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ABSTRACT 

Parameter Estimation by Conditional Coding 

by 

Taylor Duersch, Master of Science 

Utah State University, 1995 

Major Professor: Kevin Hestir 
Department: Mathematics and Statistics 

ii 

Conditional coding is an application of Markov Chain Monte Carlo methods for sam­

pling from conditional distributions. It is applied here to the problem of estimating the 

parameters of a computer-simulated pattern of fractures in an isomorphic, homotropic ma -

terial under plane strain. We investigate the theory and procedures of conditional coding 

and show the viability of the technique by its application. 

(122 pages) 
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CHAPTER 1 

CONDITIONAL CODING 

1 

To explain conditional coding in a rigorous way, we begin with a definition of condi­

tional coding in mathematical terms. We follow this with a discussion of the topics and 

theory central to the mechanics of conditional coding. In particular , we will discuss the 

Gibbs distribution and the Metropolis algorithm with and without annealing. 

1.1 Definition of Conditional Coding 

Let X be a stochastic process . Suppose that we know how to simulate a realization X 

from a vector w , of independent identically distributed uniform random variables on [0,1], 

using an algorithm g that maps w to X. We write that , 

(1.1) g(w ) = X 

and call g a coding of X. Let m be a function that represents measurements on X and let 

(1.2) M = m(X) + E , 

where E is a vector of random errors independent of X . Let fx IM be the posterior 

distribution of X given M . Because g( w) = X , if w0 is a sample from the posterior 

distribution f w IM , then g(wo) is a sample from fx IM· Sampling wo from f w IM and 

then taking X = g(wo) to get a sample from fx IM is called conditional coding. 
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1.2 General Theory 

Let X, w, g, M , E, and m be as given in the definition of conditional coding . Suppose 

that the probability density function of E is known and can be expressed in the form, 

(1.3) fE(e) = cexp(-h(e)) , 

with c a constant. 

Now suppose that Xis fixed. With X fixed, M can vary about m(X) only according 

to the probability distribution of E. By 1.3 we have the conditional probability density 

function 

(1.4) fM Ix = c exp( -h(M - m(X)). 

Substituting 1.1 into 1.4 we get 

(1.5) fM I w = c' exp(-h(M- mo g(w)). 

Bayes Rule for conditional probabilit y distribution s states that 

(1.6) + _ fM I wfw 
Jw IM - fM · 

Here , Mis considered fixed so that fM is constant. Because w is a vector of independent, 

identically distributed uniform random variables, f w is also constant. Hence, 

(1. 7) f w IM= c"exp(-h(M - mo g(w))). 

The probability distribution in 1.7 is called a Gibbs distribution. The Gibbs family of 

distributions has properties that make it possible to approximately sample any Gibbs 

distribution with a Monte Carlo simulation. Hence, sampling w 0 from 1. 7 is possible. 

Conditional coding is done by taking g(wo). 
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1.3 The Gibbs Distribution 

The Gibbs Distribution is named after J.W. Gibbs, who did work in statistical me­

chanics. Spitzer (1971) asserts that in chemical physics the work of Gibbs produced 

mathematical models generally accepted as the simplest, most useful models of discrete 

gas. 

Every Gibbs distribution is the stationary probability distribution of an aperiodic, 

irreducible Markov process. In general, the process state space is an arbitrary finite set. 

Gibbs distributions have the following form. 

(1.8) r.(w) = cexp(-h(w)/T) 

In the context of chemical physics, w represents the configuration of particles in a physical 

system or lattice. The constant c is a normalizing factor to insure that 7i is a probability 

measure. The function h measures the potential or energy associated with a configuration 

w . The function h must have nonnegative range. The variable T measures temperature 

on a positive scale. 

The temperature of a discrete gas affects the distribution of the configurations that the 

gas particles can assume. When Tis small, the distribution of w is concentrated on w's 

where h( w) is small. We use this fact later when we discuss the method for sampling from 

a Gibbs distribution called simulated annealing. Throughout the rest of our discussion 

about conditional coding we will refer to the function h as the energy function and to the 

variable T as temperature. 

We have claimed without proof that 1.8 is the stationary distribution of an aperiodic 

irreducible Markov process. We will support this claim with two arguments. First, we 

introduce the Metropolis algorithm as a method for simulating an aperiodic, irreducible 
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Markov process. Second, we show that any distribution of the form 1.8 is the stationary 

probability distribution of a Markov process simulated by the Metropolis algorithm. 

1.4 The Metropolis Algorithm 

Metropolis et. al. (1953) introduced an algorithm to study the properties of interacting 

molecules in a lattice configuration. For a fixed T > 0 in 1.8, the Metropolis algorithm 

simulates a Markov chain wo, w 1 , w2, ... by the following method. 

l. Begin with an initial state Wi, where i is an integer index. Create Wp by randomly 

perturbing some of the components of Wi. The perturbation must be such that the 

probability of perturbing from wi to wp, hereby denoted q(wi I wp), is the same as 

the probability of perturbing from wp to Wi, hereby denoted q(wp I wi)-

2. Let Wi+l = wP with probability p = min(l, exp( h(wi)Th(wp) ). Let Wi+1 = Wi with 

probability 1 - p. 

3. Repeat steps 1 and 2. 

The condition that 

(1.9) 

is necessary to insure that the Metropolis algorithm simulates a Markov process with a sta­

tionary distribution. We now show that any Markov process simulated by the Metropolis 

algorithm has a stationary distribution given by 1.8. 

Let 1r be the stationary probability distribution function for a Markov process with 

transition matrix P. By definition, stationary probability distribution functions must 
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satisfy 

(1.10) 1r' = 1r' P. 

Here P is the matrix of transition probabilities that describes the probability of moving 

from one state to another and 1r is a vector of stationary probabilities. Let S be a set 

of natural number indices , 1, 2, ... , N, where N is intended to be the number of possible 

configurations w can assume within a given physical system. 

To show that 1.10 holds we must demonstrate that 

(1.11) L 7rkPkj = 'lrj 
k 

holds for all j, k E S. The quantity Pk,j is the probability of going from a configuration 

Wk to a configuration Wj in a single perturbation of wk . From our explanation of the 

Metropolis algorithm we see that for an arbitrary fixed j, such that j ES, the following 

holds: for k -=/ j, 

(1.12) . h(Wk)-h(W ) 
Pkj = q(wj I wk)min(l , exp( T 2 )) 

and fork= j, 

(1.13) 

Applying 1.12 and 1.13 in 1.11, 

(1.14) 

Distributing, we get 

(L cexp(-h<;k) )q(wj I wk)min(l, exp( h(Wk);h(Wj) ))) + 
k::fcj 

(1.15) -h(w ) -h(w ·) h(w ·)-h(Wk) 
cexp(--r1-) - L cexp( T 2 )q(wk I Wj)min(l, exp( 2 T ))]. 

k-:fj 



To show 1.11 we need only show that the sums 

(1.16) 

and 

(1.17) 

L cexp(-h~k) )q(wj / wk)min(l, exp( h(wk);h(Wj) )) 
k:j;j 

L cexpCh~j))q(wk / Wj)min(l,exp(h(Wj);h(wk))) 
k:j;j 

6 

are equal. If 1.16 and 1.17 are equal, then 1.15 reduces to 1.11. The following argument 

shows the equality of the sums 1.16 and 1.17. 

For any given k E S and k =/: j one of two things is true. 

l. It could be that h(wk) 2 h(wj)- In this case exp(h(wk);h(wj)) 2 l, soifwe expand 

the sum in 1.16, the kth term is 

(1.18) 

is equal to 

(1.19) 

Since q( wk / w j) = q( w j / wk) is a requirement of the Metropolis algorithm, we have 

that 1.18 is equal to 1.19. 

2. Conversely, we could have that h(wk) < h(wj). By symmetry, the argument from 

step (1) extends to this case proving that for all k E S, 1.18 is equal to 1.19. 

Since throughout our argument j was fixed arbitrarily, we have that 1.11 holds for all 

j ES. Therefore, by the definition in 1.10, we have that any distribution of the form 1.8 

is the stationary distribution of a Markov process simulated with the Metropolis algorithm. 
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We have established that the stationary distribution of a Markov process simulated by the 

Metropolis algorithm is a Gibbs distribution. 

We can simulate Markov processes that have a stationary distribution that is a Gibbs 

distribution , but it is generally not known how many transition states we need to simulate 

before we can trust that our simulated Markov process is governed by the stationary 

distribution in 1.8. We will consider convergence more seriously when we apply conditional 

coding to an actual problem. 

Assuming convergence , we have correctly proved that the Metropolis algorithm sam­

ples from a Gibbs distribution. This is the case when the Gibbs distribution is discrete. 

In the context of conditional coding , we use computer-driven algorithms to sample from 

a posterior distribution . Computers do discrete arithmetic using discrete representations 

of numbers. We defer to this fact and state that our previous arguments justify using 

the Metropolis algorithm to sample from a computer representation of a continuous Gibbs 

distribution . This is a point that is often overlooked and needs further investigation . Gen­

eral descriptions for sampling from a continuous Gibbs distribution using the Metropolis 

algorithm are cited by A.F.M. Smith and G.0. Roberts (1993). 

1.5 Annealing 

There are many methods besides the Metropolis algorithm for simulating and sampling 

from a Gibbs distribution. Such methods are generally classified as Markov chain Monte 

Carlo methods or MCMC methods for short . Among these methods Smith and Roberts 

(1993) include simulated annealing , the Metropolis algorithm, and the Metropolis-Hastings 

algorithm . Of interest to us here is a method called simulated annealing. 



8 

It is advantageous to discuss the effect of changing the temperature T during the course 

of the Metropolis algorithm. This topic is called annealing and can have some effect on the 

rate the Markov process converges to the Gibbs distribution from which we are interested 

in taking a sample. 

Simulated annealing is a version of the Metropolis algorithm that methodically varies 

the temperature T during the simulation process. On page 37, The New Lexington Web­

ster's Encyclopedic Dictionary (1990) defines annealing as "to improve the properties of 

by heating and then cooling." Simulated annealing gradually decreases T within the 

Metropolis algorithm. This allows us to sample from a Gibbs distribution that is highly 

concentrated at low energies. 

Suppose that h( w) is a positive valued function of M - m( w) where m is a measure 

on w, perhaps made with some error, E. 

( 1.20) M = m(w) +E 

If T is a small positive constant, then 1.8 is concentrated on points where h(M - m( w)) 

is small. For such small T the Metropolis algorithm can require an exorbitant number of 

iterations before the simulated Markov process is governed by the Gibbs distribution. The 

idea behind simulated annealing is to run the Metropolis algorithm beginning with a large 

T that slowly decreases. Bertsimas and Tsistiklis (1993) assert that as the Metropolis 

algorithm iterates through a Markov process, slowly decreasing the value of T guides the 

Markov process to states concentrated on points where h(M - m( w)) is small. 

Difficulties arise with regard to simulated annealing when one tries to determine exactly 

how slowly to decrease Tso that convergence is guaranteed without doing it so slowly that 

convergence is unduly delayed. Bertsimas and Tsistiklis (1993) offer arguments showing 
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that for any given Gibbs distribution , good cooling schedules exist but might begin at very 

high temperatures. Bertsimas and Tsistiklis go on to state that theoretically there are 

no rigorous results that make simulated annealing preferable to the Metropolis algorithm 

run alone with fixed T. There are , however , many examples of problems solved with 

simulated annealing where simulated annealing outperforms the Metropolis algorithm and 

other MCMC methods . 

Once a computer program is in place to implement the Metropolis algorithm , simulated 

annealing is easy to implement as well. We have presented it here as a possible tool when 

sampling from a Gibbs distribution. How well it works depends on the application. 
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CHAPTER 2 

A PROBLEM WITH NO ANALYTIC SOLUTION 

We proceed to apply conditional coding to a research problem in the earth sciences. 

The problem is a parameter estimation problem. We want to estimate the parameters 

required by a particular algorithm to produce output with some predetermined character­

istics. We can apply conditional coding to such problems and get good solutions. However, 

conditional coding and other applications of MCMC methods can be inefficient tools. Be­

fore using conditional coding , other reasonable approaches to finding a solution should 

be investigated. This chapter gives an explanation of the problem we desire to solve and 

examines the lack of an analytic solution. \Ve also investigate relationships that might be 

exploited to solve the problem. 

2.1 The Problem 

Say that we can observe a patch of rock that displays a pattern of surface cracks. 

Martel et al. (1990) have taken what they know about the mechanics of fracture growth 

in rock to write a program that iteratively models fracture growth over time . At each 

iteration the program relies on a probability mechanism to decide if a fracture should 

grow and if so by how much. We will concentrate on the simplest model that assumes all 

rock fractures run parallel to each other and do not overlap. 

The fracture generation program (fgp) that we use in this study is the one described 

by Martel et al. (1990). It is capable of generating nonparallel fractures at different 

orientations (see Appendix A.l). In the case where the fracture patterns are of parallel 
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non-overlapping cracks, the fgp requires the following input: 

1. Three parameters that we will call ngen, lmax, and gwsz. 

2. A set of starter cracks equal in number to the total number of fractures we desire in 

the simulation output. We code the starter cracks in the rows of a matrix with four 

columns. Each row contains the x y coordinates of starter crack endpoints. 

3. A vector w of uniform random numbers on [0,1] of sufficient length that every growth 

decision the program needs to make can be determined in turn using the values in 

the vector as output from a random number generator. 

In the context of Chapter 1, the fgp is an explicit statement of g( w ). 

