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ABSTRACT

Feature Screening of Ultrahigh Dimensional Feature Spaces with Applications in

Interaction Screening

by

Randall D. Reese, Doctor of Philosophy

Utah State University, 2018

Major Professor: Guifang Fu, Ph.D.
Department: Mathematics and Statistics

Feature screening for ultrahigh dimensional feature spaces plays a critical role in the

analysis of data sets whose predictors exponentially exceed the number of observations.

Such data sets are becoming increasingly prevalent in areas such as bioinformatics, medical

imaging, computer vision, and social network analysis. We propose three new methods for

feature screening ultrahigh dimensional data. The �rst method proposed (TC-SIS) is specif-

ically meant for the screening of data with categorical response and predictors. We next

introduce a new interaction screening procedure (JCIS) based on joint cumulants. JCIS is

not inhibited by the usual limitations of weak heredity inherent in most extant interaction

screening methods. Our �nal method (GenCorr) utilizes the generalized correlation matrix

to feature screen data sets with multivariate response. GenCorr is the only multivariate

screening method in existence which allows for feature screening both marginal, as well as

interactive, e�ects. Each of these three methods is shown to have impressive �nite sam-

ple performance via a series of simulations and real data analyses. All methods are also

established as having the strong sure screening property.

(142 pages)
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PUBLIC ABSTRACT

Feature Screening of Ultrahigh Dimensional Feature Spaces with Applications in

Interaction Screening

Randall D. Reese

Data for which the number of predictors exponentially exceeds the number of observa-

tions is becoming increasingly prevalent in �elds such as bioinformatics, medical imaging,

computer vision, and social network analysis. One of the leading questions statisticians

must answer when confronted with such �big data� is how to reduce a set of exponentially

many predictors down to a set of a mere few predictors which have a truly causative e�ect

on the response being modelled. This process is often referred to as feature screening. In

this work we propose three new methods for feature screening. The �rst method we pro-

pose (TC-SIS) is speci�cally intended for use with data having both categorical response

and predictors. The second method we propose (JCIS) is meant for feature screening for

interactions between predictors. JCIS is rare among interaction screening methods in that

it does not require �rst �nding a set of causative main e�ects before screening for interactive

e�ects. Our �nal method (GenCorr) is intended for use with data having a multivariate

response. GenCorr is the only method for multivariate screening which can screen for both

causative main e�ects and causative interactions. Each of these aforementioned methods

will be shown to possess both theoretical robustness as well as empirical agility.
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CHAPTER 1

Overview

1.1 Generalities

A standard practice in statistics is the prediction of an outcome based on a set of

observed predictors. In classical regression and classi�cation settings, one must operate on

the explicit assumption of the number of predictors under consideration being less than the

number of observations. Throughout the remainder of this work, we will use p to represent

the number of predictors and n to represent the number of observations. Data sets for

which p < n will be referred to as low dimensional data sets. While low dimensional

data sets are commonly used for purposes of pedagogy and allow for the implementation of

traditional methods, areas such as bioinformatics, medical imaging, signal processing, and

social network analysis (to name a mere few) present statisticians and researchers with data

sets where low dimensionality is a rarity. When p exceeds n, many established methods for

statistical modelling become unstable and break down. (In the simple case of ordinary least

squares regression, for example, we are confronted with the issue of singular matrices when

constructing the hat matrix). As such, there has arisen a demand for statistical methods

that can confront the mathematical and computational issues inherent in the analysis of

feature spaces for which p > n.

Of particular interest to us in this work will be data sets where p is signi�cantly larger

than n (i.e. p � n). In order to further facilitate our discussion of data sets having many

more predictors than observations, we introduce two relevant terms [24]. When there is

some constant ξ > 0 such that p = O(nξ), then we will refer to such data as being high

dimensional. (The notation O(·) refers to Bachmann-Landau big-O notation). Similarly,

when there is some constant ξ > 0 such that log(p) = O(nξ), then we will refer to such

data as being ultrahigh dimensional. All methods presented herein are designed for use with
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ultrahigh dimensional data. We will present real data analyses for each method using data

exhibiting ultrahigh dimensionality, as well as multiple empirical simulations employing high

and ultrahigh dimensional data.

Based on the principle of sparsity, nearly all extant methods for handling high and ul-

trahigh dimensional data attempt to determine a small (relative to n) set of predictors which

have a truly causative e�ect on the outcome or response. [See 77, for an excellent overview

of the topic of sparsity]. Many early approaches to scaling the feature space were based

on the concept of penalized regression. This includes such well known methods as lasso

[76], adaptive lasso [95], elastic net [96], and smoothly clipped absolute deviation (SCAD)

[22]. While applicable to high dimensional feature spaces, penalized regression approaches

become intractable when confronted with ultrahigh dimensional data. In their monumental

paper, Fan and Lv [24] present the foundational framework to ultrahigh dimensional feature

screening. Uniquely applicable to scaling ultrahigh dimensional feature spaces, the con-

cepts of feature screening have become the prevailing approach for almost all contemporary

dimension reduction techniques.

In this work we consider three main topics for analysing ultrahigh dimensional data.

Each of these methods is an extension in some way of the original philosophies of feature

screening initially presented in [24]. We �rst will consider a new method for feature screening

data with both categorical predictors and categorical response. This is followed by an

examination of feature screening in the context of interaction screening. Our concluding

topic will be that of feature screening when the response is multivariate. Literature pertinent

to these topics severally will be considered within the individual chapters.

1.2 Categorical Feature Screening

With recent advances in technology, ultrahigh dimensional data sets in �elds like bioin-

formatics, genetics, and social network analysis are growing exponentially both in terms of

size as well as in regards to prevalence. Frequently, these data sets have both categorical

response and categorical covariates, yet extant feature screening literature rarely considers

such data types. In Chapter 2, we propose a new screening procedure rooted in the Cochran-
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Armitage trend test. Our method is speci�cally applicable for data where both the response

and predictors are categorical. We will also establish that the strong sure screening property

holds for this method, a valuable metric for measuring the e�ectiveness of current feature

screening approaches. The empirical viability of our categorical screening procedure will be

borne out via a series of simulations and a real data analysis. This chapter is derived from

a forthcoming paper co-written with Xiaotian Dai and Guifang Fu.

1.3 Interaction Feature Screening

While a multiplicity of methods exist for screening ultrahigh dimensional data for

marginal e�ects, much fewer methods exist for performing interaction screening in such

a context. Moreover, among the extant interaction screening methods, almost no considera-

tion is given to models for which the marginal e�ects are weak, but the interactive e�ects are

strong. Chapter 3 will seek to ameliorate these issues by presenting a novel interaction fea-

ture screening approach that is not dependent on �rst screening for marginal e�ects. Once

again, we will demonstrate the theoretical stability of our method in regards to strong sure

screening, as well as show the numerical feasibility of our method in terms of �nite sample

performance. This chapter is derived from a forthcoming paper co-written with Xiaotian

Dai and Guifang Fu.

1.4 Feature Screening with Multivariate Response

In Chapter 4 we will introduce a new method for feature screening ultrahigh dimen-

sional data when the response variable is multivariate. By allowing for the response to be

multivariate, our approach now permits us to examine the complex traits of a multifaceted

response that may only be evident when considered as a collective whole and not merely as

individual pieces. This newly proposed method for feature screening multivariate response

data will allow for both marginal e�ects screening as well as interaction screening. We will

establish the strong sure screening property for this approach. A collection of simulations,

along with a real data analysis, will demonstrate the �nite sample performance of the newly

proposed method.
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1.5 Concluding Remarks of Chapter 5

The main body of this work is closed by concluding comments given in Chapter 5.

Therein we will review what the previous chapters have demonstrated as well as suggest

areas for future work.

1.6 Miscellanea

All simulations and real data analyses were carried out in the R programming language.

Many of the simulations as well as both of the real data analyses in Chapters 3 and 4

were done using the cluster computing capabilities at the Center for High Performance

Computing (CHPC) centered at The University of Utah. This work would not have been

possible without their assistance. Willis Barton [6] was instrumental in the initial process of

accessing the CHPC framework. Appendix A demonstrates a short example of how to use

the CHPC resources. I would like to expressly thank my committee (Richard Cutler, Rose

Hu, John Stevens, and Jia Zhao) for their willingness to meet with me as needed and for their

input to this work and my graduate experience. I would also like to thank the department

chair, Chris Corcoran, for his assistance in completing my degree. The curriculum vitae

found at the end of this work contains contact information whereat I can be reached for the

foreseeable future. This dissertation was typeset using LATEX.



CHAPTER 2

Screening Categorical Response and Predictors

2.1 Introduction

Ultrahigh dimensional data with dichotomous response and polytomous features has be-

come increasingly prevalent in various �elds. For example, applications using such data ex-

ist in genome-wide association studies (GWAS), medical imaging, �nance, text mining, and

classifying text documents by keywords, among others [35, 43]. Many existing approaches

are feasible for classi�cation or analyses involving polytomous features and dichotomous

response with high dimension, including random forests [10, 54], k-nearest neighbors [39],

and support vector machines [46, 78]. However, these methods may lose power or become

increasingly unstable, and hence intractable, as the dimension of feature space becomes ul-

trahigh. Therefore, there has arisen an accompanying need to develop statistical methods

satisfying computational expediency, statistical accuracy, and algorithmic stability for the

rapidly growing assortment of ultrahigh dimensional data.

Given n samples for each of p predictors in question, the term �high dimensional" will

be used to mean p = O(nξ) for some ξ > 0, similarly we will use the term �ultrahigh di-

mensional" to mean log(p) = O(nξ) for some ξ > 0. [23] and [21] reviewed the challenges

encountered in ultrahigh dimensional big data, in which the fundamental challenge comes

from the accumulation of aggregate error rates due to a preponderance of noise features. For

example, as discussed in [19], when using a discriminant analysis rule such as LDA or QDA,

the population mean vectors are estimated from the observed sample. When the dimension-

ality is ultrahigh, although each individual component of the population mean vectors can be

estimated with su�cient accuracy, the overall misclassi�cation rate can become substantial

due to the aggregated estimation errors.

One approach that has garnered considerable attention in recent ultrahigh dimensional
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modeling literature is that of feature screening. Feature screening �lters out a substantial

amount of noise features and keeps a small set of in�uential variables which represent the

majority of the extractable information in the data and accommodate the sparsity principle

as it relates to ultrahigh dimensional data. In their seminal paper, Fan and Lv [24] estab-

lished the underpinnings for what they termed sure independent feature screening (SIS) and

introduced the conceptual framework of the bulk of feature screening literature that would

come thereafter. However, they assumed not only a strict linear model but also normally

distributed continuous predictors and response.

Almost all approaches stemming from [24] were constructed under the premise of both

the predictors and the response being continuous. See e.g. [4, 18, 20, 93]. Even though

these aforementioned methods at times relaxed the model speci�cation assumptions [see an

overview in 55], most SIS-based procedures still tacitly assume that the predictor variables

and the response are continuous. Notably, this implicit presupposition of continuity of

the predictors can be limiting in certain instances in that the given method has not been

speci�cally calibrated in an empirical setting for categorical predictors.

Herein we will further explore three existing methods that admit both categorical re-

sponse and predictors, as well as propose a new approach to screening categorical predictors

when the feature space is ultrahigh dimensional. First among the extant methods is the

maximum marginal likelihood estimator based approach (MMLE-SIS) of [26]. In the case

of a binary response Y , they consider the maximum marginal likelihood of each covariate

individually by examining the magnitude of the marginal regression coe�cient, βMj , for each

covariate, Xj , given by

βMj = argmin
βj

E (`(βjXj , Y )) ,

where `(·) represents the traditional log-likelihood function. One essential limitation of

MMLE-SIS in practice is that while it allows for categorical predictors, it has never been

speci�cally veri�ed to produce reliable numeric results under this setting.

Another current method admitting categorical data is the distance correlation based

screening method (DC-SIS) presented in [53]. Using the concept of distance correlation
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�rst presented in [75], DC-SIS measures the association between a covariate, Xj , and the

response, Y . As was the case with MMLE-SIS, although DC-SIS allows for categorical

response and predictors, the method has never been explicitly examined numerically for use

with categorical data.

The �nal method for feature screening categorical data that we will consider is the

Pearson's chi-squared test based screening method (PC-SIS) found in [43]. This method

determines the association between the response and each predictor individually by treating

the levels of the response as forming the columns of a two-way table and the levels of a given

predictor as forming the rows of said table. A fundamental question they consider is that of

classifying Internet advertisements based on the presence or absence of given keywords. A

large collection of keywords acts as the set of predictors, with each predictor being binary (0

for absence of the keyword, 1 for presence). The response takes on K many levels, with each

level representing a category of Internet advertisement. From this, they apply the Pearson

chi-squared test to the associated 2×K table and use the resulting chi-squared test statistic

as a marginal utility to screen the feature space. (Alternatively, when each predictor is

allowed to di�er from other predictors in its number of levels, they obtain the associated

p-values from the chi-squared test and rank features based on decreasing p-value).

