed to collect measurements of water clarity in nephelometric turbidity units (NTU). 

The turbidimeters used are calibrated at the factory using a multi-point calibration as part 

of their regular maintenance and are not calibrated in the field. Similar to the outfall sites, 

an automated sampler was included for the collection of water samples during storm 

events. 

All samples collected at both outfall and canal sites via automated samplers were 

split three ways and analyzed for TSS, TP and total dissolved phosphorus (TDP). Prior to 

analysis, TSS samples were refrigerated for no more than 7 days and TP and TDP samples 

were frozen. TSS analysis was performed according to Standard Method 2540 D using a 

1.5 µm glass fiber filter (APHA, 2012). TP analyses were performed according to EPA 

Method 134-A Revision 4 using an acid-persulfate digestion and a discrete analyzer (AQ2, 

Seal Analytical, Mequon, Wisconsin, USA). Samples were analyzed for TDP using the 

same method after being filtered through a 0.45 µm nylon filter. The discrete analyzer used 

for TP and TDP analysis was calibrated before each use. For quality control of the 

phosphorus samples, laboratory blanks, laboratory blank spikes, sample spikes, and 

duplicates were analyzed, and the 0.01 mg/L method detection limit was verified using the 

USEPA’s procedure for determining the method detection limit (USEPA, 2016). For 
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quality control, 10 percent of all TSS, TP, and TDP samples to be analyzed were selected 

and analyzed as duplicates.   

Flow in the canal was estimated by converting depth measurements from a pressure 

transducer installed at each site to discharge via a site-specific rating curve. Backwater 

effects caused by the periodic installation of damming structures in the canal for the 

purpose of diverting water to irrigation head gates weakened the stage-discharge 

relationship at the upstream site (200 South 400 West, Logan, UT). Consequently, an 

acoustic Doppler velocity meter (ADVM) was installed at that site to obtain more accurate 

discharge measurements using the index velocity method (Levesque and Oberg, 2012). 

Precipitation was measured at the canal sites using a tipping bucket rain gage, and all data 

were transmitted to a centralized location via radio communications. See Table 2.1 for a 

more detailed description of equipment installed at all four monitoring sites. 

Dataloggers, batteries, radios, flow modules, and automated samplers were housed 

in a 100 x 68 x 85 cm fiberglass storm box (Figure 2.2). At the canal sites and in cases 

where level ground or space for the enclosure was not located in close proximity to the 

monitored outfall, platforms were constructed for the enclosures. In the case of the canal 

sites, these platforms were also used for mounting the sensor housings and antenna masts 

(Panel b of Figure 2.2).  

Outfall sites were installed within significant stormwater outfalls to the canal. The 

outfall sites were designed to be mobile so that we could move them to monitor as many 

outfalls as possible over the course of the project. The contributing area for the outfall, the 

distribution of land use-land cover within the catchment, and the availability of a 
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permanent structure where monitoring equipment could be installed were considered when 

selecting and prioritizing outfall locations to install the monitoring equipment.  

Two outfall sites were initially installed at the outlet of a residential catchment (300 

North 300 West, Logan, Utah) and a commercial catchment (1250 North 200 West, Logan, 

Utah). This first set of storm drains were monitored for the entire 2015 irrigation season 

(April to October) so that sampling procedures, datalogger programs, and adaptive 

sampling logic could be established. The outlet sites were then moved to the outlet of 

another predominately residential catchment (800 North 150 West, Logan, Utah) and a 

different commercial catchment (1300 North 200 West, Logan, Utah). This second set of 

storm drains was monitored for the first half of the 2016 irrigation season. Finally, the two 

outfall sites were moved to two additional locations (1000 North 225 West and 1400 North 

200 West). This paper will address only the first four outfall sites monitored during the 

2015 and first half of the 2016 irrigation seasons. See Table 2.2 for a more detailed 

description of the outfall catchments monitored during this study. 

2.4.2. Procedure for Storm Event Detection and Communication 

The NWFC monitoring sites were used for the detection and monitoring of 

pollutant loading from stormwater runoff events. The dataloggers at the outfall sites were 

programmed to scan the sensors at 1-minute intervals, obtaining discharge, water 

temperature, and precipitation values. Under non stormwater runoff normal conditions, 

instantaneous discharge and water temperature values for the current scan were recorded 

at 15-minute intervals. Precipitation values were written to a separate file at 5-minute 

intervals and represent a summation of precipitation for the preceding 5-minute period.  
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The canal sites were programmed to scan sensors at 5-minute intervals. During each 

scan, the multi-parameter water quality sonde measuring pH, DO, water temperature, 

conductivity, and fDOM made high frequency (~4 Hz) continuous measurements and 

calculated a moving average of a defined window of values (YSI EXO, 2012). The 

turbidity sensor made a burst of 100 readings in 5 seconds when the measurement 

command was initiated. The mean, median, and variance values from the 100 

measurements were then recorded. While sensors were scanned at 5-minute intervals to 

detect changing conditions, current and instantaneous values from the pressure transducer, 

sonde, and turbidity sensors were recorded at 15-minute intervals under non-storm 

conditions. Precipitation values were recorded every 15 minutes and represent the 

summation of precipitation over the 15-minute interval. The short scan intervals allowed 

for near real-time detection of changes in flow and/or water quality representing the onset 

of an event, but had to be balanced with the response time of the sensors we used, the time 

required for sensors with integrated wipers to execute a wipe, and the power budget for 

each of our site types.  

Variables measured in-situ at the outfall sites were used to indicate stormwater 

runoff events. However, before these events could be detected accurately, an initial period 

of monitoring discharge from storm drains was required. We discovered that aging 

drainage infrastructure produced baseflows in some storm drains caused by leaky pipes 

and groundwater infiltration. We also discovered that Logan’s stormwater drainage system 

serves multiple purposes. Some Logan citizens have the option of irrigating their lawns 

with water extracted from one of the four major irrigation canals in the city. Irrigation 
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return flows drain through stormwater conveyances, thus creating a scenario where 

discharge could be measured from a storm drain without an actual storm event occurring. 

Thus, our system required us to define stormwater runoff events as discharge from the 

storm drain above an event flow threshold (e.g., greater than observed baseflow in the 

storm drain) during the occurrence of precipitation (See Figure 2.3, which shows the logic 

for event detection and adaptive sampling). The initial monitoring period at each storm 

drain allowed us to “train” our sampling logic and set an event flow threshold that 

distinguished between baseflows, return flows, and stormwater runoff events. 

Event detection at the outfall sites was programmed to initiate an alternate 

monitoring and sampling scheme at both the outfall and canal sites. This alternative 

sampling logic (Figure 2.3) is described in detail in the following section. When 

precipitation and discharge above the minimum threshold were observed at an outfall site, 

a binary flag was sent from that site via radio communications to the canal sites. Because 

our sites were battery powered, and power consumption was a concern, we implemented a 

“need-based” communication scheme. The event flag was transmitted to canal sites only 

when an event was detected at the outfall sites. This reduced power consumption relative 

to a scheme that requires regular data retrieval commands initiated by the canal sites. 

2.4.3. Adaptive Sampling Procedure for Outfall and Canal Sites 

At the outfall sites, upon detection of discharge above the event threshold and 

precipitation greater than “0” within a sensor scan, the datalogger was programmed to 

initiate a first flush sampling regime. The data recording interval was modified to 1-minute 

(rather than the 15-minute intervals during nonevent conditions), and the automated 
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sampler was triggered by the datalogger to collect a sample every 3 minutes for the 

estimated duration of the first flush. A sampling interval of 3 minutes during the first flush 

was determined based on the time required to purge the suction line before and after sample 

collection. A shorter sampling interval would not have been feasible given the type of 

automated sampler we used and the length of suction hose required. The duration of the 

first flush was initially estimated to be the first 15 minutes of the storm event (Grisham, 

1995). After examination of resulting data, this estimate was then determined to be 

acceptable for the majority of events at each outfall site. After the first flush, the datalogger 

was programmed to trigger the automated sampler to collect a sample every 15 minutes for 

the remainder of the storm event duration or until a maximum of 24 samples were collected 

per storm event.  

Upon receipt of a stormwater runoff event flag from an outfall site, the datalogger 

at each canal site was programmed to initiate adaptive, event-based sampling. The data 

recording interval was modified to 5-minutes (rather than the 15-minute intervals during 

non-event conditions), and the collection of samples based on a TTS sampling scheme was 

initiated. During events, the datalogger was programmed to trigger automated samples as 

turbidity values rose above or fell below predefined thresholds. Based on the suggestions 

of Lewis (1996), thresholds were determined by evenly spaced square root transformed 

turbidity values. The thresholds were calculated by: 

𝑇𝑇𝑖 = (𝑇𝑇1
0.5 + (𝑖 − 1) ∗

𝑇𝑇𝑛
0.5−𝑇𝑇1

0.5

𝑛−1
)

2

                𝑖 = 1 … 𝑛       (2.2) 

where TTi = the ith turbidity threshold; TT1 = the initial turbidity threshold calculated as 

1.05 times the first turbidity value after an event is detected; TTn = the maximum turbidity 
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threshold calculated as TT1 + 200 NTU; and n = the number of rising thresholds. Thresholds 

were calculated for a range of the initial turbidity threshold plus 200 NTU. The 200 NTU 

range was determined based on existing storm event data, which showed that turbidity 

values tended to fluctuate approximately 200 NTU during storm events at the downstream 

canal site. 

2.5. Results and Discussion 

2.5.1. Spatial TSS and TP Loading Variability in the Northwest Field Canal 

The inclusion of upstream and downstream canal sites in the observatory allowed 

for data collection at locations in the canal with varying degrees of stormwater influence. 

Figure 2.4 shows a boxplot of the TSS concentrations at the two sites for the 2015 irrigation 

season and the first half of the 2016 irrigation season. A comparison is made between the 

upstream and downstream sites under baseflow and storm event conditions. It is apparent 

from the figure that TSS concentrations are typically higher at the downstream canal site. 

It is also apparent that TSS concentrations at the upstream site vary little between baseflow 

and storm event conditions, with a difference between median concentrations of 0.97 mg 

TSS/L. Concentrations at the downstream site are higher under both baseflow and storm 

event conditions. Under baseflow conditions, irrigation return flows received between the 

upstream and downstream sites and sediment resuspension are likely causes of this increase 

in TSS concentration. Under storm event conditions there is a considerable increase in TSS 

both from upstream to downstream (median concentration increase of 31.2 mg TSS/L) and 

relative to baseflow conditions at the downstream site (median concentration increase of 
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21 mg TSS/L). This increase can be attributed to stormwater inputs during storm events. 

Figure 2.5 shows TSS concentrations at the two canal monitoring sites during a storm event 

that occurred on May 10, 2016. The plot shows a typical pattern we observed throughout 

our study in which TSS peaks are much higher at the downstream canal monitoring site. 

The outfall sites allowed for monitoring of runoff from multiple catchments 

simultaneously during multiple individual storm events. This allowed for comparisons to 

be made of how different catchments responded during individual storm events (comparing 

one event across multiple sites) and how those catchments responded across multiple storm 

events (comparing multiple events at the same site). Although precipitation was not exactly 

the same at each site during each event, our results showed that runoff varied greatly across 

catchments due to catchment land cover, imperviousness, and storm event characteristics. 

The land use/land cover description for each monitored catchment is listed in Table 2.2.  

TSS, TP, and TDP event mean concentrations (EMC) for the two outfall sites 

monitored during the 2015 irrigation season are shown in Figure 2.6. EMCs are often used 

to predict pollutant concentrations and estimate mass loadings from various land uses and 

degrees of imperviousness (Charbeneau and Barrett, 1998; Lin, 2004). Our analysis found 

that EMCs for TSS at 300 North and 1250 North do not appear to follow any obvious trend 

(Panel b of Figure 2.6). For the 15 events monitored, TSS EMCs ranged from 3 – 640 mg/L 

with the median EMC of 88 mg/L. These values are similar to those found in the literature 

for residential and commercial land uses (Lin, 2004; Rodriguez-Hernandez et al., 2013). It 

was found, however, that EMCs from the 300 North catchment were higher for both TP 

and TDP than the 1250 North catchment for the 15 storm events monitored. This is evident 
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from Figure 2.6 (Panels c and d). At 300 North, EMCs for TP and TDP range from 0.120 

– 1.04 mg/L and 0.0160 – 0.485 mg/L, respectively. At 1250 North, EMCs for TP and TDP 

range from 0.0591 – 0.825 mg/L and 0.0113 – 0.209 mg/L, respectively. These values are 

similar to those found in the literature (Brezonik and Stadelmann, 2002; Lin, 2004). The 

higher values in the 300 North catchment could be due to the higher percentage of 

residential land use in that catchment. Higher concentrations of phosphorus from 

residential land uses have been observed by others (Dennis, 1986; Waschbusch et al., 1999; 

Brezonik and Stadelmann, 2002).  

The range and variability in EMCs calculated for storms during the 2015 irrigation 

season at these two outfall sites illustrates the inadequacy of relying on EMCs alone to 

estimate loads. In some cases, such as TSS at 1250 North, the EMC varies by as much as 

two orders of magnitude, indicating the potential of greatly overestimating the TSS load if 

estimates are based only on land use and EMCs. Based on these results, the magnitude of 

the EMC is dependent not only on land use, but also on the characteristics of the storm 

event (e.g., average and peak rainfall intensities, antecedent dry period, rainfall volume, 

and the duration of the event). Table 2.3 shows these characteristics for the storm events 

monitored in 2015. The June 10, 2015, July 27, 2015, and September 14, 2015 storm 

events, which correspond with the largest EMCs of TSS at 1250 North and EMCs of TP at 

300 North, likewise correspond with the longest antecedent dry periods. These results 

emphasize the importance of sampling multiple storm events at multiple locations. These 

comparisons would not have been possible without the data created using the urban 

observatory’s infrastructure. 
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2.5.2. Temporal Pollutant Loading Variability in the Northwest Field Canal 

Higher concentrations and the majority of pollutant mass load occurring at the start 

of the storm event indicate the existence of the first flush phenomenon. Our adaptive 

sampling scheme, which collected multiple, discrete samples at outfall monitoring sites 

with more frequent samples toward the beginning of each storm allowed us to examine the 

variability of pollutant concentrations within any single storm event and characterize the 

first flush. According to Bertrand-Krajewski et al. (1998), the occurrence of a significant 

first flush can be defined when 80 percent of the mass load is transported in the first 30 

percent of runoff volume. According to this definition, the first flush phenomenon for TSS 

was observed in only two of the 15 storms at the 300 North site. None of the other outfall 

sites had first flush events that met this criterion. Similarly, Wanielista and Yousef (1993) 

proposed that a significant first flush could be defined when 50 percent of the mass load is 

transported in the first 25 percent of runoff volume. According to this definition, the first 

flush phenomenon for TSS was observed in approximately 33 percent of the storms at 300 

North, 11 percent of the storms at 1250 North, 31 percent of the storms at 800 North, and 

46 percent of the storms at 1300 North (Table 2.4).  

Based on the results shown in Table 2.4, the presence of a first flush is affected by 

catchment area. The two monitoring sites installed during the 2015 irrigation season, 300 

North and 1250 North, have catchment areas of 0.041 km2 and 0.205 km2, respectively. 

The smaller catchment (300 North), experienced a first flush of TSS more often than the 

larger catchment (1250 North). Likewise, the smaller catchment monitored during the first 

half of the 2016 irrigation season (1300 North) experienced a first flush of TSS more often 
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than the larger catchment (800 North). This agrees with the findings in Lee et al. (2002) 

and the National Research Council’s report on Urban Stormwater Management in the 

United States (National Research Council, 2009) that smaller catchments tend to be more 

prone to a first flush. 

As a further illustration, Sansalone and Cristina (2004) described a concentration-

based first flush (CBFF) as a high pollutant concentration occurring during the rising limb 

of the runoff hydrograph. Figure 2.7 shows a CBFF that was observed at the 800 North 

outfall site during a storm that occurred on April 10, 2016. The maximum TSS 

concentration observed during this storm event was 474.8 mg/L, occurring at 04:21 MST, 

just 7 minutes after the start of the storm event. Because samples were collected at 3-minute 

intervals at the start of the event, the adaptive sampling logic was able to capture the CBFF 

during this intense storm event of short duration. 

A major objective in our infrastructure design was to enable the collection of data 

to support development of surrogate relationships between turbidity and TSS and TP at the 

continuous canal sites so that we could derive continuous estimates of TSS and TP 

concentrations at the upstream and downstream monitoring sites of the canal. To 

demonstrate the observatory’s ability to adequately sample storm events for the derivation 

of surrogate relationships, Figures 2.8 and 2.9 show the distribution of measured turbidity 

values as percent exceedance for the upstream and downstream canal sites, respectively. 

Turbidity values observed during storm events in 2015 and the first half of 2016 are 

represented by the filled points on the plot. Physical samples collected to be used in 

development of surrogate regression models are represented by open circles in the plots 
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and were plotted using the turbidity value corresponding to the time at which each sample 

was collected. Figure 2.8 and Figure 2.9 show that our adaptive sampling procedure 

enabled the collection of samples across nearly the full range of observed turbidity values 

at the two sites. The plots show that fewer physical samples were collected at higher 

turbidity values; however, this is to be expected as the higher turbidity values tend to occur 

sporadically and represent only about 10 – 15 % of the observed turbidity values. 

2.5.3. Event Detection, Adaptive Sampling, and Inter-site Communications 

In our urban observatory, the outfall sites were responsible for event detection and 

messaging to the canal sites that storm events were occurring. Communication between 

sites was critical because, while it was relatively easy to detect a storm event at the outfall 

sites because they responded quickly to runoff from a storm event, it was much more 

difficult to accurately detect the beginning of a storm event in the canal. Water diverted 

from the Logan River for agricultural purposes muted the stormwater signal to some extent 

due to dilution, and there was also a travel time effect as stormwater flowed from outfall 

locations to the canal monitoring sites. Initiating storm event sampling at the canal sites, 

therefore, relied on messaging from the storm drains.  

Figure 2.10 shows a plot of turbidity values at the downstream canal site (1800 

North) during the storm event on May 10, 2016. The times at which automated samples 

were collected are indicated by an “X,” and each was plotted at the turbidity value 

corresponding to the time at which the sample was collected for visualization purposes. 

The TTS method ensured that samples were collected throughout the range of observed 

turbidity values and during points of inflection in the pollutograph, capturing the response 
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of the canal to the stormwater inputs while minimizing the number of samples collected. 

These data provide a good estimate of the continuous shape of the pollutograph. 

As a more comprehensive example, Figure 2.11 shows the observatory’s ability to 

detect storm events at the outfall sites, communicate that information to corresponding 

canal sites, and coordinate sampling across the sites. This figure depicts a sampling event 

that occurred during the same storm on May 10, 2016. The 800 North and 1300 North 

outfall monitoring sites detected the storm event as flows increased, and initiated sampling. 

The storm event flag was communicated to the upstream (200 South) and downstream 

(1800 North) canal sites, which then initiated TTS. In this event, as well as in others we 

observed, the turbidity pulse was not as pronounced at the upstream canal site as it was at 

the downstream canal site. Because of this, we added additional logic to the program at the 

upstream canal site to first look for turbidity increases after having received a message 

from an outfall site that a storm even was occurring, but if none are present samples are 

collected at 30-minute intervals. 

2.5.4. Surrogate Relationships in the Northwest Field Canal 

Simple linear surrogate relationships for TSS and turbidity are shown in Figure 2.12 

for the upstream and downstream canal sites. The least-squares regression equation and R2 

values are also shown in their corresponding plots. The R2 value at the downstream canal 

site was 0.868, which is greater than the R2 value at the upstream canal site (0.725). This 

may be due to the lower range of turbidity values at the upstream site. The median turbidity 

value at which samples were collected and analyzed for TSS at the upstream site was less 

than 3 NTU. Evidence of this can be seen in Panel a of Figure 2.12, where a cluster of 
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points on the graph are located near 3 NTU. At these lower turbidity values it becomes 

more difficult to distinguish actual changes in water quality conditions given the accuracy 

of the turbidity sensors we used.  

Figure 2.13 shows the predicted TSS concentrations at the upstream canal site for 

the 2015 irrigation season derived using the surrogate relationship shown in Figure 2.12. 

These predictions were made under the assumption that the TSS-turbidity relationship 

remained constant for the duration of the study period. The 95% prediction intervals for 

the estimated TSS concentrations are represented by the shaded gray region. The red points 

on the plot represent actual measured TSS values from our samples. The gaps in the 

predicted concentration values correspond with times where the canal’s headgate was shut 

to prevent flooding. During this time, the canal still received inflow from stormwater 

outfalls, but the flows were low and intermittent enough that we were unable to maintain 

our in-situ water quality sensors in the canal. For much of the month of May, the headgate 

was shut, restricting us from sampling during one of the wettest months of the year.    