The fgp iterates through a set of starter cracks ngen times, growing each crack ac­

cording to a probability mechanism we explain later. The mechanism is complex enough 

that it is analytically impossible to study a simulation result in any traditional way to 

determine what parameters combined to produce it. The ability to do so would be useful 

to geologists. If geologists can match naturally occurring fracture patterns to parameters 

that reproduce those patterns in a simulation, then a categorization of fracture patterns 

is available on the basis of common physical characteristics that say something about how 

the fractures formed. Our goal is to match a set of simulation parameters, ngen, lmax, 

and gwsz, to a given fracture pattern. 

Due to the probability mechanisms involved in simulation, unique solutions to this 

problem are not available. There are many parameter combinations that could produce 

a simulated fracture pattern to match some pattern we start with. Among these, some 

combinations are more likely to yield matching patterns than others. Likely combinations 

depend on the interaction of the different parameters with the probability mechanism 
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employed by the computer to model fracture growth. If possible, we want to associate 

fracture patterns with the parameter combinations that are most likely to produce a 

simulated match. 

2.2 The Fracture Generation Program 

The fracture generation program (fgp) is based on the recursive algorithm of Martel 

et al. (1990) to model fracture growth in homogeneous, isotropic, elastic materials under 

plain strain . The algorithm follows. 

Define a growth area A . Consider a two-dimensional Poisson process operating at rate 

A. We can randomly sample a point N from the probability mass function 

(2.1) 

N is an integer value. Place N points uniformly in A. At each point place a line segment 

of fixed length l0 , representing the beginning of a fracture. 

Iterate through each fracture ngen times where ngen is a parameter value fixed in 

advance . The parameter ngen stands for the number of computer simulation generations 

that we want to occur. At each iteration fractures grow with probability p. 

(2.2) p = min (l/lmax , 1) 

In the equation above lmax is called the maximum cut-off length and l is the current 

length of the crack for which growth is being considered. The idea is that larger cracks 

have a higher probability of growth during a single generation than smaller cracks . Once a 

fracture is as long or longer than the length lmax , the probability of growth during every 

subsequent generation equals one. 
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The amount of growth a fracture achieves in a single generation also depends on the 

length of the fracture at the time growth occurs. Once we determine that a crack should 

grow, the new length is 

(2.3) l(l + gwsz · u). 

The parameter gwsz determines the possible amount of growth a crack may experience 

in a single generation. The variable u is a random variable chosen uniformly from the 

interval [0,1]. In the model, all growth is symmetric with respect to the midpoint of the 

fracture. 

Figure 1 is an example of a fracture pattern created by the algorithm just explained. 

The parameters that produced this pattern were N = 200, ngen = 100, lmax = 0.01, and 

gwsz = 0.1. We note that N is a function of A and ). but these parameters are important 

only in that A defines the total area over which fractures are allowed to grow and from A 

and ). we get N. 

From our description of the fracture generation algorithm we make some observations. 

l. There are only three parameters we need to estimate that define the rules of fracture 

growth. They are ngen, lmax, and gwsz. We can observe N by counting. We will 

assume that l 0 is fixed and known. 

2. The number of starter cracks we are required to have is the same as the number of 

fractures in the realization. 

3. Fracture growth is independent of the vertical or horizontal position of the fracture. 

The only exception occurs during simulation when a fracture is close enough to the 

left or right boundary of the growth region that it grows beyond the boundary. Such 

fractures have censored length. 
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Figure l. A simulated pattern of 200 parallel fractures. 
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Clearly , two different parameter sets can yield the same fracture pattern . 

Suppose that Figure 1 is presented to us with the program used to produce it but 

that we have no knowledge of the specific parameter values employed by the program to 

yield this particular realization. After a brief look at some analytic relationships in the 

problem , we will devise a way of using conditional coding to estimate the parameters most 

likely to simulate Figure 1 through the fgp. 

2.3 Some Analytic Relationships 

In an attempt to learn more about the problem , we observe some relation ships among 

fracture patterns and the growth parameters that produce them. To do this , divide the 

population of all possible fracture patterns into two groups. These groups may overlap . 

The first group of patterns we can simulate with appropriate values of ngen , and gwsz 

when lmax :'.S 10 • The second group we can simulate when !max > 10 . 

When !max :'.S !0 , every fracture will grow at every iteration. The amount of growth 

in each crack at each iteration is l · gws z · u, where l is the length of the fracture at the 

beginning of the iteration and u is a random variable uniform on [0,1]. In this case , it 

is easy to show that the expected length of a fracture i, i = 1, 2, ... , N, after n = ngen 

iterations is given by 

(2.4) 
n gws z j gws z n 

n ( ) E[li ,ngen] = lo J; j (-
2
-) = (1 + -

2
-) · 

This demonstrates that the expected value of fracture lengths for fixed ngen , gwsz, and 

lmax ~ lo can be modeled using an nth degree polynomial with positive coefficients. A 

unique polynomial exists for each value of n = 1, 2, .... Figure 2 is a plot of expected 

values against gwsz for different values of n. Note that for every value of n there exists 
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a gwsz so that any expected value greater than zero is possible. Note also, that as n 

gets bigger, the expected value curves are in close proximity to one another when gwsz is 

small. 

When lmax > lo, things are different. Suppose that we have a long list of random 

variables uniform on [ 0, 1]. The length of fracture i after iteration j is 

(2.5) 

Here ui,j denotes a random variable uniform on [0,1]. 

We know that the amount of growth a fracture experiences on any given iteration is 

dependent on the growth probability p = P (ui+n < li_iflmax). The distribution of p 

changes for each iteration where li-l -=/ li. This is a difficult problem. It is difficult to 

predict even something as simple as the expected value of the crack lengths when ngen , 

gws z, and lmax are known. 

In theory , we can construct a model that looks like 2.4 when lmax > lo, but such a 

model incorporates indicator functions that lead to a very complex formulation. In the 

case that lmax :::; lo, expression 2.4 serves to show that a given expected length is not 

unique to a single combination of growth parameters. Whether lmax :::; lo or not , we might 

find analytic inverse images based on the moments or a histogram of X but assigning a 

likelihood to them in the Baysiean sense is unrealistically complex. 

Complications are also present whenever we try to match simulation parameters with 

fracture patterns that display cracks that are censored because they intersect the edge 

of the growth region. For each censored crack it is not known if the crack began out­

side the observable growth region extending in, or if it began inside the growth region 

extending out. A given set of parameters ( ngen 0 , lmax 0 , gwsz 0 ) might simulate a given 



17 

I() 

n=120 n=90 n=60 

c,, 
.r. 
C, 
C: 
..!!1 
"@ 
i3 
Q) 
a. 
>< 
Q) 

C\J 

0 

0.0 0.05 0.10 0.15 0.20 0.25 0.30 

gwsz 

Figure 2. A sequence of polynomials that model expected fracture length for different 
values of n . 
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fracture pattern , X 0 , with censored cracks, but only if fractures near the boundary are 

started at correct positions inside or outside the observable growth region. Any attempt to 

match simulation parameters to a fixed fracture pattern must accommodate the difficulties 

present when some of the fracture lengths are censored . 

It is evident that an analytic attempt at matching simulation parameters to a fixed 

outcome of fracture patterns is unwieldy and complex. Conditional coding provides a 

manageable way to solve this problem by sampling from the posterior distribution of w 

given a fixed pattern of fractures and then constructing likelihood-like estimates based on 

the distribution of the sample . 
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CHAPTER 3 

APPLYING CONDITIONAL CODING 

There are several issues that we must address before we apply conditional coding to 

the problem presented in Chapter 2. These topics include energy functions, restricting the 

sample space , censored fractures, perturbing in the Metropolis algorithm , and determin­

ing convergence in distribution of a simulated aperiodic , irreducible Markov chain. This 

chapter ends with a conditional coding recipe applicable to the problem from Chapter 2. 

3.1 Choosing an Energy Function 

Choosing an energy function amounts to knowing the distribution of the errors , E , in 

the statement M = m(X ) + E. This requires that for each problem we define M and 

m . The funct ion m makes some true measurement on a realization X. If we observe 

m(X ) with some independent random error , E , then the value of the energ y function , h, 

is dependent on th e distribution of E. For example , if the errors are normal with mean 

M and a standard deviation of 1, then by 1.3 h(y ) = ½y2 . 

Suppose tha t we define M so that 

(3.1) M = m(Xo) -

By this we mean that there is no measurement error. We stated previously that h is defined 

by the probability distribution of the measurement errors. If there is no measurement error , 

then we are free to choose h in many ways so long as h is nonnegative valued and achieves 

a minimum only for configurations of w such that m(g(w)) = m(X) or , equivalently, such 
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that m(g(w)) = M. In general , the function h summarizes the difference between Mand 

m(X), where X = g(w) . 

When no measurement error is present , the best way to define h depends on the 

definition of m. In this section we consider three different definitions of m useful for 

solving the problem presented in Chapter 2. We also consider three corresponding ways 

of defining h. The reader is free to consider more and different choices of m and h. 

3 .1.1 Visual Matching 

Two fracture patterns match visually if t hey look exactly the same. In the field of image 

analysis , Geman and Geman (1984) determined visual matches by comparing images pixel 

by pixel. Computers easily count the number of differing pixels between patterns. The 

resolution ( number of pixels) a pattern enjoys determines how much time is required to 

determine a match . We can create our own version of resolution by superimposing a grid 

of arbitrary dimension over a fracture pattern . See Figure 3 for an example. Given a 

rectan gular grid of fixed dimension , every fracture pattern impose s a new pattern on that 

grid. 

Grid pattern s form a matrix , G = (Gi,j), If a fracture intersects the ith row and jth 

column that define the grid rectangle r i,j, then the grid matrix stores a 1 in G i,j • Grid 

rectangles that do not bound a fracture , or some portion of a fracture , correspond to 

entries of O in the grid matrix . Two frac ture patterns match if they have the same grid 

matrix of zeros and ones. The coarseness of the grid determines the quality of the match . 

Let h be a function that sums the absolute difference of corresponding entries in a grid 

matrix A and a grid matrix B. Let matrix A name the grid matrix imposed on a fixed 
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Figure 3. An example of a rectangular grid placed over a fracture pattern. Squares 
intersected by a fracture or any portion of a fracture have a value of 1 otherwise they have 
a value of 0. 
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fracture pattern X 0 . Let B name the grid matrix of a simulated fracture pattern , X. Let 

m(Xo) = A and m(g(w)) = B , where g(w) = X. Symbolically, 

r C 

(3.2) h(w) = L 2)Ai ,j - B i,jl, 
i=l j =l 

where r is the number of rows in A and B , and c is the number of columns . To adjust the 

resolution of a match in h, change r and c. The larger the values of r and c, the better 

h determines different patterns. As the resolution becomes coarse , the value of m ceases 

to be unique for differing patterns of fractures. Meaningful samples of the vectors w that 

simulate fracture patterns X such that m(g(w)) = A require that the function mis not 

too vague . 

For the problem presented in Chapter 2, visual matching has one drawback. Namely , 

m(Xo ) depends on both the horizontal and vertical position of each fracture defined in 

X 0 . Except for those fractures in Xo that intesect the boundaries of the growth region , 

th e position of a fracture does not affect what the fractures tell us about ngen, lmax , 

and gwsz. Statistical pattern matching proves more flexible than visual matching in the 

context of the current problem. The next two examples of h match statistical information 

between fracture patterns. 

3.1.2 Method of Moments 

Using the idea that under suitable conditions two probability distributions match if 

they have matching theoretic moments, define h as follows. Let M denote the vector of 

sample moments from the fracture lengths in a fixed pattern, X0 . The number of sample 

moments must be larger than one and preferably larger than three. Simulate a fracture 

pattern X and compute a vector I of fracture lengths. Suppose N is the total number of 
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fractures present in the natural fracture pattern. Define B so that 

(3.3) 
1 k . 

B; = N .L z;. 
i=l,N 

The index i denotes the ith moment so that the length of B is the number of sample 

moments, k , that we set in advance. The variable lj is the length of the jth fracture in 

the simulated pattern. 

Let m(g(w)) = B and m(Xo) = M. Define h by 

k 

(3.4) h( w) = L I Bi - Mi I . 
i=l 

The constants M; are the ith sample moments of the fracture lengths in the fracture 

pattern X0 . The constant k is a positive integer corresponding to the length of M. The 

function h measures differences in fracture patterns better for N large. If N and k are large 

enough , h will not achieve a minimum value unless the fractures in X are from the same 

population as the fractures in the natural pattern. If we assume that all of the important 

information about a fracture pattern is summarized in the lengths of its fractures and that 

those lengths are uncorrelated to their position in the growth area, then using 3.3 in 3.4 

makes sense. The energy function h as defined here makes no sense in the case of small 

N or with a natural pattern where more than a small proportion of the fractures extend 

outside the growth area. Censored cracks are a problem because the true length of the 

fracture is not known. 

The h proposed here has a range on the nonnegative real numbers. This means that 

even though h achieves a true minimum at zero, we will need to consider two patterns as 

a match if h is close to zero. This has the disadvantage that we must interpret what close 

to zero means. 
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3.1.3 Matching Histograms 

Akin to finding moments, but an intuitively better summarization of a fracture struc-

ture, is the fracture length histogram. This is a loose summary of the order statistics of 

fracture lengths in a pattern. Let h be a function that finds the absolute difference in 

fracture length frequencies in classes of fixed size. Let A and B denote vectors of length 

c. Each entry , Ai and Bi of A and B, count the number of fractures in class i from a fixed 

fracture pattern , Xo, and from a simulated fracture pattern, g( w) = X , respectively. Let 

m be a function such that m(X 0 ) = A and m(g(w)) = B. Let c represent the number 

of frequency classes that we choose to define the histograms summarized by A and B . 

