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ABSTRACT 

Silane modulation of protein conformation and self-assembly  

by 

Abul Bashar M. Giasuddin, Doctor of Philosophy 

Utah State University, 2018 

Major Professor: David W. Britt 
Department: Biological Engineering 

Proteins may self-assemble and form insoluble amyloid-type fibrils, which are 

responsible for diseases like Parkinson’s, Huntington’s, Alzheimer’s, spongiform 

encephalopathy, and cataracts. Amyloid fibrils are comprised of highly ordered β-sheets 

stabilized by an extensive network of intermolecular hydrogen bonds, hydrophobic 

surfaces, and favorable packing of side chains. Due to this hierarchical structuring, 

amyloid fibrils are resistant to degradation and depolymerization. This research 

investigated the use of hydrophobic silane-based polymeric nanoparticles (NPs) to disrupt 

fibrillation of a model globular protein, β-lactoglobulin (BLG). After a comprehensive 

hydrolysis and condensation study of two hydrophobic silanes, 3,3,3-trifluoropropyl 

trimethoxy silane (3F) and n-propyltrimethoxy silane (nPM), nanoparticulate forms of 

these silanes were synthesized under mild aqueous conditions and assessed for 
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antifibrillation activity. The resulting NPs were superhydrophobic, with water contact 

angles on NP films exceeding 150°, suggesting that the fluoro- and methyl-moieties were 

accessible on the NP surfaces. Unreacted silanol groups also appeared to be present on 

the NP surfaces, as determined from negative zeta potential measurements and infrared 

spectroscopy showing OH vibrational bands. Molecular docking of the 3F monomer with 

BLG indicated hydrogen bonding of both CF3 and Si-OH moieties with protein residues, 

suggesting that an incomplete condensation during NP formation is important for binding 

protein, leaving residual silanol groups accessible on the NP surface, in proximity to 

fluoro groups. 

Under conditions selected to induce BLG fibrillation, the 3F NPs successfully 

inhibited fibril formation, resulting in the formation of protein-silane particles rather than 

self-assembling into fibrils. Infrared spectroscopy indicated that in the presence of 3F, the 

BLG secondary structure was significantly altered. In contrast, the non-fluorinated nPM 

NPs failed to inhibit fibrillation under the same conditions, supporting the molecular 

docking studies. 

The fluoro-silane NPs were further investigated as nano-drug delivery systems. 

Quercetin and curcumin, two natural compounds exhibiting anti-amyloid activity, were 

successfully loaded into the NPs during the sol-gel synthesis. Rapid and sustained release 

profiles were observed for both compounds, supporting applications of 3F NPs as both 

active agents and drug delivery systems. The generality of the 3F protein-conformation 
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modulating activity was further demonstrated against synthetic spider silk protein, with 

the goal of tuning the protein secondary structure to enhance silk fiber properties. 

An array of analytical tools, including optical density, dynamic light scattering, 

atomic force microscopy, scanning electron microscopy, infrared spectroscopy, 

fluorescence spectroscopy, and molecular modeling were employed in these studies to 

characterize the NPs and assess their mode of interaction with BLG and synthetic spider 

silk. From this research, the hydrolysis and condensation pathways of trifunctional 

hydrophobic silane monomers were characterized and optimized, and a new facile one-

step and environmentally friendly method for synthesizing superhydrophobic silica NPs 

was developed. Applications of the resulting NPs in modulating protein secondary 

structure, inhibiting protein self-assembly, and as carriers for hydrophobic drugs were 

demonstrated from this research.  

                                                                                                             (209 pages) 
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PUBLIC ABSTRACT 

Silane modulation of protein conformation and self-assembly  

Abul Bashar M. Giasuddin  

This research focused on development of nanoparticle-based therapeutics against 

amyloid fibrils. Amyloid fibrils are associated with various diseases such as Parkinson’s, 

Huntington’s, mad cow disease, Alzheimer’s, and cataracts. Amyloid fibrils develop 

when proteins change their shape from a native form to a pathogenic “misfolded” form. 

The misfolded proteins have the ability to recruit more native proteins into the pathogenic 

forms, which self-assemble into amyloid fibrils that are hallmarks of the various protein-

misfolding diseases listed above. Amyloid fibrils are highly resistant to degradation, 

which may contribute to the symptoms of amyloid diseases. Synthetic drugs, natural 

compounds, and antibodies are widely explored for potential to stop pathogenic protein 

assembly or to promote fibril degradation and clearance, but to date have had little 

success in relieving symptoms in clinical trials. In this research, I have synthesized 

fluorine-containing silica nanoparticles (NPs), and tested their fibril-inhibiting activity 

against amyloid fibrils formed by a non-pathogenic protein, β-lactoglobulin (BLG). 

These fluoro-silica NPs prevented BLG amyloid formation, whereas non-fluorinated 

nanoparticle analogs did not inhibit fibrillation under the same reaction conditions. The 

fluoro-silica NPs interacted with the BLG protein in a manner that prevented the protein 
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from adopting a form that could self-assemble into fibrils. Additional applications of the 

NPs were explored as small-molecule drug-delivery systems; such that multiple 

functionalities could be introduced into a single nano-therapeutic.                                                                          

                                                                     Abul Bashar Mohammad Giasuddin 
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CHAPTER 1 

AMYLOIDOSIS DISEASE, SILANE-INDUCED PROTEIN CONFORMATION 

CHANGE AND SELF-ASSEMBLY 

1.1 Background and literature 

1.1.1 Protein and its folding mechanism 

Proteins are among the most complex and diverse bio-macromolecules, comprised 

of 20 amino acid residues linked into linear chains by peptide bonds. Proteins have four 

layers of structure, which hierarchically define the protein folding process. The linear 

sequence of amino acids forms the primary structure of the protein. An extended linear 

chain, however, is energetically unfavorable, and the polypeptide will explore 

conformations that reduce the net free energy and solvent exposure. Hydrophobic amino 

acids sequester to minimize contact with aqueous solvents, and a random coil type 

structure can be expected as a result. However, the primary structure of a protein pre-

determines the types of interactions that will be favored as the chain undergoes random 

fluctuations, thus directing the folding of the polypeptide and resulting in the formation 

of secondary structure elements such as α-helices and β-sheets.  

The α-helix is a common protein secondary structure motif and is a coiled or 

spiral conformation in which hydrogen bonds are formed between backbone carbonyl 

(C=O) and amine groups (N-H) that are separated by a distance of four residues. 

Backbone hydrogen bonds also stabilize another type of secondary structure in proteins, 

called the β-sheet. In β-sheet motifs, a planar structure is stabilized as hydrogen bonds are 

formed at regular intervals between residues as the peptide chain folds upon itself in a 
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lamellar pattern. The β-sheet is defined by the lamellar folds in the backbone; each fold is 

termed a β-strand, and neighboring strands are connected laterally by at least two or three 

backbone hydrogen bonds resulting in a pleated sheet. The β-strand is typically 3 to 

10 amino	acids long with the backbone arranged in a linear, extended conformation. β-

sheets are termed either parallel or anti-parallel, depending on whether the β-strands are 

oriented in the same backbone (C to N : C to N) direction, or opposite directions (C to N : 

N to C). These structures are of key importance in protein-misfolding diseases, where 

pathogenic protein isoforms that are rich in β-sheets recruit native isoforms by inducing a 

net transition from α-helix to β-sheet. In these proteins, the β-sheets exhibit a propensity 

to inter-molecularly self-assemble into fibrils and amyloid plaques. Experimentally, the 

switch in protein conformation is easily triggered by a number of factors such as heat, 

low pH, H-bond disrupting solvents, and interactions with surfaces and nanoparticles 

(NPs). β-sheet assembly is also a key process in formation of non-pathogenic protein 

macro-structures, such as collagen and spider silk fibers. 

While β-sheets are necessary for inter-protein assembly into fibrils, there are 

many β-sheet-rich proteins that do not assemble into fibrils. This is due in part to the 

protein tertiary structure, where α-helices and β-sheets are arranged in a stable three-

dimensional structure that defines the native state. The tertiary structure of protein 

involves global interactions arising from hydrogen bonds, ionic bonds, hydrophobic 

interactions, and disulfide bonds. In contrast to the secondary structural motifs involving 
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H-bonding between backbone amide groups, these interactions occur between the side 

(R) groups of the amino acids, holding the secondary structures in defined arrangements 

that form the tertiary structure. These interactions may be physical bonds, such as H-

bonds and salt bridges, or covalent bonds in the case of disulfide bonds between cysteine 

residues in close proximity. 

 The final level of protein structure is the quaternary structure, which is the 

assembly of multiple individual polypeptide or protein chains into a multi-subunit 

protein. Intermolecular interactions hold the substituent polypeptide or protein chains into 

a functional geometry, often stabilized by disulfide bonds. Protein quaternary structure is 

grouped into the two major categories of “fibrous” and “globular”. Globular proteins may 

contain helical, pleated or random chain structures, and are relatively spherical in shape. 

Some examples of globular proteins are hemoglobin, myoglobin, insulin, and egg 

albumin. Collagen, silk, and keratin are common examples of fibrous protein structures. 

Amyloid fibrils are examples of fibrous structures associated with disease. In both native 

and pathogenic cases, quaternary structure is a supramolecular geometry that emerges 

from the hierarchical assembly of building blocks following defined rules for assembly. 

During protein synthesis, the disordered polypeptide arranges into the ordered 

native state through the process of protein folding. Most proteins spontaneously fold into 

a specific conformation, driven by the hydrophobic effect and stabilized through 

chemical bonds and physical interactions that form secondary, tertiary and quaternary 
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protein structures. Proteins known as chaperones may also guide the folding of newly 

synthesized proteins into the correct geometry corresponding to the functional 

conformation. Chaperones are also involved in the re-folding of proteins following heat 

shock or other stress. 

The correct folding of a protein is essential to function, whether structural, 

enzymatic, signaling, or transport. The unfolded or denatured state of a protein is 

considered to be an ensemble of structures ranging from fully disordered random coils, to 

relatively well-defined molten globule conformations. (1) The molten globule state is 

distinct from the globular quaternary structure. A schematic of unfolded and folded 

protein structures is shown in Figure 1-1. 

 

Figure 1-1. Schematic of protein folding. (Adapted from (2)) 
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 Generally, a globular protein folds in such a way that it contains a hydrophobic 

core surrounded by a hydrophilic outer layer. This promotes the formation of a dense, 

compact structure. The exposure of hydrophobic residues to a polar solvent such as water 

is energetically unfavorable as it results in water adopting an organized “ice-like” layer or 

clathrate around these residues. (3) The entropic penalty for these water molecules favors 

protein folding to sequester hydrophobic residues together in the protein interior, which is 

free from solvent. This is known as the “hydrophobic interaction”, and it is primarily 

driven by an entropy gain as organized water molecules are liberated from the 

hydrophobic residues during the folding process. Hydrogen bonds, Van der Waals 

interactions, and salt bridges stabilize the secondary, tertiary, and quaternary levels of 

structure that, in concert, stabilize the net structure. In this manner, weak forces act 

together to contribute toward a stable and functional protein conformation.  

 Protein folding is reversible, and metastable conformations may also be adopted 

during folding or unfolding. (4) To spontaneously adopt the folded or native state, a 

protein folding pathway must be a thermodynamically favorable process. Energy 

diagrams identify the most stable form or minimum energy condition of a protein. (5) 

Under physiological conditions, the native or folded state of a protein contains lower free 

energy compared to the unfolded state. (6) The free energy difference, DG, which is 

defined as DH-TDS (DH and DS are the enthalpic and the entropic changes, respectively), 

can be used to explain this phenomenon. To reach a stable folded state, a favorable 
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enthalpy change arising from numerous interactions (hydrophobic, electrostatic, 

hydrogen bonding) drives the reaction. This is, however, opposed by the entropy decrease 

associated with the folded state, because it requires a large number of unstructured 

conformations to be turned into a single ordered structure to achieve this state. The net 

entropy change, however, is favorable as entropically unfavorable water clathrates 

surrounding exposed hydrophobic residues are liberated as disordered bulk water upon 

folding of the protein. 

In this manner, the system overcomes the penalty associated with the polypeptide 

chain conformational entropy decrease to reach its folded state. The role of the solvent in 

protein folding and unfolding is important and will be revisited in the discussion of the 

influence of solvents, such as fluoroalcohols, on protein secondary structure. As proteins 

vary widely in size, structure, and function, the enthalpy and entropy changes associated 

with denaturation vary respectively; nevertheless, the free energy changes of most 

proteins are generally confined to a narrow range (5-15 kcal/mol). (7) The contribution of 

these individual interactions to the total free energy change can be estimated using highly 

sensitive calorimetric methods. As these energy values are relatively low, minor changes 

in solution pH, ionic strength, and temperature can lead to protein destabilization and the 

adoption of meta-stable conformations such as the molten globule state, as depicted in the 

energy diagram Figure 1-2.  
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Figure 1-2. Energy diagram of protein folding. (Adapted from (5))  

The perturbed structure may further denature, refold, or under certain conditions, self-

assemble into supramolecular structures such as amyloid fibrils. 

The early view of the protein folding was based on kinetics models, which were 

derived from simple or multiple exponential time decays of optical properties paralleling 

changes in protein structures upon initiation of folding. More extensive work was then 

carried out to identify stable intermediates, corresponding to molten globule states, now 

known to define the pathways of folding, as depicted in Figure 1-3. The molten globule 

has most of the secondary structure of the native state and in some cases even native-like 

positions of the α-helices and β-strands. It is less compact than the native structure, and 
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the proper packing interactions in the interior of the protein are not formed. Also, loops 

and other elements of surface structure remain largely unfolded, adopting conformations 

distinct from the native folded structure.  

 

Figure 1-3. Molten globule state of protein.  

The molten globule is not viewed as a single structural entity but as an ensemble 

of related structures that are rapidly inter-converting. It is a major challenge to conceive a 

single mechanism, which would satisfactorily explain (as well as predict) the folding of 

all proteins. From empirical studies and computational predictions, a number of models 

have been developed to describe the pathways and intermediates associated with protein 

folding, which have led to three classical mechanisms of protein folding that are 

illustrated in Figure 1-4. (8) 
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Figure 1-4. Schematic of protein folding mechanism. (Adapted from (8)) 

 Nucleation-growth model: This model proposes the initial formation of a local 

element of secondary structure from which a tertiary structure propagates rapidly. This 

pathway ignores the possible transition through any molten globule intermediates, which 

are often experimentally observed during the protein folding process.  

 The hydrophobic collapse model: According to this model, during the folding 

process, hydrophobic amino acids collapse and form a compact structure by excluding 

water. Unlike the nucleation-growth model, this model describes the formation of molten 

globule intermediates that arise from the collapse of the hydrophobic amino acids prior to 

reaching the native conformation. However, a non-specific hydrophobic collapse process 
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that results in a highly stable intermediate may significantly impede reorganization of the 

polypeptide into the final native state. 

The hierarchical model: This model describes a stepwise process where all of 

the secondary structural elements such as helices, turns, and sheets are first folded to 

yield a hierarchy of stabilized secondary structures, which have fewer degrees of spatial 

freedom as they explore intramolecular interactions that lead to the native folded state of 

the protein.  

1.1.2 Amyloid, self-assembly, and conformational disease 

The ability of proteins to fold into a defined and functional conformation is one of 

the most fundamental processes in biology. However, several diseases arise from the 

misfolding, or partial unfolding, of proteins, which have implications beyond a mere loss 

of functionality, as the misfolded proteins may self-assemble and aggregate into a 

quaternary structure identified by insoluble plaques. In Alzheimer’s disease (AD), the 

amyloid hypothesis links neurodegeneration and diminished cognition to the amyloid 

plaques comprised of ab42 proteins. Thus, therapeutics that target plaques have been 

widely explored, but with limited clinical trial success. Due to these poor clinical trial 

outcomes of therapeutics designed to clear amyloid from patients, the central hypothesis 

that symptoms are a direct result of plaque formation is coming under increasing scrutiny. 

(9) Trials exploring early administration of amyloid inhibitors for patients at risk for AD 
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may provide additional insight into the relation between amyloid fibrils and disease 

symptoms.  

Specific intermolecular interactions between hydrophobic residues forming 

structural subunits in partially folded or unfolded intermediates prime the formation of 

amyloid plaques and fibers, as a loop in the protein chain is converted to a β-strand. (10) 

For example, in spongiform encephalopathies, cellular prion PrPc converts to the 

pathogenic isoform PrPsc with an associated decrease of α-helical content (from 42 % to 

30 %) and increase in β-sheet structure (from 3 % to 43 %). (11, 12) The pathogenesis 

arising from the assembly of β-sheet structures into amyloid is contrasted with the 

assembly of native proteins rich in β-sheet, such as spider silk proteins where the strength 

and water solubility of the bio-fiber produced from protein depends on the crystallinity of 

β-sheet structure. (13) Thus, from a fundamental assessment of protein hierarchical 

assembly, external agents that promote fibrillation are also of significant interest. 

Although certain conditions allow the supramolecular assemblies of β-sheet rich 

proteins to be reversed, in most cases the aggregation process is irreversible. Genetic 

defects and mutation can destabilize the native state of the protein and eventually 

promote the aggregation of the protein. Adverse cellular and physiological factors and 

post-translational processes also can promote aggregation of protein. (14) 

Among the cellular conditions, elevated temperature is a key element in protein 

aggregation. (7) Heat can disrupt the hydrogen bonds that dictate folding, while changing 
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the pH of the protein's environment can affect ionic bonds, and reducing agents can 

cleave any disulfide bonds stabilizing the tertiary and quaternary structures. Oxidative 

stress has also been shown to contribute to the pathogenesis of many protein aggregation 

processes. (15) Additional determining factors are ionic strength, chaotropic agents, co-

solutes, and the presence or absence of various molecular chaperones.  

A wide number of experimental conditions may induce amyloid, and in most 

instances the misfolded proteins form fibrils that have a commonality of being rich in β-

sheet conformations. In-vivo, the organized oligomerization of misfolded protein into β-

sheet rich conformations can lead to the production of the characteristic amyloid plaque, 

which is described as extracellular, fibrillar protein deposits associated with diseases in 

humans. (16) Clearly not all proteins rich in β-sheet conformations spontaneously self-

assemble into supramolecular structures. This level of assembly is generally strictly 

controlled, as in the case of proteins involved in structural roles, such as collagen fibers. 

The β-sheet assembly in pathogenic proteins presents a challenging problem that can be 

addressed by understanding the intermediates, such as the molten globule, involved in the 

transition from a non-pathogenic isoform to a pathogenic one. Figure 1-5 shows a 

schematic of amyloid fibril formation that describes fibrillation pathways involving the 

molten globule intermediate. (17) 
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Figure 1-5. Schematic of amyloid fibril formation. (Adapted from (17))  

Amyloid-based diseases involve recruitment and self-assembly of proteins into 

insoluble fibrils and plaques, leading to a variety of pathologies, including Alzheimer’s, 

Parkinson’s, cataracts, dialysis-related amyloidosis, and type II diabetes in humans, and 

spongiform encephalopathy in cattle, sheep, and elk. (18) Figure 1-6 presents a schematic 

of different amyloidosis diseases and their protein aggregation and misfolding patterns.   
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Figure 1-6. Schematic of amyloidosis diseases with the corresponding proteins and their 
abnormal transformational changes. (Adapted from (18)) 

1.1.3 Solvent, surface, and nanoparticle-induced protein conformations 

Currently no therapeutic is available to prevent or treat amyloidosis diseases. 

Several therapeutics have shown success in-vitro and in animal models, but have failed to 

halt disease progression or reduce symptoms in clinical trials (16). Proposed amyloid 

aggregation or fibrillation inhibitors can be categorized in three groups: 1) protein / 

peptides, 2) small molecules / colloid, and 3) organic / inorganic NPs. An overview of 

compounds exhibiting anti-fibrillation activity is compiled in Table 1-1.  
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Table 1-1. Overview of compounds that exhibit fibril inhibition activities. 

Protein type Fibril inhibitor  References 
αβ13-28 Solanezumab (monoclonal antibody)  19 
BACE1  Veruvecestat (beta-secretase inhibitor)  20 
HEWL Myricetin (flavonoid)  21 
Αβ1-42 Aducanumab (monoclonal antibody)  22 
BLG Folic acid (B-vitamin)  23 
αβ2M SDS (anionic surfactant)  24 
BLG Au NPs  25 
BLG Fe3+   26 
αβ1-42  Histidine coated Au NPs  27 
Human Insulin Carbon dots  28 
αβ1-42 Tabersonine (terpene indole alkaloid)  29 

In many of the studies it has been noted that polymeric and inorganic NPs have been 

reported to accelerate or promote the protein fibrillation. Fibrillation promoters are listed 

in Table 1-2. 

Table 1-2. Overview of compounds that have been reported to exhibit fibril promoting 
activities. 

