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ABSTRACT

Modeling the Spread of Alfalfa Stem Nematodes:

Insights into their Dynamics and Control

by

Scott G. Jordan, Doctor of Philosophy

Utah State University, 2018

Major Professor: Dr. Luis Gordillo, Ph.D.
Department: Mathematics and Statistics

Alfalfa is a major cash crop in the western United States, where fields that are

infested with the alfalfa stem nematode (Ditylenchus dipsaci) can be found. With no

nematicides available to control alfalfa stem nematode spread, growers can use nematode

resistant varieties of alfalfa to manage nematode populations in a field. A determinis-

tic, discrete-time, host-parasite model is presented that describes the spread of alfalfa

stem nematodes on resistant hosts that was fit to experimental data obtained in Weber

County, Utah. Numerical results obtained from simulations with the model are used to

compare how varying levels of resistance can affect harvest yield.

Resistant varieties can also affect the invasion speeds of epidemics in crops. A con-

tinuous time, spatial model is presented that describes how these resistant varieties affect

invasion speeds in general crop systems. Speeds of traveling wave fronts are determined

for simple epidemics in crops that contain a mixture of resistant and non-resistant hosts.

For the model, the wave speeds are found to be proportional to the fraction of resistant

individuals. The conclusions are reached through the application of the linear conjecture

and verified by comparing the results with numerical solutions of the non-linear model.

The speed of invasion for the alfalfa stem nematode can be determined through

the moment generating function associated with the contact distribution of the disper-

sal process. We present a spatial model for the spread of alfalfa stem nematodes that

uses a Gaussian as the contact distribution, parameterized by experimental data. With
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this we proceed to approximate the speed of nematode invasive fronts in absence of

advection, i.e. without nematode transport through flood irrigation. The parameter-

ized probability kernel is then used to calculate front speeds when resistant varieties of

alfalfa are introduced. We found that, unsurprisingly, invasive speeds are relatively low

and cannot support the rapid dispersal of the disease among fields as seen in practice.

However, this result leads to conjecture that changing current irrigation practices, from

flood to sprinkle irrigation, could effectively contribute to control the spread of alfalfa

stem nematodes.

Resistant varieties of alfalfa can be used to effectively control the spread of the al-

falfa stem nematode. In this work we have shown that using resistant varieties of alfalfa

can increase yield up to 83%, they can slow down invasion speeds of nematodes, and

switching from flood to sprinkler irrigation could effectively contribute to the control of

the alfalfa stem nematode.

( 71 pages)
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PUBLIC ABSTRACT

Modeling the Spread of Alfalfa Stem Nematodes:

Insights into their Dynamics and Control

Scott G. Jordan

Alfalfa is a major cash crop in the western United States, where fields that are

infested with the alfalfa stem nematode (Ditylenchus dipsaci) can be found. With no

nematicides available to control alfalfa stem nematode spread, growers can use nematode

resistant varieties of alfalfa to manage nematode populations in a field. A determinis-

tic, discrete-time, host-parasite model is presented that describes the spread of alfalfa

stem nematodes on resistant hosts that was fit to experimental data obtained in Weber

County, Utah. Numerical results obtained from simulations with the model are used to

compare how varying levels of resistance can affect harvest yield.

Resistant varieties can also affect the invasion speeds of epidemics in crops. A con-

tinuous time, spatial model is presented that describes how these resistant varieties affect

invasion speeds in general crop systems. Speeds of traveling wave fronts are determined

for simple epidemics in crops that contain a mixture of resistant and non-resistant hosts.

For the model, it was found that the wave speeds will slow down as highly nematode

resistant varieties of alfalfa are used.

The speed of invasion for the alfalfa stem nematode can be determined by using

a mathematical relationship that is know as the contact distribution. We present a

spatial model for the spread of alfalfa stem nematodes that uses a Gaussian distribu-

tion as the contact distribution of the alfalfa stem nematodes, which was determined

by experimental data. Using this contact distribution we are able to approximate the

speed of nematode invasive fronts in absence of advection, i.e. without nematode trans-

port through flood irrigation. The contact distribution is then used to calculate front

speeds when resistant varieties of alfalfa are introduced. We found that, unsurprisingly,

invasive speeds are relatively low and cannot support the rapid dispersal of the disease
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among fields as seen in practice. However, this result leads to conjecture that changing

current irrigation practices, from flood to sprinkle irrigation, could effectively contribute

to control the spread of alfalfa stem nematodes.

Resistant varieties of alfalfa can be used to effectively control the spread of the al-

falfa stem nematode. In this work we have shown that using resistant varieties of alfalfa

can increase yield up to 83%, they can slow down invasion speeds of nematodes, and

switching from flood to sprinkler irrigation could effectively contribute to the control of

the alfalfa stem nematode.
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Chapter 1

INTRODUCTION

1.1 Importance of alfalfa

In the history of alfalfa, western states have played an important part that has

lead to its current status as the nations’ 4th largest commodity [Putnam et al. 2000,

Sumner and Rosen 2011]. Alfalfa has become a critical cash crop in these western states.

Many farmers and ranchers depend on alfalfa as a mainstay crop because it has a high

biomass production, which makes it a great animal feed. As the demand for alfalfa

increases, so does the need for farmers to produce quality alfalfa.

While alfalfa is often characterized as being of “low value”, its true economic impact

is much greater than just its gross receipts. Alfalfa is the beginning of a complex food

chain, and affects many industries from dairying to wool and beef production. To an

end, alfalfa plays an important role in the creation of milk, cheese, ice cream, honey,

leather, etc. The many end-uses are worth billions of dollars more than the value of

the crop itself [Putnam et al. 2001]. Alfalfa is the humble beginning of all these great

things that people enjoy.

There are many benefits of planting alfalfa. For example, it creates a year-round

canopy that helps protect the soil from erosion [Putnam et al. 2001]. It also leaves

behind nitrogen in the soil which improves the soil structure for the crop that follows

[Putnam et al. 2001]. The primary use of alfalfa is in dairy production [Putnam et al. 2001].

However, alfalfa is also used extensively as feed for horses, sheep, and other animals.

Without alfalfa, many farms and ranches would fail [Putnam et al. 2001]. That failure

would be seen in grocery stores and food chains all over the United States.
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1.2 General nematode biology

Alfalfa is attacked by a pest known as the alfalfa stem nematode, Ditylenchus

dipsaci. It is a microscopic, colorless, non-segmented roundworm that attacks and

reproduces inside alfalfa [Evans et al. 2008]. In general, nematodes are pseudocoelo-

mate, unsegmented worm-like animals, commonly described as filiform or thread-like, a

characteristic reflected by the taxon name nema (Greek, nema=thread) and its nom-

inative plural nemata [Decraemer and Hunt 2006]. Nematodes are the most numerous

Metazoa, a zoological group comprising of multicellular, eukaryotic organisms, on earth

[Decraemer and Hunt 2006]. They are either free living or parasites of plants. Although

they occur in almost every habitat, they are essentially aquatic animals. They depend on

moisture for their movement. Soil moisture, relative humidity, and other environmental

factors directly affect their survival. In adverse environmental conditions, such as ex-

treme heat or cold, alfalfa stem nematodes can survive in an anhydrobiotic state, which

is characterized by controlling how the body loses water [Decraemer and Hunt 2006].

Even though nematodes can have a variety of lifestyles they have a relatively conserved

body plan. The body consists of an external cylinder (the body wall) and an internal

cylinder (the digestive system) separated by a pseudocoelomic cavity filled with fluid

under pressure. The internal cylinder also contains a number of cells and other organs.

About 99% of known nematodes have a long, thin cylindrical body shape, which is round

in cross-sections and tapered towards the ends [Decraemer and Hunt 2006]. The body

length of plant-parasitic nematodes is usually smaller than 1 mm in length.

Life cycles of nematodes typically include an egg stage, four juvenile stages, and

lastly the adult stage. The egg is usually cylindrical with a chorion/eggshell of varying

thickness. Most nematodes moult four times before becoming an adult

[Decraemer and Hunt 2006]. In some groups of nematodes one juvenile stage is more

resistant to environmental stress than the others. This juvenile stage is specialized for

dispersal to infect new host plants or for surviving adverse environmental conditions.

This stage is typically called the infectious stage.

1.3 Alfalfa stem nematode biology

Ditylenchus dipsaci is commonly known as the stem and bulb nematode. It has

one of the widest impacts on agriculture. The maxim ’where a plant is able to live,

a nematode is able to attack it’ describes the problem very well. The host range of



3

Ditylenchus dipsaci includes more than 300 plant species. More than 30 physiological

races of the nematode are known [Duncan and Moens 2006]. Many of those races are

host-specific and others are widely polyphagous, able to feed on various kinds of food.

It is a serious pest of clover, pea, celery, garlic, onion, strawberry, alfalfa, and many

others. Races of Ditylenchus dipsaci are named after the crop from which they were

identified or after a major host [Duncan and Moens 2006].

The alfalfa stem nematode, (ASN), is a race of Ditylenchus dipsaci that is a plant

parasite of alfalfa that can dramatically reduce plant stand and forage yields, raising

considerable concern in alfalfa producers. The nematodes feed in the parenchymatous

tissues of stems, where all life stages occur [Duncan and Moens 2006]. They can also be

found in foliage, inflorescences, buds, rhizomes, and stolons. Symptoms of stem nema-

tode parasitism in alfalfa are stunted and swollen stems, stem necrosis, white flagging of

leaves and stems, crown rot, and stand decline [Evans et al. 2008, Gray and Franc 1993].

These symptoms are exacerbated by low temperatures [Williams-Woodward and Gray 1999].

The effects of ASN infested alfalfa crops result in a lower yield at harvest and conse-

quently induce economic losses [Nicol et. al. 2011].

As a parasite of above-ground parts of a plant, ASN is not hindered from changes

in ambient weather conditions. As a result, ASN is highly resistant to desiccation and

is adapted for survival. In the absence of suitable hosts or during harsh environmental

conditions nematodes in the soil undergo a physical transformation that allows them

to survive in a dormant state called anhydrobiosis [Evans et al. 2008]. Anhydrobiosis

is when the nematode enters an almost completely desiccated state which stabilizes its

cellular structures and protects it from harsh environmental factors, such as extreme

heat or cold. Anhydrobiosis can allow ASNs to stay dormant in the soil for long periods

of time (years) waiting for the right host plant to appear. As a result, it may take several

years of crop rotation to ensure that it is safe enough to plant alfalfa again without the

risk of a rapid rise of a nematode outbreak.

