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ABSTRACT

Numerical Evaluation of Energy Release Rate at Material Interfaces for Fatigue Life

Predictions

by

Robert L. Hendrickson, Master of Science

Utah State University, 2018

Major Professor: Ling Liu, Ph.D.
Department: Mechanical and Aerospace Engineering

Delamination is an important failure mechanism for composite laminates. Failure by

delamination can be predicted for fast fracture or fatigue delamination. A prediction of

fatigue life, in composite laminates, improves if an accurate energy release rate (G) can be

calculated. One approach of G calculation is the Virtual Crack-Closure Technique (VCCT),

which assumes that the work required to propagate a crack is the same as the energy to close

the crack. VCCT calculates G from the nodes on the delamination front and corresponding

nodes behind the delamination front. If a delamination front does not exist exactly on the

nodes of the finite element (FE) mesh, the model needs to be re-meshed to conform the

mesh to the crack geometry at every increment of crack growth. Currently, this re-meshing

method is arguably the most accurate, but it suffers from the low computational efficiency.

The purpose of this thesis is to develop and verify a new approach that does not require re-

meshing yet has acceptable accuracy. Springs are added adaptively, as part of an interface

element, based on the real delamination front. This allows G to be calculated at the real

front. Displacements are obtained from shape functions rather than using the displacement

at the nodes in the finite element mesh. The use of shape functions also distributes stiffness

to nodes and does not increase the degrees of freedom (DOF) of the interface elements.
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A new spring model uses an 8-node interface element that was verified with two classical

delamination examples. The approach, after future refinement, may provide a simple yet

effective module for high-fidelity fatigue analysis considering delaminations.

(102 pages)
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PUBLIC ABSTRACT

Numerical Evaluation of Energy Release Rate at Material Interfaces for Fatigue Life

Predictions

Robert L. Hendrickson

Composite materials are becoming popular in almost all industries. Carbon-fiber and

glass-fiber composites are used in aircraft, sports equipment, boats, prosthetics, and wind

turbine blades. In all these applications, the composites are subjected to different loads.

Loads can take the form of impact or cyclic/fatigue loading, both of which decrease the

strength of composites as micro-cracks grow through the composite. Composite laminates

are made up of fiber plies (thin layers of fiber) and the fibers are surrounded by a resin

like epoxy. It is common for laminates to fail because of delamination growth (plies peel-

ing apart). Small delaminations do not fail a composite, but as delaminations grow, the

composite weakens and eventually fails. Composites behave differently than metals do, and

failure analysis is more complicated because of the various directions of fibers. Numerical

methods (specifically Finite Element Analysis) exist for predicting when failure will occur,

but improvements are needed to make these numerical methods more accurate and efficient.

The method created, for this thesis, is computationally efficient because it doesn’t require

the analyst or computer to adjust the simulation based on where the delamination is (or

what kind of shape it is). Energy values are extracted directly from the delamination front

and not averaged from nearby locations.
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CHAPTER 1

INTRODUCTION

1.1 Significance of Composites

Choice of material is an important step in mechanical design. Some considerations are

strength (for structural components), weight (for fuel efficiency), electrical conductivity,

heat transfer, impact (for shielding/outer material), fatigue life (for cyclic loading), and

cost which is usually the most important factor. Composites are materials that are made

to meet requirements that aren’t available in most traditional materials.

1.1.1 What Are Composites?

Composite structures consist of more than one material. Some examples of composites

are reinforced concrete, plywood, and layered materials in the sandwich construction. Other

examples that can be found, and exist naturally, are wood and bones [2].

Fiber-reinforced composites generally have a strong fiber (carbon/graphite, steel, glass,

etc.) surrounded by a matrix material (polymer, ceramic, metal, etc.). Composites may be

hybrid (more than one kind of fiber) or made from natural fibers (from plants). The matrix

binds fibers together and keeps them aligned. The matrix helps prevent buckling of fibers,

but transfers loads to them. Strength of the fiber composite depends on the quality of the

fiber-matrix bond and the volume fraction of the fibers and matrix [3].

Fiber-reinforced polymers (FRP) are made with either a thermo-set or thermo-plastic

resin as the matrix. A thermo-plastic matrix and certain fibers (glass) have a glass transition

temperature (TG). These materials are weak and amorphous at temperatures high above

the TG but are brittle below this temperature. Other materials that can be used as a

matrix are ceramics and metals. An epoxy matrix is generally very brittle and modifying

the matrix with rubber or silica particles has proven to increase the toughness and fatigue
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life of FRP. Some combinations of particles have a greater toughening effect in a matrix

than either of them has individually [4].

Carbon, glass, and aramid fibers have gained significant popularity since they began

being used in the 1900s. Carbon fiber has the highest tensile strength out of glass, car-

bon, and aramid fibers. Carbon fiber is popular for many applications because the tensile

strength is not affected by moisture or high temperatures. Glass fibers are used in about

90% of FRP according to [4]. Aramid fibers like Kevlar resist damage and fatigue more

than other fibers. These fibers are good for bullet proof vests, and other impact resistant

applications. All three of these fibers have great strength properties. Fiber composites can

be made by doing a wet-layup, pre-preg layup, filament winding, resin infusion, and more.

Some examples of commercial composite products made for aircraft are ARALL (Aramid

Reinforced Aluminum Laminates) and GLARE (Glass Reinforced aluminum). Reference [5]

discusses these and other hybrid composites ideal for aircraft and spacecraft.

Fibers are only useful in composites if the load is transferred to them effectively. The

fibers must be long enough to transfer the load, and the critical length is a function of the

fiber ultimate tensile strength (UTS), fiber diameter, and fiber-matrix bond strength. Fiber

composites can be made of short fibers, long uni-directional fibers, or laminates (stacked

plies of fiber). Each of these three types of fiber composites have a different degree to which

they can be customized to meet requirements.

Short-fiber reinforced composites (SFRC) are much cheaper than the other two fiber

composites mentioned (laminates and uni-directional). The critical fiber length for common

fibers like carbon and glass is usually on the order of one millimeter. Short fibers are easy to

use in plastic injection molding to make a structural material stronger and stiffer, but the

orientations are random or aligned with the flow of the plastic. Stiffness and strength (of

SFRC) become less predictable with random fiber orientation, and thus require advanced

modeling techniques [6].

Fibers in uni-directional fiber composites create high bending and tensile strength in

one direction (fiber direction), but the directions perpendicular to the strong direction are
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generally weak [3] (see Fig. 1.1). Stiffness and strength of these composites are significantly

more predictable than short fiber composites.

Fig. 1.1: Properties of fiber composites are dependent on fiber direction. Shear properties

are poor as well (not shown).

Laminates are made of plies or laminae of uni-directional or woven fiber (Fig. 1.2). A

ply is one layer of fiber in a composite laminate. Plies are laid up at angles that provide

stiffness and strength in the appropriate directions. Laminates provide strength in directions

that uni-directional fiber composites cannot. The stiffness and strength of laminates can

be predicted for each individual ply or as a smeared property (average across the whole

laminate). The interface between plies is important in this thesis as it is where delamination

is likely to occur [7].

Fig. 1.2: Example of a laminate with uni-directional fiber plies.
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1.1.2 Advantages of Composites

High bending stiffness makes fiber-reinforced polymers (FRP) ideal for many applica-

tions. Laying up uni-directional plies of fiber at different angles creates strength in appropri-

ate directions. When one fiber is weak compared to surrounding fibers, stress is distributed

through the stronger fibers that surround it.

Composites are lightweight and have higher specific strength (strength divided by den-

sity) than other materials. In many structural materials, strength increases with weight (e.g.

steel is strong but heavy). Molding a composite can reduce the number of parts/fasteners

that are otherwise used in a metal part/assembly. Composites absorb impact very well, but

each damage decreases the life cycle more than normal use does. Fiber composites generally

have a residual strength after impact damage because only some of the fibers/layers failed.

Poisson’s ratio has a big influence on fiber composites because of differences in matrix

and fiber properties. When a composite is loaded in tension, the fiber-direction strain is

much less than the negative strain in the transverse directions [3]. This is illustrated in

Fig. 1.3 with a transverse load, but this is a characteristic of loading in the fiber direction

also. Fiber composites can be designed to have zero thermal expansion in certain direc-

tions. Many natural composites like trees, bones, and muscles have self-healing properties.

Research is being done to improve healing in polymers and fibers of composites. Methods

for recycling fiber composites are also improving [8, 9].
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Fig. 1.3: Strain is larger in the transverse direction compared to that along the fiber di-

rection. (a) overall view, (b) view in 1-2 plane, (c) view in 1-3 plane, (d) view in 2-3

plane.

1.1.3 Applications of Composites

Race-cars, airplanes, and rockets all benefit from better fuel efficiency if lighter ma-

terials are used. According to [10], Boeing 787 Dreamliner and Airbus A350 are made of

composite parts that make up more than 50% of the overall weight. Other applications

where light-weight composites have shown great potential include wind turbine blades, fuel

tanks, sports equipment, and prosthetic limbs.

1.2 Composite Failure

1.2.1 Why is Failure Important to Study?

Study of failure is important for safety and cost analysis. The safety of people is a main

concern in engineering. Damage may generate costs for inspections, repairs, and materials.

In composites, many damages are almost visibly undetectable. It is important to know when
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and how failure will occur. As illustrated in Fig. 1.4, smaller damages can be detected in

a lab than can be detected in service (during regular operation). The zones, in Fig. 1.4,

are not fixed. Their sizes can be determined by physical and computational testing, and a

safety factor can be chosen based on the damage propagation zone [11,12].
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Fig. 1.4: Damage analysis and detection is used to predict fatigue failure.

Damage can initiate and grow from fatigue, manufacturing-induced initial flaws, or

accidental damages. In aircraft (and other structures), design tolerance must consider

damage during flight. Damage in flight is generally from impact with birds and hail [11].

Some well-known fracture failures involve rivets in ships (Titanic) or rivets too close to a

square-shaped window (Comet disaster), welds in ships, fuselage failures of airplanes, and

a molasses tank that flooded Boston [13].

1.2.2 Major Failure Mechanisms

There are many failure criteria that exist to determine failure in fiber composites. One

example is the Tsai-Wu criterion which determines if any lamina in a composite laminate

will fail under certain boundary and loading conditions (due to fiber failure) [14]. This is like

the Von Mises criterion used for studying metal yielding. This doesn’t work for everything

because it assumes perfect bonding between fibers and the matrix. It assumes that there are
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no initial delaminations, voids, or impurities in the composite. Composite plates/laminates

generally have an assumed plane stress condition because the two orthogonal directions (in

the laminate plane) have much greater stresses than the third orthogonal direction. That

is not always accurate when the stress becomes 3-dimensional near the edge. Fracture

mechanics and damage mechanics are important to study residual strength and stiffness of

structures. Failure can occur at microscopic and macroscopic levels, both of which have

been studied with fracture mechanics extensively [3].

Fracture in composites can initiate from micro-cracking during the curing process. It

is also common for composites to have gas or impurities in a layup that remain there when

cured. Fig. 1.5 shows a few defects that can occur from manufacturing. Resin-rich areas

and wrinkles in fibers also commonly occur in manufacturing [15].