The predicted TSS concentrations shown in Figure 2.13 appear to follow a seasonal 

trend, decreasing through the Spring and early Summer months. This could be due to a 

combination of factors, including spring snowmelt, which results in elevated turbidity and 

suspended sediment in the Logan River. While the NWFC does not receive higher flows 

during Spring snowmelt due to manually operated hydraulic controls (diverted flows are 

driven by water rights and irrigation demands), it does appear to receive higher suspended 

solids. This can be significant as pollutants that sorb onto particulates (e.g., TP) may be 

found in higher concentrations during the first half of the irrigation season. Additionally, 
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as the vegetation on the banks and bed of the canal grows throughout the irrigation season, 

there is less opportunity for mobilization or resuspension of sediment from erosion within 

the channel, which likely also contributes to the overall decline in observed turbidity and 

TSS concentrations estimated via the surrogate relationship. 

2.6. Conclusions 

In this paper we have presented the required infrastructure and monitoring methods 

needed for capturing the spatial and temporal variability of TSS and TP loads in an urban 

stormwater system. Our case study from the NWFC shows how the collection of high 

frequency data in multiple catchments can aid in better understanding the processes that 

control pollutant load variability. For example, the data we present show the dynamic 

response of each of the different catchments to rainfall inputs, and the observatory’s ability 

to capture high frequency data and coordinated samples enabled us to characterize the first 

flush phenomenon in multiple catchments. Additionally, the ability to compare catchment 

responses for a given storm event allowed us to better understand the influence drainage 

area has on the presence of the first flush and on pollutant EMC. It was found that smaller 

drainage areas are more prone to the first flush phenomenon. We also found that certain 

EMCs varied by two orders of magnitude within a single catchment across different storm 

events, indicating that simple EMCs are inadequate for estimating pollutant concentrations 

across a range of storms. Additional analyses could potentially relate EMCs to not only 

catchment characteristics (e.g., land use), but also storm event characteristics such as the 

antecedent dry period. However, without the ability to trigger event-based samples at 
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multiple catchment outlets, the observation of storm event temporal variability and first 

flush analysis would not have been possible.  

The combination of adaptive sampling and inter-site communication proved to be 

critical in the observatory’s ability to detect events and trigger samples at times of interest 

and at multiple locations in the urban drainage system. The example of event detection and 

inter-site communications represented by data presented from the storm event on May 10, 

2016 demonstrates the degree of coordination needed to synchronize sampling efforts 

during runoff events across monitoring sites. This effectively reduced the number of 

samples collected, reduced field crew costs, and the autonomous nature of the observatory 

ensured that no storm events were missed due to the time of day at which the event 

occurred. This level of coordination would not have been possible without the 

observatory’s ability to detect events at the outfall sites and communicate that detection to 

the canal sites. The TTS sampling scheme implemented at the canal sites also ensured that 

samples were collected throughout the entire range of observed turbidity values, which 

means that surrogate relationships derived from these datasets will not extrapolate beyond 

the range of observed turbidity values.  

There are many advantages and some disadvantages to the use of an urban 

observatory similar to the one installed in the NWFC drainage area. Advantages include 

the ability to synchronize the monitoring of multiple catchments, detect storm events in 

real-time and adapt sampling frequencies accordingly, and trigger the collection of samples 

based on changes in environmental conditions that would be undetectable without the use 

of in-situ sensors. These advantages allow for better characterization of the spatial and 
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temporal variability of pollutant loading events. The high-resolution data obtained using 

this approach can also provide necessary information for testing and improving stormwater 

models. Disadvantages include the cost of installing and operating observatory equipment. 

While the observatory reduced likely personnel costs required for sampling across multiple 

sites, the instrumentation described in Table 2.1 is not inexpensive. However, it would be 

logistically challenging for personnel to perform the same function as automated 

equipment. Additionally, regular maintenance becomes a liability. While regular required 

maintenance reduces the chance of equipment malfunction, it does not remove the 

possibility entirely and also does not guard against potential theft and vandalism.  

As sensor network technologies continue to improve, so will our ability to monitor 

pollutant fluxes in both rural and urban watersheds and derive surrogate relationships for 

pollutant concentrations. An example of such improvements might include more robust 

event detection and communication performed by Internet connected microcontrollers and 

dataloggers. The use of cellular phone modems for Internet downloads of flow, snowpack, 

precipitation, meteorological, or other data from other Internet connected devices could 

allow for communication between individual monitoring sites and data available for other 

reaches of an urban water system/watershed/river basin. This functionality could help in 

better predicting the onset of storm events, adapting physical sampling and sensor 

observation frequencies at urban observatory sites during flashy events that only occur at 

upstream reaches of the watershed, and in identifying processes that control the baseflow 

signal in combined urban conveyances. Another potential enhancement would be to 

include additional surrogate measurements to the sensor suite. For example, some studies 
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have emphasized the significance of particle size in the use of turbidity to predict TSS and 

TP. Monitoring sites with in-situ particle size analyzers might aid in deriving stronger 

surrogate relationships in both rural and urban environments (Landers and Sturm, 2013). 

This information may provide data more representative of physical conditions within a 

catchment for more accurate predictive modeling at the watershed scale and improved 

water resources management. 
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Table 2.1. List of equipment deployed at the two types of monitoring sites 

Site Type Item 

Measurement 

Frequency Model 

Continuously 

Monitored 

Stormwater 

Outfall Site 

Area velocity flow 

module 
1 minute 

Teledyne ISCO 

2150 

Automated sampler 

with 24,1-liter 

sample bottles 

Adaptive  

(first flush) 

Teledyne ISCO 

3700 

Tipping bucket rain 

gage 
5 minute 

Campbell 

Scientific 

TE525WS 

Programmable 

datalogger 
- 

Campbell 

Scientific CR800 

 
Radio - 

Campbell 

Scientific RF450 

 Antenna - PCTEL yagi 

 Solar Panel - BP Solar 10W 

 12V dc deep cycle 

marine battery 
- 

Super Start 

Marine 

Continuously 

Monitored Canal 

Site 

Multiparameter 

water quality sonde 

5 minute (event) 

15 minute 

(baseflow) 

YSI EXO2 

Turbidity sensor 

5 minute (event) 

15 minute 

(baseflow) 

FTS DTS-12 

Pressure transducer 

5 minute (event) 

15 minute 

(baseflow) 

Campbell 

Scientific CS451 

Automated sampler 

with 24,1-liter 

sample bottles 

Adaptive (TTS) 
Teledyne ISCO 

3700 

Tipping bucket rain 

gage 
15 minute 

Campbell 

Scientific 

TE525WS 

Programmable 

datalogger 
- 

Campbell 

Scientific CR800 
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Side looking ADVM 

(200 South) 
15 minute Sontek SL3000 

Radio - 
Campbell 

Scientific RF450 

Antenna - PCTEL yagi 

Solar Panel - BP Solar 10W 

12V dc deep cycle 

marine battery 
- 

Super Start 

Marine 
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Table 2.2. Characteristics of catchments monitored 

Catchment Catchment 

Area (km2) 

Land Use (percent coverage) Percent 

Impervious 
Residential Commercial Street 

300 North 0.041 29.5 39.0 31.5 62.3 

1250 North 0.205 11.1 76.3 12.5 69.5 

800 North 0.359 45.5 36.1 18.4 43.5 

1300 North 0.065 18.0 78.9 3.1 84.6 
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Table 2.3. Storm event characteristics for the 2015 storm events at the two continuously 

monitored outfall sites 

Site 

Name Storm Event 

Average 

Intensity 

(mm/hr) 

Peak 

Intensity 

(mm/hr) 

Antecedent 

Dry Period 

(days) 

Duration 

(hours) 

Rainfall 

Depth 

(mm) 

300 

North 

May 6, 2015 - - - - - 

May 18, 2015 - - - - - 

May 20, 2015 - - - - - 

May 23, 2015 1.571 3.048 1.315 8.083 12.7 

May 27, 2015 2.814 9.144 0.731 1.083 3.048 

June 10, 2015 7.662 51.82 6.942 2.917 22.35 

July 5, 2015 1.321 9.144 24.32 2.5 3.302 

July 8, 2015 2.477 6.096 3.099 1.333 3.302 

July 27, 2015 2.111 9.144 18.09 1.083 2.286 

August 3, 2015 1.524 18.29 6.872 8.5 12.95 

August 7, 2015 2.032 6.096 4.274 1.5 3.048 

September 14, 2015 1.463 21.34 34.05 2.083 3.048 

September 15, 2015 1.159 12.19 0.273 5.917 6.858 

September 16, 2015 2.629 21.34 0.494 11.5 30.23 

October 3, 2015 1.806 15.24 17.18 2.25 4.064 

1250 

North 

May 6, 2015 0.733 3.048 1.833 6.583 4.826 

May 18, 2015 4.572 9.144 1.758 1.5 6.858 

May 20, 2015 4.222 15.24 0.692 1.083 4.572 

May 23, 2015 1.541 6.096 1.356 7.75 11.94 

May 27, 2015 4.570 9.144 0.676 0.667 3.048 

June 10, 2015 8.467 42.67 6.92 3 25.4 

July 5, 2015 0.776 6.096 24.27 4.583 3.556 

July 8, 2015 1.972 9.144 1.858 1.417 2.794 

July 27, 2015 4.572 9.144 8.503 0.5 2.286 
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August 3, 2015 1.451 9.144 6.878 8.583 12.45 

August 7, 2015 0.703 6.096 4.088 4.333 3.048 

September 14, 2015 5.588 24.38 34.06 0.5 2.794 

September 15, 2015 1.078 9.144 0.145 5.417 5.842 

September 16, 2015 2.888 24.38 0.275 11.08 32 

October 3, 2015 0.363 3.048 1.541 3.5 1.27 
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Table 2.4 First flush analysis at the four outfall sites monitored during the duration of the 

study 

Catchmen

t Monitoring Period 

Number 

of 

Storms 

Catchment 

Area (km2) 

Percent of Storms with TSS 

First Flush (∑Mass/∑Volume) 

30/80 25/50 

300 North April – October 

2015 

15 0.041 13.3% 33.3% 

1250 

North 

April – October 

2015 

18 0.205 0% 11.1% 

800 North March – May 2016 13 0.359 0% 30.8% 

1300 

North 

March – May 2016 13 0.065 0% 46.2% 
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Fig 2.1. Northwest Field Canal monitoring area and urban observatory site locations 
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Fig 2.2. Example of Continuously Monitored Canal Site. (a) Diagram of typical canal 

site; (b) Photo of deployment at the upstream canal site 
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Fig 2.3. Flow chart of the urban observatory's programming logic 
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Fig 2.4. Boxplot of TSS concentrations collected the upstream and downstream 

continuously monitored canal sites 
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Fig 2.5. Comparison of TSS pollutographs for the upstream and downstream 

continuously monitored canal sites for the storm event on May 10, 2016 
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Fig 2.6. Comparison of Runoff Volumes and Pollutant EMCs at 300 North and 1250 

North for 15 storm events during the 2015 irrigation season. (a) Runoff volumes for each 

event; (b) TSS EMCs; (c) TP EMCs; (d) TDP EMCs 
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Fig 2.7. Example of a concentration-based first flush observed at the 800 North outfall 

site on April 10, 2016 

 

 
Fig 2.8. Distribution of turbidity values during storm events and samples collected at the 

upstream canal site (200 South) 
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Fig 2.9. Distribution of turbidity values during storm events and samples collected at the 

downstream canal site (1800 North) 

 

 

 

 
Fig 2.10. Example of the urban observatory's adaptive sampling at the 1800 North canal 

site based on the turbidity threshold sampling scheme 



 

 

68 

 
Fig 2.11. Example of the urban observatory's adaptive sampling, event detection, and 

inter-site communication 
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Fig 2.12. Examples of surrogate relationships. (a) Relationship between TSS and 

turbidity at upstream canal site; (b) Relationship between TSS and turbidity at 

downstream canal site 
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Fig 2.13. Total suspended solids concentrations predicted from turbidity at the upstream 

canal site during the 2015 irrigation season 
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CHAPTER 3 

REGRESSION METHODS FOR ESTIMATING SUSPENDED SOLIDS 

CONCENTRATIONS WITHIN URBAN STORMWATER CONVEYANCES 

Abstract 

Linear regression methods have been used in water quality studies to estimate in-

stream constituent concentrations from surrogate measurements made using in situ sensors. 

Linear regression models can be limited in their ability to account for conditions that may 

cause regression coefficients to differ or change, which may be particularly important in 

urban watersheds where short duration events can alter the source of a constituent load, 

changing the nature of the regression equation. This study compared three regression 

methods: classical linear regression, linear regression with categorical variables to 

distinguish events, and linear mixed effects (LME) models, which can account for changes 

in regressions based on conditions. We evaluated each method’s predictions of total 

suspended solids (TSS) concentrations and loads at the upstream and downstream ends of 

an urban stormwater conveyance. Results show that turbidity and categorical variables 

representing the length of antecedent dry period and season were significant explanatory 

variables at the upstream monitoring site. Turbidity and categorical variables representing 

rainfall intensity and rising versus falling limbs of the pollutograph were significant 

explanatory variables at the downstream monitoring site. Based on statistical metrics and 

TSS load estimates, both LME and linear regression with categorical variables models were 
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superior to the classical linear regression method in their ability estimate TSS 

concentrations and account for undersampled events. 

 

 
1Co-authored by Anthony A. Melcher, Jeffery S. Horsburgh, Amber S. Jones, and David 

K. Stevens 

3.1. Introduction 

The need for high frequency water quality data for constituent load estimation in 

both the natural and built environment and the inadequacy of infrequent grab sampling are 

well documented (Kirchner et al., 2004; National Research Council, 2009; Horsburgh et 

al., 2010; Wade et al., 2012; Outram et al., 2014; Rode et al., 2016;). Instream diel cycles 

in constituent concentrations (Loperfido et al., 2009; 2010), variable point source 

contributions, and seasonal concentration swings (Grayson et al., 1996; Jones et al., 2011) 

may go unobserved if samples are collected too infrequently (Brauer et al., 2009; Jones et 

al., 2012; Rode et al., 2016). Sporadic concentration values are traditionally used to obtain 

mass load estimates of constituents such as total suspended solids (TSS) with a significant 

margin of error, as infrequently sampled concentrations may not capture the variability of 

constituent concentrations (Tomlinson and De Carlo, 2003; Ryberg, 2006). High costs and 

logistical difficulties related to sample collection and laboratory analysis often prohibit 

water resource professionals and managing entities from collecting grab samples at a 

frequency required to capture changes in pollutant concentrations (Leecaster et al., 2002; 

Coynel et al., 2004; Fletcher and Deletic, 2007; Brauer et al., 2009). One technique to 
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estimate constituent concentrations with higher frequency and determine mass loadings 

that capture a greater range of variability involves water quality surrogates. Surrogate 

methods rely on regression relationships (often linear) between water quality constituent 

concentrations derived from analysis of periodic grab samples (e.g., nutrients, suspended 

solids, E. coli, etc.) and parameters measured using in situ sensors at much higher 

frequencies (e.g., conductivity, turbidity, pH, etc.) (Jones et al., 2011; Rasmussen et al., 

2011; Fisher et al., 2016).  

Particulates and other suspended solids can be harmful to stream biota and can be 

the means for the mobilization of other pollutants. Of assessed water bodies in the USA, 

5.4 percent are impaired due to excess sediment (USEPA, 2017), making sediment one of 

the most common pollutants in aquatic systems. In efforts to better understand the timing, 

magnitude, and sources of suspended sediment, surrogate relationships have been used to 

obtain high frequency estimates of TSS concentrations and determine TSS load estimates 

(Irish Jr. et al., 1998; Christensen, 2001; Tomlinson and De Carlo, 2003; Ryberg, 2006; 

Jones et al., 2011; Rasmussen et al., 2011). These studies have primarily used turbidity as 

a surrogate indicator for TSS across varying stream sizes, flow regimes, and surrounding 

land uses. While turbidity has become an accepted surrogate for TSS (Gippel, 1995; 

Grayson et al., 1996; Rasmussen et al., 2011), there are caveats and limitations related to 

using turbidity alone as a predictor. Pooling all samples into a classical linear regression 

model (referred to hereafter as CLR) tends to reveal systematic bias in the residual errors 

(Grayson et al., 1996; Jones et al., 2011) because the relationship between the surrogate 

and the constituent of interest may not be consistent across all conditions. For example, 
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Landers and Sturm (2013) found that turbidity-TSS relationships exhibited hysteresis, 

which they attributed to varying particle sizes between the rising and falling limbs of the 

pollutograph as turbidity readings are dependent on particle size and composition (Gippel, 

1995; Patil et al., 2011; Landers and Sturm, 2013).  

Other documented surrogate regression models have found seasonal variability and 

storm event characteristics to be significant when estimating TSS and particulate pollutant 

loads, indicating that the relationship between the surrogate and the constituent of interest 

is not constant between these periods (Grayson et al., 1996; Brezonik and Stadelmann, 

2002; Ankcorn, 2003; Ryberg, 2006; Settle et al., 2007; Rasmussen et al., 2011; Fisher et 

al., 2016). One modeling approach to address seasonal variability is to include sine and 

cosine functions of day of the year in the regression equation ( Ryberg, 2006; Rasmussen 

et al., 2011; Fisher et al., 2016). However, seasonal changes do not always occur at the 

same time each year, and using this type of approach would require constant (i.e., annual) 

updates of the surrogate relationship, especially under changing climatic conditions. In 

another case, Jones et al. (2011) found that a binary categorical variable indicating whether 

or not samples were taken during spring snowmelt vs. base flow improved the quality of 

regressions between turbidity and total phosphorus (TP). In addition to turbidity, 

Kayhanian et al. (2007) found that stream flow and storm event characteristics were 

significant predictors of TSS event mean concentrations, and reported improved model 

performance after including these variables. A challenge with using categorical and 

seasonality variables is that runoff events and high-flow conditions need to be sufficiently 

sampled to representatively include them in regression relationships, as one group should 
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not outweigh another (e.g., runoff versus base flow or rising limb versus falling limb). 

However, sampling during these periods is often logistically difficult.  

Given the variability of relationship types reported in the literature, it is not always 

clear which type of regression model should be used (e.g., CLR versus linear regression 

with categorical variables (referred to hereafter as LRCAT) or using transformed data 

versus untransformed data). These factors reflect the empirical nature of surrogate 

relationships. As they are developed distinctly for each site of interest (Miguntanna et al., 

2010; Rasmussen et al., 2011; Viviano et al., 2014), surrogate relationships are not fully 

mechanistic and may not always capture the processes that drive concentrations of TSS. 

Furthermore, just as surrogate relationships vary from site-to-site, they may also vary 

between time periods. 

While surrogate methods have been used in both rural and agricultural watersheds, 

fewer studies have examined their utility for quantifying pollutant concentrations within 

urban water systems (Settle et al., 2007; Miguntanna et al., 2010; Viviano et al., 2014). 

Impervious drainage surfaces in urban systems create conditions by which relatively small 

precipitation events may produce disproportionately high runoff, which may cause intense 

loading events of short duration in urban streams and stormwater conveyances (Wanielista 

et al., 1997; Maestre and Pitt, 2005; National Research Council, 2009; Hvitved-Jacobsen 

et al., 2010a). Additionally, the complexity of pollutant sources in urban conveyances has 

the potential to affect the applicability of surrogate relationships. For example, Christensen 

(2001) found strong correlations between turbidity and TSS in rural streams while 

Miguntanna et al. (2010) observed evidence of weaker correlations in urban streams. 
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Adding to this complexity, some urban streams in the western U.S. receive both irrigation 

return flows and urban stormwater runoff (City of Logan, 2010; City of Grand Junction, 

2016; City of Sequim, 2016).  

Due to the spectrum of pollutant sources and flow conditions in urban conveyances 

and the likelihood that relationships may vary between seasons or flow conditions, 

surrogate relationships that use linear regression models may be inadequate for urban 

streams. This may be especially true when important hydrologic conditions (such as 

storms) are undersampled. One method that demonstrates potential for developing robust 

relationships while enabling categorical grouping of data and also accounting for 

undersampled groups is linear mixed effects (LME) modeling. Also called multilevel or 

hierarchical models, LME models are an alternative approach to model fitting and 

parameter estimation that attempt to explain some of the random and systematic error in 

regression models (Pinheiro and Bates, 2000; Gelman and Hill, 2007; Wu, 2010; Araujo et 

al., 2012). In LME modeling, data points are assigned to groups, and each group is 

weighted based on its information content (Gelman and Hill, 2007). As a result, if fewer 

samples are collected within certain groups (e.g., rising limb of a storm event), that group 

has less influence on the overall model. Weighting each group according to the associated 

number of samples can effectively create a surrogate relationship that exhibits variability 

between different time periods without overemphasizing a condition that may have been 

undersampled. A primary motive for this research was to seek an option for developing 

surrogate relationships that would capture this variability.  
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The overall objective for this study was to evaluate the effectiveness of different 

regression techniques, including CLR, LRCAT, and LME modeling, for development of 

surrogate models for the estimation of TSS concentrations and loads in an urban stream. 

We evaluated models resulting from the different regression methods using multiple 

goodness-of-fit measures and examined the strengths and weaknesses of each modeling 

approach. In this paper, we first provide background on linear regression and LME 

modeling techniques for surrogate relationship development. We then describe methods 

for selection of CLR models, which are used as the base of the LRCAT and LME models, 

as well as the determination of categories and groups. Then, we compare the resulting 

models for their adequacy in estimating TSS concentrations within an urban water 

conveyance that aggregates snowmelt and groundwater, irrigation return flows, and short 

duration storm runoff from urban surfaces. We conclude with a discussion of the 

explanatory variables and factors that affect the variability in the goodness-of-fit values.  