It is in the spring, with optimal temperatures around 5◦C-18◦C, that ASNs are

most active [Norton 1978]. It is during this time that they begin to leave infested alfalfa

plants in search for nematode-free hosts. It is the fourth-stage juvenile (J4) that is

the primary survival and infective stage [Duncan and Moens 2006]. When conditions

are prime, ASN migrate to germinating host plants and invade hypocotyls or petioles,



4

entering though the stomata or penetrating the epidermis. Once the J4 enters a new host

it proceeds to moult into an adult. Reproduction and population growth can occur very

rapidly. A single female can lay 200-500 eggs in its lifetime [Duncan and Moens 2006].

The offspring quickly goes through the four juvenile stages until they reach adulthood

in about 19-23 days [Evans et al. 2008]. Eventually, the J4 stage will leave the stem and

go back into the soil to repeat the cycle [Evans et al. 2008, Norton 1978]. This rapid

population growth can result in severe crop damage even with an initial low density

population. As the season progresses, however, reproduction slows down as a result of

the rising temperatures and lower soil moisture [Williams-Woodward and Gray 1999].

As previously discussed, infestation can cause alfalfa plants to decay. As they decay

this directly affects the plants ability to produce high yeilding and quality hay during the

field season (summer). Similarly, as winter approaches and temperatures decrease, the

nematodes become less active [Williams-Woodward and Gray 1999]. Masses of anhydro-

biotic ASN can overwinter in dried plant debris in the field [Duncan and Moens 2006].

Plants damaged from ASN may become less likely to survive winter dormancy and may

not reach their yield potential the following field season. This is because once a plant

becomes infected, it stays infected.

1.4 Methods of control

In the past, chemical pesticides have been used as a control method for nematodes.

Some examples are Carbofuran and Methyl Bromide. These pesticides have been deemed

harmful by the EPA and have since been removed from the approved pesticide list. With

the removal it have become vital that strategies are found to control ASN populations

within a field to help prevent unnecessary economic loss. The main practices used to

control the effects of ASNs are crop rotation and the use of nematode resistant varieties

of alfalfa.

Crop rotation is defined as the replacement of the current crop with a different

crop. As for the case of alfalfa growers with an ASN infestation, crop rotation is when

the alfalfa is replaced by a non-host of the ASN, such as barley, wheat, sorghum, or

corn [Evans et al. 2008]. Without a host crop for reproduction the nematode popula-

tion in the soil will decrease over time [Evans et al. 2008, Gray and Franc 1993]. After

a number of years, usually determined by the grower, alfalfa is planted again with
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the hope that the nematode population in the soil has decreased enough allowing al-

falfa to be planted again without a sudden resurgence of nematodes. Crop rotation

works well for ASN because they are specific to their host. ASN attacks and repro-

duces only inside alfalfa (Medicago sativa) and sainfoin (Onobrychis viciifolia) plants

[Evans et al. 2008]. Typically, a 2-3 year crop rotation is sufficient to suppress the ASN

population [Gray and Franc 1993, Jordan et al. 2017]. For some farmers, crop rotation

may be burdensome because it may require additional equipment for another crop type,

another crop may not be as profitable as alfalfa, or the environmental impact of crop

rotation may not be desirable [Brankatschk and Finkbeiner 2015].

Some questions that arise are, what can farmers do to increase the time between

crop rotations, and what can they do to minimize yield loss due to ASN infestation? The

use of resistant varieties of alfalfa can help answer these questions. Resistant varieties

of alfalfa are designed to affect how nematodes mature and reproduce within the plant

[Schomaker and Been 2006], effectively slowing down the ASN infestation throughout a

field. Resistance is defined as a plants ability to withstand, oppose, lessen, or overcome

the attack of a pathogen [Rhode 1972]. A plant resistant to nematodes resists attack or

exhibits little damage and reduces the nematode population [Giebel 1974]. There are

four main types of resistance that can be utilized. (i) The plant may produce toxins that

are harmful to the nematodes. (ii) The plant may fail to provide adequate conditions

for the nematode to survive. (iii) Plants can secret chemicals that will repel nematodes.

(iv) Plants hypersensitivity will cause the nematodes to die [Giebel 1974]. Hypersensi-

tivity is when the cells around the nematodes undergo necrosis, thereby trapping the

nematodes and preventing further infestation and reproduction. The exact plant defense

mechanisms used by alfalfa plants against ASN is not clear. Given the high genetic vari-

ability of alfalfa it can be challenging to determine the specific mechanism, and with

this variability resistance is evaluated at the plant population level. It is also possible

that different varieties may have different defense mechanisms against ASN. What is

clear is that varieties that have been classified as resistant reduce the negative effects

of an ASN infestation. Thus, allowing farmers to grow alfalfa for longer periods of time

between crop rotations. Also, resistant varieties of alfalfa can be more tolerant to ASN.

In other words, resistant varieties will not be stunted like non-resistant varieties, which

allows for greater yields at harvest.
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In Chapter 2, a deterministic, discrete-time model was used to explore how different

levels of resistance to nematodes in alfalfa plants affects the yield produced at harvest. To

do this, an extension of the model used in [Jordan et al. 2017] is used along with data

obtained from experiments conducted in Weber County, Utah. The model describes

harvest yield based off of the number of plants and the approximate weight of each

plant, which depends on nematode infestation and the resistance rating. A comparison

is presented to show how the varying levels of nematode resistance will affect the harvest

yield of the alfalfa crop.

After determining how the resistant varieties of alfalfa affected yield, I considered

how these varieties affect the spread of the nematodes throughout a field. In order to an-

swer that question we needed to explore a new model that takes into account space and

time. Spatial continuous models for disease spread, i.e. models that assume individuals

continuously distributed in space, have been widely used as a realistic approach to under-

standing how crop disease dispersal progresses, [Madden et al. 2011]. One characteristic

that makes this approach interesting is that it describes the wave-like expanding travel-

ing fronts of diseases moving at speeds that can be determined, see [Madden et al. 2011]

and [Ruan 2007] for extensive reviews.

In Chapter 3, the goal was to determine how the speed of propagation of a simple

epidemic in crops was affected by the introduction of resistant individuals? First, we need

to clarify that what characterizes a “resistant individual” is the set of specific artificially

modified traits that allow the individual to fight the invasion of clearly identified micro

or macro parasites. That is to say, the attributes of a resistant individual are specific to

each crop-pest system under consideration. Although the model described in Chapter 3

does not make reference to a particular crop system, we stress that it was motivated by

the attributes of nematode-resistant alfalfa varieties designed to control stem nematodes

[Jordan et al. 2017]. In that case, resistant individuals are not immune to the attacks

of nematodes but are designed to diminish the damage on the hosts so that farmers can

still recover a significant fraction of normal yield from each plant. As a consequence,

infected resistant hosts have a decreased rather than zero transmission rate.

We examine a one-dimensional spatial model for simple epidemics (SI), as defined
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in [Mollison 1972], with the addition of two classes: resistant-susceptible and resistant-

infected individuals. The model uses a generalization of the mass action term, intro-

duced by D.G. Kendall in [Kendall 1957], where the factor corresponding to the in-

fectives is replaced by a spatial average of infectives. The speeds of traveling wave

solutions for the linearized model can be determined in relation to those in the sys-

tem that does not include resistant individuals. Then the so-called “linear conjecture”

[van den Bosch and Metz and Diekmann 1990, Sattenspiel 2009], which has been used

for instance to succesfully approximate the speed of disease fronts for fungal crop diseases

in two spatial dimensions [Metz and van den Bosch 1995], is used to conclude that the

speeds found are a good approximation to those in the non-linear model. We validate

this approximation by comparing the results with the speeds obtained from numerical

computations of the non-linear system.

Chapter 4 outlines the details of an experiment designed to approximate the contact

distribution of the ASN, which to the best knowledge of the authors has not been

estimated before. In the experiment alfalfa stem nematodes were placed at varying

distances from nematode-free alfalfa plants. After six weeks the alfalfa plants were

inspected for nematode presence. The plant counts at each distance were then used

for the fitting of a Gaussian distribution. This approximated contact distribution is

then used in the model from Chapter 3 to estimate invasion speeds for the ASN when a

mixture with resistant varieties of alfalfa is used.
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Chapter 2

YIELD TO THE RESISTANCE: THE IMPACT OF NEMATODE

RESISTANT VARIETIES ON ALFALFA YIELD

The content of this chapter has been published in Natural Resource Modeling.

Jordan S., “Yield to the resistance: The impact of nematode resistant varieties on

alfalfa yield.” Natural Resource Modeling. 2017;00:e12150. https://doi.org/10.1111/nrm.12150

2.1 Introduction

The alfalfa stem nematodes (ASN), Ditylenchus dipsaci, is a major threat to alfalfa

production. It is a microscopic roundworm that infests alfalfa. Once infested, the alfalfa

plant is stunted and as a result harvest yield declines, which in turn causes economic

loss. This is a problem since alfalfa is a major cash crop of the western United States

and as such many aspects of our lives depend on its production (e.g., dairy production,

feed for ranches, honey production, etc.)

It is vital that strategies are found to control ASN populations within a field to help

prevent unnecessary economic loss. Since there are no nematicides currently available to

use, the main practices used to control the effects of ASNs are crop rotation and the use

of nematode resistant varieties of alfalfa. Crop rotation is defined as the replacement of

the current crop with a different crop. As for the case of alfalfa growers with an ASN

infestation, crop rotation is when the alfalfa is replaced by a non-host of the ASN. Some

examples of non-host crops are wheat and barley. Typically, a 2-3 year crop rotation

is sufficient to suppress the ASN population [Gray and Franc 1993, Jordan et al. 2017].

The downside of crop rotation is that farmers will have to grow a crop that does not

profit them as much as alfalfa would. Some questions that arise are, what can farmers

do to increase the time between crop rotations, and what can they do to minimize yield

loss due to ASN infestation? The use of resistant varieties of alfalfa can help answer
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these questions. Resistant varieties of alfalfa are designed to affect how nematodes

mature and reproduce within the plant [Schomaker and Been 2006], effectively slowing

down the ASN infestation throughout a field. Thus, allowing farmers to grow alfalfa

for longer periods of time between crop rotations. Also, resistant varieties of alfalfa can

be more tolerant to ASN. In other words, resistant varieties will not be stunted like

non-resistant varieties, which allows for greater yields at harvest.

Seinhorst (1967) was one of the first people to come up with a model that would

show the relationship between nematode density and plant growth. Since then many

authors have used adaptations of Seinhorst’s equations to model nematode population

growth within a field [van den Berg and Rossing 2005, Ehwaeti et al. 2000].