Motivated by data with a dichotomous response and ultrahigh dimensional polytomous

features, we propose a new feature screening method based on the Cochran-Armitage trend

test or trend correlation (we call our method TC-SIS for short). We compare TC-SIS

with the aforementioned three most relevant approaches (MMLE-SIS, DC-SIS, PC-SIS) and

demonstrate that TC-SIS outperforms these in terms of accuracy and speed for the motivated

scenarios through �nite sample simulation studies. Additionally, we prove that TC-SIS

satis�es the strong screening consistency property under a set of reasonable conditions,

which is a much stricter criterion than the sure screening property achieved by many other

feature screening approaches. We demonstrate that the �nite sample performance of TC-SIS

is quite promising under various simulation studies as well as present a motivating real data

analysis using TC-SIS.
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The rest of this article is organized as follows. In Section 2.2 we describe our proposed

TC-SIS method for feature screening in detail and establish its strong screening consistency

property. In Section 2.3 we examine the �nite sample performance of TC-SIS via multiple

Monte Carlo simulations and a real data analysis example. We �nally conclude with a brief

discussion in Section 2.4. The Appendices (Section 2.5) are devoted to all technical proofs.

2.2 Strong Independence Screening Using Trend Correlation

2.2.1 Some Preliminaries

[16] and [3] advocate using the trend test for measuring association between two cat-

egorical variables. Speci�cally, let u1 ≤ u2 ≤ . . . ≤ uI be the numeric score assigned to

each level of the rows and v1 ≤ v2 ≤ . . . ≤ vJ be the numeric score assigned to each level

of the columns, where I and J are the number of levels/categories of each row and column,

respectively. For a sequence of n samples, let the sample mean score of the row denoted by

ū and sample mean score of the column denoted as v̄. The trend correlation between the

row and column variables can be de�ned as follows [1]:

%̂ =

I∑
i=1

J∑
j=1

(ui − ū)(vj − v̄)p̂ij√√√√( I∑
i=1

(ui − ū)2p̂i+

)(
J∑
j=1

(vj − v̄)2p̂+j

) ,

where p̂i+, p̂+j , and p̂ij are the respective frequency proportions of each row, column, and

individual cell of the contingency table.

We are motivated to utilize %̂ in a feature screening procedure because %̂ is a categorical

version of the Pearson correlation coe�cient [1] and possesses the rather salient property of

being equal to zero if the two involved variables are independent.
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2.2.2 An Independence Ranking and Screening Procedure

Here we propose an independence screening procedure based on the following modi�-

cation of the correlation between two categorical variables. Let Y be the response variable

and let Xj (with j = 1, . . . , p) be the jth predictor. Speci�cally, let v
(j)
k be the numeric score

assigned to each level k of each polytomous predictor Xj , where k = 1, . . . ,Kj . Here p is

the total number of predictors and Kj is the number of levels for Xj , for which we allow

for a various number of levels for di�erent predictors. Let m = 0, 1 be the encoding of the

dichotomous response Y . The value %j can then be simply de�ned as

%j =

∣∣∣∣∣∣∣
∑

1≤k≤Kj

0≤m≤1

(v
(j)
k − EXj)(m− EY )p

(j)
km

∣∣∣∣∣∣∣√√√√( Kj∑
k=1

(v
(j)
k − EXj)2p

(j)
k

)(
1∑

m=0
(m− EY )2pm

) ,

where

p
(j)
km = P(Xj = k, Y = m), p

(j)
k = P(Xj = k), pm = P(Y = m).

For a sequence of n samples, we will denote the sample mean score of Xj by v̄
(j) and sample

mean of Y as Ȳ . We can then de�ne the trend correlation between Xj and Y as in [1]

%̂j =

∣∣∣∣∣∣∣
∑

1≤k≤Kj

0≤m≤1

(v
(j)
k − v̄

(j))(m− Ȳ )p̂
(j)
km

∣∣∣∣∣∣∣√√√√( Kj∑
k=1

(v
(j)
k − v̄(j))2p̂

(j)
k

)(
1∑

m=0
(m− Ȳ )2p̂m

) ,

where p̂
(j)
km, p̂

(j)
k , and p̂m represent the sample estimates (by the relevant sample proportion)

of the associated probabilities p
(j)
km, p

(j)
k , and pm. Note that the denominator of %̂j consists of

(biased) sample estimators for the standard deviations of Xj and Y . (However, the bias of

these estimators disappears asymptotically). Both of these estimators are consistent estima-

tors of their respective standard deviations. Consistency is easy to prove using Chebychev's
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inequality and routine algebra. For completeness, this will be shown in Section 2.5.

When the predictors are ordinal, we can interpret %̂j as estimating the linear trend

between Xj and Y , e.g., an increase in the observed level of Xj tends to be associated with

decreasing or increasing levels of Y . Taking ordinality into account is desirable and will

improve the interpretive power of our conclusions [1]. Therefore, it is suggested that the

ordering of and the distance between the v
(j)
k scores conform to those of the categorical

levels. This possibility to examine trend between the response and covariates is, however,

only one example of a robust number of settings that our method is capable of handling.

The sparsity property of ultrahigh dimensional feature spaces informs us that only a

small number of the predictors are relevant to the response. De�ne SF = {1, 2, . . . , p} as

the set of indices of the full model. This set contains the index of every predictor in the

feature space. Let S ⊆ {1, 2, 3, . . . , p} denote the set of indices of an arbitrary model under

consideration, which is a subset of all possible predictors. Let X(S) be the corresponding

model or set of predictors whose indicies are contained in S.

We use %̂j as a marginal utility to rank the importance of each Xj according to its

associations with the response, where higher %̂j values correspond to stronger association.

Note that %̂j is non-negative because the absolute values are used in the numerator. As

a result of the TC-SIS feature screening procedure, the estimated indices of the model are

given by

Ŝ = {j : %̂j > c, for 1 ≤ j ≤ p},

where c is a pre-speci�ed threshold value.

Let D
(
Y | X(S)

)
denote the conditional distribution of Y given X(S). We will consider

a model S to be su�cient if

D
(
Y | X(SF )

)
= D

(
Y | X(S)

)
.

The full model SF is trivially su�cient. We are ultimately only interested in �nding the

smallest (cardinality-wise) su�cient model. We will call the smallest su�cient model the
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true model. Our aim in feature screening is to determine an estimated model which contains

the true model and is moreover the smallest such model to contain the true model. The

next subsection will outline the speci�cs of our proposed screening approach for estimating

the true model. As a matter of further notation, we will denote the true model by ST and

the estimated model output from TC-SIS by Ŝ.

2.2.3 Theoretical Properties

In this section the theoretical properties of the proposed independence screening proce-

dure TC-SIS will be studied. We �rst de�ne two weak conditions to facilitate the technical

proofs:

(C1) Bounds on the standard deviations. Assume that there exists a positive constant σmin

such that for all j,

min(σj , σY ) ≥ σmin

This excludes unusual or unreasonable features that are constant and hence have a

standard deviation of zero. It should further be noted that an upper bound on σj and

σY can also be obtained, by use of Popoviciu's inequality on variances [see 67]:

max(σj , σY ) ≤ σmax, σmax = max

{
1

2
,

√
1

4

(
max(v

(j)
k )−min(v

(j)
k )
)}

where the �rst term in the maximum selection is a bound on the standard deviation

of Y and the second term is given by Popoviciu's inequality on variances.

(C2) Marginal Components. Assume that %j = 0 for any j 6∈ ST . De�ne

ω
(j)
km =

∣∣∣(v(j)
k − E(Xj))(m− E(Y ))p

(j)
km

∣∣∣ ,
and assume that ω

(j)
km is of the same sign for all levels k and m. Without loss of

generality it can be assumed that ω
(j)
km ≥ 0. Assume also that there exists a positive
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constant ωmin such that

min
j∈ST

 max
1≤k≤Kj

0≤m≤1

{
ω

(j)
km

} > ωmin > 0

This places a lower bound on the minimum value (indexing by j) of the maximum

values of the ω
(j)
km (indexing by k and m). Note that (C2) requires that for each truly

in�uential feature (i.e. j ∈ ST ), there exists at least one level of the response Y and

one level of the feature Xj that are marginally correlated (i.e. ω
(j)
km > ωmin). This is a

natural assumption to make for the truly in�uential features and should be quite easy

to satisfy in a wide variety of reasonable situations.

When these two conditions are satis�ed, we can establish the following theorems that support

the strong screening property for the TC-SIS procedure.

Theorem 2.2.1. (Sure Screening Property). Under condition (C1) and removing from (C2)

only the assumption that %j = 0 for any j 6∈ ST , there exists a positive constant c > 0 such

that

P(ST ⊆ Ŝ)→ 1 as n→∞.

(However, P(Ŝ ⊆ ST ) may not converge to one as n approaches in�nity).

Theorem 2.2.2. (Strong Screening Consistency). Given conditions (C1) and (C2), there

exists a positive constant c > 0 such that

P(Ŝ = ST )→ 1 as n→∞.

The property of strong screening consistency is much harder to achieve than the (weak)

sure screening property that the majority of feature screening approaches achieve because

it not only guarantees that the true model is contained in the selected subset, but also

ensures that the selected subset equals the true model asymptotically. The proofs of these

two theorems are presented in Section 2.5.
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In addition to the aforementioned two theorems, we also draw two corollaries from the

proofs of Theorems 2.2.1 and 2.2.2. These results are not themselves about sure screening,

but they are nevertheless important conclusions on the underlying mechanics of our method.

Corollary 2.2.3. There exists a value %min such that for any j ∈ ST , we have %j > %min.

This will be shown in Step 1 of the proofs of Theorems 2.2.1 and 2.2.2.

Corollary 2.2.4. The estimator %̂j converges uniformly in probability to %j. In other words,

P
(

max
1≤j≤p

|%̂j − %j | > ε

)
→ 0 as n→∞

for any ε > 0.

This will be shown from the end of Step 2 in the proofs of Theorems 2.2.1 and 2.2.2.

2.3 Numerical Studies

In this section we assess the performance of TC-SIS by four empirical Monte Carlo

simulation studies under di�erent designs. Additionally, we also perform an analysis on an

empirical data set examining polycystic ovary syndrome (PCOS) to further illustrate the

proposed screening procedure.

For each of the four simulations, we �x the sample size, n, to be 200 and set the

number of predictors, p, to be 5,000 (Example 1-3) or 1,000 (Example 4). We replicate each

simulation 500 times, and assess the performance of the screening procedures through the

following two criteria given by [53]:

• Mean Minimum Model Size: The average of the minimum number of predictors that

are required by the given screening procedure to acquire all truly in�uential predictors

across all simulation replicates. The closer to the true model size |ST | the estimated

model size |Ŝ| is, the better the screening procedure is determined to be.
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• Individual Acquisition Proportions: The proportion of all replicates in which a given

individual predictor in ST is correctly obtained by the screening method in question

under the model sizes d = 10, 15, 20. This requires that the screening score of each

truly in�uential individual predictor should rank within the 10 highest, the 15 highest,

and the 20 highest among all p predictors. The closer to one that this proportion is,

the better the screening procedure is determined to be.

We will use the same simulated data and same assessment criteria to compare in de-

tail the �nite sample performance of our proposed TC-SIS approach with three other rele-

vant methods: maximum marginal likelihood estimator based screening (MMLE-SIS) [26];

distance correlation based screening (DC-SIS) [53]; and Pearson's Chi-squared test based

screening (PC-SIS) [43]. We will in some cases borrow elements of simulations previously

demonstrated in these aforementioned publications.

2.3.1 Example 1

For this example, each sample, Yi, of the response will be generated by a Bernoulli

process with P(Y = 1) = py, where py ∼ unif(0.05, 0.95) is chosen anew for each replicate of

the simulation. We design the �rst ten predictors to be truly in�uential to the response Y ,

i.e., ST = {1, . . . , 10}. Inspired by Example 1 of [43], we generate these �rst ten predictors

as

{Xij | Yi = m} ∼ Binomial(2, πmj)

with the values of πmj being given by Table 2.1. This means that each causative Xj will take

on values of 0, 1, or 2 (representative of three ordinal levels, with 0 ≺ 1 ≺ 2). For any j 6∈ ST ,

we de�ne for each j individually the value πj ∼ Unif(0.05, 0.95) and letXj ∼ Binomial(2, πj).

The value of πj is chosen anew with each replicate of the simulation. This means that these

non-causative predictors will have no association with Y .