3.2. Theory and Background 

A common approach for developing surrogate relationships for high-frequency 

estimates of water quality parameters is CLR (simple or multiple) as shown in Equation 

(3.1): 

𝑇𝑆𝑆𝒊 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 + 𝜖𝑖,    𝑖 = 1, … , 𝑛      (3.1)  

where 𝑇𝑆𝑆𝒊 represents the response variable (in this case, TSS concentration) for the 𝒊th 

observation, 𝑥𝑖𝑘  represents the 𝑘  explanatory variables for the 𝒊 th observation, 𝛽0 

represents the intercept value, 𝛽1 to 𝛽𝑘 represent the 𝑘 regression (slope) coefficients, 𝜖𝑖 is 
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the residual error of the 𝒊th observation, and 𝑛 is the number of samples. The regression 

coefficients are most often estimated using ordinary least squares estimation (Berthouex 

and Brown, 2002; Helsel and Hirsch, 2002). This approach has been applied in many 

surrogate studies (Christensen, 2001; Ryberg, 2006; Jones et al., 2011) and is 

recommended by the United States Geological Survey (USGS) (Rasmussen et al., 2011). 

This method assumes that residual errors (𝜖𝑖) are normally distributed, independent, and 

homoscedastic. If these assumptions are violated, the systematic error or correlation of 

residuals with another variable may indicate that the regression coefficients are not 

consistent across conditions (Helsel and Hirsch, 2002).  

When developing surrogate relationships, variations of the CLR model may be used 

to account for changes in regression coefficients. One method for doing this is using 

categorical variables to indicate the occurrence of some phenomenon that changes the slope 

and intercept of the regression equation. Phenomena could include the occurrence of 

snowmelt runoff versus base flows, time trends in relationships, etc. (Berthouex and 

Brown, 2002; Jones et al., 2011). Equation (3.2) shows the general form of the regression 

equation with two categorical variables.  

𝑇𝑆𝑆𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑍1(𝛼0 + 𝛼1𝑥𝑖) + 𝑍2(𝛾0 + 𝛾1𝑥𝑖) + 𝜖𝑖 ,      𝑖 = 1, … , 𝑛     (3.2) 

where 𝛼 and 𝛾 represent parameters estimated by least squares. The categorical variables, 

𝑍1 and 𝑍2, are variables that take on discrete values indicating factors or levels of the 

associated phenomenon. The accuracy of the estimates of 𝛼 and 𝛾 depends on the number 

of samples collected for each value of 𝑍. If 𝑍 represents an unpredictable event of short 
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duration or some phenomenon for which it is difficult to sample adequately, the lower 

number of samples will result in greater uncertainty in the associated estimates of 𝛼 and 𝛾.  

The linear mixed effects (LME) modeling approach starts with the creation of a 

base model, similar to a CLR model, which uses in situ parameters (e.g., turbidity) and/or 

metavariables (e.g., rainfall intensity) as explanatory variables to predict TSS 

concentrations. This is referred to as the fixed effects portion of a mixed effects model. 

LME models also try to explain some of the systematic bias in the residual errors of the 

fixed effects model through the definition of groups caused by characteristic differences in 

the data under different conditions. This is referred to as the random effects portion of a 

mixed effects model. Gelman and Hill (2007) describe these groupings of data as categories 

between which regression coefficients are expected to vary. In the context of surrogate 

relationships, an example is a TSS-turbidity model with coefficients that vary between base 

flow and storm event conditions, across seasons, or between rising and falling limbs of a 

hydrograph/pollutograph. LME groups are similar to the categories used in a LRCAT 

model; however, the parameter estimates in the LME model are made by maximum 

likelihood or restricted maximum likelihood estimation methods (Pinheiro and Bates, 

2000; Gelman and Hill, 2007; Zuur et al., 2009), which consider all observations in each 

group simultaneously. This is in contrast to a LRCAT model, which fits a separate model 

to each category of observations using ordinary least squares and weights each group 

equally in the overall model (referred to by Gelman and Hill (2007) as the “no-pooling” 

estimate). In practice, LME models weight each group based on the information content 

(i.e., number of samples) and their overall influence on model precision.  
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LME models have proven powerful where observational data have a grouped, 

longitudinal, nested, or multilevel structure (Pinheiro and Bates, 2000; Gelman and Hill, 

2007; Wu, 2010). This is particularly useful where repeated observations are made on 

subjects that belong to a certain group or class, such as geographic boundaries (Gelman, 

2006; Wu, 2010). For example, if the objective is to assess the variability between base 

flow or storm runoff conditions, and if it can be assumed that regression coefficients 

(intercepts and slopes) vary between each, then base flow and storm runoff would be good 

candidates for groups in an LME model. LME models are common in life and social 

sciences to account for variability between individual observations and groups (Bagiella et 

al., 2000; Gueorguieva and Krystal, 2004; Gelman, 2006; Gelman and Hill, 2007). 

Examples of the use of mixed-effects models in water resources applications, however, are 

fewer. Our review of the literature found only two studies that employed LME models in 

the development of surrogate relationships. Lessels and Bishop (2013) and Slaets et al. 

(2014) used mixed-effects modeling to account for auto-correlation in model residuals in 

developing surrogate relationships. Our literature search did not find any applications of 

mixed-effects modeling that considered groupings of the data in developing surrogate 

relationships. In this study, we directly explored the potential advantages of LME for 

estimating parameters in developing surrogate relationships. 

The literature provides multiple versions of the generic equations for mixed effects 

models. Equation (3.3) gives the simplest form as reported by Gelman and Hill (2007) with 

varying slopes and intercepts:  

𝑇𝑆𝑆𝑖 = 𝛽0𝑗[𝑖] + 𝛽1𝑗[𝑖]𝑥𝑖1 + 𝛽2𝑗[𝑖]𝑥𝑖2 + ⋯ 𝛽𝑘𝑗[𝑖] + 𝜖𝑖           (3.3) 
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where the index 𝑗[𝑖]  denotes the group (e.g., storm event, rising/falling limb of 

pollutograph, season) to which individual 𝑖  (e.g., TSS observation) pertains, 𝛽0𝑗[𝑖] 

represents the varying-intercept value for each of 𝐽 groups, and 𝛽1𝑗[𝑖] to 𝛽𝑘𝑗[𝑖] represent 

varying-slope values for each of 𝐽 groups. The maximum likelihood estimation of 𝛽𝑘𝑗[𝑖] is 

made by maximizing the likelihood function or the product of Gaussian probability density 

functions by reducing the variance of the residual errors (Pinheiro and Bates, 2000; Gelman 

and Hill, 2007; Zuur et al., 2009; Wu, 2010), which is typically done algorithmically using 

optimization algorithms (Powell, 2009; Bates et al., 2015). 

3.3. Study Area 

Logan, Utah, USA, has a population of about 48,000, and is the largest city in 

Utah’s Cache County. The city’s primary surface water source is the Logan River, which 

enters city boundaries from the east at the mouth of Logan Canyon. Four agricultural 

irrigation canals are diverted from the Logan River, run north through the city, then to the 

west, eventually combining and emptying into Cutler Reservoir, which is also the receiving 

water body for the Logan River. These canals carry a large portion of the Logan River’s 

flow during summer months when water is diverted from the main river for irrigation. 

These canals are also the primary recipients of stormwater runoff in Logan. This research 

focused on the Northwest Field Canal (NWFC), which is the farthest west of the four canals 

in Logan City. The NWFC was selected because it receives storm runoff from a variety of 
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land uses within its drainage area as well as the largest portion of Logan City’s stormwater 

runoff relative to other canals (Figure 1).  

The NWFC travels through residential and mixed residential/commercial 

neighborhoods and then through primarily commercial and mixed-use areas, receiving 

stormwater from much of Logan’s city center and commercial zones. Drainage 

subcatchments in Logan City are bordered by the four irrigation canals, with stormwater 

traveling primarily from east to west. Irrigation within Logan City is accomplished by 

diverting water from the canal east (uphill) of each neighborhood and conveying it through 

city gutters and ditches to residential lawns and gardens. The gutters return unused water 

to the next canal to the west (downhill) either directly or after irrigation application. 

To collect the data included in this analysis, monitoring sites were instrumented at 

the upstream and downstream ends of the NWFC. The upstream site (located at 200 South 

street) is located just downstream of the diversion from the Little Logan River that creates 

the canal. Thus, flows at this site are more characteristic of the Logan River (i.e., clear cool 

waters, limited algae growth). The downstream site (at 1800 North street) is located at the 

downstream end of the city after the NWFC has traveled through and received stormwater 

from residential, commercial, and industrial zones. Flows at the downstream site are more 

characteristic of the irrigation return flows and stormwater received by the canal.  
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3.4. Materials and Methods 

3.4.1. Instrumentation and Monitoring 

The monitoring sites from which data were obtained for this analysis are part of a 

larger urban observatory described by Melcher and Horsburgh (2017), which consists of 

two continuously-monitored canal sites (200 South, 1800 North) and two semi-mobile, 

continuously-monitored storm drain sites. Each monitoring site was equipped with a 

telemetry system for inter-site communication, a tipping-bucket rain gage (TE525, 

Campbell Scientific, Logan, Utah, USA), and an automated sampler (ISCO 3700, Teledyne 

ISCO, Lincoln, Nebraska, USA). The system was designed to detect stormwater runoff 

events at the storm drain sites and communicate alerts to the canal sites, upon receipt of 

which the canal sites would increase their data collection frequency and initiate collection 

of physical samples based on turbidity thresholds.  

The continuously-monitored canal sites were each equipped with a suite of water 

quality and quantity monitoring equipment. Included in the water quality monitoring 

instrumentation were turbidity sensors (DTS-12, Forest Technology Systems, Victoria, 

BC, Canada) and multi-parameter water quality sondes (YSI EXO2, YSI Incorporated, 

Yellow Springs, Ohio, USA), which measured dissolved oxygen (DO), specific 

conductance (SC), pH, water temperature, and fluorescent dissolved organic matter 

(fDOM). All sensors recorded data at 15-minute intervals during base flow conditions and 

at 5-minute intervals when triggered during storm events.  
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Essential to pollutant load estimation is the collection of discharge data, and high 

frequency estimates of discharge were created at each continuously-monitored canal site. 

Both sites were equipped with a pressure transducer (CS451, Campbell Scientific, Logan, 

Utah, USA) to measure water depth, which we intended to use with a stage-discharge 

relationship to obtain high frequency estimates of discharge. However, characteristic of 

agricultural conveyances, the NWFC contains structures that change the hydraulic flow 

regime (e.g., drop structures, diversion gates, and other damming structures), which 

affected the development of valid stage-discharge relationships. The downstream site 

(1800 North) was located just above a large drop structure, which acted as a consistent 

hydraulic control, resulting in the derivation of a stage-discharge curve for that site 

(Melcher et al., 2018b). The relationship was developed by correlating stage measurements 

with periodic discharge measurements collected using the area-velocity method and an 

Acoustic Doppler Velocimeter (ADV) (Sontek FlowTracker, San Diego, California, USA). 

The upstream site (200 South) was located just above a location where water users dam the 

canal to raise the water level to facilitate diversion into lateral ditches. Thus, increases in 

water depth occurred when discharge remained constant. As an alternative to using stage 

to estimate discharge, a side-looking acoustic-Doppler velocity meter (ADVM) (Sontek 

SL3000, San Diego, California, USA) was installed at the upstream site, which uses the 

index velocity method to obtain reliable discharge estimates (Levesque and Oberg, 2012).  

Water quality samples were collected at the upstream and downstream sites and 

analyzed for TSS. Automated samplers were used to collect storm event samples at both 

sites based on turbidity threshold sampling (TTS). The TTS scheme was originally 
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developed by the U.S. Forest Service and involves collecting physical samples when 

changes in turbidity values occur. As turbidity increased or decreased past a predefined 

threshold, a sample was collected, thus ensuring that samples were collected to represent 

entire storm periods and to capture the entire range of turbidity values (Lewis, 1996; 

Melcher and Horsburgh, 2017). If turbidity values didn’t vary enough to trigger a sample 

collection during a storm event, as was often the case at the upstream site, a sample was 

collected at 30-minute intervals. Periodic grab samples were also collected during base 

flow conditions (i.e., when flow in the canal consisted of only diverted river water). 

Samples were refrigerated at 4 degrees Celsius and analyzed within 7 days. Laboratory 

analyses for TSS concentrations were performed at the Utah Water Research Laboratory 

(UWRL) using Standard Method 2540 D (APHA, 2012).  

3.4.2. Data Quality Control 

Prior to analysis, data review and quality control were performed on water quality 

and quantity data, as suggested by Zuur et al. (2009). Time series plots of all in situ 

variables were examined to identify anomalous values and irregular data value spikes, 

which were either discarded if they were clearly data errors, or interpolated based on field 

notes or knowledge of field conditions (Campbell et al., 2013; Horsburgh et al., 2010; 

Melcher et al., 2018a). This quality control post processing was performed using the ODM 

Tools Python software, Version 1.2.2 (Horsburgh et al., 2015). Plots of turbidity against 

TSS concentration (Melcher et al., 2018c) were created to visually detect anomalous values 

and potential outliers. Additionally, potential outliers in the TSS data were identified by 
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calculating the Cook’s 𝐷 value, which is a measurement of the overall influence that each 

point has on the position of the regression line, using Equations (3.4) and (3.5) (Helsel and 

Hirsch, 2002).   

ℎ𝑖 =
1

𝑛
+

(𝑥𝑖−𝑥̅)2

𝑆𝑆𝑥
            (3.4) 

𝐷𝑖 =  
𝜖𝑖

2ℎ𝑖

𝑘𝑠2              (3.5) 

where ℎ𝑖 is a measurement of the leverage of a point in the model and gives an indication 

of outliers along the 𝑥-axis, 𝑆𝑆𝑥 represents the sum of squares or the sum of the squared 

differences between 𝑥𝑖  and 𝑥̅ , which represent the 𝑖 th and the mean value of the 

explanatory variable 𝑥,  𝑠2 represents the variance of the data, 𝑘 represents the number of 

regression coefficients, and 𝐷𝑖  is the Cook’s distance for observation 𝑖. The 𝑛, 𝜖, and 𝑥 

values are as previously defined. A critical value of 𝐷𝑖 >= 1.6 obtained from the 10% F-

distribution table (Helsel and Hirsch, 2002) was used to identify potential outliers. Values 

identified as outliers were then critically examined and removed if procedural errors or 

special sampling conditions could be verified (Helsel and Hirsch, 2002; Jones et al., 2011). 

The total number of outliers was never more than one percent of the total dataset for each 

site.   

3.4.3. Statistical Regression Methods 

Three regression methods were applied to the datasets collected by the urban 

observatory described in the previous sections: 1) CLR, 2) LRCAT, and 3) LME models. 

First, the explanatory variables to include in the CLR models for each site were determined. 

Those explanatory variables were then used as a base for the other two methods. The 



 

 

87 

strength of each model was evaluated by calculating multiple goodness-of-fit measures for 

comparison. Unless otherwise mentioned, all data analysis was performed using the R 

statistical computing software (Bates et al., 2015; R Core Team, 2016). LME models were 

created using the “lme4” statistical package for R (Bates et al., 2015).   

A CLR model was selected for each site by analyzing the results from all possible 

models containing each combination of explanatory variables ( 2𝑘  models with 𝑘 

representing the number of potential explanatory variables in the CLR model) (Helsel and 

Hirsch, 2002). Explanatory variables considered included discharge, turbidity, pH, DO, 

SC, and water temperature. In order to assess whether to include an explanatory variable, 

each model was tested to determine if the contribution of each variable offered a significant 

improvement in three statistics: 1) a reduction in the prediction error sum of squares 

(𝑃𝑅𝐸𝑆𝑆 - Equation (3.6)), 2) a reduction of the Mallow’s 𝐶𝑝 (Equation (3.7)), and 3) an 

increase in the adjusted coefficient of determination (𝑅𝑎
2  - Equation (3.8)) (Helsel and 

Hirsch, 2002; Zuur et al., 2009): 

𝑃𝑅𝐸𝑆𝑆 = ∑ 𝜖𝑖
2𝑛

𝑖=1               (3.6) 

𝐶𝑝 = 𝑘 +
(𝑛−𝑘)(𝑀𝑆𝐸𝑘−𝑀𝑆𝐸𝑚𝑖𝑛)

𝑀𝑆𝐸𝑚𝑖𝑛
            (3.7) 

𝑅𝑎
2 = 1 −

(𝑛−1)𝑀𝑆𝐸𝑘

𝑆𝑆𝑇𝑆𝑆
             (3.8) 

𝑃𝑅𝐸𝑆𝑆 uses 𝑛 − 1 observations to develop the linear model, which estimates the value of 

the one observation omitted from the model. This process is iterated through each 

observation, and the squared residuals are summed. For Mallow’s 𝐶𝑝, the 𝑀𝑆𝐸𝑘 represents 

the mean squared error or the average squared difference between the values predicted by 
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the model and the observed TSS values for each 𝑘  set of parameters, and 𝑀𝑆𝐸𝑚𝑖𝑛 

represents the minimum mean squared error of all 2𝑘 possible models. For the 𝑅𝑎
2, 𝑆𝑆𝑇𝑆𝑆 

represents the sum of squares or the sum of the difference between the average predicted 

TSS concentration and the observed values, which is referred to as the “null” model 

(Berthouex and Brown, 2002). 

To assess whether models met regression assumptions of normality and 

homoscedasticity in the residuals, Q-q plots and plots of residuals versus fitted values were 

examined. If these assumptions were violated, a Box-Cox transformation of the data was 

tested (Equation (3.9)) in an attempt to obtain near-normally distributed residuals with 

constant variance (Berthouex and Brown, 2002):  

𝑌𝑖
(𝜆)

=
𝑦𝑖

𝜆−1

𝜆
             (3.9) 

where 𝑌𝑖
(𝜆)

 represents the transformed value of the data series (either response or 

explanatory variable), 𝜆  represents the power of the Box-Cox transformation, and 𝑦𝑖 

represents the untransformed value of the data series. The power of the transformation (𝜆) 

typically takes on any value between -1 and 1. Values of -1, 0, 0.5, and 1 represent 

reciprocal, logarithmic, square-root, and no transformation of the data series respectively 

(Berthouex and Brown, 2002).  

Using transformations requires retransformation back to the original units of 

analysis, which can introduce bias to the estimates of concentration (Berthouex and Brown, 

2002). To overcome this bias, the Duan smearing estimator (DE) was used as a 

nonparametric estimate of the expected TSS concentration on the untransformed scale 
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(Duan, 1983; Helsel and Hirsch, 2002; Rasmussen et al., 2011). Equation (3.10) gives the 

retransformation of TSS including the smearing estimator: 

𝑇𝑆𝑆𝐷𝐸(0) = ∑
𝑓−1(𝑇𝑆𝑆0+𝜖𝑖)

𝑛

𝑛
𝑖=1          (3.10) 

where 𝑇𝑆𝑆𝐷𝐸(0)  represents the untransformed TSS concentration for observation 0 , 

𝑓−1 represents the inverse function of the transformation performed on the data (e.g., 

taking the square of a dataset that was previously transformed to the square-root scale), 

𝑇𝑆𝑆0 represents the predicted TSS concentration on the transformed scale, and 𝜖 and 𝑛 are 

as defined previously. 

After using this procedure to select explanatory variables, the resulting CLR models 

for the upstream and downstream sites were used as the base models from which the 

LRCAT and LME models were created. Other than the categorical and grouping variables, 

each regression model for each site used the same explanatory variables. Grouping factors 

used in the LRCAT and LME models were selected graphically by creating multiple scatter 

plots of TSS vs turbidity. Each plot was analyzed for evidence of hysteresis in individual 

storm events, varying slopes and intercepts between base flow and storm events of varying 

size (e.g., small, medium, or large), and between spring and fall seasons, which could be 

used as grouping explanatory variables. Storm event size was further categorized based on 

storm event intensities (mm/hr), depths (mm), and antecedent dry periods (days). The storm 

event size thresholds were determined by dividing the range of storm event intensities, 

depths, and antecedent dry periods into three equal bins. Storm events that fell between 

these threshold values were then categorized as small, medium, large, or base flow. Thus, 

three explanatory variables were considered related to storm event characteristics (storm 



 

 

90 

event intensity, storm event depth, and antecedent dry period), each with four different 

levels (base flow, small, medium, and large). Additionally, a nested grouping structure of 

rising and falling pollutograph limbs within each storm event size was considered. All 

models were tested for normality, independence, and homoscedasticity of the residuals 

(Helsel and Hirsch, 2002; Zuur et al., 2009).  

