
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-1995

Parameter Estimation by Conditional Coding Parameter Estimation by Conditional Coding

Taylor Duersch
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Duersch, Taylor, "Parameter Estimation by Conditional Coding" (1995). All Graduate Theses and
Dissertations. 7140.
https://digitalcommons.usu.edu/etd/7140

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7140&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.usu.edu%2Fetd%2F7140&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7140?utm_source=digitalcommons.usu.edu%2Fetd%2F7140&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

PARAMETER ESTIMATION WITH

CONDITIONAL CODING

by

Taylor Duersch

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

m

Statistics

UTAH STATE UNIVERSITY
Logan , Utah

1995

© Taylor Duersch, 1995

All llights Reserved

ABSTRACT

Parameter Estimation by Conditional Coding

by

Taylor Duersch, Master of Science

Utah State University, 1995

Major Professor: Kevin Hestir
Department: Mathematics and Statistics

ii

Conditional coding is an application of Markov Chain Monte Carlo methods for sam­

pling from conditional distributions. It is applied here to the problem of estimating the

parameters of a computer-simulated pattern of fractures in an isomorphic, homotropic ma -

terial under plane strain. We investigate the theory and procedures of conditional coding

and show the viability of the technique by its application.

(122 pages)

iii

ACKNOWLEDGMENTS

I am grateful to my graduate committee for their contributions of time and expertise to

this thesis and toward my education in general. Kevin Hestir deserves special recognition

as my major professor and mentor.

I appreciate the excellent teaching and support offered to me by all of the faculty and

staff in the Department of Mathematics and Statistics at Utah State University.

I recognize my parents for their support and for the intangible characteristics they

instilled in me that have made education both a success and joy to me.

Especially I thank my best friend , and companion , Melissa , for making it easier to

accept my failures and wonderful to succeed.

Taylor Duersch

ABSTRACT

ACKNOWLEDGMENTS

LIST OF FIGURES ...

1 CONDITIONAL CODING

CONTENTS

1.1 Definition of Conditional Coding
1.2 General Theory
1.3 The Gibbs Distribution
1.4 The Metropolis Algorithm
1.5 Annealing

2 A PROBLEM WITH NO ANALYTIC SOLUTION .

2.1 The Problem
2.2 The Fracture Generation Program
2.3 Some Analytic Relationships . . .

3 APPLYING CONDITIONAL CODING

3.1 Choosing an Energy Function

3.1.1 Visual Matching ...
3.1.2 Method of Moments
3.1.3 Matching Histograms

3.2 Censored Cracks and Boundaries
3.3 Perturbing
3.4 Monitoring Convergence
3.5 The Conditional Coding Recipe .

4 CONDITIONAL CODING APPLIED

4.1 The Energy Function .. .
4.2 The Perturbation Scheme
4.3 The Sampling Region
4.4 Temperature . . .
4.5 Time Constraints .
4.6 Convergence .

5 DATA ANALYSIS

6 SUMMARY

IV

Page

11

Ill

VI

1

1
2
3
4
7

10

10
12
15

19

19

20
22
24

24
26
27
28

31

31
32
32
33
35
36

43

50

BIBLIOGRAPHY

APPENDICES .

A PROGRAMS

A.l Fracture Growth Program
A.2 Modified Fracture Growth Program .
A.3 Kolmogorov Smirnov Test

B DATA

B.l Sampled Data
B.2 Chi-Square Goodness-of-Fit Results

V

53

55

56

56
78

. 105

. llO

. llO

. ll3

Vl

LIST OF FIGURES

Figure Page

1 A simulated pattern of 200 parallel fractures. . 14

2 A sequence of polynomials that model expected fracture length for different
values of n. 17

3 An example of a rectangular grid placed over a fracture pattern . 21

4 Covariance plot of moving correlations. 37

5 Frequency counts of energies as states in the Markov chain generated by
the Metropolis algorithm 39

6 Pairs plot of 100 sample points . 41

7 Pairs plot of 40 sample points consisting of the first 20 sample points and
the last 20 sample points from an original sample of size equal to 100. 42

8 Pairwise plot of parameters sampled via conditional coding . 44

9 Histogram of sampled !max values. 45

10 Histogram of sampled ngen values. 47

11 Histogram of sampled gwsz values. 48

CHAPTER 1

CONDITIONAL CODING

1

To explain conditional coding in a rigorous way, we begin with a definition of condi­

tional coding in mathematical terms. We follow this with a discussion of the topics and

theory central to the mechanics of conditional coding. In particular , we will discuss the

Gibbs distribution and the Metropolis algorithm with and without annealing.

1.1 Definition of Conditional Coding

Let X be a stochastic process . Suppose that we know how to simulate a realization X

from a vector w , of independent identically distributed uniform random variables on [0,1],

using an algorithm g that maps w to X. We write that ,

(1.1) g(w) = X

and call g a coding of X. Let m be a function that represents measurements on X and let

(1.2) M = m(X) + E ,

where E is a vector of random errors independent of X . Let fx IM be the posterior

distribution of X given M . Because g(w) = X , if w0 is a sample from the posterior

distribution f w IM , then g(wo) is a sample from fx IM· Sampling wo from f w IM and

then taking X = g(wo) to get a sample from fx IM is called conditional coding.

2

1.2 General Theory

Let X, w, g, M , E, and m be as given in the definition of conditional coding . Suppose

that the probability density function of E is known and can be expressed in the form,

(1.3) fE(e) = cexp(-h(e)) ,

with c a constant.

Now suppose that Xis fixed. With X fixed, M can vary about m(X) only according

to the probability distribution of E. By 1.3 we have the conditional probability density

function

(1.4) fM Ix = c exp(-h(M - m(X)).

Substituting 1.1 into 1.4 we get

(1.5) fM I w = c' exp(-h(M- mo g(w)).

Bayes Rule for conditional probabilit y distribution s states that

(1.6) + _ fM I wfw
Jw IM - fM ·

Here , Mis considered fixed so that fM is constant. Because w is a vector of independent,

identically distributed uniform random variables, f w is also constant. Hence,

(1. 7) f w IM= c"exp(-h(M - mo g(w))).

The probability distribution in 1.7 is called a Gibbs distribution. The Gibbs family of

distributions has properties that make it possible to approximately sample any Gibbs

distribution with a Monte Carlo simulation. Hence, sampling w 0 from 1. 7 is possible.

Conditional coding is done by taking g(wo).

3

1.3 The Gibbs Distribution

The Gibbs Distribution is named after J.W. Gibbs, who did work in statistical me­

chanics. Spitzer (1971) asserts that in chemical physics the work of Gibbs produced

mathematical models generally accepted as the simplest, most useful models of discrete

gas.

Every Gibbs distribution is the stationary probability distribution of an aperiodic,

irreducible Markov process. In general, the process state space is an arbitrary finite set.

Gibbs distributions have the following form.

(1.8) r.(w) = cexp(-h(w)/T)

In the context of chemical physics, w represents the configuration of particles in a physical

system or lattice. The constant c is a normalizing factor to insure that 7i is a probability

measure. The function h measures the potential or energy associated with a configuration

w . The function h must have nonnegative range. The variable T measures temperature

on a positive scale.

The temperature of a discrete gas affects the distribution of the configurations that the

gas particles can assume. When Tis small, the distribution of w is concentrated on w's

where h(w) is small. We use this fact later when we discuss the method for sampling from

a Gibbs distribution called simulated annealing. Throughout the rest of our discussion

about conditional coding we will refer to the function h as the energy function and to the

variable T as temperature.

We have claimed without proof that 1.8 is the stationary distribution of an aperiodic

irreducible Markov process. We will support this claim with two arguments. First, we

introduce the Metropolis algorithm as a method for simulating an aperiodic, irreducible

4

Markov process. Second, we show that any distribution of the form 1.8 is the stationary

probability distribution of a Markov process simulated by the Metropolis algorithm.

1.4 The Metropolis Algorithm

Metropolis et. al. (1953) introduced an algorithm to study the properties of interacting

molecules in a lattice configuration. For a fixed T > 0 in 1.8, the Metropolis algorithm

simulates a Markov chain wo, w 1 , w2, ... by the following method.

l. Begin with an initial state Wi, where i is an integer index. Create Wp by randomly

perturbing some of the components of Wi. The perturbation must be such that the

probability of perturbing from wi to wp, hereby denoted q(wi I wp), is the same as

the probability of perturbing from wp to Wi, hereby denoted q(wp I wi)-

2. Let Wi+l = wP with probability p = min(l, exp(h(wi)Th(wp)). Let Wi+1 = Wi with

probability 1 - p.

3. Repeat steps 1 and 2.

The condition that

(1.9)

is necessary to insure that the Metropolis algorithm simulates a Markov process with a sta­

tionary distribution. We now show that any Markov process simulated by the Metropolis

algorithm has a stationary distribution given by 1.8.

Let 1r be the stationary probability distribution function for a Markov process with

transition matrix P. By definition, stationary probability distribution functions must

5

satisfy

(1.10) 1r' = 1r' P.

Here P is the matrix of transition probabilities that describes the probability of moving

from one state to another and 1r is a vector of stationary probabilities. Let S be a set

of natural number indices , 1, 2, ... , N, where N is intended to be the number of possible

configurations w can assume within a given physical system.

To show that 1.10 holds we must demonstrate that

(1.11) L 7rkPkj = 'lrj
k

holds for all j, k E S. The quantity Pk,j is the probability of going from a configuration

Wk to a configuration Wj in a single perturbation of wk . From our explanation of the

Metropolis algorithm we see that for an arbitrary fixed j, such that j ES, the following

holds: for k -=/ j,

(1.12) . h(Wk)-h(W)
Pkj = q(wj I wk)min(l , exp(T 2))

and fork= j,

(1.13)

Applying 1.12 and 1.13 in 1.11,

(1.14)

Distributing, we get

(L cexp(-h<;k))q(wj I wk)min(l, exp(h(Wk);h(Wj)))) +
k::fcj

(1.15) -h(w) -h(w ·) h(w ·)-h(Wk)
cexp(--r1-) - L cexp(T 2)q(wk I Wj)min(l, exp(2 T))].

k-:fj

To show 1.11 we need only show that the sums

(1.16)

and

(1.17)

L cexp(-h~k))q(wj / wk)min(l, exp(h(wk);h(Wj)))
k:j;j

L cexpCh~j))q(wk / Wj)min(l,exp(h(Wj);h(wk)))
k:j;j

6

are equal. If 1.16 and 1.17 are equal, then 1.15 reduces to 1.11. The following argument

shows the equality of the sums 1.16 and 1.17.

For any given k E S and k =/: j one of two things is true.

l. It could be that h(wk) 2 h(wj)- In this case exp(h(wk);h(wj)) 2 l, soifwe expand

the sum in 1.16, the kth term is

(1.18)

is equal to

(1.19)

Since q(wk / w j) = q(w j / wk) is a requirement of the Metropolis algorithm, we have

that 1.18 is equal to 1.19.

2. Conversely, we could have that h(wk) < h(wj). By symmetry, the argument from

step (1) extends to this case proving that for all k E S, 1.18 is equal to 1.19.

Since throughout our argument j was fixed arbitrarily, we have that 1.11 holds for all

j ES. Therefore, by the definition in 1.10, we have that any distribution of the form 1.8

is the stationary distribution of a Markov process simulated with the Metropolis algorithm.

7

We have established that the stationary distribution of a Markov process simulated by the

Metropolis algorithm is a Gibbs distribution.

We can simulate Markov processes that have a stationary distribution that is a Gibbs

distribution , but it is generally not known how many transition states we need to simulate

before we can trust that our simulated Markov process is governed by the stationary

distribution in 1.8. We will consider convergence more seriously when we apply conditional

coding to an actual problem.

Assuming convergence , we have correctly proved that the Metropolis algorithm sam­

ples from a Gibbs distribution. This is the case when the Gibbs distribution is discrete.

In the context of conditional coding , we use computer-driven algorithms to sample from

a posterior distribution . Computers do discrete arithmetic using discrete representations

of numbers. We defer to this fact and state that our previous arguments justify using

the Metropolis algorithm to sample from a computer representation of a continuous Gibbs

distribution . This is a point that is often overlooked and needs further investigation . Gen­

eral descriptions for sampling from a continuous Gibbs distribution using the Metropolis

algorithm are cited by A.F.M. Smith and G.0. Roberts (1993).

1.5 Annealing

There are many methods besides the Metropolis algorithm for simulating and sampling

from a Gibbs distribution. Such methods are generally classified as Markov chain Monte

Carlo methods or MCMC methods for short . Among these methods Smith and Roberts

(1993) include simulated annealing , the Metropolis algorithm, and the Metropolis-Hastings

algorithm . Of interest to us here is a method called simulated annealing.

8

It is advantageous to discuss the effect of changing the temperature T during the course

of the Metropolis algorithm. This topic is called annealing and can have some effect on the

rate the Markov process converges to the Gibbs distribution from which we are interested

in taking a sample.

Simulated annealing is a version of the Metropolis algorithm that methodically varies

the temperature T during the simulation process. On page 37, The New Lexington Web­

ster's Encyclopedic Dictionary (1990) defines annealing as "to improve the properties of

by heating and then cooling." Simulated annealing gradually decreases T within the

Metropolis algorithm. This allows us to sample from a Gibbs distribution that is highly

concentrated at low energies.

Suppose that h(w) is a positive valued function of M - m(w) where m is a measure

on w, perhaps made with some error, E.

(1.20) M = m(w) +E

If T is a small positive constant, then 1.8 is concentrated on points where h(M - m(w))

is small. For such small T the Metropolis algorithm can require an exorbitant number of

iterations before the simulated Markov process is governed by the Gibbs distribution. The

idea behind simulated annealing is to run the Metropolis algorithm beginning with a large

T that slowly decreases. Bertsimas and Tsistiklis (1993) assert that as the Metropolis

algorithm iterates through a Markov process, slowly decreasing the value of T guides the

Markov process to states concentrated on points where h(M - m(w)) is small.