Protein type Fibril promoter  References 
HSA Cu2+  30 
αβ peptide  (PEI-P) conjugates  31 
αβ42 TiO2  32 
Human β2m NIPAM / BAM NPs  33 
Amyloid β Polystyrene NPs  34 
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Alcohols have been widely characterized for their roles in inducing protein 

secondary structures. (35) Alcohol co-solvents are widely used to denature proteins and to 

stabilize induced secondary structures in peptides. The ability of aliphatic alcohols to 

denature proteins increases with their effective methylene chain length (i.e. pentanol > 

butanol > propanol > isopropanol). (36)  Among the alcohols, fluoro-substituted alcohols 

such as TFE (2,2,2-trifluoroethanol) and HFIP (hexafluoro-2-propanol) have been found 

to be more effective co-solvents for evoking structural changes in protein and peptides 

compared to aliphatic-alcohols. (37) HFIP and TFE partially denature protein native 

structures and induce α-helices in numerous proteins and their fragments. This secondary 

structure selective activity leads to their investigation as solvents for transforming 

proteins into molten globule intermediates, stabilizing induced intermediates, or 

dissolving aggregates. As discussed earlier, the thermodynamics of protein folding and 

stability hinges on the properties of the water solvent. Disruption of organized “ice-like” 

water on a protein surface by a co-solvent, such as a fluoroalcohol, increases the water 

entropy, but also will reduce the enthalpy associated with these surface bound water 

molecules. This in turn may promote the adoption of new secondary structural motifs, in 

particular, α-helices. Table 1-3 presents those proteins whose conformations have been 

investigated against fluoro-alcohols. 
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Table 1-3. Overview of fluoro-alcohol-protein studies investigating secondary structure 
changes in proteins and peptides. (Adapted from Y. Peng Ph.D. thesis, Utah State 
University, 2011. (53)) 

Protein type Inducer fluoro-alcohol References 
Silk model peptide  HFIP 38 
Octapeptide  HFIP, TFE 39 
Alzheimer’s beta-peptide  HFIP 40 
Nα-acylated heptapeptide amide   HFIP 41 
Islet amyloid polypeptide  HFIP, TFE 42 
22-residue peptide of macroglobulin  HFIP, TFE  43 
Papain  HFIP, TFE  44 
Succinylated Con A  HFIP, TFE  45 
Pea lectin   HFIP 46 
β-lactoglobulin  HFIP, TFE  47 
Tau protein   TFE 48 
Bovine serum albumin  TFE 49 
Barstar  HFIP, TFE  50 
Cytochrome c  HFIP 51 
Acylphosphatase  TFE 52 

HFIP, and TFE at higher concentrations, are able to dissolve protein aggregates. 

However, at lower concentrations these fluoro-alcohols may actually promote β-sheet 

structures and form amyloid fibril in several models. (54) It has been reported that α-

chymotrypsin, an all β-sheet protein, aggregated into amyloid-like structures in the 

presence of TFE, where the maximal amount of fibrillar aggregation was formed at 35 % 

(v/v) TFE. (55) As the TFE concentration was increased to above 40 % (v/v), the 

aggregation propensity was reduced. When HFIP was used, β-sheet conformations were 
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maintained in 3 % or below HFIP-water mixtures (v/v), while the formation of α-helices 

was observed when HFIP content was increased over 20 %. (54, 56) 

During the interaction with a polypeptide, HFIP and TFE can each simultaneously 

act as a proton donor and acceptor due to the presence of highly electronegative fluorine 

and alcohol groups. The fluorine acts as a hydrogen acceptor and forms H-bonds with the 

proton donor groups on the protein. The fluoro-alcohol hydroxyl group is a very strong 

proton donor and selectively binds with the protein backbone carbonyl group. (37) 

Through this fluoro-alcohol-peptide interaction, the solvent exposure of the backbone 

amide is reduced and intra-polypeptide hydrogen bonding of the amide group is favored, 

which increases the helical propensities. 

The hydrophobic properties of alcohols are very influential to their activities on 

polypeptide structures. The longer chain aliphatic n-alcohols, such as propanol or butanol 

are much more potent than methanol. (37) The presence of –CF3 in HFIP and TFE makes 

both the fluoro-alcohols highly efficient inducers on the structural transitions of protein. 

The presence of hydrocarbon groups and multiple fluorine atoms increases the 

hydrophobicity of the fluoro-alcohol, which can play a vital role in denaturing protein 

secondary structures and inducing the formation of helical structures. (37, 58) HFIP and 

TFE both have a high tendency to self-aggregate to form micelle-like assemblies in 

aqueous solution. Aggregation of HFIP and TFE in water produce clusters with a Stokes 
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radius of about 24 Å, and 6 Å, respectively and these clusters further reduce solvent 

polarity around the protein. (59-62)  

The electronegativity of fluorine in alcohols increases the polarization of the 

terminal hydroxyl groups, which consequently leads to enhanced H-bond donor activity 

(62, 63), resulting in the enhanced effects of HFIP and TFE, as compared to analogous 

organic alcohols. Thus, the fluoro-alcohols interact with protein both as hydrogen bond 

donors and acceptors, whose bindings are further stabilized by hydrophobic interactions. 

HFIP has a higher inducing capacity on protein secondary structures compared to TFE, 

due to its stronger hydrophobicity – greater H-donor and H-acceptor activities associated 

with incorporation of multiple F atoms – which also promotes the higher tendency of 

HFIP to aggregate into nano-structures that may form multi-valent interactions with 

proteins. 

Although HFIP and TFE are model compounds for inducing protein structural 

transitions, both are highly corrosive, toxic, and flammable. These properties preclude 

their use as therapeutic agents for amyloid diseases, as well as limit bioprocessing 

applications to promote protein-based fiber assembly. Alternatively, polymerizable 

silanes analogous to HFIP and TFE could be applied to produce therapeutic polymers, 

NPs, or protein-silane hybrids that exhibit favorable properties associated with HFIP and 

TFE, without the negative aspects. For example, hydrophobic alkoxysilanes are widely 

used as coupling agents to modify surfaces, forming porous gels, and to construct NPs. 
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Protein encapsulation in porous sol-gel glasses has been widely used in heterogeneous 

bio-catalysis applications and in the development of solid state optical and 

electrochemical biosensors. (64-64) Sol-gel glass encapsulation has been demonstrated to 

retain the activity of a wide variety of enzymes.  

Recently, hydrolyzable hydrophobic fluoro-silanes analogous to TFE or HFIP 

have been studied for their protein structure inducing ability at acidic pH. (53, 67) These 

studies showed that 3,3,3-trifluoropropyl trimethoxy silane (3F), which is analogous in 

structure to TFE and nPM (n-propyltrimethoxy silane) – a non-fluorinated analog of 3F –  

are both strong protein secondary structure inducers that are also polymerizable. Circular 

dichroism analysis of protein structure in the presence of hydrolyzed 3F and nPM (H3F, 

HnPM, respectively) demonstrated the conversion of β-sheet structures into α-helices. 

(67) These findings lead to the central hypothesis of this research.  

1.1.4 Hypothesis 

Polymeric nanoparticles (NPs) of hydrophobic alkoxy- and fluoro- silanes induce 

defined changes in the secondary structures of protein, which depending on the NP 

concentrations and surface properties, can be used to inhibit or promote protein 

fibrillation in aqueous media. 
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1.2 Objectives 

 Building on earlier works (53, 67), which demonstrated that at low pH, 

hydrolyzed nPM and 3F induced β-sheet to α-helices, this work aims to identify 

underlying mechanisms and expand applicability. The key objectives of this research are 

to: 

1. Understand the hydrolysis and condensation behavior of 3F and nPM in aqueous 

solution catalyzed at select acidic pH values.  

2. Characterize the physical and chemical properties of the polymeric particles as 

they develop during the condensation process. 

3. Determine whether fluorinated and methylated polymeric nanoparticles, like their 

hydrolyzed precursor monomers, inhibit amyloid fibrillation of a model protein.  

4. Assess the types of conformational changes in the model protein during the 

inhibition process.  

5. Model the interaction between polymeric NPs and protein using Molecular 

Docking models of protein with hydrolyzed silane monomers.  

6. Develop superhydrophobic NPs from the hydrolyzed 3F and nPM, following 

conventional condensation methods, and determine the efficiency of these NPs as 

amyloid inhibitor and as carriers for hydrophobic drug molecules. 

7. Determine the modulating ability of 3F and nPM against the secondary structures 

of spider silk proteins. 
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1.3 Research methods overview 

The experimental approach to addressing the objectives and answering the central 

hypothesis is outlined in the research flow chart in Figure 1-7. A variety of 

complementary techniques and instruments are applied to address the hypothesis and 

questions associated with hydrophobic silane assembly to form nanoparticles that modify 

protein secondary structures, and propensity to assembly into supramolecular 

architectures, such as fibrils and sheets. 

 

Figure 1-7. Research flow chart illustrating the major directions and methods. 
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CHAPTER 2 

HYDROLYSIS AND CONDENSATION OF HYDROPHOBIC SILANES IN 

AQUEOUS SOLUTION 

2.1 Abstract  

The hydrolysis and condensation pathways of 3,3,3-trifluoropropyl trimethoxy 

silane (3F) and n-propyltrimethoxy silane (nPM) were investigated over an acidic pH 

range, to identify conditions yielding stable hydrolyzed silane monomers to be tested for 

protein conformation-inducing activity, as both hydrolyzed monomer and when 

condensed into nanoparticles (NPs). The reaction kinetics were assessed through turbidity 

measurements and dynamic light scattering (DLS) in aqueous solutions at pH 1.7, 2.0, 

2.5, and 3.0. Prior to hydrolysis, 3F and nPM are insoluble in water and form a lens at the 

bottom of the aqueous solution for 3F, and on the top of the solution for nPM. As the 

silanes underwent hydrolysis, they became soluble in the aqueous phase at a rate that 

increased with decreasing pH, with the fluorine-based silane (3F) exhibiting slower rates 

compared to the non-fluorinated structural analog (nPM). DLS analysis revealed that at 

pH 1.7 and 25°C, NP growth from the hydrolyzed nPM and 3F silane precursors at 0.4 M 

was detected at 80 min and 175 min, respectively, and rapid growth / aggregation resulted 

in NPs >1 µm after 160 min for nPM, and 375 min for 3F. AFM analysis of these NPs 

confirmed the NP sizes observed in the DLS study. ATR-FTIR was employed to monitor 
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the chemical composition during the hydrolysis and condensation, as vibration bands for 

Si-OH and Si-O-Si bonds appeared, respectively. Zeta potential characterization revealed 

that at pH 1.7 and 3.0, both nPM and 3F polymeric NPs had negative surface charges. 

The negative surface charges on the NPs were attributed to the presence of surface 

accessible Si-OH groups, despite an overall hydrophobic character, as measured by water 

contact angle. The presence of hydrophobic and silanol moieties implies an amphipathic 

surface character on these NPs, which, based on prior analyses of silane monomer 

interactions with proteins, make these NPs potential candidates against protein 

conformational diseases.  

2.2 Introduction 

Functional di- and tri-alkoxysilanes (e.g. silanes with two and three reactive 

leaving groups, respectively) are used for various applications such as adhesion 

promoters and cross-linkers between a polymer matrix and inorganic solids, as resin 

precursors, as agents to modify surface properties, and to form porous matrices to capture 

and encapsulate biological molecules. (1) Alkoxysilanes react slowly, compared to the 

corresponding chlorosilanes, and are preferred over chlorosilanes for the reactions 

involving biological molecules, because they liberate organoalcohols, compared to the 

hydrochloric acid released by chlorosilanes during hydrolysis. The hydrolysis and 

condensation reaction rates of alkoxysilane decrease with the bulkiness of the alkoxy- 
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leaving group. Methoxy and ethoxy moieties are the two most common leaving groups, 

and during the hydrolysis, they are liberated as methanol and ethanol, respectively. The 

hydrophobicity of these groups render the silane insoluble in aqueous solution, unless a 

polar functional group is also present; the n-propyl chain of nPM and tri-fluoro moieties 

of 3F prevent solubilization of these monomers until hydrolysis begins. Alkoxysilane 

undergoes serial hydrolysis of the alkoxy leaving groups, rendering the silane reactive 

through the resulting silanol (Si-OH) functionalities. Silanol reactivity enables silanes to 

be anchored to oxidized surfaces, as well as other silanes bearing alkoxy or hydroxyl 

groups. Silicon is tetravalent, thus a tri-alkoxysilane contains an additional moiety, R’, 

which may impart functionality to the silane, such as ability to interact with an organic 

matrix or influence biological molecule binding by modifying the surface energy and 

hence the interfacial adhesion behavior. This R’ moiety can have a range of 

functionalities, such as epoxy, acrylate, amino, fluoro etc., as well as simple alkyl or aryl 

groups. A confluent layer of silanes anchored to an oxidized surface may dramatically 

change the interfacial energy, depending on the R’ group chemistry. For fluoro and alkyl-

silane coatings, the R’ moieties render the surface hydrophobic.  

While hydrolyzed silanes readily condense to form silanol (Si-O-Si) bonds with 

free hydroxyl groups on material surfaces, biomolecules such as proteins, and with other 

hydrolyzed silanes; they also readily form physical bonds, such as acid-base interactions, 

hydrogen bonds, dipole-dipole interactions, and van der Waals interactions. (2) Tri-
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alkoxy silanes with their R’ moiety having hydrophobic functionality can also interact 

through hydrophobic interactions, which, in the case of alkyl chains, imparts a strong 

amphiphilic character to the silanes that drives silane self-assembly on surfaces. The 

hydrolyzed silane monomer is generally regarded as an intermediate to forming a 

condensed silane product, in the form of a thin film, nanoparticle, or matrix. However, 

for certain silanes, the hydrolyzed monomer is of interest as a biologically active small 

molecule. For trifunctional silanes where the R’ group is a short chain alkyl- or fluoro-

group, the resulting hydrolyzed silane monomer has been shown to interact with proteins 

and induce conformational changes that exceed the conformation-inducing activities of 

organo- and fluoro-alcohols. (3) The general applications of tri-alkoxysilane depend on 

the hydrolysis of the ºSiOR’ groups to produce silanols, which ultimately condense to 

siloxanes and polysiloxanes. However, partially hydrolyzed and partially condensed tri-

alkoxysilanes containing silanols and organosiloxanols can exhibit unique properties to 

be applied as therapeutics, due to their polymeric nanoparticulate nature. (4) 

  Most studies on the hydrolysis and condensation kinetics of alkoxysilanes were 

performed in either organic or organic and aqueous mixed solvents. (5-15) The general 

reaction steps in the hydrolysis and condensation of tri-alkoxysilanes can be written as: 

R’Si(OR)3 + nH2O R’Si(OR)3-n(OH)n + nROH               Hydrolysis 

R’Si-OR + HO-SiR’  R’Si-O-SiR’ + ROH                          Condensation  

R’Si-OH + HO-SiR’   R’Si-O-SiR’ + H2O                          Condensation 
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For the effective biological applications of hydrolyzed or partially condensed 

silanes, the hydrolysis and condensation must be performed in aqueous, biologically 

relevant solutions. Moreover, for the biological applications of these silane compounds, a 

nontoxic solvent is essential. The key factors on which this hydrolysis and condensation 

process in aqueous solution depends are pH, type of R’ functionality, size and type of 

alkoxy group, catalyst, and the concentration of the silanes in the solutions. (6) Two types 

of catalysts are used for the hydrolysis and condensation of alkoxysilanes, namely acid 

and base, with distinct pathways and kinetics observed for each. Of particular relevance 

to NP formation, the condensation process is favored in basic solutions.  

  

Figure 2-1. Schematic of the reaction scheme of hydrolysis and condensation kinetics of 
tri-alkoxysilanes at acidic and basic conditions in aqueous media, along with a numerical 
reaction scheme. (Adapted from (7)) 



	
	

	
	
	
	
	

34	

Figure 2-1 is a schematic of the hydrolysis and condensation pathways as they occur in 

either acidic or basic solutions, along with a numerical representation of the reaction 

scheme. For acidic pH, hydrolysis is favored over condensation, while in basic pH, 

condensation occurs more readily than hydrolysis. Acid catalysis favors hydrolysis that 

follows a sequential displacement of –O-CH3 with –OH; and when all three –O-CH3 are 

replaced with –OH, the silane is in a fully hydrolyzed state, which can be achieved before 

condensation begins.  

A previous study from our lab showed that hydrolyzed 3F and nPM could highly 

induce the secondary structures of model proteins, with the three silanols playing a major 

role in this conformation-inducing activity through strong H-bond donor activity. (16) It 

is intuitive that as more silanols are present, greater hydrogen bonding is possible, and 

stronger biomolecular interactions are likely. Thus, for silane-induction of protein 

conformation, it is desirable to maintain at least a partially hydrolyzed state and thus 

employ an acid catalyst.  

Although several studies have been published on the hydrolysis and condensation 

kinetics of tri-alkoxysilanes in aqueous or aqueous-organic mixed solutions, there are no 

reports available on the evolution of the polymeric particles generated during the 

condensation of tri-alkoxysilanes following the hydrolysis step in acidic aqueous 

solution. It is very important to have a clear understanding of the evolution of the size of 

the polymeric particles during the condensation of the tri-alkoxysilanes, especially when 



	
	

	
	
	
	
	

35	

particles are to be used in biomolecular applications. Linear condensation products from 

tri-alkoxy silanes will contain silanol functionalities that are stable after condensation is 

complete, providing H-bond donor functionality to these polymer chains as well as NPs 

that result from these chains. 

Various techniques and analytical tools have been used to investigate silane 

hydrolysis and condensation kinetics such as NMR, FTIR, Raman spectroscopy, 

chromatography, mass spectroscopy, and X-ray scattering. (17-33) Of these methods, 29Si 

NMR spectroscopy has been found to be a powerful tool to follow evolution of 

intermediates and final products, because this spectroscopy can differentiate silicon 

atoms attached to different chemical groups. The limitation of this instrument is the low 

gyromagnetic ratio and long relaxation time, which is unsuitable for studying some rapid 

hydrolysis reactions in real time, like hydrolysis and condensation of di and tri-

alkoxysilanes at lower pH. In situ Attenuated Total Reflectance-Fourier Transform 

Infrared (ATR-FTIR) spectroscopy was successfully used in quantitative analyses of 

hydrolysis and condensation of TEOS at lower pH, where spectra measured at different 

time periods showed that TEOS was first converted into ethanol and Si(OH)4 and then 

precipitated as amorphous SiO2. (34) Riegel et al. used Fourier Transform Raman spectra 

with laser excitation in the near IR during base-catalyzed sol-gel reaction of GPTS (3-

glycidoxypropyltrimethoxysilane) and APTS (3-aminopropyltriethoxysilane) where 

Raman bands of the tri-methoxysilyl and epoxy moieties were used to monitor the kinetic 
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behavior of the hydrolysis and the ring cleavage as a function of temperature. (25) Pelster 

et al. used electrospray mass spectrometry to observe pre-nucleation reactions of silicates 

from an aqueous solution containing TAAOH (tetraalkylammoniumhydroxides) and 

TAOS (tetraalkoxysilanes). Their study showed the evolution of different silicate species 

occurring during the condensation process. Their time-resolved measurements were done 

in a stepwise hydrolysis, and subsequent condensation of silicate monomers via 

oligomers to form larger units. (30) 

All of the above-mentioned techniques were used only to identify the hydrolyzed 

and condensed products, and not the evolution of condensation product size, morphology, 

and surface characteristics. DLS is commonly used to measure the hydrodynamic size of 

organic and inorganic nanoparticulates in solution. (35) Turbiscan is an advanced optical 

absorbance / transmission technique widely used in the food industries. Turbiscan is 

operated based on the turbidity in the solution caused by scattered light from foams, 

emulsions, or particles. (36)  

Here, we have reported the hydrolysis and condensation kinetics of two 

hydrophobic alkyl- tri-alkoxy and fluoro- tri-alkoxy silanes in aqueous solution analyzed 

by DLS and Turbiscan. Evolution of the polymeric NPs during the condensation was 

quantitatively analyzed by DLS, and resulting particle charge and morphologies assessed 

using zeta potential and AFM, respectively. FTIR was employed to identify chemical 

groups present on the NP products. 
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2.3 Experimental Section 

Source of chemicals 

Double Distilled Deionized (DI) water was collected from BarnsteadTM 

MegaPureTM Glass Still (Thermo Scientific); Hydrochloric Acid (HCl) 1.0 N was 

purchased from Ricca Chemical Company (Arlington, TX); 3,3,3-trifluoropropyl 

trimethoxy silane (3F, > 95 % purity, MW= 218.3, d = 1.14 g/ml), and n-

propyltrimethoxy silane (nPM, > 95 % purity, MW= 164.3, d = 0.94 g/ml) was purchased 

from Gelest, Inc. (Morrisville, PA); and Potassium Chloride (KCl) was purchased from 

Thermo Fisher Scientific, NJ. 

Monitoring reaction time through silane phase  

Four different 0.4 M solutions were prepared for both nPM and 3F at pH 1.7, 2.0, 

2.5, and 3.0 using 20 mM, 10 mM, 5 mM, and 1mM HCl solution respectively. The 

hydrolysis and condensation were monitored using a Nikon COOLPIX P510 camera.  