Define h as 

C 

(3.5) h(w) = L IAi - Bil-
i=l 

Here we control the resolution of a match by our choice of c. An alternate definition of h 

sums the squared deviations between corresponding entries of A and B. This definition 

has the advantage that it exagarates the difference between nonmatching patterns. 

Defining m to summarize the histogram of fracture lengths in a pattern of fractures 

is the best choice for solving the problem from Chapter 2. This is because X0 (visually 

denoted by Figure 1) has censored fractures and because such an m does not incorporate 

the vertical position of any fracture in its value. 

3.2 Censored Cracks and Boundaries 

Conditional coding requires the simulation of many fracture patterns to work. In 

particular there must be a first simulation. All simulations result when the fgp operates on 

a list w of random variables uniform on [0,1]. This list has two parts. The first part codes 
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ngen , lmax , and gwsz and a pattern of starter cracks . The second part is a long list of 

uniform random variables for use in the growth decision processes of simulation. Obviously 

ngen , lmax , and gwsz need not be bounded on [0,1]. At the very least, ngen and the x 

and y coordinates of the starter cracks need broader bounds. This requirement dictates 

that ngen , lmax, gwsz , and the starter crack coordinates are coded as linear functions of 

random variables uniform on [0,1]. This requires the introduction of parameters ancillary 

to fracture growth in the fgp. These parameters allow us to control the sampling region, S, 

for the growth parameters , and the growth region , A, for the starter cracks . Also, coding 

ngen , !max , and gws z as linear functions of random variables uniform on [0,1] is the same 

as giving them a uniform prior distribution. Assuming a uniform prior , conditional coding 

is taking a sample from the likelihood 

(3.6) 
fM I efe 

fe IM= !M = cfM I els(0). 

The capability to control the growth region is especially important in the case that 

Xo displays fractures censored by the growth boundary . If the natural pattern has cracks 

that intersect the growth boundary, then the beginnings of our simulated patterns cannot 

be restricted to the observed area of the natural pattern. Instead, the growth area must 

be extended so that starter cracks can grow from the outside in , since that might be what 

happened to form the natural pattern . 

Deciding how far outside of the observed growth area to allow the placement of starter 

cracks requires some study of the pattern that we are trying to match. A reasonable 

approach is to keep all starter cracks within 3 / 4 the length of the longest fracture in the 

natural pattern away from the observable boundary. According to the fracture growth 

algorithm given in Chapter 2, all fracture growth is symmetric with respect to the mid-
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point of the starter crack. This motivates us to allow the number of out-of-bounds starter 

cracks to match but not exceed the number of censored fractures in the natural pattern. 

To perform conditional coding in the case of censored fractures , count the number of 

censored fractures in X 0 and call the number z. Require that z starter cracks be placed 

randomly about the growth boundary each time a new fracture pattern is simulated for 

comparison to X0 . We mean that up to z of the starter cracks will be allowed to take 

up positions outside the boundaries of observable growth region and through simulation 

have the opportunity to grow, possibly extending into the observable region where that 

portion of the fracture contributes to the simulated pattern. 

Also relevant to this discussion is the topic of control over the sampling region. Condi­

tional coding is more efficient if we sample ngen , lmax, and gwsz from a restricted space. 

For example, it is not wise to allow large ngen and gwsz when trying to match a pattern 

of many small fractures that are approximately the same size. If a fracture pattern has 

many small cracks and a few relatively large cracks , then a careful study of the fracture 

growth algorithm in Chapter 2 reveals that lmax is probably larger than lo. In all cases, 

bounds on the allowable values of ngen , lmax , and gwsz need to be set or conditional 

coding may be slower than necessary. 

3.3 Perturbing 

During conditional coding, perturbing w in the Metropolis algorithm is a concern. 

To keep track of what components in w get coded to the growth parameters and starter 

crack coordinates and which are used as as probabilities, we impose an ordering in w. Let 

elements 1-3 map to ngen , lmax, and gwsz, respectively. Let elements 4 through 3 + 2N 
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map to the left end point of each starter crack. The even indices between 4 and 3 + 2N 

represent the x coordinates of the end points. The odd indices represent the y coordinates 

of the end points. Because all starter cracks enjoy a horizontal orientation , the right end 

points have the same y coordinate as the left endpoint. The x coordinates of the right 

end points of the starter cracks are just the left x coordinate plus l0 . All other elements 

in the list w are uniform probabilities. 

The length of w must be sufficiently long so that all possible growth decisions during 

simulation have a corresponding entry in w. To run the fgp , this means that w must have 

at least 2BN + 2N + 3 entries. Here N denotes the number of fractures in the natural 

pattern and B is the upper bound on the sampling interval for ngen. During simulation 

the most dramatic changes in fracture patterns from one simulation to the next occur 

when one of the three parameters ngen , !max , or gwsz changes. Less dramatic effects 

occur when a w is altered beyond the first three entries . 

The idea behind conditional coding is to iterate through simulated fracture patterns 

such that the energy function is minimized for a particular pattern generated by a vector , 

w. Thew vector evolves from perturbing in the Metropolis algorithm. There are many 

perturbing schemes available , but we require every acceptable scheme to perturb win such 

a way that 1.9 holds . 

3.4 Monitoring Convergence 

No theoretical signposts exist that prove convergence for this application of the Metro­

polis algorithm. However, the results of conditional coding are valid only under the as­

sumption of convergence. We cannot observe convergence in MCMC methods directly but 
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we suppose that convergence has observable side effects. 

One way to monitor convergence in MCMC methods requires the comparison of long 

disjoint strings of consecutive energy states in a nonparametric test of equal distribution. 

Since MCMC methods search for random lists of variables that have minimal energy 

configurations , it is reasonable to believe that as the Markov process internal to the MCMC 

method converges , the correlation between energy states that are fixed distances apart also 

converge to a fixed number. It is easy to keep track of such moving correlations and plot 

them as we go to check for convergence in the Metropolis algorithm. 

These checks do not offer indisputable proof of convergence. However , they do offer 

some reassurance that we are moving toward viable solutions through whatever MCMC 

method we employ to do the conditional coding. As a postscript, note that these checks 

require a fixed method of perturbation for all variable lists that are compared to one 

another. These checks also require a fixed temperature. 

3.5 The Conditional Coding Recipe 

To conclude this chapter we offer a sequential view of the events necessary to yield 

the data in Chapter 5. First , start with a fracture pattern X 0 of N fractures , z of which 

are censored. Consider X 0 the natural fracture pattern. We are trying to find parameter 

points of the form (ngen,lmax,gwsz) that produce populations of fracture patterns that 

overlap Xo. 

Choose an appropriate energy function. Randomly generate a vector w 0 of random 

numbers uniform on [0,1] of sufficient length. The fgp modified for use with conditional 

coding interprets the first three entries of w 0 as ngen, lmax , and gwsz , respectively. For 
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any vector w = w1, w2, w3, ... , the fgp finds ngen as follows. 

(3.7) ngen = [w1(b - a)+ a] 

Here a and b represent the upper and lower bounds on the sampling interval for ngen. 

The square brackets denote that ngen must be an integer. The variable w1 is the first 

entry in w. The parameters lmax and gwsz are coded similar to ngen, using w2 and w3 , 

but are not required to be integers. 

The next 2N entries in any w denote starter crack endpoints. Sequentially, every even 

element in w from entry 4 to (2N + 2) maps to an x-coordinate. Every odd element 

between the number 4 and (2N + 3) entries in w denotes y-coordinates that belong with 

the x-coordinate from the previous entry. If the growth region is rectangular, then the 

modified fgp reads the x and y coordinates according to the following equations. 

(3.8) 

(3.9) 

x = (b - a)u2i + a 

y = (d- c)u2i+1 + c 

Here i is an index from 2 ... [N /2]. The variables a, b, c, d are upper and lower bounds 

for the growth rectangle. Equations 3.8 and 3.9 code the right endpoint coordinates of 

the starter cracks. The left endpoints have the same y-coordinates as the right and an 

x-coordinate that is lo less than the x-coordinate of the right endpoint. Let lo be fixed at 

a value of 0.01. 

If z > 0, then the process of coding the starter cracks must be modified to accommodate 

the placement of up to z starter cracks outside the boundaries defined by the variables 

a, b, c, and d given in the previous paragraph. One way to perform this task is to force z 

of the N starter cracks to be placed within 3/4 the length of the longest fracture in X 0 of 
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the growth boundary. Allow placement to occur with equal probability on either side of 

the boundary. 

With h and wo defined, apply the Metropolis algorithm described in Chapter 1. Each 

iteration of the Metropolis algorithm accepts or rejects an w perturbed from the previous 

iteration. We perturb the vector w by randomly assigning new values to a proportion 

of the elements in w. For reasons that we explain later, run the Metropolis algorithm 

without annealing . 

Run the Metropolis algorithm for a long number of iterations, and until the energy 

function is at a minimum. Generally, a large number of iterations is necessary for conver­

gence in distribution of the Markov chain generated in the Metropolis algorithm. At this 

point, record the first three entries from thew that minimized h. Perturb w and continue 

until a sample of parameter points ( ngen,lmax ,gwsz) of suitable size is acquired. 

We seek a simple random sample of the parameter points (ngen,lmax,gwsz) that 

produce patterns matching X 0 in the sense that m(g(w)) = m(Xo) - For the sample 

points to be independent , we must start the Metropolis algorithm over after each sample 

is taken or we must perturb the last w that minimized h many times before accepting one 

of those perturbations into our sample. 

Conditional coding is difficult to implement on the problem from Chapter 2. The 

results in Chapter 5 are enough to show the potential of conditional coding. The rest of 

our work details the successes and difficulties of conditional coding as it is applied here. 
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CHAPTER 4 

CONDITIONAL CODING APPLIED 

Appendix A.4 contains a table of 100 sample points (ngen,lmax,gwsz) obtained using 

conditional coding and Figure 1 as Xo. To understand the sample, we start with a 

description of the energy function, perturbation scheme, sampling region , and temperature 

setting used to get it. This is followed by a discussion of time constraints on the experiment 

and the role they played causing adjustments to the procedure. Finally , we discuss issues 

of convergence in the Metropolis algorithm by investigating correlated energies and a non­

parametric test of equal distribution between disjoint pieces of the Markov chain that 

results from the Metropolis algorithm. Chapter 5 offers an analysis of the data . 

4.1 The Energy Function 

Xo is the pattern of 200 fractures represented in Figure l. Six of those fractures 

run out of bounds . It is easy to create an 8-class histogram such that the number of 

fracture lengths in each class is equal. Censored fractures are included. Call the vector 

of frequencies A. Let m be a function defined so that m(X 0 ) = A . For any simulated 

pattern , X , we can count the frequency of fractures with lengths in each frequency class 

used to define A. We store these frequencies in a vector B. We say that m(g(w)) = B . 

The energy function, h, sums the absolute difference between corresponding entries in A 

and B according to the equation below. 

( 4.1) h(w) = { Li1i 1Aoi - Bil if Li1i IAi - Bil> d 
otherwise 
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To keep track of censored fractures we include the absolute difference between the number 

of censored fractures from patterns Xo and X. The constant c denotes the number of 

classes that define A. The ( c + 1 )st entries in A and B are the number of censored 

fractures in Xo and X, respectively. The flag d is a positive whole number. In a sense, 

d controls the resolution of a match without changing m. The sample we obtained is the 

result of 4.1 with d = 10. Chapter 5 seeks to justify the introduction of d to h in the 

context of the current problem. It seems intuitive that for d large , h loses meaning , but 

that d small can reduce the time required to sample w using h. Time constraints on the 

process forced the introduction of d. 

4.2 The Perturbation Scheme 

Settling on a perturbation scheme is a trial-and-error process. We found that it was 

advantageous to perturb the first three entries in w about half of the time. The other half 

of the perturbing occurs at random on about 25% of the remaining entries in w at a time. 

This perturbation scheme does not take into account the energy associated with w . The 

perturbing we did was the result of experiments to see what worked best . Perturbing this 

way the Metropolis algorithm required 28,241 as a median number of steps to minimize 

the energy function with 42,960 steps as an average. 

4.3 The Sampling Region 

Experience shows that the smaller the sampling region for ngen, lmax, and gwsz, the 

less time it takes conditional coding to produce a sample. Recall that Figure 1 denoting 

Xo is actually the result of a single run of the fgp on a series of 200 starter cracks placed 

at random in a 50 by 50 box. The parameters that produced X 0 are known. We know 
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that ngeno = 100, lmaxo = 0.01, and gwsz 0 = 0.1. The experiment detailed in this 

chapter is designed to see if conditional coding produces a sensible sample of parameters 

capable of simulating Xo. This motivated us to use conditional coding with a sampling 

region that included (ngen 0 ,lmax 0 ,gwsz 0 ). We allowed w to code values of ngen between 

85 and 105, values of !max between O and 0.03, and values of gws z between O and 0.3. 

This relatively restrictive sampling region was necessary to produce results in a tolerable 

period of time during the research process. There is nothing special about the way the 

sampling space is restricted except that ngen , !max, and gwsz are bounded to scale and 

the point ( ngen 0 ,lmaxo,gwsz 0 ) is not at the center of the parallelepiped that defines the 

sampling region. 

4.4 Temperature 

We can choose to perform conditional coding with a fixed temperature in the Metropo­

lis algorithm or by starting with a high temperature and cooling it slowly. The cooling 

process with the Metropolis algorithm is called annealing. Authors Bertsimas and Tsit­

siklis (1993) show that when annealing is performed , the Metropolis algorithm generates 

Markov chains that converge to a stationary distribution if and only if the following hold. 