Difficulties arise with regard to simulated annealing when one tries to determine exactly

how slowly to decrease Tso that convergence is guaranteed without doing it so slowly that

convergence is unduly delayed. Bertsimas and Tsistiklis (1993) offer arguments showing

9

that for any given Gibbs distribution , good cooling schedules exist but might begin at very

high temperatures. Bertsimas and Tsistiklis go on to state that theoretically there are

no rigorous results that make simulated annealing preferable to the Metropolis algorithm

run alone with fixed T. There are , however , many examples of problems solved with

simulated annealing where simulated annealing outperforms the Metropolis algorithm and

other MCMC methods .

Once a computer program is in place to implement the Metropolis algorithm , simulated

annealing is easy to implement as well. We have presented it here as a possible tool when

sampling from a Gibbs distribution. How well it works depends on the application.

10

CHAPTER 2

A PROBLEM WITH NO ANALYTIC SOLUTION

We proceed to apply conditional coding to a research problem in the earth sciences.

The problem is a parameter estimation problem. We want to estimate the parameters

required by a particular algorithm to produce output with some predetermined character­

istics. We can apply conditional coding to such problems and get good solutions. However,

conditional coding and other applications of MCMC methods can be inefficient tools. Be­

fore using conditional coding , other reasonable approaches to finding a solution should

be investigated. This chapter gives an explanation of the problem we desire to solve and

examines the lack of an analytic solution. \Ve also investigate relationships that might be

exploited to solve the problem.

2.1 The Problem

Say that we can observe a patch of rock that displays a pattern of surface cracks.

Martel et al. (1990) have taken what they know about the mechanics of fracture growth

in rock to write a program that iteratively models fracture growth over time . At each

iteration the program relies on a probability mechanism to decide if a fracture should

grow and if so by how much. We will concentrate on the simplest model that assumes all

rock fractures run parallel to each other and do not overlap.

The fracture generation program (fgp) that we use in this study is the one described

by Martel et al. (1990). It is capable of generating nonparallel fractures at different

orientations (see Appendix A.l). In the case where the fracture patterns are of parallel

11

non-overlapping cracks, the fgp requires the following input:

1. Three parameters that we will call ngen, lmax, and gwsz.

2. A set of starter cracks equal in number to the total number of fractures we desire in

the simulation output. We code the starter cracks in the rows of a matrix with four

columns. Each row contains the x y coordinates of starter crack endpoints.

3. A vector w of uniform random numbers on [0,1] of sufficient length that every growth

decision the program needs to make can be determined in turn using the values in

the vector as output from a random number generator.

In the context of Chapter 1, the fgp is an explicit statement of g(w).

The fgp iterates through a set of starter cracks ngen times, growing each crack ac­

cording to a probability mechanism we explain later. The mechanism is complex enough

that it is analytically impossible to study a simulation result in any traditional way to

determine what parameters combined to produce it. The ability to do so would be useful

to geologists. If geologists can match naturally occurring fracture patterns to parameters

that reproduce those patterns in a simulation, then a categorization of fracture patterns

is available on the basis of common physical characteristics that say something about how

the fractures formed. Our goal is to match a set of simulation parameters, ngen, lmax,

and gwsz, to a given fracture pattern.

Due to the probability mechanisms involved in simulation, unique solutions to this

problem are not available. There are many parameter combinations that could produce

a simulated fracture pattern to match some pattern we start with. Among these, some

combinations are more likely to yield matching patterns than others. Likely combinations

depend on the interaction of the different parameters with the probability mechanism

12

employed by the computer to model fracture growth. If possible, we want to associate

fracture patterns with the parameter combinations that are most likely to produce a

simulated match.

2.2 The Fracture Generation Program

The fracture generation program (fgp) is based on the recursive algorithm of Martel

et al. (1990) to model fracture growth in homogeneous, isotropic, elastic materials under

plain strain . The algorithm follows.

Define a growth area A . Consider a two-dimensional Poisson process operating at rate

A. We can randomly sample a point N from the probability mass function

(2.1)

N is an integer value. Place N points uniformly in A. At each point place a line segment

of fixed length l0 , representing the beginning of a fracture.

Iterate through each fracture ngen times where ngen is a parameter value fixed in

advance . The parameter ngen stands for the number of computer simulation generations

that we want to occur. At each iteration fractures grow with probability p.

(2.2) p = min (l/lmax , 1)

In the equation above lmax is called the maximum cut-off length and l is the current

length of the crack for which growth is being considered. The idea is that larger cracks

have a higher probability of growth during a single generation than smaller cracks . Once a

fracture is as long or longer than the length lmax , the probability of growth during every

subsequent generation equals one.

13

The amount of growth a fracture achieves in a single generation also depends on the

length of the fracture at the time growth occurs. Once we determine that a crack should

grow, the new length is

(2.3) l(l + gwsz · u).

The parameter gwsz determines the possible amount of growth a crack may experience

in a single generation. The variable u is a random variable chosen uniformly from the

interval [0,1]. In the model, all growth is symmetric with respect to the midpoint of the

fracture.

Figure 1 is an example of a fracture pattern created by the algorithm just explained.

The parameters that produced this pattern were N = 200, ngen = 100, lmax = 0.01, and

gwsz = 0.1. We note that N is a function of A and). but these parameters are important

only in that A defines the total area over which fractures are allowed to grow and from A

and). we get N.

From our description of the fracture generation algorithm we make some observations.

l. There are only three parameters we need to estimate that define the rules of fracture

growth. They are ngen, lmax, and gwsz. We can observe N by counting. We will

assume that l 0 is fixed and known.

2. The number of starter cracks we are required to have is the same as the number of

fractures in the realization.

3. Fracture growth is independent of the vertical or horizontal position of the fracture.

The only exception occurs during simulation when a fracture is close enough to the

left or right boundary of the growth region that it grows beyond the boundary. Such

fractures have censored length.

14

so-,---------------:=--------------,

4

3

2

0-+------.---------r--=-----,,-----=----.------;

0 10 20 30 40 50

Figure l. A simulated pattern of 200 parallel fractures.

15

Clearly , two different parameter sets can yield the same fracture pattern .

Suppose that Figure 1 is presented to us with the program used to produce it but

that we have no knowledge of the specific parameter values employed by the program to

yield this particular realization. After a brief look at some analytic relationships in the

problem , we will devise a way of using conditional coding to estimate the parameters most

likely to simulate Figure 1 through the fgp.

2.3 Some Analytic Relationships

In an attempt to learn more about the problem , we observe some relation ships among

fracture patterns and the growth parameters that produce them. To do this , divide the

population of all possible fracture patterns into two groups. These groups may overlap .

The first group of patterns we can simulate with appropriate values of ngen , and gwsz

when lmax :'.S 10 • The second group we can simulate when !max > 10 .

When !max :'.S !0 , every fracture will grow at every iteration. The amount of growth

in each crack at each iteration is l · gws z · u, where l is the length of the fracture at the

beginning of the iteration and u is a random variable uniform on [0,1]. In this case , it

is easy to show that the expected length of a fracture i, i = 1, 2, ... , N, after n = ngen

iterations is given by

(2.4)
n gws z j gws z n

n () E[li ,ngen] = lo J; j (-
2
-) = (1 + -

2
-) ·

This demonstrates that the expected value of fracture lengths for fixed ngen , gwsz, and

lmax ~ lo can be modeled using an nth degree polynomial with positive coefficients. A

unique polynomial exists for each value of n = 1, 2, Figure 2 is a plot of expected

values against gwsz for different values of n. Note that for every value of n there exists

16

a gwsz so that any expected value greater than zero is possible. Note also, that as n

gets bigger, the expected value curves are in close proximity to one another when gwsz is

small.

When lmax > lo, things are different. Suppose that we have a long list of random

variables uniform on [0, 1]. The length of fracture i after iteration j is

(2.5)

Here ui,j denotes a random variable uniform on [0,1].

We know that the amount of growth a fracture experiences on any given iteration is

dependent on the growth probability p = P (ui+n < li_iflmax). The distribution of p

changes for each iteration where li-l -=/ li. This is a difficult problem. It is difficult to

predict even something as simple as the expected value of the crack lengths when ngen ,

gws z, and lmax are known.

In theory , we can construct a model that looks like 2.4 when lmax > lo, but such a

model incorporates indicator functions that lead to a very complex formulation. In the

case that lmax :::; lo, expression 2.4 serves to show that a given expected length is not

unique to a single combination of growth parameters. Whether lmax :::; lo or not , we might

find analytic inverse images based on the moments or a histogram of X but assigning a

likelihood to them in the Baysiean sense is unrealistically complex.

Complications are also present whenever we try to match simulation parameters with

fracture patterns that display cracks that are censored because they intersect the edge

of the growth region. For each censored crack it is not known if the crack began out­

side the observable growth region extending in, or if it began inside the growth region

extending out. A given set of parameters (ngen 0 , lmax 0 , gwsz 0) might simulate a given

17

I()

n=120 n=90 n=60

c,,
.r.
C,
C:
..!!1
"@
i3
Q)
a.
><
Q)

C\J

0

0.0 0.05 0.10 0.15 0.20 0.25 0.30

gwsz

Figure 2. A sequence of polynomials that model expected fracture length for different
values of n .

18

fracture pattern , X 0 , with censored cracks, but only if fractures near the boundary are

started at correct positions inside or outside the observable growth region. Any attempt to

match simulation parameters to a fixed fracture pattern must accommodate the difficulties

present when some of the fracture lengths are censored .

It is evident that an analytic attempt at matching simulation parameters to a fixed

outcome of fracture patterns is unwieldy and complex. Conditional coding provides a

manageable way to solve this problem by sampling from the posterior distribution of w

given a fixed pattern of fractures and then constructing likelihood-like estimates based on

the distribution of the sample .

19

CHAPTER 3

APPLYING CONDITIONAL CODING

There are several issues that we must address before we apply conditional coding to

the problem presented in Chapter 2. These topics include energy functions, restricting the

sample space , censored fractures, perturbing in the Metropolis algorithm , and determin­

ing convergence in distribution of a simulated aperiodic , irreducible Markov chain. This

chapter ends with a conditional coding recipe applicable to the problem from Chapter 2.

3.1 Choosing an Energy Function

Choosing an energy function amounts to knowing the distribution of the errors , E , in

the statement M = m(X) + E. This requires that for each problem we define M and

m . The funct ion m makes some true measurement on a realization X. If we observe

m(X) with some independent random error , E , then the value of the energ y function , h,

is dependent on th e distribution of E. For example , if the errors are normal with mean

M and a standard deviation of 1, then by 1.3 h(y) = ½y2 .

Suppose tha t we define M so that

(3.1) M = m(Xo) -

By this we mean that there is no measurement error. We stated previously that h is defined

by the probability distribution of the measurement errors. If there is no measurement error ,

then we are free to choose h in many ways so long as h is nonnegative valued and achieves

a minimum only for configurations of w such that m(g(w)) = m(X) or , equivalently, such

20

that m(g(w)) = M. In general , the function h summarizes the difference between Mand

m(X), where X = g(w) .

When no measurement error is present , the best way to define h depends on the

definition of m. In this section we consider three different definitions of m useful for

solving the problem presented in Chapter 2. We also consider three corresponding ways

of defining h. The reader is free to consider more and different choices of m and h.

3 .1.1 Visual Matching

Two fracture patterns match visually if t hey look exactly the same. In the field of image

analysis , Geman and Geman (1984) determined visual matches by comparing images pixel

by pixel. Computers easily count the number of differing pixels between patterns. The

resolution (number of pixels) a pattern enjoys determines how much time is required to

determine a match . We can create our own version of resolution by superimposing a grid

of arbitrary dimension over a fracture pattern . See Figure 3 for an example. Given a

rectan gular grid of fixed dimension , every fracture pattern impose s a new pattern on that

grid.

Grid pattern s form a matrix , G = (Gi,j), If a fracture intersects the ith row and jth

column that define the grid rectangle r i,j, then the grid matrix stores a 1 in G i,j • Grid

rectangles that do not bound a fracture , or some portion of a fracture , correspond to

entries of O in the grid matrix . Two frac ture patterns match if they have the same grid

matrix of zeros and ones. The coarseness of the grid determines the quality of the match .

Let h be a function that sums the absolute difference of corresponding entries in a grid

matrix A and a grid matrix B. Let matrix A name the grid matrix imposed on a fixed

0
<O

0 v

0

"'

0

1-
I-

....
-

....

0

- -
I-

-

-
,_

-

-

.....

-
I-

....
--

.

.
:

~

- ..
-=

,_ -

20

21

- I--
-

'-
.......

-- -1=- -
I- --

. ~ -+-

-

...
- -....

-
L-

I-

....
1--

-- -
-

40 60

Figure 3. An example of a rectangular grid placed over a fracture pattern. Squares
intersected by a fracture or any portion of a fracture have a value of 1 otherwise they have
a value of 0.

22

fracture pattern X 0 . Let B name the grid matrix of a simulated fracture pattern , X. Let

m(Xo) = A and m(g(w)) = B , where g(w) = X. Symbolically,

r C

(3.2) h(w) = L 2)Ai ,j - B i,jl,
i=l j =l

where r is the number of rows in A and B , and c is the number of columns . To adjust the

resolution of a match in h, change r and c. The larger the values of r and c, the better

h determines different patterns. As the resolution becomes coarse , the value of m ceases

to be unique for differing patterns of fractures. Meaningful samples of the vectors w that

simulate fracture patterns X such that m(g(w)) = A require that the function mis not

too vague .

For the problem presented in Chapter 2, visual matching has one drawback. Namely ,

m(Xo) depends on both the horizontal and vertical position of each fracture defined in

X 0 . Except for those fractures in Xo that intesect the boundaries of the growth region ,

th e position of a fracture does not affect what the fractures tell us about ngen, lmax ,

and gwsz. Statistical pattern matching proves more flexible than visual matching in the

context of the current problem. The next two examples of h match statistical information

between fracture patterns.

3.1.2 Method of Moments

Using the idea that under suitable conditions two probability distributions match if

they have matching theoretic moments, define h as follows. Let M denote the vector of

sample moments from the fracture lengths in a fixed pattern, X0 . The number of sample

moments must be larger than one and preferably larger than three. Simulate a fracture

pattern X and compute a vector I of fracture lengths. Suppose N is the total number of

23

fractures present in the natural fracture pattern. Define B so that

(3.3)
1 k .

B; = N .L z;.
i=l,N

The index i denotes the ith moment so that the length of B is the number of sample

moments, k , that we set in advance. The variable lj is the length of the jth fracture in

the simulated pattern.