Fig. 1.5: Illustration of fiber composite defects.

When a fiber breaks, increased shear stress may cause debonding along one or more

fibers. This can cause the bridging effect that slows or stops the crack growth. Fig. 1.6

illustrates bridging leading to fiber breakage and fiber pull-out [16]. Reference [17] explains

how stitching can improve impact resistance by bridging delaminations.
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Fig. 1.6: Illustration of fiber bridging.

Fracture in laminated composites may be interlaminar or translaminar. Interlaminar

failure occurs when fiber plies separate from each other (delamination) and is mostly based

on matrix properties. Delamination is when plies of fiber separate from each other (Fig. 1.7).

Translaminar failure occurs across the plies and is related to fiber properties. It occurs

when the fibers are in tension. More specific forms of fracture are fiber/matrix debonding,

delamination, and fiber pull-out. Fiber bridging, crack deflection, friction, and crack tip

void formation are some mechanisms that can help suspend crack growth and improve the

fracture toughness of fiber laminates [13].
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Fig. 1.7: Delamination occurs when fiber plies separate from each other.

Fracture can happen as fast fracture or fatigue fracture. The latter is the most common

failure mechanism in composites and can exist in the form of thermal, corrosion, and/or

stress-induced fatigue. Impacts are another common factor that accelerate fracture in fa-

tigue environments. Other damage contributions come from chemicals, water absorption,

and ultraviolet radiation [16–22].

1.2.3 Delamination and its Significance

This thesis is on delamination. Delamination is a form of fracture. Energy release rate

(G) is commonly used to predict fracture, it is the energy dissipated per unit surface area

created. There are three modes of fracture, and the critical energy release rate for each

mode is described as GIC , GIIC , and GIIIC . The three fracture modes can be described

as opening (Mode I), in-plane shear or sliding (Mode II), and out-of-plane shear or tearing

(Mode III). The critical energy release rate means that fast fracture occurs when the energy

release rate equals this value.

Delamination between fibers plies and interfaces is common because fiber bridging

hardly occurs there. Less energy is required for fracture to occur at an interface. In aircraft
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parts, aluminum might be bonded to carbon or aramid fiber plies (like ARALL mentioned

before) and that is where debonding can take place. Certain features of a composite are

likely to accelerate delamination/crack growth, such as corners or bolt holes. These stress

concentrations help direct delamination paths as well.

Fatigue is important in composites because voids, micro-cracks, and other defects often

exist from manufacturing (sometimes due to curing and cooling rates). Voids and initial

delaminations propagate when undergoing a cyclic loading. Composites have high residual

strength which causes delaminations to grow slowly at first; composites can be used for

many cycles with small delaminations. The delamination growth rate begins to increase as

delaminations get bigger. The life (number of cycles to failure) can be predicted through

experimental studies or computer simulation.

1.3 Study of Delaminations

Delamination simulation in composites is important because it is a common mode of

failure. Linear elastic fracture mechanics (LEFM) is assumed in delamination of composites

if the matrix is brittle. Fibers are generally brittle and do not have a yield point. An

elastoplastic fracture model may be more appropriate when analyzing a tough matrix [23].

1.3.1 Experimental Approaches

There are many approaches for inspecting composites that could also be used to exper-

imentally study them. Non-destructive test methods are important for inspections. These

may include visual inspection, ultrasonic measurements, thermal imaging (thermography),

tomography methods, and acoustic methods [15,24–27].

Experimental study of fracture and delaminations include inspection methods that

measure the size of damage. An approach for studying fracture is Digital Image Correlation

(DIC). DIC is becoming more popular and efficient in engineering as camera and computer

technologies improve. Image correlation is done by comparing several subsequent images to

determine displacement and strain fields. DIC is a surface method, and some delaminations

might not be detectable from the surface. Figure 12 in [28] (Nikishkov, et al.) shows how
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DIC can be used to experimentally study fracture by comparing a DIC test specimen with

a finite element model [28–30].

Sandwich specimens are popular in measuring fracture of adhesion. These specimens

are the Double Cantilever Beam (DCB), End-Notched Flexure (ENF), Mixed Mode Bending

(MMB), and the modified MMB shown in Fig. 1.8 [13]. These have analytical solutions for

the strain energy release rate. These solutions assume that the adhesive does not deform

much, but the equations could be adjusted for large deformation.

Fig. 1.8: Different fracture modes are simulated with laminated-beam specimens.

GI0 in Eq. 1.1, is the analytical solution of G for the DCB where P is the load at

failure, a is the crack length, b and h are the width and height, and Es is the modulus of

the substrate/adherend [13]. The DCB has been used in experimental studies of delamina-

tion in composites, mostly with uni-directional fibers, but [31] studies multi-direction fiber

composites with a DCB. ENF and MMB are also studied experimentally in [32–34].

GI0 =
12P 2a2

b2h3Es
(1.1)
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1.3.2 Computational Approaches

Cohesive models, nodal release methods, and the eXtended Finite Element Method

(XFEM) are computational approaches to simulate fracture and delamination. All these

computational approaches use finite element analysis (FEA). In FEA, the degrees of freedom

(DOF) of the system are the nodes of the finite element mesh. It is problematic (causes

errors) when the nodes do not conform to delamination fronts. Re-meshing of models

is expensive in fatigue analysis. Adjusting the following approaches, to make analyses

independent of mesh, is done with the goal of making fatigue analysis more efficient.

Cohesive zone models use an elastoplastic fracture approach. Cohesive elements must

be placed in between all the elements where fracture/damage might take place. A double

cantilever beam (DCB) only needs one layer of cohesive elements, but other models might

need cohesive elements to be placed between all the existing structural elements. This

approach is useful in fatigue when a material is not brittle and does not have a sharp crack

tip. This method doesn’t require an initial crack like LEFM does. The element fails, and

new crack surfaces are formed when the area under the traction-displacement curve is equal

to the critical energy release rate. Fig. 1.9 shows a bilinear representation of the traction-

displacement curve that is often used. This assumes linear softening and a linear modulus

of elasticity [35–37].
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Fig. 1.9: Illustration of cohesive zone model damage (stress vs. displacement).

Nodal release methods calculate the strain energy release rate (G) by calculating a

force, area of surfaces created, and a displacement. Nodes at interfaces are released when

the G is high enough to propagate the crack. Virtual Crack-Closure Technique (VCCT)

is popular and this nodal release method is discussed in Sec. 1.4 as part of the method of

spring models that is validated in this thesis [38–40].

XFEM allows cracks/delaminations to grow through an element (it was developed more

recently than other approaches). It is not restricted to nodes, geometry conforming mesh, or

interface elements. XFEM has many formulations, but all of them involve creating enriched

nodes around the crack front. Displacements are interpolated with enrichment functions

in addition to regular shape functions to account for the discontinuities (displacement and

strain) in the cut element (extra degrees of freedom (DOF) are used). The displacements are

used in the calculation of G. XFEM is not generally used for delamination. However, some

researchers have created interface elements based on the enrichment functions of XFEM to

model delamination [41].
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1.3.3 New Methods and Improvements (Literature Review)

Many researchers have worked on creating analysis methods for delaminations where

the calculation does not depend on re-meshing. Many of these methods require extra degrees

of freedom (DOF) that are activated around a crack front. Integration is also required to

calculate stiffness in interface elements that are not simple spring elements. This thesis

validates models that do not increase the DOF.

Chen et al. discussed modeling delamination growth in [42]. Their approach uses a

Floating Node Method (FNM) in which an enriched ply element was created. In FNM,

cracks are simply modeled because the DOF can be assigned to edges or surfaces. The

extra DOF exist in the element but are not tied to the nodes. The crack is modeled in

an element when floating DOF are allocated to the crack front on the element edges (2-

dimensional crack example). The element is divided into a cohesive crack subdomain and

two bulk subdomains whose coordinates and displacements are defined by the floating DOF.

Elements were created with the FNM to use with various forms of tensile failure in fiber

composites [42].

Static condensation is used to decrease computational expense by condensing internal

DOF of higher-order elements [43]. Augmented Finite Element Method (AFEM) similarly

condenses internal DOF. It creates two sub-domains to model a crack with the internal

DOF. The equilibrium equations are used to solve displacements at internal and external

nodes (using the principle of virtual work). In the final equilibrium equation, the internal

displacements do not exist [44,45].

Latifi proposed using the level set method to track delamination front growth, through

elements, independently of mesh [46]. A level set field is updated with the velocity com-

ponent of the Paris law (fatigue law that is discussed in Sec. 1.4 as part of the methods

for spring models studied in this thesis). The model, in this level set method, has two

sub-models that are solved. The cracked laminate sub-model has a kinematic formulation

that solves the displacement field, and then the other sub-model uses that displacement to

compute G. This method is not computationally expensive, even though a second system
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of equations must be solved, because the second system is linear and is only in proximity

of the delamination front [46].

De Carvalho et al. presented research that included a progressive nodal release method.

As a delamination front moves through elements in this spring model, a kinematic constraint

is applied to the top and bottom nodes directly behind the crack front. The force at this

node pair decreases linearly to zero as the delamination reaches the next node pair; at the

same time, the displacement jump is linearly increased. An 8-node interface element was

used in the formulation [47].

In [47], Gaussian averaging was used to correct for crack distortions that can grow in

fatigue analysis. The fatigue method is based on a growth increment, but it is mentioned

that the same method could be adjusted for a cycle-based fatigue analysis. The progressive

nodal release method that was used prevents crack growth and crack healing when loading

conditions vary [47].

1.4 GEM Framework of Delamination Fatigue Analysis

The GEM framework is used to model fatigue independently of mesh. It was created

by GEM (Global Engineering and Materials Inc.) and is made up of three methods: Virtual

Crack-Closure Technique (VCCT), Paris law, and the description of the delamination front.

In the GEM approach, VCCT and Paris law are the foundation, but the description of the

delamination front is the key to extracting forces, displacements, and surface areas to be

used with VCCT. At specified points along the delamination front, VCCT calculates energy

release rate (G) from inputs of force, displacement, and surface area associated with its

point. A crack growth increment (a) and G are used as inputs for the Paris law, which

in turn outputs the number of cycles for the delamination to grow. The GEM method

describes the delamination front with nodes close to the real delamination front (virtual

front) and these nodes make up the FE front. An FE front is used because nodes are the

degrees of freedom (DOF) where forces and displacements are calculated.
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1.4.1 Virtual Crack-Closure Technique (VCCT)

The Virtual Crack-Closure Technique (VCCT), which outputs G to determine if a

delamination will grow, assumes that the work required to close a crack is equal to the energy

required to open the crack. The real VCCT approach requires that the mesh conform to the

crack front, but the VCCT approach in spring models does not require a conforming mesh.

Similar approaches are the crack extension methods and other crack closure methods that

physically extend or close the crack. 2D models are ideal for simulating crack growth because

they use much less computation. Fig. 1.10 shows the modeled crack in the deformed view

where forces (Zi and Xi), displacements (wl, wl∗ , ul, and ul∗), and area (∆a × unit width)

can be used to calculate the G (Eq. 1.2). G is equal to the energy (Force × Displacement)

over the crack surfaces created (two surfaces are created) [38–40]. Krueger in [38] gives an

extensive overview of VCCT and how it can be used for delamination. This work includes

computational and experimental studies.