The three modeling techniques were compared by calculating multiple 

measurements of the goodness-of-fit for each selected model: 𝑃𝑅𝐸𝑆𝑆 , 𝑅𝑎
2 , and 𝑅𝑀𝑆𝐸 

(Equation (3.11)): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑇𝑆𝑆𝑝(𝑡𝑖) − 𝑇𝑆𝑆𝑜(𝑡𝑖))2𝑛

𝑖=1        (3.11) 

where 𝑇𝑆𝑆𝑝(𝑡𝑖)  is the predicted concentration from the surrogate relationship and 

𝑇𝑆𝑆𝑜(𝑡𝑖) is the observed concentration at time 𝑡𝑖. 𝑅𝑀𝑆𝐸 is an estimate of the quality of a 

model that takes into consideration lack of precision (Helsel and Hirsch, 2002). The 

𝑃𝑅𝐸𝑆𝑆  statistic (Equation (3.6)) is calculated by summing the squared errors if one 

observation was omitted from the model formulation and is an indicator of a model’s ability 

to predict additional TSS values for conditions where an insufficient number of samples 

were collected. The 𝑅𝑎
2 is calculated by Equation (3.8) and indicates the ability of a model 

to improve upon the “null” model.    

3.4.4. TSS Load Estimations 

Once the regression models were created, estimations of TSS loads for the duration 

of the study were calculated. The estimation of TSS loads served two purposes: 1) to aid 

in explanatory variable selection by determining the impact of the inclusion of each 
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explanatory variable on the resulting TSS load estimation (i.e., we wanted to evaluate the 

models in terms of the practical endpoint for which they were intended and not just 

goodness of fit measures); and 2) to make estimates of runoff loads that enter the canal 

between the upstream and downstream monitoring sites as a practical application of these 

methods. Each regression model was used to generate estimates of TSS concentration from 

high frequency measurements of in situ and other metavariables, which were paired with 

continuous discharge values by matching time stamps. The mass loads were calculated by 

Equation (3.11): 

𝑀𝑇𝑆𝑆 = ∑ (
𝑇𝑆𝑆𝑡+𝑇𝑆𝑆𝑡+1

2
) (

𝑄𝑡+𝑄𝑡+1

2
) ∆𝑡𝑚

𝑡=0        (3.11) 

where 𝑀𝑇𝑆𝑆 represents the estimated mass load of TSS for the duration of the study period 

(kg), 𝑇𝑆𝑆𝑡 and 𝑇𝑆𝑆𝑡+1 are the TSS concentrations (mg/L) at time 𝑡 and 𝑡 + 1 respectively, 

𝑄𝑡  and 𝑄𝑡+1 are the discharge values (m3/s) at time 𝑡  and 𝑡 + 1  respectively, 𝑎  is a 

conversion factor to convert to kg per time period 𝑡, ∆𝑡 is the length of the time interval 

between 𝑡 and 𝑡 + 1, and 𝑚 is the number of paired discharge and concentration estimates 

for the duration of the study period (Duvert et al., 2011; Jones et al., 2012; Phillips et al., 

1999). 

3.5. Results 

3.5.1. Dataset Characterization 

A total of 153 TSS samples were collected at the upstream site and 197 at the 

downstream site (Table 3.1). The difference between the number of samples collected at 
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the upstream and downstream sites can be explained by equipment malfunction and 

differences in sample collection logic (i.e., 30-minute intervals at upstream site in events 

where turbidity varied little and TTS sampling at the downstream site). The average 

number of storm event samples was determined by dividing the total number of storm event 

samples collected by the number of events monitored (17 at both sites) (Table 3.1). 

Additionally, the number of samples collected for storm event size (Table 3.2) and storm 

event (Table 3.3) are given. 

Time sequence plots of turbidity at the upstream and downstream sites for the 2015 

and 2016 irrigation seasons are shown in Figures 3.2 and 3.3, respectively. The gray shaded 

regions indicate the occurrence of a storm event. While the majority of storm events were 

sampled for TSS, some events were not sampled due to logistical constraints. Gaps in the 

turbidity data, such as in May 2015 at both sites, were caused by canal managers closing 

the canal diversion during large storm events or series of storm events. This is common 

practice in the NWFC to prevent flooding along the canal. Overall, turbidity values at the 

upstream site ranged between 0 and 35 NTU. Turbidity values at the downstream site 

ranged between 0 and 1500 NTU, but turbidity typically did not exceed 400 NTU other 

than during a few storm events. 

3.5.2. Model and Variable Selection  

The relationships between TSS and potential explanatory variables are shown for 

both sites (Figures 3.4 and 3.5). At both sites, there is strong correlation between turbidity 

and TSS concentration (Pearson’s 𝑟 = 0.91 upstream and 0.98  downstream). At the 
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upstream site, TSS is also correlated with SC and pH. The downstream site demonstrated 

correlations between TSS and discharge, turbidity, pH, DO, and SC. Worth noting is that 

the variables that correlate with TSS also correlate with each other, an indication of 

potential multi-collinearity of a CLR model that includes these explanatory variables. Thus, 

rather than incorporating every explanatory variable that has a significant correlation with 

TSS in the CLR models, additional analysis was required to obtain the most parsimonious 

model.  

The CLR models were selected based on the criteria for optimizing model 

assessment statistics (Table 3.4). For almost all models examined, the assumptions of 

normality and homoscedasticity in the residuals were violated. In an attempt to achieve a 

model that met these assumptions, multiple values of 𝜆 in the Box-Cox transformation 

(Equation (9)) were examined. Values of 𝜆 near 0.5 in the transformation of the response 

variable (TSS) and turbidity obtained near-normally distributed residuals and constant 

variance for all the models tested with turbidity as an explanatory variable (Figure 3.6). A 

𝜆  value of 0.5 is the equivalent of a square-root transformation, so a square-root 

transformation of TSS and turbidity was used in all cases.  

In addition to turbidity, we demonstrate how the inclusion of other explanatory 

variables affects the quality of the models. Figure 3.7 shows each of the 25 models (the 

number of the models created using every combination of the 5  in situ explanatory 

variables) ranked by the calculated goodness-of-fit values is shown. Each panel has a point 

of discontinuity in the plot at model 32, indicated by a label and a vertical line in the plot, 

which corresponds to the improvement provided by including the square root 
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transformation of turbidity as an explanatory variable. Including the square root of turbidity 

explains over 80 percent of the total variability at the upstream site and over 96 percent at 

the downstream site. Any additional explanatory variable included in the models (all 

models to the right of the vertical line) provided limited improvement in terms of the 𝐶𝑝, 

𝑅𝑎
2, and 𝑃𝑅𝐸𝑆𝑆 statistics.  

The TSS load estimates for the 32 models that include the square root of turbidity 

as an explanatory variable were calculated to better understand how each model and 

explanatory variable affects the associated estimate of TSS load for the study period. The 

TSS load estimate for the whole study period was used for this analysis because it offers a 

single numerical value of each model’s predictive results that can be compared across all 

model realizations. The small range of estimated TSS loads for the 32 models at each 

monitoring site (59,500 – 62,100 kg at the upstream site and 114,100 – 120,600 kg at the 

downstream monitoring site) suggest that, for the purpose of this study, there is minimal 

effect of including explanatory variables other than the square root of turbidity in the CLR 

models (Table 3.4).  

Multiple TSS-turbidity plots were examined to determine categories and groups for 

the LRCAT and LME models. In particular, we looked for cases of hysteresis and varying 

slopes and intercepts. Examples that motivated our selection of categories and groups to 

be included in the LRCAT and LME models are given (Figures 3.8, 3.9, and 3.10). The 

varying slopes and intercepts between TSS-turbidity plots of individual storm events were 

evident at both sites, but were especially prominent at the upstream site (Figure 3.8, 

downstream site not shown). Figure 3.8 demonstrates that further analysis was required to 
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determine how to best categorize the storm events. An analysis of the goodness-of-fit 

criteria for model realizations using combinations of each grouping factor (i.e., storm event 

intensity, storm event depth, and antecedent dry period) revealed that the storm events were 

best categorized (i.e., base flow, small, medium, or large) according to the length of the 

antecedent dry period at the upstream site and rainfall intensity at the downstream site. 

Additionally, at the upstream site, the season in which the sample was collected was found 

to be a significant categorical and grouping factor (Figure 3.9). Finally, the pollutographs 

for many of the storm events at the downstream site exhibited hysteresis between TSS and 

turbidity, indicating a change in the relationship from the rising to the falling limb of the 

pollutograph (e.g., Figure 3.10). Hysteresis was not observed at the upstream monitoring 

site, so this factor was not included in the models for that site.  

3.5.3. Regression Type Comparison 

Comparing the final three models (Table 3.4), the LRCAT model resulted in a 

slightly lower 𝑅𝑀𝑆𝐸 than the LME and CLR models while the LME models demonstrated 

lower 𝑃𝑅𝐸𝑆𝑆 statistics than the CLR and LRCAT models at both monitoring sites. 𝑅𝑎
2 

values were similar between all models. At both monitoring sites, the estimates of TSS 

load vary between the three regression methods. At the upstream site, the difference in 

estimated TSS load between the CLR and LRCAT models is approximately 8,500 kg. At 

the downstream site, the difference in estimated TSS load between the CLR and LRCAT 

models is approximately 44,500 kg. These differences demonstrate how a model with only 
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marginal improvement in the goodness-of-fit criteria (i.e., between CLR and the LRCAT) 

can result in a large difference in TSS load estimate.  

Given the magnitude of the observed differences in estimated TSS load, 

comparisons between load estimates resulting from storm event and base flow periods were 

made to further compare the regression methods in terms of load estimation (Table 3.5). 

At both the upstream and downstream sites, the estimated TSS loads during storm event 

conditions were similar for all three model types (approximately 6,400 kg at the upstream 

site and 43,800 kg at the downstream site). The base flow estimates, however, exhibited 

greater variability. Compared to the load estimates resulting from the CLR models during 

base flow conditions, the LRCAT load estimate is 16 percent higher at the upstream site 

and 60 percent higher at the downstream site. The LME load estimate during base flow 

conditions is similar to the corresponding CLR load estimate at the upstream site (53,620 

kg and 53,350 kg respectively) and more similar to the LRCAT load estimate at the 

downstream site (110,680 kg and 118,200 kg respectively) (Table 3.5). Upon further 

examination, it was found that, at the upstream site, models like the LME and LRCAT are 

prone to artificial “steps” or points of discontinuity in the estimated TSS concentrations 

(Figure 3.11). This is due to the use of the grouping or categorical variables. Figure 3.11 

shows the point at which the “season” categorical variable in the LME model transitions 

from “spring” to “fall.” The discontinuity circled in red is an artifact of the LME model 

that resulted in a predicted TSS concentration that was less than the predicted 

concentrations from the CLR model during the spring months and greater during the fall 
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months. As a result the LRCAT model predicted the highest TSS loads and the CLR and 

LME models produced similar load estimates at the upstream site.  

The predicted and observed TSS concentrations for base flow samples at the 

downstream site (Figure 3.12) show that the CLR models typically underestimate observed 

concentrations. Given this, and the fact that base flow conditions dominate at both sites, 

the CLR models are likely underestimating the load significantly as evidenced by the large 

differences between CLR predicted loads and the loads predicted by the other models. 

Additionally, the LME model appears to be slightly more robust as the restricted maximum 

likelihood method gives less emphasis to extreme values. This can be seen in Figure 3.12 

when comparing the LRCAT predictions with the LME predictions (panels b-f). The 

extreme point in the upper right-hand corner of the plot is closer to the 1:1 line in the case 

of the LRCAT models, while the majority of the other points are above the 1:1 line. This 

is not the case for the LME models. This implies that the LRCAT models are less robust 

and more sensitive to extreme values than the LME models. 

Variability between TSS concentrations estimated by the three methods are shown 

in plots of the predicted versus observed TSS concentrations on the square root scale for 

each method (Figure 3.13). At the upstream site, there is noticeably greater variance in the 

TSS concentrations predicted by the CLR model (Figure 3.13a) versus those predicted by 

the LRCAT and LME models (Figure 3.13b and c, respectively). A difference in variance 

also exists between the CLR and the LRCAT and LME models at the downstream site 

(Figure 3.13d, e, and f, respectively); however, the difference is less pronounced.   
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3.6. Discussion 

3.6.1. Explanatory Variables 

Of all the in situ parameters considered as potential explanatory variables in the 

CLR models, only turbidity was found to be significant based on our goodness-of-fit 

criteria and assessment of TSS load estimates. This is in agreement with the findings in 

other studies (Christensen, 2001; Jones et al., 2011; Fisher et al., 2016). Any additional 

explanatory variables resulted in marginal improvement in the goodness-of-fit criteria and 

little difference in the TSS load estimate. While others have found discharge to be a 

significant explanatory variable for TSS (Ryberg, 2006; Rasmussen et al., 2011), including 

discharge did not improve our models to the point that it met the criteria for inclusion as 

an explanatory variable, which we attribute to the hydraulic conditions that were controlled 

by the canal master in the NWFC.  

The categorical and grouping factors included in the final models were found to be 

unique for each monitoring site. Models for both sites included grouping or categorical 

variables that describe qualities of storm events (antecedent dry period at the upstream site 

and rainfall intensity at the downstream site). At the upstream site, sediment source 

material is more likely to be a result of near-stream erosion and in-channel resuspension 

rather than from accumulation in storm drains, and the significance of the antecedent dry 

period may indicate the importance of time in the accumulation of these sediment supplies 

(Kayhanian et al., 2007). At the downstream site, the significance of storm magnitude, as 

represented by rainfall intensity, indicates that larger events are able to mobilize increased 
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volumes of sediment, which we hypothesize is associated with accumulated sediment 

within storm drains and stormwater conveyances (i.e., gutters). At both sites, sediment 

loading is associated with sediment buildup and the flushing of those sediments at the start 

of a storm event, but the time between storm events is influential for supply at the upper 

site while storm intensity is more important at the lower site. 

At the upstream site, the season during which the sample was collected was also 

found to be a significant predictor of TSS concentrations. Seasonal trends have been found 

by others to affect sediment yield (Ryberg, 2006; Alberto et al., 2016). In addition to 

seasonal trends in storm event characteristics, this effect could be attributed to near-stream 

sediment sources and their susceptibility to erosion in the drier summer and fall months 

(Alberto et al., 2016). These effects were observed at the upstream site, where flows are 

less affected by urban runoff events, and represent the seasonality of Logan River water 

diverted into the canal. 

At the downstream site, the limb of the pollutograph in which the sample was 

collected was found to be a significant grouping factor. Varying sediment sources and 

particle size distributions may result in unique characteristics between rising and falling 

pollutograph limbs (Patil et al., 2011; Landers and Sturm, 2013). For the majority of events 

monitored, a clockwise hysteresis pattern was observed. This indicates that the downstream 

site is affected by urban runoff events and TSS loadings from multiple sources more so 

than the upstream site. It is likely that the rising limb of the pollutograph is more influenced 

by urban stormwater runoff with particles that resemble road sediment deposits. After the 

runoff event flushes through the conveyance system, the falling limb may represent 
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sediments eroded farther upstream in the watershed or resuspended or eroded from 

sediment sources within the canal.   

3.6.2. Comparison of Regression Methods 

The range of load estimates during base flow conditions in contrast with the 

consistency of load estimates during storm events (Table 3.5) for the three different model 

types implies that the greatest source of variability stems from the estimated TSS 

concentrations during base flow conditions. This denotes the importance of regular base 

flow sampling to verify assumptions about the relatively constant nature of in-stream 

concentrations. The disparity between base flow and storm event loading also points to the 

importance of modeling techniques such as LRCAT and LME, which account for 

categorical variability between base flow and storm event conditions. Considering the 

relatively short duration of the storm events, the magnitude of the estimated event loads 

relative to the estimated loads during base flow conditions is significant. 

Given that the estimated storm event loads determined by each model type were of 

approximately the same magnitude, we needed to directly use the statistical goodness-of-

fit metrics and estimated loads during base flow conditions to determine the superior 

regression method. In terms of the RMSE, the LRCAT models outperformed CLR and 

LME models at both monitoring sites. This result was not unexpected, as the LRCAT 

models minimize the squared errors of TSS concentrations for each storm event category 

using ordinary least squares. Thus, model prediction errors for the entire set of TSS 

concentrations at both sites are minimized by using categorical variables. With regard to 
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the 𝑅𝑎
2 , the LME and LRCAT models at both sites performed similarly, both slightly 

outperforming the CLR models.  

For both monitoring sites, the PRESS statistic was greatly reduced using the LME 

and LRCAT methods to estimate TSS concentrations. In both cases, the LME method 

produced slightly better PRESS values than the LRCAT method. This metric is an 

indication of the model’s ability to predict concentrations for samples that have been 

removed from the dataset used for model formulation. The PRESS statistic might be 

thought of as an indication of the regression method’s ability to predict undersampled 

categories. This is important because certain storm event categories are represented by 

fewer samples than others (e.g., small events according to rainfall intensity at the upstream 

site (11 samples) and medium events according to antecedent dry period at the downstream 

site (13 samples) –Table 3.2). Additionally, the lowest PRESS value indicates the model 

that reduces the prediction errors of concentrations for storm events (for which the number 

of samples may be relatively low in comparison to the number of base flow samples (Table 

3.3)) and for base flow conditions, yielding the most accurate results (Figure 3.12). For 

these reasons, the LME method appears to be a slightly more robust than the LRCAT 

method. However, as the LRCAT model produced superior RMSE values and the LME 

method produced superior PRESS values, both were considered superior and preferable to 

the CLR technique examined here, and we accept the resulting TSS load estimations to be 

more accurate for both monitoring sites (Tables 4 and 5).  
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3.6.3. Applicability 

The premise of this study was to investigate multiple methods for creating surrogate 

relationships for estimating TSS concentrations and loads. The use of turbidity as a 

surrogate for TSS concentrations has been studied extensively and is a commonly accepted 

practice. This study, however, describes conditions where TSS-turbidity relationships vary 

based on storm event characteristics (antecedent dry period and rainfall intensity), season, 

and limb of the pollutograph. In urban streams and combined conveyances these conditions 

can be more prominent than in more natural stream settings. As a result, there is greater 

potential to bias the load estimate if a regression method that accounts for those conditions 

(e.g., LME or LRCAT) is not used. This study has shown LME and LRCAT modeling to 

be valuable tools for estimating TSS loads in urban streams and combined conveyances. 

Additionally, using both LME and LRCAT regression methods can provide insight on the 

uncertainty of the estimated TSS loads, as was seen with the variability of base load 

estimates at both the upstream and downstream sites.  

3.7. Summary and Conclusions 

The three regression methods tested in this study demonstrated varying results in 

terms of the estimated TSS loads for the upstream and downstream monitoring sites. While 

the CLR models at the upstream and downstream sites produced acceptable 𝑅𝑎
2 values, 

LME and LRCAT models resulted in significant improvements in terms of the models’ 

PRESS statistic and their ability to predict TSS concentrations for conditions that may be 

undersampled. Both LME and LRCAT performed similarly and are more reliable 
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approaches for development of surrogate relationships that may account for limited sample 

collection during important periods (a typical challenge for water managing entities). 

Although LME methods can account for different numbers of samples collected in varying 

periods, the importance of both base flow and storm event sample collection should not be 

discounted.  

While LRCAT and LME methods performed similarly based on the goodness-of-

fit criteria and TSS load estimations, the LME method showed potential as a technique that 

is more robust to extreme values and undersampled categories (Figure 3.12). One potential 

limitation of our study is that data collection and regression model development took place 

at two sites in an irrigation/stormwater conveyance located in Logan, Utah, USA. While 

many studies in the literature report valid results with surrogate relationships for a single 

site or for a small number of sites in a single watershed (e.g., Christensen, 2001; Ryberg, 

2006; Settle et al., 2007; Gao et al., 2008; Miguntanna et al., 2010; Jones et al., 2011; 

Landers and Sturm, 2013; Lessels and Bishop, 2013; Viviano et al., 2014; Fisher et al., 

2016; Hannouche et al., 2016) a larger, synthesis study that integrates across many sites 

and watersheds could further investigate potential differences between the regression 

techniques we explored. This would aid in verifying the generality of our results.  

The relationship between in situ variables and TSS concentrations can be complex 

and may vary between time periods and conditions such as seasons and storm events. Site 

specific and storm event specific characteristics were significant surrogate indicators of 

TSS concentrations at both sites in this study. Additional dedicated studies on the effects 

and interactions of each explanatory variable would be required to mechanistically 
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understand the processes that explain the need for site specific and storm event specific 

data. Additionally, many of these variables may have interaction terms and nonlinear 

relationships with TSS. Attempting to model all of these complexities with a single 

equation that meets the assumptions of regression would be infeasible.  