Let m(g(w)) = B and m(Xo) = M. Define h by

k

(3.4) h(w) = L I Bi - Mi I .
i=l

The constants M; are the ith sample moments of the fracture lengths in the fracture

pattern X0 . The constant k is a positive integer corresponding to the length of M. The

function h measures differences in fracture patterns better for N large. If N and k are large

enough , h will not achieve a minimum value unless the fractures in X are from the same

population as the fractures in the natural pattern. If we assume that all of the important

information about a fracture pattern is summarized in the lengths of its fractures and that

those lengths are uncorrelated to their position in the growth area, then using 3.3 in 3.4

makes sense. The energy function h as defined here makes no sense in the case of small

N or with a natural pattern where more than a small proportion of the fractures extend

outside the growth area. Censored cracks are a problem because the true length of the

fracture is not known.

The h proposed here has a range on the nonnegative real numbers. This means that

even though h achieves a true minimum at zero, we will need to consider two patterns as

a match if h is close to zero. This has the disadvantage that we must interpret what close

to zero means.

24

3.1.3 Matching Histograms

Akin to finding moments, but an intuitively better summarization of a fracture struc-

ture, is the fracture length histogram. This is a loose summary of the order statistics of

fracture lengths in a pattern. Let h be a function that finds the absolute difference in

fracture length frequencies in classes of fixed size. Let A and B denote vectors of length

c. Each entry , Ai and Bi of A and B, count the number of fractures in class i from a fixed

fracture pattern , Xo, and from a simulated fracture pattern, g(w) = X , respectively. Let

m be a function such that m(X 0) = A and m(g(w)) = B. Let c represent the number

of frequency classes that we choose to define the histograms summarized by A and B .

Define h as

C

(3.5) h(w) = L IAi - Bil-
i=l

Here we control the resolution of a match by our choice of c. An alternate definition of h

sums the squared deviations between corresponding entries of A and B. This definition

has the advantage that it exagarates the difference between nonmatching patterns.

Defining m to summarize the histogram of fracture lengths in a pattern of fractures

is the best choice for solving the problem from Chapter 2. This is because X0 (visually

denoted by Figure 1) has censored fractures and because such an m does not incorporate

the vertical position of any fracture in its value.

3.2 Censored Cracks and Boundaries

Conditional coding requires the simulation of many fracture patterns to work. In

particular there must be a first simulation. All simulations result when the fgp operates on

a list w of random variables uniform on [0,1]. This list has two parts. The first part codes

25

ngen , lmax , and gwsz and a pattern of starter cracks . The second part is a long list of

uniform random variables for use in the growth decision processes of simulation. Obviously

ngen , lmax , and gwsz need not be bounded on [0,1]. At the very least, ngen and the x

and y coordinates of the starter cracks need broader bounds. This requirement dictates

that ngen , lmax, gwsz , and the starter crack coordinates are coded as linear functions of

random variables uniform on [0,1]. This requires the introduction of parameters ancillary

to fracture growth in the fgp. These parameters allow us to control the sampling region, S,

for the growth parameters , and the growth region , A, for the starter cracks . Also, coding

ngen , !max , and gws z as linear functions of random variables uniform on [0,1] is the same

as giving them a uniform prior distribution. Assuming a uniform prior , conditional coding

is taking a sample from the likelihood

(3.6)
fM I efe

fe IM= !M = cfM I els(0).

The capability to control the growth region is especially important in the case that

Xo displays fractures censored by the growth boundary . If the natural pattern has cracks

that intersect the growth boundary, then the beginnings of our simulated patterns cannot

be restricted to the observed area of the natural pattern. Instead, the growth area must

be extended so that starter cracks can grow from the outside in , since that might be what

happened to form the natural pattern .

Deciding how far outside of the observed growth area to allow the placement of starter

cracks requires some study of the pattern that we are trying to match. A reasonable

approach is to keep all starter cracks within 3 / 4 the length of the longest fracture in the

natural pattern away from the observable boundary. According to the fracture growth

algorithm given in Chapter 2, all fracture growth is symmetric with respect to the mid-

26

point of the starter crack. This motivates us to allow the number of out-of-bounds starter

cracks to match but not exceed the number of censored fractures in the natural pattern.

To perform conditional coding in the case of censored fractures , count the number of

censored fractures in X 0 and call the number z. Require that z starter cracks be placed

randomly about the growth boundary each time a new fracture pattern is simulated for

comparison to X0 . We mean that up to z of the starter cracks will be allowed to take

up positions outside the boundaries of observable growth region and through simulation

have the opportunity to grow, possibly extending into the observable region where that

portion of the fracture contributes to the simulated pattern.

Also relevant to this discussion is the topic of control over the sampling region. Condi­

tional coding is more efficient if we sample ngen , lmax, and gwsz from a restricted space.

For example, it is not wise to allow large ngen and gwsz when trying to match a pattern

of many small fractures that are approximately the same size. If a fracture pattern has

many small cracks and a few relatively large cracks , then a careful study of the fracture

growth algorithm in Chapter 2 reveals that lmax is probably larger than lo. In all cases,

bounds on the allowable values of ngen , lmax , and gwsz need to be set or conditional

coding may be slower than necessary.

3.3 Perturbing

During conditional coding, perturbing w in the Metropolis algorithm is a concern.

To keep track of what components in w get coded to the growth parameters and starter

crack coordinates and which are used as as probabilities, we impose an ordering in w. Let

elements 1-3 map to ngen , lmax, and gwsz, respectively. Let elements 4 through 3 + 2N

27

map to the left end point of each starter crack. The even indices between 4 and 3 + 2N

represent the x coordinates of the end points. The odd indices represent the y coordinates

of the end points. Because all starter cracks enjoy a horizontal orientation , the right end

points have the same y coordinate as the left endpoint. The x coordinates of the right

end points of the starter cracks are just the left x coordinate plus l0 . All other elements

in the list w are uniform probabilities.

The length of w must be sufficiently long so that all possible growth decisions during

simulation have a corresponding entry in w. To run the fgp , this means that w must have

at least 2BN + 2N + 3 entries. Here N denotes the number of fractures in the natural

pattern and B is the upper bound on the sampling interval for ngen. During simulation

the most dramatic changes in fracture patterns from one simulation to the next occur

when one of the three parameters ngen , !max , or gwsz changes. Less dramatic effects

occur when a w is altered beyond the first three entries .

The idea behind conditional coding is to iterate through simulated fracture patterns

such that the energy function is minimized for a particular pattern generated by a vector ,

w. Thew vector evolves from perturbing in the Metropolis algorithm. There are many

perturbing schemes available , but we require every acceptable scheme to perturb win such

a way that 1.9 holds .

3.4 Monitoring Convergence

No theoretical signposts exist that prove convergence for this application of the Metro­

polis algorithm. However, the results of conditional coding are valid only under the as­

sumption of convergence. We cannot observe convergence in MCMC methods directly but

28

we suppose that convergence has observable side effects.

One way to monitor convergence in MCMC methods requires the comparison of long

disjoint strings of consecutive energy states in a nonparametric test of equal distribution.

Since MCMC methods search for random lists of variables that have minimal energy

configurations , it is reasonable to believe that as the Markov process internal to the MCMC

method converges , the correlation between energy states that are fixed distances apart also

converge to a fixed number. It is easy to keep track of such moving correlations and plot

them as we go to check for convergence in the Metropolis algorithm.

These checks do not offer indisputable proof of convergence. However , they do offer

some reassurance that we are moving toward viable solutions through whatever MCMC

method we employ to do the conditional coding. As a postscript, note that these checks

require a fixed method of perturbation for all variable lists that are compared to one

another. These checks also require a fixed temperature.

3.5 The Conditional Coding Recipe

To conclude this chapter we offer a sequential view of the events necessary to yield

the data in Chapter 5. First , start with a fracture pattern X 0 of N fractures , z of which

are censored. Consider X 0 the natural fracture pattern. We are trying to find parameter

points of the form (ngen,lmax,gwsz) that produce populations of fracture patterns that

overlap Xo.

Choose an appropriate energy function. Randomly generate a vector w 0 of random

numbers uniform on [0,1] of sufficient length. The fgp modified for use with conditional

coding interprets the first three entries of w 0 as ngen, lmax , and gwsz , respectively. For

29

any vector w = w1, w2, w3, ... , the fgp finds ngen as follows.

(3.7) ngen = [w1(b - a)+ a]

Here a and b represent the upper and lower bounds on the sampling interval for ngen.

The square brackets denote that ngen must be an integer. The variable w1 is the first

entry in w. The parameters lmax and gwsz are coded similar to ngen, using w2 and w3 ,

but are not required to be integers.

The next 2N entries in any w denote starter crack endpoints. Sequentially, every even

element in w from entry 4 to (2N + 2) maps to an x-coordinate. Every odd element

between the number 4 and (2N + 3) entries in w denotes y-coordinates that belong with

the x-coordinate from the previous entry. If the growth region is rectangular, then the

modified fgp reads the x and y coordinates according to the following equations.

(3.8)

(3.9)

x = (b - a)u2i + a

y = (d- c)u2i+1 + c

Here i is an index from 2 ... [N /2]. The variables a, b, c, d are upper and lower bounds

for the growth rectangle. Equations 3.8 and 3.9 code the right endpoint coordinates of

the starter cracks. The left endpoints have the same y-coordinates as the right and an

x-coordinate that is lo less than the x-coordinate of the right endpoint. Let lo be fixed at

a value of 0.01.

If z > 0, then the process of coding the starter cracks must be modified to accommodate

the placement of up to z starter cracks outside the boundaries defined by the variables

a, b, c, and d given in the previous paragraph. One way to perform this task is to force z

of the N starter cracks to be placed within 3/4 the length of the longest fracture in X 0 of

30

the growth boundary. Allow placement to occur with equal probability on either side of

the boundary.

With h and wo defined, apply the Metropolis algorithm described in Chapter 1. Each

iteration of the Metropolis algorithm accepts or rejects an w perturbed from the previous

iteration. We perturb the vector w by randomly assigning new values to a proportion

of the elements in w. For reasons that we explain later, run the Metropolis algorithm

without annealing .

Run the Metropolis algorithm for a long number of iterations, and until the energy

function is at a minimum. Generally, a large number of iterations is necessary for conver­

gence in distribution of the Markov chain generated in the Metropolis algorithm. At this

point, record the first three entries from thew that minimized h. Perturb w and continue

until a sample of parameter points (ngen,lmax ,gwsz) of suitable size is acquired.

We seek a simple random sample of the parameter points (ngen,lmax,gwsz) that

produce patterns matching X 0 in the sense that m(g(w)) = m(Xo) - For the sample

points to be independent , we must start the Metropolis algorithm over after each sample

is taken or we must perturb the last w that minimized h many times before accepting one

of those perturbations into our sample.

Conditional coding is difficult to implement on the problem from Chapter 2. The

results in Chapter 5 are enough to show the potential of conditional coding. The rest of

our work details the successes and difficulties of conditional coding as it is applied here.

31

CHAPTER 4

CONDITIONAL CODING APPLIED

Appendix A.4 contains a table of 100 sample points (ngen,lmax,gwsz) obtained using

conditional coding and Figure 1 as Xo. To understand the sample, we start with a

description of the energy function, perturbation scheme, sampling region , and temperature

setting used to get it. This is followed by a discussion of time constraints on the experiment

and the role they played causing adjustments to the procedure. Finally , we discuss issues

of convergence in the Metropolis algorithm by investigating correlated energies and a non­

parametric test of equal distribution between disjoint pieces of the Markov chain that

results from the Metropolis algorithm. Chapter 5 offers an analysis of the data .

4.1 The Energy Function

Xo is the pattern of 200 fractures represented in Figure l. Six of those fractures

run out of bounds . It is easy to create an 8-class histogram such that the number of

fracture lengths in each class is equal. Censored fractures are included. Call the vector

of frequencies A. Let m be a function defined so that m(X 0) = A . For any simulated

pattern , X , we can count the frequency of fractures with lengths in each frequency class

used to define A. We store these frequencies in a vector B. We say that m(g(w)) = B .

The energy function, h, sums the absolute difference between corresponding entries in A

and B according to the equation below.

(4.1) h(w) = { Li1i 1Aoi - Bil if Li1i IAi - Bil> d
otherwise

32

To keep track of censored fractures we include the absolute difference between the number

of censored fractures from patterns Xo and X. The constant c denotes the number of

classes that define A. The (c + 1)st entries in A and B are the number of censored

fractures in Xo and X, respectively. The flag d is a positive whole number. In a sense,

d controls the resolution of a match without changing m. The sample we obtained is the

result of 4.1 with d = 10. Chapter 5 seeks to justify the introduction of d to h in the

context of the current problem. It seems intuitive that for d large , h loses meaning , but

that d small can reduce the time required to sample w using h. Time constraints on the

process forced the introduction of d.

4.2 The Perturbation Scheme

Settling on a perturbation scheme is a trial-and-error process. We found that it was

advantageous to perturb the first three entries in w about half of the time. The other half

of the perturbing occurs at random on about 25% of the remaining entries in w at a time.

This perturbation scheme does not take into account the energy associated with w . The

perturbing we did was the result of experiments to see what worked best . Perturbing this

way the Metropolis algorithm required 28,241 as a median number of steps to minimize

the energy function with 42,960 steps as an average.

4.3 The Sampling Region

Experience shows that the smaller the sampling region for ngen, lmax, and gwsz, the

less time it takes conditional coding to produce a sample. Recall that Figure 1 denoting

Xo is actually the result of a single run of the fgp on a series of 200 starter cracks placed

at random in a 50 by 50 box. The parameters that produced X 0 are known. We know

33

that ngeno = 100, lmaxo = 0.01, and gwsz 0 = 0.1. The experiment detailed in this

chapter is designed to see if conditional coding produces a sensible sample of parameters

capable of simulating Xo. This motivated us to use conditional coding with a sampling

region that included (ngen 0 ,lmax 0 ,gwsz 0). We allowed w to code values of ngen between

85 and 105, values of !max between O and 0.03, and values of gws z between O and 0.3.