Fig. 1.10: Illustration of 2D VCCT.
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GI =
−Zi(wl − wl∗)

2∆a

GII =
−Xi(ul − ul∗)

2∆a

(1.2)

If a propagation analysis is to be done, two nodes are set to the same coordinates with

multi-point constraints where the crack can grow (interface). Otherwise, only one node is

necessary at that interface. See GI and GII in Eq. 1.2 for 4-node 2D elements as shown

in Fig. 1.10 (note that GIII is assumed to be zero because of the plane stress/plane strain

assumption).

As seen in the Fig. 1.10, it is assumed that ∆a in front and behind the crack tip are

equal. There are corrections to the calculation method if the lengths of the elements are

not the same (see [38]). 2D analysis assumes a unit width of the elements.

The 3D model example is shown in Fig. 1.11, and it is assumed that the element width

b is equal for all elements on the crack front. Again, [38] is referenced for corrections if the

widths are different. The equations for 3D 8-node elements remain the same for 4 node

plate/shell type elements (see Fig. 1.11 and Eq. 1.3). Forces are ZLi, XLi, and YLi, and the

displacements are wLl, wLl∗ , uLl, uLl∗ , vLl, and vLl∗ . Forces, displacements, and surface

area (b×∆a) determine the value of G. If the delamination is an arbitrary shape, and not

a straight line, then a local/natural coordinate system at the crack tip should be defined.

See equations in [38] for elements with mid-side nodes and singularity elements.



18

Fig. 1.11: Illustration of 3D VCCT.

GI =
−ZLi(wLl − wLl∗)

2b∆a

GII =
−XLi(uLl − uLl∗)

2b∆a

GIII =
−YLi(vLl − vLl∗)

2b∆a

(1.3)

Sharp-corner delaminations do not work well with this method, but a mesh can be

refined to have a small round-corner delamination. For bi-material interfaces (like compos-

ites that have directional properties), accurate results will only be achieved if appropriate

element sizes are used. The length ∆a should be determined based on the initial crack

length a and the sameness of material. Element height should be determined by comparing

ply thickness to element length (∆a). Shell elements decrease computation time, but they

are not always appropriate to use near delaminations. For example, composites that have
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delaminations on various layers or near edges are better modeled with 3D elements [38].

VCCT in a Spring Model

A spring model is used by creating interfaces where it is known that the delamination

could occur. This interface is made by creating stiff spring elements between the two sides

of the interface. An initial delamination can be specified where the springs are removed

or reduced to zero stiffness. The GEM spring model (GEM framework) can also initiate a

delamination in an area of high stress (still at the interface but where there is no existing

delamination), but that is not the focus of this project.

The springs have stiffness in three directions and displacement is based on Hooke’s law

F = kx (constitutive equation). As described in the VCCT approach, a force, displacement,

and area are used to calculate energy release rate G (Eq. 1.3). The force is extracted from

the spring, the displacement is taken from a specified distance behind and normal to the

delamination front (usually based on element length), and the area is based on the size

of the elements as described in [47]. The spring model is based on linear elastic fracture

mechanics (LEFM). High forces at the crack front are used to determine G which determines

if a crack will grow (forces are concentrated at crack fronts) [48].

1.4.2 Paris Law

The Paris law, which predicts fatigue life, has several forms of expression. Eq. 1.4

is the form that is used for this thesis. C and m are material properties that must be

found experimentally. GC is also a material constant, namely the critical energy release

rate (GC = GIC +GIIC +GIIIC). Energy release rate G is to be calculated, and its value

determines the crack speed da/dN (G = GI +GII +GIII) [34,35].

da

dN
= C

(
∆G

GC

)m
(1.4)

The stress intensity factor (for fracture in metals) is related to G. In analysis of com-

posites, it is more useful to use G. Unlike brittle/fast fracture, a crack in fatigue loading
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propagates at much lower G values than GC . It is most important to consider ∆G when

designing because the varying load is what causes the failure. Composites have fatigue

thresholds like some metals, but they can vary with temperature or loading configura-

tion [11,13,35].

An analysis can be done by incrementing either the number of cycles N or the crack

growth a. Integration can solve the analytical solution. The integral in Eq. 1.5 is used for

incrementing crack growth a (in an analysis, a is not infinitesimal and the solution is not

integrated). The energy release rate is generally a function of the crack length a, but not

always.

N = C−1
(

1

GC

)−m ∫ a1

a0

∆G−mda (1.5)

Eq. 1.5 can also take the form of Eq. 1.6 where ∆G = Gmax(1 − R2). R is the stress

ratio σmin/σmax which equals
√
Gmin/Gmax. The integrand has been simplified in this

form of the equation.

N = C−1
(

1−R2

GC

)−m ∫ a1

a0

(Gmax)−mda (1.6)

1.4.3 Description of the Delamination Front in a Spring Model

The purpose of fatigue simulation with the GEM spring model is to make an accurate

prediction of fatigue life that does not depend on the shape of the finite element mesh. The

true front is represented by a virtual front (it does not coincide with the DOF of the model).

The FE front is the node approximation of the virtual front (shown in green in Fig. 1.12).

The GEM method is described below:
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Fig. 1.12: Illustration of the virtual delamination front used in the GEM spring model (top

view of interface).

1. The red line is the virtual front. Elements are determined to be debonded if they are

behind the front and bonded if they are ahead of the front (elements described are

those below the interface).

(a) Elements cut by the front are determined to be bonded based on the element

area traversed by the front. For example, if over half of the element is traversed

by the front then the element is considered debonded (shown as dark orange)

otherwise it is bonded (dark blue).

(b) Bonded elements have springs placed at all their nodes.

(c) Nodes that are shared by bonded and debonded elements become the FE front

(green line).

2. The FE front is used to calculate G at the node DOF using the VCCT approach

(a) A force is extracted from each point on the FE front (for example point P ).
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(b) The displacement comes from the point P ′. Point P and point P ′ lie on a line

normal to the virtual front which originates at point A. Point P ′ is usually an

element length behind point P but can be changed in the code. The displacement

is interpolated from the four surrounding nodes.

(c) The surface area is determined by 3 points on the FE front along with point P ′.

3. Once G is determined, it is projected to the virtual front (point A) where it determines

the crack speed from the Paris law (crack speed is represented by the blue vectors)

4. Point A′ is determined from point A based on the value of the crack increment (nor-

mally an element length) scaled by the crack speed. Point A′ lies on the line normal

to the front at point A.

5. All the points to describe the new virtual front are determined (red), and the next

increment of crack growth uses the new virtual front.

1.5 Importance of Accurate G Calculations in Fatigue Failure Analysis

It is important that the calculation of G is accurate. The Paris law is discussed in

Sec. 1.4 (Sec. 1.4.2) as part of the methods for spring models that are studied in this thesis.

It is used for fatigue analysis and life prediction. Error in G is compounded in the fatigue

analysis after many increments of crack growth. An exponent exists in the Paris law that

also compounds the error of G.

For each increment of crack growth in a finite element analysis, G determines the crack

speed at every point on the delamination front. The point with the highest G is where the

delamination is propagated the furthest (specified increment of crack growth). The number

of cycles is determined from the crack growth and the crack speed. A new G is calculated at

every increment of crack growth. If G is not accurate, then it affects the calculated number

of cycles increasingly during each increment. In this thesis, the accuracy of G is determined

with analytical solutions of specific types of cracks.
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A critical issue with the GEM spring model is that a FE front (true front approximated

by nodes) is very different from the true front. Another issue is that G is approximated at

the true front by a close node on the finite element mesh (FE front). These issues cause

errors in the G calculation.

1.6 Summary

Fiber composites make up a significant number of products in industry. They are

advantageous because of their ability to have directional strength which allows them to be

light-weight. They are used for sports, medical, energy, military, and aerospace applications.

Composites can resist impact, but their overall strength is lessened. Delaminations that

begin to grow at the interfaces of fiber plies are a major failure mechanism. Delamination

can be analyzed with energy release rate (G), but the analysis methods available are not

always accurate, efficient, or easy.

Using a finite element approach, many methods require that the finite element mesh be

geometry conforming to the delamination front. In many cases, this is difficult because of

the complicated geometry. In propagation, it is computationally expensive to re-mesh, and

errors in G are compounded. A solution for this problem is a new spring model that places

stiff springs at the delamination front (and behind) and calculates G based on the VCCT

approach (Sec. 1.4.1). A new interface element is required that uses shape functions to move

the springs to the delamination front location to output accurate forces and displacements.

An accurate G calculation along the delamination front is critical to having an accurate

propagation analysis.
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CHAPTER 2

RESEARCH OBJECTIVES

• Develop a user-element subroutine (UEL), as part of a new framework, that simplifies

the G calculation by eliminating the FE front (Chap. 3)

• Verify the accuracy of energy release rate (G) in the GEM spring model (described in

Sec. 1.4) with analytical solutions, VCCT, and/or J-integral (Sec. 4.1)

• Verify that the new framework has close accuracy of G (Sec. 4.2)

• Compare new framework with GEM framework (Sec. 4.3)

• Study the effect of a mesh-independent energy release rate on the predicted fatigue

life (Sec. 4.4)
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CHAPTER 3

NEW FRAMEWORK FOR EVALUATION OF G WITHOUT FE FRONT

A new model was created, to increase the accuracy of G. This model is like the GEM

model in that forces are extracted from spring elements to solve for G using the VCCT

approach. The new model requires an 8-node interface element, rather than a 2-node

element, to approximate displacements between nodes using shape functions (Fig. 3.2).

These shape functions simulate a spring in the middle of the element by distributing the

stiffness to the nodes (there are no added DOF in the model). A stiffness matrix is required

in the finite element analysis, and it is created from the distributed stiffness and the original

nodal stiffness. The force is then extracted from the simulated spring location, with the

approximated stiffness and displacement, to calculate G. The new framework does not

currently include fatigue.

Fig. 3.1 shows a comparison of the VCCT calculation in the GEM spring model and

the new spring model along with a normal VCCT approach. The thick black line is the

delamination front and the region to the left of the front is the delaminated region. The

area for the G-calculation is green (see Sec. 1.4.1 and 1.4.3)
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Fig. 3.1: A VCCT approach is used in both the GEM spring model and the new spring

model. Forces, displacements, and areas are determined differently in each framework (see

Sec. 1.4.1, 1.4.3, and 3.1).

3.1 An 8-Node Interface Element (Abaqus UEL)

The purpose of this 8-node interface element is to distribute a spring stiffness to sur-

rounding nodes and get correct displacements anywhere in the element (see Sec. A.1 for the

UEL subroutine outline). Spring forces are calculated using Hooke’s law (F = kx where k

is the spring stiffness and x is the displacement). The spring at point P , in Fig. 3.2, could

be placed on the true front to extract a force at the front. The spring P is only placed in

the center of the element for demonstration; the new method adds springs to the element

edges to cut the element (see Fig. 3.3). The Ptop displacement is calculated using shape

functions of the top 4-node element, and the Pbot displacement is calculated with the shape

functions from the bottom 4-node element. The change in spring length is calculated by

using the displacements of Ptop and Pbot. The forces on point P are distributed to N1, N2,

N3, and N4 by use of the shape functions.
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Fig. 3.2: Virtual springs are added to elements and are simulated by distributing the stiffness
to the nodes of the top and bottom 4-node elements. It was decided to only place springs
on the element edges as shown in Fig. 3.3.