Turbiscan Analysis 

Hydrolysis and condensation behavior of nPM (0.4 M) and 3F (0.4 M) at pH 1.7, 

2.0, 3.0, and 4.0 were followed by measuring the transmissivity of light (850 nm) through 

the samples using a Turbiscan instrument (Turbiscan Classic, MA200, L’Union, France), 

and data were analyzed using Turbisoft 1.2.1. All solutions were prepared as described 

above, and the pH 4.0 solution was 0.1 mM HCl. All solutions were placed in the 

Turbiscan tubes to a height of 35±0.5 mm, and transmissivity was measured as a function 
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of time. Transmissivity was measured throughout the height of the solution in the tubes 

for 12 to 96 h, and measurements were taken at 2 to 22 min intervals, depending on the 

pH of the solutions, which influenced reaction rates. Data were plotted using Sigma Plot. 

Dynamic Light Scattering (DLS) analysis 

Evolution of polymeric NPs during nPM and 3F hydrolysis and condensation 

were analyzed by DLS (DynaPro NanoStar, Wyatt Technology Corporation, Santa 

Barbara, CA), with a 658 nm laser. Measurements were taken using a quartz cuvette (JC-

426, 1 µl) with 0.7 ml of nPM (0.1 M) and 3F (0.1 M) solution at pH 1.7 and 3.0. The 

data was recorded as an average of ten five-second acquisitions. Hydrodynamic radius 

(Rh) of polymeric NPs were obtained using Dynamic software (version 7.0.3, Wyatt 

Technology Corporation, Santa Barbara, CA) where the Stokes-Einstein equation is 

applied to convert the intensity auto-correlation into the particle sizes. 

Atomic Force Microscopy (AFM)  

AFM images were taken using a Nanoscope III Bioscope (Digital Instrument, 

Inc.) in tapping mode. 100 µl samples at pH 1.7 were drop-cast on freshly cleaved mica 

surfaces, allowed to sit for several minutes, and then gently washed with DI water, and 

air-dried. AFM cantilevers were purchased from TED Pella Inc., CA (BS-Tap 300AL-G-

50). The tip has radius of curvature <10 nm, length 125 µm, width 30 µm, and thickness 

4 µm employed with a 40 N/m force constant. Images were collected at different size 

scales, scan angles, and scan rate from 1 to 2 Hz. 
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Fourier Transformed Infrared Spectroscopy (FTIR) 

Both nPM (0.4 M) and 3F (0.4 M) solutions were prepared at pH 1.7, as described 

before. FTIR readings were taken using a Varian 660-IR platform with a horizontal single 

reflection Pike Technologies MIRacle attenuated total reflectance (ATR) unit, fitted with 

a ZnSe crystal. 100 µl samples of nPM or 3F were dropped on the platform for taking the 

readings. A method was constructed and used with Resolution Pro Version 5.1.0.822 for 

both nPM and 3F samples. Spectra were taken after averaging 20 scans over the range of 

600 to 2000 cm-1, with a resolution of 1 cm-1. Prior to each reading, a blank background 

was acquired with the appropriate samples. 

Zeta potential 

Zeta potential was measured with a ZetaPlus zeta meter (Brookhaven Instruments 

Corporation, Holtsville, NY). 100 µl aliquots of 3F or nPM solutions at defined reaction 

times were added to 1 ml KCl (1 mM) in the instrument cuvette. The KCl solution was 

prepared at pH 1.7 and 3.0 to match the pH of the nPM and 3F solutions. 

2.4 Result and Discussion 

Visual observation of the hydrolysis and condensation kinetic process can give a 

clear idea of how and when each of the steps occur at different pH for both nPM and 3F. 

Figure 2-2 shows the images of the hydrolysis and condensation process of (a) nPM and 

(b) 3F at four different pH 1.7, 2.0, 2.5, and 3.0 over time. Since the density of nPM 
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(0.932 g/mL) is lower than the water, prior to hydrolysis nPM floats on the top of the 

water as a concave shaped lens in all the reaction tubes, irrespective of the investigated 

pH.  

 

Figure 2-2. Visual observation of the hydrolysis and condensation kinetics of (a) nPM 
(0.4 M) and (b) 3F (0.4 M) as influenced by pH. The solution pH values are 1.7, 2.0, 2.5, 
and 3.0 from left to right for the tubes in each image, with the images taken at the 
indicated times following initiation of the reaction. The red lines highlight the boundary 
of the unhydrolyzed nPM or 3F with the solutions; in the last panels the red lines indicate 
condensation products that have settled out of solution. 
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As seen in Figure 2-2, after 120±10 min at pH 1.7, the nPM reaction tube solution 

is turbid, indicating condensation product formation. At higher pH values, hydrolysis is 

not yet complete, but it has progressed significantly by 120 min, which can be observed 

as depletion of the nPM layers at the top of the solutions. After 180±20 min, the nPM 

reaction at pH 2.0 was in a condensation state, while at pH 2.5 the nPM lens had 

disappeared, but the bulk solution was not yet turbid, indicating a hydrolyzed state. At 

this same time, the pH 3.0 solution was still in a partially hydrolyzed state. After 

1440±200 min at pH 1.7, 2.0, and 2.5, condensed particles have settled at the bottom of 

the reaction tubes; whereas condensation has barely started for nPM at pH 3.0. 

A similar pH-dependent pattern of hydrolysis and condensation can be observed 

for 3F (Figure 2-2 (b)). However, in contrast to the nPM, the 3F hydrolysis and 

condensation reactions are slower than the corresponding pH values for nPM. 3F is 

denser than water and formed a convex lens on the bottom of the reaction tube. After 

300±50 min, condensation started in the pH 1.7 reaction tube. At higher pH values 

condensation was not observed, but the volumes of the 3F lenses decreased due to 

ongoing hydrolysis. After 480±40 min, the reaction at pH 2.0 began to form condensation 

products, whereas reactions at pH 2.5 and 3.0 were still in the hydrolysis state. After 

1080±60 min, the reaction tube at pH 3.0 turned into a condensation state, and at other 

pH values, condensed polymeric particles started to settle, forming what appeared to be a 

gel at the bottom of the reaction tubes.  
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A more quantitative assessment of the hydrolysis and condensation process was 

attained using Turbiscan to measure the transmissivity of light through the reaction 

solutions at defined heights (e.g. at the top of the tube for nPM, and the bottom for 3F). 

Figure 2-3 shows the turbidity-based hydrolysis kinetics of nPM obtained by Turbiscan. 

These data were taken from the very top of the solution in the tube where unhydrolyzed 

nPM, which is less dense than water, was suspended as a lens. These Turbiscan-analyzed 

data clearly showed the hydrolyzed and condensation periods at pH 1.7, 2.0, 3.0, and 4.0. 

At pH 1.7, the transmissivity was 100 % after 40±5 min, compared to 0 % at the 

beginning, which means that all the nPM was hydrolyzed at this time. This transmissivity 

immediately started to reduce, reaching 2±0.5 % after 80±5 min.  

	

Figure 2-3. Hydrolysis and condensation kinetics of nPM based on transmissivity, using 
Turbiscan-analyzed data at pH 1.7, 2.0, 3.0, and 4.0. 
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Transmissivity started to increase by as much as 50±5 % after 900±50 min, as 

some of the condensed particles possibly started to drop from the solution. Similarly, for 

pH 2.0, transmissivity was 2±0.5 % at the beginning, and it increased as the hydrolysis 

was initiated, reaching 90±5 % after 105±5 min; and it remained at this value for 10±1 

min, indicating that the hydrolysis products remained stable. Initiating of condensation 

was indicated as the transmissivity dropped, and reached 1 % after 160±10 min, after 

which it started to increase again, likely indicating that some particles started to separate 

from the solution and reached 50±4 % after 850±40 min. At pH 3.0, transmissivity 

increased from 0 % to 90±2 % after 240±20 min, as hydrolysis reached completion. This 

optimum, fully hydrolyzed state remained stable for 460±30 min, at which time 

condensation started. Within 180±20 min, turbidity became highest, as transmissivity 

turned to 7±1 % after 885±100 min. After this, transmissivity started to increase and 

turned to 40 % at 2700±100 min, as particles started to separate and settle at the bottom. 

At pH 4.0, transmissivity increased from 0 % to 90±2 % in 440±40 min, and this 

hydrolyzed state remained stable for 1650±50 min, before condensation started, as 

indicated by a reduction in transmissivity. The transmissivity reached a minimum of 

12±2 % after 2750±200 min, after which it started to increase again; and decrease of 

transmissivity fluctuated as hydrolysis and condensation continued.  
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Figure 2-4 shows the 3F Turbiscan hydrolysis and condensation data at pH 1.7, 

2.0, 3.0, and 4.0. For 3F transmitted light was measured at the bottom of the tube, where 

the dense unhydrolyzed 3F formed a lens. Transmissivity was 5±1 % at the beginning, 

but after 30±5 min it increased to 65±5 %, as the lens decreased in size via solubilization 

of hydrolyzed 3F. A fully hydrolyzed state was not attained at pH 1.7 for 3F, as indicated 

by the subsequent reduction in transmissivity. Unlike in the case of nPM, maximum 

transmissivity was never more than 65±5 % for 3F at pH 1.7, indicating that under these 

conditions 3F was unable to be fully hydrolyzed by the time condensation began. The 

transmissivity continued to decrease for 120±8 min, reaching 30±3 %, after which it 

increased again and plateaued at 60±5 % after 225 min, due to scattering from the NPs.  

	

Figure 2-4. Hydrolysis and condensation kinetics of 3F, based on transmissivity, using 
Turbiscan-analyzed data at pH 1.7, 2.0, 3.0, and 4.0. 

2
.
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As seen in Figure 2-4, at pH 2.0, the 3F hydrolysis and condensation kinetics 

followed a similar trend as 3F at pH 1.7, with the noted difference of a slower initial 

hydrolysis rate at the slightly higher pH.  

At pH 3.0, the hydrolysis rate further slowed, requiring 195±15 min to reach a 

transmissivity of 87±5 % that was stable for 585±50 min. This plateau represents a period 

of stable hydrolysis product. Condensation reduced the transmissivity to 65±3 % after 

750±75 min. A similar trend of decreasing hydrolysis rate was observed as pH 4.0, as the 

transmissivity increased to 82±5 % after 270±35 min and remained stable until 510±90 

min. The Turbiscan measurements clearly reveal optimal windows in which the two 

silanes are hydrolyzed, but condensation does not appear to be occurring. 

To better assess the start of condensation, a more sensitive technique was 

employed. DLS was used to understand the evolution of the polymeric particles during 

the condensation process at acidic pH. Figure 2-5 shows a comparative hydrodynamic 

radius (Rh) of the polymeric NPs formed during the hydrolysis and condensation of 3F 

and nPM at pH 1.7. For nPM, after 80±10 min of hydrolysis, NPs started to form as 

condensation started. Typically, particles are called “nano” when sizes are below 100 nm 

in at least one dimension. However, referring to particles as “nano” widely varies 

depending on their application fields, and the size range often goes above 100 nm and up 

to 500 nm.  
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Figure 2-5. DLS comparison of evolution of polymeric NPs formation during the 
hydrolysis and condensation process of nPM and 3F at pH 1.7.  

After 175±25 min, once the Rh became more than 1150±100 nm, they started to 

either separate from the solution or become larger than 2 µm in size, which is beyond the 

limit of detection for the DLS instrument. A aimilar pattern was observed in the case of 

3F, as NPs started to form only after 160±20 min, where hydrolysis ended and 

condensation started. After 375±30 min, Rh was 1255±100 nm, and after that, no more 

particles could be observed, as particles either precipitated from the solution or became 

too large to be measured by DLS. As condensation progressed, NPs started to evolve with 
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three distinct slopes of K1 (30.7), K2 (19.2), and K3 (7.8) for nPM and K1’ (3.2), K2’ 

(13.2), and K3’ (5.0) for 3F, as shown in the condensation profiles (Figure 2-5). The 

slower hydrolysis and condensation kinetics of 3F compared to nPM could be due to the 

presence of the hydrophobic tri-fluoro group in 3F, which hinders the hydrolysis and 

condensation steps shown in Figure 2-1. The three distinct slopes shown in the 

condensation profiles of both 3F and nPM could represent the condensation steps such as 

(021), (012), and (003) shown in Figure 2-1. 

At pH 3.0, evolution of the polymeric particles was distinct, as compared to pH 

1.7. At pH 3.0, polymeric particles started to appear earlier in the 3F solution, compared 

to the nPM solution (Figure 2-6). Polymeric particles started to appear at 1400±150 min 

in the 3F solution, which kept growing until 3400±250 min; then particles became either 

too big to be measured by DLS or precipitated from the solution out of the light path. In 

the nPM solution, particles started to appear at 2100±150 min and kept growing until 

3100±200 min, and then no particles could be detected. But after 3700±300 min, particles 

could be measured again until 4500±150 min; then particles disappeared and reappeared 

again at 4800±200 min. This appearance and disappearance of particles could be due to 

the continuous separation of larger particles form the solution and remodeling of the 

particles. The system was unstirred and the temperature held constant. At pH 3.0, 

condensation progressed with four distinct slopes of K1’’ (0.4), K2’’ (1.8), K3’’ (-0.6), 

and K4’’ (0.7) in the 3F profile, but only one (K1’’’ = 1.4) in the nPM.  
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Figure 2-6. DLS comparison of evolution of polymeric NPs formation during the 
hydrolysis and condensation process of nPM and 3F at pH 3.0.  

Correlations of transmissivities observed by Turbiscan with the hydrodynamic 

radiuses (Rh) of the polymeric particles measured by DLS at pH 1.7 and 3.0 for both nPM 

and 3F are shown in Figures 2-7 to 2-10. To compare the Turbiscan data with DLS data, 

transmissivity of the solution at the middle of the tube was compared, to measure 

turbidity arising from condensation rather than transmissivity changes due to depletion of 

the starting silanes that formed lenses. During the DLS analysis, 0.1 M nPM and 3F were 

used for the hydrolysis and condensation reaction unlike the concentration used for the 

Turbiscan study, where 0.4 M nPM and 3F were used. The use of low concentration was 
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necessary because DLS is unable to measure higher concentrations during the hydrolysis 

and condensation process for both nPM and 3F, due to the cuvette geometry.  

	

Figure 2-7. Correlation of Turbiscan transmission data with the DLS polymeric size 
(hydrodynamic radius, Rh) for nPM hydrolysis and condensation kinetics at pH 1.7.  

Figure 2-7 shows the comparative data of Turbiscan and DLS of nPM at pH 1.7. 

Even though Turbiscan data show that the transmissivity started to decrease after 60±5 

min due to the turbidity in the solution, polymeric particles appeared only after 90±10 

min in DLS. Two factors could be behind this delay of size appearance in DLS: first, it 

could be due to the use of lower concentration of nPM; and second, it could be due to the 
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fact that at the beginning of the particles’ formation, their sizes were too small to be 

observed by DLS. Once transmissivity turned 0 %, it started to increase again, as it 

appeared in case of transmissivity at the top.  

The Turbiscan and DLS data for 3F at pH 1.7 (Figure 2-8) follow the same 

general trend as for nPM (Figure 2-7). In this case, polymeric NPs observed by DLS 

appeared earlier than the turbidity increase observed by Turbiscan. Polymeric particles 

started to appear in the DLS profile after 180±20 min, but were not of sufficient size or 

concentration to reduce light transmission in the Turbiscan, which began to decrease after 

240±30 min. The reason could be the height difference of the data point of where the 

reading was taken. After almost the same time (250±30 min), when the particles started 

to separate or become too large to be detected by DLS, the Turbiscan reading could be 

observed having the lowest transmissivity.  
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Figure 2-8. Correlation of Turbiscan-analyzed transmission data with the DLS-obtained 
polymeric size (hydrodynamic radius, Rh) for 3F hydrolysis and condensation kinetics at 
pH 1.7.  

Figure 2-9 shows the comparative data for nPM at pH 3.0, where light 

transmissivity started to reduce far earlier (700±80 min) than the time where polymeric 

particles started to appear in DLS (2100±100 min). This major time difference could be 

due to the difference in surface to volume ratio in the liquid-air and liquid-liquid interface 

ratio in the two solution containers used for Turbiscan and DLS. Also, the height 

difference of the sampling points in the tubes could be a factor as well. After 1000±60 

min, the Turbiscan data showed the lowest transmissivity, and then a sudden increase was 

observed at 1060±60 min, which could be due to the aggregation / sedimentation of 
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larger particle formations from the solution. This pattern can be observed in the DLS 

data, but only after 3320±150 min. 

	

Figure 2-9. Correlation of Turbiscan transmission data with the DLS-obtained particle 
sizes (hydrodynamic radius, Rh) for nPM during the hydrolysis and condensation kinetics 
at pH 3.0.  

A similar trend could be seen in case of 3F at pH 3.0 (Figure 2-10), where the 

Turbiscan-analyzed data showed that the transmissivity started to reduce after 840±60 

min, but these polymeric particles could be seen in DLS only after 1420±100 min.  
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Figure 2-10. Correlation of Turbiscan-analyzed transmission data with the DLS-obtained 
particle sizes (hydrodynamic radius, Rh) during 3F hydrolysis and condensation kinetics 
at pH 3.0.  

Similar to the nPM at pH 3.0, the reduction and increase of transmissivity and 

hydrodynamic sizes were observed as condensation continued for 3F at pH 3.0 

 Figure 2-11 (a) and (b) show the AFM images of the polymeric NPs formed 

during the condensation process of nPM at pH 1.7. Polymeric NPs became 10±5 to 

100±20 nm after 180 min (Figure 2-11 (a)), but over the time, these particles became 

irregular in shapes and sizes. Figure 2-11 (b) shows the transformation of the polymeric 

NPs after 1440 min, where large and irregular particles can be observed. 
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Figure 2-11. AFM images of polymeric NPs formed following the condensation of nPM 
after (a) 180 min and (b) 1440 min. 

Similarly, Figure 2-12 (a) and (b) show the AFM images of the polymeric NPs formed 

during the condensation of 3F at pH 1.7. Polymeric NPs became 12±5 to 200±30 nm 

after 300 min (Figure 2-12 (a)). These particles kept growing over time, and after 1440 

min, micron-sized particles were observed, along with the nano-sized particles (Figure 2-

12 (b)). 
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Figure 2-12. AFM images of polymeric NPs formed following the condensation of nPM 
after (a) 300 min and (b) 1440 min. 

The ATR-FTIR spectra of nPM (0.4 M) and 3F (0.4 M) were taken at various 

time intervals during the hydrolysis and condensation at pH 1.7. Figures 2-13 and 2-14 

show the ATR-FTIR spectra of the nPM and 3F solutions, respectively, at different 

transition phases during hydrolysis and condensation. Since spectra were taken directly 

from the aqueous solutions, the H-O-H bending peak can be observed in all the spectra of 

nPM (at 1635 cm-1) or 3F (at 1650 cm-1) throughout the hydrolysis and condensation 

processes. 
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Figure 2-13. ATR-FTIR spectra of nPM at defined times during the hydrolysis and 
condensation process. 

A Si-OH band appeared after 0.5 h at 900 cm-1 in the ATR-FTIR spectrum of the 

nPM (Figure 2-13), indicating ongoing hydrolysis. At this time another peak representing 

a Si-CH2 band was also observed at 1015 cm-1. After 1.5 h, as condensation began, this 

Si-OH band disappeared and the stretching vibration of Si-O-Si started to appear at 1000-

1100 cm-1 (Figure 2-13). At this time (1.5 h), a strong Si-alkoxy (Si-O-CH3) band was 

also observed at 1190 cm-1, which implies that at this time hydrolysis was still in 
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progress, even though condensation has started already. After 2 h, this peak for the Si-O-

CH3 band disappeared, confirming the end of the hydrolysis. As condensation continued, 

the bands representing Si-O-Si, started to disappear (3.5 h and 12 h) as polymeric 

particles got larger and precipitated from the solution to form a gel at the bottom. After 

12 h, the peaks for the Si-O-Si and Si-O-CH3 bands appeared in the spectrum 

representing the gel from the bottom. Strong Si-CH2 band at 1215 cm-1 and some 

vibrational peaks for C-H and C-H2 can also be observed at 1315 to 1455 cm-1.  

Unlike the nPM spectra, 3F spectra did not show a strong band for Si-OH at 900 

cm-1 during the possible hydrolysis period of 3F (Figure 2-14), but a weak Si-OH band 

appeared at 935 cm-1 in the spectra representing the solution at 2.5 h, 3.5 h, and 6 h, but 

not at 24 h. After 2.5 h, stretching vibration of Si-O-Si appeared at 1000-1100 cm-1, 

confirming condensation. Strong stretching vibration for –CF was observed in all the 

spectra at 1215 and 1267 cm-1. Absorbance intensity at 1215 cm-1 was stronger, due to the 

combination of Si-CH2 and –CF bands. All the peaks representing the Si-O-Si band in 

between 1000 cm-1 to 1100 cm-1 appeared in the spectrum representing the gel at the 

bottom after 24 h. Vibrations of C-H and C-H2 also were observed in a wide range of 

wavenumbers (1315 cm-1 to 1450 cm-1) in this spectrum. 
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Figure 2-14. ATR-FTIR spectra of 3F at defined times during the hydrolysis and 
condensation process. 