The results of Example 1 are summarized in Tables 2.2 (acquisition proportions) and

2.9 (mean minimum model sizes). For this simulation, TC-SIS results in the smallest aver-
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Table 2.1: Values of πmj for Example 1

πm1 πm2 πm3 πm4 πm5 πm6 πm7 πm8 πm9 πm,10

Y = 0 0.3 0.4 0.6 0.7 0.2 0.4 0.3 0.8 0.4 0.2

Y = 1 0.6 0.1 0.1 0.4 0.8 0.7 0.9 0.2 0.7 0.6

age model size (54.674) required to contain the true model, an entire ten features less than

the next closest method (DC-SIS obtains a mean minimum model size of 64.990). PC-SIS

and MMLE-SIS required, respectively, mean minimum model sizes nearly double or triple

that required by TC-SIS. These results establish the capability of TC-SIS to obtain excel-

lent results when the predictors come from the binomial distribution. This is signi�cant for

applications in genetics as it models the encoding of genotypes for homozygous recessive

(Xj = 0), heterozygous (Xj = 1), and homozygous dominant (Xj = 2) alleles, with the

distribution of these genotypes being determined by the binomial distribution. Another

interesting consideration to make is the relative stability of our method in the face of a

potentially large unbalance in the number of positive (Y = 1) responses observed in the

sample data. It is also important to note that for each model size thresholds (d = 10, 15

and 20), TC-SIS obtains the largest proportion of replicates for which each predictor indi-

vidually is found in the top d-many predictors. In the case of TC-SIS versus MMLE-SIS,

the proportions are at times nearly four fold more favorable towards our method.

2.3.2 Example 2

Inspired by the concept of discretization of a continuous random variable as found in

Example 3 of [43], we connect the in�uential predictors with the response via an indirect

way. Similar to Example 1 above, we generate the response Yi from a Bernoulli process

with P(Yi = 1) = py, where py ∼ unif(0.05, 0.95) is again chosen anew for each replicate of

the simulation. Given Yi = m, we generate a latent variable Zij independently distributed

as N(Yi, 1) for the �rst ten truly in�uential predictors j ∈ ST . The �rst ten in�uential

predictors Xij are then discretized from Zij based on the cuto�s (κLj , κUj) listed in Table
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Table 2.2: Example 1: Proportion of Replications Where Xj is in the Top d Causative
Covariates

d = 10

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

TC-SIS 0.864 0.980 0.988 0.832 1.000 0.998 0.844 0.974 0.836 0.858

MMLE-SIS 0.210 0.680 0.690 0.250 0.786 0.816 0.194 0.646 0.182 0.218

DC-SIS 0.850 0.978 0.982 0.818 0.998 0.998 0.804 0.968 0.824 0.834

PC-SIS 0.808 0.956 0.962 0.800 0.992 0.996 0.778 0.954 0.760 0.802

d = 15

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

TC-SIS 0.916 0.988 0.994 0.922 1.000 0.998 0.912 0.982 0.904 0.908

MMLE-SIS 0.384 0.746 0.756 0.404 0.822 0.844 0.354 0.742 0.320 0.400

DC-SIS 0.900 0.984 0.990 0.898 0.998 0.998 0.894 0.984 0.888 0.894

PC-SIS 0.862 0.974 0.980 0.864 0.994 0.998 0.860 0.966 0.854 0.862

d = 20

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

TC-SIS 0.920 0.988 0.994 0.930 1.000 0.998 0.926 0.990 0.930 0.930

MMLE-SIS 0.508 0.796 0.800 0.490 0.854 0.864 0.452 0.796 0.440 0.490

DC-SIS 0.916 0.988 0.992 0.920 0.998 0.998 0.922 0.986 0.908 0.914

PC-SIS 0.890 0.980 0.986 0.886 0.994 0.998 0.872 0.972 0.886 0.882

2.3 as:

Xij =


0 if Zij < κLj ,

1 if κLj ≤ Zij ≤ κUj ,

2 if κUj < Zij .

These cuto�s in Table 2.3 are set to establish weaker correlations between the response Y

and each of the in�uential predictor to increase the di�culty of determining the true model.

However, the values used in this example are heuristic and can be �exibly changed. It should

be noted that this method of generating the causative predictors results in an overall trend

association between these �rst ten covariates (individually) and Y : namely, lower values of

Xj are associated with Y = 0 and higher values of Xj are associated with Y = 1. Moreover,

although these causative predictors are constructed to have positive linear correlation with
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Y , covariates constructed to have negative correlation with Y yield identical results. This is

due to the fact that we only care about the magnitude of %̂j . For any j 6∈ ST , we generated

corresponding non-in�uential predictors using the same design as was used in Example 1.

Table 2.3: Cuto� Values

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

κLj 0 0 0.2 0 -0.213 0.25 0 0.1 -0.2 0.213

κUj 0.75 1 0.8 0.9 1.213 1 1 1 1.2 0.787

The results of Example 2 are summarized in Tables 2.4 (acquisition proportions) and

2.9 (mean minimum model sizes). As was the case with Example 1, our method here results

in the smallest average model size required to contain the true model (mean minimum

model size of 112.627). Since this simulation was designed to speci�cally take advantage of

the forte of our method in testing for linear trend, these results should not be surprising.

Because PC-SIS lacks the speci�c ability to employ the more substantive statistical power

that is inherent in a trend based method like TC-SIS, the larger mean minimum model size

obtained by PC-SIS is to be expected. Of especial note here, MMLE-SIS fails on average

to produce an estimated model smaller than the sample size of n = 200. TC-SIS and DC-

SIS are comparable in their acquisition of the true model for the usual threshold values of

d = 10, 15, and 20. This leads us to the overall conclusion (based on the results for mean

minimum model size) that TC-SIS does a better job than DC-SIS at avoiding ballooning

models in the worst case outcomes.

2.3.3 Example 3

In this simulation we generate the sample data based on an explicit logistic regression

model, a speci�c strength of MMLE-SIS. First generate each predictor Xj (1 ≤ j ≤ p)

by uniformly sampling the set {0, 1, 2} with equal probability. We then connect a binary
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response Y with the �rst �ve predictors by letting

Li =
5∑
j=1

[I(Xij = 0)× θXj=0 + I(Xij = 1)× θXj=1 + I(Xij = 2)× θXj=2],

and setting

P (Yi = 1) = 1
1+exp(−Li)

.

The coe�cients θXj=k are as given in Table 2.5. The responses are the generated by sampling

the Bernoulli distribution with P(Yi = 1) as given above.

The results of Example 3 are summarized in Tables 2.6 (acquisition proportions) and

2.9 (mean minimum model sizes). For this example, we once again obtain a smaller required

mean model size than DC-SIS and PC-SIS (mean minimum model sizes of 46.470 and 93.270

Table 2.4: Example 2: Proportion of Replications Where Xj is in the Top d Causative
Covariates

d = 10

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

TC-SIS 0.828 0.822 0.816 0.866 0.884 0.820 0.892 0.850 0.796 0.862

MMLE-SIS 0.028 0.026 0.038 0.038 0.424 0.016 0.302 0.054 0.014 0.124

DC-SIS 0.832 0.832 0.830 0.868 0.860 0.824 0.880 0.860 0.818 0.868

PC-SIS 0.754 0.766 0.744 0.774 0.846 0.752 0.844 0.776 0.738 0.808

d = 15

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

TC-SIS 0.876 0.876 0.882 0.904 0.924 0.874 0.920 0.906 0.878 0.900

MMLE-SIS 0.072 0.060 0.066 0.078 0.554 0.054 0.388 0.098 0.032 0.204

DC-SIS 0.876 0.884 0.886 0.904 0.886 0.880 0.880 0.910 0.878 0.906

PC-SIS 0.820 0.806 0.816 0.842 0.876 0.806 0.876 0.830 0.820 0.858

d = 20

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

TC-SIS 0.888 0.892 0.898 0.918 0.940 0.902 0.936 0.920 0.898 0.920

MMLE-SIS 0.110 0.098 0.106 0.152 0.612 0.086 0.468 0.166 0.064 0.270

DC-SIS 0.898 0.900 0.908 0.918 0.918 0.904 0.930 0.918 0.896 0.930

PC-SIS 0.844 0.830 0.850 0.862 0.880 0.824 0.888 0.862 0.838 0.876
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Table 2.5: Coe�cients for L
θX1 θX2 θX3 θX4 θX5

Xj = 0 0 -5 2 -6 1

Xj = 1 3 -3 4 -4 3

Xj = 2 5 -1 6 -2 5

for DC-SIS and PC-SIS respectively, as compared to a mean minimum model size of 41.976

for TC-SIS). A speci�c comment on the results of Example 3 for MMLE-SIS is in order.

As was previously discussed, one strength of MMLE-SIS is screening data in a logistic

regression setting. Indeed, MMLE-SIS recoups its earlier collapses and matches (by about

four hundredths of an average minimum model size) our method nearly perfectly. Similar

results are obtained for the proportion of replications that capture the true predictors within

model sizes of the d = 10, 15, and 20. (Although, note that TC-SIS does capture four of the

�ve causative predictors within the top ten predictors at least as often as MMLE-SIS does,

while exceeding it in three cases). Moreover, it should ultimately be noted that since MMLE-

SIS requires solving an optimization problem to produce its screening statistics, our newly

proposed method is signi�cantly faster in computational run time. Thus, when run time is

an issue, we suggest the use of our method over MMLE-SIS, even in a logistic regression

setting. As TC-SIS performs admirably under the settings of Example 3, producing results

abreast with that of MMLE-SIS, the increased run time for MMLE-SIS is hard to justify.

2.3.4 Example 4

Although our method is not originally designed or emphasized for use on continuous

data, this simulation presents a comparison of trend correlation versus DC-SIS when the co-

variates are multi-normally distributed. The motivation for this simulation is the statement

by [53] that when the covariates are normally distributed, DC-SIS is �equivalent" (although

not equal, see Theorem 7 of [75]) to the SIS method of [24]. However, [75] and [74] further

elucidate the fact that the response must also be normally distributed for DC-SIS to be

equivalent to SIS. Our aim here is to see how DC-SIS performs when the covariates are
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multi-normally distributed, yet the response is not necessarily normally distributed. We do

this in order to demonstrate a proof-of-concept for a general application of trend correla-

tion to feature screening outside the assumptions of a normally distributed response being

predicted by pair-wise independent normally distributed predictors.

The data for this simulation is generated as follows. Let Xi be a vector of length 1000

(p = 1000), where Xi ∼ MVN(0,Σ) is sampled for i from 1 to 200. Here the covariance

matrix Σ = [σj1j2 ] is given by σj1j2 = 0.2|j1−j2|. We now generate the response, Y , using

only the �rst ten predictors. Speci�cally, we let Yi = Xiβ, where β is a vector whose �rst ten

entries are de�ned in Table 2.7, and whose remaining entries are all zero. Note that, because

the �rst ten covariates are not independent, this construction of Y does not guarantee that

Y itself is normally distributed.

The results of Example 4 are summarized in Tables 2.8 (acquisition proportions) and

Table 2.6: Example 3: Proportion of Replications Where Xj is in the Top d Causative
Covariates

d = 10

X1 X2 X3 X4 X5

TC-SIS 1.000 0.834 0.804 0.810 0.816

MMLE-SIS 1.000 0.822 0.798 0.808 0.824

DC-SIS 1.000 0.832 0.808 0.806 0.814

PC-SIS 1.000 0.742 0.708 0.710 0.740

d = 15

X1 X2 X3 X4 X5

TC-SIS 1.000 0.860 0.858 0.842 0.862

MMLE-SIS 1.000 0.856 0.868 0.842 0.870

DC-SIS 1.000 0.860 0.850 0.838 0.866

PC-SIS 1.000 0.794 0.758 0.778 0.790

d = 20

X1 X2 X3 X4 X5

TC-SIS 1.000 0.878 0.886 0.874 0.894

MMLE-SIS 1.000 0.882 0.892 0.872 0.890

DC-SIS 1.000 0.880 0.880 0.864 0.890

PC-SIS 1.000 0.832 0.806 0.800 0.828



21

Table 2.7: First Ten Components of β in Example 4

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

5 -5 5.5 -6 6 4 4.5 -5.5 5 -4

2.9 (mean minimum model sizes). For this example, we obtain the largest gap (of the

four simulations considered) in mean minimum model size between our method and DC-

SIS (95.610 for TC-SIS versus 142.084 for DC-SIS, a di�erence of nearly 50 predictors).

Furthermore, for each of the cuto� values d = 10, 15, and 20, TC-SIS captures a higher

proportion of the causative predictors than DC-SIS. (Excluding the few cases where the two

methods both acquire a given predictor 100% of the time). This suggests that, under the

conditions prescribed by Example 4, the use of trend correlation in screening continuous,

but not necessarily normally distributed, data may prove superior to extant methods such

as DC-SIS.