A 2-node UEL (Abaqus user-defined element) cannot be used in the new model because

the displacements from N1 to N4 are needed for interpolating the displacement of spring P

(Fig. 3.2). Forces are needed at the crack front. Fig. 3.3 shows where the springs are inside

of the new 8-node interface UEL.

Fig. 3.3: Top and isometric views of 8-node interface element (Abaqus UEL) where springs

are added to the element edges and along the delamination front.
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3.2 Stiffness Matrix from Assigned Spring Stiffness

Abaqus UEL requires that a stiffness matrix (AMATRX) and a residual force vector

(RHS) be defined for a static analysis (Eq. 3.1). The U displacement vector is solved in

the analysis. Natural coordinates are required to distribute the spring stiffness to nodes

and create the stiffness matrix. Node springs and springs on the front are assigned stiffness

that are consistent with the overall stiffness of the interface.

RHS = −AMATRX × U (3.1)

A stiffness matrix Kfront contains stiffnesses that have been distributed to nodes from

the front springs (on the delamination front). It is added to the nodal stiffness matrix

Knodal to create the element stiffness matrix (Eq. 3.2). Knodal is a 24x24 matrix because

each node has three degrees of freedom (Eq. 3.3).

AMATRX = Knodal +Kfront (3.2)
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Knodal =



k1 0 0 0 0 0 0 0 0 0 0 0 −k1 0 0 0 0 0 0 0 0 0 0 0

0 k1 0 0 0 0 0 0 0 0 0 0 0 −k1 0 0 0 0 0 0 0 0 0 0

0 0 k1 0 0 0 0 0 0 0 0 0 0 0 −k1 0 0 0 0 0 0 0 0 0

0 0 0 k2 0 0 0 0 0 0 0 0 0 0 0 −k2 0 0 0 0 0 0 0 0

0 0 0 0 k2 0 0 0 0 0 0 0 0 0 0 0 −k2 0 0 0 0 0 0 0

0 0 0 0 0 k2 0 0 0 0 0 0 0 0 0 0 0 −k2 0 0 0 0 0 0

0 0 0 0 0 0 k3 0 0 0 0 0 0 0 0 0 0 0 −k3 0 0 0 0 0

0 0 0 0 0 0 0 k3 0 0 0 0 0 0 0 0 0 0 0 −k3 0 0 0 0

0 0 0 0 0 0 0 0 k3 0 0 0 0 0 0 0 0 0 0 0 −k3 0 0 0

0 0 0 0 0 0 0 0 0 k4 0 0 0 0 0 0 0 0 0 0 0 −k4 0 0

0 0 0 0 0 0 0 0 0 0 k4 0 0 0 0 0 0 0 0 0 0 0 −k4 0

0 0 0 0 0 0 0 0 0 0 0 k4 0 0 0 0 0 0 0 0 0 0 0 −k4

−k1 0 0 0 0 0 0 0 0 0 0 0 k1 0 0 0 0 0 0 0 0 0 0 0

0 −k1 0 0 0 0 0 0 0 0 0 0 0 k1 0 0 0 0 0 0 0 0 0 0

0 0 −k1 0 0 0 0 0 0 0 0 0 0 0 k1 0 0 0 0 0 0 0 0 0

0 0 0 −k2 0 0 0 0 0 0 0 0 0 0 0 k2 0 0 0 0 0 0 0 0

0 0 0 0 −k2 0 0 0 0 0 0 0 0 0 0 0 k2 0 0 0 0 0 0 0

0 0 0 0 0 −k2 0 0 0 0 0 0 0 0 0 0 0 k2 0 0 0 0 0 0

0 0 0 0 0 0 −k3 0 0 0 0 0 0 0 0 0 0 0 k3 0 0 0 0 0

0 0 0 0 0 0 0 −k3 0 0 0 0 0 0 0 0 0 0 0 k3 0 0 0 0

0 0 0 0 0 0 0 0 −k3 0 0 0 0 0 0 0 0 0 0 0 k3 0 0 0

0 0 0 0 0 0 0 0 0 −k4 0 0 0 0 0 0 0 0 0 0 0 k4 0 0

0 0 0 0 0 0 0 0 0 0 −k4 0 0 0 0 0 0 0 0 0 0 0 k4 0

0 0 0 0 0 0 0 0 0 0 0 −k4 0 0 0 0 0 0 0 0 0 0 0 k4



(3.3)

Knodal is based on Hooke’s law for a simple spring (F = kx). Fig. 3.4 shows the

displacements that correspond to each spring. To find the force on the k2 spring in the

z-direction, the stiffness k2 is multiplied by the difference in displacement of the node on

top and bottom of the spring; the force is k2 × (U(18) − U(6)) on the top node, and

k2× (U(6)−U(18)) on the bottom node (note that the residual force is the negative value

of this force (Eq. 3.1)).
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Fig. 3.4: Each node in the interface element has 3 DOF and the stiffness and displacements

shown make up the U vector and the Knodal matrix.

Kfront was derived in the same way that consistent nodal loads are solved (found in

finite element texts such as [43]). A nodal reaction force is equal to its corresponding shape

function multiplied by the force applied to the element; the shape function is evaluated at

the coordinates of the applied force. The reaction force vector is equal to the transpose of

its shape function vector multiplied by the applied force.

In the 8-node element formulation, a force is applied to the element by means of a

spring. Each spring applies a force to the top and bottom of the element. Multiple forces

applied internally require a shape function matrix N instead of a vector. F ′ is the force

vector simulated at the front springs and is given by Eq. 3.4 (prime (’) means associated with

a front spring). The displacement at a front spring U ′ is in terms of the nodal displacements

U because it is interpolated. K ′ is a stiffness matrix formed in the same manner as Knodal

but with only two springs which are labeled k1′ and k2′ (see Eq. 3.5).

F ′ =K ′U ′

F ′ =K ′NU

(3.4)
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K ′ =



k1′ 0 0 0 0 0 −k1′ 0 0 0 0 0
0 k1′ 0 0 0 0 0 −k1′ 0 0 0 0
0 0 k1′ 0 0 0 0 0 −k1′ 0 0 0
0 0 0 k2′ 0 0 0 0 0 −k2′ 0 0
0 0 0 0 k2′ 0 0 0 0 0 −k2′ 0
0 0 0 0 0 k2′ 0 0 0 0 0 −k2′

−k1′ 0 0 0 0 0 k1′ 0 0 0 0 0
0 −k1′ 0 0 0 0 0 k1′ 0 0 0 0
0 0 −k1′ 0 0 0 0 0 k1′ 0 0 0
0 0 0 −k2′ 0 0 0 0 0 k2′ 0 0
0 0 0 0 −k2′ 0 0 0 0 0 k2′ 0
0 0 0 0 0 −k2′ 0 0 0 0 0 k2′


(3.5)

The vector containing front spring displacements U ′ is pre-multiplied by the same shape

function matrix N used in consistent nodal loads (Eq. 3.6). This is how the displacements

are interpolated. The displacements in the vector U ′ can be visualized in Fig. 3.5.

U ′ = NU (3.6)
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Fig. 3.5: The displacements on top and bottom of the front springs make up the U ′ vector

as shown (U ′ = NU). The K ′ Matrix is made of the spring stiffnesses k1′ and k2′ (Eq. 3.5).

The springs, inside the element, distribute forces to the nodes as shown in Eq. 3.7

(RHS is the residual force vector). Again, using Hooke’s law (constitutive equation), force

equals a stiffness matrix multiplied by a displacement vector. The matrix Kfront has been

created.

RHS =−KnodalU −NTK ′NU

RHS =−KnodalU −KfrontU

(3.7)

The stiffness matrix from the front springs K ′ is pre- and post-multiplied by a shape

function matrix N to create Kfront. This multiplication allows addition of the two stiffness

matrices Knodal and Kfront. Unlike Knodal, the Kfront matrix is nearly full because internal

displacements are in terms of the nodal displacements. However, Kfront is not as full when
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springs are placed on element edges because their displacements are only interpolated from

two nodes.

Kfront = NTK ′N (3.8)

The shape functions distribute the front spring stiffness to the nodes (see Eqs. 3.9

and 3.10 for the shape function matrix N and its transpose NT ). In the N matrix, N1(2
′) is

the first shape function (N1) evaluated at the natural coordinates of the second front spring

(2′). Other values in the shape function are similarly calculated. Natural coordinates must

be converted from global coordinates before the AMATRX can be calculated.

N =



N1(1
′) 0 0 N2(1

′) 0 0 N3(1
′) 0 0 N4(1

′) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 N1(1
′) 0 0 N2(1

′) 0 0 N3(1
′) 0 0 N4(1

′) 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 N1(1
′) 0 0 N2(1

′) 0 0 N3(1
′) 0 0 N4(1

′) 0 0 0 0 0 0 0 0 0 0 0 0

N1(2
′) 0 0 N2(2

′) 0 0 N3(2
′) 0 0 N4(2

′) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 N1(2
′) 0 0 N2(2

′) 0 0 N3(2
′) 0 0 N4(2

′) 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 N1(2
′) 0 0 N2(2

′) 0 0 N3(2
′) 0 0 N4(2

′) 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 N1(1
′) 0 0 N2(1

′) 0 0 N3(1
′) 0 0 N4(1

′) 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 N1(1
′) 0 0 N2(1

′) 0 0 N3(1
′) 0 0 N4(1

′) 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 N1(1
′) 0 0 N2(1

′) 0 0 N3(1
′) 0 0 N4(1

′)

0 0 0 0 0 0 0 0 0 0 0 0 N1(2
′) 0 0 N2(2

′) 0 0 N3(2
′) 0 0 N4(2

′) 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 N1(2
′) 0 0 N2(2

′) 0 0 N3(2
′) 0 0 N4(2

′) 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 N1(2
′) 0 0 N2(2

′) 0 0 N3(2
′) 0 0 N4(2

′)


(3.9)
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NT =



N1(1
′) 0 0 N1(2

′) 0 0 0 0 0 0 0 0
0 N1(1

′) 0 0 N1(2
′) 0 0 0 0 0 0 0

0 0 N1(1
′) 0 0 N1(2

′) 0 0 0 0 0 0
N2(1

′) 0 0 N2(2
′) 0 0 0 0 0 0 0 0

0 N2(1
′) 0 0 N2(2

′) 0 0 0 0 0 0 0
0 0 N2(1

′) 0 0 N2(2
′) 0 0 0 0 0 0

N3(1
′) 0 0 N3(2

′) 0 0 0 0 0 0 0 0
0 N3(1

′) 0 0 N3(2
′) 0 0 0 0 0 0 0

0 0 N3(1
′) 0 0 N3(2

′) 0 0 0 0 0 0
N4(1

′) 0 0 N4(2
′) 0 0 0 0 0 0 0 0

0 N4(1
′) 0 0 N4(2

′) 0 0 0 0 0 0 0
0 0 N4(1

′) 0 0 N4(2
′) 0 0 0 0 0 0

0 0 0 0 0 0 N1(1
′) 0 0 N1(2

′) 0 0
0 0 0 0 0 0 0 N1(1

′) 0 0 N1(2
′) 0

0 0 0 0 0 0 0 0 N1(1
′) 0 0 N1(2

′)
0 0 0 0 0 0 N2(1

′) 0 0 N2(2
′) 0 0

0 0 0 0 0 0 0 N2(1
′) 0 0 N2(2

′) 0
0 0 0 0 0 0 0 0 N2(1

′) 0 0 N2(2
′)

0 0 0 0 0 0 N3(1
′) 0 0 N3(2

′) 0 0
0 0 0 0 0 0 0 N3(1

′) 0 0 N3(2
′) 0

0 0 0 0 0 0 0 0 N3(1
′) 0 0 N3(2

′)
0 0 0 0 0 0 N4(1

′) 0 0 N4(2
′) 0 0

0 0 0 0 0 0 0 N4(1
′) 0 0 N4(2

′) 0
0 0 0 0 0 0 0 0 N4(1

′) 0 0 N4(2
′)


(3.10)

3.2.1 Transformation from Global Coordinates to Natural Coordinates

For any point on the front, global coordinates are known. There are eight values in

Eq. 3.9 that must be solved; these are shape functions for a Q4 element. This matrix is

used in the calculation of Kfront (Eq. 3.8) which represents spring stiffnesses distributed

to the element nodes. Each element can be represented by natural coordinates so that the

interpolating shape functions are the same for every element. An approach is needed to

convert the known global coordinates to natural coordinates to solve the value of each shape

function.