This relatively restrictive sampling region was necessary to produce results in a tolerable

period of time during the research process. There is nothing special about the way the

sampling space is restricted except that ngen , !max, and gwsz are bounded to scale and

the point (ngen 0 ,lmaxo,gwsz 0) is not at the center of the parallelepiped that defines the

sampling region.

4.4 Temperature

We can choose to perform conditional coding with a fixed temperature in the Metropo­

lis algorithm or by starting with a high temperature and cooling it slowly. The cooling

process with the Metropolis algorithm is called annealing. Authors Bertsimas and Tsit­

siklis (1993) show that when annealing is performed , the Metropolis algorithm generates

Markov chains that converge to a stationary distribution if and only if the following hold.

1. The cooling schedule is slow enough but converges to zero. One common schedule is

(4.2)
d

T(t) = log(t) '

where t is a time or counting parameter and dis a constant .

2. The parameter dis sufficiently large. Bertsimas and Tsitsiklis (1993) show that for

this cooling schedule , d must be at least as large as the smallest difference between

the energy of any vector, w , that minimizes h and the energy of any vector , w , that

34

does not.

By our choice of h we know that the largest observable h on a pattern of 200 fractures

divided into eight frequency classes given X 0 is 550. If we let d = 550, then annealing

in the Metropolis algorithm theoretically works. In practice, Bertsimas and Tsitsiklis

(1993) point out that annealing may not reduce the number of iterations in the Metropolis

algorithm necessary to get a solution. Early experiments seemed to show this to be the

case for our sample.

Our sample was generated at a fixed temperature of 19. Annealing with the cooling

schedule given by 4.2, with d = 550, takes one million iterations of the Metropolis al­

gorithm before the temperature gets cooled to 39.8, and on the order of 1012 iterations

to get down to 19. There are other, faster, cooling schedules that we tried including a

geometric schedule, but they were no better than running at a fixed temperature of 19.

Trial and error indicated that temperatures much higher than 19 delay results because

the Metropolis algorithm easily rejects w vectors with small energies in favor of w vectors

with larger energies.

When T is fixed small, the probability of escaping parameter configurations of locally

minimum energy is small. This can result in a sample of points at certain minima while

excluding points at some other minima. It is possible that for T not large enough, some

parameter combinations with the potential of minimal energy fail to communicate in an

appreciable way with other parameter combinations of equal or more potential for minimal

energy.

We say that two parameter combinations communicate if there exists some positive

probability of movement from one to the other in a finite number of steps through the

35

Markov chain generated by the Metropolis algorithm that describes the respective energies

associated with each parameter combination. Two parameter combinations communicate

in an appreciable way if correspondence between the two can be observed with relatively

high probability after a large number of iterations in the Metropolis algorithm .

Since the starting state for the Markov chain generated with the Metropolis algorithm

is chosen at random, it is possible that certain minima are not sampled with conditional

coding , not because they are not likely, but because they are not likely given the starting

state. High temperatures slow the sampling process, but avoid this difficulty by allowing

the low energy states in Markov chains generated by the Metropolis algorithm to com­

municate easily with states of high energy so that no subset of the sampling region is

nonaccessible to conditional coding. We do not attempt here to prove that with T = 19

this is true for conditional coding applied to the problem in Chapter 2. For this problem

when T = 19 there was always a 5% chance of moving from one parameter combination

to another that demonstrates an energy measure 56 units larger than the previous and

jumps of smaller magnitude were increasingly more likely.

4.5 Time Constraints

The data set in Appendix A.4 came after gaining some months of experience with the

fgp and the Metropolis algorithm. Many smaller data sets went before . What one learns

from this process is that conditional coding can be exceedingly slow. Weeks were required

to see what effect the latest adjustments in perturbing, temperature, sampling region and

choice of energy function have on the process of conditional coding. Months of this kind

of work led to the perturbing scheme , sample region, temperature, and minimum energy

36

acceptance region that produced the data. This sample via conditional coding took more

than 1000 hours to generate on a SPARC 10 work station. This exorbitant amount of

time results from the high number of iterations required by the Metropolis algorithm to

minimize h compounded by the amount of time required by the fgp to simulate 200 crack

fracture patterns.

4.6 Convergence

In spite of the large number of iterations made by the Metropolis algorithm to find

configurations of w that simulate fracture patterns of minimal energy, we cannot assume

convergence. In fact , it is a discouraging truth that we can say little about the reality of

convergence for this problem. We tried monitoring covariance, looking at histograms, and

running nonparametric tests of equal distribution between disjoint pieces of the Markov

chain that came out of the conditional coding. The results follow.

Figure 4 is a plot of the covariance among all the elements of the Markov chain gen­

erated by the Metropolis algorithm when conditional coding was applied to the inverse

image problem of Chapter 2. The y-axis measures the covariance and the x-axis measures

the distance between the states for which the covariances were computed. Ideally, as the

Markov chain gets long enough that the resulting states are governed by a stationary

distribution, the covariances should converge in a decreasing fashion to a constant of rel­

atively low magnitude . Figure 4 demonstrates this behavior somewhat. However, there

appears to be a great deal of correlation between states in the chain even when they are

a long distance from one another. The greatest proportion of damping in covariance is

complete by the time the Markov chain is 30,000 states long.

Q)
u
C
Ill ·.::
Ill
>
0 u

0
0
(')

0
0
C\I

0
0 ,...

0

.
I
i .
•

0 10000 20000 30000

distance between states

Figure 4. Covariance plot of moving correlations.

37

40000 50000

38

Figure 5 pictures a sequence of histograms summarizing disjoint pieces of the Markov

chain. The first histogram covers the successive states from 30,000 to 130,000 and the

second histogram covers the states from 150,000 to 250,000. The histograms have the

same general shape and range but differ too much for such large sample sizes to conclude

that they represent the same distribution. An application of the Kolmogorov-Smirnov

nonparametric test of equal distribution seems to provide some evidence that the two

histograms are from differing populations. With such large sample sizes, Conover (1980)

approximates the critical value of the test to be 0.0060716 at the a = .05 level. The test

statistic computed with the FORTRAN code in appendix A.3 was 0.0250897. Because the

test statistic is larger than the critical value, we reject the null hypothesis that the data

summarized by the two histograms in Figure 5 are from the same population . We present

these results noting that the Kolmogorov-Smirnov test assumes independent , identically

distributed data points. Figure 4 demonstrates the violation of this assumption, making

our test statistic less meaningful. These failures motivated another experiment.

After the collection of the 50th sample point the process of conditional coding had

iterated the Metropolis algorithm 2,218,018 times. If sometime between the first sample

point and sample point number 50 the Markov chain had converged in distribution , then

there might be some fundamental difference in the points drawn at the first of the sample

and those drawn at the end. Splitting the sample in half , we see little difference between

the two sets of 50 points. Figure 6 is an all-pairs plot showing the distribution of the first

50 against the second 50 data points in the sample. Figure 7 is an all-pairs plot of the first

20 against the last 20 data points in the sample. In each set the range of the respective

parameters is essentially the same. The means and medians are essentially the same, and

39

0
0
0
0 0 LO 0 .,~

~ ~ · 0 r 0 ~

~
LO

®
~

~ I ~ ·

~ ~

'
0 I 0
0

0 0 ~-v ~ 0 ; I 0
0 I v

~ ~

I ~ i
~

'
®

0 ' ~ 0

I ® 0
' 0 ~ 0 . 0 I er,

~
0
0

I er,

Ii I ~w 11 II 0 ~
0 ~I 0 ~~ 0 II 0 II 0 0 C\J 0

~~ C\J ii ~~ 11 II
~ ~~ ~, ;1

0
0 Ii 0 ~I. 0 0

0 0 Ill ,- 0
,-

~111 ~~~~ 1~~1~ Ill ~~~
0 ~ 0 ~~~ ~-

0 50 150 250 0 50 150 250

30000 thru 130000 150000 thru 250000

Figure 5. Frequency counts of energies as states in the Markov chain generated by the
Metropolis algorithm . We sampled from a single long chain . This figure compares the
distribution of energies observed in two disjoint pieces of the chain.

40

the interaction between the parameters themselves is indistinguishably the same .

The issue of convergence emerges as the most serious threat to the validity of our

sample. Even if the histograms of Figure 5 were the same , there could be no reason

to conclude that convergence occurred. Rosenthal (1994) supports the conclusion that

convergence may be so slow that differences between long disjoint pieces of the Markov

chain are statistically indiscernible and yet model poorly the true stationary distribution.

Taken all together there is more evidence to support a denial of convergence than to

verify convergence. Only the characteristics of the sample analyzed in the next chapter

encourage the conclusion that the iterates have converged.

It)

0
ci

0

0
ci

It)
0
0
ci

0
0

0.0 0.005 0.010 0.015
' ' I

0 +

i
• .,,, + -G

0 -G

ngen +

-tO
+ •

0

O+

9-
9+i

Q.O

+

'

0+
+ •

' '

0
0 -
It)
a,

0 a,

+
0

0
+

'----------___, :::================~ ~=================o=: :£
0 0 Q. i

+0 Q. +
+ + o+ 0

• +

I lmax

I
0

+0

++
• 0

+

0

~i.

• 0
I ' ' 85 90 95 100

+

• ++
0

+

0

0

0

0 -G -tit
+

0 +

~o
+ ljl

o +o

I
I

0.100

0 0
0+

+ +
+ •

gwsz

I I I

0.110 0.120

0
0 -0

41

Figure 6. Pairs plot of 100 sample points. The first 50 points in the sample are denoted
with "+" and the second 50 are denoted with "0".

0.005 0.010
' I I I

OQQOOJ -!O DI-+!(D.
.

ngen

.

0.015

+

i
+ .Q

0 0

0

0

+

G-
e-+i

0 0

I I

0

.Q

0
+ +

:::================~ :::===============~ :::================~ Lil
0 0
0

0

o·
0

Lil
0
0
0

+
0

I

0 i
Q +

o+

8
+
+

i
~

i
I

lmax

~==============o==~ ::================='. + 0

ljl 0 0

0 0

Qi It O .Q It
+ + t o~~~~

'---~,--~,-~,--'+ I +
90 95 100

G-0

+ Q

+o

8
+ +

0

gwsz

I

0.100 0.110

0

+

0
0

Lil
a,

Lil .,.. .,..
0

0 .,.. .,..
0

Lil
0 .,..
0

g ...
0

42

Figure 7. Pairs plot of 40 sample points consisting of the first 20 sample points and the
last 20 sample points from an original sample of size equal to 100. The first 20 points in
the sample are denoted with "+" and the second 20 are denoted with "0" .

CHAPTER 5

DATA ANALYSIS

43

In this chapter we summarize the relationships between ngen , lmax , and gwsz in the

sample that we obtained with conditional coding. From our summary we propose the most

likely estimates of ngen 0 , lmax 0 , and qwsz 0 corresponding to Xo , based on the empirical

distribution of our sample under the assumption that ngeno , lmaxo , and gwszo are in the

sampling region given in Chapter 4. We conclude this chapter with some arguments in

defense of the validity of the sample.

Appendix A.4 presents the sample of 100 points we obtained by conditional coding

under the provisions explained in Chapter 4. Figure 8 is an all-pairs plot of the data

point s from th e sample . The da t a appear in two groups. The first groupin g of the data

is for all points where lmax S 0.01. Recall t hat within the fgp each starter crack has an

initial length of l0 = 0.01. It makes sense that the relationship between lmax and the

other variables ngen and gws z depends on l0 . For each run of the fgp where lmax s 10 ,

each fracture grows with probability one at every iteration . If lmax > l0 , then for each

fracture in the pattern there is some positi ve probabilit y that on certain iterations no

growth will occur .

Figure 9 is a histogram of the lmax values in the sample. The range of the sampled

values of lmax goes from 5.54681E-5 to 0.0157606 . The sampling interval for /max was

[O, 0.03]. Of the 100 values of /max collected, 74 of those observations occurred where

lmax s /0 • Under the assumption that our sample is valid , this provides good evidence

44

0.0 0.005 0.010 0.015
I I

0
0

ngen ,..~

.. g

. l2
Lt) ~-. . ..
0 . . . ' . .

0 •
0 i "" ci

!max J
Lt) f
0 t 0
ci

f • s
~- f

0
C\J

ci

""

.. 0 • ... ,.. ...
gwsz ci

""

.
'

.
' 0 .

0 - ---- ci

I I I

85 90 95 100 0.100 0.110 0.120

Figure 8. Pairwise plot of parameters sampled via conditional coding .

c
::::l
0 u

LO .,...

0

LO

0

the true value of lmax is 0.01

0.0 0.005 0.010

lmax

Figure 9. Histogram of sampled lmax values .

45

0.015

46

that X 0 depicted in Figure 1 is more likely the result of the fgp run with lmax :S 0.01

than with lmax > 0.01. Here it is good enough to say that we estimate lmax 0 is less than

0.01 because the fgp creates the same output for all values of lmax less than l0 •

Figure 10 is a histogram of the ngen values in the sample. The range of the sampled

ngen values is from 85 to 104. The sampling interval for ngen was [85,105]. There

are 77 observations where ngen = 101. Of these 77, 74 belong to sample points where

lmax :S 0.01. Refering back to Figure 8, we note that ngen is highly correlated with gwsz .

The coefficient of correlation is -0.9991569. Due to the magnitude of this coefficient of

correlation, we expect to see a high mode in the histogram of gwsz similar to the mode

in Figure 10.

Figure 11 is a histogram of the gwsz values in the sample. The mode in this histogram

coincides with the mode in Figure 10. The range of the sampled gwsz values is from

0.0966182 to 0.120508. The sampling interval for gws z was [O, 0.3]. Of the 100 points in

the sample , 71 of them had a gwsz component from the interval [0.0982087, 0.985334].

This interval has a width that is 1.35% of the range of the sampled values. All 71 of these

observations belong to data points where ngen = 101 and lmax :s; 0.01.

Assuming convergence in the Markov chain generated in the Metropolis algorithm,

there is strong evidence that ngen = 100, lmax = 0.01, and gwsz = 0.l are not the

parameters most likely to produce X 0 in simulation through the fgp. Likewise, our sam­

ple does not undermine its own validity by excluding the true parameters from those

reasonable with some empirically appreciable probability.

We introduced the parameter d into the energy function in Chapter 4. The introduction

of d was necessary to speed the process of sampling with conditional coding. We admit

'E
::J
0 u

0
a,

0
(0

0 v

0
N

0

the true value of ngen is 100

85 90 95

ngen

Figure 10. Histogram of sampled ngen values.