Table 2.8: Example 4: Proportion of Replications Where Xj is in the Top d Causative
Covariates

d = 10

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

TC-SIS 0.874 0.498 0.804 0.746 0.998 1.000 0.928 0.702 0.580 0.534

DC-SIS 0.832 0.444 0.762 0.678 0.992 1.000 0.914 0.648 0.534 0.468

d = 15

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

TC-SIS 0.934 0.622 0.874 0.840 1.000 1.000 0.964 0.806 0.710 0.660

DC-SIS 0.900 0.550 0.838 0.768 0.998 1.000 0.950 0.742 0.640 0.564

d = 20

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

TC-SIS 0.954 0.678 0.910 0.894 1.000 1.000 0.978 0.868 0.762 0.728

DC-SIS 0.926 0.620 0.874 0.828 1.000 1.000 0.964 0.796 0.712 0.650
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Table 2.9: Mean Minimum Model Sizes for Examples 1 through 4

TC-SIS MMLE-SIS DC-SIS PC-SIS

Example 1 54.674 150.340 64.990 93.018

Example 2 112.627 508.672 125.258 171.829

Example 3 41.976 41.934 46.470 93.270

Example 4 95.610 - 142.084 -

2.3.5 Example 5

We apply the proposed TC-SIS screening procedure to a clinical dataset pertaining to

polycystic ovary syndrome (PCOS) a�ection status (dbGaP Study Access: phs000368.v1.p1).

This data consists of 4,099 observations (1,043 cases and 3,056 controls) of each of 731,442

SNPs. The goal of this analysis is to identify the most in�uential susceptibility loci that

a�ect PCOS status. The response for this data is PCOS a�ection status and the predic-

tors are the encoded SNP genotype values. Compared to the sample size (n = 4, 099), the

number of parameters (p = 731, 442) is ultrahigh dimensional.

Although the proposed TC-SIS approach is very powerful at �ltering out noise and

recognizing the truly important predictors among over half a million candidates, it may

neglect some important predictors that are individually uncorrelated yet jointly correlated

with the response. Furthermore it may rank highly some unimportant predictors that are

spuriously correlated with the response due to their strong collinearity with other in�uential

predictors [92]. To overcome these shortcomings, we use an iterative procedure on top of

the proposed TC-SIS (call it TC-ISIS) to address these weaknesses. The main di�erence

between TC-SIS and TC-ISIS is that TC-SIS selects the �nal subset in a single step, while

TC-ISIS builds upon the selection procedure gradually, with multiple steps. This iterative

analysis is modeled after that of [92]. Speci�cally, using the iterative screening approach

outlined therein for their iterative real data analysis, but replacing their use of DC-ISIS

with our TC-ISIS process, we �rst iterate over the values p1 = 5, 6, . . . , [n/ log(n)] = 493 to

determine a value for p1. The optimal value for p1 is that which minimizes the mean squared

prediction error (MSPE) for logistic regression in the �rst iterative step, again, as outlined

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000368.v1.p1
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by [92]. When determining the optimal value for p1, we used 75% of the observed data for

training and 25% for testing. It was found that p1 = 191 and p2 = [n/ log(n)]− p1 = 302 as

initial values minimized the MSPE in our case.

After screening the real data set using the iterative application of our proposed method,

we obtain a relatively small set of SNPs with positive screening scores scores (450 such SNPs).

Using 10-fold cross validation in the R package glmnet, we then post screen our selected set

of SNPs via a variety of penalized regression methods to further reduce the �nal model size.

We use three such techniques: lasso [76], adaptive-lasso [95], and elastic net (with α = 0.09;

see below for the use of α) [96]. Each of these three methods employs penalized logistic

regression of the negative binomial log-likelihood, which is as follows:

min
β∈Rp

{
−

[
1

N

N∑
i=1

yi(x
T
i β)− log(1 + ex

T
i β)

]
+ λ

[
(1− α)

2
‖β‖22 + α‖β‖1

]}
. (2.1)

The aggressiveness of the penalty is controlled by a parameter λ. The parameter λ is

chosen using a cross-validated coordinate descent approach, where the objective is minimiz-

ing the predicted misclassi�cation rate. This process is handled internally in the glmnet

package in R [30]. When α = 1 in (2.1), we have the lasso penalty function. To perform

adaptive lasso, we �rst �t weights for each component of β using ridge regression (α = 0).

Our elastic net model is tuned in a manner similar to the original paper by [96]: We �rst pick

a grid of values for α. For simplicity we used αk =
{

k
100

}
for k = 1, 2, 3, . . . 99. (When α = 1,

this is lasso, which is examined separately above). Then, for each αk, we �t a model for our

selected parameters using elastic net. As with lasso and adaptive lasso, the other tuning

parameter, λ, is selected by tenfold cross validation. The chosen λ is the one giving the

smallest 10-fold cross validated misclassi�cation error. Here, our tuning procedures found

α = 0.09 to be the α for which misclassi�cation error was minimized. As a measure for

goodness-of-�t for our �nal model, we evaluate two selection criteria: Akaike's Information

Criterion (AIC) and Misclassi�cation Rate (MR).

The results of the three models and two selection criteria are tabulated in Table 2.10.

One can see that TC-ISIS+Adaptive Lasso yields the sparsest model size of 56 �nal pre-

dictors, as well as the smallest misclassi�cation rate and the smallest AIC. The estimated
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coe�cients of these 56 parameters can be obtained from the glmnet package.

Table 2.10: Empirical results of real data analysis.

Post Screening Method Model size AIC MR

Lasso 71 -1735.27 21.59%

Adaptive Lasso 56 -1755.10 21.08%

Elastic Net (α = 0.09) 91 -1691.66 21.15%

2.4 Discussion

In this chapter we proposed a new feature screening procedure using trend correlation.

The �nite performance of the proposed TC-SIS screening procedure was illustrated via

performing four simulations comparing our method alongside three other relevant extant

approaches for screening categorical data. We also vetted the performance of our method

in a real data analysis of an ultrahigh dimensional data set. We furthermore established

the strong screening consistency for this procedure when the number of predictors diverges

exponentially vis-à-vis the sample size. Strong screening consistency is much harder to

achieve compared to the sure screening property, as it guarantees that not only the selected

model contains the true model, but also that the selected model equals the true model

asymptotically.

The emphasis of the proposed TC-SIS procedure is to detect the most in�uential predic-

tors from ultrahigh dimensional data having polytomous features and dichotomous response,

which represents a possibly useful application to genome-wide association studies for human

disease. In addition to performing well under the focused upon categorical context, we also

illustrated that TC-SIS has the potential to perform well under more general settings for

continuous data. This acted as a proof-of-concept for a general application of TC-SIS.

Compared to the general association yielded by methods such as the Pearson chi-squared

based PC-SIS approach, TC-SIS may be able to explore more information related to the

trend between the response and the predictors, e.g., larger predictor values tends to be
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associated with larger (or conversely, smaller) response values in certain practices. TC-SIS

assumes milder conditions than other approaches in that it neither requires any regression

function nor assumes any speci�c distribution for the covariates or the response, like unto

the spherical distribution assumptions of many other feature screening approaches. Based

on these di�erences, TC-SIS serves as a uni�ed alternative to existing model-based sure

screening procedures.

The proposed TC-SIS method can be easily extended to a categorical response having

greater than two levels if needed, however we only considered binary Y because this allows

for some simpli�cation of our notation and proofs. It has been noted that the choice of a

cuto� c is of importance in some feature screening literature. Several methods have been

proposed to determine such a cuto�, e.g. [93], [91], [43], and [48]. One may adopt their

ideas for the proposed TC-SIS approach, but we have opted not to pursue this further as it

is beyond the perview of this work.

2.5 Appendices

In this section we present in full the proofs for Theorems 2.2.1 and 2.2.2 given at

Subsection 2.2.3 of the main text. Before proceeding into the proofs, we will establish a pair

of lemmas that will be used repeatedly in the proofs.

2.5.1 Some Prefacing Lemmas

In reference to the numerator of the de�nition of %̂j given in Subsection 2.2.2 of the

main text, we de�ne

τ̂j =

∣∣∣∣∣∣
Kj∑
k=1

1∑
m=0

(v
(j)
k − v̄

(j))(m− Ȳ )p̂
(j)
km

∣∣∣∣∣∣
as an estimator of the covariance between Xj and Y (i.e., Cov(Xj , Y )). Furthermore, in

accordance with the denominator of the de�nition of %̂j given in Subsection 2.2.2 of the main

text, we de�ne

σ̂j =

√√√√ Kj∑
k=1

(v
(j)
k − v̄(j))2p̂

(j)
k
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as an estimator of the standard deviation of Xj (i.e., σj). Similarly, we de�ne

σ̂Y =

√√√√ 1∑
m=0

(m− Ȳ )2p̂m

as an estimator of the standard deviation of Y (i.e., σY ).

Lemma 2.5.1. τ̂j is a consistent estimator of |Cov(Xj , Y )|.

Proof. We begin by �rst showing that τ̂j is equal to the following estimator for |Cov(Xj , Y )| :

∣∣∣∣∣ 1n
n∑
i=1

(Xij − X̄j)(Yi − Ȳ )

∣∣∣∣∣ , (2.2)

where X̄j = 1
n

∑
Xij and Ȳ is de�ned the same as before. Speci�c to the focus of this

article, we know that Yi ∈ {0, 1} and Xij ∈ {v(j)
1 , v

(j)
2 , . . . , v

(j)
Kj
}, and that X̄j = v̄(j). Let

nkm denote the number of observations satisfying Xij = k and Yi = m, meaning we can

write p̂
(j)
km = nkm

n . We can now rewrite Statement (2.2) as follows:



27

∣∣∣∣∣ 1n
n∑
i=1

(Xij − X̄j)(Yi − Ȳ )

∣∣∣∣∣

=

∣∣∣∣∣ 1n
n∑
i=1

(Xij − X̄j)(1− Ȳ )− 1

n

n∑
i=1

(Xij − X̄j)(Ȳ )

∣∣∣∣∣

=

∣∣∣∣ 1n ((v
(j)
1 − v̄

(j))(1− Ȳ )n11 + · · ·+ (v
(j)
Kj
− v̄(j))(1− Ȳ )nKj1

)
− 1

n

(
(v

(j)
1 − v̄

(j))(Ȳ )n10 + · · ·+ (v
(j)
Kj
− v̄(j))(Ȳ )nKj0

) ∣∣∣∣

=

∣∣∣∣∣∣ 1n
Kj∑
k=1

1∑
m=0

(v
(j)
k − v̄

(j))(m− Ȳ )nkm

∣∣∣∣∣∣

=

∣∣∣∣∣∣
Kj∑
k=1

1∑
m=0

(v
(j)
k − v̄

(j))(m− Ȳ )p̂
(j)
km

∣∣∣∣∣∣
= τ̂j .

As convenient, we will use the form (2.2) when discussing τ̂j .

Secondly, we now show that τ̂j is a consistent estimator of |Cov(Xj , Y )|. Expanding

Statement (2.2) yields

τ̂j =

∣∣∣∣ 1n∑XijYi −
1

n

∑
X̄jYi −

1

n

∑
Xij Ȳ +

1

n

∑
X̄j Ȳ

∣∣∣∣ . (2.3)

By applying the weak law of large numbers [15] we have

1

n

∑
XijYi

P−→ E(XjY ),
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1

n

∑
X̄jYi

P−→ E(Xj)E(Y ),

1

n

∑
Xij Ȳ

P−→ E(Xj)E(Y ),

1

n

∑
X̄j Ȳ

P−→ E(Xj)E(Y ),

with all convergence being in probability. Hence we have by the Mann-Wald Theorem

[11, 58, 72] (also known as the Continuous Mapping Theorem),

τ̂j
P−→ |E(XjY )− 2E(Xj)E(Y ) + E(Xj)E(Y )|

= |E(XjY )− E(Xj)E(Y )|

= |Cov(Xj , Y )| .

(Note of course that the absolute value function is a continuous function). Therefore, Lemma

2.5.1 establishes that τ̂j is a consistent estimator of |Cov(Xj , Y )|.
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Lemma 2.5.2. It can be shown that σ̂j is a consistent estimator of σj and σ̂Y is a consistent

estimator of σY .

Proof. We begin by noting that, similar unto what was done in rewriting τ̂j in Lemma 2.5.1,

we can rewrite σ̂j as follows:

σ̂2
j =

Kj∑
k=1

(v
(j)
k − v̄

(j))2p̂
(j)
k

=
1

n

Kj∑
k=1

(v
(j)
k − v̄

(j))2nk

=
1

n

(
(v

(j)
1 − X̄j)

2n1 + · · ·+ (v
(j)
Kj
− X̄j)

2nKj

)

=
1

n

n∑
i=1

(Xij − X̄j)
2,

(2.4)

where nk is the number of times Xj takes on the value vk. Similarly we can obtain for σ̂2
Y

σ̂2
Y =

1

n

n∑
i=1

(Yi − Ȳ )2. (2.5)

Equations (2.4) and (2.5) can both be written using a general random variable W as

follows. Let W1, W2, . . . , Wn be realizations of a bounded random variable W . De�ne

S2 =
1

n

n∑
i=1

(Wi − W̄ )2,

where W̄ = 1
n

∑
Wi. Let σ

2 denote the variance of W . De�ne the unbiased sample variance

as

σ̂2 =
1

n− 1

n∑
i=1

(Wi − W̄ )2.
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We then have

S2 =
n− 1

n
σ̂2.