Zeta potential was studied to understand the physical phenomena such as surface 

charges of the condensed particles or aggregates. Zeta potential measures the average 

surface charge of the particles in a colloidal suspension with millivolt resolution. Figure 

2-15 shows the zeta potential of the particles formed during the hydrolysis and 

condensation of nPM at pH 1.7 and 3.0. At pH 1.7, the zeta potential of condensed 
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polymeric particles fluctuated in between 0 to -5 mV. Since the isoelectric point of silica 

particles is close to pH 2.0, zeta potential of the polymeric particles generated from nPM 

at pH 1.7 were also expected to be close to zero. 

	

Figure 2-15. Zeta potential of polymeric NPs evolving from nPM during the hydrolysis 
and condensation processes at pH 1.7 and 3.0.	

At pH 3.0, the nPM NPs have a zeta potential between -7 mV and -9 mV. The 

increase in negative charge compared to the particles formed at pH 1.7 is expected if free 

silanol groups are present on the nPM NPs that would be deprotonated as the pH is 

increased above the isoelectric point.   
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Figure 2-16. Zeta potential of polymeric NPs evolve from 3F during the hydrolysis and 
condensation process at pH 1.7 and 3.0. 

Figure 2-16 shows the zeta potential of the particles formed during the hydrolysis 

and condensation of 3F at pH 1.7 and 3.0. At pH 1.7, zeta potential of the fluorinated 

polymeric particles was near zero mV until 2300 min, but it decreased to -8 mV after 

2800 min. These decreases in the zeta potential value could be due to the continual 

growth of polymeric particles with higher surface charges. At pH 3.0, the zeta potential 

values remained close to zero mV, similar to pH 1.7 until 2300 min, but they surprisingly 

increased to 17 mV after 2800 min. 
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2.5 Conclusion 

These studies on the evolution of polymeric NPs during hydrolysis and 

condensation of two types of hydrophobic tri-alkoxysilanes showed the distinct pattern of 

hydrolysis and condensation rates at various pH. These patterns were correlated using the 

complementary methods of turbidity scanning with Turbiscan, and monitoring evolution 

of particles with DLS. Hydrolysis and condensation kinetic profiles of 3F and nPM 

allowed the processes of hydrolysis and condensation to be tuned through the selection of 

pH, to provide optimal interaction with biological molecules for various applications, 

ranging from enzyme encapsulation to the modulation of protein conformation. AFM 

images confirmed the NP sizes, and revealed heterogeneity in shapes, while ATR-FTIR 

spectra showed the chemical compositions of the polymeric NPs generated during the 

condensation. Of particular interest was the presence of a silanol signal in the NP spectra, 

suggesting that condensation did not consume all silanols. Zeta potential confirmed this 

as it revealed a negative surface character on these nanoparticles. Surface available 

silanols combined with the hydrophobic tri-fluoro or methyl groups are desirable for 

applications of these two hydrophobic silanes toward modulating the protein secondary 

structures and corresponding fibrillation propensity. 
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CHAPTER 3 

SILANE-PROTEIN INTERACTIONS : FLUORINE-BASED SELF-ASSEMBLED 

HYDROPHOBIC POLYMER NANOPARTICLES INHIBIT AMYLOID 

FIBRILLATION OF ß-LACTOGLOBULIN 

3.1 Abstract   

Fluorinated polymeric nanoparticles (NPs) inhibited the amyloid fibrillation of b-

lactoglobulin (BLG). Initially, inhibition of fibrillation was observed qualitatively by 

DLS as hydrodynamic radius (Rh) in aqueous solution under the model conditions for 

BLG to form fibrils. Later, AFM-analyzed morphological study confirmed the inhibition 

of the amyloid fibrillation of BLG by the fluorinated polymeric NPs. Along with the 

fluorinated polymeric NPs, fluorine-free or methylated polymeric NPs were also tested 

against the amyloid fibrillation, and AFM images showed that they partially inhibited the 

fibrillation. During the fibril inhibition process, protein-fluorinated silica-based stable 

nanocomposite particles with the sizes <12 nm were generated. Deconvoluted ATR-FTIR 

spectra showed that β-sheet decreased by 29 % and 11% after BLG was treated with 

fluorinated polymeric NPs and methylated polymeric NPs, respectively. Docking study 

showed the existence of hydrogen bonding between BLG and both fluorinated and 

methylated silanol monomers.  
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3.2 Introduction 

Accumulation of fibrillated protein aggregates in the brain or other tissues are 

commonly known as amyloid. Amyloid is a pathological feature of a series of 

neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), 

Huntington’s disease (HD), type II diabetes, and Prion disease. (1-8) Amyloid forms due 

to the destabilization of a-helices and the simultaneous formation of highly ordered cross 

β-sheet structures that assemble into the characteristic plaques. (9-11) Also, the presence 

of buried hydrophobic surfaces or favorable packing of side chains contribute to the 

stability of the amyloid structure and makes it very resistant to degradation and 

depolymerization. The amyloid hypothesis correlates disease symptoms and sequence 

with fibrils and plaques, thus plaque-targeting is widely investigated. Molecules that 

stabilize a-helix or inhibit the formation of b-sheets are potential candidates to maintain 

the native structure of the protein and avoid amyloid formation. Thus, molecules capable 

of inducing conformational transition in protein should be used to develop the 

therapeutics to stabilize the nonpathogenic conformation. Also, the therapeutics should be 

able to prevent the recruitment of native proteins by the misfolded / pathogenic seed, 

which eventually will inhibit the amyloid formation. At present, however, there is no 

effective drug to cure the amyloid-based diseases, and the treatment of symptoms is also 

extremely limited. Most of the drugs that have been developed to target amyloid-based 

diseases have failed at various stages of their clinical trials. (12)   
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Several types of molecules have shown inhibiting ability against the amyloid 

growth, such as various biomolecules including peptides / antibodies, drugs, small 

molecules including phenolic compounds, gene therapy, and chaperones. (13-30) With 

the recent advancement of nanotechnology, a new therapeutic avenue has opened with 

the use of various NPs against amyloid fibrillation of amyloidogenic proteins. The 

potential influence of NPs on protein fibrillation is the function of their surface chemical 

functional groups, their interfacial properties including surface charges, and their shapes 

and sizes, which decide the surface to the volume ratio. Studies have shown that NPs are 

capable of crossing the blood-brain barrier (BBB) and have greater in vivo stability. (17) 

NPs can both inhibit and promote amyloid fibrillation, depending on surface properties, 

core material, assembly, concentration, and type of functional molecules present on it. 

For example, copolymer particles of N-isopropylacrylamide: N-tert-butylacrylamide, 

cerium oxide, quantum dots (QDs), carbon nanotubes, citrate-capped gold NPs, and 

titanium oxide are reported to promote protein assembly into amyloid fibrils in vitro, by 

assisting the nucleation process. (31-45), In contrast, various inorganic NPs, hydrophobic 

NPs, NPs functionalized with hydrophobic molecules and specific affinity molecules 

such as curcumin (46-48), dextran (49), and sialic acid (50-51) reportedly inhibit 

fibrillation processes.  

Among the functionalized NPs, fluorinated NPs are of special interest due to the 

properties of fluorine atoms: addition of fluorine atoms increases the pharmacological 
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activity. Thus, various fluorinated antibiotics, anticancer, anti-inflammatory, and antiviral 

therapeutics have been reported. (52-54) Another beneficial property of the fluorine 

substitution is the increase of BBB permeability achieved by the modification of the 

lipophilicity or amine pKa. In fact, approximately a quarter of all the drugs developed for 

pharmaceutical purposes have the presence of fluorine atoms. (55-58) Fluoro-substituted 

alcohols such as TFE (2,2,2-trifluoroethanol) and HFIP (1,1,1,3,3,3-hexafluoro-2-

propanol) are strong inducers of protein and peptide structures. (59) The hydroxyl group 

in HFIP and TFE preferentially binds with a carbonyl oxygen of protein backbone and 

acts as a protein donor, whereas the strong electronegative F group acts as a hydrogen 

acceptor, forming H-bonds with proton donor groups on protein. (58-61) As a 

consequence, the solvent exposure of the amide is minimized and the intra-polypeptide 

hydrogen bonding of the amide group is favored, leading to increased helical 

propensities. Increased hydrophobicity, which arises from both hydrocarbon groups and 

multiple F atoms in the fluoro-alcohols, plays an essential role in denaturing protein 

secondary structures and inducing the formation of helical structures. (58) A major issue 

with these fluoro-substituted alcohols as amyloid fibril inhibitors is their application as 

therapeutic agent to the targeted proteins. Thus, fluorinated polymeric NPs having 

multiple stable hydroxyl groups with hydrophobic characteristics are desirable to be used 

as therapeutic agents to inhibit amyloid fibrillation, which can be achieved using a 

polymerizable analog of fluoro-alcohol such as hydrolyzed fluoro-silane.  
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Our recent works suggest that fluoro-silane 3,3,3-trifluoropropyl trimethoxy 

silane (3F) is very highly efficient as protein secondary structure inducer in its 

hydrolyzed states. (62) Hydrolyzed 3F (H3F) can convert β-sheet structure to α-helix, 

where 3F- groups promote 3F-protein interaction by forming H-bonds with hydrogen 

donors on the protein; consequently disrupting the intra-molecular H-bonds between 

distant residues involved in β-sheets, and favoring H-bonding between more proximal 

amino acids on the polypeptide chain, leading to α-helices. Given that the β-sheet 

structure is the reason why amyloid fibrils formed, fluorinated polymeric NPs having the 

same characteristics as H3F capable of inducing β-sheet would be a strong candidate as 

amyloid inhibitor, which could be achieved by condensing the H3F.  

In this study, anti-fibrillar activity of fluorinated polymeric NPs was investigated 

against a model template protein β-lactoglobulin (BLG) which exhibits predominantly β-

sheet secondary structure. BLG is a globular protein containing 162 amino acids, with a 

MW of 18.4K g/mol, IEP of 5.1, and an internal hydrophobic core surrounded by a 

hydrophilic exterior. In order for BLG to form amyloid fibrils, it first refolded into 

protofilament at acidic pH and at temperature >80°C, where the protein possesses a 

dominant positive charge. (63) If heating continues for a few hours, the contour length of 

these protofilaments become > 0.5 µm, forming amyloid fibrils. (64) Since the fibrils of 

globular proteins have a similar structure to those causing amyloidosis diseases, BLG has 

been widely investigated to understand the amyloid fibril formation. (65-77) 
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BLG is not only well characterized, it is also easily available and relatively cheap, 

and that is the reason why we have selected it as our model template protein. Non-

fluorinated or methylated polymeric NPs were also investigated against BLG, to 

demonstrate the importance of the fluorine moieties in the NPs for anti-fibrillation 

activities; and these methylated polymeric NPs were obtained with the condensation of 

hydrolyzed n-propyltrimethoxy silane (HnPM). 

The objective of this study was to investigate the modulation of fibril properties 

of BLG using fluorinated and methylated polymeric NPs, study the secondary structural 

transformation in the BLG during the BLG-NPs interaction, and molecular docking of 

protein-ligand interactions.  

3.3 Materials 

3,3,3-trifluoropropyl trimethoxy silane (3F, > 95 % purity, MW = 218.3, d = 1.14 

g/ml) and n-propyltrimethoxy silane (nPM, > 95 % purity, MW = 164.3, d = 0.94 g/ml) 

were purchased from Gelest, Inc. (Morrisville, PA).  β-lactoglobulin from bovine milk 

(BLG, > 90 % purity, MW = 18,400) was obtained from Sigma-Aldrich (St. Louis, MO); 

the thioflavin T powder was purchased from EMD Millipore, Darmstadt, Germany; and 

Muscovite mica was purchased from SPI supplies for the AFM study (PA, USA). 
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3.4 Experimental methods 

Preparation of BLG solutions 

BLG stock solution was prepared by dissolving 200 mg of BLG powder in 10 ml 

double distilled deionized (DI) water at pH 2.0 with gentle shaking, which gave 20 mg/ml 

(1.088 mM) solution. The dissolved BLG solution was then filtered through a 0.2 µm 

syringe filter (Millex-GS, Millipore) and stored at 4°C. 

Dynamic Light Scattering (DLS) analysis 

Evolution of the hydrodynamic sizes (Rh) of the polymeric NPs during the 

hydrolysis and condensation of nPM and 3F was analyzed using DLS (DynaPro 

NanoStar, Wyatt Technology Corporation, Santa Barbara, CA). Measurements were 

taken using a quartz cuvette (JC-426, 1 µl) filled with 0.7 ml 3F (0.1 M) or nPM (0.1 M) 

aqueous solutions at pH 2.0. Hydrolysis and condensation kinetics of 3F and nPM were 

collected over 10 h. For the BLG fibrillation study, initially 0.7 ml BLG solution (1 

mg/ml (0.013 mM) and pH 2.0) was added in the cuvette, and its Rh was measured. After 

that, the same BLG solution was heated for 3 h at 90°C, to observe the Rh of the fibrils. 

To measure the Rh sizes of the products generated after the interaction of BLG with 

fluorinated and methylated polymeric NPs, 0.7 ml of 3F or nPM solutions (0.2 M) at pH 

2.0 were monitored as the hydrolysis progressed. After the hydrolysis was completed, the 

0.35 ml solution was replaced with 0.35 ml of 2 mg/ml (0.026 mM) BLG solution (at pH 
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2.0) and the Rh size was measured after heating the sample for 3 h at 90°C. For the 

control sample, 0.35 ml aqueous solution (at pH 2.0) was used without adding BLG.  

Amyloid fibrillation with polymeric NPs 

0.4 M 3F and nPM solutions were prepared adding 0.18 ml of 3F and nPM in 5 

ml glass vials, where 2.32 ml of DI water (at pH 2.0) were already kept. As soon as all 3F 

and nPM were hydrolyzed, condensation followed immediately, and started to form 

polymeric NPs. Once all of the 3F and nPM were hydrolyzed, 0.75 ml 3F and nPM were 

added separately to 0.25 ml of BLG (1.088 mM) solution in 5 ml glass vials with 

magnetic stir bars in them. Reaction was let to occur for 5 min at room temperature 

(23°C), then transferred to an oil bath with temperature of 90°C, and the samples were 

heated for 5 h. For the control samples, in three separate glass vials, 3F (0.3 M), nPM 

(0.3 M), and BLG (0.272 mM) were also heated at 90°C for 5 h. Reactions were stopped 

using ice bath; and once solution temperature came down to room temperature, different 

analyses were performed. 

Thioflavin T (ThT) fluorescence assay 

A stock solution of 3.0 mM ThT in phosphate-NaCl buffer (10 mM phosphate and 

150 mM NaCl, pH 7.0) was filtered through a 0.2 µm syringe filter (Millex-GS, 

Millipore). Stock solution was stored at 4°C in a brown glass bottle covered with 

aluminum foil. Working solution was prepared by diluting stock solution 50-fold in 

phosphate-NaCl buffer (the final ThT concentration was 60 µM). 200 µl samples were 
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added on the 96-well plate from the 2.5 ml glass vials, where ThT and target solutions 

were added at 3:1 ratio. Emission spectra were taken from 460 nm to 560 nm after 

excitation at 440 nm, using a Synergy4 Hybrid Multi-Mode Micro Plate Reader (BioTek, 

Inc., VT, USA).   

Fibrillation analysis with Atomic Force Microscopy (AFM)  

To observe the structural formation of BLG fibrils and polymeric NPs, AFM 

images were taken using a Nanoscope III Bioscope (Digital Instrument, Inc.) in tapping 

mode. 100 µl samples were dropped onto freshly cleaved mica surfaces, then gently 

washed with DI water, and air-dried before taking AFM images. AFM tips were obtained 

from TED Pella Inc., CA (TAP300AL-G-50).  

Fourier Transformed Infrared Spectroscopy (FTIR) 

The interactions of BLG with fluorinated and methylated polymeric NPs were 

analyzed by FTIR using a Varian 660-IR with a horizontal single reflection Pike 

Technologies MIRacle attenuated total reflectance (ATR) unit, fitted with a ZnSe crystal. 

100µl samples were drop cast on the ZnSe crystal of the ATR platform and air-dried 

before taking the reading. Readings were taken after averaging 20 scans over the range of 

1200 cm-1 to 1800 cm-1, with a resolution of 1 cm-1. Prior to each reading, a background 

scan was acquired. FTIR obtained spectra were later deconvoluted using ORIGIN PRO 

2017, to ascertain the influence of the fluorinated and methylated polymeric NPs on the 

secondary structural motifs of BLG, along with the untreated BLG and BLG fibrils. 
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Docking studies  

Docking study was performed using Autodock 4.2.6. The 3D structures of H3F 

and HnPM monomers were drawn using Marvin software. BLG was interacted with H3F 

and HnPM monomers using Autodock Tools 1.5.6. Hydrogen atoms were added and 

Kollman charges were used to set the charges on BLG, and Gasteiger charges were added 

to H3F and HnPM monomers. The docking grids were carried out with a default spacing 

value of 1 Å, and grid volume 70×70×70 points, covering the entire surface of the BLG. 

The protein molecule was set to rigid, while the ligand molecule was considered to be 

flexible. In the docking simulation, a Lamarckian generic algorithm was used to generate 

10 binding models, each of which was individually selected as the lowest binding energy 

among a maximum of 2,700,000 evaluations. These 10 complexes were clustered 

according to their root-mean-square deviation (RMSD) values and binding energies, in 

order to distinguish the preferred binding model. 

Statistical analysis 

Triplicate samples were studied throughout the experiment, and average values 

with the associated standard deviations were calculated and shown in the appropriate 

Figures. One-way ANOVA test was performed using Sigma Plot 13.0.  
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3.5 Results and Discussion 

Hydrolysis was favored over condensation at acidic pH, and all three O-CH3 of 3F 

and nPM underwent sequential hydrolysis, yielding silanols. Polymeric NPs containing 

silanol were generated in aqueous media, as condensation followed the hydrolysis. 

Presence of silanol in the NPs is desirable in the amyloid inhibition process, as it showed 

the secondary structure inducing ability. (78) Aqueous synthesis of NPs makes them 

suitable to be used in the biological system. The hydrolysis and condensation kinetic 

profiles of 3F and nPM as well as the evolution of the hydrodynamic radius (Rh) of the 

NPs are shown in Figure 3-1, obtained from DLS analyzed data. NPs started to appear as 

the condensation began at 80±10 min for nPM and at 180±20 min for 3F. As 

condensation progressed, NPs continued to grow and become >1 µm in 180±25 min for 

nPM and in 400±50 min for 3F. The NPs” growth rate had a sudden jump after the Rh 

size turned 400±20 nm for both 3F and nPM; and possibly the aggregation of the 

individual NPs was due to electrostatic interactions.  
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Figure 3-1. Evolution of hydrodynamic radius (Rh) sizes of 3F and nPM during the 
hydrolysis and condensation process at pH 2.0. Arrows indicate the time when samples 
were taken for the amyloid study. 

Figure 3-2 shows the 3D structure and space-filling model of the NPs growth of 

3F, which could start from 1 nm size and continue to grow. These polymeric NPs can 

grow linearly or branchwise to form spherical particles, but still contain silanol 

functionality, as shown by the 3D model structure of the NPs.  
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Figure 3-2. Schematic of the 3D structure and space filling model for fluorinated 
polymeric NPs, suggesting that both linear and cyclic geometries are possible, and silanol 
as well as 3F moieties are present on the NP surface for interaction with proteins. 

DLS has been widely used to determine the proteins and their fibril sizes in 

solution. In this study, DLS was used to determine the hydrodynamic diameter of the 

protein, fibrils, fluorinated and methylated polymeric NPs, and the composite particles 

formed as the fibril inhibition process completed. Amyloid fibril inhibition study was 

performed using NPs formed at the very early stage of the condensation of 3F and nPM, 

shown as arrow in Figure 3-1, where NPs are in their smallest sizes. At this stage, along 

with the newly formed polymeric 3F and nPM NPs, their free hydrolyzed 3F and nPM 

monomers may also be available. These hydrolyzed monomers may also take part in the 

amyloid inhibition process, as these monomers favor transition of beta-sheets into alpha-
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helices. The DLS study gives a comparative picture of the hydrodynamic sizes of the 

products generated, observed after treating BLG with fluorinated and methylated 

polymeric NPs.  

 

Figure 3-3. Hydrodynamic diameter of BLG, fibrillated BLG, fluorinated and methylated 
polymeric NPs treated BLG, and control fluorinated and methylated polymeric NPs. The 
fibrillation of BLG was performed at 90°C for 5 h in DLS cuvette. Fluorinated and 
methylated polymeric NPs were added in BLG (0.272 mM), and reacted for 5 min before 
heating at 90°C for 5 h at pH 2.0.  