The natural coordinates must be known to create an accurate shape function matrix. A

Q4 element has bilinear shape functions. A computational method was developed to convert

global coordinates into natural coordinates. This method does not require an optimization

and/or an iteration method (line search and steepest descent methods have been used in

other analysis software).

Shape functions are in terms of natural coordinates. Shape functions in Eq. 3.11 range

between 0 and 1 and natural coordinates range between -1 and 1. When ξ = 1 and η = 1,
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N3 = 1 and N1 = N2 = N4 = 0. The Q4 shape functions can be visualized in Fig. 3.6.

N1 =
(1− ξ)(1− η)

4

N2 =
(1 + ξ)(1− η)

4

N3 =
(1 + ξ)(1 + η)

4

N4 =
(1− ξ)(1 + η)

4

(3.11)

Fig. 3.6: Q4 Shape functions are bilinear (x and y are global coordinates and ξ and η are

natural coordinates).

The method for changing global coordinates to natural coordinates is setting slopes

equal (Fig. 3.7). The bilinear shape functions make it possible to set one of the natural

coordinates to be constant to create a straight line. Three points are used to find the line

slopes. ξ is calculated in one of three ways depending on the orientation of the element in

the global coordinate system.
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Fig. 3.7: The slopes of AC and BC are equal for a bilinear problem.

The method for vertical slopes uses the slopes from nodes 2 to 3 and nodes 1 to 4

as shown in Eq. 3.12 (Fig. 3.7). The global coordinates for point 1 are x1 and y1. The

coordinates for other points are labeled likewise.

m23 =
y3 − y2
x3 − x2

m14 =
y4 − y1
x4 − x1

(3.12)

If slopes in Eq. 3.12 are vertical, then x3 − x2 = x4 − x1 = 0 and ξ is calculated

from Eq. 3.13. This equation uses the shape functions from Eq. 3.11 and x =
∑4

i=1Nixi

(Eq. 3.14) where x is the x-value (global coordinate) of point A and point C in Fig. 3.7.

Note that two of the shape functions equal zero because point A is on an element edge.

ξ =
2(x− x1)
x2 − x1

− 1 (3.13)
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x =
4∑
i=1

Nixi

y =
4∑
i=1

Niyi

(3.14)

ξ is calculated from Eqs. 3.15 and a quadratic equation if the slopes m23 and m14 are

not vertical. Again, the Eq. 3.14 is used to find the x and y global coordinates of points A

and B in Fig. 3.7 (Ax, Ay, Bx, and By in Eq. 3.15). The equation has been simplified to

isolate ξ.

Ax =
(x2 + x1)

2
+

(x2 − x1)
2

ξ = A1x +A2xξ

Bx =
(x3 + x4)

2
+

(x3 − x4)
2

ξ = B1x +B2xξ

Ay =
(y2 + y1)

2
+

(y2 − y1)
2

ξ = A1y +A2yξ

By =
(y3 + y4)

2
+

(y3 − y4)
2

ξ = B1y +B2yξ

(3.15)

Using Eq. 3.15 and setting the slopes equal (Eq. 3.16), Eq. 3.17 is derived. The coor-

dinates x and y, in Eqs. 3.17 and 3.16, are the global coordinates of point C. The variables

A, B, and C in Eq. 3.17 are new constants from Eq. 3.16 in the form Aξ2 +Bξ + Cξ = 0.

mAC =
y −Ay
x−Ax

mCB =
By − y
Bx − x

(3.16)

C = (B1x −A1x)y + (A1y −B1y)x+B1yA1x −B1xA1y

B = (B2x −A2x)y + (A2y −B2y)x+B1yA2x +B2yA1x −A2yB1x −A1yB2x

A = A2xB2y −A2yB2x

(3.17)
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If A from Eq. 3.17 is equal to zero, then ξ is calculated with Eq. 3.18. Otherwise, ξ is

calculated from Eq. 3.19. The root between -1 and 1 is used.

ξ =
−C
B

(3.18)

ξ =
−B ±

√
B2 − 4AC

2A
(3.19)

After ξ is found, η is found using Eq. 3.22 (where the constants are solved in Eqs. 3.20

and 3.21). The constants in Eqs. 3.20 and 3.21 are derived from Eq. 3.14. The equation

is long when all the shape functions are multiplied through; it is broken into 5 equations.

Eq. 3.22 contains two equations, and if the denominator of the first one is equal to zero,

then the second equation is used.

c1 = c2η + c3ξ + c4ξη

c1 = 4x−
∑

xi

c2 = −x1 − x2 + x3 + x4

c3 = −x1 + x2 + x3 − x4

c4 = x1 − x2 + x3 − x4

(3.20)

k1 = k2η + k3ξ + k4ξη

k1 = 4y −
∑

yi

k2 = −y1 − y2 + y3 + y4

k3 = −y1 + y2 + y3 − y4

k4 = y1 − y2 + y3 − y4

(3.21)
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η =
c1 − c3ξ
c2 + c4ξ

or

η =
k1 − k3ξ
k2 + k4ξ

(3.22)

3.2.2 Stiffness Assigned to Front Springs and Node Springs

Two approaches were created for assigning stiffness to springs (necessary for stiffness

matrix). Both approaches have advantages and disadvantages, but future work could im-

prove stiffness assignment. Spring stiffness is assigned at the delamination front and at

bonded nodes to keep the overall stiffness of the model accurate. Two springs are added

to the edges of an element where that element is intersected by a delamination front. For

solving intersection points, all element sides are parallel or perpendicular to the global axes

and element sides are of equal length.

The algorithm for solving intersection points was created for a circular delamination;

future improvement must be made to this algorithm for fatigue analysis. The circle equation

is given in Eq. 3.23; x and y are global coordinates for a spring on an element edge and r

is the radius of the circular delamination. The terms x0 and y0 are the coordinates at the

center of the circle.

(x− x0)2 + (y − y0)2 = r2 (3.23)

Edges are made orthogonal to the global axes so that one of the coordinates remains

constant. When an element is cut, the program loops through the edges to determine

which edge is cut (one node debonded and the other bonded). The edge has one constant

coordinate. If y is constant, x is evaluated from Eq. 3.24. If x is constant, y is solved using

Eq. 3.25. These two equations are formed from the circle equation (Eq. 3.23). The correct

solution to either of these equations is the one that provides coordinates between the node

coordinates (the nodes that define the element edge).
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x = x0 ±
√
r2 − (y − y0)2 (3.24)

y = y0 ±
√
r2 − (x− x0)2 (3.25)

There are three cases of cut elements as seen in Fig. 3.8. Areas are distributed to the

nodal and front springs in a different way for each case. The input stiffness for each spring

in the model has units of Force/Length3. Every spring has an area associated with it to

calculate a spring stiffness with units of Force/Length.



41

Fig. 3.8: Elements that are intersected by a delamination are cut. There are three cases for

cut elements (3-point, 4-point, 5-point).

An initial approach to assigning stiffness has a discrepancy but shows approximately

how area is distributed (Fig. 3.9). Area and stiffness were initially distributed by finding the

centroid of the shape created by the internal springs and bonded nodes (midpoints between

springs were also found). Two triangle areas were calculated and distributed to each spring

and node in the bonded part of the element. It was found that there was a discrepancy in

the stiffness distribution when different types of cut elements (3-point, 4-point, and 5-point

cut elements) approached the same delamination shape.
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Fig. 3.9: A discrepancy is shown for the area distribution if the centroid is used (bonded

portion of the element is blue).

Another area assignment approach was created that fixed the discrepancy. A visual

representation cannot be easily made because it is completely based on equations. The

stiffness/area distribution shown in Fig. 3.10 assumes that each corner of the element has a

square area associated with it. It was used to formulate equations that are continuous as a

3-point or 5-point cut element approaches and becomes a 4-point cut element. Stiffness is

assigned to the front springs and the bonded nodes, while delaminated nodes are assigned

zero stiffness.
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Fig. 3.10: As the bonded area (blue) approaches half of the element area (entire square),

the stiffness adds up to half of the fully bonded stiffness. As the element approaches a fully

bonded area, each corner is assigned one-fourth of the total stiffness.

For a 3-point cut element (Fig. 3.11), internal springs approach one-eighth stiffness as

the bonded length (a or b) approaches the element length l (Eq. 3.26 and Fig. 3.10). Aspring,1

is the fraction of the element area assigned to the spring at point 1 in Fig. 3.11, and likewise

Aspring,2 is the fraction assigned to point 2. Anode,3 is the area fraction distributed to the

node at point 3. The total bonded area fraction is x1x2/2. The stiffness of the springs at

each of these points is equal to their area fraction multiplied by the total element stiffness

of a fully bonded element. Stiffness, at each point, goes to zero as the element becomes

fully debonded.
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Fig. 3.11: Areas for a 3-point cut element are distributed with Eq. 3.26 (bonded portion of

element is blue).

x1 = a/l

x2 = b/l

Aspring,1 = x21x2/8

Aspring,2 = x22x1/8

Anode,3 = (4x1x2 − x21x2 − x22x1)/8

(3.26)

The 4-point cut element is shown in Fig. 3.12 and its equations are shown in Eq. 3.27.