It follows that

E(S2) =
(n− 1)

n
σ2, Var(S2) =

(
n− 1

n

)2

Var(σ̂2).

We can easily show that σ̂2 is a consistent estimator of σ2. This is done as follows. [11, See

also Example 5.5.3 of] It can be established that

Var(σ̂2) =
1

n

(
µ4 −

n− 3

n− 1
µ2

2

)
, (2.6)

where µ` = 1
n

∑
(Wi − EW )` (with ` = 2 or ` = 4) [12]. Employing Chebychev's inequality

for any ε > 0, we get the following:

P
(
|σ̂2 − σ2| ≥ ε

)
≤ Var(σ̂2)

ε2
. (2.7)

Statements (2.6) and (2.7) yield that

lim
n→∞

P
(
|σ̂2 − σ2| ≥ ε

)
= 0

since |µ`| < ∞, ` = 2, 4, if W is bounded. (It is easy to see the �niteness of the moments

here: Any bounded function integrable on a compact domain also has integrable powers over

that domain. The random variable W is in fact such a function. See also Corollary 5.11

in [50]) This means that σ̂2 is indeed a consistent estimator of σ2. It is easily observable

that the numeric sequence
{
n−1
n

}∞
n=1

converges to one. By the Mann-Wald theorem once

again, we have that S2 = n−1
n σ̂2 converges in probability to 1 · σ2 = σ2. This con�rms that

S2 is a consistent estimator of σ2. Therefore, the Mann-Wald theorem guarantees that S

is a consistent estimator of σ =
√
Var(W ). This establishes that σ̂j and σ̂Y are consistent

estimators of σj and σY .
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Lemma 2.5.3. %̂j is a consistent estimator of %j.

Proof. The de�nition of %̂j given in Subsection 2.2.2 of the main text can be naturally

rewritten as

%̂j =
τ̂j

σ̂j σ̂Y
.

We will employ the Mann-Wald theorem three times. This theorem asserts that con-

tinuous functions on R` preserve convergence in probability. Thus if Z1 is a consistent

estimator of α1 and Z2 is a consistent estimator of α2, then for any continuous function f

on R2, we have f(Z1, Z2)
P−→ f(α1, α2). This implies that f(Z1, Z2) is a consistent estimator

of f(α1, α2).

De�ne the function f(σ̂j , σ̂Y ) = 1
σ̂j σ̂Y

on R2
+ = (0,∞)2 (All positive real-valued 2-

vectors). This function is well de�ned and continuous on its entire domain. (Note that,

in line with condition (C1), we can assume without loss of generality that σ̂j and σ̂Y are

both positive). This implies by the Mann-Wald theorem that in fact 1
σ̂j σ̂Y

is a consistent

estimator for 1
σjσY

. Then, under the obvious assumption that multiplication of real numbers

is a continuous function, we obtain

%̂j = τ̂j
1

σ̂j σ̂Y

is a consistent estimator of %j .

2.5.2 Proofs of Theorem 2.2.1 and 2.2.2

Proof. The proof of these two theorems is accomplished in three steps:

• Step 1: We show that there exists a positive value %min > 0 such that %j > %min holds

for any j ∈ ST (this is also Corollary 2.2.3). Recall that we de�ned

ω
(j)
km =

∣∣∣(v(j)
k − E(Xj))(m− E(Y ))p

(j)
km

∣∣∣
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in condition (C2) given in Subsection 2.2.3 of the main text.

It follows that for j ∈ ST ,

%j =

∑
1≤k≤Kj

0≤m≤1

ω
(j)
km

σjσY
≥ 1

σ2
max

∑
1≤k≤Kj

0≤m≤1

ω
(j)
km by (C1),

≥ 1

σ2
max

max
1≤k≤Kj

0≤m≤1

ω
(j)
km

≥ ωmin

σ2
max

by (C2),

> 0.

De�ne %min = ωmin/(2σ
2
max). Then %j > %min > 0 for all j ∈ ST . This establishes

a positive lower bound on %j for all j ∈ ST , and hence completing Step 1 and also

Corollary 2.2.3 of Subsection 2.2.3.

• Step 2: We now show that %̂j is a uniformly consistent estimator of %j for each 1 ≤

j ≤ p (this is also Corollary 2.2.4). From Lemma 2.5.3, we know that %̂j is consistent

estimator of %j . This implies that for any 1 ≤ j ≤ p and any ε > 0, we have

P(|%̂j − %j | > ε)→ 0 as n→∞.

Let J = argmax1≤j≤p |%̂j − %j |. Then, since J ∈ {1, 2, . . . , p} itself, we indeed know

that

P(|%̂J − %J | > ε)→ 0 as n→∞

for any ε > 0. In other words, we have that

P
(

max
1≤j≤p

|%̂j − %j | > ε

)
→ 0 as n→∞
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for any ε > 0. This shows that %̂j is a uniformly consistent estimator of %j , thus

completing Step 2 and also Corollary 2.2.4 of Subsection 2.2.3.

• Step 3: We show that there exists a positive constant c > 0 such that

P(ST ⊆ Ŝ)→ 1 as n −→∞.

Note that this is Theorem 2.2.1 of Subsection 2.2.3.

Let c = (2/3)%min. Suppose by way of contradiction that this c is insu�cient to be

able to claim ST ⊆ Ŝ. This would mean that there exists some j∗ ∈ ST , yet j∗ /∈ Ŝ.

It then follows that we must have (by the de�nition of Ŝ)

%̂j∗ ≤ (2/3)%min,

while at the same time having (by the conclusion of Corollary 2.2.3)

%j∗ > %min > (2/3)%min.

From this we can conclude that |%̂j∗ − %j∗ | > (1/3)%min, which implies that

max
1≤j≤p

|%̂j − %j | > (1/3)%min

as well.

However, we know by the uniform consistency of %̂j that by letting ε = 1/3%min, we

have

P(ST 6⊆ Ŝ) ≤ P
(

max
1≤j≤p

|%̂j − %j | > (1/3)%min

)
→ 0 as n→∞.

This is a contradiction to the assumption of non containment above. This yields

P(ST ⊆ Ŝ)→ 1 as n→∞,
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proving Theorem 2.2.1.

• Step 4: We �nish by showing that there exists a positive constant c > 0 such that

P(Ŝ ⊆ ST )→ 1 as n→∞.

Suppose again by way of contradiction that Ŝ 6⊆ ST . Then there is some j∗ ∈ Ŝ, yet

j∗ /∈ ST . This means that (by the de�nition of Ŝ)

%̂j∗ > (2/3)%min,

while at the same time (by condition (C2)) having

%j∗ = 0.

It now follows that

|%̂j∗ − %j∗ | > (2/3)%min,

which implies that max1≤j≤p |%̂j − %j | > (2/3)%min as well.

Set ε = (2/3)%min. By uniform consistency we have

P(Ŝ 6⊆ ST ) ≤ P
(

max
1≤j≤p

|%̂j − %j | > (2/3)%min

)
→ 0 as n→∞.

This contradicts our �nding that max1≤j≤p |%̂j − %j | > (2/3)%min. Hence it in fact

follows that

P(Ŝ ⊆ ST )→ 1 as n→∞.

Combining Step 3 and Step 4 together, we conclude that for c = (2/3)%min, we have

P(ST = Ŝ)→ 1 as n→∞, completing the proof of Theorem 2.2.2.



CHAPTER 3

Interaction Screening Using Joint Cumulants

3.1 Introduction

Ultrahigh dimensional data in �elds such as bioinformatics, medical imaging, �nance,

and the social sciences has become increasingly commonplace. With the yet to cease rapid

advances in data collection techniques and computing power, there has arisen an accompa-

nying desire to more comprehensively analyze said data. However, a signi�cant challenge

in dealing with ultrahigh dimensional data comes in the fact that classical methods of-

ten become intractable or unreliable when confronted with such dimensionality. Here, and

throughout this chapter, we will use the term high dimensional to refer to the case when

p = O(nξ) for some constant ξ > 0 and we will used the term ultrahigh dimensional to

refer to the case when log(p) = O(nξ) for some constant ξ > 0, where p is the number of

predictors and n is the number of observations of each of those predictors.

When the feature space is ultrahigh dimensional, [24] introduces us to the concept of

sure independence screening (SIS). Many methods possessing the sure screening property

of [24] have been developed. Several of these strengthen the original statements of (weak)

sure screening and establish that the newly proposed method in question has the strong

sure screening property. See for example [53], [26], and [43]. However, while there exists

(including and beyond those previously mentioned above) an abundance of feature screening

methods for marginal e�ects in ultrahigh dimensional feature spaces, [see for example 4,

19, 20, 47, 82, 85, 93, with an overview given in 55], less consideration has been given to

determining interactions between features. Nevertheless, because the relationship between

predictors and response is often more complex than can be captured by main e�ects alone,

developing techniques for determining interactive e�ects between predictors is vital. It is

common to �nd two predictors that are simultaneously associated with the response and
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whose e�ects on the response may not be additive. In particular, such interaction between

variables has been recognized as playing a pivotal role in contributing to the variation of

the response [28, 38]. Procedures addressing interaction screening will allow us to better

ascertain the interplay between covariates when modelling a response.

A signi�cant challenge in the topic of interaction screening, especially when the feature

space is high or ultrahigh dimensional, is that of computational feasibility [38]. For a general

discussion on the computational challenges of ultrahigh dimensional data, see for example

[23] and [21]. Early interaction selection literature such as [86], [87], [90], and [13] use an

approach that is sometimes referred to as joint analysis. These methods examine all marginal

and interaction e�ects in a single global search. Such joint analysis approaches are feasible

when the feature space is not high dimensional [38]. However, in many modern interaction

screening settings (in which the feature space is likely not medium or low dimensional),

the most prevalent barrier comes from the growing number of interactions that must be

considered. When the feature space is high or ultrahigh dimensional, and p is also large

generally, not only are we faced with the theoretical di�culties of having p � n, but we

also must handle a number of interactions on the order of O(p2) [29, 37]. An exhaustive

search of all possible interactions requires examining
(
p
2

)
potential interactions for association

with the response, something that may not always be feasible to the same degree that the

joint analysis approaches were for medium and low dimensional data [28, 38]. For even

a relatively small value of p = 10, 000, an exhaustive search requires looking at nearly 50

million potential interactions. When p becomes even larger, the number of interactions to

be considered can easily number in the trillions. (For example, p = 45, 000 would yield over

a trillion potential interactions to consider).

A second obstacle to the development of interaction feature screening approaches comes

in the fact that many classic approaches designed for detecting interaction may lose power

or become increasingly unstable as the number of potential interactions grows [28]. Another

barrier in the development of interaction feature screening approaches is related to the

excessive reliance on an a priori heredity structure. Speci�cally, weak heredity requires
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that the interaction between Xj1 and Xj2 is considered only if at least one of the main

e�ects, Xj1 or Xj2 , is individually associated with the response. Similarly, strong heredity

requires that the interaction between Xj1 and Xj2 is considered only if both main e�ects are

in�uential. Many currently existing approaches rely on determining marginal e�ects �rst and

then examining only a subset of interactions having at least one in�uential main e�ect. [See

e.g. 37, 38, 52, each of which will be considered below.]. While these approaches signi�cantly

reduce the number of interactions that are to be examined, they neglect a scenario where

there exists an interaction with strong e�ect, but for which both corresponding main e�ects

are very weak [60], which is found to be important in many practical applications [5, 17,

29, 61, 79]. As such, the ideal interaction screening method will not a priori assume that a

model must possess certain strong marginal features if it contains an associated interaction.

We now examine a number of extant interaction screening methods individually, while

noting the challenges and drawbacks of each.

In [69], the authors examine the use of random forests [10] in screening time-to-event

data for interactions. In brief, they take the cumulative hazard function as the response

and �t a variant of random forests called random survival forests. The variable importance

measures from this random forest model are then used in selecting important main e�ects.

The variable inclusion frequencies of each pairwise combination of these selected main e�ects

are then calculated. Given a predetermined cuto� d, the top d most frequent pairs are taken

as the potential interactions for the �nal model. The �nal model is determined by a �tting

a CoxBoost model [8]. This approach works well when the feature space is medium or high

dimensional, but as the feature space becomes ultrahigh dimensional, random forests may

become unstable or intractable computationally due to the required computational intensity

and memory demands [43, 70, 88, 94].

[28] proposes an approach to feature screening in the context of classi�cation. They

base their method o� of an adaptive selection of sparse linear or quadratic discriminant

analysis (LDA & QDA). Although presented as a generally applicable interaction screening

algorithm for high dimensional data, their empirical results are couched in the realm of data
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with p ≤ 500. (They present a real data analysis where p = 231 and n = 77, for example). As

such, while the data sets they use are indeed �high dimensional,� in that p > n, they never

address the computational challenges of applying their approach to much larger absolute

data size (data where say p > 10, 000). (For instance, [19] speci�cally addresses issues of

LDA and QDA when applied to high dimensional data with large p. This alone makes a

discussion on the computational feasibility of feature screening methods derived from LDA

and QDA entirely relevant).