In this paper, a deterministic, discrete-time model is used to explore how different

levels of resistance to nematodes in alfalfa plants affects the yield produced at harvest. To

do this, an extension of the model used in [Jordan et al. 2017] is used along with data

obtained from experiments conducted in Weber County, Utah. The model describes

harvest yield based off of the number of plants and the approximate weight of each

plant, which depends on nematode infestation and the resistance rating. A comparison

is presented to show how the varying levels of nematode resistance will affect the harvest

yield of the alfalfa crop.

2.2 Resistant Varieties of Alfalfa

Resistance is defined as a plants ability to withstand, oppose, lessen, or overcome

the attack of a pathogen [Rhode 1972]. A plant resistant to nematodes resists attack or

exhibits little damage and reduces the nematode population [Giebel 1974]. There are

four main types of resistance that can be utilized. (i) The plant may produce toxins that

are harmful to the nematodes. (ii) The plant may fail to provide adequate conditions for

the nematode to survive. (iii) Plants can secret chemicals that will repel nematodes. (iv)

Plants hypersensitivity will cause the nematodes to die [Giebel 1974]. Hypersensitivity is

when the cells around the nematodes undergo necrosis, thereby trapping the nematodes

and preventing further infestation and reproduction.

In alfalfa, resistance is expressed as necrosis, reduced gall formation, and reduced

reproduction of nematodes [Rhode 1972]. Resistant varieties of alfalfa will help to slow
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down the spread of a nematode population throughout a field. They will also help to

lessen the economic loss incurred because of the infestation.

Breeding programs have been developed to produce resistant varieties of alfalfa.

What a breeding program does to produce a new variety is take a current one that has

desirable characteristics, like pest resistance, then it is cross pollenated with a variety

that does not have those same characteristics. The result is a new variety that has char-

acteristics from both parent plants. These programs came into existance after the first

nematode resistant gene was cloned, (Hs pro1 from wild beet) [Gheysen and Jones 2006].

Plant breeding does not guarantee that all seeds produced will be resistant to nematodes.

This is due to the genetic diversity of the alfalfa plant. To account for this, each variety

produced is given a resistant rating. These resistance ratings correspond to a percentage

range that describes the approximate number of seeds contained in the bag that will be

resistant to nematodes. Table 2.1 shows the different resistance ratings according to

the National Alfalfa and Forage Alliance 2016 Alfalfa Varieties Ratings Leaflet. For

example, if a bag of alfalfa seeds is purchased and it is classified as having moderate

resistance, then approximately 15 − 30% of the seeds will be resistant to nematodes,

while the remaining percentage will not be.

Resistance Ratings:
Percentage of resistant seed used in field

Percentage Resistance Class

0-5% Susceptible

6-14% Low Resistance

15-30% Moderate Resistance

31-50% Resistance

>50% High Resistance

Table 2.1: Resistance ratings adapted from National Alfalfa and Forage Alliance 2016
Alfalfa Variety Ratings Leaflet. The percentage column represents the approximate
percentage of seeds in a bag that will be resistant to nematodes for each resistance

class.

2.3 The Model

2.3.1 Model Formulation

Changes in the model studied in [Jordan et al. 2017] have been made to account for

the use of resistant varieties and to calculate yield at harvest. While resistant varieties

of alfalfa are used it is necessary to keep track of both resistant and non-resistant alfalfa



11

plants. Let St and It be the number of non-resistant healthy and infested alfalfa plants at

time t = 0, 1, 2, ..., where the time unit within a year is chosen to be equal to one month

(1 unit of time = one month), and corresponds to the interval between harvests during

the summer. Let Ŝt and Ît be the number of resistant healthy and infested plants at

time t. Also, let Wt be the average density of nematodes in the rhizosphere surrounding

one plants’ roots at time t.

In the model, the density of nematodes in the rhizosphere of one plant changes due

to either nematodes immigrating from other hosts or because they die with average rate

µW . Considering the total area, A, of the field to be relatively small, it can be assumed

that the average nematode contribution from each infested plant to the rhizosphere

of any other one (healthy or infested), C, is proportional to the number of surviving

nematodes coming out of the infested plant, c. This allows the approximation C =

c/(total number of plants in the area A), which is justified in part from the observation

that, in addition to nematode dispersal through flood irrigation, the tools employed in

harvesting for cutting the plants are also responsible for the nematode transport over

relatively large distances [Evans et al. 2008]. Thus, the total number of new nematodes

surrounding a host’s root becomes C×(number of infested hosts), with the number of

infested hosts given by It−1 × A. The model uses a relative value of A = 1, which

corresponds to the 1 acre.

Therefore, the density of nematodes in one host’s rhizosphere at time t can then

be described by

Wt = (1− µW )Wt−1 + CIt−1 + βCÎt−1, (2.1)

where µW is the death rate of nematodes and β represents a reduction in the nematode

contribution from resistant infested plants. Since β is a reduction in the nematode

contribution it follows that 0 ≤ β ≤ 1. Notice that nematode contribution comes from

both resistant and non-resistant plants. The contribution from a resistant plant will be

less than that of a non-resistant plant.

Next, the density of non-resistant healthy and infested plants can be approximated

with the equations,

St = St−1e
−aWt−1 , (2.2)

It = (1− µI)It−1 +
(
1− e−aWt−1

)
St−1. (2.3)
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To approximate the density of resistant healthy and infested plants the following equa-

tions are used.

Ŝt = Ŝt−1e
−aWt−1 , (2.4)

Ît = (1− µÎ)Ît−1 +
(
1− e−aWt−1

)
Ŝt−1, (2.5)

where e−aWt−1 represents the probability that a healthy host is not reached by any

nematode in its rhizosphere, a is a parameter measuring the nematode efficiency in

finding the host’s root, µI is the death rate of non-resistant infested plants, and µÎ is

the death rate of resistant infested plants. Notice the equations (2)− (5) all depend Wt.

This provides a connection between resistant and non-resistant plants.

The equations have in addition to the trivial stable equilibrium, (S∗, I∗, Ŝ∗, Î∗,W ∗) =

(0, 0, 0, 0, 0), an unstable one at (S∗, I∗, Ŝ∗, Î∗,W ∗) = (S0, 0, Ŝ0, 0, 0). This simply tells

us that nematode infestation will stop only when all healthy hosts are depleted and

eventually die. If mortality of nematode-infested hosts is neglected then the infestation

will stop only when all plants are contaminated.

Stability of the point (S∗, I∗, Ŝ∗, Î∗,W ∗) = (S0, 0, Ŝ0, 0, 0) can be determined by

looking at the Jacobian Matrix for this system of five equations. After evaluating the

Jacobian at the equilibrium point it can be seen that not all conditions of the Jury Test

are met [Edelstein-Keshet 2005]. Thus, this equilibrium point is unstable.

During computations the model has the following assumptions: mortality of nematode-

infested hosts will be neglected, new nematodes will not be introduced into the field by

means of runoff irrigation from other infested fields or from man’s activities, and the

initial nematode population comes from the use of infested seeds.

2.3.1.1 Calculating Yield

Yield is calculated as a dry weight of the alfalfa that was cut over a certain area.

It is generally expressed in tons per acre. The model calculates the yield at harvest by

multiplying the number of plants in each category (non-resistant healthy, non-resistant

infested, resistant healthy, and resistant infested) by an average weight per plant. De-

pending on the category the weight of the plant may be reduced. For example, the weight
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of an infested alfalfa plant will be less than a non-infested plant due to stem stunting

caused by nematodes. The degree of stem stunting depends on how long the plant has

been infested by nematodes. In other words, the longer the plant has been infested the

less it will weigh at harvest. A nematode resistant alfalfa plant will not experience the

same degree of stem stunting as a non-resistant plant. This is due to resistant varieties

being tolerant to the nematodes. Harvest yield is then found by adding together the

yields from each category. A total yield for the year can then be found by summing the

yield totals for all the harvests in the year.

2.3.2 Model Fitting

2.3.2.1 Experimental Data

Data was provided by a Utah State University Extension agent in Weber County,

Utah and was obtained by an experiment where 10 varieties of alfalfa were planted in

a known nematode infested field and the harvest yield was tracked over 4 years. The

objectives of the experiment were to:

i) determine the level of stem nematode resistance of the nine alfalfa varieties that are

marketed as being highly resistant to stem nematodes,

ii) evaluate the economic advantage of growing an alfalfa variety that exhibits high re-

sistance to alfalfa stem nematodes when growing in a field that has stem nematodes,

and

iii) determine how the level of stem nematodes effects stand longevity.

The different varieties used in the experiment are Ranger, DKA 43-22 RR, Pro-

ducers Choice PGI424, Producers Choice PGI557, WL 363, Americas Alfalfa 445NT,

Croplan Denali 4.10 RR, Eureka 4R200 RR, Pioneer 54V09, and Pioneer 54Q25. Ranger

is in the susceptible class of resistance of alfalfa while all the other varieties are marketed

as having high resistance towards ASN. Data was collected for the growing seasons in

2012, 2013, 2014 and 2015.

Plots containing six replications of ten alfalfa varieties were established in a field

of newly planted alfalfa in the spring of 2012. The planting date was March 27. The

field was heavily infested with stem nematode two years previous. Due to heavy weed
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Cut

Variety 1 2 3 4 5 6 7 8 9 10 11

Ranger 2.28 1.87 3.01 1.29 0.83 2.20 1.24 0.72 2.41 2.24 1.62

DKA 43-22 2.29 1.93 3.17 1.72 1.09 2.61 1.66 1.01 2.68 2.33 1.83

PGI 424 2.29 1.97 3.30 1.65 1.23 2.48 1.75 1.25 2.72 2.34 1.85

PGI 557 2.28 2.2 3.36 1.77 1.25 2.62 1.76 1.10 2.66 2.25 1.79

WL 363 2.28 2.2 3.43 1.86 1.27 3.00 1.80 1.21 2.75 2.39 1.75

AA 445 NT 2.27 2.12 3.21 1.70 1.07 2.43 1.73 1.25 2.96 2.33 1.92

CD 4.10 RR 2.26 2.18 3.21 1.65 1.20 2.88 1.85 1.08 3.04 2.22 1.81

Eureka 4R200 2.27 1.98 3.21 1.66 1.12 2.81 1.75 1.17 2.96 2.36 1.75

P 54V09 2.28 2.22 3.45 1.75 1.31 2.88 1.53 1.14 3.13 2.14 1.89

P54Q25 2.22 2.13 3.42 1.67 1.11 2.93 1.68 1.11 2.77 2.20 1.74

Table 2.2: Yield Data in tons/acre from Weber County. Data is for 2012-2015 growing
seasons with three cuts per year, except 2012 which only had two cuts. Cuts 1 and 2
correspond to July 20 and September 17 in 2012. Cuts 3-5 correspond to June 7, July
8, and August 15 of 2013. Cuts 6-8 correspond to May 30, July 2, and August 7 of
2014. Cuts 9-11 correspond to June 8, July 7, and August 17 of 2015. Ranger is in the
susceptible class while the other nine varieties are marketed as being highly resistant.

growth only two cuttings happened in 2012. For years 2013, 2014, and 2015 there were

three cuttings. The cuttings were around the beginning of June, July, and August. The

average dry weight (tons/acre) for each variety was recorded at each cutting. Table 2.2

shows the average dry weight for each variety at each cutting for the 2012-2015 growing

seasons.