Figure 3-3 shows the hydrodynamic diameter of BLG, potential BLG fibrils, and 

evolved NPs during the amyloid inhibition process, using fluorinated and methylated 
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polymeric NPs. The hydrodynamic diameter of BLG was observed as 4 nm at pH 2, and 

after heating at 90°C for 5 h fibrils formed with a bimodal size distribution with peaks at 

150 nm and 1µm. Bolisetty et al. conducted an experiment on the kinetic of the BLG 

fibrillation, and observed similar bimodal fibril size distribution at 90°C. (79) 

Hydrodynamic diameter of fluorinated and methylated polymeric NPs treated 

BLG showed distinct size distribution compared to the control or untreated NPs. Bimodal 

size distributions were observed for both the particles formed after 3F NPs treated with 

BLG and untreated control NPs; but sizes reduced after 3F NPs (3±1 nm and 85±7 nm) 

were treated with BLG, compared to the control NPs (19±2 nm and 110±10 nm). 

Hydrodynamic diameter of nPM NPs treated BLG showed tri-modal size distribution 

(7±1 nm, 60±3 nm and 500±40 nm), compared to the bimodal sized distribution (9±1 nm, 

70±5 nm) of their control NPs. The reduction in the sizes observed after 3F NPs treated 

BLG indicates the fibril inhibition, which was not observed in the case of nPM NPs 

treated BLG. This reduction in size also indicates the possible termination of the NPs’ 

growth as they interact with BLG molecules. The appearance of the particles with the 

size of 500±40 nm during the nPM NPs interaction with BLG indicates the possibility of 

fibril formation. 	

Fluorescent	dye	such	as	ThT	is	widely	used	to	determine	the	formation	of	

protein	fibrils	during	the	amyloid	aggregation	process. (80-90) When ThT reacted 

with fibrillated protein, a specific binding between ThT and the β-sheet structure of fibrils 
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formed, which enhanced the fluorescent intensity of ThT, indicating the presence of 

fibrils. In this study, ThT fluorescence-based method was used to identify the fibrils in 

the fluorinated and methylated polymeric NPs treated BLG solution. The spectrum 

representing the BLG fibril-ThT in Figure 3-4 (a) and (b) shows that the fluorescence 

intensity doubled, compared to the spectrum of nonfibrillated BLG-ThT, which confirms 

the existence of fibrils.  

	

Figure 3-4. Emission spectra of ThT fluorescence obtained from (a) fluorinated and (b) 
methylated polymeric NPs treated BLG, along with fibrillated, nonfibrillated BLG, and 
their controls. 

Although the spectrum of nPM-ThT was observed identical to that of 

nonfibrillated BLG-ThT, the intensity of the spectrum representing 3F-ThT increased. 

The 3F NPs treated BLG-ThT emission spectrum was 70 times and nPM NPs treated 

BLG-ThT was 3 times higher in fluorescence intensity, compared to that of nonfibrillated 
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BLG-ThT. A comparative picture of the fluorescence intensity at 485 nm taken from all 

the emission spectra of nonfibrillated BLG-ThT, fibrillated BLG-ThT, nPM-ThT, 3F-

ThT and 3F and nPM NPs treated BLG-ThT is shown in Figure 3-5. Fluorescence 

intensity was taken at 485 nm because intensities of all the spectra are observed as 

optimum at this wavelength.  

	

Figure 3-5. Comparison of ThT fluorescence intensity of fluorinated and methylated 
polymeric NPs treated BLG along with fibrillated and nonfibrillated BLG (0.272 mM), 
and their controls at 490 nm. 

As fluorinated and methylated polymeric NPs are expected to inhibit the 

fibrillation of BLG, increased fluorescence intensity could mean inefficiency in 
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fibrillation inhibition. But a recently published report showed that ThT can bind with 

silica gel and generate very high fluorescence. D'Amico et al. observed ThT entrapped in 

the silica xerogel, resulting in high fluorescence intensity, compared to the free ThT 

molecule. (91) The electrostatic interaction between positive ThT and negative ºSiO− 

groups creates a very strong ThT+−SiO− bond, immobilizing ThT molecules inside the 

pores of the xerogels. This electrostatic interaction strongly hinders the rotational 

mobility of the ThT, increasing its overall fluorescence intensity. During the amyloid 

inhibition process, fluorinated and methylated polymeric NPs went through the continual 

condensation process, generating fluorinated and methylated silica colloids and BLG-

silica composite colloids. These colloids contain a large number of ºSiO−, which 

potentially could interact with positively charged ThT, resulting in enhanced fluorescence 

intensity. Thus, lower fluorescence intensity of BLG fibrils, compared to 3F and nPM 

treated BLG, could be due to the interaction between ThT and 3F-BLG / nPM-BLG 

composites instead of BLG fibrils. Thus, success in inhibition of fibrillation by 

fluorinated and methylated polymeric NPs is not distinguishable with these ThT 

fluorescence spectra. 

The fluorescence intensity of ThT after interacting with fluorinated and 

methylated polymeric colloids shown in Figure 3-5 was much lower, relative to the 

fluorescence intensity observed with 3F-BLG / nPM-BLG composites. This could be due 

to the fact that the sample used from the 3F and nPM condensed solution might not have 
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enough colloids in the sample interacted with ThT, since colloids tend to precipitate as 

condensation continues. This also means that 3F-BLG / nPM-BLG composites tend to 

remain suspended in solution for a longer time, compared to the fluorinated and 

methylated polymeric NPs. 

To have a comprehensive idea of the structures of protein fibrils, colloidal 

particles and nanocomposites, nanoscopic image analysis was used. AFM is widely used 

to observe the amyloid fibrils formation and analyze their structural properties. (65-68) In 

this study, AFM images were taken to investigate the nanoscopic development in BLG 

during the inhibition process by fluorinated and methylated polymeric NPs. Figure 3-6 

shows the AFM images of untreated BLG, fluorinated and methylated polymeric NPs 

treated BLG, along with the 3F and nPM associated NPs. Unheated BLG created a thin 

layer of 2 nm on the mica surface (Figure 3-6 (a)) at pH 2.0; and after heated at 90°C for 

5 h, BLG formed fibrils with various lengths and shapes (Figure 3-6 (b)). Figure 3-6 (c) 

shows that two different NP-size groups were generated in the controlled system of 3F, 

which were consistent with the DLS-obtained data described earlier. Fluorinated 

polymeric NPs treated BLG showed no fibrils presence, but rather spherical NPs with 

two distinct size groups of NPs, as shown in Figure 3-6 (d).  
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Figure 3-6. AFM images of (a) BLG (0.272 mM), (b) fibrillated BLG (0.272 mM), (c) 
evolved particles after heating fluorinated polymeric NPs, (d) particles formed after 
fluorinated polymeric NPs reacted with BLG (0.272 mM) for 5 min and then heated, (e) 
evolved particles after heating methylated polymeric NPs, and (f) particles formed after 
methylated polymeric NPs reacted with BLG (0.272 mM) for 5 min and then heated.  

These results confirm the amyloid inhibition by fluorinated polymeric NPs and 

associated NPs generated during the inhibition process. The NPs generated during the 

amyloid inhibition process are relatively monodispersed compared to the NPs generated 

due to condensation of fluorinated polymeric NPs alone. These monodispersed NPs could 

be the composite material consisting of both 3F and BLG or only 3F. 
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Unlike fluorinated polymeric NPs treated BLG, fibrils were generated when BLG 

was treated with methylated polymeric NPs. However, these fibrils were thinner, 

relatively longer in size, and fewer in number, compared to the untreated BLG fibrils 

shown in Figure 3-6 (e) and (f). Along with fibrils, relatively small sized NPs were also 

observed, which could be composite materials consisting of nPM and BLG or simply NPs 

generated from the condensation of nPM. 

To analyze the length, size, and number of the BLG fibrils, composite NPs of 3F 

and nPM with BLG and their non-composite NPs were generated during the amyloid 

fibril inhibition process, and a series of histograms were plotted based on the AFM 

images shown in Figure 3-7.  

	

Figure 3-7. Histograms of the sizes of the (a) BLG fibrils formed at 90°C for 5 h, and 
(b) BLG fibrils formed after methylated polymeric NPs reacted with BLG (0.272 mM) and 
then heated. 
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The histogram of BLG fibrils showed that around 50±5 fibrils were <0.5 µm in 

length, and the majority of the fibrils were larger than 2 µm but smaller than 5 µm 

(Figure 3-7 (a)). No fibril was formed when BLG was treated with fluorinated polymeric 

NPs, but when treated with methylated polymeric NPs, fibrils were formed. These fibrils 

were fewer in number, compared to the untreated BLG fibrils (Figure (3-7 (b)).  

The histogram of nPM treated BLG also showed that few fibrils were below 0.5 

µm, but the overall size of the fibril length increased, compared to the untreated BLG 

fibrils; and the longest fibril was measured as >12 µm.  

	

Figure 3-8. Histograms of the sizes of the (a) evolved particles after heating fluorinated 
polymeric NPs at 90°C for 5 h, and (b) particles formed after fluorinated polymeric NPs 
reacted with BLG (0.272 mM) for 5 min and were then heated at 90°C for 5 h. The insert 
in the Figures shows the amplified frequency of the indicated particle size zones. 

The histograms of the NPs generated from the fluorinated and methylated 

polymeric NPs used in the fibrillation inhibition process are shown along with the NPs 
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generated from the control 3F and nPM NPs in Figures 3-8 and 3-9. Figure 3-8 (a) shows 

that NPs generated from fluorinated polymeric NPs after heating for 5 h at 90°C were 

mostly below 5±1 nm in diameter, and some ranged from 30±2 nm to 60±2 nm, which 

were obtained from the height profile from the AFM images. But as 3F NPs were used in 

the inhibition process against BLG, NPs sizes decreased, as shown in Figure 3-8 (b), 

where the majority of NPs ranges below 4 nm and in the range between 10±2 to 40±5 

nm, with a bimodal distribution.  

	

Figure 3-9. Histograms of the sizes of the (a) evolved particles after heating methylated 
polymeric NPs at 90°C for 5 h, (b) particles formed after methylated polymeric NPs 
reacted with BLG (0.272 mM) for 5 min, and then heated at 90°C for 5 h. 

This decrease in size indicates that the BLG interacting 3F NPs were restricted in 

growth. Similar to the fluorinated polymeric NPs, the histogram of the particles generated 

from the methylated polymeric NPs used to inhibit the BLG fibrillation showed decrease 
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in sizes and number, compared to the NPs generated from control nPM, shown in Figure 

3-9 (a) and (b). Although methylated polymeric NPs did not inhibit the fibril growth of 

BLG, this histogram showed that it interacted with BLG, which hindered the further 

growth of the methylated polymeric NPs. 

As the AFM images show, the fibrils and NPs generated from fluorinated and 

methylated polymeric NPs after the inhibition process were distinct in size, shape, and 

length, compared to the untreated BLG fibrils, fluorinated and methylated polymeric 

NPs; and a cross-sectional analysis gives further understanding of their structural 

formation, as shown in Figure 3-10.  

The height profiles obtained from the cross-section of the AFM images of BLG 

fibrils are shown in Figure 3-10 (a) and fluorinated and methylated polymeric NPs treated 

BLG and associated NPs are shown in Figure 3-10 (b) and (c), respectively. The height of 

the BLG fibrils ranged from 2±0.5 nm to 12±1 nm, where the majority were between 

4±0.5 nm to 6±1nm, and these numbers were consistent with published reports. (65)  
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Figure 3-10. Height profile of (a) BLG fibrils (0.272 mM), (b) 3F-BLG composite NPs 
formed after fluorinated polymeric NPs reacted with BLG (0.272 mM) for 5 min and then 
were heated, and (c) BLG fibrils and nPM-BLG composite NPs formed after methylated 
polymeric NPs reacted with BLG (0.272 mM) for 5 min and then were heated.  

The height of the NPs generated after the fluorinated polymeric NPs interacted 

with BLG in the inhibition process ranged from 5±1 nm to 35±5 nm. The height of the 

fibrils generated after the methylated polymeric NPs interacted with BLG mostly ranged 

from 8±1 nm to 12±1 nm, which was higher than the untreated BLG fibrils. Also, the 

NPs generated during this process had similar width / diameter as described earlier, while 

their height ranged from 15±1 nm to 20±2 nm.  

Adamcik et al. described the structural formation of the BGL fibrils based on the 

periodicity of the pitch in various fibrils observed in AFM obtained images. (65, 67) 
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Figure 3-11 shows the longitudinal cross-section of the BLG fibrils analyzed with a 

Nanoscale analyzer. Untreated BLG fibrils showed four types of periodicity (p) in the 

pitch, such as 70±8 nm, 160±10 nm, 200±15 nm, and 320±20 nm (Figure 3-11 (a)). Three 

of these four types of periodicities had fibrils height of 4±0.5 nm, 6±0.5 nm, and 8±1 nm, 

which represent 2, 3, and 4 individual fibrils getting together in twisted formation. 

However, one of the fibrils had a little different structural formation than the twisted 

shape fibrils, and with a 10±1 nm height and periodicity of 320±20 nm, it formed more 

helical-shaped fibrils. As these fibrils turned into helical shapes, their periodicity was half 

of the obtained 320 nm.  

Based on the obtained periodicities and fibril heights, 3D models representing all 

the fibril structures are shown on the left side of Figure 3-11 (a). The untreated BLG 

fibrils’ structural morphologies were consistent with already published reports. Figure 3-

11 (b) shows the cross-section of the fibrils that formed after methylated polymeric NPs 

interacted with BLG. These fibrils had different types of heights, but no distinct 

periodicity could be observed in any of the fibrils. This indistinct periodicity may imply 

that the methylated polymeric NPs treatment of BLG helped individual fibrils to compile 

together with more internal structural induction, such as increased b-sheet, which 

ultimately lead to the formation of a nanotube-type fibril structure. A 3D model is shown 

in the right side of Figure 3-11 (b), representing the fibril nanotube.  
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Figure 3-11. Longitudinal height profiles and pitch periodicities of (a) BLG (0.272 mM) 
fibrils, and (b) methylated polymeric NPs treated BLG fibrils. 3D structures show the 
possible structural formation for fibrils, based on the longitudinal height profile and the 
fibrils’ pitch periodicities. 

Based on the DLS and AFM analyzed data, a schematic representing possible 

formations of fibrils and associated NPs during the fibrillation inhibition process is 

shown in Figure 3-12.  
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Figure 3-12. Schematic representations of protein fibrillation processes and inhibition, 
using fluorinated and methylated polymeric NPs against BLG. 

ATR-FTIR is widely used to analyze the transformations that occur in protein 

secondary structures. (75, 92-94) Figure 3-13 shows the ATR-FTIR spectra of the 

nanocomposites generated after the amyloid inhibition process, along with the fibrillated 

and nonfibrillated BLG. Two amide peaks, amide I at 1725-1600 cm-1, and amide II at 

1525-1550 cm-1, were visible in all four spectra, such as BLG, fibrillated BLG, 3F treated 

composite NPs, nPM treated BLG fibrils and associated NPs. Another major peak at 

1725 cm-1 was also visible in all spectra. Vibration in this region represents the 

protonated carboxyl groups of aspartic and glutamic residues. (75)  
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Figure 3-13. ATR-FTIR spectra of BLG (0.272 mM), BLG (0.272 mM) fibrils, 3F and 
nPM NPs treated BLG (0.272 mM). 

Increase in the intensity of this peak implies more exposure of the backbone 

carboxyl groups, potentially through backbone cleavage. (75) The FTIR spectral zone 

representing CH3 and CH2 (1300-1480 cm-1) showed the presence of additional peaks in 

the fluorinated and methylated polymeric NPs treated BLG products, compared to both 
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the fibrillated and nonfibrillated BLG. These additional peaks were due to the presence of 

nPM and 3F functionality in the post inhibition process products. The presence of –CF 

peak at 1250 cm-1 and Si-CH2-R peak at 1210 cm-1 increases the possibility of having the 

combination of BLG and fluorinated silica particles present in the composite NPs. 

The fibrillated BLG spectrum showed that the absorbance intensity of the two 

amide peaks at 1625 cm-1 (amide I) and 1525 cm-1 (amide II) were reduced, but these two 

amide regions widened in wavenumber, compared to the nonfibrillated BLG, indicating 

structural transformation of BLG as fibrillation occurred. Also, increments in the 

intensity of peak at 1725 cm-1 confirmed the fibril formation of BLG as structural 

transition occurred. (75) The spectrum representing fibrils and associated NPs generated 

after the interaction of BLG and methylated polymeric NPs showed that the absorbance 

intensity reduced drastically in both the amide zones, and amide I peak at 1625 cm-1 

broke into three smaller peaks. Also, the increments in the intensity of the protonated 

carboxyl peak at 1725 cm-1 represented the presence of fibrillated BLG. Similarly, the 

spectrum representing the nanocomposites generated after fluorinated polymeric NPs 

interacted with BLG also showed reduction in two amide peaks, but unlike breaking into 

smaller peaks, amide I peak at 1625 cm-1 shifted to 1650 cm-1. The transition in the major 

peaks in the spectra can be concluded as a major conformational transformation in the 

secondary structure during the fluorinated and methylated polymeric NPs treatment of 

BLG.  
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For better understanding of the possible conformational changes in the secondary 

structures of BLG after the inhibition process, FTIR spectra in the amide zones were 

deconvoluted. Secondary structures are shown as numbers in the amide I zone (1600 cm-1 

to 1700 cm-1), and this zone was selected because it was observed as the most sensitive 

part of the spectra, where possible conformation change may occur.  

	

Figure 3-14. Deconvoluted ATR-FTIR spectra of BLG (0.272 mM), BLG (0.272 mM) 
fibrils, 3F and nPM NP treated BLG (0.272 mM). Individual peaks between 1600 cm-1 to 
1700 cm-1 are numbered. 
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Figure 3-14 shows the individual deconvoluted peaks that represent different types of 

protein secondary structures such as α-helix (1654±2 cm-1), β-sheet (1612-1650 cm-1 and 

1691±2 cm-1), β-turn (1666-1687 cm-1), and 310-helix (1663±3 cm-1). (92, 94) All the 

deconvoluted peaks for the secondary structures are shown in numbers in all the spectra 

in Table 3-1.  

Table 3-1. Deconvoluted components of the secondary structures of BLG (0.272 mM), 
BLG (0.272 mM) fibrils, 3F and nPM treated BLG (0.272 mM) obtained from Figure 3-
14. 
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 From Table 3-1, it can be observed that the a-helix structure disappeared after 

the methylated polymeric NPs treated BLG, and it turned into random secondary 

structure and 310-helical structure.  

The secondary structures were identified from the deconvoluted spectra, and 

individual spectral areas were calculated. Comparative data of the conformational change 

of the secondary structures b-sheet and a-helix were calculated based on the % area of 

individual peaks obtained from the spectra is shown in Figure 3-15.  

	

Figure 3-15. Comparative β-sheet (a) and α-helix (b) % of BLG, fibrillated BLG, 3F and 
nPM treated BLG. P value obtained after performing one-way ANOVA test. **, and *** 
represent P value ≤ 0.01 and ≤ 0.001, respectively, obtained after performing one-way 
ANOVA test among the samples.  
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Analyzed data shows that β-sheet increased by 11 % and a-helix decreased by 9 

% in the fibrillated BLG, compared to the nonfibrillated BLG. These increases in the β 

structures were expected, since they are responsible for the formation of fibrils. Increased 

b-sheet and decreased a-helix imply that α-helix is transformed into β structures.  

The fibrils and associated NPs generated after interaction of methylated polymeric 

NPs with BLG showed disappearance of the a-helix structure and 7 % reduction in the b-

sheet structure, which eventually converted to random secondary structures and 310-

helical structures. A different picture was observed with data obtained from the 

fluorinated polymeric NPs treated BLG nanocomposites, where β-sheet decreased by 29 

% and α-helix increased by 10 %, which confirmed the b-sheet induction by the 

fluorinated polymeric NPs. Figure 3-15 shows the comparative plotting of the b-sheet % 

(Figure 3-15 (a)) and α-helix % (Figure 3-15 (b)) in each individual case, with one-way 

ANOVA analysis indicating that the observed conformation shifts are significant.   

BLG reportedly has three potential binding sites for ligand binding: 1) internal b-

barrel cavity, 2) surface hydrophobic pocket in a groove between α -helix and b-barrel, 

and 3) outer surface near Trp19-Arg124. (95-100) To examine the binding mode of 

fluorinated and methylated polymeric NPs at the active site of BLG and how they may 

affect the conformation of BLG, docking simulations were carried out using AutoDock, 
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but due to fluorinated and methylated polymeric NPs size constrains, only monomeric 

hydrolyzed forms of both 3F and nPM or silanols were used.  

	

Figure 3-16. Predicted modes of binding between (a) fluorinated and (b) methylated 
silanol with BLG at the lowest binding energy. Hydrogen bonds are marked as a line of 
green dots. 