[37] presents a two-stage interaction screening process called regularization algorithm

under marginality principle (RAMP) which employs lasso [76]. Their approach to interaction

screening is rather straight forward: (First stage) Given a set of predictors, RAMP �rst

applies lasso to this set of predictors to determine as set of main e�ects, M̂ . (Second stage)

Then, using only those predictors found in M̂ , apply lasso to both the marginal and the

order-2 terms among all elements of M̂ . The output of lasso after this second stage will be

taken as the �nal model. It should be noted, however, that two important challenges arise

with RAMP. First, because lasso (and penalized regression in general) is not applicable to

ultrahigh dimensional feature spaces [among many, see 24], RAMP cannot be applied in

any setting with ultrahigh dimensional data. Furthermore, RAMP relies on strong heredity,

which, as has been well established previously, signi�cantly limits the applicability of the

method.

One of the most common applications of interaction feature screening for high and

ultrahigh dimensional data is in the �eld of bioinformatics and genetics. [See e.g. 29, 52,

65, 79, 83]. Interactions between single-nucleotide-polymorphisms (SNPs) or interactions

between genes is of particular interest. (Such genetic interaction is broadly referred to as

epistasis). [52] o�ers one method for detecting epistasis in ultrahigh dimensional genetic

data sets. They use the standard SIS procedure of [24] to �rst determine a set of main

e�ects. Then using this set of main e�ects, they use weak heredity to examine all pairwise

interactions containing at least one causative main e�ect. Thus, their method relies on

principles of model heredity, which has been shown to be subject to the drawbacks already
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addressed above.

Seeking to overcome the limitations of directly assuming model heredity, [79] suggest

an interaction feature screening method for ultrahigh dimensional data that does not rely

on �rst screening for marginal e�ects. Nevertheless, their method is limited in the types of

covariates it admits and assumes an interactive structure that may be too rigid for broader

application. In detail, the method they present requires that each predictor is categorical

with three levels (i.e. encoding for homozygous recessive, heterozygous, and homozygous

dominant allele pairs). This encoding is used to then create nine dummy variables, repre-

sentative of each of the nine possible pairwise genotype combinations between SNPs. This

in turn in�ates the feature space to nine times its original size. Moreover, as their approach

is directly dependent on SIS [24], a strict linear model between response and predictor must

be assumed.

[44] also uses SIS [24] to screen for interactions in genetic data. Brie�y, they �rst

screen for a set of main e�ects using SIS. This is then followed by applying SIS to �nd the

pseudomarkers most associated with the residuals of regressing the main e�ects onto the

response. A multilocus model is �nally used to determine important interactive e�ects. It

should here be noted that their approach is not directly reliant on model heredity, however,

it is nevertheless subject to the rigid model limitations of SIS (viz. a strict linear model).

Furthermore, the authors seem rather hesitant to claim applicability of their method to

ultrahigh dimensional data. In their words, the possible number of predictors examined

�depends on the number of individuals in the data set. Generally, the maximum number

is assumed to be 10 times the number of individuals [41], but in our experience, an even

smaller proportion may be optimal [45].�[44] Hence, in feature spaces for which p/n > 10,

this method may not be fully applicable.

The two-stage grouped-SIS (TS-GSIS) procedure of [29] also attempts to partially ad-

dress the issues of model heredity in the context of epistasis. They use a grouped sure

independence screening (GSIS) method from [63] to determine gene-gene interactions, and

then, based on those gene-gene interactions, they apply lasso [76] to select individual SNP-
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SNP interactions. The GSIS method [63] is brie�y described as follows: First group SNPs

by pre-determined gene groups. Then �t a stepwise forward selection regression model one

gene group at a time by using a subset of SNPs in said group. For each regression model

selected by forward selection, let the quotient of the residual sum of squares and the degrees

of freedom act as a screening utility score. This procedure is done for each gene group. The

two stages of TS-GSIS are comprised of �rst applying GSIS to screen for gene-level (not

SNP-level) main e�ects and then repeating the GSIS process on all pairs of genes for which

at least one gene in the pair was determined to be marginally associated with the response.

These two main stages are followed by a �nal step whereat lasso is applied to the sets of

SNPs (from stage one) and SNP-SNP interactions (from stage two) derived from the genes

found in the two main stages of the algorithm. Hence, while this �nal step potentially allows

for admission of interactions between SNPs not found to be marginally important, TS-GSIS

does not fully escape the constraints of weak heredity, as it yet enforces weak heredity at

the gene level.

Herein we will propose a new and novel method for interaction screening of ultrahigh

dimensional data that seeks to address many of the issues with existing interaction screen-

ing methods as outlined above. Unlike many of the aforementioned extant processes for

interaction screening, our method will not rely on the presence of marginal e�ects (model

heredity) in order to determine interactions between covariates. Moreover, our method is

computationally more cost e�ective than current methods, making the application of our

proposed techniques to larger and larger data distinctively feasible.

We will compare our newly proposed method empirically with two existing methods for

interaction feature screening: The iterative forward selection method (iFORM) of [38] and

the generalization of the Pearson Chi-squared-based (PC-SIS) method given by [43]. These

two methods most closely resemble our to-be-proposed method in that they admit ultrahigh

dimensional data and possess certain salient theoretical properties.

The iFORM uses an adaptation of forward-selection based on Bayesian information

criterion (BIC). This is done by performing a standard stepwise forward selection [see 49]
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and admitting one predictor or interaction at a time. Model �tness is determined by BIC.

Their approach relies on the assumption of strong heredity, as they only admit interactions

for which both main e�ects are also present. [33] presents an implementation of iFORM in

the setting of epistasis.

The mathematical generalization of the PC-SIS method given by [43] will be referred to

as Generalized Pearson Correlation (GPC). GPC can brie�y be outlined as follows: Given

a set of predictors, estimate by use of the associated sample proportions the probability of

each pair of predictors being jointly associated with the response. Subtract from this the

product of the estimated probabilities of each predictor from the aforementioned pair being

marginally associated with the response. This quantity is then squared and divided by the

product of the estimated marginal probabilities previously found. This �nal quantity acts

as an interaction screening utility. Note that this is indeed a generalization of the Pearson

Chi-squared-based test of PC-SIS: Instead of looking at joint association between just one

predictor, we now examine the joint association of two predictors. While GPC does not

directly require selecting marginal e�ects before proceeding with screening for interactive

e�ects, their method can become computationally intractable (by their own admission) when

applied to any exhaustive search of all possible interactions. (Under empirical observation,

our newly proposed method ran about six to seven times faster than GPC when applied to

the same data sets on the same machine). As such, GPC has never been numerically tested

under a setting where marginal features have not �rst been selected. The empirical results

of Section 3.4 will furthermore show that GPC produces rather unfavorable results when

main e�ects are not �rst determined. Our newly proposed method overcomes many of the

less than desirable issues of both iFORM and GPC.

The remainder of this chapter is outlined as follows: In Section 3.2, we introduce

some general notation for the models we will be discussing. Section 3.3 will detail our

proposed interaction screening method, including statements on the theoretical properties

for said method. This is followed by several numeric simulations in Section 3.4. Among

many applications of interaction screening, perhaps the most prevalent is in genome-wide
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association studies (GWAS) for determining interactive (epistatic) e�ects between single

nucleotide polymorphisms (SNPs). We too will demonstrate such an application in a real

data analysis, also found in Section 3.4. In Section 3.5 we provide concluding remarks on our

method and our �ndings. Finally, Section 3.6 contains the proofs of the theorems presented

in Section 3.3.

3.2 Preliminaries

When we need to refer to a general subset of the covariate pairs (Xj1 , Xj2), we will use

XS , where

S ⊆
(
{1, 2, 3, . . . , p} × {1, 2, 3, . . . , p}

)
\ {(j, j) | j = 1, 2, 3 . . . , p}

is the set of covariate pairs we wish to discuss. Here × is the Cartesian product. As a matter

of notation, we will let S refer to the model consisting of the covariate pairs found in S. Let

SF =

(
{1, 2, 3, . . . , p} × {1, 2, 3, . . . , p}

)
\ {(j, j) | j = 1, 2, 3 . . . , p}

designate the full model, which contains all covariate pairs. Given some model S, we will let

D (Yi |XS) indicate the conditional distribution of Yi given the covariates of XS . A model

S will be considered su�cient if

D (Yi |XSF ) = D (Yi |XS)

The full model SF is of course trivially su�cient. We are ultimately interested only in

�nding the su�cient model with the fewest number of interaction pairs. We will call the

smallest su�cient model (i.e. the su�cient model with the least number of pairs) the true

model. Our aim overall is to determine an estimated model which contains the true model

and is moreover the smallest such model to contain the true interaction features. The

following section will outline the speci�cs of our proposed interaction screening approach for

estimating the true model. As a matter of further notation, we will denote the true model
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by ST and an estimated model by Ŝ.

3.3 Interaction Screening using Joint Cumulants

The general form for the linear correlation between Xj and Y is given by

%j =
cov(Xj , Y )

σjσY
,

where cov(Xj , Y ) is the covariance of Xj versus Y , σj is the standard deviation of Xj , and

σY is the standard deviation of Y . This can be extended, as follows, to a generalized form

admitting three, not two, random variables as arguments.

3.3.1 A Newly Proposed Interaction Feature Screening Method

We propose a method for interaction screening of high and ultrahigh dimensional fea-

ture spaces. We call this new method JCIS, which stands for �Joint Cumulant Interaction

Screening.� The details of JCIS will be outlined below. Herein we will be comparing our

method to the iFORM method of [38], as well as to the generalized PC-SIS method (which

they leave unnamed, but we will call GPC) of [43] . Which method we compare JCIS to will

depend on the data type of the response. GPC admits only categorical responses; iFORM

admits only continuous responses. JCIS allows for either categorical or continuous responses,

which in and of itself is salient.

3.3.2 Theoretical Background

The multivariate analogue of the covariance function is the r-way joint cumulant of the

random variables Z1, Z2, . . . , Zr

κr(Z1, Z2, . . . , Zr) = E

(
r∏
i=1

(Zi − EZi)

)
.

For general references on cumulants, see for example [42] and [62].
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The three-way joint cumulant, written as κ3(·, ·, ·), between three random variables Y ,

Xj1 and Xj2 is given as follows:

κ3(Y,Xj1 , Xj2) = E ((Y − EY )(Xj1 − EXj1)(Xj2 − EXj2))

= E(Y Xj1Xj2)− E(Y Xj1)EXj2 − E(Y Xj2)EXj1

− E(Xj1Xj2)EY + 2EY EXj1EXj2

Notice that κ3(·, ·, ·) is zero if any one of the variables is statistically independent from

the other two. From this, we can write a generalized version of the Pearson correlation

discussed above that allows for the screening of interaction between two covariates in relation

to their e�ect on a response Y . De�ne Rj1,j2 as follows:

Rj1,j2 =
|κ3(Y,Xj1 , Xj2)|√

κ2(Xj1 , Xj1)κ2(Xj2 , Xj2)κ2(Y, Y )
.

The two-way cumulant κ2(·, ·) is just the covariance between two random variables (and thus

the variance when both arguments are equal). The three-way cumulant is the generalization

of the covariance.

Pairs of covariates are then ordered based on their pairwise selection score Rj1,j2 . We

can estimate Rj1,j2 using the following formula:

R̂j1,j2 =

√
n

∣∣∣∣ n∑
i=1

(Xij1 −Xj1)(Xij2 −Xj2)(Yi − Y )

∣∣∣∣√(
n∑
i=1

(Xij1 −Xj1)2

)(
n∑
i=1

(Xij2 −Xj2)2

)(
n∑
i=1

(Yi − Y )2

) .

HereXiji refers to the ith observation ofXji and similarly Yi refers to the ith observation

of Y . Also, Xji and Y refer to the standard estimates of the respective means of Xj1 , Xj2

and Y . The interactions with the largest R̂j1,j2 can then be selected as contributing the

most to the response Y .

We form the estimated model Ŝ by choosing some cuto� c > 0. Methods for choosing

such a c are varied (see for example [31]) and will not be the focus of this paper. De�ne Ŝ
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as follows:

Ŝ = {j : 1 ≤ j ≤ p, R̂j1,j2 > c}.

Designate the numerator of R̂j1,j2 (sans the constant
√
n and the absolute values) by τ̂j1,j2 .

We will show that τ̂j1,j2 is a consistent estimator of the numerator of Rj1,j2 , κ3(Xj1 , Xj2 , Y ).

The denominator of R̂j1,j2 consists of (biased) sample estimators for the standard deviations

of Xj1 , Xj2 , and Y . (The bias of these estimators will disappear asymptotically, however).