2.3.2.2 Initial Conditions

The common measurement of field size is an acre, which is a unit of land area equal

to 43, 560 square feet. The density of alfalfa plants can vary from field to field but it is

approximated to be between 5 and 10 plants per square foot. The average number of

plants per acre was estimated by first taking 5 plants per square foot and multiplying

that by 43, 560 square feet to get how many plants are in one acre. The process was

repeated for 6, 7, 8, 9, and 10 plants per square foot. Those values were averaged to get

326, 700 plants per acre.

As a first approximation, the model uses the following initial conditions: S0 + Ŝ0 =

326700, I0 + Î0 = 0, and W0 = 2000. W0 comes from fitting the data to the model.

The resistance rating of the alfalfa seeds describes the proportion of the seeds that are

resistant to the ASN. For example, if a bag of alfalfa seeds has a resistance rating of
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40%, then approximately 40% of the seeds will be resistant to the nematodes. This

corresponds to having about 40% of the plants being resistant. Letting α represent the

resistance rating, the initial conditions become,

S0 = 326700(1− α), Ŝ0 = 326700α, I0 = 0, Î0 = 0, W0 = 2000. (2.6)

2.3.2.3 Parameter Values

The parameter a describes the nematodes efficiency in finding a host’s roots.

According to [Griffin and Waite 1971] nematode attraction is the same between non-

resistant and resistant plants. Thus, the fitted value for a is appropriate to use in

equations (2.2) and (2.3) as well as equations (2.4) and (2.5) since nematode attraction

will not be biased based on if the plant is resistant or non-resistant.

The average contribution of nematodes from each infested plant to the rhizosphere

of any other plant is described by C. Since resistant varieties limit nematode repro-

duction within a plant, the nematodes that are contributed by a resistant plant will

be reduced compared to the contribution of a non-resistant plant. The parameter β

accounts for the nematode reduction that happens in a resistant plant.

Parameters γ and λ are the weight reduction in non-resistant and resistant plants

respectively due to nematodes and g represents the average weight per plant.

Parameter Description Approx. Value Source

a nematode efficiency in finding host’s root (area per nematode) 0.001 [Jordan et al. 2017]

C incoming nematode density per infested plant 1.202 [Jordan et al. 2017]

µW death rate of nematodes (density per time) 0.411 [Boelter et al. 1985]

β Reduction in nematode contribution from resistant plants 0.10 This paper

γ weight reduction in infested non-resistant plants (grams) 0.38 This paper

λ weight reduction in infested resistant plants (grams) 0.15 This paper

g approximate plant weight (grams) 11.5 This paper

Table 2.3: Parameters for the model and their estimated values. The unit of time
used to approximate the rates is 30 days.
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2.3.2.4 Fitting to Data

Values for parameters a and C were found from fitting equations (2.1), (2.2), and

(2.3) to data which does not include resistant varities [Jordan et al. 2017]. Fitted values

for W0, β, γ, λ, and g can be found in Table 2.3.

These parameters can be used in simulations to see how varying the resistant rating

will affect the harvest yield of a field. Figure 2.1 shows the results of the fitting process.

The box plots represent the data of the nine highly resistant varieties obtained in Weber

County, UT and the red squares are simulated values. An anomaly was noticed in the

2015 data. The yield from the third cut of that year were significantly higher than the

first two years. To explore the anomaly, the model was fit first to all 9 cuts and then

second to 8 cuts to see how the model adapted. The differences in the fitting can be

found in Figure 2.1. The main differences seen are in the improved approximations for

the yield in the 2nd and 3rd cuts of 2013 and 2014. The approximations for the other

cuts are similar for both 9 and 8 cuts. This means that the model can be fit to the

data without using the data anomaly found in the last cut of 2015, resulting in a better

overall fit.

2.3.3 Results

2.3.3.1 Harvest Yield

Farmers are concerned about how well their fields will produce over the years they

grow alfalfa. The total yield produced over the growing season in a year is a measure of

how well a field performed. The model will output a yield total for the entire year for a

set number of years. This allows a farmer to get an idea of what the yield of their field

will be based on the resistance rating used and the number of years they plan to grow

alfalfa.

Panel (A) of Figure 2.2 shows the averaged results for total harvest yield from

simulating growing alfalfa continuously for 3, 4, 5, or 6 years for each resistant class. The

model needs to produce averaged results because each resistance class has a percentage

range of resistance. Those ranges are outlined in Table 2.1. For example, to get an

average total yield for the low resistant class the model will use a percentage rating at

the lower end of its range, which is 6%, to produce harvest yields totals. Then the model
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Figure 2.1: Computations were ran to fit parameters to yield data of the nine highly
resistant varieties for years 2013, 2014, and 2015. There were three harvests each year
which makes a total of 9 cuts. (A) represents the fitting of only 8 cuts and (B) is all
9 cuts. The box plots represent the data obtained in Weber County, UT and the red
squares are from the fitting process. Fitting without the yield data from the last cut
in 2015 improves the overall fit. Thus, the model parameters are calculated from using

8 cuts.

will produce harvest yield totals using a percentage at the high end of its range, which

is 14%. Those results are then averaged to get an average total harvest yield for the low

resistance class. This process is then repeated for every other resistant class.

Figure 2.2 shows that for each resistance class the relationship between time grown

and total harvest yield is linear, suggesting that the yield does not change from year

to year. Thus, the average harvest yield per year for each resistance class is the same



18

3 3.5 4 4.5 5 5.5 6
5

10

15

20

25

30

35

40

45

Time (Years)      

 T
o
ta

l 
y
ie

ld
 (

to
n
s
/a

c
re

) 
  

A

 

 

 High

 Resistance

 Moderate

 Low

 Susceptible

   Susceptible           Low           Moderate         Resistance          High     
0

1

2

3

4

5

6

7

Resistance Class    

T
o
ta

l 
y
ie

ld
 p

e
r 

y
e
a
r 

(t
o
n
s
/a

c
re

) 
  
  

B

Figure 2.2: Model computations for continuously growing alfalfa for 3, 4, 5, or 6 years.
Panel (A) shows the total yield (tons/acre) for each resistance class. It can be seen that
the relationship between time grown and total harvest yield is linear, suggesting that
the yield does not change from year to year. Thus, the average harvest yield per year
for each resistance class is the same regardless of the length of time alfalfa is grown.

Panel (B) shows the total yield (tons/acre) per year for each resistance class.

regardless of the length of time alfalfa is grown. Panel (B) of Figure 2.2 shows the

average yield (tons/acre) per year obtained for each resistant class.

To see how the total yield per year was affected by the parameter β model com-

putations were made with 0 ≤ β ≤ 1 over 3 years. The results are shown in Figure

2.3. Panel (A) shows the total yield per year as a function of β value and the resistance

rating. Panel (B) shows what happens to the total yield per year as β varies and the

resistance rating is held constant. Notice that the total yield per year does not change
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as β varies and the resistance rating remains constant. Thus, varying β and keeping

the resistance rating fixed has a negligible effect on the total yield per year. For a more

biological meaning recall that harvest yield is based on the number of plants in each

category. The resistant plants are tolerant to nematodes, which means that they will

stunt less compared to a non-resistant one. Thus, more resistant plants implies a better

yield. Figure 2.3 shows that the β value does not significantly alter the number of plants

in each category enough for the yield to be affected. Thus, varying the nematode con-

tribution from the resistant infested plants and keeping the resistance rating constant

has a negligible effect on harvest yield.
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Figure 2.3: Computations were made for varying β values and resistant ratings. Panel
(A) shows the total yield (tons/acre) per year as a function of resistance ratings and
β. Panel (B) shows that varying the β value and keeping the resistance rating constant

has a negligible effect on the total yield per year.
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Figure 2.4: Total nematode population in one plant’s rhizosphere. The figure shows
the nematode population at the last harvest of the growing year. The nematode popu-
lation increases very rapidly at first, and as time continues the nematode reproduction

slows down. This is due to resistant plants inhibiting nematode reproduction.

2.3.3.2 Nematode Population

Recall that Wt describes the nematode population in the rhizosphere of one alfalfa

plant at time t. The model keeps track of the nematode population at the time of

the last harvest every year alfalfa is grown for each of the resistance classes. Figure 2.4

shows how resistant varieties of alfalfa will affect the nematode population. It shows that

as resistance increases the nematode population decreases. The nematode population

increases very rapidly at first, and as time continues the nematode reproduction slows

down. This is due to resistant plants inhibiting nematode reproduction. Thus, nematode

resistant varieties of alfalfa can slow down nematode infestations.

2.4 Conclusions and Discussion

The alfalfa stem nematode (ASN) is a major concern among farmers in the western

United States. It attacks alfalfa resulting in an economic loss to these farmers. Without

the use of nematicides, other methods are needed to control the ASN. The novelty here is

a model that demonstrates the relationship between the different resistance ratings and

harvest yield in tons per acre. This is accomplished by tracking the number of plants

in a field and dividing them into four categories: non-resistant healthy, non-resistant

infested, resistant healthy, and resistant infested. Yield was then calculated based on
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the number of plants in each category. This process was repeated for varying levels of

nematode resistance and then a comparison was made.

The model was fit to data obtained from Weber County, Utah. The model shows

how different resistance ratings affect yield at harvest. It was found that higher resistance

ratings allow for higher yields at harvest and lower nematode population in the field.

The model presented in this paper provides a way for farmers to have an idea of what

resistance rating to use that is best for their needs.