Although we have demonstrated how to overcome these limitations to some degree 

and generate models that may be used for constituent estimates, further research might 

include investigation of alternative methods for obtaining constituent concentrations as a 

function of continuous in situ parameters. One promising approach that might be used for 

this analysis is that of random forests, which allow for regression equations on multiple 

partitions of the training dataset (Breiman, 2001). These methods allow for both linear and 

nonlinear relationships and the use of many explanatory variables without concern for 

linear regression assumptions or multi-collinearity and have demonstrated potential for 

making accurate predictions of TSS loads (Francke et al., 2008).  
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Table 3.1. Summary of the TSS sampling efforts in the NWFC study area 

 Number of TSS Samples Collected 

Site Base Flow 
Average Storm 

Event 

All Storm 

Events 

Monitored 

Rising 

Limb 

Falling 

Limb 

Upstream 

(200 South) 
10 8 143 63 80 

Downstream 

(1800 

North) 

10 11 187 67 120 

 
Table 3.2. Summary of sampling according to storm event size and antecedent dry period 

  Number of TSS Samples Collected 

Site 
Storm Event 

Size1 Antecedent Dry Period Rainfall Intensity 
Rainfall 

Depth 

Upstream 

(200 South) 

Small 
59 11 87 

Medium 
34 76 23 

Large 
50 56 33 

Downstream 

(1800 

North) 

Small 
79 35 82 

Medium 
13 75 53 

Large 
95 77 52 

1Small, medium, and large events were determined by taking the range of storm event values 

(antecedent dry period, rainfall intensity, and rainfall depth) and dividing them into three equal 

groups.
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Table 3.3. TSS sample distribution for each storm event at both monitoring sites. 

Storm Event 

Number of TSS Samples Collected 

Upstream Site (200 South) Downstream Site (1800 North) 

July 8, 2015 20 20 

July 27, 2015 15 15 

August 3, 2015  - 6 

August 7, 2015 - 3 

September 14, 2015 4 - 

September 15, 2015 5 - 

September 16, 2015 7 - 

October 3, 2015 8 10 

May 6, 2016 2 13 

May 7, 2016 6 5 

May 10, 2016 13 14 

May 19, 2016 10 24 

May 25, 2016 5 8 

June 11, 2016 9 12 

June 12, 2016 11 11 

August 7, 2016 9 7 

September 13, 2016 (a) - 9 

September 13, 2016 (b) 10 15 

September 14, 2016 8 5 

September 21, 2016 7 15 
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Table 3.4. Comparison of regression model results, where the base model (BM) represents 

the classical linear regression model at each site.  

 

Site 
Regression 

Method 
Equation 𝐶𝑝 𝑅𝑎

2 𝑅𝑀𝑆𝐸 𝑃𝑅𝐸𝑆𝑆 

TSS 

Load 

(kg) 

Up-

stream 

(200 

South) 

CLR (BM) 
𝑇𝑆𝑆0.5 = 0.0730 +
1.067𝑇𝑢𝑟𝑏0.5  

27.90 0.810 0.476 36.3 59,900 

LRCAT 

𝑇𝑆𝑆0.5 = 𝐵𝑀 + 𝑆𝑖𝑧𝑒𝐴𝐷𝑃 +
𝑆𝑖𝑧𝑒𝐴𝐷𝑃 ∗ 𝑇𝑢𝑟𝑏0.5 +
𝑆𝑒𝑎𝑠𝑜𝑛 + 𝑆𝑒𝑎𝑠𝑜𝑛 ∗ 𝑇𝑢𝑟𝑏0.5  

- 0.875 0.376 26.0 68,400 

LME 

𝑇𝑆𝑆0.5 = 𝐵𝑀 + 𝑆𝑖𝑧𝑒𝐴𝐷𝑃 +
𝑆𝑖𝑧𝑒𝐴𝐷𝑃 ∗ 𝑇𝑢𝑟𝑏0.5 +
𝑆𝑒𝑎𝑠𝑜𝑛 + 𝑆𝑒𝑎𝑠𝑜𝑛 ∗ 𝑇𝑢𝑟𝑏0.5  

- 0.872 0.381 25.8 59,800 

Down-

stream 

(1800 

North) 

CLR (BM) 
𝑇𝑆𝑆0.5 = −0.804 +
1.257𝑇𝑢𝑟𝑏0.5  

36.0 0.960 0.836 142 117,500 

LRCAT 

𝑇𝑆𝑆0.5 = 𝐵𝑀 + 𝐿𝑖𝑚𝑏 +
𝐿𝑖𝑚𝑏 ∗ 𝑇𝑢𝑟𝑏0.5 + 𝑆𝑖𝑧𝑒𝐼𝑁𝑇 +
𝑆𝑖𝑧𝑒𝐼𝑁𝑇 ∗ 𝑇𝑢𝑟𝑏0.5  

- 0.972 0.683 105 162,000 

LME 

𝑇𝑆𝑆0.5 = 𝐵𝑀 + 𝐿𝑖𝑚𝑏 +
𝐿𝑖𝑚𝑏 ∗ 𝑇𝑢𝑟𝑏0.5 + 𝑆𝑖𝑧𝑒𝐼𝑁𝑇 +
𝑆𝑖𝑧𝑒𝐼𝑁𝑇 ∗ 𝑇𝑢𝑟𝑏0.5  

- 0.972 0.686 103 154,400 

Variable Description 

𝑇𝑆𝑆  Total suspended solids (mg/L) 

𝑇𝑢𝑟𝑏  Turbidity (NTU) 

𝑆𝑖𝑧𝑒𝐴𝐷𝑃  
Group and categorical variable for the length of the antecedent dry period (e.g., 

small, medium, large, or base flow) 

𝑆𝑖𝑧𝑒𝐼𝑁𝑇  
Group and categorical variable for the size of the storm based on the rainfall 

intensity (e.g., small, medium, large, or base flow) 

𝑆𝑒𝑎𝑠𝑜𝑛  Group and categorical variable for the season (e.g., Spring or Fall) 

𝐿𝑖𝑚𝑏  Group and categorical variable for the rising or falling limb of pollutograph 
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Table 3.5.  Storm event and base flow predictions of total TSS load for each site and 

regression method.  

Site 
Regression 

Method 

Storm Event 

TSS Load (kg) 

Base Flow TSS 

Load (kg) 

Upstream 

(200 South) 

CLR 6,320 53,620 

LRCAT 6,490 61,960 

LME 6,470 53,350 

Downstream 

(1800 North) 

CLR 43,830 73,680 

LRCAT 43,750 118,200 

LME 43,720 110,680 
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Fig 3.1. Map of the Northwest Field Canal study area. 
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Fig 3.2. Plots of turbidity and TSS for the a) 2015 and b) 2016 irrigation seasons at the 

upstream site (200 South). Gray shaded areas indicate the occurrence of a storm event. 
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Fig 3.3. Plots of turbidity and TSS for the a) 2015 and b) 2016 irrigation seasons at the 

downstream site (1800 North). Gray shaded areas indicate the occurrence of a storm 

event. 
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Fig 3.4. Correlation plots of each explanatory variable considered and TSS at the 

upstream site (200 South). Symbols in the upper panel indicate the significance of the 

Pearson’s correlation coefficient (“ *** ”, 0.001;”  ** “, 0.01;”  * ”, 0.05;”  . “, 0.1). 
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Fig 3.5. Correlation plots of each explanatory variable considered and TSS at the 

downstream site (1800 North). Symbols in the upper panel indicate the significance of the 

Pearson’s correlation coefficient (“ *** ”, 0.001;”  ** “, 0.01;”  * ”, 0.05;”  . “, 0.1).  

 



 

 

121 
 

 

Fig 3.6. Residuals versus fitted plots and quantile-quantile plots for the TSS-turbidity 

model with no transformation (a, b) and with the square root transformation (c, d) for the 

downstream monitoring site. 
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Fig 3.7. Plots of all of the 2𝑘 possible CLR models against the model quality metrics 

(Malley's Cp, Ra
2, and the PRESS statistic) for the upstream site (200 South) (a, b, c) and 

downstream site (1800 North) (d, e, f). The vertical line with the “turbidity” label 

indicates the point at which the square root of turbidity was added to the model as an 

explanatory variable and shows the large increase in model quality that results when this 

term is included. 
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Fig 3.8. Plots of TSS versus turbidity for each storm event monitored at the upstream site 

(200 South) demonstrating the variability of the slopes and intercepts of the ordinary least 

squares regression line. 
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Fig 3.9. TSS versus turbidity plot with ordinary least squares lines fit to the Spring and 

Fall data. 
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Fig 3.10. Plot of TSS versus turbidity for the storm event on May 6, 2016 at the 

downstream site (1800 North) showing an example of clockwise hysteresis. Times at 

which samples were collected are given in the plot as point labels. Error bars represent 

the plus or minus the standard deviation of the percent error (~16 percent) between 

sample duplicates 
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Fig 3.11. Predicted TSS concentrations at the upstream site for each of the linear 

regression methods. Circled is a discontinuity caused by the “season” categorical 

variable. 
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Fig 3.12. Predicted versus observed TSS base flow concentrations on the square root 

scale. Panels a, b, and c show the plots for the selected classical linear regression (CLR), 

linear regression with categorical variables (LRCAT), and linear mixed effects (LME) 

models at the upstream site (200 South) respectively. Plots d, e, and f show the plots for 

the selected CLR, LRCAT, and LME models at the downstream site (1800 North), 

respectively. 
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Fig 3.13. Predicted versus all observed TSS concentrations on the square root scale. 

Panels a, b, and c show the plots for the selected classical linear regression (CLR), linear 

regression with categorical variables (LRCAT), and linear mixed effects (LME) models 

at the upstream site (200 South) respectively. Plots d, e, and f show the plots for the 

selected CLR, LRCAT, and LME models at the downstream site (1800 North) 

respectively. 
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CHAPTER 4 

MODELING RUNOFF IN AN URBAN STORMWATER CONVEYANCE USING 

HIGH FREQUENCY DATA 

Abstract 

Quantifying spatial and temporal variability in urban stormwater runoff is critical 

in identifying pollutant source areas and in evaluating the potential for management 

practices aimed at preventing pollution of downstream receiving waters. Simulation 

models can be used for this purpose, but must be driven and constrained by data. Wireless 

sensor networks (WSN) can be used to collect high-resolution data for modeling; however, 

operation of WSNs is logistically challenging, expensive, and the degree to which high-

resolution data collected via WSNs can be used to improve ability to simulate stormwater 

discharge has not been well established. This study examined how using data from multiple 

continuous monitoring sites nested within an urban water system to calibrate a stormwater 

runoff model affected model performance in terms of simulating discharge when compared 

to the same model calibrated using only data collected at the system outlet. Multiple 

configurations of the United States Environmental Protection Agency’s Storm Water 

Management Model (SWMM) were calibrated using a genetic algorithm for two summer 

irrigation seasons within an urban water system in Logan, Utah, USA that receives direct 

urban stormwater runoff. Model configurations represented inclusion or exclusion of data 

from different continuous monitoring sites in the calibration. Results showed that 

calibrating the model using data from nested outfall sites along with data from the model 

outlet predicted similar hydrographs at the model outlet when compared to the models 
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calibrated using only data from the model outlet. However, the models calibrated using 

only data from the model outlet were unable to accurately predict hydrographs at the nested 

outfall sites. Thus, ability to predict discharge at multiple locations within a study area can 

be enhanced by high-resolution data collection and can aid water managers in determining 

runoff contributions and selecting best management practices within an urban drainage.  

1Co-authored by Anthony A. Melcher, Jeffery S. Horsburgh, Bethany T. Neilson, and 

Caleb A. Buahin 

4.1. Introduction 

Advances in environmental data collection technology have enabled better 

understanding of the characteristics of runoff events in both rural and urbanized watersheds 

(Horsburgh et al., 2010; Rode et al., 2016; Melcher and Horsburgh, 2017). Environmental 

wireless sensor networks (WSN) allow for multiple monitoring nodes equipped with in situ 

sensors that enable stormwater to be monitored at high, adaptive frequencies and to be 

synchronized across a larger geographic region (Corke et al., 2010; Kerkez et al., 2016; 

Wong and Kerkez, 2016; Melcher and Horsburgh, 2017).  Such monitoring efforts are 

necessary, especially in urban watersheds where runoff events may occur on much smaller 

spatial and temporal scales than more rural watersheds (Deletic and Maksimovic, 1998; 

Waschbusch et al., 1999; Tomlinson and De Carlo, 2003; Kirchner et al., 2004; National 

Research Council, 2009; Gong et al., 2016). Understanding event dynamics is essential for 

characterizing runoff, predicting potential impacts of future events (Kirchner et al., 2004), 
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and can also allow best management practices (BMP) to be tailored to control runoff and 

pollution from specific source areas.  

While many studies have employed high resolution data collection aimed at 

creating a better understanding of hydrologic processes, monitoring with high frequency at 

every location where data might be needed in managing a stormwater system is cost 

prohibitive. Simulation models can be developed to “fill in the gaps” and produce output 

data at locations that are not monitored. However, the authors were unable to find any 

studies that focused on how or if high resolution data collected across multiple monitoring 

nodes within an urban WSN enhances our ability to simulate stormwater runoff using 

current models. Stormwater data are used as inputs and to calibrate and validate stormwater 

models (Wanielista and Yousef, 1993; Mroczkowski et al., 1997). Not only do the 

frequency and volume of high resolution data pose a challenge for existing stormwater 

models, but the availability of high resolution data at multiple points within an urban water 

system poses a challenging question of how to approach simultaneous, multi-site 

calibration in an urban environment. An additional question is what benefits this type of 

calibration will have on the precision and accuracy of urban hydrology/hydraulic models 

such as the U.S. Environmental Protection Agency’s (USEPA) Storm Water Management 

Model (SWMM). 

Outside of the urban stormwater context, some authors have investigated the value 

of using multi-site, or multi-response, monitoring data to populate and calibrate runoff 

models (Lerat et al., 2012; Wang et al., 2012; Chiang et al., 2014; Leta et al., 2017). Their 

approaches and conclusions have varied. In their comprehensive study of streamflow from 

187 catchments in France, Lerat et al. (2012) looked at benefits of multi-site versus single 
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site calibration of the GR4J model (in French, modèle du Génie Rural à 4 paramètres 

Journalier). Model performance metrics calculated in this study were indices derived from 

the root mean squared error (RMSE) and a total volume error. Those metrics were 

computed at the catchment outlet and up to two interior sites. It was found that multi-site 

calibration produced nearly identical results to the model calibrated using only data 

collected at the catchment outlet. Differing results between studies may be attributed to the 

underlying process equations unique to each model, or to each study’s unique approach to 

model setup, calibration, and methods for quantifying model performance. Answers to the 

questions on the utility and how to approach multi-site model calibration continue to be 

pursued (Chiang et al., 2014; Lerat et al., 2012; Leta et al., 2017; Li et al., 2010; Shrestha 

et al., 2016; Wang et al., 2012).  

The approach chosen for stormwater modeling is often determined by the 

motivation of the study (Kirchner, 2006; National Research Council, 2009; Niazi et al., 

2017; Tsihrintzis and Hamid, 1997). From a management context, it might be of interest to 

model catchments to determine where a stormwater BMP might be best located. This 

context might include a coarser spatial discretization of the drainage area and larger 

modeling time steps, as the modeler is mostly concerned with total runoff volumes. A 

different approach might focus on better understanding the hydrologic response of 

subcatchments and distinguishing characteristics of the hydrograph. This category of 

model might be used to gain a greater understanding of the processes, unique to each 

modeled catchment, that drive runoff events. This latter approach provides information 

useful for determining which BMP would obtain the best hydrograph attenuation and 

would require a higher spatial and temporal resolution model.  



 

 

133 

With climate variability and the changing frequency of extreme storm events, the 

understanding of runoff processes and the ability to model those processes is increasingly 

pertinent. The purpose of this study was to investigate how high resolution stormwater 

runoff data collected via an environmental WSN can be used to improve the modeling of 

an urban water system. More specifically, we aimed to answer the following questions 

pertaining to stormwater modeling and its adequacy at estimating stormwater runoff 

quantities in an urban study area: 1) How can an urban stormwater model be effectively 

calibrated using high resolution data from boundary sites and multiple sites within the 

modeling domain?; and 2) What is the value of each additional monitoring site added to 

the calibration procedure in improving the accuracy of model predictions at model outlet? 

We chose to use the USEPA-SWMM stormwater model for this study primarily because it 

is one of the most widely used urban stormwater models (Niazi et al., 2017; Obropta and 

Kardos, 2007; Tsihrintzis and Hamid, 1997). While we anticipate that results may vary 

across models, SWMM provided us with the opportunity to explore these questions using 

a model that represents the current state of the practice in stormwater modeling (Niazi et 

al., 2017).  

4.2. Background 

SWMM is a semi-distributed, rainfall-runoff model used primarily to simulate 

water quantity and quality in urban water systems (Obropta and Kardos, 2007; Rossman 

and Huber, 2016). The components of SWMM’s water quantity simulation include surface, 

sub-surface, and conveyance routing using precipitation and other meteorological values 
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as external forcing data (Rossman and Huber, 2016). Surface runoff is discretized into 

subcatchments, which are treated as nonlinear reservoirs where a depression storage must 

be overcome before runoff is generated (Rossman and Huber, 2016). Impervious and 

pervious areas can be defined within subcatchments, and the connectivity of impervious 

areas to the subcatchment outlet can be specified through subarea routing. Conveyances 

modeled in SWMM allow for both kinematic and dynamic wave routing. Kinematic wave 

routing solves a simplified version of the 1D Saint-Venant equations. Flows are assumed 

to be uniform, and water surfaces are parallel to conduit invert slopes. Kinematic wave 

routing does not account for pressurized flow or backwater effects and is more applicable 

to flows in steep-sloped conduits. Dynamic wave routing solves the complete forms of the 

Saint-Venant equations, including inertial and pressure terms, and allows for channel 

storage, unsteady, gradually varied, and pressurized flows (Niazi et al., 2017; Rossman, 

2017; Sun et al., 2013). 

Common applications of SWMM include municipal storm sewer system design and 

flood analysis. In both cases, common practice is to use previously designated “design 

storms” with a specified return period to determine whether infrastructure is sufficient to 

route the flows expected under worst-case scenarios (Niazi et al., 2017; Rossman and 

Huber, 2016). While useful for sizing infrastructure, these types of simulations do not 

provide information about how an urban water system might respond over the range of real 

storm events and conditions that might occur within the modeled catchment. Where the 

modeling objective is to examine the performance of the model with respect to observations 

of real conditions, design storms hold little value and emphasis should be on the use of 

measured data (Rossman and Huber, 2016). While others have looked at the effects of 
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varying temporal and spatial scales on SWMM water quantity results (Krebs et al., 2013; 

Niazi et al., 2017; Petrucci and Bonhomme, 2014; Sun et al., 2014), our search of the 

literature did not find any examples of the use of high frequency data from a synchronized, 

multi-node WSN to calibrate a SWMM model or evaluation of how the addition of data 

from multiple monitoring sites might affect water quantity predictions.   

4.3. Study Area 

The Northwest Field Canal (NWFC) is a primarily un-lined, open-channel, 

combined irrigation/stormwater conveyance that runs through the heart of the City of 

Logan, Utah, USA. Runoff from much of the commercial and residential zones of Logan 

is received by the NWFC and ultimately conveyed to Cutler Reservoir. In the mid-

nineteenth century, when the canal was originally constructed, it conveyed solely irrigation 

water. However, with unregulated stormwater flows that were introduced as the City grew, 

the canal now frequently floods during larger storm events, causing damage to adjacent 

properties. 

The upstream monitoring site (200 South) was located near the NWFC diversion 

from the Little Logan River (Figure 4.1). The Logan River-Little Logan River watercourse 

has very few stormwater inputs upstream of this point. The downstream monitoring site is 

located about 4.5 km downstream of the upstream monitoring site and is near where the 

canal leaves Logan City’s boundary.  The upstream and downstream monitoring sites 

bookend the model domain and provide water quantity boundary conditions in the canal. 

In addition to the upstream and downstream monitoring sites, six stormwater monitoring 
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sites were located in outfalls to the canal. Land uses within the NWFC drainage area are 

comprised primarily of low and high-density residential and commercial zones. Table 4.1 

provides a description of the NWFC drainage area as well as the drainage areas for the 

outfall monitoring sites. 

4.4. Methods 

4.4.1. Data Collection 

Water quantity data were obtained from six monitoring sites in the NWFC to 

provide the data needed to populate and calibrate the models that were developed for this 

study. Details of the data collection procedure are described in Melcher and Horsburgh 

(2017), but a brief summary is provided here for completeness. At any given time, data 

collection consisted of two continuous canal monitoring sites at the upstream and 

downstream ends of the study area and two semi-mobile monitoring sites located in 

stormwater outfalls to the canal (Figure 4.1). The two outfall sites were moved periodically 

during the study after enough storm events were monitored of varying sizes and intensities. 

All monitoring sites were equipped with a tipping-bucket rain gage (TE525, Campbell 

Scientific, Logan, Utah, USA), which summed precipitation depths over a 15-minute 

interval at the canal sites and at a 5-minute interval at the outfall sites. The total number of 

storm events monitored and other catchment characteristics are summarized in Table 4.1. 

Discharge values at the canal sites were obtained by either the rating curve method 

(Rantz, 1982) or the index velocity method (Levesque and Oberg, 2012) using a side-

looking acoustic Doppler velocity meter (ADVM) (Sontek SL3000, San Diego, California, 
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USA). The downstream canal site (1800 North, 200 West) was equipped with a pressure 

transducer for in-situ stage measurements. These measurements were then correlated to 

periodic discharge measurements made with an acoustic Doppler velocimeter (ADV) 

(Sontek FlowTracker, San Diego, California, USA) (Melcher et al., 2018a). As a result, a 

rating curve was derived, and discharge values were obtained at 15-minute intervals during 

base flow conditions and 5-minute intervals during storm events. The upstream canal site 

(200 South, 400 West) was equipped with an ADVM given that at that site there were 

multiple downstream hydraulic controls and water diversion structures that caused 

conditions where the same discharge value could correspond to multiple water depths. The 

ADVM made flow measurements as a function of channel geometry, water depth, and 

velocity, thus circumventing what would have been a poor stage-discharge relationship. 