During the docking, a maximum number of 10 conformers were considered, and 

the lowest energy conformation was used for further analysis. Docking results showed 

that both 3F and nPM were located in the β-domain, as shown in Figure 3-16 (a), and (b).  

On the basis of Figure 3-16, the interacting residues of possible binding patterns 

and properties resulting from the bindings are listed in Table 3-2. The docking results 

showed that fluorinated silanol binds to the surface of BLG by two hydrogen bond 

interactions with GLU44. The predicted binding site for fluorinated silanol on BLG was 

clustered around residues such as HIS161, SER21, TYR20, TYR42, GLU44 and VAL45. 
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There were two hydrogen bonds between H3F and ILE, with the distance of 2.874 Å and 

2.744 Å.  

Table 3-2. Dock scores and summary of molecular interaction between fluorinated and 
methylated silanols and BLG. 

	

Similarly, the predicted binding site for methylated silanol on BLG was clustered 

around residues such as GLN5, ALA139, LYS141, ALA142, and THR4. The docking 

results showed that methylated silanol binds to the surface of BLG by one hydrogen bond 

interactions, and these hydrogen bonds occurred between methylated silanol with GLN5, 

with distance of 2.021 Å. 3F and nPM bonded with hydrophobic amino acids of BLG, 

where the hydroxyl group acted as hydrogen bond donor. Thus, it can be concluded that 

the interaction of the hydroxyl groups in the structure of fluorinated and methylated 

polymeric NPs with BLG has a significant role in the binding process, which eventually 

takes part in inhibiting and prohibiting the amyloid fibril process. 
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3.6 Conclusion 

This study demonstrated the amyloid inhibition behavior of fluorinated and 

methylated polymeric silane NPs against a globular protein, BLG. The hydrolysis and 

condensation profiles of both silanes were determined using DLS, in order to control 

particle size and reactivity. After initial confirmation of the amyloid inhibition capability 

of fluorinated polymeric NPs by DLS and fluorescence data, detailed structural 

information was obtained by AFM. The AFM-based study showed the complete 

inhibition of amyloid fibrils growth by fluorinated polymeric NPs, but there was no 

inhibition by methylated polymeric NPs. Later, ATR-FTIR study showed transformation 

in the secondary structure of BLG during the inhibition process, where it showed that 

decrease in b structures occurred due to interaction between fluorinated polymeric NPs 

and BLG. Expectedly, the percentage of b structures increased during the interaction 

between methylated polymeric NPs and BLG, since the AFM image showed that 

methylated polymeric NPs promoted amyloid formation. Lastly, a molecular docking 

study confirmed that free silanols were involved through hydrogen with protein residues 

for both silanes. The successful amyloid inhibition ability of fluorinated polymeric NPs 

showed the potential use of these NPs as nanotherapeutic agents against amyloid 

diseases. In the future, a comprehensive study on the use of these fluorinated polymeric 

NPs against various amyloid-based diseases should be explored.  
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     CHAPTER 4 

AQUEOUS SYNTHESIS OF SUPERHYDROPHOBIC NANOPARTICLES AND 

THEIR AMYLOID INHIBITION ABILITY 

4.1 Abstract 

Superhydrophobic silica nanoparticles (SHSN) were synthesized from fluorinated 

(3F) and methylated (nPM) trimethoxy-silane precursors. This synthesis from 

hydrophobic precursor silanes occurs through an acid hydrolysis followed by base-

initiated condensation, without the need for organic solvents. SEM and AFM analysis 

reported that fluorinated SHSN were relatively monodisperse and smaller (250±30 nm), 

compared with the methylated SHSN (500±200 nm). Water contact angles on both 

fluorinated and methylated SHSN coated surfaces were > 150°. Amyloid inhibition 

behavior of these SHSN against BLG showed that fluorinated SHSN could inhibit 

amyloid fibrillation, whereas under the same conditions the methylated SHSN did not 

inhibit BLG fibrillation.  
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4.2 Introduction 

A surface is considered superhydrophobic when it exhibits a water contact angle 

larger than 150° and detachment or sliding angle lower than a 5° tilt of the surface. 

Superhydrophobic surfaces have gained wide interest due to their low fouling, self-

cleaning, and low friction properties. (1) Superhydrophobic surfaces have various 

potential applications due to their anticorrosive, self-cleaning, antifogging, anti-icing, 

drag reducing, oil-water separating, and water harvesting properties. (2-11) Nanoparticles 

(NPs) with superhydrophobic properties can also be used as drug delivery vehicles and 

therapeutic agents against the protein misfolding-based diseases. (12-14) Engineered 

biocompatible NPs have shown great promise as therapeutic agents for amyloid-related 

diseases, as they are capable of crossing the blood-brain-barrier (BBB). (15, 16) NPs can 

both promote and inhibit protein aggregation by binding with proteins and trapping the 

early intermediates. (17) N-isopropylacrylamide / N-tert-butylacrylamide, titanium oxide, 

and quantum dots based NPs can promote the protein assembly into amyloid fibrils in 

vitro, by assisting the nucleation process. (18-20) In contrast, other studies have 

demonstrated that hydrophobic NPs, or NPs functionalized with hydrophobic molecules, 

can inhibit the fibrillation process. (21-22) Cabaleiro-Lago et al. reported that copolymer 

NPs of variable hydrophobicity inhibited the fibrillation of αβ (1-40). (17) Fluorinated 

NPs are also potential inhibitors against the αβ fibrillation. (23) To investigate 
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superhydrophobic NPs against amyloid formation, we have synthesized fluorinated and 

methylated SHSN from alkyl- and fluoro-silane precursors. 

Conventional synthesis of SHSN follows the Stöber method, where hydrophilic silica 

nanoparticles (HSN) are first synthesized, isolated, purified, and then functionalized 

using the hydrophobic silanes. (8, 9) This multi-step method for synthesizing SHSN is 

carried out using alcohol as the solvent, and it requires addition of a strong base. Here, 

we present an aqueous method to synthesize SHSN from a single precursor, where 

precursors are initially hydrolyzed in a mild acidic condition before a catalyst (NH4OH) 

is added to initiate condensation. This method requires only a single isolation and 

washing step, providing a more sustainable and environmentally friendly approach to 

produce SHSN. Our synthesized SHSN were tested against the fibrillation of BLG. The 

size and shapes of the SHSN were assessed using DLS and AFM, and 

superhydrophobicity was confirmed by static water contact angle.  

4.3 Experimental procedure 

Materials 

3,3,3-trifluoropropyl trimethoxy silane (3F, > 95 % purity, MW = 218.3, d = 

g/ml), and n-propyltrimethoxy silane (nPM, > 95 % purity, MW = 164.3, d = 0.94 g/ml) 

were purchased from Gelest, Inc. (Morrisville, PA).  50 % (w/w) NH4OH was purchased 
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from Fisher Scientific. Muscovite mica was purchased from SPI supplies for the AFM 

study (PA, USA); AFM tips were obtained from TED Pella Inc., CA (TAP300AL-G-50). 

Synthesis of fluorinated and methylated SHSN 

0.4 M nPM and 3F were hydrolyzed at pH 3.0 in glass vials at room temperature. 

Once nPM and 3F were hydrolyzed, 0.05 M NH4OH was added to generate NPs with 

different sizes. Reactions were continued until stable white NPs were visible. Once the 

NPs were formed, both nPM and 3F solutions with newly formed NPs were centrifuged; 

and then the NPs were separated from the supernatant and washed with DI water, and 

freeze-dried overnight.  

 

Characterization of fluorinated and methylated SHSN 

SEM images were taken using a FEI Quanta FEG 650 equipped with an Oxford 

X-Max Energy Dispersive X-ray spectroscope (EDS) housed in the Microscopy Core 

Facility at Utah State University. Samples were imaged with 20 kV accelerating potential 

without conductive coatings. AFM images were taken using a Nanoscope III Bioscope 

(Digital Instrument, Inc.) in tapping mode. 100 µl samples were dropped on freshly 

cleaved mica surfaces, then gently washed with DI water, and air-dried before taking 

AFM images. 

The hydrophobicity of the NPs was determined using water contact angle. The 

contact angle was measured with a VCA Optima digital contact angle instrument (AST 
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products, Billerica, MA). 10 µl DI water was dropped on NP thin films prepared on 

double-stick tape over glass slides, and then the contact angle was measured. 

The NP FTIR spectra were collected using a Varian 660-IR with a horizontal 

single reflection Pike Technologies MIRacle attenuated total reflectance (ATR) unit, 

fitted with a ZnSe crystal. 100 µl samples were drop cast on the ZnSe crystal of the ATR 

platform, and air-dried before taking the reading. Readings were taken after averaging 20 

scans over the range of 600 to 1800 cm-1 with a resolution of 1 cm-1. Prior to each 

reading, a background scan was acquired. The spectra provide signatures of the pure NPs 

for future works involving mixed alkyl-fluoro-NPs and NP-protein interactions. 

Interaction of fluorinated and methylated SHSN with BLG 

  Fluorinated and methylated SHSNs were reacted against BLG at pH 2.0 and room 

temperature for 10 min, and then the fibrillation process was tested at 85°C for 5 h. Next, 

samples were cooled down to room temperature again, using ice bath, and resulting 

protein fibrils were investigated using AFM, operating in tapping mode in air.  

4.4 Results and Discussion 

SEM images of fluorinated and methylated SHSN are shown in Figure 4-1 (a) and 

(b), respectively. Average size of the fluorinated and methylated SHSN were 250±30 nm 

and 500±200 nm, respectively. 	
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Figure 4-1. SEM images of (a) fluorinated SHSN and (b) methylated SHSN 

These size DIstributions were further confirmed using AFM image analysis 

shown as 3D structures in Figure 4-2. Both SEM and AFM showed that the methylated 

NPs were larger in size, compared to the fluorinated NPs, and the fluorinated NPs were 

highly monodispersed, as compared to the methylated NPs. 

	

Figure 4-2. AFM images of (a) fluorinated SHSN, and (b) methylated SHSN. 



	
	

	
	
	
	
	

117	

The presence of the fluorine functionality in the fluorinated NPs was confirmed, 

as ATR-FTIR-spectra shows the –CF stretching at 1250 cm-1, 840 cm-1, and 990 cm-1 

(Figure 4-3). Presence of CH3, and CH2 bending along with the Si-O-Si, and Si-CH2-R 

stretching peaks confirmed the hydrophobic functionality on both the SHSN surfaces. 

 

 

Figure 4-3. ATR-FTIR spectra of (a) fluorinated SHSN (red, top), and (b) methylated 
SHSN (black, bottom). 

Superhydrophobicity was confirmed by water contact angles on the fluorinated 

and methylated SHSN-coated surfaces. Figure 4-4 (a) and (b) show that the water contact 
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angles are >150° on both the fluorinated and methylated SHSN-coated surfaces, and 

confirm the superhydrophobic behavior of both SHSNs. 

 

Figure 4-4. Static water contact angle (a) fluorinated SHSN, and (b) methylated SHSN 
prepared as thin films on double-stick tape. 

When these SHSN were used against the fibrillation of BLG, the fluorinated 

SHSN were capable of inhibiting the amyloid formation, with only a few fibrils being 

observed in the AFM image representing the fluorinated SHSN-treated BLG (Figure 4-5 

(a)). In the same AFM image, significant aggregated features are observed, which may be 

the unreacted NPs or NP-BLG composites formed after the NPs and BLG interaction. 

However, methylated SHSN did not inhibit the fibrillation of BLG, as Figure 4-5 (b) 

shows numerous fibrils formed during the inhibition process. This distinct inhibition 

behavior of fluorinated and methylated SHSN proves that the amyloid inhibition is 

discretely affected, due to the presence of the fluorine functionality.  
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Figure 4-5. AFM images of amyloid inhibition of BLG by (a) fluorinated SHSN, and (b) 
methylated SHSN. 

4.5  Conclusion 

The successful aqueous synthesis of the superhydrophobic NPs from both 

fluorinated and methylated silane precursors showed a new, environmentally friendly and 

simple approach to synthesize the SHSN, without using a orthosilicate precursor, 

followed by surface modification with the hydrophobic silane as a capping layer. These 

SHSN have applications as discrete particles for tuning protein secondary structure, as 

well as composite properties when assembled as thin films, rendering the surface 

superhydrophobic. The facile synthesis of the NPs in aqueous solvents offers this 

approach suitable for biological interactions. The unique amyloid inhibition ability of the 

fluorinated SHSN, contrasted with the methylated SHSN, underscores the role of the 

fluoro-groups in this activity. Both NPs exhibited a similar surface energy, based on 



	
	

	
	
	
	
	

120	

sessile water droplet contact angles, thus the protein structure-tuning behavior is not 

merely a function of surface energy. These results suggest the potential of fluorinated 

SHSN to be used in the treatment of protein misfolding-based diseases as well as in 

biotechnology applications where protein aggregation and assembly must be controlled. 

The aqueous synthesis process from a single precursor is an economically and 

environmentally viable approach to scaling this technology for superhydrophobic 

nanoparticle production. 
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CHAPTER 5 

SUPERHYDROPHOBIC SILICA NANOPARTICLES AS CARRIERS FOR 

HYDROPHOBIC SMALL DRUG MOLECULES 

5.1 Abstract 

Two hydrophobic therapeutic biomolecules, curcumin and quercetin were 

successfully loaded on fluorinated and methylated superhydrophobic silica nanoparticles 

(SHSN). DLS and SEM were used to measure the sizes of the curcumin and quercetin-

loaded nanoparticles (NPs). Hydrodynamic radius (Rh) measured by DLS showed that 

after loading curcumin, the Rh of the fluorinated SHSN increased from 135 nm to 165 

nm, and the Rh of the methylated SHSN increased from 250 nm to 308 nm. Similarly, 

after loading quercetin, Rh of the SHSN increased from 135 nm to 175 nm, but the Rh of 

the methylated SHSN increased from 250 nm to bimodal sizes of NPs, such as 134 nm 

and 380 nm. This bimodal distribution of quercetin-loaded methylated SHSN was later 

confirmed by DLS study. Curcumin loading in both fluorinated and methylated NPs and 

quercetin loading in methylated NPs did not change the spherical shape of the 

corresponding NPs, but quercetin loading in fluorinated NPs deformed the shape of the 

NPs. Hydrophobicity of the fluorinated SHSN decreased after loading curcumin and 

quercetin, as water contact angle decreased from 151° to 136° and 142°, respectively. 

Similarly, hydrophobicity of the methylated SHSN also decreased after loading of 
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curcumin and quercetin, as water contact angle decreased from 155° to 142° and 145°, 

respectively. ATR-FTIR spectra confirmed the conjugation of the curcumin and quercetin 

in the NPs. Release kinetic study showed a quick initial burst of curcumin and quercetin 

release within 1 to 1.5 h; while cumulative releases reached their plateau after 5 h for 

curcumin and 7 to 10 h for quercetin, from both fluorinated and methylated NPs. 

5.2 Introduction 

  Biomolecules such as curcumin and quercetin recently have attracted the attention 

of the scientific community, due to their astonishing antioxidant, anti-inflammatory, 

anticarcinogenic, chemopreventive, antiangiogenic, anti-diabetic, antiviral, and 

antibacterial properties. (1-10) Extensive research has been carried out on both quercetin 

and curcumin around the globe, to demonstrate their great potential as therapeutic agents, 

and both have shown the way toward clinical trials for a variety of diseases. (11-14) 

Despite the wide spectrum of beneficial properties, the use of both of these biomolecules 

in the commercial field is limited, because of their hydrophobic nature. (15-18) 

Hydrophobicity has been the major obstacle in their progress from being used as a drug 

in the lab to clinical studies. In recent years, researchers have focused on exploring the 

potential applications of these hydrophobic small molecules as drugs, with the aid of 

modern nanotechnologies. (19-21) Loading or conjugating these molecules in NPs, 

liposomes, micelles, soy protein isolate, oil body encapsulation, cyclodextrin, chitosan, 
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and phospholipid complex has proven to enhance the dispersibility and bioactivity of 

these molecules for clinical trials. (22-30) Conjugating or loading the drug molecules in 

NPs has become increasingly remarkable, because it offers numerous benefits, including 

ease of handling, enhanced stability, controlled release, and enhanced bioavailability and 

efficacy. Inorganic silica, alumina, and titanium-based NPs are widely used as drug 

carriers for their compatibility in biological systems. (31-36). Superhydrophobic silica 

nanoparticles (SHSN) have the potential to be used as drug delivery vehicles for the 

active drug molecules. Conventional synthesis of drug-loaded SHSN includes the initial 

synthesis of hydrophilic silica NPs, following the Stöber method, followed by isolation, 

purification of the NPs, and then functionalizing them, using a hydrophobic silane; 

followed by further isolation, purification, and drug loading steps. (37, 38) This multistep 

method is carried out using alcohol as a solvent, and it requires the addition of a strong 

base. In previous chapters, we have described a new one-step aqueous synthesis of 

SHSN, which opens the door to loading or conjugating small hydrophobic drug 

molecules in SHSN, in an environmentally friendly and biocompatible system. 

This study aimed to synthesize quercetin and curcumin-loaded / conjugated 

superhydrophobic silica NPs in an environmentally friendly aqueous system, with only a 

single isolation and washing step. This effective and stable incorporation of drug 

molecules in the SHSN can lead to other hydrophobic drug molecules being integrated in 

the NP-based drug delivery vehicles. 
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5.3 Experimental procedure 

Materials 

3,3,3-trifluoropropyl trimethoxy silane (3F, > 95 % purity, MW = 218.3, d = 1.14 

g/ml), and n-propyltrimethoxy silane (nPM, > 95 % purity, MW = 164.3, d = 0.94 g/ml) 

were purchased from Gelest, Inc. (Morrisville, PA).  50 % (w/w) NH4OH was purchased 

from Fisher Scientific. Muscovite mica was purchased from SPI supplies for the AFM 

study (PA, USA); AFM tips were obtained from TED Pella Inc., CA (TAP300AL-G-50). 

Ethanol was obtained from Pharmco-AAPER (Brookfield), and dimethyl sulfoxide 

(DMSO) (99.5 %) was obtained from Sigma-Aldrich (MO, U.S.A). Quercetin hydrate 

was purchased from Acros Organics (Morris Plains, NJ, USA), and curcumin was 

purchased from Sigma-Aldrich (MO, U.S.A). 

Synthesizing silica-drug molecule composite 

 Hydrolysis of 3F (0.4 M) and nPM (0.4 M) were performed at pH 3.0 separately, 

in glass vials in DI water. 4 mg of quercetin and curcumin were separately dissolved in 2 

ml ethanol to have 2 mg/ml solution, and then added to the hydrolyzed silanes. Next, 

quercetin and curcumin-loaded silica NPs were synthesized, following the Stöber 

method. (39) The overall experimental process is shown in Figure 5-1. Once the synthesis 

was completed, as white colloidal particles appeared, NPs were centrifuged, washed, and 

lyophilized for further characterization and drug release study. Note: samples were taken 

before lyophilization, to perform DLS study. 
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Figure 5-1. Flow chart and corresponding images of loading small drug molecules in 
HSNs. 

Characterization of drug-loaded silica nanocomposite particles 

The hydrodynamic radii (Rh) of the curcumin and quercetin-loaded or unloaded, 

fluorinated and methylated NPs were analyzed using DLS (DynaPro NanoStar, Wyatt 

Technology Corporation, Santa Barbara, CA), with a 658 nm laser. DLS measurements 

were taken using a quartz cuvette (JC-426, 1 µl) filled with 1 ml aqueous solution 

containing drug-loaded and unloaded NPs. Prior to the Rh measurement, NPs in the 

aqueous solutions were diluted 100 times.  

SEM was performed with a FEI Quanta FEG 650 equipped with an Oxford X-

Max Energy Dispersive X-ray Spectroscope (EDS) housed in the Microscopy Core 



	
	

	
	
	
	
	

128	

Facility at Utah State University. Samples were imaged with 20 kV accelerating 

potential, without conductive coatings. AFM images were taken using a Nanoscope III 

Bioscope (Digital Instrument, Inc.) in tapping mode. 100 µl samples were dropped onto 

freshly cleaved mica surfaces, and then gently washed with DI water and air-dried before 

taking AFM images. The water contact angle was measured with a VCA Optima digital 

contact angle instrument (AST products, Billerica, MA) on the quercetin and curcumin-

loaded and non-loaded HSN kept on a double-stick tape surface over glass slides, using 

10 µl sessile drops of DI water. The chemical bonding between silica and drug molecules 

were analyzed by FTIR, using a Varian 660-IR with a horizontal single reflection Pike 

Technologies MIRacle attenuated total reflectance (ATR) unit, fitted with a ZnSe crystal. 

100µl samples were drop casted on the ZnSe crystal of the ATR platform, and air-dried 

before taking the reading. Readings were taken after averaging 20 scans over the range of 

600 cm-1 to 1800 cm-1, with a resolution of 1 cm-1. Prior to each reading, a background 

scan was acquired. 