Panel (A) of Figure 2.2 shows how the resistance ratings play a role in the total

yield accumulated over 3, 4, 5, and 6, years of continuously growing alfalfa. This shows

that the higher the resistance rating the better the yield will be over the lifetime of

the alfalfa field. It can be seen that the difference between using the susceptible class

and the highly resistance class could result in approximately 15− 20 more tons per acre

in yield when growing alfalfa for 6 years. The relationship between growing time and

harvest yield is linear, suggesting that that the change in harvest yield per year for each

resistance class is the same regardless of the time grown. Panel (B) of Figure 2.2 shows

the average yearly yield (tons/acre) for each resistance class. Having the average yearly

yield will allow a comparison to be made between different resistance classes. This will

help farmers to know what to expect when changing from one resistance class to another.

Table 2.4 shows the approximate percentage change in yield (tons/acre) when mov-

ing from one resistance class of alfalfa to another. The chart reads the approximate

percentage change in yield when moving from the resistance class in the left column to

the resistance class along the top row. For example, moving from a susceptible class to

a high resistance class can approximately increase the yield of an alfalfa yield by 83%.

The use of resistant varieties not only helps control nematode populations in a

fields, it helps lessen the economic losses that are incurred by the nematode infestation.

Knowing how resistant varieties of alfalfa affects yield is a great tool that can be used

when making crop management decisions.
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Percentage change in yield between resistance classes

To resistance class
Susceptible Low Moderate Resistant High

From resistance class

Susceptible 0% 10% 27% 51% 83%
Low -9% 0% 15% 37% 67%

Moderate -21% -13% 0% 19% 45%
Resistant -33% -27% -16% 0% 22%

Highly -45% -40% -31% -18% 0%

Table 2.4: Percentage change in yield (tons/acre) between resistance classes of alfalfa.
The table shows changes in yield by going from the resistance class in left column to

the resistance class along top row.
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Chapter 3

INFLUENCE OF RESISTANT VARIETIES ON THE SPEED OF

PROPAGATION OF SIMPLE EPIDEMICS IN CROPS

The content of this chapter has been published in Applied Mathematics Letters.

Authors are Luis Gordillo and Scott Jordan.

Gordillo, L.F., and Jordan, S., “Influence of resistant varieties on the speed of

propagation of simple epidemics in crops.” Applied Mathematics Letters 68 (2017):

129-134.

3.1 Introduction

Since the introduction of genetically engineered (GE) crops in the United States

in the mid-90s, their advantages and disadvantages have been continuously scrutinized.

With the assessment of environmental, economic and social impacts of GE crops, new

and intricate challenges for their future beneficial use have emerged [NAP 2010]. It is of

particular interest, from the managerial point of view, to be able to generate estimates of

future effects when new technology of this type is introduced to fight crop diseases. The

development of GE crop resistance to nematodes, bacteria, or viruses requires that it be

determined, at least approximately, how their introduction would affect the dynamics

of pest dispersal, and therefore how to design better introduction strategies.

Spatial continuous models for disease spread, i.e. models that assume individuals

continuously distributed in space, have been widely used as a realistic approach to under-

standing how crop disease dispersal progresses, [Madden et al. 2011]. One characteristic

that makes this approach interesting is that it describes the wave-like expanding travel-

ing fronts of diseases moving at speeds that can be determined, see [Madden et al. 2011]

and [Ruan 2007] for extensive reviews.
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The goal of this paper is to determine how is the speed of propagation of a simple

epidemic in crops is affected by the introduction of resistant individuals? First, we need

to clarify that what characterizes a “resistant individual“ is the set of specific artificially

modified traits that allow the individual to fight the invasion of clearly identified micro

or macro parasites. That is to say, the attributes of a resistant individual are specific to

each crop-pest system under consideration. Although the model described below does

not make reference to a particular crop system, we stress that it was motivated by the

attributes of nematode-resistant alfalfa varieties designed to control stem nematodes

[Jordan et al. 2017]. In that case, resistant individuals are not immune to the attacks

of nematodes but are designed to diminish the damage on the hosts so that farmers can

still recover a significant fraction of normal yield from each plant. As a consequence,

infected resistant hosts have a decreased rather than zero transmission rate.

We examine a one-dimensional spatial model for simple epidemics (SI), as defined

in [Mollison 1972], with the addition of two classes: resistant-susceptible and resistant-

infected individuals. The model uses a generalization of the mass action term, intro-

duced by D.G. Kendall in [Kendall 1957], where the factor corresponding to the in-

fectives is replaced by a spatial average of infectives. The speeds of traveling wave

solutions for the linearized model can be determined in relation to those in the sys-

tem that does not include resistant individuals. Then the so-called “linear conjecture”

[van den Bosch and Metz and Diekmann 1990, Sattenspiel 2009], which has been used

for instance to succesfully approximate the speed of disease fronts for fungal crop diseases

in two spatial dimensions [Metz and van den Bosch 1995], is used to conclude that the

speeds found are a good approximation to those in the non-linear model. We validate

this approximation by comparing the results with the speeds obtained from numerical

computations of the non-linear system.

3.2 Theoretical framework

Let us consider a sessile population distributed along the real line with constant

density N , and let x = x(s, t) and y = y(s, t) be the densities of susceptible and infected

individuals at location s and time t. We examine a disease for which the only individual

transitions allowed are of the type susceptible → infective, generally known as a simple

epidemic, or SI. The associated differential equation is given by ∂ty = βxȳ, where ȳ is

an spatial average of infectives, [Mollison 1972].



25

We introduce now a second class of susceptible individuals, xr = xr(s, t), which

we call the resistant variety, that is assumed to be perfectly mixed with the original

susceptibles. This hypothesis is reasonable for systems where seeds of both types are

mixed before sowing, as in the case of alfalfa fields, for instance. We let two specific

attributes characterize this class of individuals: (i) when exposed to the disease, individ-

uals trigger a defense mechanism that minimizes the damage produced by the infection,

and (ii) their capacity to propagate the infection is reduced.

Case 1. Let yr = yr(s, t) be the density of resistant individuals infected at location s

and time t, and examine first the case where the infection rate associated to the infected

resistant variety is negligible, i.e. consider the simplified model

∂ty = βxȳ, (3.1)

∂tyr = βxrȳ. (3.2)

Let us assume that a traveling wave solution exists for this system, and that the transient

effects of its buildup from an initial focus have already faded. We first look at the

linearization of the total epidemic in the front of the wave,

∂t(y + yr) = βNȳ, (3.3)

where N = x + xr + y + yr is constant. We recall the initial assumption of a perfect

mixture of resistant and non-resistant individuals, which implies that susceptibles of

both types have the same chance of becoming infected. This means that yr/(y+yr) = α

is a constant value in time and location. Equation (3.3) can then be rewritten as

∂t(y + yr)(s, t) = βN(1− α)

∫ ∞
−∞

(y + yr)(s− u, t)dF (u), (3.4)

where dF (u) is a (symmetrical) contact distribution. Under the condition that this

contact distribution is exponentially bounded, traveling wave solutions to (3.4) have

been well studied, see for instance [Daniels 1975, Medlock and Kot 2003, Mollison 1972].

It follows from the theory that the speeds for traveling wave solutions in this case, say

c, should satisfy the relation c/((1− α)βN) = ψ(θ)/θ, where

ψ(θ) =

∫ ∞
−∞

eθudF (u)
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is the moment generation function for the contact distribution.

Case 2. We now consider the case where infected resistant individuals can pass on the

disease, but in a lesser degree than a non-resistant individual. In this case we arrive at

an extension of the system (3.1)-(3.2), given by

∂ty = βxȳ + βrxȳr, (3.5)

∂tyr = βxrȳ + βrxrȳr, (3.6)

where 0 ≤ βr < β. We consider a traveling wave solution as before, with the linear

approximation in the front of the wave now given by

∂t(y + yr) = (βȳ + βrȳr)N. (3.7)

Uniform mixing of resistant and non-resistant individuals allows the last equation to be

rewritten as

∂t(y + yr) = (β(1− α) + αβr)(ȳ + ȳr)N, (3.8)

where 0 ≤ α ≤ 1 has the same meaning as in Case 1. Again, it follows that the speed of

propagation of the linear epidemic model should satisfy

c

(β(1− α) + αβr)N
=
ψ(θ)

θ
. (3.9)

The conditions for the linear conjecture of van den Bosch et al.

[van den Bosch and Metz and Diekmann 1990] are satisfied in this scenario, and accord-

ing to this conjecture the asymptotic wave speed of the traveling front in the non-linear

model should be equal to the minimum wave speed, which happens to be that from the

linearization, i.e. that determined by equation (3.9).

3.3 Comparison with the non-linear model

In the previous Section, the theoretical predictions concerning the effect of resistant

varieties on the speed of a simple epidemic traveling front were deduced using the model

linearization and the linear conjecture. Now we verify that these predictions are valid for

the non-linear model by using a computational approach. Firstly, a contact distribution

that corresponds to the observed characteristics of the disease has to be selected. For



27

our example we arbitrarily choose a Gaussian, i.e. dF (u) =
[
exp(−u2/4Dt)/

√
4πDt

]
du,

D = 1/2, with the sole purpose of illustrating the validity of the theoretical results.

Similarly, we do not specify the units for space, and β is taken equal to one.

Figures 3.1(a) and 3.1(b) are snapshots of traveling wave solutions for the non-

linear model with the vertical axis showing the relative density of infected (y + yr)/N ,

normalized by letting N = 1. Figure 3.1(a) is obtained from a mixture 1:1 of non-

resistant and resistant individuals. It is assumed that infected resistant hosts do not

turn infectious, i.e. βr = 0. For Figure 3.1(b) it is assumed that only non-resistant

individuals are present. The continuous curves in both panels show the traveling fronts

after a time T that ensures the absence of transient effects. The curves in dash-dots are

the fronts after time 2T has elapsed. It is apparent from the Figures that the distance

traveled during the time interval [T, 2T ] by the front in (b) is twice that of (a). In

Figure 3.2 the assumption that infected resistant hosts are incapable of transmitting the

disease is dropped. We assume now partial infectiousness with βr = 0.2β. If we want

that the speed of the traveling wave to be the same as that in Figure 3.1(a) then the

non-resistant:resistant proportion must be changed. From (1−α)β+αβr = 1/2, we find

α = 0.625, which is the proportion of resistant individuals in the total population. With

these parameters, the corresponding snapshot of the traveling wave becomes identical

to that in Figure 3.1(a).

3.4 Conclusions

We have incorporated into the classical one-dimensional model of a spatial simple

epidemic (SI) the possibility of having infectious resistant individuals. We framed the

model context to that of a crop disease assuming that (i) resistant and non-resistant

individuals are homogeneously mixed, (ii) resistant individuals become infectious at a

decreased rate of infectiousness, and (iii) the death rate of individuals due to the disease

is slow in relation to the process of replacement (crop rotation or field re-sowing). These

attributes are satisfied in the case of alfalfa, where the use of resistant varieties is the

most viable way to control the invasion of alfalfa nematodes that spreads along the rows

of sown plants.