1. The cooling schedule is slow enough but converges to zero. One common schedule is 

( 4.2) 
d 

T(t ) = log(t) ' 

where t is a time or counting parameter and dis a constant . 

2. The parameter dis sufficiently large. Bertsimas and Tsitsiklis (1993) show that for 

this cooling schedule , d must be at least as large as the smallest difference between 

the energy of any vector, w , that minimizes h and the energy of any vector , w , that 
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does not. 

By our choice of h we know that the largest observable h on a pattern of 200 fractures 

divided into eight frequency classes given X 0 is 550. If we let d = 550, then annealing 

in the Metropolis algorithm theoretically works. In practice, Bertsimas and Tsitsiklis 

(1993) point out that annealing may not reduce the number of iterations in the Metropolis 

algorithm necessary to get a solution. Early experiments seemed to show this to be the 

case for our sample. 

Our sample was generated at a fixed temperature of 19. Annealing with the cooling 

schedule given by 4.2, with d = 550, takes one million iterations of the Metropolis al­

gorithm before the temperature gets cooled to 39.8, and on the order of 1012 iterations 

to get down to 19. There are other, faster, cooling schedules that we tried including a 

geometric schedule, but they were no better than running at a fixed temperature of 19. 

Trial and error indicated that temperatures much higher than 19 delay results because 

the Metropolis algorithm easily rejects w vectors with small energies in favor of w vectors 

with larger energies. 

When T is fixed small, the probability of escaping parameter configurations of locally 

minimum energy is small. This can result in a sample of points at certain minima while 

excluding points at some other minima. It is possible that for T not large enough, some 

parameter combinations with the potential of minimal energy fail to communicate in an 

appreciable way with other parameter combinations of equal or more potential for minimal 

energy. 

We say that two parameter combinations communicate if there exists some positive 

probability of movement from one to the other in a finite number of steps through the 
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Markov chain generated by the Metropolis algorithm that describes the respective energies 

associated with each parameter combination. Two parameter combinations communicate 

in an appreciable way if correspondence between the two can be observed with relatively 

high probability after a large number of iterations in the Metropolis algorithm . 

Since the starting state for the Markov chain generated with the Metropolis algorithm 

is chosen at random, it is possible that certain minima are not sampled with conditional 

coding , not because they are not likely, but because they are not likely given the starting 

state. High temperatures slow the sampling process, but avoid this difficulty by allowing 

the low energy states in Markov chains generated by the Metropolis algorithm to com­

municate easily with states of high energy so that no subset of the sampling region is 

nonaccessible to conditional coding. We do not attempt here to prove that with T = 19 

this is true for conditional coding applied to the problem in Chapter 2. For this problem 

when T = 19 there was always a 5% chance of moving from one parameter combination 

to another that demonstrates an energy measure 56 units larger than the previous and 

jumps of smaller magnitude were increasingly more likely. 

4.5 Time Constraints 

The data set in Appendix A.4 came after gaining some months of experience with the 

fgp and the Metropolis algorithm. Many smaller data sets went before . What one learns 

from this process is that conditional coding can be exceedingly slow. Weeks were required 

to see what effect the latest adjustments in perturbing, temperature, sampling region and 

choice of energy function have on the process of conditional coding. Months of this kind 

of work led to the perturbing scheme , sample region, temperature, and minimum energy 
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acceptance region that produced the data. This sample via conditional coding took more 

than 1000 hours to generate on a SPARC 10 work station. This exorbitant amount of 

time results from the high number of iterations required by the Metropolis algorithm to 

minimize h compounded by the amount of time required by the fgp to simulate 200 crack 

fracture patterns. 

4.6 Convergence 

In spite of the large number of iterations made by the Metropolis algorithm to find 

configurations of w that simulate fracture patterns of minimal energy, we cannot assume 

convergence. In fact , it is a discouraging truth that we can say little about the reality of 

convergence for this problem. We tried monitoring covariance, looking at histograms, and 

running nonparametric tests of equal distribution between disjoint pieces of the Markov 

chain that came out of the conditional coding. The results follow. 

Figure 4 is a plot of the covariance among all the elements of the Markov chain gen­

erated by the Metropolis algorithm when conditional coding was applied to the inverse 

image problem of Chapter 2. The y-axis measures the covariance and the x-axis measures 

the distance between the states for which the covariances were computed. Ideally, as the 

Markov chain gets long enough that the resulting states are governed by a stationary 

distribution, the covariances should converge in a decreasing fashion to a constant of rel­

atively low magnitude . Figure 4 demonstrates this behavior somewhat. However, there 

appears to be a great deal of correlation between states in the chain even when they are 

a long distance from one another. The greatest proportion of damping in covariance is 

complete by the time the Markov chain is 30,000 states long. 
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Figure 5 pictures a sequence of histograms summarizing disjoint pieces of the Markov 

chain. The first histogram covers the successive states from 30,000 to 130,000 and the 

second histogram covers the states from 150,000 to 250,000. The histograms have the 

same general shape and range but differ too much for such large sample sizes to conclude 

that they represent the same distribution. An application of the Kolmogorov-Smirnov 

nonparametric test of equal distribution seems to provide some evidence that the two 

histograms are from differing populations. With such large sample sizes, Conover (1980) 

approximates the critical value of the test to be 0.0060716 at the a = .05 level. The test 

statistic computed with the FORTRAN code in appendix A.3 was 0.0250897. Because the 

test statistic is larger than the critical value, we reject the null hypothesis that the data 

summarized by the two histograms in Figure 5 are from the same population . We present 

these results noting that the Kolmogorov-Smirnov test assumes independent , identically 

distributed data points. Figure 4 demonstrates the violation of this assumption, making 

our test statistic less meaningful. These failures motivated another experiment. 

After the collection of the 50th sample point the process of conditional coding had 

iterated the Metropolis algorithm 2,218,018 times. If sometime between the first sample 

point and sample point number 50 the Markov chain had converged in distribution , then 

there might be some fundamental difference in the points drawn at the first of the sample 

and those drawn at the end. Splitting the sample in half , we see little difference between 

the two sets of 50 points. Figure 6 is an all-pairs plot showing the distribution of the first 

50 against the second 50 data points in the sample. Figure 7 is an all-pairs plot of the first 

20 against the last 20 data points in the sample. In each set the range of the respective 

parameters is essentially the same. The means and medians are essentially the same, and 
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the interaction between the parameters themselves is indistinguishably the same . 

The issue of convergence emerges as the most serious threat to the validity of our 

sample. Even if the histograms of Figure 5 were the same , there could be no reason 

to conclude that convergence occurred. Rosenthal ( 1994) supports the conclusion that 

convergence may be so slow that differences between long disjoint pieces of the Markov 

chain are statistically indiscernible and yet model poorly the true stationary distribution. 

Taken all together there is more evidence to support a denial of convergence than to 

verify convergence. Only the characteristics of the sample analyzed in the next chapter 

encourage the conclusion that the iterates have converged. 
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Figure 6. Pairs plot of 100 sample points. The first 50 points in the sample are denoted 
with "+" and the second 50 are denoted with "0". 
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Figure 7. Pairs plot of 40 sample points consisting of the first 20 sample points and the 
last 20 sample points from an original sample of size equal to 100. The first 20 points in 
the sample are denoted with "+" and the second 20 are denoted with "0" . 



CHAPTER 5 

DATA ANALYSIS 
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In this chapter we summarize the relationships between ngen , lmax , and gwsz in the 

sample that we obtained with conditional coding. From our summary we propose the most 

likely estimates of ngen 0 , lmax 0 , and qwsz 0 corresponding to Xo , based on the empirical 

distribution of our sample under the assumption that ngeno , lmaxo , and gwszo are in the 

sampling region given in Chapter 4. We conclude this chapter with some arguments in 

defense of the validity of the sample. 

Appendix A.4 presents the sample of 100 points we obtained by conditional coding 

under the provisions explained in Chapter 4. Figure 8 is an all-pairs plot of the data 

point s from th e sample . The da t a appear in two groups. The first groupin g of the data 

is for all points where lmax S 0.01. Recall t hat within the fgp each starter crack has an 

initial length of l0 = 0.01. It makes sense that the relationship between lmax and the 

other variables ngen and gws z depends on l0 . For each run of the fgp where lmax s 10 , 

each fracture grows with probability one at every iteration . If lmax > l0 , then for each 

fracture in the pattern there is some positi ve probabilit y that on certain iterations no 

growth will occur . 

Figure 9 is a histogram of the lmax values in the sample. The range of the sampled 

values of lmax goes from 5.54681E-5 to 0.0157606 . The sampling interval for /max was 

[O, 0.03]. Of the 100 values of /max collected, 74 of those observations occurred where 

lmax s /0 • Under the assumption that our sample is valid , this provides good evidence 
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that X 0 depicted in Figure 1 is more likely the result of the fgp run with lmax :S 0.01 

than with lmax > 0.01. Here it is good enough to say that we estimate lmax 0 is less than 

0.01 because the fgp creates the same output for all values of lmax less than l0 • 

Figure 10 is a histogram of the ngen values in the sample. The range of the sampled 

ngen values is from 85 to 104. The sampling interval for ngen was [85,105]. There 

are 77 observations where ngen = 101. Of these 77, 74 belong to sample points where 

lmax :S 0.01. Refering back to Figure 8, we note that ngen is highly correlated with gwsz . 

The coefficient of correlation is -0.9991569. Due to the magnitude of this coefficient of 

correlation, we expect to see a high mode in the histogram of gwsz similar to the mode 

in Figure 10. 

Figure 11 is a histogram of the gwsz values in the sample. The mode in this histogram 

coincides with the mode in Figure 10. The range of the sampled gwsz values is from 

0.0966182 to 0.120508. The sampling interval for gws z was [O, 0.3]. Of the 100 points in 

the sample , 71 of them had a gwsz component from the interval [0.0982087, 0.985334]. 

This interval has a width that is 1.35% of the range of the sampled values. All 71 of these 

observations belong to data points where ngen = 101 and lmax :s; 0.01. 

Assuming convergence in the Markov chain generated in the Metropolis algorithm, 

there is strong evidence that ngen = 100, lmax = 0.01, and gwsz = 0.l are not the 

parameters most likely to produce X 0 in simulation through the fgp. Likewise, our sam­

ple does not undermine its own validity by excluding the true parameters from those 

reasonable with some empirically appreciable probability. 

We introduced the parameter d into the energy function in Chapter 4. The introduction 

of d was necessary to speed the process of sampling with conditional coding. We admit 
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that by introducing d into the energy function, h, we run the risk of distorting the meaning 

of h so that any sample we obtain using his uninterpretable. By letting d = 10 in 4.1, we 

did not , in a statistical sense, distort what it means for h to be 0 and hence what it means 

for a simulated pattern X to match X 0 . We justify this with x2 goodness-of-fit tests. 

For each w sampled via the Metropolis algorithm, we recorded the vector B of fracture 

length frequency counts, including the number of censored fractures , from the fracture 

pattern X generated by g(w ), where h(w) = 0 in 4.1 and d = 10. We test individually 

the hypotheses that each vector B summarizes fractures from the population of fractures 

defined by A. We defined A in section 1 of Chapter 4. Recall that the vector A has 

nine entries. The first eight record the frequency counts of fracture lengths occurring in 

X 0 . The ninth is the number of censored fractures in X 0 . Under the null hypothesis, the 

expected count for each entry in B is the corresponding entry in A. In this case A is the 

vector (28,25 ,23,26,26,24,23,25,6). Computing the x2 statistic in the usual way, we find 

that all of the 8-degree-of-freedom test statistics for the vectors B have p-values in the 

interval (0.99 ,1.00). Thus , we fail to reject the null hypothesis for any of the vectors B 

that correspond to the sample points w that we obtained by conditional coding. By letting 

d = 10 in 4 .1, we still allowed h to determine a match among patterns that are statistically 

alike. Appendix A.5 contains a complete table of the x2 satistics just mentioned . 



CHAPTER 6 

SUMMARY 
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In the preceding chapters we have defined and applied conditional coding. The theory 

is general but the application is unique to the problem presented in Chapter 2. In spite of 

this , there are issues of a general nature that arise in the application of conditional coding 

to this problem. We conclude with a summary of conditional coding and a summary of 

our attempt to match parameters ngen , lmax , and gwsz to the fracture pattern of Figure 

1 that we called X0 . During the course of this summary we distinguish the successes and 

failures of applying conditional coding to the fracture pattern inverse image problem . 

Conditional coding is a method that applies MCMC methods to sample from a con­

ditional distribution. Classically, sampling such distributions with MCMC method s re­

quires an explicit statement of the posterior likelihood of the variable we want to sample 

given some variable dependent measure that we know. This measure might include some 

error. Conditional coding requires no analytic formulations . It requires only computer­

implemented algori thms that simulate the random variables and the measurements that 

are made on them . 

We have applied conditional coding to the problem of finding the inverse image of 

a fracture pattern, Xo, simulated with rules determined by an algorithm, g, and three 

parameters, ngen , lmax, and gwsz. The rules govern fracture growth determined by 

the elements of a stochastic process given as a list of random numbers from a standard 

random number generator. Since g relies on random numbers to determine Xo , we suppose 
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that certain combinations of ngen , lmax , and gwsz are more likely to simulate fracture 

patterns with fracture length frequency counts matching X 0 than others. The sample 

that conditional coding produced by matching parameters to Figure 1 bears this out. 

From the sample it appears that parameter combinations with ngen = 101, lmax ~ 0.01 

and gwsz E [0.0982087, 0.0985334] are more likely to simulate fracture patterns with 

fracture length histograms of 8 near equal probability classes that match the corresponding 

fracture length histogram of X 0 • This conclusion comes with some assumptions because 

the sample referred to above comes from the small sampling region given in Chapter 4. 