The values of a and b are the bonded length and l is the element length. Aspring,1 and

Aspring,2 are equal to the area fraction assigned to points 1 and 2 in Fig. 3.12. Anode,3 and

Anode,4 are the area fractions distributed to the nodes at points 3 and 4, respectively. The

stiffness of the springs at these points is determined from the fully bonded element total

stiffness and the area fraction as described for the 3-point cut element. The total bonded

area fraction is (x1 + x2)/2. A 4-point cut element can simulate an element that is near

fully debonded or fully bonded as well as a triangle shape cut element (see Fig. 3.10).
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Fig. 3.12: Areas for a 4-point cut element are distributed with Eq. 3.27 (bonded portion of

the element is blue).

x1 = a/l

x2 = b/l

Aspring,1 = (x1 + x2)/8

Aspring,2 = (x1 + x2)/8

Anode,3 = x2/4

Anode,4 = x1/4

(3.27)

The 5-point cut element is shown in Fig. 3.13 and equations are shown in Eq. 3.28. The

values of a and b are the bonded length and l is the element length. Aspring,1 and Aspring,2

are equal to the area fraction assigned to points 1 and 2 in Fig. 3.13. Anode,3, Anode,4, and

Anode,5 are the area fractions distributed to the nodes at points 3, 4, and 5, respectively.

The stiffness of the springs at these points is determined as described for the 3-point cut

element. The total bonded area fraction is
(

1− (1−x1)(1−x2)
2

)
. A 5-point cut element can

simulate a fully bonded element or a triangle shape cut element (see Fig. 3.10).
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Fig. 3.13: Areas for a 5-point cut element are distributed with Eq. 3.28 (bonded portion of

the element is blue).

x1 = a/l

x2 = b/l

Aspring,1 =

(
1

2
− (1− x1)(1− x2)

2

)
x1
4

Aspring,2 =

(
1

2
− (1− x1)(1− x2)

2

)
x2
4

Anode,3 =

(
1

2
− (1− x1)(1− x2)

2

)
2− x2

4
+

1

8

Anode,4 =
1

4

Anode,5 =

(
1

2
− (1− x1)(1− x2)

2

)
2− x1

4
+

1

8

(3.28)

3.3 VCCT in New Spring Model

The VCCT calculation uses a force, displacement, and area to calculate energy release

rate (Sec. 1.4.1 and Fig. 3.14). Fig. 3.14 illustrates a normal VCCT method (that has a

geometry conforming mesh) to be compared with a similar VCCT method used in the new

mesh-independent spring model.
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Fig. 3.14: VCCT calculation that could be used for a geometry conforming mesh.

Fig. 3.15 illustrates how the new UEL calculates G using a VCCT method. The spring

location, where the force is extracted, is not located on a node. The natural coordinates, of

the force point, are needed for nodal stiffness distribution and to determine the displacement

at that point (force is this displacement multiplied by spring stiffness). Natural coordinates

of the displacement point are needed for the same reason. The global to natural coordinate

subroutine described in Sec. 3.2.1 must be used twice for each G calculation point.
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Fig. 3.15: VCCT calculation used in the new interface element (Abaqus UEL). Compare

with Fig. 3.14.



49

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Evaluation of GEM Spring Model

The GEM spring model is efficient in calculating energy release rate (G). The accuracy

of the G calculation was determined by comparing it with analytical models and other finite

element models. The purpose of the GEM spring model is to calculate G independently of

the finite element mesh (for fatigue life predictions). The new framework does not currently

include fatigue and that is a plan for future work. For verification, isotropic materials were

used (with elastic properties like those of steel). The modulus of elasticity was set to

161, 000 N/mm2 and Poisson’s ratio was set to 0.3 for all models.

4.1.1 Circular Crack in Infinite Solid (Mode I Crack)

The circular crack was used to solve mode I energy release rate in an infinite solid. Two

simplifications were made for computational efficiency: a large cylinder was used instead of

an infinite solid and symmetry was used to model only a quarter of the crack. The model

shown in Fig. 4.1 is compared with the analytical solution of G for an infinite cylinder which

is given in Eq. 4.1 [49]. The load applied to this model was a tensile stress σ = 10 N/mm2.

The crack radius was a = 8 mm, Poisson’s ratio was ν = 0.3, and the modulus of elasticity

was E = 161, 000 N/mm2. The cylinder had a radius of 50 mm and a height of 100 mm.

The analytical value for the problem is GI0 = 0.005757 N/mm (GI0 = 5.757 J/m2 =

5.757× 10−6 J/mm2).

GI0 =
4σ2a

πE
(1− ν2) (4.1)
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Fig. 4.1: The quarter cylinder model used to evaluate a circular and elliptical crack.

First, VCCT and spring models were compared using a geometry conforming mesh (see

Fig. 4.2). This was expected to calculate G most accurately because the delamination is

on nodes of the mesh, where G is calculated. Fig. 4.2 shows that calculated G values are

constant around the delamination. The VCCT analysis time was ∼2300 seconds and the

spring model analysis time was ∼400 seconds.
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Fig. 4.2: The GEM spring model is compared with Abaqus VCCT for a circle crack with a

geometry conforming mesh (normalized with the analytical solution Eq. 4.1).

The second model used for comparison had a square mesh with a circular delamination

that was approximated by close nodes. Fig. 4.3 reveals that a square mesh has less accurate

calculations than the geometry conforming mesh and Abaqus VCCT still requires more

computation time (VCCT ∼22,000 seconds vs. spring model ∼1500 seconds). The GEM

spring model uses a smoothing function to improve the energy release rate prediction, and

it is unknown if Abaqus VCCT has a smoothing function. Negative (compressive) forces do

not open cracks, and they occur in front of an opening crack to counteract the high tensile

forces at the crack front. In the GEM model, negative values of G are set to zero.
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Fig. 4.3: The GEM spring model is compared with Abaqus VCCT for a circle crack with a

square mesh (normalized with the analytical solution Eq. 4.1).

4.1.2 Elliptical Crack in Infinite Solid (Mode I Crack)

An elliptical crack solution was normalized with a circular crack solution as in [1].

The analytical solution of G is given in Eq. 4.2 where a and c are minor and major radii,

respectively [49]. The model was the same as described in Sec. 4.1.1, but the major radii

was changed (c = 16 mm) while the minor radius remained the same (a = 8 mm). In [1],

a solution was proposed to improve the mesh-independent energy release rate calculation.

This zig-zag solution was compared with the GEM spring model solution (see Fig. 4.4 where

all values are normalized with the circular crack solution). The zig-zag method, in [1], does

not place any springs behind the delamination front. This is unlike the GEM spring model
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that places springs based on the area traversed by the delamination. This zig-zag method

only calculates G where the delamination front is very near a node. Although this may

improve the G values along the front, this method is less mesh-independent.

GI0 =
π(1− ν2)σ2

EΦ2

(a
c

)
(a2cos2θ + c2sin2θ)

1
2

Φ =

∫ π/2

0

(
sin2θ +

(a
c

)2
cos2θ

) 1
2

dθ

(4.2)
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Fig. 4.4: The GEM spring model is compared with the analytical solution and a zig-zag

method from [1] (all are normalized with the circular crack solution [1]).
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4.1.3 Mode II Crack

The mode II (sliding shear) energy release rate for a triple-cantilever beam (TCB) was

compared with J-integral and the GEM spring model (Fig. 4.5). Cantilever beams are often

associated with bending forces, but there are no bending forces in this beam. J-integral

is an integral that is used to calculate energy per unit of new surface area (energy release

rate) [13]. The mesh can be complex for J-integral because it converges better when there

is a circular path around the crack front. The analytical plane strain solution (Eq. 4.3) was

derived by using the compliance form of the constitutive equation; it is not a function of the

crack length c. For comparison, the load was P = 10, 000 N , the thickness was B = 25 mm,

the height was H = 24 mm, and the modulus of elasticity was 161, 000 N/mm2. The

computed analytical solution of G was GII0 = 0.0207 N/mm. The TCB had a crack length

of c = 25 mm and a beam length of L = 100 mm.

GII0 =
P 2

2B2HE
(4.3)

Fig. 4.5: Triple-cantilever beam (TCB) is used for mode II energy release rate calculation

and comparison.

The mode II energy release rate is predicted well (Fig. 4.6); in this example, the mesh
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conforms to the geometry of the delamination. Fig. 4.6 shows that energy release rate (G)

calculation diverges from the analytical solution near the edges of the beam where there is

no longer plane strain. The GEM spring model has a smoothing function that makes its G

calculation less accurate than the J-integral at the edges.
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Fig. 4.6: The GEM spring model is compared with J-integral using a triple-cantilever beam

(TCB) to analyze mode II energy release rate (GII). The energy release rate is normalized

by Eq. 4.3, and the length of the delamination is normalized by the width of the beam.

4.2 Evaluation of New Spring Model (New Approach)

4.2.1 One-Dimensional Crack

A double-cantilever beam (DCB) was used to view the VCCT calculation as a crack
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front moves through an element (Fig. 4.7). The DCB has a 1-dimensional crack, and the

calculated mode I energy release rate (GI) was verified by the analytical solution (Eq. 4.4)

[13]. This model (Fig. 4.7) has square elements with lengths of 1 mm (height h = 5 mm,

width b = 1 mm, applied force P = 200 N , modulus E = 161, 000 N/mm2). The overall

length of the beam was L = 100 mm and the crack length a was varied.

GI0 =
12P 2a2

b2h3E
(4.4)

Fig. 4.7: DCB model was used to verify the new spring model with a 1-dimensional crack.

In the DCB model, the delamination front was moved at increments of 0.1 mm. Fig. 4.8

shows force and displacements, used in the G calculation, for various locations of the front

among two elements. The variation in these plots is not physical, but it is an artifact of the

model. When force and displacement are multiplied, most of the error balances out and the

outcome for G is reliable. In the analytical solution (Eq. 4.4), the crack length a is in units

of millimeters. As the front moves closer to the bonded node, the force changes non-linearly

(the force is based on the displacement at that point (F = kx)). The displacement used in

the G calculation varies almost linearly.
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Fig. 4.8: Force increased non-linearly as crack length increased through an element (top).

Displacement was taken from an element length behind the crack front and its variation is

very near linear (bottom). The variation in these plots is an artifact of the model.

The energy release rate (G), for the DCB model discussed above, is shown in Fig. 4.9.
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The variation of G is within 3.5% of the analytical value, but it varies almost linearly as

the front moves through each element. When the front was within about one percent of the

element length away from the node, the G value approached infinity (this is not shown in

the plots). A fix for this discontinuity was to move the front (internal spring) to the node

if it was within two-percent of the element length away from the node.
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Fig. 4.9: G varies almost linearly, and the variation is within 3.5% of the analytical solution.

4.2.2 Two-Dimensional Crack (Delamination)

It is readily seen that this new spring model requires some sort of smoothing when

used with a two-dimensional circular delamination (Fig. 4.10). There are some values that

are outliers and they generally occur in pairs. The mesh is shown in Fig. 4.11.
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Fig. 4.10: The results for G are not ideal and smoothing will show that they are comparable

to those of the GEM spring model.
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Fig. 4.11: Internal springs that represent the front are shown inside a square mesh (results

for this circular delamination are shown in Fig. 4.10).

A smoothing function was created to remove outlying points and to average G values

around the circular delamination (Fig. 4.12). In the figure, G values were averaged across

5 elements on either side of where G was calculated. The results were averaged twice. This

simple smoothing algorithm is in Sec. B.4. The algorithm loops through all the G values

on the delamination front, and if the location of that G value is within a specified distance

of the node (igsmooth× ElementLength) then that value is included in the average. The
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algorithm can loop through the new smoothed G values by specifying an integer value

greater than one for numSmooth.
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Fig. 4.12: The G values, from the circular crack analysis in the new spring model, were

smoothed after removing outlying points (see Fig. 4.10).