The novelty here is the establishment of an analytical relationship between the



28

Figure 3.1: Traveling wave solutions for the non-linear model, equations (3.5) and
(3.6), including resistant hosts (a), and without resistant hosts (b). For the compu-
tations we assumed that β = 1 and βr = 0, i.e. resistant infected individuals are not
infectious. The fronts represented by the continuous curves are obtained after comput-
ing for a fixed time T (both panels) that ensures the removal of transient effects. The
fronts represented by dash-dot curves are obtained after a time 2T (both panels). The
resistant proportion of hosts used in (a) is α = 1/2. It becomes apparent from compar-
ing both panels that the traveling front in (b) moves forward twice the distance of the
traveling front in (a) during the time interval [T, 2T ], in agreement with the results for
the linearized model. The contact distribution used is dF (u) =

[
exp(−u2/2t)/

√
2πt
]
du.

Figure 3.2: Traveling wave solutions for the non-linear model, equations (3.5) and
(3.6), where infected resistant plants present a reduced infectious rate. For the com-
putations β = 1 and βr = 0.2, i.e. a reduction in the infectious rate of 80%, which
is plausible in some varieties of resistant alfalfa. If we wish to halve the speed of the
traveling front, then the resistant proportion can be computed from the left hand side
of equation (3.9), which gives α = 0.5/0.8 = 0.625. The picture shows the same result
as Figure 3.1(a), i.e. the same front speed is obtained. The computations were made

with the same specifications as Figure 3.1.
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propagation speed of traveling wave fronts in crop fields with and without resistant in-

dividuals. The main conclusion is that the speed of disease front depends proportionally

on the relative fraction of resistant individuals originally in the field. Although this

result could be intuitively clear for an experienced grower, the exact analytical relation,

equation (3.9), which involves partial infectivity from infected resistant varieties be-

comes significant given the non-linear nature of the spatial process of infection. We also

notice from equation (3.9) that the linear relation between c and α has slope (−β+βr)k,

where k > 0. This means that increases in the proportion of resistant seed might confer

little reduction in the traveling wave speed if the resistant variety is of low quality, as

it would be expected. The results are obtained by first using the linearization of the

model, and then extending to the full non-linear model through the linear conjecture,

[Metz and van den Bosch 1995, van den Bosch and Metz and Diekmann 1990]. The va-

lidity of the conclusion is then verified by numerically solving the non-linear model

and comparing the propagation speeds of traveling fronts. Our results are a theoreti-

cal complement to the findings in [van den Bosch et al. 1990], which are elaborated for

the susceptible → infected → removed (SIR) case for two spatial dimensions. It was

found there that the speed of traveling fronts in a crop field with uniform mixing of

resistant and non-resistant types are proportional to the logarithm of 1− α, where α is

the proportion of the resistant type. The theory and applications there elaborated and

further described in [Metz and van den Bosch 1995] are inspired in fungal crop diseases

for which the spores are dispersed in the canopy over short distances, creating local

patches of high infestation. In contrast, alfalfa nematodes are expelled from the stems

of an infected plant and reach the roots of new hosts using a combination of chemotaxis

and transport through irrigation water flow along plant rows.

Currently, there are several varieties of alfalfa that are resistant to the stem nema-

tode, but measures of resistance can vary. There is no standard for the classification of

alfalfa varieties as “resistant” among manufacturers. It is known, for instance, that some

declare a variety resistant if 51% of plants test negative for the presence of nematodes in

screening trials. In addition, it is common practice among growers to commercialize non-

certified seed, which often carries mixtures of resistant and non-resistant plants. These

two circumstances suggest that the results obtained here could be used to supplement

the planning of control strategies.
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Chapter 4

A MODEL FOR THE DISPERSAL OF THE ALFALFA STEM

NEMATODE

The content of this chapter was submitted to be published in the International Jour-

nal of Agronomy. The authors are Scott Jordan, Luis Gordillo, and Ricardo Ramirez.

4.1 Introduction

In absence of approved pesticides that target alfalfa stem nematode (ASN) exclu-

sively, the control of its spread is currently based on two practices: crop rotation and

introduction of resistant varieties of alfalfa. Only alfalfa plants can host ASN, which

have developed a mechanism of anhydrobiosis to overcome dry conditions.

Resistant varieties of alfalfa are designed to affect how nematodes mature and

reproduce within the plant [Schomaker and Been 2006]. Resistance is defined as a plants

ability to withstand, oppose, lessen, or overcome the attack of a pathogen [Rhode 1972].

A plant resistant to nematodes resists attack or exhibits little damage and reduces the

nematode population [Giebel 1974]. There are four main types of resistance that can be

utilized. (i) The plant may produce toxins that are harmful to the nematodes. (ii) The

plant may fail to provide adequate conditions for the nematode to survive. (iii) Plants

can secret chemicals that will repel nematodes. (iv) Plants hypersensitivity will cause the

nematodes to die [Giebel 1974]. Hypersensitivity is when the cells around the nematodes

undergo necrosis, thereby trapping the nematodes and preventing further infestation and

reproduction. The exact plant defense mechanisms used by alfalfa plants against ASN is

not clear. Given the high genetic variability of alfalfa it can be challenging to determine

the specific mechanism, and with this variability resistance is evaluated at the plant

population level. It is also possible that different varieties may have different defense
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mechanisms against ASN. What is clear is that varieties that have been classified as

resistant reduce the negative effects of an ASN infestation.

Mathematical models describing the spread of ASN on alfalfa have been studied

in [Jordan et al. 2017, Jordan 2017]. These models, which do not include a component

for spatial spread and are discrete in time, are focused on finding the best crop rotation

period to control nematode infestations as well as determining the impact of resistant

varieties on alfalfa harvest yield. In [Jordan et al. 2017], it was found that the best

rotation period to use is 2-3 years, and in [Jordan 2017] it was found that using a highly

nematode resistant variety of alfalfa can increase yield, measured in tons/acre, up to 83%.

A different approach was taken in [Gordillo and Jordan 2017] by modeling nematode

dispersal through the consideration of susceptible and infected plant classes and a non-

local process dispersal. This allows to approximate speeds in the ASN’s invasive traveling

fronts, and mainly how they change under the introduction of resistant varieties of alfalfa.

The model proposed in [Gordillo and Jordan 2017] depends on the concept of contact

distribution to determine how far the nematodes’ search for a new host extend, without

being transported by water flow, once they leave the infected plant where they were

born. In this paper we report the results of an experiment designed to approximate

this contact distribution for ASN, which to the best knowledge of the authors has not

been estimated before. Then the spatial model proposed in [Gordillo and Jordan 2017]

is used to estimate invasion speeds for the ASN when a mixture with resistant varieties

of alfalfa is used.

4.2 Materials and methods

4.2.1 Data collection

The goal was to gather data on the distances that nematodes move in a controlled

environment. Nematodes were placed at varying distances from nematode-free alfalfa

plants. After six weeks the alfalfa plants were inspected for nematode presence. The

plant counts at each distance were then used for the fitting of a Gaussian distribution.

In the experiment, sets of two 12 ounce Solo cups were connected using 3/4 in

diameter PVC pipes. The pipes were cut in half to make a trough and were super glued

so that the top of the trough was level with the top of the cup. Semicircles were cut out

of the cups where the PVC pipes were connected to allow for an unobstructed access
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to the cup from the trough. The cups were connected using PVC bridges of different

lengths, which were 1, 1.5, 2, and 2.5 in. In total, 36 two-cup units were used. Alfalfa

plants were then transplanted from a 3 year field in Cache County, Utah into the cups,

one plant per cup. The field was stem nematode free and the variety of the alfalfa plants

were Round Up Ready. Miracle Grow All Purpose Garden Soil was used to transplant

the plants into the Solo cups. Soil was also placed in the PVC bridges. The sets of

cups were super glued to three 2 by 2 feet wooden board for stability in transportation.

Each wood board had three sets of cups at each distance, see Figure 4.1 Alfalfa stem

nematode infested plants were collected from fields in Millard County, Utah. Samples

were taken from multiple fields that showed signs of a nematode infestation, see Figure

4.1.

Figure 4.1: Left: Alfalfa plants transplanted into Solo cups. Right: A picture of an
alfalfa field in Millard County, Utah. Stunted plants reveal nematode infestation. The

spread of the nematodes following a preferential direction is apparent.

Nematodes were extracted from the infested plants using a Baermann Funnel tech-

nique. A tube was attached to a funnel and was clamped off. A mesh was placed at the

mouth of the funnel. Cut up alfalfa material was placed on top of the mesh gate. The

funnel was then filled with water. The alfalfa soaked in the water for 6-8 hours, which

allowed the nematodes to exit the plant debris and then float down past the mesh gate,

see Figure 4.2. The nematode solution was then collected and examined for the presence

of nematodes. A 5 mL solution containing approximately 200 nematodes was placed in

the middle of each PVC bridge that connected two cups, see Figure 4.2. Before the

nematodes were placed in the bridges, each plant was given 75 mL of water to saturate

the soil with water so that the nematodes could start traveling to the alfalfa plants.
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Figure 4.2: Left: Cut up alfalfa material in a Baermann Funnel for nematode collec-
tion and later release. Right: Solution containing nematodes placed in the middle of

each PVC bridge.

The plants were then placed in an incubator that was set to 19o Celsius, which is

the optimal temperature for nematode movement, [Norton 1978], see Figure 4.3. Lights

were set to 12 hour light/dark intervals in the incubator. They would come on at 6 am

and turn off at 6 pm. The plants were left in the incubator for six weeks. This was

chosen because the life span of a nematode is 45-73 days [Hafez 1998]. This allows for

only one generation of nematodes to interact with the plants. Plants were given 75 mL

of water once a week for the duration of the experiment.

After the six weeks the alfalfa plants were taken out of the cups, chopped up,

and then placed in dishes containing water. They were inspected under a microscope to

determine if nematodes were present, see Figure 4.3. Data were collected for the number

of plants at each distance that were infested. Figure 4.4 shows the number of plants

at each distance that were infested by nematodes. We notice that the data collected

at distance 0.5 in shows unexpected results. It is possible that the low counting at

this distance was related to the orientation of the plants in the incubator. The cups

corresponding to the 1 in distance were near the back of the incubator, where the

incubator fan was located.
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Figure 4.3: Left: Connected cups with alfalfa plants placed in an incubator. The
plants were tested for infection six weeks after nematode release. Right: Alfalfa plants

cut up and inspected to determine if nematodes are present.