When interpreting the meaning of this sample , it is understood that it only details the 

relationship between ngen, lmax and gwsz within that region. There are other restrictions 

on the interpretation of the sample as well. 

We ran the Metropolis algorithm as part of conditional coding with a fixed temperature 

of T = 19. Our sample is a sample over all parameter combinations in the sampling region 

that minimize our energy function if T is not too small. If T is too small , then the 

probabilit y of escaping parameter configurations oflocally minimum energy is small. This 

can result in a sample of points at certain minima while excluding points at some other 

minima. We never address whether or not using T = 19 is a problem in this regard. Energy 

states greater than 250, though less than 275, regularly occur throughout the Markov chain 

used to simulate the distribution from which we sample. With the energy function that 

we chose, the maximum observable energy for any parameter combination is 550. Our 

sample is biased unless every combination of parameters with the potential of simulating 

fracture patterns of minimum energy communicates with every other combination that 

has the same potential. This communication must not occur through combinations of 
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parameters that simulate fracture patterns with energies of more than 275. This might 

be a restrictive assumption and is one that we have not tested. 

To avoid problems with temperature in future experiments, we recommend that the 

Metropolis algorithm be started over after sampling each point. The initial energy state 

of the new Markov chain generated for finding the next sample point should come from 

a combination of parameters chosen at random. The hope is that starting fresh at a 

random point after each sample will allow sampling of all parameter combinations capable 

of simulating fracture patterns of minimal energy. Another solution might be to formulate 

the energy function with a small number of states. The energy function should be very 

sensitive to change in patterns of minimal or near minimal energy and insensitive to broad 

differences in patterns that are far from matching anyway. 

Convergence in MCMC methods is the most problematic component of conditional 

coding . This area more than any other requires future research and resolution before 

conditional coding can find widespread and reliable application . Our attempts to show 

convergence in the Markov chain that we used to generate our sample failed . In spite of 

this , the theory is sound and the sample we obtained is evidence that conditional coding is 

viable. A completely valid sample of all the parameter combinations capable of simulating 

patterns of minimal energy lacks only a better understanding of convergence in MCMC 

methods. 
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APPENDIX A 

PROGRAMS 

A.1 Fracture Growth Program 
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A description of the full capacity of the fgp can be found in an article titled "Generation 

of Fracture Patterns Using Self-Similar Iterated Function System Concepts." The article 

appears in the June 1990 Annual Report LBL-2700 of the Lawrence Berkeley Laboratory 

at the University of California at Berkeley. This FORTRAN program codes the algorithm 

from that article. The algorithm is more sophisticated than the description given in 

Chapter 2. This program simulates Figure 1 and more complex patterns of fractures that 

are not all oriented in the same direction. This program also has the capacity to generate 

daughter fractures in close proximatey to the existing fractures that spawn them . The 

inputs include a list of parameters including ngen, lmax and gws z as well as a parameter 

that lets the program spawn new fractures , and one that allows fractures to grow non­

parallel to one another. The code given here is courtesy of Dr. Kevin Hestir of Utah State 

University. 

c This is the 'header' of common declarations. 

integer npar,ngen 

real prob(10) 

real g(4, 10) 



real x(4,10000),xp(4,10000) 

real lmax 

real g'llsz 

integer n,np 

common In/ npar,ngen 

common Ip/ prob 

common /g/ g 

common /1/ lmax 

common /gr/ g'llsz 

subroutine ftrans(xfrac,yfrac) 

real xfrac(4),yfrac(4) 

real theta 

real xl,xxm,xym 

data tol /0.00001/ 

c This subroutine rotates, scales, and translates 

ca reference frame in which the parent (x) fracture has endpoints 

c (-0.5,0), (+0.5,0) (the x2 frame) to a frame in which 

c the parent has its actual endpoints (the xO frame). 

c The coordinates of a daughter (y) fracture are known in 

c the x2 frame and are calculated for the xO frame. 
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c Determine the orientation of the parent fracture in the 

c xO frame. This angle is theta and is positive in the 

c counterclockYise direction from the x-axis. 

theta=hatan(xfrac) 

c Rotate the coordinate frame clockYise so that the parent 

c fracture is in the correct orientation and calculate the 

c orientation of the daughter in the xO reference frame. 

call rotan(yfrac,theta) 

c Scale the neY reference frame and calculate the coordinates 

c of the daughter fracture in the rescaled reference frame. 

c In the neY reference frame the parent fracture has its true 

c length. 

xl=xlen(xfrac) 

do i=1,4 

yfrac(i)=xl*yfrac(i) 

enddo 

c Translate the reference frame such that the 

c the midpoint of the parent fracture is in the 

c correct location. Calculate the coordinates 

c of the daughter fracture endpoints in the 

c translated coordinate system. 

xxm=(xfrac(1)+xfrac(3))*0.5 

xym=(xfrac(2)+xfrac(4))*0.5 
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do i=1,3,2 

yfrac(i)=yfrac(i)+xxm 

yfrac(i+1)=yfrac(i+1)+xym 

enddo 

return 

end 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine gen(x,n,xp,np) 

include 'header' 

integer i,j,iflag 

real y(4),z(4) 

c This program places the endpoints for parent fractures and 

c any daughter fractures into an array called xp. 

np=O 

do i=1,n 

c This do loop operates on each of then fractures 

c Collect the endpoints y(1), y(2), y(3), y(4) for the 

c ith fracture 

do j=1,4 

y(j)=x(j ,i) 

enddo 

c Determine whether and where a daughter fracture will be grown 

c near the tip of the ith parent fracture 
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call ifsgen(y,z,iflag) 

c Place the parent fracture endpoints into the xp storage array 

np=np+1 

do j=1 ,4 

xp(j,np)=y(j) 

enddo 

if(iflag.gt.1) then 

c A daughter fracture was grown near (but not at) the tip of the 

c parent fracture . Put the daughter fracture into the xp storage array . 

np=np+1 

do j=1,4 

xp(j,np)=z(j) 

enddo 

endif 

enddo 

return 

end 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

function hatan(y) 

real tol 

real hatan,y(4) 

real delx,dely 

data tol /0 . 00001/ 
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c This function gives the orientation of a line 

c with respect to the x-axis given the coordinates 

c of its endpoints y(1), y(20, y(3), and y(4). 

delx=y(1)-y(3) 

dely=y(2)-y(4) 

if(abs(delx).lt.tol) then 

hatan=2.0*atan(1.) 

else 

hatan=atan(dely/delx) 

endif 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine ifsgen(y,z,iflag) 

include 'header' 

real y(4),z(4) 

real p 

integer iflag 

c This subroutine decides whether to grow a new fracture near the 

c tip of a pre-existing one and decides where to grow it. 

c The points y(1), y(2), y(3), and y(4) mark fracture end points. 

c The odd number indices are x coordinates. 

c The even number indices are y coordinates. 
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c The parameter pis a random number between O and 1. 

pi= 4.*atan(1.) 

c Select a random number p to determine whether the fracture 

c will grow or nucleate a new fracture 

c Fracture growth probabilities are scaled to 

Ca parameter called lmax. 

iflag=1 

p=ran1(idum) 

C If p>xlen/lmax, then no fracture growth occurs, 

C and the suboutine is exited. 

if(p.gt.(xlen(y)/lmax)) return 

C If p<xlen/lmax, then fracture growth occurs. 

C The idea is that the probability of fracture growth should 

C be proportional to the fracture energy release rate G. 

CG in turn, is proportional to K*K, where K is the stress 

C intensity factor and is proportional to the square root of the 

C crack length . Sop should be proportional to the crack length, 

C which is normalized here by the parameter lmax. 

C Now pick a random number to determine whether the parent 

C crack will grow itself or spawn a daughter 

C If p>prob(1) then a daughter crack will grow (go to 600) 

C If p<prob(1) then the parent crack will grow 

p = ran1(idum) 
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if (p.ge.prob(1)) goto 600 

C ROUTINE FOR PARENT CRACK GROWTH 

C In the following scheme, the old (short) and new (long) 

C parent crack have the same midpoint. 

C The maximum relative growth increment is b = gwsz 

C Both crack endpoints move to increase the 

C crack length by b*ran1 %. 

p = ran1 (idum) 

b = gwsz * p 

xm = (y ( 1) + y(3)) *0.5 

ym = (y(2) + y(4)) *0.5 

y(1)=(b+1.0)*y(1) - b*xm 

y(2)=(b+1.0)*y(2) - b*ym 

y(3)=(b+1.0)*y(3) - b*xm 

y(4)=(b+1.0)*y(4) - b*ym 

return 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

600 continue 

C DAUGHTER CRACK GROWTH ROUTINE 

iflag = 2 

C Growth will (will not) occur at both ends of the crack 

C The parameter bis the distance over which the near tip field 

C is assumed to be appropriate. 



C The maximum growth increment is also b = gwsz 

b = gwsz 

C Now pick two random numbers to give the coordinates r, theta 

C for the center of the new daughter crack. 

C These numbers will be used to locate the daughter based on 

C probability distributions derived from the near tip expression 

C for sigma yy. 

C This coordinate system is centered at and aligned with 

C the parent crack tip. 

C First for r: 

p=ran1(idum) 

r=p*p*b*xlen(y) 

C and now for theta 

p=ran1(idum) 

C Solve for theta using Newton-Raphson method 

call rtnewt(p,theta,0.01,pi) 

C Now determine the orientation of the parent 

ang = atan2((y(4)-y(2)),(y(3)-y(1))) 

C Now determine which end of the parent to grow the daughter near 

Cd= 1 corresponds to positive end of parent 

Cd= -1 corresponds to positive end of parent 

d = 1. 

p = ran1(idum) 
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if (p.gt.0.5) d = -1. 

C Pick the appropriate parent crack endpoint coordinates 

if (d.gt.O.) then 

w1 = y(3) 

w2 = y(4) 

else 

w1 = y(1) 

w2 = y(2) 

end if 

C Now pick the length of the daughter crack 

p = ran1 (idum) 

c fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix?? 

astar = p*b*xlen(y) 

c fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix?? fix?? 

C Now locate the daughter crack midpoint 

xm = w1+d*r*cos(ang+theta) 

ym = w2+d*r*sin(ang+theta) 

C Now locate the daughter crack endpoints 

z(1) = xm-cos(ang)*astar 

z(2) = ym-sin(ang)*astar 

z(3) = xm+cos(ang)*astar 

z(4) = ym+sin(ang)*astar 

return 

65 



end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine rtnewt(p,root,tol,pi) 

parameter (jmax=20) 

x1 = -1.*pi 

x2 = pi 

C Set initial guess 

root= 2.*(p-0.S)*pi 

do 11 j=1,jmax 

call funcd(p,root,f,df) 

dx=f/df 

root=root-dx 

if (abs(dx) . lt.tol) return 

11 continue 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine funcd(p,root,f,df) 

C function to calculate the integral of the normalized 

C near-tip stress sigma 11 (f) and sigma 11 (df) . 

phi = root/2 . 

s1 = sin(phi) 

s3 = sin(phi)**3 . 
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s5 = sin(phi)**S. 

f = (2.*s1+2.*s3-1.6*s5+2.4)*(5./24.)-p 

df = cos(phi)*(1+s1*sin(3*phi))*(5./24.) 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Master program to recursively generate line fractures 

C 

c The following statement defines variables and common blocks 

c used throughout the ifs fracture generation program: 

include 'header' 

character nameo*40 

c Read the input data 

call rdpar 

c call normal(prob,npar) 

c Read the initial fracture endpoints from the file start .i np 

call read4(x,n) 

C 

c Now enter the do loop that generates daughter fractures, filters 

c out duplicate fractures, and restores the parent and daughter 

c fractures back into storage array x. The number of generations 

c for which fractures can be grown is ngen. 

do i=1,ngen 
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C 

call gen(x,n,xp,np) 

call filter(xp,np) 

call s.rap(x,n,xp,np) 

.rrite(6,*)i,n 

enddo 

.rrite(6,307) 

307 format(//,' enter name of output file') 

read(5,90)nameo 

90 format(a) 

open(unit=10,file='markov.out' ,status='unkno.rn') 

open(unit=11,file=nameo,status='unkno.rn') 

c Write out the endpoints of the final set of fractures 

do i=1,n 

.rrite(10,*) x(1,i),x(2,i),x(3,i),x(4,i) 

.rrite(11,*) x(1,i),x(2,i),x(3,i),x(4,i) 

enddo 

close(unit=10,status='keep') 

close(unit=11,status='keep') 

end 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine normal(prob,npar) 

real prob(10),sum 
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integer npar,i 

c This subroutine converts relative growth rule probabilities 

c to absolute probabilities whose sum is 1. 

sum=O.O 

do i=1,npar 

sum=sum+prob(i) 

enddo 

do i=1,npar 

prob(i)=prob(i)/sum 

enddo 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

FUNCTION RAN1(IDUM) 

DIMENSION R(97) 

PARAMETER (M1=259200,IA1=7141,IC1=54773,RM1=3.8580247E-6) 

PARAMETER (M2=134456,IA2=8121,IC2=28411,RM2=7.4373773E-6) 

PARAMETER (M3=243000,IA3=4561,IC3=51349) 

DATA IFF /0/ 

c Subroutine to generate a random number between O and 1 

c From the Numerical recipes book. 