Those measurements were then correlated with ADV measurements so as to ensure that 

upstream and downstream discharge values were derived from observations made with the 

same instrument. Discharge values at the outfall sites were obtained at 1-minute intervals 

during storm events using an area-velocity flow module (ISCO 2150, Teledyne ISCO, 

Lincoln, Nebraska, USA). All discharge data were then used to calibrate and validate the 

SWMM model.  

In addition to water quantity data, geospatial datasets were obtained from Logan 

and North Logan Cities including a high-resolution LiDAR elevation dataset for the 

modeled area. Stormwater infrastructure datasets included the locations of drainage 

conveyances and nodes such as catch basins, junctions, closed conduits, canals, and curb 

and gutter. These stormwater infrastructure datasets were verified in the field, to the extent 

possible. Land use, land cover, and impervious area datasets, which were collected by 
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Logan and North Logan Cities, were used in calculating catchment characteristics required 

for the runoff blocks of the SWMM model (Rossman and Huber, 2016).  

4.4.2. Catchment Delineations and SWMM Model Design 

The SWMM modeling framework includes overland and conduit flow components. 

Overland flow is defined by subcatchment discretization and parameterization (Rossman 

and Huber, 2016). Subcatchments are further divided into three subareas: impervious with 

no depression storage, impervious with depression storage, and pervious area. Common 

practice is to use map overlays and manually digitize subcatchments based on landscape 

features such as parking lots, streets, and city parks such that each subcatchment contains 

primarily only impervious or pervious subareas (Krebs et al., 2013; Sun et al., 2014). In 

this study, the discretization process was expedited by using a high-resolution digital 

elevation model (DEM) derived from LiDAR data. LiDAR point data were interpolated to 

a 0.5 m resolution digital elevation model (DEM) raster using the ArcGIS Topo to Raster 

geoprocessing tool from ESRI’s ArcGIS software. Subcatchment delineations were then 

performed using ESRI’s ArcGIS 10.3.1 for Desktop software using the procedure 

described below.  

The DEM was manipulated using the Arc Hydro toolbox extension for ArcGIS 

(ESRI, 2017). While the Arc Hydro toolbox was not developed primarily for watersheds 

that include built infrastructure, others have noted its utility in urbanized watersheds 

(Johnson, 2008). Arc Hydro tools were used to “burn-in” flow paths and slopes in locations 

of known curbs, ditches, and other drainage structures. Artificial walls in the DEM were 

also built using Arc Hydro tools in known locations of subcatchment divides such as 
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property line fences/walls and other structures. These artificial flow paths and walls serve 

to represent landscape features that are not well captured in the DEM and that help 

constrain and improve the accuracy of surface water flow.  

The DEM was then hydrologically conditioned to remove non-draining pits, flow 

directions and accumulations were calculated, and subcatchments were delineated as per 

the suggestions in the Arc Hydro Tools tutorial (ESRI, 2017). This process required 

multiple iterations. Subcatchments were delineated and then visually inspected for 

feasibility and accuracy. Additional “streams” and “walls” were added to the input raster 

as needed, and the delineation was repeated until the delineation results resembled 

subcatchments that were observed during field visits to the study area. Initially, all storm 

drains were used as subcatchment outlets, and flows were then routed through the pipe 

network. Following this procedure, the first iteration of the model for the NWFC drainage 

area had a total of 869 subcatchments and 1,105 storm pipes/canal links. 

This study aimed to assess the prediction of event hydrographs, requiring a high 

spatial and temporal resolution model. Thus, we sought to represent the subcatchments and 

drainage network with as much detail as possible given the input data we had. However, 

after a series of preliminary simulations using this detailed model, it was apparent that 

calibration for the chosen simulation period using the calibration procedure described 

below would not be feasible with the level of detail in our initial delineation because model 

run times were constrained by a 3-day time limit imposed by the managers of the high-

performance computing resources used for this study. Given this, storm pipes were 

manually merged or removed from the model based on their length and whether they were 

directly connected to the outfall to the canal. Subcatchments were manually merged if 
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runoff from one subcatchment drained to another subcatchment with little or no storm pipe 

flow connecting the two subcatchments. As a result, the final iteration of the model of the 

NWFC drainage area model had a total of 803 subcatchments and 666 storm pipe/canal 

links.  

Impervious areas, flow width estimates, and subcatchment slopes were calculated 

based on geospatial data provided by Logan City. The impervious area was treated as a 

calibration parameter, due to the coarseness of the impervious dataset. Set initially based 

on the geospatial data provided by the City, the parameter was allowed to vary plus or 

minus 10 percent during calibration. The flow width estimates were calculated using 

Equation (4.1) (Rossman and Huber, 2016):  

𝑊 = 𝐴 (2 ∗ 𝑀𝐶)⁄             (4.1) 

where W represents the flow width, A represents the subcatchment area, and MC represents 

the main channel length. The flow width value was then allowed to vary plus or minus 30 

percent during the calibration procedure due to uncertainties related to representing 

irregularly shaped subcatchments as rectangles (Guo and Urbonas, 2009; Rossman and 

Huber, 2016). The subcatchment slopes were calculated by taking the average slope in each 

subcatchment based on the DEM derived from LiDAR data. All subcatchment geometries, 

subcatchment slopes, subcatchment impervious areas, junction and outfall features and 

elevations, and conduit and conduit slopes were then imported into SWMM via a Python 

script that used ESRI’s ArcPy module and the necessary geoprocessing tools from ArcGIS. 

The NWFC was represented by an open-channel, irregularly shaped conduit. The cross-

sectional geometry and slope of the canal were defined by 21 cross sections that were 



 

 

141 

surveyed along the canal at locations that best captured changes in channel geometry and 

slope.  

Within the SWMM model, each subcatchment requires the specification of a rain 

gauge to drive the runoff processes. As not all subcatchments in the NWFC model were 

equipped with a rain gauge, a Thiessen polygon analysis was performed to determine the 

nearest rain gauge to each subcatchment. Subcatchments were then assigned the observed 

precipitation values from the nearest rain gauge as driving data for the simulations. 

Accurately modeling the NWFC required accounting for all gains and losses to the 

canal. A series of longitudinal discharge measurements on two different occasions were 

made to identify potential groundwater gains and losses along the canal. Each longitudinal 

measurement event involved six discharge measurements, working our way from upstream 

to downstream. This was performed once at a steady flow rate of ~0.4 m3/s (about 40 

percent capacity), once at a steady flow rate of ~0.5 m3/s (about 50 percent capacity), and 

once at a steady flow rate of ~0.7 m3/s (about 70 percent capacity). These longitudinal 

measurement events occurred during controlled conditions, which means flow rates were 

constant and maintained by the canal master, and no diverted water was being added to or 

removed from the canal. In both instances, while there were reaches of the canal that both 

gained and lost water, net losses from upstream to downstream were negligible and were 

determined to be within acceptable uncertainty (8 percent loss, 2.5 percent loss, and 1 

percent loss respectively for the three events). For this reason, groundwater gains and losses 

along the canal were neglected in the model (see Appendix A).  

An additional challenge to the water balance of the NWFC were irrigation 

diversions along the length of the canal. Diversions in this canal are handled in an unofficial 
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manner by several different water users, where a single water share equates to about 4,320 

m3/yr. This associates with an allotted time where a water user can open a diversion 

headgate and extract water from the canal. Thus, only imprecise estimates of diversions 

were available due to the human factor of headgate operation and incomplete flow records. 

That being the case, a constant value of 0.22 m3/s was used as an estimate of diversion 

flows based on total water shares, which was able to close the daily and monthly flow 

balance within about two percent. This agreed quite well with the discrepancy in discharge 

values measured at upstream and downstream ends of the canal during base flow/nonevent 

conditions (Melcher et al., 2018b). 

Three different time periods were simulated in this study, 1) the second half of the 

2015 irrigation season (July 26, 2015 - September 17, 2015), 2) Spring 2016 (May 5, 2016 

-May 26, 2016), and 3) Fall 2016 (August 5, 2016 – September 22, 2016). These periods 

correspond with the time periods that each stormwater outfall was monitored (Table 4.3). 

For our calibration procedure, we ran continuous SWMM simulations for the 3 monitoring 

periods in Table 4.3. Antecedent soil moisture conditions were accounted for during the 

continuous simulations via the Green-Ampt method (Rawls et al., 1983). One-dimensional 

hydraulics were modeled using the dynamic wave model as there were reaches of the canal 

where gradual and uphill slopes were measured.  

4.4.3. Sensitivity Analysis 

For this study we retrieved ranges for each of SWMM’s important parameters from 

the literature. These parameters have been investigated extensively across many case 

studies and have been specified in the literature with a relatively high level of confidence 
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(Rossman and Huber, 2016; Rossman, 2017; Sun et al., 2013; Tsihrintzis and Hamid, 

1998). While we relied on the results of prior studies and the parameter ranges extracted 

from the literature, we also performed a sensitivity analysis for the NWFC SWMM model 

to gain a better understanding of which parameters were more important in predicting 

discharge. Using an exploratory set of simulations, we manually perturbed SWMM’s water 

quantity parameters (i.e., Manning’s N for impervious surfaces, Manning’s N for pervious 

surfaces, depression storage for impervious surfaces, depression storage for pervious 

surfaces, Manning’s N for all closed conduits, Manning’s N for the canal, subcatchment 

flow width, saturated hydraulic conductivity, suction head, percent of area routed to outlet, 

initial soil moisture deficit, and subarea routing configuration) individually and examined 

the degree to which these parameter changes affected discharge output by the model. These 

changes were examined by plotting hydrographs and visually inspecting the effects on 

hydrograph peak values, runoff volumes, and hydrograph shapes. This allowed us to isolate 

the effects of each parameter on discharge and remove the less sensitive parameters from 

the calibration procedure by assigning values that closely represent the physical system. 

Among the less sensitive parameters that were assigned constant values were the percent 

of area routed to outlet (assigned a value of 40 percent), the initial soil moisture deficit 

(assigned a value of 0.2), and the selection of impervious to pervious subarea routing. The 

9 more sensitive parameters whose values were calibrated are listed in Table 4.2.  

4.4.4. Model Calibration and Analysis 

Single and multi-objective calibration was used for this study. Because we wanted 

to evaluate the potential value of each monitoring site in improving the performance of the 
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model, we calibrated the model multiple times, each time including data from different 

monitoring sites. We refer to each of the model calibrations as “calibration instances” in 

the text that follows.  

When calibrating hydrologic models with observed data at multiple locations, or 

multi-response data, many approaches exist in the literature (e.g., Chiang et al., 2014; Lerat 

et al., 2012; Leta et al., 2017; Li et al., 2010; Shinma and Reis, 2014; Shrestha et al., 2016; 

Wang et al., 2012). Among those approaches is calibrating a set of parameter values, 𝜃1, 

which is applied uniformly across the entire model domain. Then, as data from interior 

locations are included in the calibration procedure, additional parameter sets: 𝜃2, 𝜃3, … 

𝜃𝑚 where 𝑚 is the total number of locations where model calibration is performed, are 

included in the model (Lerat et al., 2012; Shrestha et al., 2016). This approach, however, 

can lead to 𝑚 ∗ 𝑛  parameters to be calibrated, where 𝑚  is the number of calibration 

locations and 𝑛 is the number of parameters. For this reason, we decided to include 𝑛 

parameters (Table 4.2) for all calibration instances. This procedure maintains a constant 

number of model parameters between calibration instances (9, see Table 4.2), and the 

number of objective functions varied between one and two. This allowed us to build a more 

parsimonious model and make better comparisons among calibration results.   

The objective functions selected for this study were the root-mean squared error for 

discharge at multiple sites (𝑅𝑀𝑆𝐸𝑄) (Equation 4.2). The 𝑅𝑀𝑆𝐸𝑄 was selected because the 

minimization of the 𝑅𝑀𝑆𝐸𝑄 value best captured the shape of storm event hydrographs: 

𝑅𝑀𝑆𝐸𝑄 = √
∑(𝑄𝑜−𝑄𝑝)2

𝑛𝑄
            (4.2) 
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where 𝑄𝑜 and 𝑄𝑝  represent the observed and modeled or predicted discharge (m3/s) 

respectively, 𝑛𝑄 represents the number of observation/prediction pairs of discharge. The 

𝑅𝑀𝑆𝐸𝑄 was calculated for each calibration instance and simulation period (Table 4.3). 

The workflow for the calibration procedure carried out in this study was as follows: 

1. Use an evolutionary algorithm (NSGA-II – discussed in more detail below, Deb 

et al., 2002) to calibrate the model of the entire NWFC drainage area using 

solely data collected at the downstream canal site (1800 North) to obtain an 

optimal parameter set. The optimal parameter set was determined to be the 

parameter set that yielded the minimized root-mean squared error at the 

downstream canal site. This step represents three calibration instances, one for 

each time period that was simulated (Table 4.3), which are referred to as the 

benchmark calibration instances. 

2. Recalibrate the NWFC model considering the high-frequency data collected at 

the downstream canal site as well as at one of the outfall sites. Data from each 

outfall was used to calibrate a simulation of its corresponding simulation time 

period. For example, a calibration instance that considered data from the 

downstream canal site (1800 North) and the 300 North site was simulated for 

the 2015 time period as this corresponds with the time period in which both 

sites were actively collecting data. The calibration instances for this step were 

two-objective, the RMSE at the downstream canal site and the RMSE at the 

outfall site. The optimal parameter set was then determined to be the parameter 

set that gave the value closest to origin in the two-objective space based on the 
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normalized Euclidean distance. This step was repeated for each outfall, 

resulting in six calibration instances. 

3. Calibrate models for the drainage areas of each of the six outfall sites, 

minimizing the RMSE at each outfall site (six different calibrated subcatchment 

models). Use these calibrated models as boundary conditions to the model of 

the entire NWFC drainage area and calibrate the rest of the drainage area, using 

the RMSE at the model outlet as a single objective function. This step represents 

six calibrated subcatchment models (one for each outfall model), which were 

used as boundary conditions to three calibration instances of the NWFC model 

– one for each simulation time period (Table 4.3).  

4. Compare results of each of the six canal site plus single outfall calibration 

instances with the results of the calibration instance that only used data from 

the downstream canal site.  

For the purposes of discussion in this paper, the calibration instances generated will 

be referred by the following nomenclature. The models calibrated solely using data from 

the downstream canal site, or at the model outlet, are referred to as the NWFC_2015, 

NWFC_spr2016, and NWFC_fal2016 models and serve as benchmark calibration 

instances for this study. The model calibrated using data from the downstream canal site 

and data from the outfall located at the street corner of 800 North is referred to as 

NWFC_800. This naming scheme applies to the five other calibration instances that include 

one of the six monitored outfalls (i.e., NWFC_300, NWFC_1000, NWFC_1250, 

NWFC_1300, NWFC_1400) where the numbers represent the street address at which the 

outfall is located. Finally, the calibration instances that were calibrated based on data 
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collected at the downstream monitoring site and use the output from the calibrated 

subcatchment models as boundary conditions (step 3 above) are referred to as 

NWFC_ALL_2015, NWFC_ALL_spr2016, and NWFC_ALL_fal2016. It was also 

determined that these calibration instances would allow us to evaluate the effects of each 

outfall dataset on the overall performance of the model and whether these effects were 

unique to a specific outfall. 

 

4.4.5. SWMM Parameterization and Calibration 

The calibration procedure that attempts to minimize the 𝑅𝑀𝑆𝐸𝑄  at multiple 

locations within a SWMM model needs the ability to find a set of solutions that are equally 

optimal with respect to objective function values. This set of solutions make up the Pareto 

front (Neilson et al., 2010; Vrugt et al., 2003). Multi-objective evolutionary algorithms 

(MOEA) have been found to converge on the Pareto front without getting “stuck” in 

suboptimal solutions (Deb et al., 2002). The Nondominated Sorting Genetic Algorithm 

(NSGA-II) (Deb et al., 2002) was selected as the MOEA for the calibration procedure in 

this study. NSGA-II was selected because it has been found to be effective at quickly 

converging at the Pareto front, thus requiring fewer SWMM simulations to converge at an 

optimal set of solutions. 

As inputs, the NSGA-II algorithm receives a specified population size, number of 

generations, the probability of crossover, and the probability of mutation. The population 

size represents the number of SWMM parameter sets simulated at each generation or 

iteration of the calibration instance. The number of generations represents the number of 
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iterations in the calibration instance. The probability of crossover is a number from 0 to 1 

that represents the probability that a solution will swap some of its SWMM parameter 

values with another solution for the next iteration of the calibration instance. The 

probability of mutation is a number from 0 to 1 that represents the probability that some of 

the SWMM parameter values of a solution will be allowed to vary slightly for the next 

iteration of the calibration instance. Both crossover and mutation are included to ensure 

that the calibration procedure finds globally optimal solutions. 

As this study was focused on examining the modeling benefits of using multi-

response data from a WSN rather than on examining the sensitivities of the genetic 

algorithm inputs, the default value of 0.7 for crossover probability was used. The mutation 

probability used was calculated to be 1/L where L is the number of parameters to be 

optimized in the calibration instance (Deb et al., 2002; Mala-Jetmarova et al., 2015). In our 

case, this value was calculated to be 1/9 = 0.111. Due to the cost of simulation time, a 

population size of 100 and 100 generations were used. This resulted in a total of 10,100 

total model simulations for each calibration instance (100 by 100 simulations plus the 

initial 100 parent population simulations). The NSGA-II algorithm included in the MCO 

R package (Mersmann, 2014) and an R script that was originally written by Peter Steinberg 

for Herrera Environmental Consultants (Steinberg, 2014) were modified such that the 

NSGA-II algorithm could be parallelized for execution on a high performance computer.  

Readers are referred to Deb et al. (2002) for a more in-depth description of the 

NSGA-II algorithm. Calibration instances were run in parallel on a high-performance 

computing resource consisting of multiple 2.8 GHz Intel Xeon processors. A flow chart of 

the calibration procedure is given in Figure 4.2. 
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4.4.6. Analysis of Calibration Results 

The result of each calibration instance was a solution that minimizes the objective 

function value in the case of a single-objective calibration or a solution along the Pareto 

front that minimizes the normalized Euclidean distance to origin in the case of a two-

objective calibration. In order to compare the quality of each calibration instance and make 

comparisons among instances, the difference in 𝑅𝑀𝑆𝐸𝑄  (Equation 4.2) values between 

calibration instances was calculated and compared to the corresponding benchmark 

calibration instance. The benchmark calibration instances are the instances that used solely 

the data from the model outlet to calibrate the model (i.e., NWFC_2015, NWFC_spr2016, 

and NWFC_fal2016). The other calibration instances considered were the instances with 

two calibration locations (e.g., NWFC_300, NWFC_800, etc.), and the calibration 

instances using all outfall models as boundary conditions to the model of the entire 

drainage area (i.e.,NWFC_ALL_2015, NWFC_ALL_spr2016, and 

NWFC_ALL_fal2016). 

4.5. Results 

4.5.1 Calibration Results at the Model Outlet 

Assessing the differences in discharge values at the model outlet tells the story of 

how each calibration instance predicted the volume and timing of water leaving the NWFC 

drainage system. For the event on August 7, 2015, each of the calibration instances 

provided similar results (Figure 4.3a). Each instance provided an accurate prediction of the 

peak discharge; however, they each underestimated the base flow conditions prior and 
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subsequent to the event. This underestimation of pre and post base flow conditions is likely 

due to uncertainty in the operation of individual diversion headgates along the canal. For 

the event on September 16, 2015, each calibration instance overestimated the peak 

discharge by ~0.5 – 0.7 m3/s (Figure 4.3b). While the shape of the predicted hydrographs 

is somewhat consistent, each of the four calibration instances estimated a peak discharge 

of nearly double the observed peak. The NWFC_300N calibration instance predicted the 

highest discharge values of the four calibration instances. Although the NWFC_300 

calibration instance yielded the greatest 𝑅𝑀𝑆𝐸𝑄 value at the model outlet, the difference 

in 𝑅𝑀𝑆𝐸𝑄 between the NWFC_300 and the benchmark calibration instances was ~ 0.015 

m3/s or about one percent of the canal’s total capacity (Figure 4.6a). The 𝑅𝑀𝑆𝐸𝑄 values 

for the NWFC_1250 and NWFC_ALL_2015 were more similar to the benchmark value 

with differences in 𝑅𝑀𝑆𝐸𝑄 values of 0.0009 and 0.0094 m3/s respectively.  

The Spring 2016 simulation period included results from the NWFC_spr2016 

(benchmark), NWFC_800, NWFC_1300, and NWFC_ALL_spr2016 calibration instances. 