It is a routine proof (see Chapter 2) to show that these estimators of the standard deviations

are consistent estimators of their respective standard deviations.

3.3.3 Theoretical properties

We establish four conditions that will aid us in determining further properties of JCIS:

(C1) Lower bound on the standard deviations. We assume that there exists a positive con-

stant σmin such that for all j,

σj > σmin and σY > σmin

This excludes features that are constant and hence have a standard deviation of 0.

(C2) Upper bound on the standard deviations. We take as our second condition the assump-

tion that

σj , σY < σmax <∞

for all j = 1, 2, 3, . . . , p. This is a relatively lenient condition, and one that is easy to

satisfy in a large variety of applications. When each of Xj1 , Xj2 , and Y are categorical

and ordinal (with Y being binary and each covariate having, without loss of generality,

K many levels), we can explicitly obtain a simultaneous upper bound on each σj1 , σj2 ,

and σY by use of Popoviciu's inequality on variances (see [67]):

Let σmax = max

{
1

2
,

√
1

4
(vK − v1)

}
,
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where the �rst term in the maximum selection is a bound on the standard deviation

of Y and the second term is given by Popoviciu's inequality on variances. Here v1 and

vK represent the lowest and the highest levels (by chosen encoding) of any Xj .

(C3) Joint cumulant association. De�ne the following function on a subset of R3:

ωj1,j2(k1, k2,m) = |(k1 − EXj1)(k2 − EXj2)(m− EY )πj1,j2,Y (k1, k2,m)|,

where πj1,j2,Y is the joint probability density function for Xj1 , Xj2 , and Y . Assume

that ωj1,j2(k1, k2,m) is of the same sign for all (k1, k2,m). Without loss of generality,

we will assume a positive sign in each instance. Taking Xj1 and Xj2 as having the

same support Ψ ⊆ R, we now assume there exists a positive constant ωmin such that

min
(j1,j2)∈ST

 sup
k1,k2∈Ψ
m∈R

{ωj1,j2(k1, k2,m)}

 > ωmin > 0.

This is an easy assumption to require the true features to satisfy and should be quite

easy to achieve in a wide variety of reasonable situations.

(C4) Existence. Assume that Rj1,j2 = 0 for any pair of indicies (j1, j2) 6∈ ST . It is also to

be assumed that Rj1,j2 exists for all Xj1 and Xj2 pairs. That is, Rj1,j2 <∞.

We can now state the following theorems:

Theorem 3.3.1. (Strong Screening Consistency). Given conditions (C1), (C2), (C3) and

(C4), there exists a positive constant c > 0 such that

P(Ŝ = ST ) −→ 1 as n −→∞.

Theorem 3.3.2. (Weak Screening Consistency). Given that conditions (C1), (C2), and

(C3) still hold, while removing from (C4) only the assumption of Rj1,j2 = 0 for all (j1, j2) /∈
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ST , there exists a positive constant c > 0 such that

P(Ŝ ⊇ ST ) −→ 1 as n −→∞.

(But P(Ŝ ⊆ ST ) may not converge to 1 as n approaches in�nity).

The proofs of these two theorems are presented in Section 3.6.

3.3.4 Corollaries

We can draw several corollaries from the proofs of Theorems 3.3.1 and 3.3.2 (see Section

3.6). These results do not themselves directly deal with sure screening, but they nevertheless

allow us to make observations pertaining to the underlying mechanics of JCIS.

Corollary 3.3.3. In the initial step of the proofs of Theorems 3.3.1 and 3.3.2, it will be

shown that there exists a value Rmin such that for any pair (j1, j2) ∈ ST , we have Rj1,j2 >

Rmin.

Corollary 3.3.4. From the end of Step 2 in the proofs of Theorems 3.3.1 and 3.3.2, we will

conclude that R̂j1,j2 converges uniformly in probability to Rj1,j2 . In other words,

P
(

max
(j1,j2)

|R̂j1,j2 −Rj1,j2 | > ε

)
→ 0 as n→∞

for any ε > 0.

3.4 Simulations and Empirical Data Analysis

We performed four simulations on arti�cially generated data to empirically validate

our theoretical results. Each of these simulations, as well as the associated results, are

summarized below. We also performed an analysis on an empirical data set relating to

polycystic ovary syndrome (PCOS) from the NCBI databases.
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3.4.1 Simulation 1

In this simulation, we will be observing 200 samples (n = 200) of 1000 covaraiates

(p = 1000). Of these p-many covariates, only the interaction between X1 and X2 will be

considered to have meaningful contribution to the outcome Y . We will run 100 replications

and report the average (mean) ranking and the median ranking of the interaction between

X1 and X2 as it relates to association with Y . The test data is the same for both JCIS and

the GPC method of [43].

We generate all Xj randomly from the set {0, 1}, with each outcome being equally

likely. We then let

Y = X1 ×X2.

This will mean that Y depends on only the interaction between X1 and X2. Note that we

omit any main e�ects to exhibit the robustness of JCIS even in the absence of main e�ects

on the response. The results for Simulation 1 are summarized in Table 3.1 below.

Table 3.1: Mean and Median Ranking of Interaction Between X1 and X2 in Simulation 1

JCIS GPC

Mean Rank of (X1, X2) 1 2104.5

Median Rank of (X1, X2) 1 1306

Note that GPC fails prodigiously to establish the importance of the interaction between

X1 and X2 on the response Y . Both the average and the median rankings of (X1, X2) by

GPC are much too large for GPC to be considered a reliable feature screening approach in

this case. On the other hand, our JCIS method accurately ranks (X1, X2) as being the most

important interaction in relation to the response in each of the 100 replicates.

3.4.2 Simulation 2

This simulation closely resembles the interaction simulation found in [43]. Here, we

assume that Y only has two levels. (The original simulation assumes Y has four levels). We
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also retain the assumption in the aforementioned simulation of [43] that each Xj is binary.

It should be noted that, while GPC performs admirably in the original simulation of [43],

that simulation is apparently dependent on �rst identifying a small set of relevant main

e�ects, something that we do not do here. This demonstrates one marked bene�t of JCIS

over GPC: No predetermined set of predictors is required to obtain accurate results. This

holds true whether important causative main e�ects exist or not. To be speci�cally clear,

GPC does not explicitly require obtaining main e�ects �rst. This means that their method

in theory works for cases where the marginal e�ects are weak and the interactive e�ects are

strong. However, the results of this simulation here will show that the GPC algorithm is

wildly inaccurate in this case.

We will be observing 200 samples (n = 200) of 1000 covariates (p = 1000). First, we

generate a response vector Y , where Y = 0 or Y = 1 and P(Yi = 1) = 0.75. Next, we

generate Xij ∈ {0, 1} for j = 1, 3, 5, 7 as follows:

• Conditional on Yi = k, let P(Xij = 1|Yi = k) = θkj , where θkj is given in Table 3.2.

Table 3.2: θkj Values for Simulation 2

j

θkj 1 3 5 7

k = 0 0.3 0.4 0.5 0.3

k = 1 0.95 0.9 0.9 0.95

• Given Yi andXi,2m−1 (form = 1, 2, 3, 4), we generateXi,2m ∈ {0, 1} using the following

probabilities:

P(Xi,2m = 1|Yi = k,Xi,2m−1 = 0) = 0.6I(θk,2m−1 > 0.5) + 0.4I(θk,2m−1 ≤ 0.5);

P(Xi,2m = 1|Yi = k,Xi,2m−1 = 1) = 0.95I(θk,2m−1 > 0.5) + 0.05I(θk,2m−1 ≤ 0.5),

where I(·) is the standard indicator function.
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• For all remaining covariates (i.e. Xj for j > 8), randomly sample the set {0, 1} with

θkj = 0.5.

Overall, the causative interactive e�ects will be (X1, X2), (X3, X4), (X5, X6), and (X7, X8).

The test data is the same for both JCIS and GPC. We will run 100 replications and report

the average (mean) ranking and the median ranking of each these interactions as they relate

to association with Y . The results of Simulation 2 are given in 3.3 below.

Table 3.3: Mean and Median Ranking of Causative Interactions in Simulation 2

JCIS GPC

Mean Rank of (X1, X2) 2.01 7302.73

Median Rank of (X1, X2) 2 534

Mean Rank of (X3, X4) 3.53 2365.05

Median Rank of (X3, X4) 3 42.5

Mean Rank of (X5, X6) 4.65 936.65

Median Rank of (X5, X6) 4 16.5

Mean Rank of (X7, X8) 2.33 6563.83

Median Rank of (X7, X8) 2 1083.5

Since it is obviously impossible for every causative interaction to be consistently ranked

as the absolute top interaction, any method placing each true interaction on average in

the top four or so causative interactions can easily be said to be producing accurate results.

However, as has been mentioned previously, we see here the unfortunate over-reliance of GPC

on �rst establishing a small set of relevant main e�ects in order to produce a dependable set

of causative interactions. The average ranking of each causative interaction by GPC does

not lend to con�dence in being able to select via GPC the true interactions with any degree

of consistency. Although the median rank of each interaction by GPC is better (and even

decent in the case of (X5, X6)) than the average respective rank by GPC, the reliability of

the method is, on the whole, questionable.



51

3.4.3 Simulation 3

Simulation 3 is similar in form to Simulation 1. However, we now will test the ability

of JCIS to screen for interactions when the covariates are continuous. We will be observing

200 samples (n = 200) of 1000 covariates (p = 1000). Of these p-many covariates, only the

interaction between X1 and X2 and the interaction between X3 and X4 will be considered

to have meaningful contribution to the outcome Y .

We generate all Xj randomly based on repeated random samples of the normal distri-

bution with mean 0 and standard deviation 2:

Xj
i.i.d.∼ N(µ = 0, σ = 2).

We then let

Y = X1 ×X2 +X3 ×X4.

Note that this simulation will also be testing the ability of JCIS to correctly locate multiple

two-way interactions having an e�ect on the response. We will report the percentage of

replicates (out of 100) where the interactions (X1, X2) and (X3, X4) are individually within

the top �ve interactions detected, as well as the percentage of time that both (X1, X2) and

(X3, X4) are simultaneously within the top �ve interactions detected. The test data is the

same for both JCIS and the iFORM method of [38]. The results of Simulation 3 are detailed

in Table 3.4.

Table 3.4: Percentage of Replicates Finding (Xj1 , Xj2) to be Important in Simulation 3

JCIS iFORM

(X1, X2) 100% 0%

(X3, X4) 100% 0%

(X1, X2) & (X3, X4) 100% 0%

Here an interaction is considered to be �important� if it is ranked in the top �ve most
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relevant interactions by the screening method in question. These results show the remarkable

di�erence between JCIS and iFORM in being able to determine interactive e�ects in the

event that no main e�ects are prevalent in the data. This demonstrates one larger limitation

of iFORM in that it requires the existence of main e�ects between covariates in order to �nd

any meaningful interactive e�ects. This is especially important when one wants to screen for

interactions in genetic data, where gene SNPs with weak marginal e�ects can have stronger

interactive e�ects on the response. For further discussion on this, see e.g. [59] and [79].

3.4.4 Simulation 4

In this simulation we will test the ability of JCIS versus iFORM in successfully screening

two interactive features in the presence of individual main e�ects among those covariates

forming the interactive e�ects. This is done in order to show that even when strong marginal

e�ects are present, JCIS can outperform iFORM in determining the true interactions. We

examine 100 observations (n = 100) of 500 covariates (p = 500) over 100 replications. Let X

follow the multivariate normal distribution with mean vector 0 and cov(Xj1 , Xj2) = 0.1|j1−j2|

for 1 ≤ j1, j2 ≤ p. Now de�ne

Y = X1 +X3 +X6 +X10 + 3(X1 ×X3) + 3(X6 ×X10).

We will apply JCIS and iFORM to screen for the true interactions (X1, X3) and (X6, X10).

The results of Simulation 4 are given in Table 3.5.

Table 3.5: Percentage of Replicates Finding (Xj1 , Xj2) to be Important in Simulation 4

JCIS iFORM

(X1, X3) 92% 21%

(X6, X10) 92% 19%

(X1, X3) & (X6, X10) 84% 9%

Here an interaction is considered to be �important� if it is ranked in the top �ve most
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relevant interactions by the screening method in question. Note that even when marginal

e�ects are included in the generation of the response, iFORM still struggles to accurately

and consistently detect the true interactive e�ects. Note that JCIS, on the other hand,

accurately detects at least one of the two true interactions in every replication, and detects

both true interactions in 84 of the 100 replications.

3.4.5 Final Comments on Simulation Results

An overall issue that arises in interaction feature screening is the reliance of extant

methods on a predetermined set of marginally important predictors. Simulations 1 and 3

demonstrate this shortcoming in even very simple cases. The �rst and third simulations lead

us to believe that, in the absence of strong main e�ects, JCIS is a much superior method

to GPC and iFORM. Simulations 2 and 4 add main e�ects to the simulation data model.