IF (IDUM.LT.O.OR.IFF.EQ.O) THEN 

IFF=1 
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IX1=MOD(IC1-IDUM,M1) 

IX1=MOD(IA1*IX1+IC1,M1) 

IX2=MOD (IX1 ,M2) 

IX1=MOD(IA1*IX1+IC1,M1) 

IX3=MOD(IX1,M3) 

DO 11 J=1,97 

IX1=MOD(IA1*IX1+IC1,M1) 

IX2=MOD(IA2*IX2+IC2,M2) 

R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1 

11 CONTINUE 

IDUM=1 

ENDIF 

IX1=MOD(IA1*IX1+IC1,M1) 

IX2=MOD(IA2*IX2+IC2,M2) 

IX3=MOD(IA3*IX3+IC3,M3) 

J=1+(97*IX3)/M3 

IF(J.GT.97.0R.J.LT.1)PAUSE 

RAN1=R(J) 

R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1 

RETURN 

END 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine rdpar 
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character bogus*1 

character name*40 

include 'header' 

c This subroutine reads the growth parameters from the desired 

c input file par.inp. 

c The lines below that say "read (15,*)bogus" read the titles 

c for the growth criteria. 

c ngen = number of generations in which fracture growth is allowed 

c idum = seed for random number generator 

c npar =#of growth rules 

c lmax = maximum allowable fracture length 

c prob(i) = probability for growth rule i 

c g(i) = location of daughter fracture endpoints relative 

C to a parent fracture at (-0 . 5,0), (0.5,0) 

c gwsz = growth increment 'l. for a parent fracture that lengthens 

C 

C 

(as opposed to a fracture that grows a daughter) 

write(6,80) 

80 format(//,' enter name of input file for growth parameters') 

read(5,85)name 

85 format (a) 

90 format (a) 

open(unit=15,file=name,status='old') 
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read(15,90)bogus 

read(15,*)ngen 

read(15,90)bogus 

read(15,*)idum 

read(15,90)bogus 

read (15, *) npar 

read(15,90)bogus 

read(15,*)lmax 

do i=1,npar-1 

read(15,90)bogus 

read(15,*)prob(i) 

read(15,*)g(1,i),g(2,i),g(3,i),g(4,i) 

enddo 

read(15,90)bogus 

read(15,*)prob(npar) 

read(15,*)gwsz 

close(unit=15,status='keep') 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine read4(x,n) 

include 'header' 

c This subroutine reads the endpoint coordinates 
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c for the array of starter cracks and counts how 

c many starter cracks there are. The number is n. 

open(unit=10,file='start.inp',status='old') 

n=O 

100 continue 

n=n+1 

read(10,*,end=200)x(1,n),x(2,n),x(3,n),x(4,n) 

goto 100 

200 continue 

n=n-1 

close(unit=10,status='keep') 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine rotan(y,theta) 

real y(4),dum(4) 

real theta,cost,sint 

c This subroutine rotates a line segment (as defined by its 

c endpoints) by a counterclockwise angle theta and then gives the 

c new endpoints. The rotation center is the origin . 

do i=1,4 

dum(i)=y(i) 

enddo 
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cost=cos(theta) 

sint=sin(theta) 

y(1)=cost*dum(1)-sint*dum(2) 

y(2)=sint*dum(1)+cost*dum(2) 

y(3)=cost*dum(3)-sint*dum(4) 

y(4)=sint*dum(3)+cost*dum(4) 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine swap(x,n,xp,np) 

include 'header' 

c This subroutine sets the x array equal to the xp array 

do i=1,np 

do j=1,4 

x(j ,i)=xp(j ,i) 

enddo 

enddo 

n=np 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

function xlen(y) 

real xlen,y(4) 

c This function determines the length of a line segment 
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c given the coordinates of its endpoints. 

xlen=sqrt((y(1)-y(3))**2 . + (y(2)-y(4))**2.) 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine filter(x,n) 

real x(4,10000) 

real xp(4,10000) 

integer idic(10000) 

integer n,np 

data tol /1.0e-08/ 

c This subroutine checks to make sure there are no 

c duplicate fractures in the ouput produced by 

c subroutine gen 

c Copy the endpoints for each fracture from the permanent 

c x array to a temporary xp array 

do i=1,n 

idic(i)=O 

do j=1,4 

xp(j ,i)=x(j ,i) 

enddo 

enddo 

c March through the fracture array (checking each fracture 
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c against all the fractures that follow it in the array) 

c to see whether duplicate sets of fracture endpoints occur. 

c If there is a duplicate set, flag the fracture that is 

c closer to the end of the array. 

do 100 i=1,n-1 

if(idic(i).gt.0) goto 100 

do 200 j=i+1,n 

if(abs(x(1,i)-x(1,j)).ge.tol) 

if(abs(x(2,i)-x(2,j)).ge.tol) 

if(abs(x(3,i)-x(3,j)).ge.tol) 

if(abs(x(4,i)-x(4,j)) . ge.tol) 

idic(j)=1 

200 continue 

100 continue 

goto 200 

goto 200 

goto 200 

goto 200 

c Write all unflagged (i . e. nonduplicate) sets of fracture 

c endpoints back to the x array. 

np=0 

do i=1,n 

if(idic(i).lt . 1) then 

np=np+1 

do j=1,4 

x(j ,np)=xp(j ,i) 

enddo 
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endif 

enddo 

c The number of fractures no~ in the x array is defined as n 

n=np 

return 

end 
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A.2 Modified Fracture Growth Program 

This program is a modified version of the fgp that does conditional coding . Some of 

the routines from the original fgp are deleted here becuase they make no contribution to 

solving the problem from Chapter 2. There are also many new routines specific to the 

application of conditional coding. 

c This is the 'header' of common declarations. 

integer npar,ngen 

real prob(10) 

real g(4, 10) 

real x(4,10000),xp(4,10000) 

real lmax 

real g,;.,sz 

integer n,np 

common In/ npar,ngen 

common /pl prob 

common /g/ g 

common /1/ lmax 

common /gr/ gysz 

c-----------------------------------------------------------------
subroutine gen(x,n,xp,np,drand,cnts) 



include 'header' 

integer i,j,iflag,cnts 

real y(4),z(4),drand(80000) 

c This program places the endpoints for parent fractures and 

c any daughter fractures into an array called xp. 

np=O 

do i=1,n 

c This do loop operates on each of then fractures 

c Collect the endpoints y(1), y(2), y(3), y(4) for the 

c ith fracture 

do j=1,4 

y(j )=x(j, i) 

enddo 

c Determine whether and where a daughter fracture will be grown 

c near the tip of the ith parent fracture 

call ifsgen(y,z,drand,cnts,iflag) 

c Place the parent fracture endpoints into the xp storage array 

np=np+1 

do j=1,4 

xp(j,np)=y(j) 

enddo 

if(iflag.gt.1) then 
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c A daughter fracture was grown near (but not at) the tip of the 

c parent fracture. Put the daughter fracture into the xp storage array. 

np=np+1 

do j=1,4 

xp(j,np)=z(j) 

enddo 

endif 

enddo 

return 

end 

c-----------------------------------------------------------------
subroutine ifsgen(y,z,drand,cnts,iflag) 

include 'header' 

integer cnts 

real y(4),z(4),drand(80000) 

real p 

integer iflag 

c This subroutine decides whether to grow a new fracture near the 

c tip of a pre-existing one and decides where to grow it . 

c The points y(1), y(2), y(3), and y(4) mark fracture end points. 

c The odd number indices are x coordinates. 

c The even number indices are y coordinates. 

c The parameter p is a random number between O and 1. 
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pi= 4.*atan(1.) 

c Select a random number p to determine whether the fracture 

c will grow or nucleate a new fracture 

c Fracture growth probabilities are scaled to 

ca parameter called lmax. 

iflag=1 

p=ran1(drand,cnts) 

c If p>xlen/lmax, then no fracture growth occurs, 

c and the suboutine is exited. 

if(p .gt.(xlen(y)/lmax)) return 

c If p<xlen/lmax, then fracture growth occurs. 

c The idea is that the probability of fracture growth should 

c be proportional to the fracture energy release rate G. 

c Gin turn, is proportional to K*K, where K is the stress 

c intensity factor and is proportional to the square root of the 

c crack length. Sop should be proportional to the crack length , 

c which is normalized here by the parameter lmax. 

c ROUTINE FOR PARENT CRACK GROWTH 

c In the following scheme, the old (short) and new (long) 

c parent crack have the same midpoint. 

c The maximum relative growth increment is b = gwsz 

c Both crack endpoints move to increase the 
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c crack length by b*ran1 ¼. 

p = ran1(drand,cnts) 

b = gwsz * p 

xm = (y(1) + y(3)) 

ym. = (y(2) + y(4)) 

y(1)=(b+1.0)*y(1) 

y(2)=(b+1.0)*y(2) 

y(3)=(b+1.0)*y(3) 

y(4)=(b+1.0)*y(4) 

return 

end 

*0.5 

*0.5 

- b*xm 

- b*ym. 

- b*xm 

- b*ym. 

c-----------------------------------------------------------------
subroutine simulate(x,n,drand,cnts,nc) 

integer n,cnts,nc 

real drand(80000) 

c Master program to recursively generate line fractures 

c The following statement defines variables and common blocks 

c used throughout the ifs fracture generation program: 

include 'header' 

c Read the input data. 

call rdpar(drand,cnts) 
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c Read the initial fracture endpoints from the file start.inp 

call read4(x,n,drand,cnts,nc) 

c Now enter the do loop that generates daughter fractures, filters 

c out duplicate fractures, and restores the parent and daughter 

c fractures back into storage array x. The number of generations 

c for which fractures can be grown is ngen. 

do i=1,ngen 

call gen(x,n,xp,np,drand,cnts) 

call filter(xp,np) 

call swap(x,n,xp,np) 

enddo 

return 

end 

c-----------------------------------------------------------------
function RANDOM(seed) 

double precision seed,m,ranhd 

integer istart 

data istart /-1/ 

c ref: ripley, stochastic. simulation, page 46 

if(istart.lt . O) then 

m=1.0 

do i=1,32 

m=m*2.0 
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C 

enddo 

istart=1 

ranhd=seed 

endif 

ranhd=mod((69069*ranhd+1.),m) 

RANDOM=float(ranhd/m) 

return 

end 

c-----------------------------------------------------------------
FUNCTION ran1(drand,cnts) 

integer cnts 

real drand(80000) 

cnts=cnts+1 

ran1=drand(cnts) 

return 

end 

c-----------------------------------------------------------------
subroutine rdpar(drand,cnts) 

integer cnts 

real drand(80000) 

include 'header' 
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c This subroutine reads the growth parameters from the desired 

c input file par.inp. 

c The lines below that say "read (15,*)bogus" read the titles 

c for the growth criteria. 

c ngen = number of generations in which fracture growth is allowed 

c idum = seed for random number generator 

c npar =#of growth rules 

c lmax = maximum allowable fracture length 

c prob(i) = probability for growth rule i 

c g(i) = location of daughter fracture endpoints relative 

C to a parent fracture at (-0 . 5,0), (0.5,0) 

c gwsz = growth increment% for a parent fracture that lengthens 

C (as opposed to a fracture that grows a daughter) 

cnts = 0 

ngen=80+20*ran1(drand,cnts)+5 

npar=1 

lmax=ran1(drand,cnts)*0.03 

prob(1) =1.0 

gwsz=ran1(drand,cnts)*0.3 

return 

end 

c-----------------------------------------------------------------
subroutine read4(x,n,drand,cnts,nc) 
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integer cnts,nc 

real drand(80000) 

include 'header' 

c This subroutine reads the endpoint coordinates 

c for the array of starter cracks and counts how 

c many starter cracks there are. The number is n. 

do 10 i=1,nc 

x(1,i)=ran1(drand,cnts)*60 .0 + 15.0 

x(3,i)=x(1,i)-0.01 

10 continue 

do i = nc+1,n 

x(1,i)=ran1(drand,cnts)*50 . 0 + 20 

x(3,i)=x(1,i)-0.01 

enddo 

return 

end 

c-----------------------------------------------------------------
subroutine svap(x,n,xp,np) 

include 'header' 

c This subroutine sets the x array equal to the xp array 

do i=1,np 

do j=1,4 

x(j ,i)=xp(j ,i) 
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enddo 

enddo 

n=np 

return 

end 

c-----------------------------------------------------------------
subroutine filter(x,n) 

real x(4,10000) 

real xp(4,10000) 

integer idic(10000) 

integer n,np 

data tol /1.0e-08/ 

c This subroutine checks to make sure there are no 

c duplicate fractures in the ouput produced by 

c subroutine gen 

c Copy the endpoints for each fracture from the permanent 

c x array to a temporary xp array 

do i=1,n 

idic(i)=O 

do j=1,4 

xp(j ,i)=x(j ,i) 

enddo 

enddo 
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c March through the fracture array (checking each fracture 

c against all the fractures that follow it in the array) 

c to see whether duplicate sets of fracture endpoints occur. 

c If there is a duplicate set, flag the fracture that is 

c closer to the end of the array. 

do 100 i=1,n-1 

if(idic(i).gt.0) goto 100 

do 200 j=i+1,n 

if(abs(x(1,i)-x(1,j)) .ge.tol) 

if(abs(x(2,i)-x(2,j)) . ge . tol) 

if(abs(x(3,i)-x(3,j)).ge.tol) 

if(abs(x(4,i)-x(4,j)).ge . tol) 

idic(j)=1 

200 continue 

100 continue 

goto 200 

goto 200 

goto 200 

goto 200 

c Write all unflagged (i . e . nonduplicate) sets of fracture 

c endpoints back to the x array. 

np=0 

do i=1,n 

if(idic(i) . lt . 1) then 

np=np+1 

do j=1,4 

x(j,np)=xp(j,i) 
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enddo 

endif 

enddo 

c The number of fractures now in the x array is defined as n 

n=np 

return 

end 

c-----------------------------------------------------------------
subroutine create(rand,prand) 

integer i 

real rand(80000),prand(80000) 

double precision idum 

common /seed/ idum 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c inputs : rand and prand denote vectors of uniform random variables c 

c outputs: intialized arrays rand and prand C 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

do 10 i = 1,80000 

rand(i) = RAND0M(idum) 

prand(i) = 0.0 

10 continue 

return 

end 
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c ________________________________________________________________ _ 

c-----------------------------------------------------------------

$ 

subroutine energy(x,Ematrix,n,clsnum,min,max,l) 

integer i,n,clsnum,jdum 

real x(4,10000),1(10000,5),Ematrix(1000),min,max,cw(7) 

data cw(1)/0.9227/,cw(2)/1.0308/,cw(3)/1.1294/,cw(4)/1.253/, 

cw(5)/1.3884/,cw(6)/1.5342/,cw(7)/1.78159/ 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c inputs: x=the fracture matrix, Ematrix stores energy measures,n= c 

C 

C 

C 

the# of fractures in x, clsnum=# of frequency classes, 

min=minimum crack length in x, max=maximum crack length 

in x, l=vector of fracture lengths in x. 