4.3 Comparison (GEM Spring Model and New Spring Model)

It is shown that the computed values (of G) for the GEM spring model and the new

spring model are both inaccurate (Fig. 4.13). The G values from the new spring model are

more concentrated around the analytical solution but have a wider band. The GEM spring

model has a smaller band, but the values are less concentrated. Even with smoothing,

points located close together tend to skew the results.
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Fig. 4.13: The new spring model and GEM spring model are both inaccurate (values are

not smoothed).

Smoothing was done on both the GEM spring model and new spring models (Fig. 4.14).

The smoothing algorithm is described in Sec. B.4 and Sec. 4.2.2. The new spring model

is better smoothed when outlying points are removed. The GEM spring model gets the

best results when all points are included. The smoothing shown here was averaging across

about five elements just once. The smoothing shown in Fig. 4.3 and Fig. 4.4 is a more

complex smoothing function that weights the average with the node area and decreases the

number of smoothing points if the differences in G are too great. It also weights the average

differently if a G value at a point is 10× greater than at an adjacent point. A simpler

algorithm made it easier to compare results as shown in Fig. 4.14.
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Fig. 4.14: Values were smoothed for the GEM spring model and new spring model.

From the DCB example in Sec. 4.2.1, the force was shown to not be constant, but

the energy release rate was still accurate (to about 3.5%). The displacement (in the G

calculation) decreased as the force increased. Fig. 4.15 displays a case where a displacement

point is very close to a node that has stiffness distributed to it. If a node has any stiffness,

the displacement is predicted to be very low. This is a possible source of error.
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Fig. 4.15: The displacement point is affected by how stiffness is distributed.

4.4 Demonstration of Fatigue Crack Propagation

A demonstration of mesh-independent fatigue analysis verifies that fatigue life can be

predicted well but needs improvement. The goal of the new spring model was to improve the

fatigue calculation of the GEM spring model. The comparison of fatigue results (for the new

spring model vs. the GEM spring model) is not necessary until further work is done, because

the static energy release rate calculation of the new method is not an improvement to the

GEM method. The fatigue model will be included in future work. The fatigue prediction

in the GEM model is affected by how well G is smoothed across the delamination front.

The G calculation in the new model varies depending on how close the nodes are to the real

delamination front and requires smoothing to get results like those from the GEM model.

4.4.1 Paris Law for Circular Crack in Infinite Solid (Mode I Propagation)

The Paris law is integrated into the GEM spring model; the GEM spring model was
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compared with an analytical solution and Abaqus VCCT. An analytical solution, for a

circular crack, is shown in Eq. 4.5. This equation was derived from Eqs. 4.1 and 1.4 , and it

is plotted in Fig. 4.16. Parameters were c1 = 3.52 mm/cycle, m1 = 5.0, GIC = 0.05 N/mm,

R = 0.1, σ = 8.5 N/mm2, ν = 0.3, E = 161, 000 N/mm2, and a0 = 8 mm. The model

used, for studying the effect of mesh-independent energy release rate, was the same as

described in Sec. 4.1.1. In Fig. 4.16, life prediction of the GEM spring model is too high.

It is better than the Abaqus VCCT prediction and the analysis time was about 3.5 hours

(Abaqus VCCT analysis time was about 300 hours). The average radius was used for the

Abaqus VCCT model because the delamination didn’t grow at a constant rate along the

circumference of the delamination.

Ntotal = c−11

(
1−R2

GIC
× 4σ2(1− ν2)

πE

)−m1
(
a(1−m1) − a(1−m1)

0

1−m1

)
(4.5)



66

0 5 1 0 1 5 2 0 2 5
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

1 2 0 0 0 0

1 4 0 0 0 0

1 6 0 0 0 0

1 8 0 0 0 0
N (

tot
al 

nu
mb

er 
of 

cyc
les

)

C r a c k  R a d i u s  ' a '

 A n a l y t i c a l
 A b a q u s  V C C T
 G E M  S p r i n g  M o d e l

Fig. 4.16: The GEM spring model is compared with Abaqus VCCT and an analytical

solution for a circular crack in fatigue.

Abaqus VCCT does not predict crack growth well in models with non-geometry con-

forming meshes. Fig. 4.17 shows that the VCCT analysis incorrectly predicted the shape of

the circle crack propagation. The crack should remain circular as it grows because all stress

conditions are the same at each point along the crack. The GEM spring model predicts

that the circular crack remains circular, as it should.
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Fig. 4.17: Abaqus VCCT delamination growth (top) is compared with the GEM spring

model delamination growth (bottom).
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CHAPTER 5

CONCLUSIONS AND PLANS FOR FUTURE STUDIES

5.1 Conclusions

The efficiency of the new spring model is improved because of the global to natural

coordinate conversion that was derived. In the GEM spring model, an iterative method was

used to find the natural coordinates of the displacement point in the G calculation. The

new spring model calculates the exact values of the natural coordinates directly.

The approach of the new spring model is more straightforward than that of the GEM

spring model. It is conceptually better to calculate G at the real delamination front than

at nodes that approximate the front. G does not have to be projected to the front from a

nearby node.

There is close accuracy of G, but it is not a significant improvement to the GEM spring

model. The G values for the new spring model were usually under-predicted when the cut

elements were 3-point or 5-point cut elements. The stiffness distribution is different in both

the GEM spring model and the new spring model; neither model has a stiffness distribution

that is completely physical.

5.2 Plans for Future Studies

More study will be done to assign appropriate stiffness to springs in cut interface

elements. It is difficult to say what amount of crack surface area is under the influence of

each spring (a square mesh is often used). A better understanding of that would allow for

a more accurate area to be used in the G calculation and stiffness assignment.

Study into where springs are placed (and where G is calculated) may improve stiffness

distribution. Internal springs, representing the front in the new spring model, were added

to the edges of elements because stiffness could easily be distributed without changing the



69

overall stiffness of the model. As a possible improvement, a single spring could be placed

inside the element (not on an edge). With this formulation, springs can be anywhere in

the element and be distributed to the nodes. By only adding internal springs to select

elements instead of every element that lies on the delamination front, the model would be

less mesh-independent, but it could improve the results of G if there are enough internal

springs to model the front.

Research could be done to improve the kinematic relationship of the node pair behind

the delamination front. The method described in [47], is very similar to what was done for

this thesis. By some kinematic relationship, the force was decreased at the front node as the

delamination progressed through the element. The energy release rate was still calculated

at the same points. The force was taken from the node and the displacement point was

taken from an element distance behind that node.

Smoothing and higher-order shape functions will be studied. In [47], a Gaussian

smoothing function was used. Considerations to be made are whether outlying calculated

values should be removed before smoothing, and whether smoothing should only involve

adjacent elements or multiple elements. Smoothing is more efficient than refining mesh or

using smaller crack growth increments in fatigue; it is used because the results for G are

not accurate without smoothing.

Future work should include a fatigue growth method because the goal of this work is

to improve fatigue life predictions. This method would need to include a calculation of a

normal vector and the ability for the delamination to grow in a non-self-similar way. Future

work should investigate mixed-mode fatigue as well.
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APPENDIX A

FORMULATION OF UEL

A.1 UEL Subroutine Outline

1. Pre-process

(a) Read in nodes and elements (from mesh.txt)

(b) Determine if node is inside delamination

(c) Find cut sides of elements, Force Coord., Disp. Coord., and spring areas/stiffness

(and move to node if needed)

2. Find natural/local coordinates of internal springs on the delamination front

3. Find natural coordinates of displacement point

4. Nodal Stiffness Matrix

5. Internal Spring Stiffness Matrix

6. Shape Function Matrix (and transpose)

7. AMATRX and RHS

8. Get force for internal spring at the real front

9. Post-process (called when last UEL is called)

(a) Combine forces that are at the same locations (change size of array)

(b) Calculate G

(c) Smooth function
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A.2 Q9 Element Shape Functions

A Q9 UEL was created because the displacements are more accurate, but the results

for G values did not improve. A Q9 element has shape functions that do not create straight

lines when a natural coordinate is held constant (see Fig. A.1 and Eq. A.1). Therefore,

when these shape functions are used, an optimization routine is used. The steepest-descent

method is used to locate the natural coordinates from the input global coordinates (see

Sec. A.3).

N1 =
1

4
(1− ξ)(1− η)− 1

2
(N5 +N8)−

1

4
N9

N2 =
1

4
(1 + ξ)(1− η)− 1

2
(N5 +N6)−

1

4
N9

N3 =
1

4
(1 + ξ)(1 + η)− 1

2
(N6 +N7)−

1

4
N9

N4 =
1

4
(1− ξ)(1 + η)− 1

2
(N7 +N8)−

1

4
N9

N5 =
1

2
(1− ξ2)(1− η)− 1

2
N9

N6 =
1

2
(1 + ξ)(1− η2)− 1

2
N9

N7 =
1

2
(1− ξ2)(1 + η)− 1

2
N9

N8 =
1

2
(1− ξ)(1− η2)− 1

2
N9

N9 = (1− ξ2)(1− η2)

(A.1)
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Fig. A.1: Q9 Shape functions predict displacement more accurately than linear shape func-

tions.

A.3 Global to Natural (Q9 Element)

Changing global coordinates to natural coordinates for a Q9 element requires optimiza-

tion because slopes between points are not constant when one natural coordinate is held

constant. Optimization was performed using the steepest descent method (Eq. A.2). The

optimization function was verified in MATLAB (Fig. A.2). For odd shapes, the iteration

parameter needs to be changed, and the number of iterations must be increased.

f(ξ, η) = x0 −
∑

Nixi = 0

g(ξ, η) = y0 −
∑

Niyi = 0

F (ξ, η) = g2 + f2 = 0

∂F

∂ξ
=
∂g2

∂ξ
+
∂f2

∂ξ
= 0

∂F

∂η
=
∂g2

∂η
+
∂f2

∂η
= 0

(A.2)
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Fig. A.2: A MATLAB verification shows a sweep through natural coordinates which were

changed to global coordinates and changed back to the natural coordinates.