47

100

'E
::,
0 u

0 v

0
C\J

0

0.095 0.,00 0.105 0.110

gwsz

Figure 11. Histogram of sampled gwsz values .

48

0.115 0.120

49

that by introducing d into the energy function, h, we run the risk of distorting the meaning

of h so that any sample we obtain using his uninterpretable. By letting d = 10 in 4.1, we

did not , in a statistical sense, distort what it means for h to be 0 and hence what it means

for a simulated pattern X to match X 0 . We justify this with x2 goodness-of-fit tests.

For each w sampled via the Metropolis algorithm, we recorded the vector B of fracture

length frequency counts, including the number of censored fractures , from the fracture

pattern X generated by g(w), where h(w) = 0 in 4.1 and d = 10. We test individually

the hypotheses that each vector B summarizes fractures from the population of fractures

defined by A. We defined A in section 1 of Chapter 4. Recall that the vector A has

nine entries. The first eight record the frequency counts of fracture lengths occurring in

X 0 . The ninth is the number of censored fractures in X 0 . Under the null hypothesis, the

expected count for each entry in B is the corresponding entry in A. In this case A is the

vector (28,25 ,23,26,26,24,23,25,6). Computing the x2 statistic in the usual way, we find

that all of the 8-degree-of-freedom test statistics for the vectors B have p-values in the

interval (0.99 ,1.00). Thus , we fail to reject the null hypothesis for any of the vectors B

that correspond to the sample points w that we obtained by conditional coding. By letting

d = 10 in 4 .1, we still allowed h to determine a match among patterns that are statistically

alike. Appendix A.5 contains a complete table of the x2 satistics just mentioned .

CHAPTER 6

SUMMARY

50

In the preceding chapters we have defined and applied conditional coding. The theory

is general but the application is unique to the problem presented in Chapter 2. In spite of

this , there are issues of a general nature that arise in the application of conditional coding

to this problem. We conclude with a summary of conditional coding and a summary of

our attempt to match parameters ngen , lmax , and gwsz to the fracture pattern of Figure

1 that we called X0 . During the course of this summary we distinguish the successes and

failures of applying conditional coding to the fracture pattern inverse image problem .

Conditional coding is a method that applies MCMC methods to sample from a con­

ditional distribution. Classically, sampling such distributions with MCMC method s re­

quires an explicit statement of the posterior likelihood of the variable we want to sample

given some variable dependent measure that we know. This measure might include some

error. Conditional coding requires no analytic formulations . It requires only computer­

implemented algori thms that simulate the random variables and the measurements that

are made on them .

We have applied conditional coding to the problem of finding the inverse image of

a fracture pattern, Xo, simulated with rules determined by an algorithm, g, and three

parameters, ngen , lmax, and gwsz. The rules govern fracture growth determined by

the elements of a stochastic process given as a list of random numbers from a standard

random number generator. Since g relies on random numbers to determine Xo , we suppose

51

that certain combinations of ngen , lmax , and gwsz are more likely to simulate fracture

patterns with fracture length frequency counts matching X 0 than others. The sample

that conditional coding produced by matching parameters to Figure 1 bears this out.

From the sample it appears that parameter combinations with ngen = 101, lmax ~ 0.01

and gwsz E [0.0982087, 0.0985334] are more likely to simulate fracture patterns with

fracture length histograms of 8 near equal probability classes that match the corresponding

fracture length histogram of X 0 • This conclusion comes with some assumptions because

the sample referred to above comes from the small sampling region given in Chapter 4.

When interpreting the meaning of this sample , it is understood that it only details the

relationship between ngen, lmax and gwsz within that region. There are other restrictions

on the interpretation of the sample as well.

We ran the Metropolis algorithm as part of conditional coding with a fixed temperature

of T = 19. Our sample is a sample over all parameter combinations in the sampling region

that minimize our energy function if T is not too small. If T is too small , then the

probabilit y of escaping parameter configurations oflocally minimum energy is small. This

can result in a sample of points at certain minima while excluding points at some other

minima. We never address whether or not using T = 19 is a problem in this regard. Energy

states greater than 250, though less than 275, regularly occur throughout the Markov chain

used to simulate the distribution from which we sample. With the energy function that

we chose, the maximum observable energy for any parameter combination is 550. Our

sample is biased unless every combination of parameters with the potential of simulating

fracture patterns of minimum energy communicates with every other combination that

has the same potential. This communication must not occur through combinations of

52

parameters that simulate fracture patterns with energies of more than 275. This might

be a restrictive assumption and is one that we have not tested.

To avoid problems with temperature in future experiments, we recommend that the

Metropolis algorithm be started over after sampling each point. The initial energy state

of the new Markov chain generated for finding the next sample point should come from

a combination of parameters chosen at random. The hope is that starting fresh at a

random point after each sample will allow sampling of all parameter combinations capable

of simulating fracture patterns of minimal energy. Another solution might be to formulate

the energy function with a small number of states. The energy function should be very

sensitive to change in patterns of minimal or near minimal energy and insensitive to broad

differences in patterns that are far from matching anyway.

Convergence in MCMC methods is the most problematic component of conditional

coding . This area more than any other requires future research and resolution before

conditional coding can find widespread and reliable application . Our attempts to show

convergence in the Markov chain that we used to generate our sample failed . In spite of

this , the theory is sound and the sample we obtained is evidence that conditional coding is

viable. A completely valid sample of all the parameter combinations capable of simulating

patterns of minimal energy lacks only a better understanding of convergence in MCMC

methods.

53

BIBLIOGRAPHY

Bertsimas , D., and Tsitisiklis, J. (1993), "Simulated Annealing," Statistical Science 8(1},

10-15.

Conover, W.J. (1980) , Practical Nonparametric Statistics, New York: John Wiley &

Sons Inc.

Geman, S., Geman, D.(1984) , "Stochastic Relaxation , Gibbs Distribution and the

Bayesian Restoration of Images ," IEEE Transactions on Pattern Analysis and Ma­

chine Intelligence 6, 721-741.

Hollander , M. , Wolfe, D.A. (1973), Nonparametric Statistical Methods , New York: John

Wiley & Sons Inc.

Martel, S. , Hestir , K., and Long, J .C .S. (1990), "Generation of Fracture Patterns Using

Self-Similar Iterated Function Systems Concepts," Earth Sciences Division Annual

Report LBL-29700 , Berkeley, CA: Lawrence Berkeley Laboratory , University of Cal­

ifornia , pp . 52-56.

Metropolis, N., Rosenbluth , A.W. , Rosenbluth , M.N., and Teller, A.H. (1953), "Equa ­

tion of State Calculations by Fast Computing Machines ," The Journal of Chemical

Physics 26{6}, 1087-1092.

Rosenthal, J.S. (1994), "Theoretical Rates of Convergence for Markov Chain Monte

Carlo, " Conference Proceedings, Interface '94. (Also available via anonymous ftp at

ustat.tronto.edu in the file /je ff / augment .ps.Z .)

54

Smith, A.F.M., and Roberts, G.O. (1993), "Bayesian Computation via the Gibbs Sam­

pler and Related Markov Chain Monte Carlo Methods ," Journal of the Royal Sta­

tistical Society 55(1}, 3-23.

Spitzer, F. (1971), "Markov Random Fields and Gibbs Ensembles," American Mathe­

matical Monthly 78, 142-154.

The New Lexington Webster's Encyclopedic Dictionary of the English Lanquage, (1990),

New York: Lexington Publications Inc.

Vetterling, W.T. (1985), Numerical Recipes in FORTRAN , Cambridge , England: Cam­

bridge University Press.

55

APPENDICES

APPENDIX A

PROGRAMS

A.1 Fracture Growth Program

56

A description of the full capacity of the fgp can be found in an article titled "Generation

of Fracture Patterns Using Self-Similar Iterated Function System Concepts." The article

appears in the June 1990 Annual Report LBL-2700 of the Lawrence Berkeley Laboratory

at the University of California at Berkeley. This FORTRAN program codes the algorithm

from that article. The algorithm is more sophisticated than the description given in

Chapter 2. This program simulates Figure 1 and more complex patterns of fractures that

are not all oriented in the same direction. This program also has the capacity to generate

daughter fractures in close proximatey to the existing fractures that spawn them . The

inputs include a list of parameters including ngen, lmax and gws z as well as a parameter

that lets the program spawn new fractures , and one that allows fractures to grow non­

parallel to one another. The code given here is courtesy of Dr. Kevin Hestir of Utah State

University.

c This is the 'header' of common declarations.

integer npar,ngen

real prob(10)

real g(4, 10)

real x(4,10000),xp(4,10000)

real lmax

real g'llsz

integer n,np

common In/ npar,ngen

common Ip/ prob

common /g/ g

common /1/ lmax

common /gr/ g'llsz

subroutine ftrans(xfrac,yfrac)

real xfrac(4),yfrac(4)

real theta

real xl,xxm,xym

data tol /0.00001/

c This subroutine rotates, scales, and translates

ca reference frame in which the parent (x) fracture has endpoints

c (-0.5,0), (+0.5,0) (the x2 frame) to a frame in which

c the parent has its actual endpoints (the xO frame).

c The coordinates of a daughter (y) fracture are known in

c the x2 frame and are calculated for the xO frame.

57

c Determine the orientation of the parent fracture in the

c xO frame. This angle is theta and is positive in the

c counterclockYise direction from the x-axis.

theta=hatan(xfrac)

c Rotate the coordinate frame clockYise so that the parent

c fracture is in the correct orientation and calculate the

c orientation of the daughter in the xO reference frame.

call rotan(yfrac,theta)

c Scale the neY reference frame and calculate the coordinates

c of the daughter fracture in the rescaled reference frame.

c In the neY reference frame the parent fracture has its true

c length.

xl=xlen(xfrac)

do i=1,4

yfrac(i)=xl*yfrac(i)

enddo

c Translate the reference frame such that the

c the midpoint of the parent fracture is in the

c correct location. Calculate the coordinates

c of the daughter fracture endpoints in the

c translated coordinate system.

xxm=(xfrac(1)+xfrac(3))*0.5

xym=(xfrac(2)+xfrac(4))*0.5

58

do i=1,3,2

yfrac(i)=yfrac(i)+xxm

yfrac(i+1)=yfrac(i+1)+xym

enddo

return

end

cc

subroutine gen(x,n,xp,np)

include 'header'

integer i,j,iflag

real y(4),z(4)

c This program places the endpoints for parent fractures and

c any daughter fractures into an array called xp.

np=O

do i=1,n

c This do loop operates on each of then fractures

c Collect the endpoints y(1), y(2), y(3), y(4) for the

c ith fracture

do j=1,4

y(j)=x(j ,i)

enddo

c Determine whether and where a daughter fracture will be grown

c near the tip of the ith parent fracture

59

call ifsgen(y,z,iflag)

c Place the parent fracture endpoints into the xp storage array

np=np+1

do j=1 ,4

xp(j,np)=y(j)

enddo

if(iflag.gt.1) then

c A daughter fracture was grown near (but not at) the tip of the

c parent fracture . Put the daughter fracture into the xp storage array .

np=np+1

do j=1,4

xp(j,np)=z(j)

enddo

endif

enddo

return

end

cc

function hatan(y)

real tol

real hatan,y(4)

real delx,dely

data tol /0 . 00001/

60

c This function gives the orientation of a line

c with respect to the x-axis given the coordinates

c of its endpoints y(1), y(20, y(3), and y(4).

delx=y(1)-y(3)

dely=y(2)-y(4)

if(abs(delx).lt.tol) then

hatan=2.0*atan(1.)

else

hatan=atan(dely/delx)

endif

return

end

ccc

subroutine ifsgen(y,z,iflag)

include 'header'

real y(4),z(4)

real p

integer iflag

c This subroutine decides whether to grow a new fracture near the

c tip of a pre-existing one and decides where to grow it.

c The points y(1), y(2), y(3), and y(4) mark fracture end points.

c The odd number indices are x coordinates.

c The even number indices are y coordinates.

61

c The parameter pis a random number between O and 1.

pi= 4.*atan(1.)

c Select a random number p to determine whether the fracture

c will grow or nucleate a new fracture

c Fracture growth probabilities are scaled to

Ca parameter called lmax.

iflag=1

p=ran1(idum)

C If p>xlen/lmax, then no fracture growth occurs,

C and the suboutine is exited.

if(p.gt.(xlen(y)/lmax)) return

C If p<xlen/lmax, then fracture growth occurs.

C The idea is that the probability of fracture growth should

C be proportional to the fracture energy release rate G.

CG in turn, is proportional to K*K, where K is the stress

C intensity factor and is proportional to the square root of the

C crack length . Sop should be proportional to the crack length,

C which is normalized here by the parameter lmax.

C Now pick a random number to determine whether the parent

C crack will grow itself or spawn a daughter

C If p>prob(1) then a daughter crack will grow (go to 600)

C If p<prob(1) then the parent crack will grow

p = ran1(idum)

62

if (p.ge.prob(1)) goto 600

C ROUTINE FOR PARENT CRACK GROWTH

C In the following scheme, the old (short) and new (long)

C parent crack have the same midpoint.

C The maximum relative growth increment is b = gwsz

C Both crack endpoints move to increase the

C crack length by b*ran1 %.

p = ran1 (idum)

b = gwsz * p

xm = (y (1) + y(3)) *0.5

ym = (y(2) + y(4)) *0.5

y(1)=(b+1.0)*y(1) - b*xm

y(2)=(b+1.0)*y(2) - b*ym

y(3)=(b+1.0)*y(3) - b*xm

y(4)=(b+1.0)*y(4) - b*ym

return

ccc

600 continue

C DAUGHTER CRACK GROWTH ROUTINE

iflag = 2

C Growth will (will not) occur at both ends of the crack

C The parameter bis the distance over which the near tip field

C is assumed to be appropriate.

C The maximum growth increment is also b = gwsz

b = gwsz

C Now pick two random numbers to give the coordinates r, theta

C for the center of the new daughter crack.

C These numbers will be used to locate the daughter based on

C probability distributions derived from the near tip expression

C for sigma yy.

C This coordinate system is centered at and aligned with

C the parent crack tip.