C 

C 

C 

c output: Ematrix comes out of this routine storing the class c 

C frequencies for a histogram of the fracture lenghts in x. c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

do i = 1,clsnum.+1 

Ematrix(i) = 0 . 0 

enddo 

do i =1,n 

if (l(i,1).LT.cw(1)) Ematrix(1) = Ematrix(1) + 1 

if (l(i,1).GE.cw(1).AND.l(i,1).LT.cw(2)) then 

Ematrix(2) = Ematrix(2) + 1 

end if 
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if (l(i,1).GE.cw(2).AND.l(i,1).LT.cw(3)) then 

Ematrix(3) = Ematrix(3) + 1 

end if 

if (l(i,1).GE.cw(3).AND.l(i,1).LT.cw(4)) then 

Ematrix(4) = Ematrix(4) + 1 

end if 

if (l(i,1).GE.cw(4).AND.l(i,1).LT.cw(5)) then 

Ematrix(5) = Ematrix(5) +1 

end if 

if (l(i,1).GE.cw(5).AND.l(i,1).LT.cw(6)) then 

Ematrix(6) = Ematrix(6) + 1 

end if 

if (l(i,1).GE.cw(6).AND.l(i,1).LT.cw(7)) then 

Ematrix(7) = Ematrix(7) + 1 

end if 

if (l(i,1).GE.cw(7)) Ematrix(8) = Ematrix(8) + 1 

enddo 

do i = 1,n 

Ematrix(clsnum+1) = Ematrix(clsnum+1) + l(i,2) 

enddo 

return 

end 

c-----------------------------------------------------------------
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subroutine compare(E,E3,en3,flag,clsnum) 

integer en3,clsnum 

real E(1000),E3(1000),flag 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c inputs: E=#energy matrix of the natural pattern,E3=#energy matrix c 

C of a simulated pattern, clsnum=# of frequency classes in c 

C E and E3 C 

c output : en3=energy of the simulated pattern. C 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

flag= 0.0 

en3 = 0 

do i = 1,clsnum+1 

en3 = en3 + abs(E3(i)-E(i)) 

enddo 

if (en3.LT .31) flag= 1 . 0 

return 

end 

c------------------------------------------------------------------
subroutine pfactor(pf,pprob) 

real pf,pprob 

double precision idum 

common /seed/ idum 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
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c inputs: pprob=a test probability. 

c output: pf=flag to perturb. 

C 

C 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

pf= 0.0 

if (RANDOM(idum).LT.pprob) pf= 1.0 

return 

end 

c-------------------------------------------------------------------
subroutine perturb(rand,prand,cnts) 

integer i,j,cnts,m,n,en1 

real pf,rand(80000),prand(80000),pprob 

double precision idum 

common /seed/ idum 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c inputs: rand=array of uniform random variables, cnts=# of C 

C elements in rand. C 

c output: prand=perturbed rand. C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

if (RANDOM(idum).LT.0.5) then 

do i = 1,3 

prand(i) = rand(i) 

enddo 

i = int(3*RANDOM(idum)) + 1 
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prand(i) = rand(i) + RANDOM(idum) 

if (prand(i).GT.1.0) prand(i) = prand(i) - 1.0 

else 

do j = 4,cnts 

pprob = 0.25 

call pfactor(pf,pprob) 

prand(j) = rand(j) + pf*RANDOM(idum) 

if (prand(j).GT.1.0) prand(j) = prand(j) - 1.0 

prand(j) = rand(j) 

enddo 

end if 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c NOTE: This is not necessarily the best way to perturb rand. c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c--------------------------------------------------------------------
subroutine solution(n,x,u1,u2,u3,pcnts) 

integer ngen,n,pcnts 

real x(4,10000),u1,u2,u3,lmax,gwsz 

double precision idum 

common /seed/ idum 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

94 



c inputs: x=fracture matrix,n=# of fractures,u1-3=coded parameters c 

C ngen,lamx, and gwsz,pcnts=# of metropolis iteraations to c 

C get u1-3. C 

c output: A file of ngen,lmax,gwsz, and pents C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ngen = 80 + u1*20.0 + 5 

lmax = u2*0.03 

gwsz = u3*0.3 

write(15,*) pcnts,ngen,lmax,gwsz 

call flush( 15) 

if (RANDOM(idum).LT.0.05) then 

do i = 1,n 

write(16,*) x(1,i)-20,x(2,i),x(3,i)-20,x(4,i) 

call flush(16) 

enddo 

end if 

return 

end 

c----------------------------------------------------------------------
subroutine length(x,n,l,xl,xu) 

integer i,n 

real x(4,10000),1(10000,5),xl,xu,cx1,cx2 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
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c inputs: x=fracture matrix,n=# of fractures,xu=upper bound on c 

C the x-coordinates in x,xl=lower bound on the x-coord- C 

C inates in x. C 

c output: l=double array of the lengths of fractures in x and a c 

C flag indicating if the fracture is censored. C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

do i = 1,n 

l(i,1) = 0.0 

l(i,2) = 0 . 0 

cx1 = x(1,i) 

cx2 = x(3,i) 

if (cx1.GT.xu) then 

cx1 = xu 

l(i,2) = 1.0 

end if 

if (cx2 .LT.xl) then 

cx2 = xl 

l(i,2) = 1.0 

end if 

l(i,1) = cx1 - cx2 

if (l(i,1) . EQ.0.0) l(i,2) = 1.0 

enddo 

return 
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end 

c----------------------------------------------------------------------
subroutine maxmin(l,n,min,max) 

integer i,n 

real min,max,1(10000,5) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c inputs: l=double array of fracture lengths with a censor flag,n= c 

C of fractures . C 

c output: min=minimum in 1, max=maximum in 1 C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

min= 1000000 

max= 0 

do i = 1,n 

if (l(i,2) . NE. 1.0) then 

if (l(i,1) . LT.min) min= l(i,1) 

if (l(i , 1) . GT.max) max= l(i , 1) 

end if 

enddo 

if (max.GT. 50.0R .max.EQ.O) then max= 50.0 

if (min.GT.SO) then min= 50.0 

return 

end 

c----------------------------------------------------------------------
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subroutine stats(En,pcnts,clsnum) 

real En(1000) 

integer pcnts,clsnum 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c inputs: En=energy matrix for a matching pattern, pents=# of c 

C metropolis iterations to get En, clsnum=working row C 

C rank of En. C 

c output: A file of the entries in En with pents . C 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

do i = 1,clsnum+1 

write(17,*) pcnts,En(i) 

enddo 

call flush(17) 

return 

end 

c----------------------------------------------------------------------
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C C 

C MAIN C 

C C 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c This program applies conditional coding to the problem detailed in c 

c Chapter 2. Not everything in this code is optimal, but it works and c 
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c generated the large data set in Chapter 4. The notes that accompany c 

c each subroutine in this program should help the reader follow how c 

c the conditional coding reciepe at the end of Chapter# is coded . c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

$ 

$ 

integer n,en1,en2,edum,samsize,idiv,cnts,pcnts,nc,limit, 

clsnum 

real E,E1,E2,rand,prand,x,xl,xu,yb,flag,t,unif,rinc,r,min,max,l 

dimension rand(80000),x(4,10000),E1(1000),prand(80000),E(1000), 

E2(1000),1(10000,5) 

double precision idum 

common /seed/ idum 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c initialize the appropriate variables . c 

c n=number of fractures in the natural pattern . c 

c cnts=loop counting variable . c 

c idum=random number generation seed. c 

c yb,xl,xu=boundaries for a rectangular growth region. c 

c clsnum=# of histogram classes used to find energy. c 

c t,idiv,rinc,m=variables used to implement Simmulated Annealing . c 

c edum=energy flag that tracts the lowest energy obtained . c 

c limit=# of iterations that must pass between solutions so that the c 

C data points are independent. C 
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c samsize=# of sample points to collect before ending the program. c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

n = 200 

cnts = 0 

idum = 12005 

yb = 50.0 

xl = 20.0 

XU= 70.0 

clsnum = 8 

t = 19.00 

k = 0 

m = 1 

pents = 0 

idiv = 45 

rinc = 1.0 

edum = 5000 

limit = 10000 

samsize = 1000 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Read the natural pattern and assign it an energy matrix by find- c 

c ing the lengths it's fractures, nc=3 of censored fractures . c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

open(unit=11,file='markov.out' ,status='old') 
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do 10 i=1,n 

read(11,*) x(1,i),x(2,i),x(3,i),x(4,i) 

x(1,i) = x(1,i) + 20 

x(3,i) = x(3,i) + 20 

10 continue 

call length(x,n,l,xl,xu) 

call maxmin(l,n,min,max) 

call energy(x,E,n,clsnum,min,max,l) 

nc = E(clsnum+1) 

call stats(E,pcnts,clsnum) 

call create(rand,prand) 

call simulate(x,n,rand,cnts,nc) 

call length(x,n,l,xl,xu) 

call energy(x,E1,n,clsnum,min,max,l) 

call compare(E,E1,en1,flag,clsnum) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c What follows is a series of commands designed to slowly lower the c 

c temperature during our application of the Metropolis Algotithm. c 

c Also we record the energy of the simulated pattern in the last c 

c iteration if it is lower than any previous energy. c 

c The way this is coded annealing is ignored. c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

r = 17.98/18.98 
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20 if (edum.GT.en1) then 

write(18,*) t,pcnts,en1,en2 

call flush(18) 

edum = en1 

end if 

if (m/idiv.EQ.1) then 

m = 1 

if (t.LT.0.5) then 

rinc = rinc*r 

t = t - rinc 

end if 

end if 

print*, t,pcnts,en1,en2 

if (k.LT.2) write(14,*) en1,en2 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c This is the Metropolis Algorithm C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

pents= pents+ 1 

call perturb(rand,prand,cnts,m,n,en1) 

call simulate(x,n,prand,cnts,nc) 

call length(x,n,l,xl,xu) 

call energy(x,E2,n,clsnum,min,max,l) 

call compare(E,E2,en2,flag,clsnum) 
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if (flag.EQ . 1.0 . AND.pcnts . GT.limit) then 

write(18,*) t,pcnts,en1,en2 

call flush(18) 

call solution(n,x,prand(1),prand(2),prand(3),pcnts) 

call stats(E2,pcnts,clsnum) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c The following lines are commented out because there are two ways c 

c to get solutions. The first is to use the Metropolis Algorithm c 

c to find a first solution and then create a new rand vector and c 

c start over. This is what the commented lines do . The second is c 

c to continue as if a solution was not found at all. Doing this we c 

c cannot accept a new solution until after many more iterations inc 

c the Metropolis Algorithm so that the next solution is independ- c 

cent of the previous one . this is why pents must be greater than c 

c l imit before we call the solution routine. c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C call create(rand,prand) 

C call simulate(x,n,rand,cnts,nc) 

C call length(x,n,l,xl,xu) 

C call energy(x,E1,n,clsnum,min,max,l) 

C call compare(E,E1,en1,flag,clsnum) 

k = k + 1 

m = 1 
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t = 19.00 

rinc = 1.0 

pents= 0 

edum = 5000 

else 

p = exp(real((en1-en2)/T)) 

unif = RAND0M(idum) 

if (p.GT.unif.0R.en1.EQ.en2) then 

do i = 1,cnts 

rand(i) = prand(i) 

enddo 

en1 = en2 

end if 

end if 

m = m+1 

if (k .LT.samsize) go to 20 

end 
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A.3 Kolmogorov Smirnov Test 

The following code computes the Kolmogorov Smirnov test for the equality of two 

distributions of data. A good explanation of the test is given by Conover (1980) and by 

Hollander and Wolfe (1973). Critical values for this test are given by Conover (1980). 

The test includes a subroutine SORT2 from a book of examples of numerical recipes by 

Vetterling (1985). SORT2 sorts a two dimensional array. The subroutine TEST performs 

the Kolmogorov Smirnov test by finding the largest difference between the emperical 

distributions of the two data sets. The main driver reads two data sets of lengths m and 

n respectively and then calls the routines necessary to test the hypothesis that the two 

distributions the data represent are equal. This is a two-sided test. 