MATLAB Code

1 % s t e e p e s t descent func t i on

2

3 n=0;

4 eps =2;

5 a =0.09; % i t e r a t i o n parameter

6 x i e t a = [ 1 ; 1 ] ; % i n i t i a l guess f o r x i and eta

7

8 whi le eps>1e−10 && n<10000

9 grad f =[dFdXi ; dFdEta ] ;

10 eps=abs ( grad f (1 ) )+abs ( grad f (2 ) ) ;
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11 i t e r a t e=xieta−a∗ grad f ;

12 x i e t a=i t e r a t e ;

13 n=n+1;

14 end
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APPENDIX B

UEL FORTRAN CODE SAMPLES

B.1 Shape Function Matrix Code Sample

1 j=0

2 do i = 1, 3*NNewSpring ,3

3 ! NNewSpring is the Number of internal springs in the UEL

4 j=j+1

5 SHAPE1(i) = 0.25D0*(1.- xi_spring(j))*(1.- eta_spring(j))

6 SHAPE2(i) = 0.25D0 *(1.+ xi_spring(j))*(1.- eta_spring(j))

7 SHAPE3(i) = 0.25D0 *(1.+ xi_spring(j))*(1.+ eta_spring(j))

8 SHAPE4(i) = 0.25D0*(1.- xi_spring(j))*(1.+ eta_spring(j))

9 SHAPE1(i+1) = 0.25D0*(1.- xi_spring(j))*(1.- eta_spring(j))

10 SHAPE2(i+1) = 0.25D0 *(1.+ xi_spring(j))*(1.- eta_spring(j))

11 SHAPE3(i+1) = 0.25D0 *(1.+ xi_spring(j))*(1.+ eta_spring(j))

12 SHAPE4(i+1) = 0.25D0*(1.- xi_spring(j))*(1.+ eta_spring(j))

13 SHAPE1(i+2) = 0.25D0*(1.- xi_spring(j))*(1.- eta_spring(j))

14 SHAPE2(i+2) = 0.25D0 *(1.+ xi_spring(j))*(1.- eta_spring(j))

15 SHAPE3(i+2) = 0.25D0 *(1.+ xi_spring(j))*(1.+ eta_spring(j))

16 SHAPE4(i+2) = 0.25D0*(1.- xi_spring(j))*(1.+ eta_spring(j))

17 end do

18

19 N = 0

20 Ntrans = 0

21 do i = 1, 3* NNewSpring

22 do j = 1, 3
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23 do k = 1, NNewSpring

24 if ( i.eq.(3*(k-1)+j) ) then

25 N(i,j) = SHAPE1(i)

26 Ntrans(j,i) = SHAPE1(i)

27 N(i+3* NNewSpring ,j+12) = N(i,j)

28 Ntrans(j+12,i+3* NNewSpring) = SHAPE1(i)

29 end if

30 end do

31 end do

32 do j = 4, 6

33 do k = 1, NNewSpring

34 if ( i.eq .(3*(k-2)+j) ) then

35 N(i,j) = SHAPE2(i)

36 Ntrans(j,i) = SHAPE2(i)

37 N(i+3* NNewSpring ,j+12) = N(i,j)

38 Ntrans(j+12,i+3* NNewSpring) = SHAPE2(i)

39 end if

40 end do

41 end do

42 do j = 7, 9

43 do k = 1, NNewSpring

44 if ( i.eq .(3*(k-3)+j) ) then

45 N(i,j) = SHAPE3(i)

46 Ntrans(j,i) = SHAPE3(i)

47 N(i+3* NNewSpring ,j+12) = N(i,j)

48 Ntrans(j+12,i+3* NNewSpring) = SHAPE3(i)

49 end if

50 end do
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51 end do

52 do j = 10, 12

53 do k = 1, NNewSpring

54 if ( i.eq.(3*(k-4)+j) ) then

55 N(i,j) = SHAPE4(i)

56 Ntrans(j,i) = SHAPE4(i)

57 N(i+3* NNewSpring ,j+12) = N(i,j)

58 Ntrans(j+12,i+3* NNewSpring) = SHAPE4(i)

59 end if

60 end do

61 end do

62 end do

B.2 Stiffness Matrix Code Sample

1 do i = 1, NDOFEL /8 ! three

2 do j = 1, NDOFEL /8

3 if (i.eq.j) then

4 Knodal(i,j) = nStiff (1)

5 Knodal(i+3,j+3) = nStiff (2)

6 Knodal(i+6,j+6) = nStiff (3)

7 Knodal(i+9,j+9) = nStiff (4)

8

9 Knodal(i+12,j+12) = nStiff (1)

10 Knodal(i+15,j+15) = nStiff (2)

11 Knodal(i+18,j+18) = nStiff (3)

12 Knodal(i+21,j+21) = nStiff (4)

13

14 Knodal(i+12,j) = -nStiff (1)
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15 Knodal(i+15,j+3) = -nStiff (2)

16 Knodal(i+18,j+6) = -nStiff (3)

17 Knodal(i+21,j+9) = -nStiff (4)

18

19 Knodal(i,j+12) = -nStiff (1)

20 Knodal(i+3,j+15) = -nStiff (2)

21 Knodal(i+6,j+18) = -nStiff (3)

22 Knodal(i+9,j+21) = -nStiff (4)

23 end if

24 end do

25 end do

26

27 Kfront = 0

28 do i = 1, 6* NNewSpring /4 ! three

29 do j = 1, 6* NNewSpring /4

30 if (i.eq.j) then

31 Kfront(i,j) = springStiff (1,JELEM -numElem)

32 Kfront(i+3,j+3) = springStiff (2,JELEM -numElem)

33

34 Kfront(i+6,j+6) = springStiff (1,JELEM -numElem)

35 Kfront(i+9,j+9) = springStiff (2,JELEM -numElem)

36

37 Kfront(i+6,j) = -springStiff (1,JELEM -numElem)

38 Kfront(i+9,j+3) = -springStiff (2,JELEM -numElem)

39

40 Kfront(i,j+6) = -springStiff (1,JELEM -numElem)

41 Kfront(i+3,j+9) = -springStiff (2,JELEM -numElem)

42 end if
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43 end do

44 end do

45

46 i=NNewSpring *6

47 j=NDOFEL

48 KfrontN (1:i,1:j) = matmul(Kfront (1:i,1:i),N(1:i,1:j))

49 NTKfrontN (1:j,1:j) = matmul(Ntrans (1:j,1:i),KfrontN (1:i,1:j))

50

51 AMATRX (1:24 ,1:24) = (Knodal (1:24 ,1:24) + NTKfrontN (1:24 ,1:24))

52

53 do i = 1, NDOFEL

54 RHS(i, 1) = 0.

55 do k = 1, NDOFEL

56 RHS(i, 1) = RHS(i, 1) - AMATRX(i, k)*U(k)

57 end do

58 end do

B.3 Global to Natural Code Sample

1 SUBROUTINE kbilinear(xi,eta ,xbar ,ybar ,x,y)

2 real*8, intent(in) :: xbar ,ybar

3 real*8, intent(in) :: x(4),y(4)

4 real*8, intent(out) :: xi , eta

5 real*8 :: c1,c2,c3,c4,k1,k2 ,k3 ,k4

6 real*8 :: Ax1 ,Ax2 ,Ay1 ,Ay2 ,Bx1 ,Bx2 ,By1 ,By2

7 real*8 :: mAC ,mCB ,C,B,A,xi1 ,xi2

8 integer :: i,j,k

9

10 ! constants for solving second natural/local coordinate



85

11 c1 = 4*xbar -(x(1)+x(2)+x(3)+x(4))

12 c2 = -x(1)-x(2)+x(3)+x(4)

13 c3 = -x(1)+x(2)+x(3)-x(4)

14 c4 = +x(1)-x(2)+x(3)-x(4)

15 k1 = 4*ybar -(y(1)+y(2)+y(3)+y(4))

16 k2 = -y(1)-y(2)+y(3)+y(4)

17 k3 = -y(1)+y(2)+y(3)-y(4)

18 k4 = +y(1)-y(2)+y(3)-y(4)

19

20 ! check slopes

21 if ((x(3)-x(2)).eq.0. and.(x(4)-x(1)).eq.0) then

22 ! print *,’lines 23 and 14 are aligned with y-axis ’

23 xi = 2*(xbar -x(1))/(x(2)-x(1)) -1

24 else

25 ! print *,’lines 23 and 14 are not vertical ’

26 ! x coordinate of point A (Ax)

27 Ax1 = (x(2)+x(1))/2.

28 Ax2 = (x(2)-x(1))/2.

29 ! x coordinate of point B (Bx)

30 Bx1 = (x(3)+x(4))/2.

31 Bx2 = (x(3)-x(4))/2.

32 ! y coordinate of point A (Ay)

33 Ay1 = (y(2)+y(1))/2.

34 Ay2 = (y(2)-y(1))/2.

35 ! y coordinate of point B (By)

36 By1 = (y(3)+y(4))/2.

37 By2 = (y(3)-y(4))/2.

38 ! slopes from input xi
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39 mAC = (ybar -Ay)/(xbar -Ax)

40 mCB = (By -ybar)/(Bx -xbar)

41 ! quadratic coefficients

42 C = (Bx1 -Ax1)*ybar+(Ay1 -By1)*xbar+By1*Ax1 -Ay1*Bx1

43 B = (Bx2 -Ax2)*ybar+(Ay2 -By2)*xbar+By1*Ax2+By2*Ax1 -Ay2*Bx1 -Ay1

*Bx2

44 A = Ax2*By2 -Ay2*Bx2

45 ! Calculate xi (local coordinate)

46 if (A.eq.0) then

47 xi1 = -C/B

48 xi2 = -C/B

49 else

50 xi1 = (-B+sqrt(B**2-4*A*C))/(2*A)

51 xi2 = (-B-sqrt(B**2-4*A*C))/(2*A)

52 if (B**2 -4*A*C.lt.0) then

53 print *,’!!! error discriminant less than zero’

54 xi1 = 2 ! outside element

55 end if

56 if (abs(xi1).le.1) then

57 if ( abs(xi2).le.1 ) then

58 print *,’!!! Warning , both are acceptable roots ’

59 end if

60 end if

61 end if

62 if (abs(xi1).le.1) then

63 xi = xi1

64 else if (abs(xi2).le.1) then

65 xi = xi2



87

66 else ! both roots are acceptable or not acceptable

67 xi = xi1

68 end if

69 end if

70

71 ! local coordinate eta

72 eta = (c1 -c3*xi)/(c2+c4*xi)

73 if ((c2+c4*xi).eq.0) then

74 eta = (k1 -k3*xi)/(k2+k4*xi)

75 end if

76 end subroutine kbilinear

B.4 Smoothing Function

1 igsmooth =5.D0

2 numSmooth =3

3 do jj=1,numSmooth

4 write (300 ,*),’----------------------------’

5 do i=1,k ! k is the number of Points

6 sumavg =0.

7 counter =0

8 if (gtotal(i).gt .0.1* G_ana(i) .and.

9 1 gtotal(i).lt.1.9* G_ana(i)) then

10 do j=1,k

11 if (abs(ForceCoordComb(i,1)-ForceCoordComb(j,1)).lt.

12 1 igsmooth*dist0 .and. abs(ForceCoordComb(i,2)-

13 2 ForceCoordComb(j,2)).lt.igsmooth*dist0) then

14 if (gtotal(j).gt .0.1* G_ana(j) .and.

15 1 gtotal(j).lt.1.9* G_ana(j)) then
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16 counter=counter +1

17 if (jj.eq.1) then

18 sumavg=sumavg+Gtotal(j)

19 else

20 sumavg=sumavg+GsmoothOld(j)

21 end if

22 end if

23 end if

24 end do

25 end if

26

27 if (counter.gt.0) then

28 Gsmooth(i)=sumavg/counter

29 write (300 ,207),datan2d(ForceCoordComb(i,2),

30 1 ForceCoordComb(i,1)),Gtotal(i),Gsmooth(i)/G_ana(i),

31 2 ForceCoordComb(i,1:2)

32 end if

33 end do

34 GsmoothOld (1:k)=Gsmooth (1:k)

35 end do
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