C First for r:

p=ran1(idum)

r=p*p*b*xlen(y)

C and now for theta

p=ran1(idum)

C Solve for theta using Newton-Raphson method

call rtnewt(p,theta,0.01,pi)

C Now determine the orientation of the parent

ang = atan2((y(4)-y(2)),(y(3)-y(1)))

C Now determine which end of the parent to grow the daughter near

Cd= 1 corresponds to positive end of parent

Cd= -1 corresponds to positive end of parent

d = 1.

p = ran1(idum)

64

if (p.gt.0.5) d = -1.

C Pick the appropriate parent crack endpoint coordinates

if (d.gt.O.) then

w1 = y(3)

w2 = y(4)

else

w1 = y(1)

w2 = y(2)

end if

C Now pick the length of the daughter crack

p = ran1 (idum)

c fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix??

astar = p*b*xlen(y)

c fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix??

C Now locate the daughter crack midpoint

xm = w1+d*r*cos(ang+theta)

ym = w2+d*r*sin(ang+theta)

C Now locate the daughter crack endpoints

z(1) = xm-cos(ang)*astar

z(2) = ym-sin(ang)*astar

z(3) = xm+cos(ang)*astar

z(4) = ym+sin(ang)*astar

return

65

end

ccc

subroutine rtnewt(p,root,tol,pi)

parameter (jmax=20)

x1 = -1.*pi

x2 = pi

C Set initial guess

root= 2.*(p-0.S)*pi

do 11 j=1,jmax

call funcd(p,root,f,df)

dx=f/df

root=root-dx

if (abs(dx) . lt.tol) return

11 continue

return

end

ccc

subroutine funcd(p,root,f,df)

C function to calculate the integral of the normalized

C near-tip stress sigma 11 (f) and sigma 11 (df) .

phi = root/2 .

s1 = sin(phi)

s3 = sin(phi)**3 .

66

s5 = sin(phi)**S.

f = (2.*s1+2.*s3-1.6*s5+2.4)*(5./24.)-p

df = cos(phi)*(1+s1*sin(3*phi))*(5./24.)

return

end

ccc

c Master program to recursively generate line fractures

C

c The following statement defines variables and common blocks

c used throughout the ifs fracture generation program:

include 'header'

character nameo*40

c Read the input data

call rdpar

c call normal(prob,npar)

c Read the initial fracture endpoints from the file start .i np

call read4(x,n)

C

c Now enter the do loop that generates daughter fractures, filters

c out duplicate fractures, and restores the parent and daughter

c fractures back into storage array x. The number of generations

c for which fractures can be grown is ngen.

do i=1,ngen

67

C

call gen(x,n,xp,np)

call filter(xp,np)

call s.rap(x,n,xp,np)

.rrite(6,*)i,n

enddo

.rrite(6,307)

307 format(//,' enter name of output file')

read(5,90)nameo

90 format(a)

open(unit=10,file='markov.out' ,status='unkno.rn')

open(unit=11,file=nameo,status='unkno.rn')

c Write out the endpoints of the final set of fractures

do i=1,n

.rrite(10,*) x(1,i),x(2,i),x(3,i),x(4,i)

.rrite(11,*) x(1,i),x(2,i),x(3,i),x(4,i)

enddo

close(unit=10,status='keep')

close(unit=11,status='keep')

end

cc

subroutine normal(prob,npar)

real prob(10),sum

68

integer npar,i

c This subroutine converts relative growth rule probabilities

c to absolute probabilities whose sum is 1.

sum=O.O

do i=1,npar

sum=sum+prob(i)

enddo

do i=1,npar

prob(i)=prob(i)/sum

enddo

return

end

ccc

FUNCTION RAN1(IDUM)

DIMENSION R(97)

PARAMETER (M1=259200,IA1=7141,IC1=54773,RM1=3.8580247E-6)

PARAMETER (M2=134456,IA2=8121,IC2=28411,RM2=7.4373773E-6)

PARAMETER (M3=243000,IA3=4561,IC3=51349)

DATA IFF /0/

c Subroutine to generate a random number between O and 1

c From the Numerical recipes book.

IF (IDUM.LT.O.OR.IFF.EQ.O) THEN

IFF=1

69

IX1=MOD(IC1-IDUM,M1)

IX1=MOD(IA1*IX1+IC1,M1)

IX2=MOD (IX1 ,M2)

IX1=MOD(IA1*IX1+IC1,M1)

IX3=MOD(IX1,M3)

DO 11 J=1,97

IX1=MOD(IA1*IX1+IC1,M1)

IX2=MOD(IA2*IX2+IC2,M2)

R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1

11 CONTINUE

IDUM=1

ENDIF

IX1=MOD(IA1*IX1+IC1,M1)

IX2=MOD(IA2*IX2+IC2,M2)

IX3=MOD(IA3*IX3+IC3,M3)

J=1+(97*IX3)/M3

IF(J.GT.97.0R.J.LT.1)PAUSE

RAN1=R(J)

R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1

RETURN

END

cc

subroutine rdpar

70

character bogus*1

character name*40

include 'header'

c This subroutine reads the growth parameters from the desired

c input file par.inp.

c The lines below that say "read (15,*)bogus" read the titles

c for the growth criteria.

c ngen = number of generations in which fracture growth is allowed

c idum = seed for random number generator

c npar =#of growth rules

c lmax = maximum allowable fracture length

c prob(i) = probability for growth rule i

c g(i) = location of daughter fracture endpoints relative

C to a parent fracture at (-0 . 5,0), (0.5,0)

c gwsz = growth increment 'l. for a parent fracture that lengthens

C

C

(as opposed to a fracture that grows a daughter)

write(6,80)

80 format(//,' enter name of input file for growth parameters')

read(5,85)name

85 format (a)

90 format (a)

open(unit=15,file=name,status='old')

71

read(15,90)bogus

read(15,*)ngen

read(15,90)bogus

read(15,*)idum

read(15,90)bogus

read (15, *) npar

read(15,90)bogus

read(15,*)lmax

do i=1,npar-1

read(15,90)bogus

read(15,*)prob(i)

read(15,*)g(1,i),g(2,i),g(3,i),g(4,i)

enddo

read(15,90)bogus

read(15,*)prob(npar)

read(15,*)gwsz

close(unit=15,status='keep')

return

end

ccc

subroutine read4(x,n)

include 'header'

c This subroutine reads the endpoint coordinates

72

c for the array of starter cracks and counts how

c many starter cracks there are. The number is n.

open(unit=10,file='start.inp',status='old')

n=O

100 continue

n=n+1

read(10,*,end=200)x(1,n),x(2,n),x(3,n),x(4,n)

goto 100

200 continue

n=n-1

close(unit=10,status='keep')

return

end

ccc

subroutine rotan(y,theta)

real y(4),dum(4)

real theta,cost,sint

c This subroutine rotates a line segment (as defined by its

c endpoints) by a counterclockwise angle theta and then gives the

c new endpoints. The rotation center is the origin .

do i=1,4

dum(i)=y(i)

enddo

73

cost=cos(theta)

sint=sin(theta)

y(1)=cost*dum(1)-sint*dum(2)

y(2)=sint*dum(1)+cost*dum(2)

y(3)=cost*dum(3)-sint*dum(4)

y(4)=sint*dum(3)+cost*dum(4)

return

end

ccc

subroutine swap(x,n,xp,np)

include 'header'

c This subroutine sets the x array equal to the xp array

do i=1,np

do j=1,4

x(j ,i)=xp(j ,i)

enddo

enddo

n=np

end

ccc

function xlen(y)

real xlen,y(4)

c This function determines the length of a line segment

74

c given the coordinates of its endpoints.

xlen=sqrt((y(1)-y(3))**2 . + (y(2)-y(4))**2.)

return

end

ccc

subroutine filter(x,n)

real x(4,10000)

real xp(4,10000)

integer idic(10000)

integer n,np

data tol /1.0e-08/

c This subroutine checks to make sure there are no

c duplicate fractures in the ouput produced by

c subroutine gen

c Copy the endpoints for each fracture from the permanent

c x array to a temporary xp array

do i=1,n

idic(i)=O

do j=1,4

xp(j ,i)=x(j ,i)

enddo

enddo

c March through the fracture array (checking each fracture

75

c against all the fractures that follow it in the array)

c to see whether duplicate sets of fracture endpoints occur.

c If there is a duplicate set, flag the fracture that is

c closer to the end of the array.

do 100 i=1,n-1

if(idic(i).gt.0) goto 100

do 200 j=i+1,n

if(abs(x(1,i)-x(1,j)).ge.tol)

if(abs(x(2,i)-x(2,j)).ge.tol)

if(abs(x(3,i)-x(3,j)).ge.tol)

if(abs(x(4,i)-x(4,j)) . ge.tol)

idic(j)=1

200 continue

100 continue

goto 200

goto 200

goto 200

goto 200

c Write all unflagged (i . e. nonduplicate) sets of fracture

c endpoints back to the x array.

np=0

do i=1,n

if(idic(i).lt . 1) then

np=np+1

do j=1,4

x(j ,np)=xp(j ,i)

enddo

76

77

endif

enddo

c The number of fractures no~ in the x array is defined as n

n=np

return

end

78

A.2 Modified Fracture Growth Program

This program is a modified version of the fgp that does conditional coding . Some of

the routines from the original fgp are deleted here becuase they make no contribution to

solving the problem from Chapter 2. There are also many new routines specific to the

application of conditional coding.

c This is the 'header' of common declarations.

integer npar,ngen

real prob(10)

real g(4, 10)

real x(4,10000),xp(4,10000)

real lmax

real g,;.,sz

integer n,np

common In/ npar,ngen

common /pl prob

common /g/ g

common /1/ lmax

common /gr/ gysz

c---
subroutine gen(x,n,xp,np,drand,cnts)

include 'header'

integer i,j,iflag,cnts

real y(4),z(4),drand(80000)

c This program places the endpoints for parent fractures and

c any daughter fractures into an array called xp.

np=O

do i=1,n

c This do loop operates on each of then fractures

c Collect the endpoints y(1), y(2), y(3), y(4) for the

c ith fracture

do j=1,4

y(j)=x(j, i)

enddo

c Determine whether and where a daughter fracture will be grown

c near the tip of the ith parent fracture

call ifsgen(y,z,drand,cnts,iflag)

c Place the parent fracture endpoints into the xp storage array

np=np+1

do j=1,4

xp(j,np)=y(j)

enddo

if(iflag.gt.1) then

79

c A daughter fracture was grown near (but not at) the tip of the

c parent fracture. Put the daughter fracture into the xp storage array.

np=np+1

do j=1,4

xp(j,np)=z(j)

enddo

endif

enddo

return

end

c---
subroutine ifsgen(y,z,drand,cnts,iflag)

include 'header'

integer cnts

real y(4),z(4),drand(80000)

real p

integer iflag

c This subroutine decides whether to grow a new fracture near the

c tip of a pre-existing one and decides where to grow it .

c The points y(1), y(2), y(3), and y(4) mark fracture end points.

c The odd number indices are x coordinates.

c The even number indices are y coordinates.

c The parameter p is a random number between O and 1.

80

pi= 4.*atan(1.)

c Select a random number p to determine whether the fracture

c will grow or nucleate a new fracture

c Fracture growth probabilities are scaled to

ca parameter called lmax.

iflag=1

p=ran1(drand,cnts)

c If p>xlen/lmax, then no fracture growth occurs,

c and the suboutine is exited.

if(p .gt.(xlen(y)/lmax)) return

c If p<xlen/lmax, then fracture growth occurs.

c The idea is that the probability of fracture growth should

c be proportional to the fracture energy release rate G.

c Gin turn, is proportional to K*K, where K is the stress

c intensity factor and is proportional to the square root of the

c crack length. Sop should be proportional to the crack length ,

c which is normalized here by the parameter lmax.

c ROUTINE FOR PARENT CRACK GROWTH

c In the following scheme, the old (short) and new (long)

c parent crack have the same midpoint.

c The maximum relative growth increment is b = gwsz

c Both crack endpoints move to increase the

81

c crack length by b*ran1 ¼.

p = ran1(drand,cnts)

b = gwsz * p

xm = (y(1) + y(3))

ym. = (y(2) + y(4))

y(1)=(b+1.0)*y(1)

y(2)=(b+1.0)*y(2)

y(3)=(b+1.0)*y(3)

y(4)=(b+1.0)*y(4)

return

end

*0.5

*0.5

- b*xm

- b*ym.