SUBROUTINE SORT2(N,RA,RB) 

DIMENSION RA(N),RB(N) 

L=N/2+1 

IR=N 

10 CONTINUE 

IF(L.GT.1)THEN 

L=L-1 

RRA=RA(L) 

RRB=RB(L) 

ELSE 

RRA=RA(IR) 



RRB=RB(IR) 

RA(IR)=RA(1) 

RB(IR)=RB(1) 

IR=IR-1 

IF (IR.EQ .1)THEN 

RA(1)=RRA 

RB(1)=RRB 

RETURN 

ENDIF 

ENDIF 

I=L 

J=L+L 

20 IF(J.LE . IR)THEN 

IF(J. LT. IR)THEN 

IF(RA(J).LT .RA(J+1))J=J+1 

ENDIF 

IF(RRA.LT.RA(J))THEN 

RA (I) =RA (J) 

RB(I)=RB(J) 

I=J 

J=J+J 

ELSE 

J=IR+1 
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ENDIF 

GO TO 20 

ENDIF 

RA(I)=RRA 

RB(I)=RRB 

GO TO 10 

END 

subroutine TEST(x,y,m,n,tot,max) 

integer i,m,n,tot,xcnt,ycnt 

real z1(10000000),z2(10000000),x(10000000),y(10000000), 

$ max,s(10000000),f(10000000),g(10000000) 

do i = 1,m 

z1(i)=x(i) 

z2(i)=1. 0 

enddo 

do i = 1,n 

z1(m+i)=y(i) 

z2(m+i) =-1. 0 

enddo 

call SORT2(tot,z1,z2) 

xcnt = 0 



C 

ycnt = 0 

do i =1,tot 

if (z2(i).EQ.1.0) then 

xcnt = xcnt + 1 

else 

ycnt = ycnt + 1 

end if 

f(i) = real(xcnt)/real(m) 

g(i) = real(ycnt)/real(n) 

s(i) = abs(f(i)-g(i)) 

if (s(i).GT .max) max= s(i) 

enddo 

return 

end 

*** main 

integer m,n,tot 

real x,y,max 

*** C 

dimension x(10000000),y(10000000) 

m = 100001 

n = 100001 
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open(unit=11,file='test.x' ,status ='old') 

do i = 1,m 

read(11,*) x(i) 

enddo 

close(unit=11,status='keep') 

open(unit=12,file='test.y' ,status ='old') 

do i = 1,n 

read(12,*) y(i) 

enddo 

close(unit=12,status='keep') 

tot= n + m 

max= 0.0 

call TEST(x,y,m,n,tot,max) 

write(999,*) max 

end 
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B.1 Sampled Data 

APPENDIX B 

DATA 

DATA VALUES 
obs required parameters 

# iterations ngen lmax gwsz 

1 131259 86 l.28736E-02 0.117111 
2 22448 101 l.69371E-03 9.84146E-02 
3 104125 90 l.12279E-02 0.110570 
4 17331 101 8.37228E-03 9.83248E-02 
5 13204 101 4.98033E-03 9.84111E-02 
6 24956 101 2.31331E-03 9.85148E-02 
7 32995 101 l.28499E-02 9.94313E-02 
8 19801 90 l.12652E-02 0.110579 
9 44540 101 7.85158E-03 9.84165E-02 
10 15580 101 6.99394E-03 9.85154E-02 
11 132991 104 l.43033E-02 9.75941E-02 
12 71489 101 6.63592E-03 9.84599E-02 
13 15340 101 9.42496E-03 9.85250E-02 
14 96964 90 l.12974E-02 0.110465 
15 40859 102 l.57606E-02 l.01201E-Ol 
16 25511 101 l.52725E-03 9.82259E-02 
17 10264 101 9.53623E-03 9.84867E-02 
18 11316 101 3.03582E-03 9.82606E-02 
19 10203 101 2.19245E-03 9.82087E-02 
20 97660 101 1.42278E-02 l.00223E-Ol 
21 93761 95 l.19243E-02 0.105466 
22 105646 92 l.34159E-02 0.111375 
23 12904 101 7.55368E-03 9.82602E-02 
24 38999 101 7.76191E-03 9.84288E-02 
25 28505 101 2.23071E-03 9 .84 l 18E-02 
26 27081 101 1.14812E-03 9.84192E-02 
27 43374 101 3.92505E-03 9.83381E-02 
28 67877 101 4.87672E-03 9.82180E-02 
29 53394 101 7.53962E-03 9.82390E-02 
30 83462 100 l .53068E-02 l.01670E-Ol 
31 37667 101 6. 77138E-03 9.84965E-02 
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DATA VALUES CONTINUED 
obs required parameters 

# iterations ngen lmax gwsz 

32 24317 101 9.86650E-03 9.82628E-02 
33 23367 91 1.40550E-02 0.111844 
34 76540 101 3.06710E-03 9.83142E-02 
35 27336 101 9.87238E-03 9.82883E-02 
36 33471 101 3.50080E-03 9.85292E-02 
37 11721 101 4.63842E-03 9.84059E-02 
38 13028 101 7.19305E-03 9.84980E-02 
39 12423 101 5.08360E-03 9.84675E-02 
40 55159 101 9.02065E-03 9.82998E-02 
41 25015 101 5.39893E-03 9.83130E-02 
42 46075 101 9.01157E-03 9.85434E-02 
43 36210 101 4.93131E-03 9.82280E-02 
44 100482 101 6.21190E-03 9.85224E-02 
45 26503 101 8.35376E-04 9.82204E-02 
46 37273 101 3.78901E-03 9.82824E-02 
47 10640 101 9.36311E-03 9.82233E-02 
48 33049 92 l.34244E-02 0.111474 
49 59334 101 6.87519E-03 9.83858E-02 
50 34569 101 l.77815E-03 9.84845E -02 
51 19577 101 5.54681E-05 9.84149E-02 
52 19364 101 9.85733E-03 9.85168E-02 
53 55954 100 l.24660E-02 l.01159E -0l 
54 15944 101 6.32383E-03 9.82649E-02 
55 54256 101 7.46771E-03 9.83064E-02 
56 20405 101 7 .98046E-03 9.83890E-02 
57 49735 104 1.24 787E-02 9.66182E-02 
58 216597 101 2.32578E-03 9.82836E-02 
59 13733 101 8.18514E-03 9.85344E-02 
60 20005 101 6. 77731E-03 9.84240E-02 
61 16430 101 6.15324E-03 9.85013E-02 
62 32907 101 2.89702E-03 9.83157E -02 
63 41222 101 2.6524 7E-03 9.83545E-02 
64 87993 85 l.51219E-02 0.120508 
65 24119 101 2.90186E -04 9.84594E-02 
66 64560 90 1.12212E-02 0.110657 
67 52652 90 l.12800E-02 0.110498 
68 63293 101 3.28148E-03 9.85211E-02 
69 27962 101 3.99335E-03 9.84768E-02 
70 146719 90 1.12071E-02 0.110639 
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DATA VALUES CONTINUED 
obs required parameters 

# iterations ngen lmax gwsz 

71 19876 101 5.13900E-04 9.83643E-02 
72 27970 101 4.84029E-03 9.84825E-02 
73 35644 101 l.20116E-03 9.85356E-02 
74 26525 101 1. 763 7 5E-03 9.84756E-02 
75 21072 101 8.89209E-03 9.83307E-02 
76 11483 101 3.83527E-03 9.84937E-02 
77 20204 101 2.90214E-03 9.82420E-02 
78 43199 101 3.42522E-04 9.84086E-02 
79 57568 101 9 .064 71E-03 9.82422E-02 
80 48496 101 4.31197E-03 9.84145E-02 
81 10716 101 6.34428E-03 9.83766E-02 
82 10312 92 l.39805E-02 0.109835 
83 47110 101 6.57295E-04 9.85187E-02 
84 88872 101 6.52332E-03 9.83291E-02 
85 30012 101 l.44113E-02 1.00280E-01 
86 81054 101 9.27806E-03 9.84869E-02 
87 14227 101 8.86546E-03 9.84889E-02 
88 15101 101 3.43804E-03 9.83184E-02 
89 15078 90 l.11910E-02 0.110703 
90 20726 101 2.80284E-03 9.83711E-02 
91 205064 101 8.90699E-03 9.83328E-02 
92 10036 101 3.69026E-03 9.83785E-02 
93 10119 101 2.12618E-03 9.82579E-02 
94 18330 87 l.53008E-02 0.117522 
95 41612 101 l.39713E-03 9.85072E-02 
96 12711 100 l.24638E-02 l.01020E-01 
97 41915 102 l.57533E-02 l.01012E-0l 
98 11496 100 l.54658E-02 1.0296 lE-0 1 
99 10004 101 8.89243E-03 9.85033E-02 
100 27978 101 5.38666E-03 9.82781E-02 



B.2 Chi-Square Goodness-of-Fit Results 

CHI-SQUARE RESULTS 
obs Chi-Square 
# Statistics p -value 
1 0.625326485109094 0.00031048598939689 
2 0.492084726867336 0.000125516248714271 
3 0.658751393534002 0.000377362085777758 
4 0.485987418378723 0.000119699106176212 
5 0.485987418378723 0.000119699106176212 
6 0.664186176142698 0.000389132938459921 
7 1.2436 7892976589 0.00380866424230806 
8 0.563311833094442 0.000209543310494334 
9 0.492084726867336 0.000125516248714271 
10 0.664186176142698 0.000389132938459921 
11 l .32820512820513 0.00479345792811754 
12 0.492084726867336 0.000125516248714271 
13 0.664186176142698 0.000389132938459921 
14 0.65321707278229 0.000365639228936025 
15 0.654264214046823 0.000367837051941046 
16 0.629925147316452 0.00031913924545982 
17 0.492084726867336 0.000125516248714271 
18 0.701831501831502 0.000477977091310066 
19 0.629925147316452 0.00031913924545982 
20 0. 9 7 4839146360885 0.00159760066510796 
21 0.828685300207039 0.000883665410361491 
22 l.01276556776557 0.00183356986019414 
23 0.554688644688645 0.000197678352252847 
24 0.492084 726867336 0.000125516248714271 
25 0.485987418378723 0.000119699106176212 
26 0.487799012581621 0.000121406621035923 
27 0.404047619047619 5.90809950045466e-05 
28 0.629925147316452 0.00031913924545982 
29 0.482782290173595 0.000116720818443436 
30 0.97 4041248606466 0.0015928762872764 
31 0.492084726867336 0.000125516248714271 
32 0.400842490842491 5. 730144 71431891e-05 
33 l.17257525083612 0.00309451500817984 
34 0.404047619047619 5 .90809950045466e-05 
35 0 .4008424908424 91 5. 730144 71431891e-05 
36 0.664186176142698 0.000389132938459921 
37 0.485987418378723 0.000119699106176212 
38 0.492084 726867336 0.000125516248714271 



CHI-SQUARE RESULTS CONTINUED 
obs Chi-Square 
# Statistics p -value 
39 0.492084726867336 0.000125516248714271 
40 0.480970695970696 0.000115061384607836 
41 0.485987418378723 0.000119699106176212 
42 0.664186176142698 0.000389132938459921 
43 0.554688644688645 0.000197678352252847 
44 0.664186176142698 0.000389132938459921 
45 0.629925147316452 0.00031913924545982 
46 0.400842490842491 5. 730144 71431891e-05 
47 0.629925147316452 0.00031913924545982 
48 0.855677655677656 0.000993915025075553 
49 0.485987418378723 0.000119699106176212 
50 0.492084726867336 0.000125516248714271 
51 0.492084726867336 0.000125516248714271 
52 0.664186176142698 0.000389132938459921 
53 0.730028666985189 0.000553346571761239 
54 0.400842490842491 5.73014471431891e-05 
55 0.480970695970696 0.000115061384607836 
56 0.485987418378723 0.000119699106176212 
57 1.10636645962733 0.00251708594174349 
58 0.400842490842491 5. 730144 71431891e-05 
59 0.664186176142698 0.000389132938459921 
60 0.485987418378723 0.000119699106176212 
61 0.492084726867336 0.000125516248714271 
62 0.404047619047619 5. 90809950045466e-05 
63 0.485987418378723 0.000119699106176212 
64 0.973172479694219 0.00158774332675998 
65 0.492084726867336 0.000125516248714271 
66 0.658751393534002 0.000377362085777758 
67 0.577502787068004 0.000230172500490363 
68 0.664186176142698 0.000389132938459921 
69 0.492084726867336 0.000125516248714271 
70 0.735273132664437 0.000568241273288539 
71 0.485987418378723 0.000119699106176212 
72 0.492084726867336 0.000125516248714271 
73 0.664186176142698 0.000389132938459921 
74 0.492084726867336 0.000125516248714271 
75 0.404047619047619 5.90809950045466e-05 
76 0.664186176142698 0.000389132938459921 
77 0.554688644688645 0.000197678352252847 
78 0.485987418378723 0.000119699106176212 
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CHI-SQUARE RESULTS CONTINUED 
obs Chi-Square 
# Statistics p -value 
79 0.862380952380952 0.00102272277104632 
80 0.492084726867336 0.000125516248714271 
81 0.485987 418378723 0.000119699106176212 
82 l.02501194457716 0.00191464284915403 
83 0.664186176142698 0.000389132938459921 
84 0.485987418378723 0.000119699106176212 
85 0.579900461856984 0.000233796774607755 
86 0.492084726867336 0.000125516248714271 
87 0.492084726867336 0.000125516248714271 
88 0.404047619047619 5.90809950045466e-05 
89 l.10579710144928 0.00251246964781495 
90 0.485987 418378723 0.000119699106176212 
91 0.485987418378723 0.000119699106176212 
92 0.485987 418378723 0.000119699106176212 
93 0.400842490842491 5. 730144 71431891e-05 
94 l.28080267558528 0.00422243135664749 
95 0.664186176142698 0.000389132938459921 
96 0.939705367096671 0.00139863742304815 
97 1.39899108138239 0.0057391488030792 
98 0.58989409141583 0.000249345860405259 
99 0.664186176142698 0.000389132938459921 
100 0.400842490842491 5. 730144 71431891e-05 
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