The NWFC_1300 calibration instance most greatly overestimates both observed 

hydrographs. This is most obvious in the May 19, 2016 storm event (Figure 4.4a), where 

the overestimation of the peak discharge was about 0.7 m3/s. The other three calibration 

instances produced similar results, with the NWFC_spr2016 (benchmark) instance 

demonstrating slightly improved peak discharge predictions. The overestimation is less 

obvious in for the May 21, 2016 storm (Figure 4.4b). In both panels (Figure 4.4a and 4.4b), 

it appears as though the hydrograph peaks are best captured by the benchmark instance 

(NWFC_spr2016). These results are confirmed by Figure 4.6b, which shows similar 
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𝑅𝑀𝑆𝐸𝑄 values for the Spring 2016 simulation period for all calibration instances, with the 

lowest value for the benchmark instance and the highest value for the NWFC_1300 

instance. The difference in 𝑅𝑀𝑆𝐸𝑄  values between the NWFC_1300 and benchmark 

calibration instances was ~0.03 m3/s or about 3 percent of canal capacity. The 

overestimation from the NWFC_1300 calibration instance may be explained by uncertainty 

in the observations made at the 1300 North outfall. This outfall pipe was prone to 

submerged/backflow conditions which added noise to the discharge data measured by the 

area-velocity flow module (see Melcher et al., 2018b).  

The NWFC_fal2016 (benchmark), NWFC_1000, NWFC_1400, and the 

NWFC_ALL_fal2016 calibration instances were calibrated for the Fall 2016 simulation 

period. Each calibration instance yielded similar results for a series of storm events that 

occurred between September 12 and September 15, 2016 (Figure 4.5a). The general shape 

of the hydrograph was captured by all instances, with the NWFC_1000 instance 

overestimating some of the peaks. All instances slightly underestimated the peak near 

September 14 18:00. Again, the NWFC_1000 overestimated the peak discharge of the 

storm event that occurred on September 21, 2016 while the benchmark and 

NWFC_ALL_fal2016 instances yielded quite similar results (Figure 4.5b). The 𝑅𝑀𝑆𝐸𝑄 

values for each calibration instance of the Fall 2016 simulation period were quite similar 

(Figure 4.6c).. 

4.5.2. Calibration Results at Outfalls 

Comparing simulated discharge values at each of the monitored outfalls to the 

observed values helps in determining how well each calibration instance was able to 
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represent the hydrology of specific sections of the NWFC drainage system. It is evident 

that the NWFC_300 and NWFC_ALL_2015 calibration instances yielded the results that 

best captured the hydrograph peaks at 300 North for the event on September 16, 2015, 

whereas the NWFC_2015 (benchmark) instance greatly underestimated the peak (Figure 

4.7a). This is to be expected as both the NWFC_300 instance and the NWFC_ALL_2015 

instance used data observed at the 300 North outfall to calibrate the model.  

The observed hydrograph included peaks and valleys that were not represented by 

any of the calibration instances. This discrepancy may be, in part, due to uncertainty in rain 

gauge data. While precipitation data were quality controlled to ensure accuracy, often 

precipitation measurements at the outfall site, which were used as input for some of the 

modeled subcatchments, were not fully representative of precipitation patterns within other 

subcatchments. This may explain why the simulations for outfalls were unable to fully 

capture the observed hydrograph shape. The improvement in the simulated discharge 

values for the 300 North outfall can be seen by looking at the 𝑅𝑀𝑆𝐸𝑄 value at 300 North 

for the NWFC_2015, NWFC_300, NWFC_1250, and NWFC_ALL_2015 calibration 

instances (Figure 4.10a). It is evident that the NWFC_300 and NWFC_ALL_2015 

instances provided better 𝑅𝑀𝑆𝐸𝑄 values than the benchmark and NWFC_1250 instances. 

The amount of improvement was about 36 and 44 percent for the NWFC_300 and 

NWFC_ALL_2015 instances respectively, relative to the benchmark instance.  

Each calibration instance overestimated the observed hydrograph for the same 

event at the 1250 North outfall (Figure 4.7b). The NWFC_ALL_2015 calibration instance 

yielded the lowest 𝑅𝑀𝑆𝐸𝑄 value at 1250 North (Figure 4.10b); however, the improvement 
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in the 𝑅𝑀𝑆𝐸𝑄 value between the NWFC_ALL_2015 and benchmark calibration instances 

is not as pronounced (~0.000149 m3/s). The calibrated parameter values for the benchmark 

calibration instance and the 1250N subcatchment model were quite similar (Table 4.4).  

The NWFC_ALL_spr2016 calibration instance best captures the hydrograph peaks 

for the May 19, 2016 storm event at 800 North (Figure 4.8a); The other three instances 

(i.e., NWFC_800, NWFC_1300, and NWFC_spr2016 (benchmark)), however, were able 

to capture the overall shape of the observed hydrograph. These results are confirmed by 

looking at the 𝑅𝑀𝑆𝐸𝑄 values for the benchmark and NWFC_ALL_spr2016 instances 

(Figure 4.11a). The difference between the two 𝑅𝑀𝑆𝐸𝑄  is ~0.0064 m3/s or about 50 

percent. The NWFC_1300 and NWFC_ALL_spr2016 instances performed similarly for 

the May 19, 2016 storm event at 1300 North. These results are also confirmed by the similar 

𝑅𝑀𝑆𝐸𝑄 values (Figure 4.11b).  

At 1000 North, both the NWFC_1400 and benchmark calibration instances 

underestimated the hydrograph for the storm event on September 21, 2016 (Figure 4.9a). 

This is especially evident at the peak of the hydrograph, which occurred at about September 

21 20:30. Again, the calibration instances that best captured hydrograph peaks were the 

instances that used data from the 1000 North outfall to calibrate the model (i.e., 

NWFC_1000, NWFC_ALL_fal2016). These results are confirmed by the 𝑅𝑀𝑆𝐸𝑄 values 

(Figure 4.12a). The difference between the NWFC_ALL_fal2016 and benchmark 

instances is ~0.00326 m3/s or about 25 percent. At the 1400 North outfall, the NWFC_1000 

instance appears to greatly overestimate the September 21, 2016 hydrograph peak, while 

the other instances perform similarly (Figure 4.9b). Additionally, the 
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NWFC_ALL_fal2016 instance reduced the 𝑅𝑀𝑆𝐸𝑄 value from the benchmark instance by 

about 0.0027 m3/s or 16 percent (Figure 4.12b). 

4.6. Discussion 

Assessing the calibration results, the benchmark calibration instances, which used 

only data from the 1800 North outlet point for calibration, minimized the 𝑅𝑀𝑆𝐸𝑄 at the 

1800 North outlet point for each simulation period. However, with the exception of the 

NWFC_1300 calibration instance, the other calibration instances produced similar results 

at the 1800 North outlet point in terms of capturing hydrograph peaks, shapes, and 𝑅𝑀𝑆𝐸𝑄 

values. This is similar to the results reported by Lerat et al. (2012), which also demonstrated 

only minimal improvement in the simulation predictions at the model outlet when 

including interior, nested calibration points during the calibration procedure.  

Results at the individual stormwater outfalls (Figures 4.7 – 4.12) showed that the 

use of additional calibration points yielded better 𝑅𝑀𝑆𝐸𝑄 values for the simulated flows at 

each of these interior points while still maintaining similar performance at the overall 

model outlet (1800 North). Again this is similar to the results of Lerat et al. (2012). 

However, Lerat et al. (2012) state that these results are intuitive and have very little 

significance in justifying the use of additional data sets to calibrate the model at interior 

locations. This may be true when the only objective is to examine flows at the most 

downstream outlet point. An example might be watershed modeling and management for 

determining how changes to landscapes and management procedures affect runoff volumes 

and hydrograph peaks at a watershed outlet. Effective urban stormwater management, 
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however, requires not only the ability to quantify runoff volumes leaving the drainage 

system, but also the runoff volumes and pollutant loads from sections of the larger drainage 

(i.e., at the neighborhood scale). Our results showed that the benchmark calibration 

instances did not do well at predicting flows from outfalls internal to the model. Thus, 

where modeling objectives include accurately predicting flow at the model outlet and at 

points internal to the model, inclusion of additional outfall monitoring stations in the 

calibration can improve results.  

Additional insight may be gained through an analysis of the optimized parameter 

values for each calibration instance. As an example, the values of each of the nine 

calibrated parameters for the NWFC_800, NWFC_spr2016 (benchmark), and 

NWFC_ALL_spr2016 calibration instances are given in Figure 4.13 along with the 

parameter values for the calibrated 800 North subcatchment model. Panel a of the figure 

gives the values of one of the more sensitive SWMM parameters, 𝑁𝐼𝑚𝑝. Upon observation, 

the 𝑁𝐼𝑚𝑝 values for the NWFC_800 calibration instance and the 800N subcatchment model 

are similar. In fact, for most SWMM parameters shown in Figure 4.13, the NWFC_800 

calibration instance is more similar to the 800N subcatchment model than to the benchmark 

instance. This demonstrates that, in the compromise between the two objective functions 

(i.e., 𝑅𝑀𝑆𝐸𝑄 at the model outlet and 𝑅𝑀𝑆𝐸𝑄 at the 800 North outfall), the 𝑅𝑀𝑆𝐸𝑄 at 800 

North had more influence on model calibration. Similar results can be seen with other 

sensitive parameters (e.g., 𝑆𝐼𝑚𝑝 , 𝑆𝑃𝑒𝑟𝑣 , 𝑁𝐶𝑜𝑛𝑑 , and 𝐹𝑊 ). This may imply that some 

parameters are more sensitive at different spatial scales or with different land uses and 

covers, or that parameters such as 𝑁𝐼𝑚𝑝 and 𝑁𝐶𝑜𝑛𝑑 are more sensitive at the subcatchment 
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model scale than at the scale of the entire NWFC drainage area. Krebs et al. (2014) also 

found that some SWMM parameters were sensitive to spatial scale and land cover, 

supporting our findings. The 𝑁𝑃𝑒𝑟𝑣 , 𝑁𝐶ℎ𝑎𝑛𝑛𝑒𝑙 , 𝑘𝑠 , and 𝜓  SWMM parameters differed 

between the NWFC_800 and 800N calibration instances. As the 𝑁𝐶ℎ𝑎𝑛𝑛𝑒𝑙 parameter was 

not calibrated in the 800N instance (the NWFC canal is not included in the subcatchment 

models), the higher 𝑁𝐶ℎ𝑎𝑛𝑛𝑒𝑙  value in the NWFC_800 instance than in the benchmark 

instance may be compensating for the lower 𝑁𝐼𝑚𝑝 and 𝑁𝑃𝑒𝑟𝑣 values. 

Additionally, a comparison of the parameter values for the benchmark instance and 

the NWFC_ALL_spr2016 instance is given in Figure 4.13. In this case, the parameter 

values for the NWFC_ALL_spr2016 calibration instance are the parameter values for the 

portion of the model domain that received no boundary conditions from the outfall models. 

This ends up being about 60 percent of the total drainage area. The 𝑁𝑃𝑒𝑟𝑣, 𝑆𝐼𝑚𝑝, 𝑁𝐶𝑜𝑛𝑑, 𝑘𝑠, 

and 𝜓  parameter values show differences between the NWFC_ALL_spr2016 and the 

benchmark calibration instance, and differences in parameter values were variable. 

Relative to the benchmark calibration instance, the 𝑁𝑃𝑒𝑟𝑣 and 𝜓 parameter values for the 

NWFC_ALL_spr2016 calibration instance were lower and would cause greater discharge 

values at the model outlet. Likewise, relative to the benchmark calibration instance, the 

𝑆𝐼𝑚𝑝, 𝑁𝐶𝑜𝑛𝑑, and 𝑘𝑠 parameter values for the NWFC_ALL_spr2016 calibration instance 

were higher and would cause reduced discharge values. The values of the five above 

mentioned calibrated parameters ( 𝑁𝑃𝑒𝑟𝑣 , 𝑆𝐼𝑚𝑝 , 𝑁𝐶𝑜𝑛𝑑 , 𝑘𝑠 , and 𝜓 ) for the individual 

subcatchment models do not appear to follow any recognizable pattern relative to the 

benchmark values. This implies some of the equifinality of the SWMM parameters, but 
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also that similar discharge values at the model outlet can be obtained without much 

influence by the calibrated subcatchments.   

Two of the underlying objectives of this study were to determine the value of 

monitoring efforts in the NWFC for improving a detailed stormwater model and to assess 

whether the modeling results could provide information for planning and executing future 

monitoring efforts in urban catchments. We observed similar simulated discharge values 

at the model outlet, regardless of whether we included interior monitoring/calibration 

points in the calibration and regardless of which interior points we included. This was the 

case in both the two-site calibration instances (NWFC_300, NWFC_800, NWFC_1000, 

NWFC_1250, NWFC_1300, and NWFC_1400) and the calibration instances that used all 

subcatchment models as boundary conditions (NWFC_ALL_2015, 

NWFC_ALL_spr2016, and NWFC_ALL_fal2016). In other words, when the only 

objective was to match flows at the model outlet, the choice of which interior sites at which 

to monitor/calibrate or whether to monitor at these sites at all mattered little.  

The benefits of adding additional monitoring sites were only realized when 

examining and predicting flows at both the model outlet and at the interior calibration 

points. For studies that require quantifying outflows from the modeled domain as well as 

the relative contributions of individual subcatchments (e.g., where stormwater BMPs are 

being considered within specific subcatchments), collecting data at points interior to the 

model may be critical in ensuring good results throughout the modeled domain. In these 

cases, monitoring efforts should be guided by the judgement of stormwater managers and 

engineers. For example, additional data should be collected for subcatchments being 

investigated for stormwater BMPs, for subcatchments where flooding has occurred, or 
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where the subcatchment is the location of a potential contaminant source. Additionally, 

modelers may perform preliminary simulations of the model domain to identify important 

subcatchments (i.e., those that contribute large portions of the domain outflow) before 

initiating a data collection program. With data interior to the modeled domain, multiple 

scenarios can more accurately be modeled and effects at subcatchment outfalls and at the 

outlet of the modeled system could be assessed.  

4.7. Summary and Conclusions 

High resolution monitoring data of the type we used in this study provide a wealth 

of information about the behavior of urban water systems, but they present a challenge for 

use in current urban stormwater models. We sought to determine the degree to which 

inclusion of data from multiple monitoring sites internal to the modeled domain would 

improve the model’s ability to predict stormwater discharge as a way of investigating the 

value of these monitoring sites in supporting modeling. This question is important because 

it is cost prohibitive to monitor continuously at every point within an urban stormwater 

system where discharge information may be needed. Stormwater models like SWMM 

represent an important tool for water managers to use in overcoming data shortcomings, 

understanding overall system behavior, assessing the effects of BMPs, and simulating 

management scenarios. However, effectively using models requires incorporation of data, 

and the process for using high resolution sensor datasets for calibrating urban stormwater 

models is not straightforward.  
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We investigated this problem in the context of a suite of model calibration instances 

representing multiple configurations of a SWMM model calibrated using data from one or 

more of our continuous monitoring sites. While most calibration instances considered in 

this study produced similar results in terms of predicting discharge at the model outlet 

(1800 North), results at the individual outfall sites showed much more variability. The 

calibration instances that used data from the model outlet and from one of the six monitored 

outfall sites tended to improve results at the outfall sites, showing that multiple parameter 

sets could yield similar results at the model outlet while producing much different results 

at points interior to the model (i.e., discharge from the individual outfalls).  

Based on these results, water managers and modelers may consider the tradeoffs 

and costs associated with including additional monitoring sites for the purpose of 

improving modeling accuracy and precision. Where detailed knowledge of discharge from 

individual outfalls is needed for tracking runoff and drainage through the system, the 

availability of high resolution data at multiple locations within an urban water system 

(including outfalls and boundary conditions) is a tremendous asset. Where results are only 

needed at a downstream outlet point, the cost of installing and maintaining monitoring sites, 

along with processing/post-processing all the data may not be worth it. Finally, the 

simulation time associated with the calibration procedure described in this study was not 

trivial. Although access to HPC resources is increasing, many practicing 

engineers/hydrologists may not have access to these resources with the ability to run 

calibration instances in parallel across multiple computing nodes. 
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Table 4.1. Monitoring sites, sampling/monitoring coverage, and their catchment 

characteristics. 

Outlet 

Location 

Total 

Area 

(ha) 

Imperviousness 

(%) 

Average 

Slope 

(%) 

Residential 

(%) 

Commercial 

(%) 

Street 

(%) 

300 

North 
4.25 64.5 4.1 30.6 29.1 26.6 

1250 

North 
19.8 74.4 3.7 19.0 64.8 14.6 

800 

North 
35.3 52.2 3.9 32.1 25.5 17.7 

1000 

North 
53.6 53.0 3.7 21.4 44.1 12.8 

1300 

North 
5.57 87.1 4.0 0.00 75.8 5.27 

1400 

North 
39.1 80.9 3.7 8.48 56.5 11.9 

NWFC 

Drainage 

Area 

389 60.7 4.0 21.6 39.2 14.8 
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Table 4.2. Calibration parameters used for the NSGA-II calibration procedure. 

Parameter 

Name Symbol 

Modeling 

Component 

Minimum 

Bound 

Maximum 

Bound Source 

Manning’s N 

for impervious 

surfaces 

𝑁𝑖𝑚𝑝 Hydrologic 0.01 0.035 
(Rossman and 

Huber, 2016)  

Manning’s N 

for pervious 

surfaces 

𝑁𝑝𝑒𝑟𝑣 Hydrologic 0.02 0.15 
(Rossman and 

Huber, 2016) 

Depression 

Storage for 

impervious 

surfaces 

𝑆𝑖𝑚𝑝 Hydrologic 0.1 12 
(Rossman and 

Huber, 2016) 

Depression 

storage for 

pervious 

surfaces 

𝑆𝑝𝑒𝑟𝑣 Hydrologic 2 40 
(Rossman and 

Huber, 2016) 

Manning’s N 

of conduit 
𝑁𝑐𝑜𝑛𝑑 Hydraulic 0.01 0.03 

(Rossman and 

Huber, 2016), 

corrugated 

materials 

Manning’s N 

of canal 
𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙 Hydraulic 0.02 0.08 

(Rossman and 

Huber, 2016), 

weedy reaches 

Flow width 𝐹𝑊 Hydrologic -30 percent +30 percent 

Estimated 

based on 

geospatial data 

Green-Ampt 

saturated 

hydraulic 

conductivity 

𝑘𝑠 Infiltration 1 8 

(Rossman and 

Huber, 2016), 

silty clay 

loam/silt loam 

Green-Ampt 

suction head 
𝜓 Infiltration 13 1315 

(Rossman and 

Huber, 2016), 

silty clay loam 
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Table 4.3. Description of the time periods monitored at each site. 

Monitoring 

Location 

Time Periods Monitored 

2015 

 (July 26- 

September 17) 

Spring 2016  

(May 5, 2016 -May 26, 

2016) 

Fall 2016  

(August 5, 2016 – 

September 22, 2016) 

200 South 

(Upstream 

Canal Site) 

X X X 

300 North X   

1250 North X   

800 North  X  

1300 North  X  

1000 North   X 

1400 North   X 

1800 North 

(Downstream 

Canal Site) 

X X X 
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Table 4.4. Calibrated SWMM parameter values for each calibration instance. 