- b*xm

- b*ym.

c---
subroutine simulate(x,n,drand,cnts,nc)

integer n,cnts,nc

real drand(80000)

c Master program to recursively generate line fractures

c The following statement defines variables and common blocks

c used throughout the ifs fracture generation program:

include 'header'

c Read the input data.

call rdpar(drand,cnts)

82

c Read the initial fracture endpoints from the file start.inp

call read4(x,n,drand,cnts,nc)

c Now enter the do loop that generates daughter fractures, filters

c out duplicate fractures, and restores the parent and daughter

c fractures back into storage array x. The number of generations

c for which fractures can be grown is ngen.

do i=1,ngen

call gen(x,n,xp,np,drand,cnts)

call filter(xp,np)

call swap(x,n,xp,np)

enddo

return

end

c---
function RANDOM(seed)

double precision seed,m,ranhd

integer istart

data istart /-1/

c ref: ripley, stochastic. simulation, page 46

if(istart.lt . O) then

m=1.0

do i=1,32

m=m*2.0

83

C

enddo

istart=1

ranhd=seed

endif

ranhd=mod((69069*ranhd+1.),m)

RANDOM=float(ranhd/m)

return

end

c---
FUNCTION ran1(drand,cnts)

integer cnts

real drand(80000)

cnts=cnts+1

ran1=drand(cnts)

return

end

c---
subroutine rdpar(drand,cnts)

integer cnts

real drand(80000)

include 'header'

84

c This subroutine reads the growth parameters from the desired

c input file par.inp.

c The lines below that say "read (15,*)bogus" read the titles

c for the growth criteria.

c ngen = number of generations in which fracture growth is allowed

c idum = seed for random number generator

c npar =#of growth rules

c lmax = maximum allowable fracture length

c prob(i) = probability for growth rule i

c g(i) = location of daughter fracture endpoints relative

C to a parent fracture at (-0 . 5,0), (0.5,0)

c gwsz = growth increment% for a parent fracture that lengthens

C (as opposed to a fracture that grows a daughter)

cnts = 0

ngen=80+20*ran1(drand,cnts)+5

npar=1

lmax=ran1(drand,cnts)*0.03

prob(1) =1.0

gwsz=ran1(drand,cnts)*0.3

return

end

c---
subroutine read4(x,n,drand,cnts,nc)

85

integer cnts,nc

real drand(80000)

include 'header'

c This subroutine reads the endpoint coordinates

c for the array of starter cracks and counts how

c many starter cracks there are. The number is n.

do 10 i=1,nc

x(1,i)=ran1(drand,cnts)*60 .0 + 15.0

x(3,i)=x(1,i)-0.01

10 continue

do i = nc+1,n

x(1,i)=ran1(drand,cnts)*50 . 0 + 20

x(3,i)=x(1,i)-0.01

enddo

return

end

c---
subroutine svap(x,n,xp,np)

include 'header'

c This subroutine sets the x array equal to the xp array

do i=1,np

do j=1,4

x(j ,i)=xp(j ,i)

86

enddo

enddo

n=np

return

end

c---
subroutine filter(x,n)

real x(4,10000)

real xp(4,10000)

integer idic(10000)

integer n,np

data tol /1.0e-08/

c This subroutine checks to make sure there are no

c duplicate fractures in the ouput produced by

c subroutine gen

c Copy the endpoints for each fracture from the permanent

c x array to a temporary xp array

do i=1,n

idic(i)=O

do j=1,4

xp(j ,i)=x(j ,i)

enddo

enddo

87

c March through the fracture array (checking each fracture

c against all the fractures that follow it in the array)

c to see whether duplicate sets of fracture endpoints occur.

c If there is a duplicate set, flag the fracture that is

c closer to the end of the array.

do 100 i=1,n-1

if(idic(i).gt.0) goto 100

do 200 j=i+1,n

if(abs(x(1,i)-x(1,j)) .ge.tol)

if(abs(x(2,i)-x(2,j)) . ge . tol)

if(abs(x(3,i)-x(3,j)).ge.tol)

if(abs(x(4,i)-x(4,j)).ge . tol)

idic(j)=1

200 continue

100 continue

goto 200

goto 200

goto 200

goto 200

c Write all unflagged (i . e . nonduplicate) sets of fracture

c endpoints back to the x array.

np=0

do i=1,n

if(idic(i) . lt . 1) then

np=np+1

do j=1,4

x(j,np)=xp(j,i)

88

enddo

endif

enddo

c The number of fractures now in the x array is defined as n

n=np

return

end

c---
subroutine create(rand,prand)

integer i

real rand(80000),prand(80000)

double precision idum

common /seed/ idum

ccc

c inputs : rand and prand denote vectors of uniform random variables c

c outputs: intialized arrays rand and prand C

ccc

do 10 i = 1,80000

rand(i) = RAND0M(idum)

prand(i) = 0.0

10 continue

return

end

89

c __ _

c---

$

subroutine energy(x,Ematrix,n,clsnum,min,max,l)

integer i,n,clsnum,jdum

real x(4,10000),1(10000,5),Ematrix(1000),min,max,cw(7)

data cw(1)/0.9227/,cw(2)/1.0308/,cw(3)/1.1294/,cw(4)/1.253/,

cw(5)/1.3884/,cw(6)/1.5342/,cw(7)/1.78159/

ccc

c inputs: x=the fracture matrix, Ematrix stores energy measures,n= c

C

C

C

the# of fractures in x, clsnum=# of frequency classes,

min=minimum crack length in x, max=maximum crack length

in x, l=vector of fracture lengths in x.

C

C

C

c output: Ematrix comes out of this routine storing the class c

C frequencies for a histogram of the fracture lenghts in x. c

ccc

do i = 1,clsnum.+1

Ematrix(i) = 0 . 0

enddo

do i =1,n

if (l(i,1).LT.cw(1)) Ematrix(1) = Ematrix(1) + 1

if (l(i,1).GE.cw(1).AND.l(i,1).LT.cw(2)) then

Ematrix(2) = Ematrix(2) + 1

end if

90

if (l(i,1).GE.cw(2).AND.l(i,1).LT.cw(3)) then

Ematrix(3) = Ematrix(3) + 1

end if

if (l(i,1).GE.cw(3).AND.l(i,1).LT.cw(4)) then

Ematrix(4) = Ematrix(4) + 1

end if

if (l(i,1).GE.cw(4).AND.l(i,1).LT.cw(5)) then

Ematrix(5) = Ematrix(5) +1

end if

if (l(i,1).GE.cw(5).AND.l(i,1).LT.cw(6)) then

Ematrix(6) = Ematrix(6) + 1

end if

if (l(i,1).GE.cw(6).AND.l(i,1).LT.cw(7)) then

Ematrix(7) = Ematrix(7) + 1

end if

if (l(i,1).GE.cw(7)) Ematrix(8) = Ematrix(8) + 1

enddo

do i = 1,n

Ematrix(clsnum+1) = Ematrix(clsnum+1) + l(i,2)

enddo

return

end

c---

91

subroutine compare(E,E3,en3,flag,clsnum)

integer en3,clsnum

real E(1000),E3(1000),flag

ccc

c inputs: E=#energy matrix of the natural pattern,E3=#energy matrix c

C of a simulated pattern, clsnum=# of frequency classes in c

C E and E3 C

c output : en3=energy of the simulated pattern. C

ccc

flag= 0.0

en3 = 0

do i = 1,clsnum+1

en3 = en3 + abs(E3(i)-E(i))

enddo

if (en3.LT .31) flag= 1 . 0

return

end

c--
subroutine pfactor(pf,pprob)

real pf,pprob

double precision idum

common /seed/ idum

ccc

92

c inputs: pprob=a test probability.

c output: pf=flag to perturb.

C

C

ccc

pf= 0.0

if (RANDOM(idum).LT.pprob) pf= 1.0

return

end

c---
subroutine perturb(rand,prand,cnts)

integer i,j,cnts,m,n,en1

real pf,rand(80000),prand(80000),pprob

double precision idum

common /seed/ idum

cc

c inputs: rand=array of uniform random variables, cnts=# of C

C elements in rand. C

c output: prand=perturbed rand. C

cc

if (RANDOM(idum).LT.0.5) then

do i = 1,3

prand(i) = rand(i)

enddo

i = int(3*RANDOM(idum)) + 1

93

prand(i) = rand(i) + RANDOM(idum)

if (prand(i).GT.1.0) prand(i) = prand(i) - 1.0

else

do j = 4,cnts

pprob = 0.25

call pfactor(pf,pprob)

prand(j) = rand(j) + pf*RANDOM(idum)

if (prand(j).GT.1.0) prand(j) = prand(j) - 1.0

prand(j) = rand(j)

enddo

end if

return

end

ccc

c NOTE: This is not necessarily the best way to perturb rand. c

ccc

c--
subroutine solution(n,x,u1,u2,u3,pcnts)

integer ngen,n,pcnts

real x(4,10000),u1,u2,u3,lmax,gwsz

double precision idum

common /seed/ idum

cc

94

c inputs: x=fracture matrix,n=# of fractures,u1-3=coded parameters c

C ngen,lamx, and gwsz,pcnts=# of metropolis iteraations to c

C get u1-3. C

c output: A file of ngen,lmax,gwsz, and pents C

cc

ngen = 80 + u1*20.0 + 5

lmax = u2*0.03

gwsz = u3*0.3

write(15,*) pcnts,ngen,lmax,gwsz

call flush(15)

if (RANDOM(idum).LT.0.05) then

do i = 1,n

write(16,*) x(1,i)-20,x(2,i),x(3,i)-20,x(4,i)

call flush(16)

enddo

end if

return

end

c--
subroutine length(x,n,l,xl,xu)

integer i,n

real x(4,10000),1(10000,5),xl,xu,cx1,cx2

cc

95

c inputs: x=fracture matrix,n=# of fractures,xu=upper bound on c

C the x-coordinates in x,xl=lower bound on the x-coord- C

C inates in x. C

c output: l=double array of the lengths of fractures in x and a c

C flag indicating if the fracture is censored. C

cc

do i = 1,n

l(i,1) = 0.0

l(i,2) = 0 . 0

cx1 = x(1,i)

cx2 = x(3,i)

if (cx1.GT.xu) then

cx1 = xu

l(i,2) = 1.0

end if

if (cx2 .LT.xl) then

cx2 = xl

l(i,2) = 1.0

end if

l(i,1) = cx1 - cx2

if (l(i,1) . EQ.0.0) l(i,2) = 1.0

enddo

return

96

end

c--
subroutine maxmin(l,n,min,max)

integer i,n

real min,max,1(10000,5)

cc

c inputs: l=double array of fracture lengths with a censor flag,n= c

C of fractures . C

c output: min=minimum in 1, max=maximum in 1 C

cc

min= 1000000

max= 0

do i = 1,n

if (l(i,2) . NE. 1.0) then

if (l(i,1) . LT.min) min= l(i,1)

if (l(i , 1) . GT.max) max= l(i , 1)

end if

enddo

if (max.GT. 50.0R .max.EQ.O) then max= 50.0

if (min.GT.SO) then min= 50.0

return

end

c--

97

subroutine stats(En,pcnts,clsnum)

real En(1000)

integer pcnts,clsnum

ccc

c inputs: En=energy matrix for a matching pattern, pents=# of c

C metropolis iterations to get En, clsnum=working row C

C rank of En. C

c output: A file of the entries in En with pents . C

ccc

do i = 1,clsnum+1

write(17,*) pcnts,En(i)

enddo

call flush(17)

return

end

c--
ccc

C C

C MAIN C

C C

ccc

c This program applies conditional coding to the problem detailed in c

c Chapter 2. Not everything in this code is optimal, but it works and c

98

c generated the large data set in Chapter 4. The notes that accompany c

c each subroutine in this program should help the reader follow how c

c the conditional coding reciepe at the end of Chapter# is coded . c

ccc

$

$

integer n,en1,en2,edum,samsize,idiv,cnts,pcnts,nc,limit,

clsnum

real E,E1,E2,rand,prand,x,xl,xu,yb,flag,t,unif,rinc,r,min,max,l

dimension rand(80000),x(4,10000),E1(1000),prand(80000),E(1000),

E2(1000),1(10000,5)

double precision idum

common /seed/ idum

cc

c initialize the appropriate variables . c

c n=number of fractures in the natural pattern . c

c cnts=loop counting variable . c

c idum=random number generation seed. c

c yb,xl,xu=boundaries for a rectangular growth region. c

c clsnum=# of histogram classes used to find energy. c

c t,idiv,rinc,m=variables used to implement Simmulated Annealing . c

c edum=energy flag that tracts the lowest energy obtained . c

c limit=# of iterations that must pass between solutions so that the c

C data points are independent. C

99

c samsize=# of sample points to collect before ending the program. c

cc

n = 200

cnts = 0

idum = 12005

yb = 50.0

xl = 20.0

XU= 70.0

clsnum = 8

t = 19.00

k = 0

m = 1

pents = 0

idiv = 45

rinc = 1.0

edum = 5000

limit = 10000

samsize = 1000

ccc

c Read the natural pattern and assign it an energy matrix by find- c

c ing the lengths it's fractures, nc=3 of censored fractures . c

ccc

open(unit=11,file='markov.out' ,status='old')

100

do 10 i=1,n

read(11,*) x(1,i),x(2,i),x(3,i),x(4,i)

x(1,i) = x(1,i) + 20

x(3,i) = x(3,i) + 20

10 continue

call length(x,n,l,xl,xu)

call maxmin(l,n,min,max)

call energy(x,E,n,clsnum,min,max,l)

nc = E(clsnum+1)

call stats(E,pcnts,clsnum)

call create(rand,prand)

call simulate(x,n,rand,cnts,nc)

call length(x,n,l,xl,xu)

call energy(x,E1,n,clsnum,min,max,l)

call compare(E,E1,en1,flag,clsnum)

ccc

c What follows is a series of commands designed to slowly lower the c

c temperature during our application of the Metropolis Algotithm. c

c Also we record the energy of the simulated pattern in the last c

c iteration if it is lower than any previous energy. c

c The way this is coded annealing is ignored. c

ccc

r = 17.98/18.98

101

20 if (edum.GT.en1) then

write(18,*) t,pcnts,en1,en2

call flush(18)

edum = en1

end if

if (m/idiv.EQ.1) then

m = 1

if (t.LT.0.5) then

rinc = rinc*r

t = t - rinc

end if

end if

print*, t,pcnts,en1,en2

if (k.LT.2) write(14,*) en1,en2

cc

c This is the Metropolis Algorithm C

cc

pents= pents+ 1

call perturb(rand,prand,cnts,m,n,en1)

call simulate(x,n,prand,cnts,nc)

call length(x,n,l,xl,xu)

call energy(x,E2,n,clsnum,min,max,l)

call compare(E,E2,en2,flag,clsnum)

102

if (flag.EQ . 1.0 . AND.pcnts . GT.limit) then

write(18,*) t,pcnts,en1,en2

call flush(18)

call solution(n,x,prand(1),prand(2),prand(3),pcnts)

call stats(E2,pcnts,clsnum)

cc

c The following lines are commented out because there are two ways c

c to get solutions. The first is to use the Metropolis Algorithm c

c to find a first solution and then create a new rand vector and c

c start over. This is what the commented lines do . The second is c

c to continue as if a solution was not found at all. Doing this we c

c cannot accept a new solution until after many more iterations inc

c the Metropolis Algorithm so that the next solution is independ- c

cent of the previous one . this is why pents must be greater than c

c l imit before we call the solution routine. c

cc

C call create(rand,prand)

C call simulate(x,n,rand,cnts,nc)

C call length(x,n,l,xl,xu)

C call energy(x,E1,n,clsnum,min,max,l)

C call compare(E,E1,en1,flag,clsnum)

k = k + 1

m = 1

103

t = 19.00

rinc = 1.0

pents= 0

edum = 5000

else

p = exp(real((en1-en2)/T))

unif = RAND0M(idum)

if (p.GT.unif.0R.en1.EQ.en2) then

do i = 1,cnts

rand(i) = prand(i)

enddo

en1 = en2

end if

end if

m = m+1

if (k .LT.samsize) go to 20

end

104

105

A.3 Kolmogorov Smirnov Test

The following code computes the Kolmogorov Smirnov test for the equality of two

distributions of data. A good explanation of the test is given by Conover (1980) and by

Hollander and Wolfe (1973). Critical values for this test are given by Conover (1980).