Drug release kinetics study  

Drug release kinetic study was performed in a PBS buffer solution (pH 7.0) for 4 

days. 0.5 mg/ml curcumin and quercetin-loaded, fluorinated and methylated SHSN were 

added in 1 ml PBS solution and shaken (200 rpm) at 37°C, kept in an incubator. All 

samples were covered with aluminum foil during the incubation period.  
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Figure 5-2. Calibration curve for (a) curcumin, and (b) quercetin measured in 50 % 
ETOH and 50 % DMSO, respectively. 

After being centrifuged at 14 k for 10 min, 100 µl samples were collected from 

the supernatant of each vial at the desired time, and added in 100 µl DMSO and ETOH in 

a 96-well plate to measure quercetin and curcumin absorbance, respectively. Absorbance 

data were taken at 370 nm and 420 nm wavelengths for quercetin and curcumin, 
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respectively. Prior to the analysis of release kinetics of both curcumin and quercetin, 

calibration curves were obtained, as shown in Figure 5-2 (a) and (b) for curcumin and 

quercetin, respectively. For the absorbance reading of curcumin samples 50 % ETOH, 

and for quercetin samples 50 % DMSO solutions were used. 

5.4 Results and Discussion 

Hydrodynamic radius (Rh) of curcumin and quercetin loaded on both fluorinated 

and methylated NPs are shown in Figures 5-3 and 5-4, respectively. Rh size of the 

curcumin loaded fluorinated NPs were larger (165±18 nm), compared to the unloaded 

fluorinated NPs (135±10 nm) shown in Figure 5-3 (a). Similarly, the Rh of the curcumin-

loaded methylated NPs were larger (308±35 nm), compared to the unloaded NPs (250±22 

nm) shown in Figure 5-3 (b).  
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Figure 5-3. Hydrodynamic radius (Rh) of curcumin loaded (a) fluorinated NPs, and (b) 
methylated NPs. 

Quercetin-loaded fluorinated and methylated NPs followed a similar trend as 

curcumin-loaded NPs. Figure 5-4 (a) shows that quercetin-loaded fluorinated NPs were 

larger (175±8 nm), compared to the unloaded NPs (135±10 nm). But interestingly, a 

bimodal distribution of NPs was observed in the case of quercetin-loaded methylated 

NPs, as two sizes of 134±5 nm and 380±20 nm can be observed in Figure 5-4 (b). 

Increase in the sizes of the drug-loaded fluorinated and methylated NPs indicates the 

successful loading or conjugation of the drug molecules.  
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Figure 5-4. Hydrodynamic radius (Rh) of quercetin-loaded (a) fluorinated NPs, and (b) 
methylated NPs. 

For further confirmation, SEM images were obtained, as shown in Figures 5-5 

and 5-6.  SEM images confirmed the increase of NP sizes after loading the drug 

molecules. Figure 5-5 (a) and (b) show the curcumin-loaded and unloaded fluorinated 

NPs. Curcumin-loaded fluorinated NPs (Figure 5-5 (a)) showed increase in size, 

compared to the unloaded NPs (Figure 5-5 (b)), as their diameter increased from 250±20 

nm to 290±5 nm, which is consistent with the DLS-obtained sizes.  

An opposite trend can be observed in the curcumin-loaded methylated NPs’ sizes, 

as curcumin-loaded NPs decreased to 450±50 nm (Figure 5-5 (d)) from unloaded NPs of 

540±50 nm (Figure 5-5 (c)). The shapes of the NPs didn’t change after curcumin was 
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loaded in the fluorinated NPs, rather it remained smooth and spherical as it was in the 

unloaded NPs. However, after curcumin was loaded in the methylated NPs, the shape of 

the NPs no longer remained spherical, rather it turned into egg-shaped structures. 

	

Figure 5-5. SEM images of (a) fluorinated NPs, (b) curcumin-loaded fluorinated NPs, (c) 
methylated NPs, and (d) curcumin-loaded methylated NPs. 

Quercetin-loaded fluorinated NPs also increased in size (290±10 nm) (Figure 5-6 

(a)), compared to the unloaded NPs (250±20 nm) (Figure 5-6 (b)); and this increase is 
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consistent with the DLS-obtained data. However, fluorinated NPs were deformed, 

unsmooth in shape, after quercetin was loaded.  

	

Figure 5-6. SEM images of (a) fluorinated NPs, (b) quercetin-loaded fluorinated NPs, (c) 
methylated NPs, and (d) quercetin-loaded methylated NPs.  

Quercetin-loaded methylated NPs (Figure 5-6 (d)) didn’t change in shape, 

compared to the unloaded NPs (Figure 5-6 (c)); rather, bimodal NPs such as (235±5 nm 

and 750±10 nm) were observed, compared to the unloaded NPs (540±50 nm) shown in 

Figure 5-6 (c). This bimodal distribution is consistent with the DLS-analyzed sizes.  
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The transformation in the hydrophobicity after loading the drug molecules in 

fluorinated and methylated NPs’ surfaces was studied using water contact angles, as 

shown in Figure 5-7 (a) and (b), respectively. Curcumin loading decreased the 

hydrophobicity in both fluorinated and methylated NPs, as the water contact angle 

dropped from 151°±1° to 136°±2° on the fluorinated NPs and 155°±1° to 142°±1° on the 

methylated NPs’ surfaces. Similarly, quercetin loading also decreased the water contact 

angle on the NPs’ surfaces, as water contact angle dropped from 151°±1° to 142°±2 on 

the fluorinated NPs and 155°±1° to 145°±1 on the methylated NPs’ surfaces. 

 

Figure 5-7. Static water contact angles measured on curcumin and quercetin-loaded (a) 
fluorinated NPs, and (b) methylated NPs’ surfaces. 

ATR-FTIR spectra of the curcumin and quercetin-loaded NPs confirmed the 

presence of these two drug molecules on the surface of both the fluorinated and 
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methylated NPs. ATR-FTIR spectra of curcumin-loaded fluorinated and methylated NPs 

are shown in Figure 5-8 (a) and (b), respectively. The presence of the aromatic 

functionality from 1490 cm-1 to 1690 cm-1 confirms the presence of curcumin on both the 

fluorinated and methylated NPs’ surface. The presence of fluorine functionality was 

confirmed as the -CF bending stretch was observed at 1250 cm-1 and 840 cm-1.  

	

Figure 5-8. ATR-FTIR spectra of curcumin-loaded (a) fluorinated NPs, and (b) 
methylated NPs. 

Similarly, quercetin loading in both fluorinated and methylated NPs was 
confirmed in the ATR-FTIR spectra shown in Figure 5-9 (a) and (b), respectively, with 
the presence of the peak around the aromatic zones being 1490 cm-1 to 1690 cm-1. 
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Figure 5-9. ATR-FTIR spectra of quercetin-loaded (a) fluorinated NPs, and (b) 
methylated NPs.  

After the successful loading of curcumin and quercetin molecules in both 

fluorinated and methylated NPs, release kinetics of these drug molecules were also 

studied. The release kinetics of curcumin from the fluorinated and methylated NPs in the 

PBS solution showed that from both NPs, a quick burst of curcumin release occurred 

within 60±10 min, and then cumulative release reached the plateau after 300±10 min. 

However, only 20 % and 12 % of curcumin were released from the fluorinated and 

methylated NPs, respectively, after reaching the plateau (Figure 5-10).  
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Figure 5-10. Release kinetics of curcumin from (a) fluorinated NPs, and (b) methylated 
NPs. 

Unlike the curcumin release, quercetin release was slower from both fluorinated 

and methylated NPs, as shown in Figure 5-11 (a) and (b), respectively. After an initial 

burst of quercetin release within 100±20 min, a total of 32 % quercetin was released from 

the fluorinated NPs over 420±20 min, and 40 % of quercetin was released from the 

methylated NPs over 600±30 min, after reaching the plateau.  

Ethanol dissolved curcumin and quercetin initially were dissolved in aqueous 

solution at pH 3.0, and later condensed to form NPs in basic solution (at pH ~ 9.5 to 

10.0), by adding NH4OH. Although curcumin is expected to be stable at a pH near 10.0, 

curcumin may be degraded at such high pH, which may reduce the curcumin’s efficacy 

as a drug, as well as its loading efficiency. Nevertheless, the curcumin loading and 

release was a proof of concept, along with that of quercetin. The possible degradation 



	
	

	
	
	
	
	

139	

may be mitigated by the presence of the silane molecules, which can stabilize compounds 

(e.g. enzymes are encapsulated in silane porous glasses and are more stable against 

denaturing conditions).  

The higher release % of quercetin from fluorinated and methylated NPs, 

compared to curcumin, means that these NPs are relatively better drug delivery vehicles 

for quercetin. As the time of the optimum release of curcumin and quercetin varies, they 

can be suitable to be used in different biological systems where faster or slower drug 

release is needed.  

 

Figure 5-11. Release kinetics of quercetin from (a) fluorinated NPs, and (b) methylated 
NPs.     

5.5 Conclusion 

 In this study, we successfully loaded two hydrophobic drug molecules, curcumin 

and quercetin, on fluorinated and methylated SHSN in a simple and environmentally 
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friendly aqueous system. The loading or conjugation of both the molecules was 

confirmed using different analytics tools such as DLS, AFM, and ATR-FTIR. The release 

kinetics of the drug molecules showed distinct behavior, as curcumin release was quicker 

and lesser than the quercetin release. Further study on the effect of the drug-loaded NPs 

against the biological cells could reveal the efficiency of these drug-loaded NPs. 
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CHAPTER 6 

SILICA AND SPIDER SILK-BASED NANOCOMPOSITES SYNTHESIS	

6.1 Abstract 

This study introduced a simple and environmentally friendly method to synthesize 

silica and spider silk protein-based nanocomposites. Prior to synthesis of the 

nanocomposites, spider silk protein and silica precursors were dissolved and mixed in 

aqueous solution, using microwave technology. Both SEM and AFM images showed that 

the synthesized fluorinated spider silk-silica nanocomposites were a mixture of two types 

of spherical NPs with the size < 100 nm and > 300 nm attached to each other. However, 

methylated spider silk-silica nanocomposites were nanoaggregates with a mixture of 

irregular-shaped nanospheres with the sizes < 200 nm. Deconvoluted ATR-FTIR spectra 

confirmed the occurrence of conformational changes in the spider silk proteins during 

their integration with fluorinated and methylated silica to form the nanocomposites. Total 

amount of b structures increased by 10% in the spider silk-methylated silica 

nanocomposites, compared to the spider silk protein, but decreased by 28% in the spider 

silk-silica nanocomposites. Increased b structures can enhance the strength of the spider 

silk and overall nanocomposites.  
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6.2 Introduction 

Protein-based composite materials have vast applications in biomedical fields 

such as immunology, cancer research, and drug delivery. (1-4) These composite materials 

are also useful in material science areas such as self-assembled materials, quantum dot 

bioconjugates, sensors, and inorganic materials synthesis. (5-11) Silica particles are 

widely used in industry, medicine, and nanotechnology (12, 13); and silica-based 

biomaterials have potential applications in tissue engineering and drug delivery systems. 

(14) Recombinant spider silk protein (rSSP) is a promising biomaterial with huge 

potential in textiles, and in the biomedical and manufacturing industry, in the form of 

fibers, films, hydrogels, lyogels, and adhesives. (15-21) Recently, spider silk-based 

materials have shown great promise to attach and proliferate fibroblast cells. (22-27)  

In the earlier chapters, we have shown that hydrophobic n-propyltrimethoxy 

silane (nPM) and 3,3,3-trifluoropropyl trimethoxy silane (3F) both can induce the 

secondary structures of the protein in their hydrolyzed state, and afterward, composite 

particles consisting of protein and silica can be formed in the condensation process. Thus, 

we hypothesize that nPM and 3F can induce spider silk proteins in their hydrolyzed state, 

and nanocomposites consisting of spider silk and silica can be synthesized by condensing 

the dissolved spider silk and nPM / 3F mix. The objective of this study was to synthesize 
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spider silk-silica-silica nanocomposites from an aqueous mix of nPM / 3F and spider silk 

protein. 

 We have successfully synthesized a new type of spider silk-silica nanocomposites 

from spider silk and an nPM / 3F-mix aqueous solution. The synthesized spider silk-silica 

nanocomposites have improved properties due to the controlled growth of nanoscale 

organic-inorganic interfaces and composite structural features. Our synthesized 

nanocomposites can be used to optimize the mechanical function and stability of 

biomaterials. These nanocomposites also can be used in immunology, cancer research, 

drug delivery devices, and biosensors.  

6.3 Experimental procedure 

Materials 

3,3,3-trifluoropropyl trimethoxy silane (3F, > 95 % purity, MW = 218.3, d = 1.14 

g/ml) and n-propyltrimethoxy silane (nPM, > 95 % purity, MW = 164.3, d = 0.94 g/ml) 

were purchased from Gelest, Inc. (Morrisville, PA).  50 % (w/w) NH4OH was purchased 

from Fisher Scientific. Muscovite mica was purchased from SPI supplies for AFM study 

(PA, USA); and AFM tips were obtained from TED Pella Inc., CA (TAP300AL-G-50). 

Two different types of rSSP protein, major ampullate silk protein rMaSp1 and major 

ampullate silk protein rMaSp2, were purified from the milk of transgenic goats through 

tangential flow filtration, precipitation, and washing. 
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Synthesis of spider silk-silica nanocomposites 

At first, 3F (0.4 M) and nPM (0.4 M) were hydrolyzed at pH 3.0 in aqueous 

media in separate vials. Two rSSP proteins (rMaSp1and rMaSp2) were mixed in a ratio 

of 50:50 and added in the H3F and HnPM media separately. These mixed solutions were 

then microwaved (Haier microwave (700 W)) for 8 seconds for 4 times in a tightly closed 

glass vial to dissolve the rSSPs. In between every cycle of microwave heating, 30 sec 

breaks were taken.  
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Figure 6-1. Schematic of Experimental procedure of the spider silk and 3F / nPM 
nanocomposite materials.  

Once the temperature reached 130°C, all rSSPs were dissolved in the aqueous 

silane media. Hot and dissolved rSSPs in silane aqueous solutions were then cooled down 

to 23°C, using ice water bath. Then, NH4OH was added to these rSSPs mixed solutions, 

following the Stöber method, to synthesize silica-spider silk nanocomposite materials. 

Synthesized composite materials were centrifuged and washed two times in DI water 

before they were lyophilized overnight. The experimental schematic is shown in Figure 

6-1. 

Characterization of spider silk-silica nanocomposites 

Dried nanocomposite materials were analyzed using image analysis tools such as 

SEM, and AFM to determine their sizes and shapes. SEM was performed with a FEI 

Quanta FEG 650 equipped with an Oxford X-Max Energy Dispersive X-ray 

Spectroscopy (EDS) housed in the Microscopy Core Facility at Utah State University. 

Samples were imaged with 20 kV accelerating potential without conductive coatings. 

AFM images were taken using a Nanoscope III Bioscope (Digital Instrument, Inc.) in 

tapping mode. 100 µl samples were dropped on freshly cleaved mica surfaces, then 

gently washed with DI water, and air-dried before taking AFM images. 

Bonding between spider silk protein (rSSP) and both fluorinated and methylated 

silica were analyzed by FTIR using a Varian 660-IR with a horizontal single reflection 
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Pike Technologies MIRacle attenuated total reflectance (ATR) unit, fitted with a ZnSe 

crystal. 100 µl samples were drop cast on the ZnSe crystal of the ATR platform and air-

dried before taking the reading. Readings were taken after averaging 20 scans over the 

range of 600 cm-1 to 1800 cm-1, with a resolution of 1 cm-1. Prior to each reading, a 

background scan was acquired. The ATR-FTIR spectra were later deconvoluted, to 

analyze the transformation in the secondary structures of spider silk protein. 

6.4 Result and Discussion 

Figure 6-2 shows the SEM images of spider silk-silica nanocomposites along with 

the fluorinated and methylated silica NPs. Spider silk-methylated silica nanocomposites 

shown in Figure 6-2 (b) were in aggregated or clogged form. These spider silk-

methylated silica nanocomposites were built on smaller (<200 nm) nanoparticulates with 

irregular-shaped spheres (Figure 6-2 (b), compared to the monodispersed methylated NPs 

(540±50 nm) (Figure 6-2 (a)).  
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Figure 6-2. SEM images of (a) methylated silica NPs, (b) spider silk-methylated 
nanocomposites, (c) fluorinated silica NPs, and (d) spider silk-fluorinated 
nanocomposites.  

 Spider silk-fluorinated silica nanocomposites (Figure 6-2 (d)) consisted of two 

types of particles, NPs with size of <100 nm and >300 nm. These bimodal NPs were 

attached to each other to form the nanocomposites, unlike the fluorinated NPs where NPs 

were monodispersed with the size of 250±20 nm (Figure 6-2 (c)).  
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Figure 6-3. AFM images (a) methylated silica NPs, (b) fluorinated silica NPs, (c) spider 
silk-methylated nanocomposite, and (d) spider silk-fluorinated nanocomposites. 

3D images of the nanocomposites obtained from the AFM further confirmed these 

characteristics of the spider silk-methylated silica nanocomposites (Figure 6-3 (b)) and 

spider silk-fluorinated nanocomposites (Figure 6-3 (d)), along with the methylated and 

fluorinated silica NPs in Figure 6-3 (a) and Figure 6-3 (c), respectively.  

ATR-FTIR spectra (Figure 6-4) showed some major conformational changes in 

the amide I zone (1575 cm-1 to 1725 cm-1) of spider silk protein within the spider silk-

methylated nanocomposites (SS-nPM) and the spider silk-fluorinated nanocomposites 

(SS-3F). 
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Figure 6-4. ATR-FTIR spectra of methylated silica NPs (nPM-NPs), fluorinated silica 
NPs (3F-NPs), spider silk-methylated silica nanocomposites (SS-nPM), and spider silk-
fluorinated silica nanocomposites (SS-3F). SSP and SSW represent the spectra for the 
spider silk in powder and spider silk in aqueous states. 

Figure 6-4 also includes spectra for methylated silica NPs (nPM-NPs), fluorinated 

silica NPs (3F-NPs), spider silk in powder (SSP), and aqueous states (SSW). Other than 

amide I zone, other bending and stretching peaks were shown in the respected spectra. 

Spectra representing 3F-NPs and SS-3FC, showed –CF peaks at 840 cm-1, 1020 cm-1, and 
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1260 cm-1. Peaks representing Si-O-Si (800 cm-1, 1060 cm-1, and 1100 cm-1), and Si-CH2-

R (1210 cm-1) were visible in all the spectra, SS-nPM, SS-3F, nPM-NPs, and 3F-NPs, 

confirming the integration of the spider silk in the nanocomposites. Also, the peaks for 

CH3, CH2 (1320-1450 cm-1) and –CH (900 cm-1) were visible in all the spectra, including 

SSP and SSW. Later, spectra were deconvoluted, to quantify the transformation in their 

secondary structures in the nanocomposites in the amide I zone. 

The deconvoluted FTIR spectra of SSP, SS-nPM, and SS-3F are shown in Figure 

6-5 (a), (b) and (c), respectively. Figure 6-5 (d) shows the quantified secondary structure 

% in the corresponding spider silk proteins. In SS-3F, b-sheet was reduced by 18 % and 

b-turn reduced by 10 %, compared to the % of these secondary structures in SSP. 

However, a new secondary structure, a 310-helix appeared in SS-3F spectra, and this 310-

helix was 35 % of the total secondary structures available in SS-3F. 
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Figure 6-5. Deconvoluted ATR-FTIR spectra of (a) spider silk powder (SSP), (b) spider 
silk-methylated silica NPs (SS-nPM), (c) spider silk-fluorinated silica NPs (SS-3F), and 
(d) conformational change in secondary structures of BLG. 

An opposite trend was observed in the secondary structures of the spider silk in 

SS-nPM, where both b structures (sheet and turn) increased. In these nanocomposites, b-

sheet increased by 3 % and b-turn increased by 7 %. These patterns of conformational 

changes in the secondary structures of SSP are consistent with conformational changes 

observed in BLG protein, described in Chapter 3. 
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6.5 Conclusion 

 We successfully synthesized spider silk-fluorinated and methylated 

nanocomposites. SEM and AFM images showed that the integration of spider silk protein 

with both fluorinated and methylated silica resulted in non-spherical nanocomposites 

with distinct morphologies, contrasted with the control images of pure silanes. Strong 

amide I and II peaks in the ATR-FTIR spectra further confirmed the integration of the 

spider silk protein in the nanocomposites. Deconvoluted ATR-FTIR spectra showed 

increased b structures in SS-nPM and decreased b structures in the SS-3F. SS-nPM can 

be potentially stable against organic solvent, water, and strong acid and bases, due to the 

assembly of highly stable b-sheets with high mechanical properties. Also, aqueous 

synthesis of these nanocomposite materials makes them suitable for integration with 

living tissues. These hybrid silica-protein structures have the potential to exhibit unique 

biological activities, which will make them suitable for versatile biomedical applications. 
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CHAPTER 7 

HYDROPHOBIC SILANE-MODULATED SPIDER SILK FILMS 

7.1 Abstract 

Hydrophobic silane-modulated spider silk protein-based films were prepared in an 

aqueous system. Hydrophobicity was higher on the silane-modulated spider silk film 

surface, as water contact angle increased to 98° from 82° on the unmodulated spider silk 

film surface. The presence of the methylated functionality in the silane-modulated films 

was confirmed by ATR-FTIR spectra. The AFM-analyzed images showed that surface 

roughness was higher on the silane-modulated spider silk films (9.83 nm), compared to 

the unmodulated spider silk films (5.23 nm), which enhances their applicability in the 

biomedical field. 