Calibration 
Instances 

Calibration Parameters 

𝑁𝑖𝑚𝑝 𝑁𝑝𝑒𝑟𝑣  𝑆𝑖𝑚𝑝 𝑆𝑝𝑒𝑟𝑣 𝑁𝑐𝑜𝑛𝑑 𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝐹𝑊 𝑘𝑠 𝜓 

NWFC_2015 
0.0350 0.1495 11.99 39.94 0.0111 0.0276 

-

29.94 7.999 778.5 

NWFC_ 
spr2016 0.0350 0.1471 0.1065 39.99 0.0100 0.0239 

-

29.97 4.346 1289 

NWFC_ 
fal2016 0.0109 0.1490 2.301 23.97 0.0208 0.0341 

-

27.96 2.811 760.1 

NWFC_300 0.0138 0.0607 11.52 2.252 0.0101 0.0795 30.00 1.969 1273 

NWFC_1250 
0.0348 0.1496 11.96 39.80 0.0101 0.0263 

-

29.87 3.315 1312 

NWFC_800 0.0100 0.0884 0.1333 6.219 0.0100 0.0479 29.64 5.378 1298 

NWFC_1300 
0.0192 0.1456 0.1012 10.47 0.0100 0.0333 

-

28.06 1.006 75.42 

NWFC_1000 0.0100 0.1488 0.5541 39.89 0.0100 0.0367 29.26 1.042 88.20 

NWFC_1400 0.0100 0.1498 0.1880 39.60 0.0214 0.0551 29.95 7.997 1311 

NWFC_ 
ALL_2015 0.0350 0.1500 12.00 39.99 0.0102 0.0759 

-

29.83 7.997 1275 

NWFC_ 
ALL_spr2016 0.0346 0.0582 3.527 39.99 0.0228 0.0299 

-

29.82 7.883 847.2 

NWFC_ 
ALL_fal2016 0.0100 0.1499 6.002 39.57 0.0100 0.0429 28.76 2.721 1227 

300N 0.0100 0.0426 1.491 2.002 0.0113 0.0213 29.83 1.912 1298 

1250N 
0.0350 0.1451 12.00 40.00 0.0100 0.0646 

-

29.99 3.321 1315 

800N 0.0100 0.0200 0.1035 2.877 0.0100 0.0655 30.00 1.687 203.0 

1300N 
0.0200 0.1494 0.1121 8.402 0.0100 0.0456 

-

29.43 1.000 123.0 

1000N 0.0100 0.1497 1.808 15.76 0.0100 0.0799 27.53 1.028 671.3 

1400N 0.0100 0.1479 0.1153 40.00 0.0211 0.0668 29.90 7.998 1313 
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Figure 4.1. Northwest Field Canal Study Area 
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Fig 4.2. Flow chart of calibration procedure for study
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Fig 4.3. Calibrated hydrographs at the model outlet (1800 North) for the NWFC_300, 

NWFC_1250, NWFC_2015 (benchmark), and NWFC_ALL_2015 calibration instances 

for storm events on August 7, 2015 (a) and September 16, 2015 (b). The observed 

hydrograph is shown in red. 
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Fig 4.4. Calibrated hydrographs at the model outlet (1800 North) for the NWFC_800, 

NWFC_1300, NWFC_spr2016 (benchmark), and NWFC_ALL_spr2016 calibration 

instances for storm events on May 19, 2016 (a) and May 21, 2016 (b). The observed 

hydrograph is shown in red. 
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Fig 4.5. Calibrated hydrographs at the model outlet (1800 North) for the NWFC_1000, 

NWFC_1400, NWFC_fal2016 (benchmark), and NWFC_ALL_fal2016 calibration 

instances for storm events on September 12 – September 16, 2016 (a) and September 21, 

2016 (b). The observed hydrograph is shown in red.
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Fig 4.6. 𝑅𝑀𝑆𝐸𝑄 values at the model outlet for the three simulation periods – 2015 (a), 

Spring 2016 (b), and Fall 2016 (c).
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Fig 4.7. Calibrated hydrographs at the 300 North outfall (a) and at the 1250 North outfall 
(b) for the NWFC_300, NWFC_1250, NWFC_2015 (benchmark), and NWFC_ALL_2015 
calibration instances for the storm event on September 16, 2015. The observed hydrograph 
is shown in red. 
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Fig 4.8.  Calibrated hydrographs at the 800 North outfall (a) and at the 1300 North outfall 
(b) for the NWFC_800, NWFC_1300, NWFC_spr2016 (benchmark), and NWFC_ALL_spr2016 
calibration instances for the storm event on May 19, 2016. The observed hydrograph is 
shown in red.
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Fig 4.9. Calibrated hydrographs at the 1000 North outfall (a) and at the 1400 North outfall 
(b) for the NWFC_1000, NWFC_1400, NWFC_fal2016 (benchmark), and NWFC_ALL_fal2016 
calibration instances for the storm event on September 21, 2016. The observed hydrograph 
is shown in red.
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Fig 4.10.  𝑅𝑀𝑆𝐸𝑄 values at the 300 North outfall (a) and at the 1250 North outfall (b). 
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Fig 4.11. 𝑅𝑀𝑆𝐸𝑄 values at the 800 North outfall (a) and at the 1300 North outfall (b).
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Fig 4.12. 𝑅𝑀𝑆𝐸𝑄 values at the 1000 North outfall (a) and at the 1400 North outfall (b).
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Fig 4.13. Comparison of calibrated parameter values for the NWFC_800, NWFC_spr2016, 
and NWFC_ALL_spr2016 calibration instances, as well as the calibrated values for the 800N 
subcatchment model 
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CHAPTER 5 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

The research described in this dissertation aims to address the need within the 

engineering and water management communities to understand some of the temporal and 

spatial loading patterns of total suspended solids (TSS) and total phosphorus (TP) loads 

resulting from stormwater runoff in combined urban water conveyances. This need exists, 

in part, as a result of the United States Environmental Protection Agency’s (USEPA) 

release of the Phase II Stormwater Rules (Federal Register, 1999). As engineers and water 

managers are required develop a stormwater management plan and select stormwater 

pollution mitigation measures under the Phase II Stormwater Rules, this research 

emphasizes the monitoring and modeling required for water managers to make accurate 

estimates of TSS and TP loads. Emphasis in this dissertation was given to the need for 

high-frequency data collection at multiple locations across the study area, the required 

monitoring and telemetry infrastructure, a comparison of statistical methods for deriving 

continuous estimates of TSS concentrations from the high-frequency data, and stormwater 

modeling techniques that take advantage of the high-frequency data collected across 

multiple monitoring sites. 

The results from the urban observatory case study demonstrate the need for 

synchronized and adaptive sampling, or sampling that is coordinated across multiple sites 

and at varying frequencies, for characterizing constituent loading patterns within and 

between multiple storm events. This novel approach to adapting sampling frequencies 

based on whether or not stormwater is present in the canal and real-time detection of runoff 
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events takes much of the guesswork out of when to collect grab samples and how to 

coordinate simultaneous collection of samples at multiple locations. Additionally, the 

collection of grab samples initiated by water quality parameters measured in situ ensured 

that loading events were sampled that may have been logistically difficult to sample (e.g., 

during storm events occurring in the middle of the night) or undetectable to the naked eye 

(e.g., continuation of storm sampling until the influence of the storm has passed through 

the system even after it has stopped raining). This form of “smart” sampling promotes data 

collection that can better enable the derivation of continuous constituent concentration 

estimates. 

The statistical analysis and results obtained from this research build upon the many 

studies already performed that use turbidity as a surrogate for TSS and suspended sediment 

concentrations (Christensen et al., 2002; Lewis and Eads, 2001; Rasmussen et al., 2008; 

Ryberg, 2006). However, this study is one of the first to investigate the use of linear mixed 

effects (LME) modeling in developing surrogate regression equations in urban water 

systems. The use of LME models to estimate TSS concentrations and loads allows for a 

model that accounts for changes in the relationship between turbidity and TSS within short 

duration loading events and other phenomena characteristic of small urban catchments. 

During these investigations, it was observed that the LME and LRCAT models performed 

better than the CLR model tested for the sites at which data were collected. As the effects 

of constituents in stormwater runoff are being recognized in receiving water bodies 

(National Research Council, 2009) and progress is made toward a better quantification and 

understanding of constituent loading, examination of multiple statistical modeling 

techniques, including linear mixed effects modeling, is necessary to account for changing 
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and undersampled environmental conditions within regression equations and to ensure the 

quality of regression results.  

The numerical modeling performed using USEPA’s Storm Water Management 

Model (SWMM) was used to assess the degree to which the model’s ability to simulate 

stormwater runoff and conveyance could be improved using high-resolution data collected 

via the urban observatory. Through the use of data from multiple continuous monitoring 

sites and an analysis of multiple goodness-of-fit measures, we were able to identify some 

of the challenges related to multi-site/multi-objective calibration procedures. The 

simulations performed demonstrated that the use of calibration data at stormwater outfalls 

could be used to improve predictions at those locations without compromising prediction 

accuracy at the model outlet This type of information can be beneficial to water managers 

and engineers as they determine where to make investments in collecting data through grab 

sampling or installation of continuous monitoring equipment in efforts to isolate runoff 

volumes and, subsequently, constituent loads. 

Chapters 2 through 4 of this dissertation present the main results of this research 

and were focused on three research objectives: 1) design and establish an urban observatory 

for studying the effects of stormwater inputs on urban water systems, 2) investigate 

methods for quantifying suspended solids loads within urban water systems, and 3) 

quantify the contributions of stormwater runoff to urban water systems. These research 

objectives were chosen to address the challenges of monitoring and quantifying TSS and 

TP loads in urban water systems having dynamic, precipitation-driven stormwater runoff.  

In Chapter 2, we describe the design of an urban environmental wireless sensor 

network installed along the Northwest Field Canal (NWFC) in Logan, Utah, USA. We 
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describe the programming logic for each continuously monitored canal and outfall site, the 

adaptive sampling protocol, and inter-site communications. This research demonstrated 

how automation of in situ observations, event-based physical sample collection, and 

synchronization of sampling efforts across multiple locations along a receiving water body 

can provide valuable information for municipal separate storm sewers (MS4s) on the 

temporal and spatial variability of TSS and TP loading events. As a result of this adaptive 

sampling and smart stormwater monitoring effort, we were able to extract valuable 

information related to the spatial and temporal variability of TSS and TP loading events. 

Using the multi-site configuration and synchronized sampling scheme, we found 

that event mean concentrations (EMC) for TSS, TP, and total dissolved phosphorus (TDP) 

varied greatly between storm events and between monitoring sites. It was also found that 

while TSS EMCs were similar at both outfall sites (300 North and 1250 North), the TP and 

TDP EMCs were much higher at a site that drained more residential neighborhoods (300 

North). Furthermore, we found that TSS EMCs for each storm event varied by as much as 

two orders of magnitude, providing evidence that estimating TSS loads for unmonitored 

events by using a single, previously derived EMC has potential to greatly bias those 

estimates given that our per-storm EMCs were highly variable.  

Adaptive sampling and inter-site communication allowed for real-time event 

detection and the capture of temporal loading characteristics within storm events. As a 

result, it was found that constituent concentrations varied greatly, even within the short-

duration of most of the urban runoff events we monitored. It was found that the first flush 

phenomenon was more prevalent at outfalls that drained catchments with smaller surface 

area. The detection of the presence of a first flush, especially for the smaller monitored 
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catchments, was made possible by the high-frequency physical samples collected at the 

onset of the storm event and the lower-frequency sample collection for the remainder of 

the event. This method of adaptive sampling ensured that the initial peak, which often 

occurred within the first 10 minutes of the event, and the receding limb of the pollutograph 

were adequately sampled. The ability to do this type of sampling is critical in adequately 

quantifying discharge and loading from stormwater outfalls in urban water systems of the 

western United States like the one we studied. These systems are characterized by brief, 

but intense rainstorms, many of which last on the order of hours. The time required to 

mobilize sampling crews to manually sample these events would preclude our ability to 

collect many of the samples we were able to get in an automated way, undermining ability 

to examine first flush effects and how concentrations vary over the course of individual 

storms. 

The implementation of the turbidity threshold sampling (TTS) scheme at the 

continuously monitored canal sites ensured that physical samples were collected for the 

entire range of observed turbidity values during storm events and enabled us to better track 

pulses of stormwater traveling through the canal system – even after rainfall had ended. 

The TTS scheme enhanced our ability to generate surrogate relationships by ensuring that 

extreme turbidity values were adequately sampled, that the regression equations accounted 

for these extremes, and that extrapolation beyond those extreme values was not necessary. 

The TTS and constant-time interval sampling schemes were initiated by rainfall-runoff 

detection at outfall sites. Communicating event detections to upstream and downstream 

canal sites enabled us to subsequently estimate TSS loads during base flow and storm event 

conditions by means of surrogate relationships.  
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The urban observatory described in Chapter 2 had the specific purpose of 

understanding TSS and TP loading event processes and making observations at a high 

enough frequency to capture the characteristics of small urban catchment responses. To 

reduce data storage requirements, personnel and laboratory analysis time, and power 

demands at monitoring sites, in situ observations and periodic base flow sampling occurred 

at a much lower frequency under the assumption that constituent concentrations remained 

relatively constant. Future work, however, could include a sampling scheme that describes 

more of the variability during base flow conditions. This could be accomplished in part by 

installing Internet connected dataloggers that make regular queries of other Internet 

connected devices upstream of the observatory. Examples could include an urban 

observatory that makes regular queries of snowpack data during spring and summer months 

to anticipate snowmelt events, or data downloads and communication with automated dam 

spillways and diversion gates upstream to assess how control structures impact ephemeral 

in-stream water quality. These types of advancements would allow for more accurate 

constituent mass budgets to downstream impaired water bodies and provide water 

managers with the required information for implementing a more precise approach to 

stormwater treatment and constituent removal.   

Deriving continuous time series of constituent concentrations by means of 

surrogate relationships aims at understanding in-stream water quality constituent fluxes as 

well as making more accurate estimates of constituent loads to a receiving water body. 

Using turbidity as a surrogate for TSS has been investigated and used in numerous studies 

in the last few decades. The work reported in Chapter 3 explored multiple regression 

methods for estimating TSS concentrations and loads and an analysis of potential 
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explanatory variables. Results of this analysis showed that turbidity and categorical 

variables related to the season that a sample was collected in (upstream), the antecedent 

dry period (upstream), rising vs. falling limb (downstream), and storm event intensity 

(downstream) were found to be significant predictor variables. It was also found that linear 

regression with categorical variables and linear mixed effects models outperformed 

classical linear regression based on multiple goodness-of-fit criteria and that this was 

reflected in TSS load estimates for the duration of the study. It was also found that linear 

mixed effects modeling was a more robust method for estimating TSS loads during 

undersampled conditions (e.g., undersampled storm events or base flow conditions) as the 

maximum likelihood parameter estimation was less affected by extreme values. These 

results represent the value of applying linear mixed effects modeling for estimating TSS 

concentrations in environments where constituent source materials may vary, causing 

surrogate relationships vary. These statistical modeling methods and the results of this 

study can greatly benefit Total Maximum Daily Load (TMDL) or other studies concerned 

with estimating TSS loads to receiving water bodies in highly urbanized environments. 

Using the high frequency turbidity data and other metavariables we were able to 

derive continuous TSS estimates with satisfactory accuracy. One challenge with using 

surrogate indicators is the often-violated assumptions of heteroscedasticity and 

independence in residuals. High-frequency time series datasets often display high degrees 

of autocorrelation, which often results in interdependence in residual values. One direction 

that future research could lead is the exploration of alternative methods for estimating TSS 

concentrations as a function of continuous in situ parameters that are less sensitive to 

nonlinearity and explanatory variable interactions. One example is random forests, which 
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allow for high numbers of explanatory variables without being bound by assumptions of 

normality, independence, and homoscedasticity.  

This surrogate analysis could then be expanded to include TP. One challenge 

presented with TP was that there were numerous samples that were below the detection 

limit. Large percentages of censored data prohibit the use of classical linear regression 

methods. While other methods exist to account for censored data, such as maximum 

likelihood estimation methods, additional research is required to understand which method 

is most applicable in water bodies where surrogate relationships are expected to change, as 

is the case in the NWFC.  

Finally, in Chapter 4, we used data from multiple continuous monitoring sites to 

calibrate a SWMM model for the NWFC drainage area in an effort to determine how high-

resolution data can improve our ability to simulate stormwater quantity. It was found that 

the additional calibration data were essential for predicting runoff events at both the 

watershed outlet and at outfall locations interior to the modeled domain. While this result 

can be useful to stormwater managers/planners, we do not feel that the procedure we used 

in Chapter 4 exhausts potential options for addressing the question of how high-resolution 

data from multiple monitoring sites can improve our ability to simulate stormwater. For 

example, there remain alternative approaches to multisite calibration that may produce 

different results. As this study used high-frequency data at its full temporal resolution to 

calibrate the model, another alternative approach might be to aggregate the high-frequency 

data to a larger time step and consider total runoff volumes and TSS or TP loads for the 

study period. This would allow engineers and water managers to identify subcatchments 

that would most benefit from a BMP in order to reduce seasonal or annual loads.  
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The case study of the urban observatory in the NWFC and the subsequent statistical 

and numerical modeling efforts address many of the requirements for estimating TSS and 

TP loads in an urban combined conveyance. One trajectory for future research is to explore 

how this research benefits water management and decision making. For example, the 

drainage system in Logan, UT is comprised of a network of canals that were originally 

constructed for irrigation purposes, but have later been dedicated for stormwater 

conveyance. This type of system is not unique, especially in the western U.S. The added 

stress to these canals caused by the reception of stormwater inputs results in frequent 

flooding events in which canal banks are overtopped. Often it is logistically difficult for 

canal masters to adjust diversion structures in time to avoid flooding events. Future 

research could include the investigation of algorithms and infrastructure required for using 

high-frequency data as well as weather forecasts for real-time stormwater model 

calibration, scenario prediction, and potentially even automated operation of the 

stormwater system (e.g., automate closing diversion gates during storm events). Modeling 

results could then be used to alert water managers of expected runoff rates and management 

decisions could be made accordingly in a manual or automated way. This could be a 

relatively low-cost alternative to increasing canal capacity and would save the cost of 

repairing property damaged by flooding events.  

As the research performed in this dissertation progressed, the focus evolved from 

TSS, TP, and TDP to an emphasis on only particulates (TSS and TP). Additional research 

is required to understand the dynamics of dissolved phosphorus as this is the form that is 

most bioavailable. The results of our case study in Chapter 2 found that higher EMCs for 

TDP were observed at 300 North, the smaller, residential subcatchment. This may be due 
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to the residential land use, or this could be because it is a smaller drainage area with more 

directly connected impervious area, which can reduce the residence time of TDP. Future 

work could include the installation of monitoring equipment within storm drains and 

conduits to better grasp the age and flow paths of dissolved nutrients. The genesis and 

residence time of TDP would need to be investigated in order to understand which 

catchments could benefit from green infrastructure and other nonstructural SCMs. While 

TP, DTP, and TSS are important in the context of the TMDL for Cutler Reservoir, which 

is the downstream receiving water body for Logan City’s stormwater runoff, other water 

quality constituents not included in this study (e.g., pesticides, metals, etc.) may also be 

important in managing the multiple uses for this urban water course (irrigation flows, return 

flows, stormwater flows, etc.). 

The SWMM modeling conducted in Chapter 4 was able to shine light on some of 

the challenges encountered when attempting to develop an accurate water budget for a 

naturally-lined urban conveyance that is highly influenced by human behavior and 

operational strategies. While this study found that net losses in the naturally-lined canal 

were negligible, this is not always the case (Molina, 2008). While longitudinal flow 

measurements along the canal can be used to get an idea of the potential magnitude of 

surface water/groundwater interactions, it is imprecise as it is difficult to ensure that 

flowrates are constant during flow measurements and that the same section of water is 

measured at each location. Recent investigations have shown the utility of mobile platforms 

that are able to collect high-frequency water quality data along an urban surface water 

conveyance (Mihalevich et al., 2017).  Future research could include the adaptation of a 

mobile platform to also collect water quantity data and allow for identification of reaches 
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of canals that were susceptible to groundwater losses so that costly repairs to the canal 

could be localized to problem areas. A mobile platform for making longitudinal flow 

measurements would greatly improve our water balance estimates for the canal. The 

operation of head gates by irrigation water users was also found to be unpredictable. In the 

case of the NWFC where water users were allowed to operate flow diversion head gates in 

an unregulated fashion, human behavior during storm events was found to be a significant 

unknown and potential area of uncertainty when modeling the canal. Future research could 

include surveys and data collection from water users to better understand trends and 

behaviors, especially during storm events.  

The focus area of this research was the NWFC drainage area, a subcatchment of the 

Logan City urban water system. SWMM parameters that were obtained using the multi-

objective evolutionary algorithm we used for calibrating the model were specific for the 

NWFC drainage area and monitored subcatchments. Techniques, however, need to be 

derived for using monitoring data and existing models to scale up from the small area we 

were able to intensively monitor and model to the larger Logan City urban water system. 

This would include an investigation of the portability of calibrated parameters to ungauged 

subcatchments and an investigation of how current model results might be transferred to 

other canals and sections of the drainage system. This would allow for more accurate 

constituent load predictions for the entire Logan City MS4, and could influence NPDES 

permitting and the enforcement of water quality standard infractions or lack thereof. Such 

an investigation could also serve as a model for how this type of work could be effectively 

carried out in other urban water systems. 
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Below are the results from the longitudinal flow measurement events. Flow 

measurements were made at six different locations.   

Table A1. Results from the longitudinal flow measurement event on October 13, 2016 

Longitudinal NWF Flow on 10-13-2016 

Measurement 
Location 

200 
South 

100 
South 

100 
North 

500 
North 

1000 
North 

1800 
North 

Discharge (cfs) 13.8795 13.9834 15.264 14.4137 15.7428 12.7985 

Time (MST) 
0900-
0935 

0900-
0935 

1007-
1037 

1000-
1037 1115-1158 

1108-
1145 

Stage @ 200 
South (ft) 1.11         1.16 

 

Table A2. Results from the two longitudinal flow measurement events on October 26, 2016 

Longitudinal NWF Flow on 10-26-2016 

Event 1 

Measurement 
Location 200 South 100 South 100 North 500 North 

1000 
North 

1800 
North 

Discharge (cfs) 24.1573 24.7921 24.5958 23.3852 25.8404 23.9317 

Time (MST) 
0840-
0906 

0830-
0910 

0930-
1000 

0930-
1040 

1106-
1200 

1100-
1150 

Stage @ 200 
South (ft) 1.5-1.42 1.5-1.42 1.41-1.4 1.41-1.4 1.4 1.4 
  
 Event 2 
Measurement 
Location 200 South 100 South 100 North 500 North 

1000 
North 

1800 
North 

Discharge (cfs) 17.6624 18.0219 18.3222 16.4077 18.183 17.2137 

Time (MST) 
1320-
1355 

1320-
1352 

1400-
1430 

1405-
1455 

1515-
1555 

1515-
1545 

Stage @ 200 
South (ft) 1.17-1.16 1.17-1.16 1.18 1.18 1.18 1.18 
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