4.2.2 Model Framework

The following is a brief overview of the model found in [Gordillo and Jordan 2017].

In a sessile population distributed along the real line and with constant density N we

denote with x(s, t) and y(s, t) the densities of non-resistant susceptible and infected

individuals at location s and time t, respectively. If we assume that the only individual

state transitions allowed are from the class susceptible to the class infective then we

can approximate the dynamics of the disease with a commonly known “SI model“. By

using the subscript r to further introduce a resistant class in the hosts we can write the

equations for the model as

∂ty = βxȳ + βrxȳr (4.1)

∂tyr = βxrȳ + βrxrȳr, (4.2)

where β and βr represent the transmission rates associated with non-resistant and resis-

tant hosts, respectively. The ȳ represents the spatial average of infectives [Mollison 1972],

which is given by

ȳ(x, t) =

∫ ∞
∞

y(s− u, t)dF (u), (4.3)

where dF (u) is a symmetrical contact distribution. By assuming a perfect mixture of

resistant and non-resistant individuals, susceptibles of both classes have the same chance
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Figure 4.4: Number of infected plants observed at different distances (inches) from
the nematode source. The countings at 0.5 in appear as outliers, presumably due to

the position of the cups in the incubator.

of becoming infected. It also follows that yr/(y + yr) = α is a constant value in time

and location. Equations (4.1) and (4.2) can be combined by linear approximations and

uniform mixing of resistant and non-resistant individuals and be written as

∂y(y + yr)(s, t) = (β(1− α) + αβr)(ȳ + ȳr)N. (4.4)

For the case where the contact distribution dF (u) is exponentially bounded traveling

wave solutions to equation (4.4) have been well studied, see for instance [Daniels 1975,

Mollison 1972]. The speed of a traveling wave solution, c, should satisfy the relation

c

(β(1− α) + αβr)N
=
ψ(θ)

θ
, (4.5)

where

ψ(θ) =

∫ ∞
∞

eθudF (u)

is the moment generating function for the contact distribution.

The conditions for the linear conjecture are satisfied in our case

[van den Bosch and Metz and Diekmann 1990], and therefore the asymptotic wave speed
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of the traveling front in the non-linear model should be equal to the minimum wave speed

obtained from the linearization, determined by equation (4.5).

4.3 Results

4.3.1 Parameter estimation

We proceed to fit a Gaussian distribution, i.e. dF (u) = exp(−u2/4Dt)/
√

4πDt,

using the data obtained from the experiment. The parameter D is the diffusion coeffi-

cient associated with nematode dispersal, with D = σ2/2t. A Gaussian distribution is

exponentially bounded and thus wave speeds can be calculated.

We recall that in the experiments, the origin is the only source of nematodes from

which they disperse. It is reasonable to assume that any plant located at the source

will get infected with probability one. But for the anomaly at 0.5 in, the normalized

frequency histogram suggests that a Gaussian curve could be a good fit. In order to see

how this data abnormality affects the fitting of a Gaussian we explore the distribution

obtained by using values within the range of the extreme frequencies for infested plants,

i.e. between values 0 and 1 with steps of 1/16 (16 was the number of surviving plants at

the 0.5 in). Table 4.1 shows how the standard deviation changes with different number

of infested plants at 0.5 in.

From Table 4.1 we see that the standard deviation changes are less than 0.0925.

We can interpret this as the data at 0.5 in does not produce significant variations on

the final contact distribution. Figure 4.5 shows the probability curves when fitting with

0, 4, and 16 plants. The boxes in the figure represent the range of values obtained from

fitting with plant counts at the 0.5 in distance that range from 0 to 16 plants. It shows

the extreme cases for the contact distribution as well as the curve that comes from using

the plant count of 4 that comes from the data.

We estimate the diffusion constant by using the relation D = σ2/2t = 0.80932/(2 ·
6) = 0.0546 in2/week, where t = 6 is the time of observation in weeks. The transmission

rate β can be approximated by

β = (number of effective contacts by one infective nematode per unit of time)/N,

see [Hethcote 2000], for instance. In our case, there were 29 infected out of 65 total
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Number of infected plants Standard Deviation Error

0 0.8387 1.1881

1 0.8308 1.0968

2 0.8233 1.0060

3 0.8161 0.9158

4 0.8093 0.8263

5 0.8028 0.7376

6 0.7966 0.6502

7 0.7906 0.5646

8 0.7848 0.4814

9 0.7793 0.4023

10 0.7740 0.3301

11 0.7690 0.2702

12 0.7641 0.2323

13 0.7594 0.2274

14 0.7548 0.2574

15 0.7504 0.3123

16 0.7462 0.3815

Table 4.1: Standard deviation and error for fitting Gaussian curves to the data with
different plant counts at 0.5 in. The far right column describes the 2-norm of the error
vector between the observed data points and the values from the probability density.

The row in bold is the actual observed plant count.

Parameter Description Units

β transmission rate for non-resistant plants (week)−1

βr transmission rate for resistant plants (week)−1

α Resistance rating dimensionless

N Plant density (inches)−1

D Nematodes diffusivity (inches)2(week)−1

Table 4.2: Parameters for the model.

surviving plants. Therefore, β = (29/6)/65 = 0.0744 (week)−1. Recall that for our

model we are considering a population that is distributed along the real line with con-

stant density N . Current seeding and farming practices allow for fields to have varying

densities. For our model computations we chose the value of N = .5 (inches)−1. This

corresponds to a density of one plant per two inches. Table 4.2 contains all the model

parameters along with their units.

4.3.2 Effect of resistant varieties on front speeds

Equation (4.5) can be used to express the minimum speed of a traveling wave

solution, c, in terms of the moment generating function of the contact distribution, ψ,

by minimizing ψ(θ)/θ. According to the Linear Conjecture, this minimum wave speed
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Figure 4.5: Extreme cases for fitting the probability density curve when using 0 (red)
and 16 (blue) plants at distance 0.5 in. We observe that the count of infected plants
count at 0.5 inches do not severely affect the fit. The error boxes show the values for

the distribution obtained from fitting with plant counts that range from 0 to 16.

is equal the asymptotic wave speed of the non-linear model.

The moment generating function of the Gaussian distribution is given by ψ(θ) =

eDtθ
2
, and from

d

dθ

(
ψ(θ)

θ

)
=

(
2Dt− 1

θ2

)
eDtθ

2
= 0 (4.6)

we see that the minimum of ψ(θ)/θ is reached at θ = 1/
√

2Dt. From equation (4.5) we

obtain the expression for the minimum speed

c = (β(1− α) + αβr)N(
√

12D)e1/2, (4.7)

where α represents the resistance rating of the alfalfa variety. By adjusting the parameter

α to the different resistant classes we obtain the associated wave speeds.

The parameter value βr represents the transmission rate from resistant infected

plants to susceptible plants. Resistant varieties of alfalfa contain a phenotype that will

effect the reproduction of nematodes, [Rhode 1972]. This implies that 0 ≤ βr ≤ β. Since

the exact defense mechanism is not known, and it can vary between varieties, βr can be

difficult to approximate. To understand how wave speed changes for different values of

βr, model computations were made as βr changes from 0 to β. Figure 4.6 shows the wave

speed (inches/week) as βr and α vary. In the figure we can see that as βr approaches β
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the wave speed becomes constant regardless the resistant variety used. As this happens,

equation (4.7) transforms into c = βN(
√

12D)e1/2 (inches/week), which does not depend

on the resistant rating of the alfalfa plants. We know that this will not occur because

resistant varieties affect nematode reproduction within the plant, and consequently affect

the transmission rate from resistant infected to susceptible plant, [Rhode 1972]. From

the figure we can also see that as βr increase the wave speed decreases, as seen from

equation (4.7).

Figure 4.6: Wave speed, c (in/week), as function of the transmission rate for the
resistant varieties, βr (1/week), and the resistance rating, α. The surface is computed
using the relation (7). The graph also shows the contour curves for a fixed speed
(black curves). Parameter values used: D = 0.0546 (in2/week), N = 0.5 (1/in), and

β = 0.0744 (1/week).

Figure 4.7 shows the traveling waves solutions of the system of equations (4.1) -

(4.2) for the different resistant classes of alfalfa. The figure shows the infected plant

densities at time T and time T + 24. The difference of 24 weeks was chosen as it is

approximately the length of the growing season in one year. From the figure we can

see that the more significant reductions in the wave speed come from using a variety of

alfalfa that has a higher resistance rating.

Now that we have the wave speeds for different resistance classes we can look at

how changing from one class to another will affect the wave speed. This is important to

look at because growers of alfalfa my want to adjust their crop management according

to their specific field needs. Table 4.3 shows the percentage change in wave speed when

moving from one resistance class to another. The table reads the change in wave speed
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Figure 4.7: Snapshots of traveling fronts, taken at times after transient effects had
disappeared, show the effects of resistant classes on wave speeds. Continuous and
broken curves represent fronts at times T and T + 24, respectively, where the latter is
taken as the approximate length of the growing season for alfalfa measured weeks. The
panels exhibit simulations that include the presence of hosts from Low (A), Moderate

(B), Resistant (C), and High (D) classes of resistant alfalfa.

when moving from a resistance class in the left column to a resistance class along the

top row. A negative percentage indicates a reduction in wave speed, while a positive

indicates an increase in wave speed. From the table we can see that moving from a

susceptible class to a highly resistant class can approximately decrease the wave speed

by 64%.

4.4 Conclusions and discussion

Spatial continuous models for disease spread have been widely used to understand

the crop disease dispersal process [Madden et al. 2011]. This approach describes the

wave-like expanding traveling fronts of diseases moving at speeds to be determined, see

[Madden et al. 2011] and [Ruan 2007]. The novelty in this paper is that we used exper-

imental data to approximate the contact distribution for the alfalfa stem nematodes.

To gather the data we transplanted alfalfa plants into Solo cups that were connected
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Percentage change in wave speed between resistance classes

To resistance class
Susceptible Low Moderate Resistant High

From resistance class

Susceptible 0% -8% -21% -39% -64%
Low 8% 0% -14% -34% -61%

Moderate 26% 16% 0% -23% -55%
Resistant 64% 51% 30% 0% -41%

Highly 179% 157% 121% 70% 0%

Table 4.3: Percentage change in wave speed (inches/week) between resistance classes
of alfalfa. The table shows changes in wave speed by going from the resistance class in
left column to the resistance class along top row. For this table D = 0.0546, N = 0.5,
β = 0.0744, and βr = 0. βr was chosen to be 0 to demonstrate the best possible case

for the alfalfa plants.

in sets of two by PVC pipe. Nematodes were collected from infested plants in Millard

County, Utah. These nematodes were extracted from the plants and placed in the

center of the PVC bridge that connected two alfalfa plants. After six weeks the alfalfa

plants were inspected to see which ones were infected. These data were then used to

approximate the contact distribution for the alfalfa stem nematodes.