7.2 Introduction 

Recombinant spider silk protein (rSSP) fibers have a variety of applications in 

textiles, and in the biomedical and manufacturing industries. (1−10) The extraordinary 

mechanical strength of rSSP comes from its β-sheet-dominated secondary structures. (11) 

Along with the production of fibers, significant efforts have been made to investigate the 

alternative forms of rSSP, such as films, hydrogels, lyogels, and adhesives. (2−4, 12-14) 

rSSP-based films have been studied for their biomedical applications such as attachment 
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of fibroblasts, osteoblast-like cells, and skin cells. (7−11, 15) These rSSP films also have 

shown promise in medical devices, skin grafts, drug delivery devices, and cellular 

scaffolds. (16-21) Unlike the fibers, films don’t need to be woven together after 

processing, to make the functional products. Thus, spider silk films are cost effective, 

compared to fiber products. rSSP-based films are produced by simply formulating and 

pouring a dope, which can easily be modified by changing the formulation to have 

increased cell attachment, drug release, and mechanical properties. (20, 22-24)  

rSSP are insoluble in aqueous solutions, and conventionally they are dissolved in 

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to generate dopes to create fibers, films, gels, 

and foams. (25-28) However, HFIP residues carry risk to human health and to the 

environment; and moreover, HFIP is not a cost-effective way to dissolve rSSP. Recently, 

a simple microwave method has been introduced to dissolve rSSPs in aqueous solution, 

replacing HFIP, which is not only cost-effective but also addresses the human health 

issue as well as environmental concerns. (29)  

Alkoxysilanes are often used as the precursor for silicone, a widely used adhesive 

to bridge inorganic materials with organic molecules. (30) Hydrolyzed nPM (HnPM) 

have shown their ability to induce the secondary structures of the protein and increase the 

β-sheets. (31) Thus, we hypothesized that nPM-induced rSSP in aqueous solution can 

generate spider silk films with higher surface properties. In this study, we attempted to 
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modulate the secondary structure of rSSP by HnPM in aqueous system and investigate 

the possible improvement in surface properties of silane-modulated rSSP films. 

7.3 Experimental procedure 

Materials 

n-propyltrimethoxy silane (nPM, > 95 % purity, MW = 164.3, d = 0.94 g/ml) was 

purchased from Gelest, Inc. (Morrisville, PA); and 50 % (w/w) NH4OH was purchased 

from Fisher Scientific. Muscovite mica was purchased from SPI supplies for the AFM 

study (PA, USA); and AFM tips were obtained from TED Pella Inc., CA (TAP300AL-G-

50). Two different types of rSSP protein, major ampullate silk protein rMaSp1 and major 

ampullate silk protein rMaSp2, were purified from the milk of transgenic goats through 

tangential flow filtration, precipitation, and washing. 

Forming spider silk films 

The mold for the water-based films was made from a polydimethylsiloxane 

PDMS (Dow Corning) solution of 10:1 base to initiator, and poured into a 90 mm Petri 

dish to an approximately 1 mm thickness. The Petri dish and solution was then placed 

into a vacuum chamber for 20 min to remove all bubbles. They were then placed in an 

oven at 70 °C to cross-link overnight. The solidified PDMS was removed and cut using a 

forceps and a razor blade to four 30 × 7 mm strips. The mold was then thoroughly 

cleaned using soap and water, followed by isopropanol (IPA). 5 % (w/v) rSSPs were 
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dissolved in aqueous solution with or without the presence of HnPM (0.4 M). The 

dissolved spider silk solutions were then poured on PDMS structures and dried overnight 

at room temperature. 

Characterization of silane-modulated spider silk films 

The water contact angle was measured with a VCA optima digital contact angle 

instrument (AST products, Billerica, MA); on the surface of the films using 10 µl sessile 

drops of DI water. AFM images were taken to find the possible change in the silane-

modulated spider silk films, compared to spider silk films. AFM images were taken using 

a Nanoscope III Bioscope (Digital Instrument, Inc.) in tapping mode. 100 µl samples 

were dropped on freshly cleaved mica surfaces, then gently washed with DI water, and 

air-dried before taking AFM images. 

Both types of films were analyzed with FTIR, using a Varian 660-IR with a 

horizontal single reflection Pike Technologies MIRacle attenuated total reflectance 

(ATR) unit, fitted with a ZnSe crystal. 100 µl samples were drop cast on the ZnSe crystal 

of the ATR platform, and air-dried before taking the reading. Readings were taken after 

averaging 20 scans over the range of 600 cm-1 to 1800 cm-1 with a resolution of 1 cm-1. 

Prior to each reading, a background scan was acquired. 

7.4 Result and Discussion 

The static water contact angles on rSSP film and nPM-modulated rSSP film are 
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shown in Figure 7-1 (a) and (b), respectively. Water contact angle on nPM-modulated 

rSSPs films was 98±2°, compared to 82±2° on the rSSP films. This increase in contact 

angle implies that silane modulation has improved the hydrophobicity of the rSSP films. 

The silane modulation increased the % of sheet structures in rSSP, which eventually 

improved the hydrophobicity of their films. 

	

Figure 7-1. Static water contact angle on (a) rSSP film and (b) nPM-modulated rSSP 
film.	

The ATR-FTIR spectrum of nPM-modulated rSSP film showed a shift towards 

the β structures (> 1660 cm-1) in the amide I zone (Figure 7-2), compared to the spectrum 

of the unmodulated film. Also, the intensity of the peak around 1655-1660 cm-1 

increased, which could be due to the increase in sheet structures in rSSP. The increase of 

intensity at the CH3- CH2- bending vibration region (1300-1450 cm-1) further confirmed 

the silane modulation in the rSSP film.  
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Figure 7-2. ATR-FTIR spectra of rSSP and nPM-modulated rSSP film. 

AFM images of rSSP and nPM-modulated rSSP films, along with corresponding 

height profiles on the surfaces, are shown in Figure 7-3. Silane modulation increased the 

surface roughness of the film, as RMS roughness values were 5.23 nm and 9.83 nm on 

the rSSP and on the nPM-modulated rSSP film, respectively. This increase in surface 

roughness indicates that the adhesive property of the rSSP film was enhanced by the nPM 

modulation. (32) 
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Figure 7-3. AFM images of (a) rSSP films, and (b) nPM-modulated rSSP film, with the 
corresponding cross-sectional height profiles. 

7.5 Conclusion 

Hydrophobic silane (nPM) enhanced the surface properties of rSSP-based films 

by inducing their secondary structures in an aqueous system. Increased hydrophobicity 

was confirmed, as the water contact angle on the nPM-modulated rSSP film was higher. 

The increased surface roughness on the silane-modulated films can lead to improving the 

quality of the rSSP films for various applications, such as adhesion of biological cells on 

the surface.  
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CHAPTER 8 

CONCLUSION 

This research contributes to the broader understanding of the silane modulation of 

protein secondary structure and self-assembly for developing nanotherapeutic agents to 

be used against amyloid-based diseases. The various diseases resulting from protein 

pathogenesis include such widely known neurological diseases as Alzheimer’s, 

Parkinson’s, and ALS, as well as numerous other diseases such as dialysis-related 

amyloidosis and cataracts. The protein-conformation activity of silanes allows for 

additional applications in bioprocessing, where they could be applied as artificial 

chaperones for disaggregation and refolding of recombinant proteins expressed in 

bacteria and yeast. Multi-level functionality can be imparted in the silane-based NPs, as 

the present research also shows promise of developing versatile silica-based drug-

carrying NPs, which could carry small-molecule therapeutics against amyloid disease in 

parallel to the activity exhibited by the fluoro-silane nanoparticle carrier. 

Toward the development of NP-therapeutics / drug carriers, this research 

characterized methods to tune the silane sol-gel kinetics under aqueous conditions, to 

avoid the use of solvents, and to provide a green-chemistry approach to product 

synthesis. The hydrolysis and condensation study provides detailed understanding of the 

fluoro- and alkoxysilanes, 3F and nPM, respectively. The formation of monodisperse, 
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spherical NPs was attainable for 3F, whereas the nPM particles exhibited greater 

disparity in size and morphology. The formation of NPs directly from these tri-ethoxy 

silanes represents a unique approach to synthesizing functional silane NPs, which 

normally proceed via a two-step process in which silica NPs are first created from a tetra-

ethoxy silane precursory (TEOS), followed by surface functionalization with additional 

silanes. 

Due to the poor solubility of silanes in aqueous solution, established procedures 

employ alcohol / water mixtures; however, as shown in this thesis research, an aqueous 

synthesis approach can be used by careful selection of pH and silane concentration. The 

geometry of the reaction vessel must also be considered, as the silanes form a lens either 

at the air / water interface or the bottom of the reaction container for nPM and 3F, 

respectively. The ability of the lens to spread and increase the surface area exposed to the 

acid solution will influence the hydrolysis reaction rate. Sonication can be employed to 

form droplets of silane in the solution, but it does not allow for the in-situ monitoring of 

the sol-gel kinetics, as was done here using dynamic light scattering (DLS) and turbidity 

scans. 

From the hydrolysis and condensation kinetics profiles of 3F and nPM, it was 

possible to know exactly when to isolate the polymeric NPs as they evolved for a given 

pH, and introduce them to the protein fibrillation reaction, to test their activity. A broader 

understanding of the physiological properties of these silane-based NPs is necessary to 
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optimize their performance toward fibrillation inhibition processes in more complex, e.g. 

multi-protein, environments. 

From the model systems investigated in this research, 3F-based silica NPs showed 

greater activity against the amyloid fibril inhibition. The research showed that 3F silane 

chemistry completely inhibited the amyloid formation against the model protein, BLG, as 

evidenced by an absence of fibrils during AFM imaging. Deconvoluted ATR-FTIR 

spectra further confirmed the induction of secondary structural motifs in BLG by the 

NPs. In particular, 3F-BLG interaction reduced b-sheet content as the silane and BLG 

were heated under conditions that normally induced BLG fibrillation. This reduction of 

b-sheet content is particularly relevant to amyloid assembly that frequently occurs 

through self-assembly of protein monomers via exposed b-sheet motifs. 

Molecular docking studies further confirmed the interaction between silanol and 

BLG as mediated by hydrogen bonding, involving an unreacted silanol group as a 

hydrogen bond donor. The importance of a free silanol moiety in conjunction with the tri-

fluoro or methyl groups of 3F and nPM, respectively, highlights the multi-valent 

interaction of these silanes with the protein, in order to influence the protein secondary 

structure and fibrillation propensity.  

Additional applications of the 3F and nPM particles were also investigated in this 

thesis. In particular, NP assembly on surfaces to form super-hydrophobic coatings was 
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demonstrated through water contact angle analysis. NP synthesis in a very facile and 

environmentally friendly way is an outcome of this research.  

In summary, the completed research has demonstrated a unique assembly of tri-

functional silanes to form NPs, which is in contrast to the two-step methods commonly 

employed. This fluoro-functionality, in conjunction with the unreacted silanol group, 

interacted through hydrogen bonding with BLG, inhibiting its fibrillation. In contrast, the 

alkyl-presenting silane NPs did not demonstrate significant anti-fibrillation activity. 

Ongoing work is investigating the generality of this NP-protein interaction. Loading of 

these silica NPs with additional small-molecule therapeutics is feasible, as was 

demonstrated using curcumin and quercetin, thus providing a multi-functional NP that 

has inherent biological activity and ability to deliver and release additional therapies. 

Surface modification with the NPs is a final application to construct superhydrophobic 

coatings. 

Our extended study on the applications of the fluorinated and methylated 

polymeric NPs against the spider silk protein produced enhanced characteristics of their 

films. Our study also showed that these polymeric particles can create new 

nanocomposites of silica-spider silk protein, which have potential in biomaterials 

applications where the silane not only imparts hydrophobic character to the resulting 

composite, but also tunes the secondary structure of the resulting composite. Future work 
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will explore methods to optimize bulk mechanical properties as well as the observed 

surface property changes reported here. 

From the engineering perspective, this research offers several engineering aspects:  

1. Downstream processing applications, such as disaggregation of recombinant spider 

silk proteins that overexpressed and form inclusion bodies.  

2. Materials science applications as superhydrophobic nanoparticle surface modifying 

agents.  

3. Nanocomposite materials: hybrid silica-protein structures are formed that may exhibit 

unique biological activity.  

4. The one-step aqueous synthesis process is an economically and environmentally 

viable approach to scaling this technology for superhydrophobic nanoparticle 

production.  
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CHAPTER 9 

FUTURE WORK 

AMYLOID FIBRILS-MESOPOROUS SILICA-BASED HYBRID MEMBRANE FOR 

PURIFYING ARSENIC-CONTAMINATED WATER 

Introduction 

Arsenic is one of the most harmful water pollutants and a major environmental 

concern. Dissolved arsenic in ground water affects the health of millions of people all 

around the world. (1-2) The human body gets exposed to arsenic through consumption of 

contaminated water, which leads to arsenicosis. (3) In natural ground water and surface 

water, arsenic is found as neutrally charged arsenite (As (III)) and negatively charged 

arsenate (As (V)) oxyanions, depending on pH, redox potential (Eh), and existence of 

other chemical species. (4) Several technologies have been explored for removing arsenic 

from contaminated water, such as oxidation / precipitation, (5) coagulation, (6) 

membrane, (7, 8) ion- exchange, (9, 10) and sorbent technologies. (11-13) A recent study 

showed that low-cost milk protein b-lactoglobulin (BLG)-based amyloid fibrils are 

highly efficient against arsenic species, along with various heavy metal ions and nuclear 



	
	

	
	
	
	
	

176	

wastes, where amyloid fibrils interact with water pollutants via strong supramolecular 

metal-ligand bonding. (14) The major challenges to use the BLG amyloid fibrils in the 

water-purifying membrane are their water-impervious characteristics. One way to 

overcome this issue is to create a porous amyloid fibril-based hybrid membrane system, 

through which the targeted aqueous media can easily pass. In general, incorporation of 

amyloid fibrils with porous hydrophilic materials to create a hybrid membrane will be an 

ideal system for addressing this issue. 

In a hybrid membrane system, efficiency of these fibrils to interact with the target 

pollutants in the water system will depend on their exposed surface area. Tuning the right 

amount of fibrils with appropriate hydrophilic porous materials can provide the optimum 

available reactive surface area for pollutants to interact with amino acids of the protein. A 

comprehensive study on developing a hybrid membrane system by integrating various 

types of amyloid fibrils and suitable support materials could lead to creating a highly 

efficient membrane for purifying contaminated water. 

Mesoporous silica particles (MSP) are widely used for various purposes such as 

supports for adsorption, catalysis, chemical separations, biotechnology devices, carrier 

for drugs, and components in nanocomposite materials, due to their chemical and thermal 

stability and easy functionalization properties. (15-20) In the last few years, we have 

investigated the formation of the amyloid fibrils of different proteins such as BLG, 

lysozyme (LYS), and spider silk protein (SSP), using conventional heating systems and 
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microwave system. We also have investigated the interaction of silica-based NPs with the 

amyloid fibrils, and formation of composite materials, which we have presented at 

several national and regional conferences. (21-24) Our findings suggest that highly 

efficient hybrid membrane systems can be achieved by incorporating amyloid fibrils with 

silica-based particles, which could be used to remove the pollutants from contaminated 

water. 

In a hydrophilic MSP and amyloid fibril hybrid membrane system, the particle 

surface properties control the curvature of the amyloid fibrils attached on it, which 

eventually determines the availability of the fibrils to the targeted pollutants. Here, we are 

proposing an experimental investigation of developing hybrid membrane systems by 

incorporating amyloid fibrils and MSP, and use them to purify arsenic-contaminated 

water.  

Amyloid fibrils bond with water pollutants like arsenic through the amino acids 

present in the associated protein monomer. The amino acid number and type in the used 

protein will dictate the pollutant-fibril interactions. Since BLG, LYS, and SSP all consist 

of different types and numbers of amino acids, their fibrils should behave distinctively on 

bonding with arsenic species. These proteins are distinct in their surface charges at 

neutral pH, which also could affect their interaction with the silica particles. Therefore, 

the protein types and the surface charge of the silica particles (SP) will decide the success 
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of the hybrid membrane formation and their efficiency to remove pollutants like arsenic. 

Objectives of the proposed research are: 

1. To develop a hybrid composite membrane using negatively charged MSP and 

amyloid fibrils of three types of protein such as BLG, LYS, and SSP having 

negative, positive, and negative surface charges on their surfaces respectively 

at neutral pH 

2. Use these hybrid membranes to investigate their efficiency to remove the 

arsenic species (As (III) and As (V)) from the contaminated water.  

Experimental method 

Amyloid fibril formation 

 BLG and LYS will be fibrillated in an acidic aqueous system (pH 2.0) by heating 

at 90°C for 5 h for BLG and 60°C for 5 h for LYS in glass vials. For SSP, fibrillation will 

be performed using microwave pulse technique, where SSP will be dissolved and 

fibrillated in aqueous media at neutral pH by microwaving samples in tightly closed glass 

vials for 10 seconds, which will increase the temperature up to 130°C, and then resting 

for 1 min; then again 10 seconds of microwaving; and this cycle will be repeated 5 times. 

The fibrillation process will be stopped using an ice bath. AFM will be used to confirm 

the fibril formation. Figure 9-1 shows the schematic of the fibril formation of different 

proteins. 
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Figure 9-1. Schematic of the fibril formation process of BLG, LYS, and SSP. 

MSP synthesis 

  MSP will be synthesized following a modified Stöber method, as described in 

Figure 9-2. Appropriate mole ratio of ETOH, water, CTAB 

(Cetyltrimethylammonium bromide), and TEOS (Tetraethylorthosilicate) will be heated 

at 80°C together for 2 h, to generate silica particles with CTAB integrated inside. After 

centrifugation, the silica particles will be washed with ETOH, and then CTAB will be 

removed by adding a HCl and ETOH mix solution and heating at 60°C for 6 h. Thus, we 

will obtain negatively charged MSP, which we will collect after centrifugation and 

ETOH wash. To achieve positively charged MSP, we will add APTES ((3-Aminopropyl) 

triethoxysilane) in the negatively charged MSP in ETOH solution; and heating at 80°C 

for 12 h will give us positively charged MSP. After centrifugation and ETOH wash, we 
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will obtain MSP, and SEM images will be taken to confirm the sizes and porosities of the 

overnight freeze-dried samples. 

 

Figure 9-2. Synthesis of MSP. 

Interacting MSP with amyloid fibrils  

Dried MSP with three different sizes from two types will be added to the amyloid 

fibrils of BLG, LYS, and SSP protein-containing solutions, as shown in Figure 9-3.  

Depending on the surface properties and size of the fibrils and MSP, the interaction will 

vary.  



	
	

	
	
	
	
	

181	

 

Figure 9-3.  Schematic of the possible interactions of amyloid fibril and MSP. 

These mixed solutions of MSP and amyloid fibrils will be passed through a 

cellulose filter using vacuum filtration. (Figure 9-4) This cellulose filter will hold the 

hybrid membrane consisting of amyloid fibrils and MSP.  
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Figure 9-4. Water purification using hybrid membranes in a vacuum filter system. 

Purification of arsenic-contaminated water 

  In the final step, pollutant water containing As (III) and As (V) will be passed 

through the hybrid membranes, using a vacuum pump, so the arsenic gets trapped in the 

membrane system, and purified water is stored in the flask. (Figure 9-4) The quantity of 

the As (III) and As (V) amount in the aqueous system will be measured using AAS 

(atomic adsorption spectroscopy).  

Expected results 

We have already generated amyloid fibrils of BLG, LYS, and SSP. In Figure 9-5, 

an AFM image shows the BLG-based amyloid fibrils with different sizes ranging from <1 
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µm to >5 µm. We have also synthesized silica-based particles, as shown in Figure 9-6, 

where an SEM image shows the silica particles with different sizes, ranging from 0.1 µm 

to 0.5 µm. 

 

Figure 9-5. AFM image of amyloid fibrils of BLG (bar is 2µm). 

 

Figure 9-6. SEM image of silica particles. 

Following the conventional Stöber method, MSP with different sizes will be 

synthesized. Incorporating amyloid fibrils and these MSPs will give us the optimum 
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hybrid membrane system, where arsenic-contaminated water will be purified. In this 

hybrid membrane system, we are expecting both As (III) and As (V) to be removed 

below 10 ppb in the purified aqueous body. Along with As (III) and As (V), other 

common water pollutants such as chromium, phosphates, etc. will also be removed from 

the contaminated water, to establish the efficiency of our developed membrane system. 
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