The test includes a subroutine SORT2 from a book of examples of numerical recipes by

Vetterling (1985). SORT2 sorts a two dimensional array. The subroutine TEST performs

the Kolmogorov Smirnov test by finding the largest difference between the emperical

distributions of the two data sets. The main driver reads two data sets of lengths m and

n respectively and then calls the routines necessary to test the hypothesis that the two

distributions the data represent are equal. This is a two-sided test.

SUBROUTINE SORT2(N,RA,RB)

DIMENSION RA(N),RB(N)

L=N/2+1

IR=N

10 CONTINUE

IF(L.GT.1)THEN

L=L-1

RRA=RA(L)

RRB=RB(L)

ELSE

RRA=RA(IR)

RRB=RB(IR)

RA(IR)=RA(1)

RB(IR)=RB(1)

IR=IR-1

IF (IR.EQ .1)THEN

RA(1)=RRA

RB(1)=RRB

RETURN

ENDIF

ENDIF

I=L

J=L+L

20 IF(J.LE . IR)THEN

IF(J. LT. IR)THEN

IF(RA(J).LT .RA(J+1))J=J+1

ENDIF

IF(RRA.LT.RA(J))THEN

RA (I) =RA (J)

RB(I)=RB(J)

I=J

J=J+J

ELSE

J=IR+1

106

ENDIF

GO TO 20

ENDIF

RA(I)=RRA

RB(I)=RRB

GO TO 10

END

subroutine TEST(x,y,m,n,tot,max)

integer i,m,n,tot,xcnt,ycnt

real z1(10000000),z2(10000000),x(10000000),y(10000000),

$ max,s(10000000),f(10000000),g(10000000)

do i = 1,m

z1(i)=x(i)

z2(i)=1. 0

enddo

do i = 1,n

z1(m+i)=y(i)

z2(m+i) =-1. 0

enddo

call SORT2(tot,z1,z2)

xcnt = 0

C

ycnt = 0

do i =1,tot

if (z2(i).EQ.1.0) then

xcnt = xcnt + 1

else

ycnt = ycnt + 1

end if

f(i) = real(xcnt)/real(m)

g(i) = real(ycnt)/real(n)

s(i) = abs(f(i)-g(i))

if (s(i).GT .max) max= s(i)

enddo

return

end

*** main

integer m,n,tot

real x,y,max

*** C

dimension x(10000000),y(10000000)

m = 100001

n = 100001

108

open(unit=11,file='test.x' ,status ='old')

do i = 1,m

read(11,*) x(i)

enddo

close(unit=11,status='keep')

open(unit=12,file='test.y' ,status ='old')

do i = 1,n

read(12,*) y(i)

enddo

close(unit=12,status='keep')

tot= n + m

max= 0.0

call TEST(x,y,m,n,tot,max)

write(999,*) max

end

109

B.1 Sampled Data

APPENDIX B

DATA

DATA VALUES
obs required parameters

iterations ngen lmax gwsz

1 131259 86 l.28736E-02 0.117111
2 22448 101 l.69371E-03 9.84146E-02
3 104125 90 l.12279E-02 0.110570
4 17331 101 8.37228E-03 9.83248E-02
5 13204 101 4.98033E-03 9.84111E-02
6 24956 101 2.31331E-03 9.85148E-02
7 32995 101 l.28499E-02 9.94313E-02
8 19801 90 l.12652E-02 0.110579
9 44540 101 7.85158E-03 9.84165E-02
10 15580 101 6.99394E-03 9.85154E-02
11 132991 104 l.43033E-02 9.75941E-02
12 71489 101 6.63592E-03 9.84599E-02
13 15340 101 9.42496E-03 9.85250E-02
14 96964 90 l.12974E-02 0.110465
15 40859 102 l.57606E-02 l.01201E-Ol
16 25511 101 l.52725E-03 9.82259E-02
17 10264 101 9.53623E-03 9.84867E-02
18 11316 101 3.03582E-03 9.82606E-02
19 10203 101 2.19245E-03 9.82087E-02
20 97660 101 1.42278E-02 l.00223E-Ol
21 93761 95 l.19243E-02 0.105466
22 105646 92 l.34159E-02 0.111375
23 12904 101 7.55368E-03 9.82602E-02
24 38999 101 7.76191E-03 9.84288E-02
25 28505 101 2.23071E-03 9 .84 l 18E-02
26 27081 101 1.14812E-03 9.84192E-02
27 43374 101 3.92505E-03 9.83381E-02
28 67877 101 4.87672E-03 9.82180E-02
29 53394 101 7.53962E-03 9.82390E-02
30 83462 100 l .53068E-02 l.01670E-Ol
31 37667 101 6. 77138E-03 9.84965E-02

110

DATA VALUES CONTINUED
obs required parameters

iterations ngen lmax gwsz

32 24317 101 9.86650E-03 9.82628E-02
33 23367 91 1.40550E-02 0.111844
34 76540 101 3.06710E-03 9.83142E-02
35 27336 101 9.87238E-03 9.82883E-02
36 33471 101 3.50080E-03 9.85292E-02
37 11721 101 4.63842E-03 9.84059E-02
38 13028 101 7.19305E-03 9.84980E-02
39 12423 101 5.08360E-03 9.84675E-02
40 55159 101 9.02065E-03 9.82998E-02
41 25015 101 5.39893E-03 9.83130E-02
42 46075 101 9.01157E-03 9.85434E-02
43 36210 101 4.93131E-03 9.82280E-02
44 100482 101 6.21190E-03 9.85224E-02
45 26503 101 8.35376E-04 9.82204E-02
46 37273 101 3.78901E-03 9.82824E-02
47 10640 101 9.36311E-03 9.82233E-02
48 33049 92 l.34244E-02 0.111474
49 59334 101 6.87519E-03 9.83858E-02
50 34569 101 l.77815E-03 9.84845E -02
51 19577 101 5.54681E-05 9.84149E-02
52 19364 101 9.85733E-03 9.85168E-02
53 55954 100 l.24660E-02 l.01159E -0l
54 15944 101 6.32383E-03 9.82649E-02
55 54256 101 7.46771E-03 9.83064E-02
56 20405 101 7 .98046E-03 9.83890E-02
57 49735 104 1.24 787E-02 9.66182E-02
58 216597 101 2.32578E-03 9.82836E-02
59 13733 101 8.18514E-03 9.85344E-02
60 20005 101 6. 77731E-03 9.84240E-02
61 16430 101 6.15324E-03 9.85013E-02
62 32907 101 2.89702E-03 9.83157E -02
63 41222 101 2.6524 7E-03 9.83545E-02
64 87993 85 l.51219E-02 0.120508
65 24119 101 2.90186E -04 9.84594E-02
66 64560 90 1.12212E-02 0.110657
67 52652 90 l.12800E-02 0.110498
68 63293 101 3.28148E-03 9.85211E-02
69 27962 101 3.99335E-03 9.84768E-02
70 146719 90 1.12071E-02 0.110639

112

DATA VALUES CONTINUED
obs required parameters

iterations ngen lmax gwsz

71 19876 101 5.13900E-04 9.83643E-02
72 27970 101 4.84029E-03 9.84825E-02
73 35644 101 l.20116E-03 9.85356E-02
74 26525 101 1. 763 7 5E-03 9.84756E-02
75 21072 101 8.89209E-03 9.83307E-02
76 11483 101 3.83527E-03 9.84937E-02
77 20204 101 2.90214E-03 9.82420E-02
78 43199 101 3.42522E-04 9.84086E-02
79 57568 101 9 .064 71E-03 9.82422E-02
80 48496 101 4.31197E-03 9.84145E-02
81 10716 101 6.34428E-03 9.83766E-02
82 10312 92 l.39805E-02 0.109835
83 47110 101 6.57295E-04 9.85187E-02
84 88872 101 6.52332E-03 9.83291E-02
85 30012 101 l.44113E-02 1.00280E-01
86 81054 101 9.27806E-03 9.84869E-02
87 14227 101 8.86546E-03 9.84889E-02
88 15101 101 3.43804E-03 9.83184E-02
89 15078 90 l.11910E-02 0.110703
90 20726 101 2.80284E-03 9.83711E-02
91 205064 101 8.90699E-03 9.83328E-02
92 10036 101 3.69026E-03 9.83785E-02
93 10119 101 2.12618E-03 9.82579E-02
94 18330 87 l.53008E-02 0.117522
95 41612 101 l.39713E-03 9.85072E-02
96 12711 100 l.24638E-02 l.01020E-01
97 41915 102 l.57533E-02 l.01012E-0l
98 11496 100 l.54658E-02 1.0296 lE-0 1
99 10004 101 8.89243E-03 9.85033E-02
100 27978 101 5.38666E-03 9.82781E-02

B.2 Chi-Square Goodness-of-Fit Results

CHI-SQUARE RESULTS
obs Chi-Square
Statistics p -value
1 0.625326485109094 0.00031048598939689
2 0.492084726867336 0.000125516248714271
3 0.658751393534002 0.000377362085777758
4 0.485987418378723 0.000119699106176212
5 0.485987418378723 0.000119699106176212
6 0.664186176142698 0.000389132938459921
7 1.2436 7892976589 0.00380866424230806
8 0.563311833094442 0.000209543310494334
9 0.492084726867336 0.000125516248714271
10 0.664186176142698 0.000389132938459921
11 l .32820512820513 0.00479345792811754
12 0.492084726867336 0.000125516248714271
13 0.664186176142698 0.000389132938459921
14 0.65321707278229 0.000365639228936025
15 0.654264214046823 0.000367837051941046
16 0.629925147316452 0.00031913924545982
17 0.492084726867336 0.000125516248714271
18 0.701831501831502 0.000477977091310066
19 0.629925147316452 0.00031913924545982
20 0. 9 7 4839146360885 0.00159760066510796
21 0.828685300207039 0.000883665410361491
22 l.01276556776557 0.00183356986019414
23 0.554688644688645 0.000197678352252847
24 0.492084 726867336 0.000125516248714271
25 0.485987418378723 0.000119699106176212
26 0.487799012581621 0.000121406621035923
27 0.404047619047619 5.90809950045466e-05
28 0.629925147316452 0.00031913924545982
29 0.482782290173595 0.000116720818443436
30 0.97 4041248606466 0.0015928762872764
31 0.492084726867336 0.000125516248714271
32 0.400842490842491 5. 730144 71431891e-05
33 l.17257525083612 0.00309451500817984
34 0.404047619047619 5 .90809950045466e-05
35 0 .4008424908424 91 5. 730144 71431891e-05
36 0.664186176142698 0.000389132938459921
37 0.485987418378723 0.000119699106176212
38 0.492084 726867336 0.000125516248714271

CHI-SQUARE RESULTS CONTINUED
obs Chi-Square
Statistics p -value
39 0.492084726867336 0.000125516248714271
40 0.480970695970696 0.000115061384607836
41 0.485987418378723 0.000119699106176212
42 0.664186176142698 0.000389132938459921
43 0.554688644688645 0.000197678352252847
44 0.664186176142698 0.000389132938459921
45 0.629925147316452 0.00031913924545982
46 0.400842490842491 5. 730144 71431891e-05
47 0.629925147316452 0.00031913924545982
48 0.855677655677656 0.000993915025075553
49 0.485987418378723 0.000119699106176212
50 0.492084726867336 0.000125516248714271
51 0.492084726867336 0.000125516248714271
52 0.664186176142698 0.000389132938459921
53 0.730028666985189 0.000553346571761239
54 0.400842490842491 5.73014471431891e-05
55 0.480970695970696 0.000115061384607836
56 0.485987418378723 0.000119699106176212
57 1.10636645962733 0.00251708594174349
58 0.400842490842491 5. 730144 71431891e-05
59 0.664186176142698 0.000389132938459921
60 0.485987418378723 0.000119699106176212
61 0.492084726867336 0.000125516248714271
62 0.404047619047619 5. 90809950045466e-05
63 0.485987418378723 0.000119699106176212
64 0.973172479694219 0.00158774332675998
65 0.492084726867336 0.000125516248714271
66 0.658751393534002 0.000377362085777758
67 0.577502787068004 0.000230172500490363
68 0.664186176142698 0.000389132938459921
69 0.492084726867336 0.000125516248714271
70 0.735273132664437 0.000568241273288539
71 0.485987418378723 0.000119699106176212
72 0.492084726867336 0.000125516248714271
73 0.664186176142698 0.000389132938459921
74 0.492084726867336 0.000125516248714271
75 0.404047619047619 5.90809950045466e-05
76 0.664186176142698 0.000389132938459921
77 0.554688644688645 0.000197678352252847
78 0.485987418378723 0.000119699106176212

115

CHI-SQUARE RESULTS CONTINUED
obs Chi-Square
Statistics p -value
79 0.862380952380952 0.00102272277104632
80 0.492084726867336 0.000125516248714271
81 0.485987 418378723 0.000119699106176212
82 l.02501194457716 0.00191464284915403
83 0.664186176142698 0.000389132938459921
84 0.485987418378723 0.000119699106176212
85 0.579900461856984 0.000233796774607755
86 0.492084726867336 0.000125516248714271
87 0.492084726867336 0.000125516248714271
88 0.404047619047619 5.90809950045466e-05
89 l.10579710144928 0.00251246964781495
90 0.485987 418378723 0.000119699106176212
91 0.485987418378723 0.000119699106176212
92 0.485987 418378723 0.000119699106176212
93 0.400842490842491 5. 730144 71431891e-05
94 l.28080267558528 0.00422243135664749
95 0.664186176142698 0.000389132938459921
96 0.939705367096671 0.00139863742304815
97 1.39899108138239 0.0057391488030792
98 0.58989409141583 0.000249345860405259
99 0.664186176142698 0.000389132938459921
100 0.400842490842491 5. 730144 71431891e-05

	Parameter Estimation by Conditional Coding
	Recommended Citation

	tmp.1528822516.pdf.Py_8t