This contact distribution was then used in the model described in

[Gordillo and Jordan 2017]. Wave speeds were then calculated for different resistant

classes. We conclude that using varieties that have higher resistance ratings can reduce

the wave speed and quantify the magnitude of those reductions, see Table 4.3. For

example, switching from the susceptible class to highly resistant class can approximately

decrease the wave speed by 64%.

The data from the experiment showed an abnormality at 0.5 in. In order to see

how the infected plant count at this distance would affect wave speed we made computa-

tions with the model that compare the wave speed using the different diffusivity values

that came from fitting the contact distribution to the data. The results showed that

the biggest difference in wave speed from using different diffusivity values was 0.0051

in/week. Also, no significant variations to the percentage changes in Table 4.3 were de-

tected after adjusting different diffusivity values obtained. This shows that even though

the plant count at 0.5 in was abnormal, the model was robust.

In agreement with practice, the model shows that nematode invasion speeds are

too low and cannot support the rapid dispersal of the disease as seen in the field. This



42

leads us to presume that other mechanisms are in play that allow the efficient disper-

sal of nematodes, including nematode transport through the field by the tractor that

harvests the alfalfa, and the consistent use of non-certified seed by farmers. The latter,

also known as “brown bag” seed, has the potential to come from fields that have been

contaminated with nematodes. In that case, it is possible that seeds carry nematodes

attached, and farmers inadvertently re-infect their own field or the fields of the farmers

who bought the seed. Another main driving mechanism supporting rapid nematode

dispersal is the use of flood irrigation, which is the practice of opening gates at the top

of the field that allow water to flow into the field. The gates are left open during a pre-

scribed amount of time and then closed. It is speculated that the traveling water front is

what is responsible for transporting the nematodes throughout the field. A supporting

argument for this is that in sprinkler irrigated fields, where water is sprayed into the air

so small water droplets fall into the ground, it is rare to spot a nematode problem. Our

findings support the conjecture that changing from flood to sprinkler irrigation could

effectively contribute to the control of the spread of the alfalfa stem nematode.
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Chapter 5

CONCLUSIONS

The alfalfa stem nematode (ASN) is a major concern among farmers in the western

United States. It attacks alfalfa resulting in an economic loss to these farmers. Without

the use of nematicides, other methods are needed to control the ASN. The novelty of

Chapter 2 is a model that demonstrates the relationship between the different resistance

ratings and harvest yield in tons per acre. This is accomplished by tracking the number

of plants in a field and dividing them into four categories: non-resistant healthy, non-

resistant infested, resistant healthy, and resistant infested. Yield was then calculated

based on the number of plants in each category. This process was repeated for varying

levels of nematode resistance and then a comparison was made.

The model was fit to data obtained from Weber County, Utah. The model shows

how different resistance ratings affect yield at harvest. It was found that higher resistance

ratings allow for higher yields at harvest and lower nematode population in the field.

The model presented in this paper provides a way for farmers to have an idea of what

resistance rating to use that is best for their needs.

The model helps us to understand how resistant varieties will affect harvest yield.

It shows that when higher resistance ratings are used, the better the yield will be over

the lifetime of the alfalfa field. An example of this is that changing from the susceptible

class to the highly resistant class could result in approximately 15−20 more tons per acre

in yield when growing alfalfa for 6 years. Another aspect that we learn from the model

is that the relationship between growing time and harvest yield is linear, suggesting that

the change in harvest yield per year for each resistance class is the same regardless of

the time grown. We can use this knowledge to make a comparison between different

resistance classes. This will help farmers to know what to expect when changing from

one resistance class to another. Table 2.4 shows the approximate percentage change
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in yield (tons/acre) when moving from one resistance class of alfalfa to another. From

the table we can see that moving from a susceptible class to a high resistance class

can approximately increase alfalfa yield by 83%. The use of resistant varieties not only

helps control nematode populations in fields, it helps lessen the economic losses that are

incurred by the nematode infestation. Knowing how resistant varieties of alfalfa affects

yield is a great tool that can be used when making crop management decisions.

In Chapter 3, we incorporated into the classical one-dimensional model of a spatial

simple epidemic (SI) the possibility of having infectious resistant individuals. We framed

the model context to that of a crop disease assuming that (i) resistant and non-resistant

individuals are homogeneously mixed, (ii) resistant individuals become infectious at a

decreased rate of infectiousness, and (iii) the death rate of individuals due to the disease

is slow in relation to the process of replacement (crop rotation or field re-sowing). These

attributes are satisfied in the case of alfalfa, where the use of resistant varieties is the

most viable way to control the invasion of alfalfa nematodes that spreads along the rows

of sown plants.

The novelty in Chapter 3 is the establishment of an analytical relationship be-

tween the propagation speed of traveling wave fronts in crop fields with and without

resistant individuals. The main conclusion is that the speed of disease front depends

proportionally on the relative fraction of resistant individuals originally in the field.

Although this result could be intuitively clear for an experimented grower, the exact an-

alytical relation is novel. This relation involves partial infectivity from infected resistant

varieties and becomes significant given the non-linear nature of the spatial process of in-

fection. We notice from equation (3.9) that the linear relation between c and α has slope

(−β + βr)k, where k > 0. This means that increases in the proportion of resistant seed

might confer little reduction in the traveling wave speed if the resistant variety is of low

quality, as would be expected. The results are obtained by first using the linearization

of the model, and then extending to the full non-linear model through the linear con-

jecture, [Metz and van den Bosch 1995, van den Bosch and Metz and Diekmann 1990].

These results though intuitive provide a valiation of the modeling approach. The va-

lidity of the conclusion is then verified by numerically solving the non-linear model

and comparing the propagation speeds of traveling fronts. Our results are a theoreti-

cal complement to the findings in [van den Bosch et al. 1990], which are elaborated for
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the susceptible → infected → removed (SIR) case for two spatial dimensions. It was

found there that the speed of traveling fronts in a crop field with uniform mixing of

resistant and non-resistant types are proportional to the logarithm of 1− α, where α is

the proportion of the resistant type. The theory and applications there elaborated and

further described in [Metz and van den Bosch 1995] are inspired in fungal crop diseases

for which the spores are dispersed in the canopy over short distances, creating local

patches of high infestation. In contrast, alfalfa nematodes are expelled from the stems

of an infected plant and reach the roots of new hosts using a combination of chemotaxis

and transport through irrigation water flow along plant rows.

Currently, there are several varieties of alfalfa that are resistant to the stem nema-

tode, but measures of resistance can vary. There is no standard for the classification of

alfalfa varieties as “resistant” among manufacturers. It is known, for instance, that some

declare a variety resistant if 51% of plants test negative for the presence of nematodes

in screening trials. In addition, it is common practice among growers to commercialize

non-certified seed, which often carries mixtures of resistant and non-resistant varieties.

These two circumstances suggest that the results obtained in chapter 3 could be used

to supplement the planning of control strategies.

In Chapter 4 we discussed how spatial continuous models for disease spread have

been widely used to understand the crop disease dispersal process [Madden et al. 2011].

This approach describes the wave-like expanding traveling fronts of diseases moving at

speeds to be determined, see [Madden et al. 2011] and [Ruan 2007]. The novelty in

Chapter 4 is that we used experimental data to approximate the contact distribution

for the alfalfa stem nematodes, which will help us to determine the wave speeds of an

ASN infestation.

To gather the data we transplanted alfalfa plants into Solo cups that were connected

in sets of two by PVC pipe. Nematodes were collected from infested plants in Millard

County, Utah. These nematodes were extracted from the plants and placed in the

center of the PVC bridge that connected two alfalfa plants. After six weeks the alfalfa

plants were inspected to see which ones were infected. These data were then used to

approximate the contact distribution for the alfalfa stem nematodes.



46

This contact distribution was then used in the model described in Chapter 3. Wave

speeds were then calculated for different resistant classes. We conclude that using va-

rieties that have higher resistance ratings can reduce the wave speed and quantify the

magnitude of those reductions, see Table 4.3 . For example, switching from the sus-

ceptible class to highly resistant class can approximately decrease the wave speed by

64%.

The data from the experiment showed an abnormality at 0.5 in. In order to see

how the infected plant count at this distance would affect wave speed we made computa-

tions with the model that compare the wave speed using the different diffusivity values

that came from fitting the contact distribution to the data. The results showed that

the biggest difference in wave speed from using different diffusivity values was 0.0051

in/week. Also, no significant variations to the percentage changes in Table 4.3 were de-

tected after adjusting different diffusivity values obtained. This shows that even though

the plant count at 0.5 in was abnormal, the model is robust.

In agreement with practice, the model shows that nematode invasion speeds are

too low and cannot support the rapid dispersal of the disease as seen in the field. This

leads us to presume that other mechanisms are in play that allow the efficient disper-

sal of nematodes, including nematode transport through the field by the tractor that

harvests the alfalfa, and the consistent use of non-certified seed by farmers. The latter,

also known as “brown bag” seed, has the potential to come from fields that have been

contaminated with nematodes. In that case, it is possible that seeds carry nematodes

attached, and farmers inadvertently re-infect their own field or the fields of the farmers

who bought the seed. Another main driving mechanism supporting rapid nematode

dispersal is the use of flood irrigation, which is the practice of opening gates at the top

of the field that allow water to flow into the field. The gates are left open during a pre-

scribed amount of time and then closed. It is speculated that the traveling water front is

what is responsible for transporting the nematodes throughout the field. A supporting

argument for this is that in sprinkler irrigated fields, where water is sprayed into the air

so small water droplets fall into the ground, it is rare to spot a nematode problem. Our

findings support the conjecture that changing from flood to sprinkler irrigation could

effectively contribute to the control of the spread of the alfalfa stem nematode.



47

In this dissertation we specifically looked at how these resistant varieties affected

harvest yield and invasion speed. These questions have not yet been addressed before

using the mathematics contained in this dissertation. The end goal is to provide some

helpful insights about managing a nematode infested alfalfa field. Since alfalfa is a major

commodity in the United States it is of vital importance that advances are made in the

management strategies of alfalfa to ensure that quality alfalfa is produced to meet the

needs to the country. We believe that the results in this dissertation can help in the

advancement of these crop management practices.
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