However, even with the presence of main e�ects, both GPC and iFORM do not produce

competent or reliable results. Again, as with the �rst and third simulations, JCIS performs

admirably.

3.4.6 Real Data Analysis: Epistasis Detection

We apply a two-stage process to a real data set examining prevalence of polycystic

ovary syndrome (PCOS) in females who self-identi�ed as having Caucasian or European-

ancestry. With the proper approvals, this PCOS dataset was downloaded from the database

of genotypes and phenotypes (dbGaP) of the National Center for Biotechnology Information

(NCBI) at the NIH (dbGaP Study Accession: phs000368.v1.p1). This data consists of 4099

(3055 controls, 1042 cases) observations of each of 731,442 SNPs. The response is PCOS

a�ection status (0 = control, 1 = case) and the predictors are the encoded SNP geneotype

values. Our speci�c aim is to identify SNPs which most strongly interact with one another

in determining PCOS a�ection status.

Stage 1 analysis

In the �rst stage of our interaction feature screening, we apply JCIS to all pairwise

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000368.v1.p1
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combinations of SNPs coming from the same chromosome. All 23 homo sapien chromosomes

were used. As is common with such data sets, we removed all SNPs with less than a 95%

call rate, as well as all SNPs with a minor allele frequency less than 10%. (See [2], [51], [66]).

All of the analysis in this stage was performed on the cluster machine centered at the Center

for High Performance Computing at the University of Utah. After recording a R̂j1,j2 value

for all possible within-chromosome pairs, we ordered the SNP pairs from largest to smallest

R̂j1,j2 value. To ensure that all important SNP pairs are selected after the �rst stage, we

keep all SNPS associated with the n = 4099 largest values of R̂j1,j2 . We then proceed to

Stage 2 of the real data analysis.

It should here be noted that while an exhaustive search among all pairs of SNPs

(including between-chromosome pairings) can be done, preliminary results on all possible

between-chromosome pairs of SNPs from chromosomes 11 through 23 indicated that ap-

proximately 300,000 within-chromosome SNP pairings (SNP pairs coming from the same

chromosome) had a stronger interactive e�ect on PCOS status than even the top ranked

between-chromosome SNP pair. Further examination as to why this is could be pursued at

a later date.

Stage 2 analysis

We now turn our attention to a more in depth analysis using multifactor dimensionality

reduction (MDR) on a small set of the SNPs comprising SNP pairs having the largest values

of R̂j1,j2 . MDR is a model-free and nonparametric approach �rst introduced in [68] that can

be used to identify high-order SNP-SNP interactions, even in the absence of independent

main e�ects of the gene SNPs on the outcome. Ideally, we would like to select a set of

SNPs associated with the n largest R̂j1,j2 values. However, as discussed in much of the

MDR literature (e.g. [68], [36], [84], [32]), the run time of MDR increases drastically as the

number of SNPs under consideration grows. Thus, we must choose a relatively small set of

SNPs to consider for analysis by MDR.

In order to select a reasonably small set of SNPs to consider (approximately 100 candi-

date SNPs), we can project onto the position of SNPj1 the top 10,000 R̂j1,j2 values, then look
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for a cuto� value for which most of the SNPs lie below. We only plot the top 10,000 R̂j1,j2

values due to computational limitations in plotting a larger set of values. Approximately

99% of the R̂j1,j2 values are less than 0.1. This tells us that the vast majority of SNP pairs

can be omitted as having little to no e�ect on PCOS status. The top 10,000 SNPs still

easily provide a set of SNPs encompassing the overall patterns of the R̂j1,j2 values. Figure

3.1 shows the top 10,000 R̂j1,j2 values versus the associated position of SNPj1 . We will look

for a cuto� value for which (approximately) less than 100 R̂j1,j2 values lie above. Based on

Fig. 3.1: SNPj1 position versus R̂j1,j2 value.

the plot in Figure 3.1, we select a cuto� of R̂j1,j2 = 0.865. This yields a computationally

feasible set of 85 SNPs for our candidate set for MDR.

Because our case to control ratio is unbalance (i.e. not equal to 1), we will use balanced

accuracy (BA) as the evaluation measure of our MDR results. The BA can be de�ned as

follows:

BA =
1

2

(
True Positives

True Positives + False Negatives
+

True Negatives

True Negatives + False Positives

)
,

where the true and false positives and negatives refer to the classi�cation of a subject based
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on the loci-genotype combinations selected by MDR. Note that BA is just the arithmetic

mean of the speci�city and the sensitivity. For further discussion on the use of the BA as

the metric for our model evaluations in the presence of unbalanced case to control ratios

see, for example, [81] and [84].

A further consideration that must be made in regards to the unbalanced ratio of case

to control PCOS instances is that of choosing a threshold T at which to classify subjects as

high or low risk for PCOS based on their genotype combination among the SNPs selected by

MDR. While traditional approaches tacitly assume a priori balance of the case to control

ratio (either by design or by over/undersampling of the case/control observations), and

take T = 1 as the threshold, more robust implementations of MDR allow for an adjusted

threshold Tadj , where Tadj is the case to control ratio. This use of the adjusted threshold is

seen commonly in the MDR literature (e.g. [81] and [32]).

Using an implementation of MDR in Java from the researchers at www.epistasis.org (see

also [64] and [34], both of which recommend this implementation), we obtained the following

two, three, four, and �ve-loci results. Table 3.6 contains the 10-fold cross validated accuracies

(BA-wise) for each model.

• Two-loci model: rs1423304, rs1024216.

• Three-loci model: rs1002424, rs1423304, rs1024216.

• Four-loci model: rs1002424, rs1024216, rs657718, rs4745466.

• Five-loci model: rs1002424, rs1423304, rs1024216, rs657718, rs4745466.

All models found via this MDR implementation employ the ensemble of BA to test

model accuracy, 10-fold cross validation to prevent over�tting, and the adjusted threshold

outlined by [81]. Higher order models can also be found, however, with greater balanced

accuracy comes an exponentially increasing computational cost. The plots given in Figures

3.2 and 3.3 show the classi�cation of geneotype combinations in the two- and three-loci

models as either high or low risk for PCOS. Higher order models exceed the limitations of

succinct plotting and are omitted.
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Table 3.6: MDR Accuracy

k-way CV Accuracy

2-way 53.50%

3-way 52.69%

4-way 51.97%

5-way 53.26%

C
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Fig. 3.2: High-low risk bar plots broken down by genotype for the selected two-locus model.
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3.5 Concluding Remarks

In this paper we have addressed the important issue of interaction screening in ultrahigh

dimensional feature spaces. Although applications of interaction screening are wide spread,

few extant methods exist for doing such. We have introduced a novel interaction screening

method called JCIS (Joint Cumulant Interaction Screening) that is empirically accurate,

theoretically sound, and computationally feasible.

One unrivaled advantage of JCIS when compared to existing interaction screening meth-

ods such as iFORM [38] and GPC [43] is the ability of JCIS to determine interactive e�ects

among predictors even when no no strong marginal e�ects exist. Extant methods for fea-

ture interaction screening are deleteriously over-reliant on the existance of pronounced and

explicit main e�ects from both an empirical and theoretical standpoint. The superiority of

JCIS in this regard is born out repeatedly in the simulations of Section 3.4.

Our proposed method also has the strong sure screening consistency property, meaning

that even as the number of covariates increases exponentially with respect to sample size,

JCIS prevails in discovering the exact set of relevant features with probability approaching

one. This property has become the benchmark theoretical property for feature screening

methods. The proofs pertaining to strong sure screening of JCIS are presented in Section

3.6 found below.

Via a real data analysis on an empirical data set relating to polycystic ovary syndrome

(PCOS) from the NCBI databases, we demonstrated the ability of our method to be applied

to extremely large real life data sets such as those found in genetics. In terms of number

of covariate pairs in question, as well as the number of observations considered, the real

data set we examine is (by conservative estimates) about 2800 times larger than the data

sets examined in similar papers (e.g. the inbred mouse microarray gene expression dataset

found in [38]). In turn, this means that the computational considerations necessary for our

PCOS data were, until now, unseen in the setting of interaction feature screening. As both

data dimension and computational power continue to grow, we feel con�dent that JCIS

will remain a salient approach for analyzing two-way interactions in ultrahigh (and beyond)
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dimensional data sets.

3.6 Proofs of Theoretical Results

Here we present in full the proofs for Theorems 3.3.1 and 3.3.2. Before proceeding into

the proofs, we will establish a lemma which employs the Continuous Mapping Theorem (see

[58] and [11]).

3.6.1 Prefacing Lemmas and a De�nition

The following lemmas will assist in the proof of our main theorems on strong sure

screening.

Lemma 3.6.1. Let σ̂j1, σ̂j2, and σ̂Y be the estimators of σj1, σj2, and σY used in the

de�nition of R̂j1,j2. Assume that σ̂j1, σ̂j2 , σ̂Y , and τ̂j1,j2 are all (individually speaking)

consistent estimators of the respective values they are estimating (viz. σj1, σj2, σY , and

κ3(Xj1 , Xj2 , Y )). We then have that

R̂j1,j2 =
τ̂j1,j2

σ̂j1 σ̂j2 σ̂Y

is a consistent estimator of Rj1,j2.

Proof. The proof of this lemma follows easily from a direct application of the Continuous

Mapping Theorem paired with a straight forward generalization of the very similar proof

found in Chapter 2.

Classical results

It is a classical result that

σ̂j1 =
1

n

n∑
i=1

(
Xij1 − X̄j1

)2
is a biased, yet consistent, estimator of the standard deviation of Xj1 . Similar statements

can of course be made for σ̂j2 and σ̂Y .
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The following de�nition introduces some necessary concepts from the �eld of set topol-

ogy. For readers interested in further background on this topic, we suggest the texts [9] and

[57].

De�nition 3.6.2. Unless otherwise noted, from hereon let D be a directed set and let

f : D → R be any well de�ne function. Denote by F(D) the collection of all �nite subsets

of D. De�ne a function h : F(D)→ R as follows:

h(A) :=
∑
a∈A

f(a),

with A ∈ F(D). Note that F(D) is partially ordered by set inclusion. Moreover, since for

any A, B in F(D), we have A ⊆ A ∪ B and B ⊆ A ∪ B, then F(D) is itself a directed set.

(Obviously A ∪ B is in F(D) as the �nite union of �nite sets is also �nite). Because F(D)

is a directed set, then h is a topological net on F(D) into R. The function f is de�ned to

be summable if the net h converges in the usual (Moore-Smith) sense. The limit of h is the

sum of f over D.

Lemma 3.6.3. If a function f : D → R is summable in the sense of De�nition 3.6.2, then

the set {d ∈ D : f(d) > 0} is a countable subset of D.

Proof. Assume that f is summable. Let

∑
d∈D

f(d) = M <∞.

De�ne the following sets for each n ∈ N:

Sn :=

{
d ∈ D : f(d) >

1

n

}
.

We then have the following chain of inequalities for any n ∈ N:

M ≥
∑
d∈Sn

f(d) >
∑
d∈Sn

1

n
=
|Sn|
n
,
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where |Sn| denotes the cardinality of Sn. Note that by necessity |Sn| <∞, as otherwise we

would have that
∑

d∈D f(d) = M =∞ and f would not be summable. All told, we can say

that Mn ≥ |Sn|, implying that for every n ∈ N, Sn is a �nite set. Thus

{d ∈ D : f(d) > 0} =
⋃
n∈N

Sn

is a countable union of �nite sets, the result of which must necessarily be countable.

Note that the same argument can be used mutatis mutandis to show that {d ∈ D :

f(d) < 0} is also countable. This allows us to now state a corollary.

Corollary 3.6.4. Lemma 3.6.3 means that, when f : D → R is summable, there exists a

countable set D′ ⊆ D such that

∑
d∈D

f(d) =
∑
d′∈D′

f(d′) <∞.

Proof. De�ne the following two sets:

D1 = {d ∈ D : f(d) > 0} D2 = {d ∈ D : f(d) < 0}.

Begin by noting that we can apply Lemma 3.6.3 twice to get that the set D′ = {d ∈ D :

f(d) 6= 0} is a countable subset. This de�nition of D′ yields the desired result.

We can now proceed into the proofs of our main theorems on sure screening.

3.6.2 Proofs of Theorems 3.3.1 and 3.3.2

The proof of these two theorems is accomplished in three steps:

1. We �rst show that a positive lower bound Rmin exists for all Rj1,j2 with (j1, j2) ∈ ST .

In other words, we will show the following:

There exists Rmin > 0 such that Rj1,j2 > Rmin for all (j1, j2) ∈ ST .
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2. This is followed by our showing that R̂j1,j2 is a uniformly consistent estimator of

Rj1,j2 for each 1 ≤ j1 < j2 ≤ p. This will e�ectually consist of showing that τ̂j1,j2

is a consistent estimator of κ3(Xj1 , Xj2 , Y ), since the standard deviation estimators

in the denominator of R̂j1,j2 are already well established consistent estimators of the

standard deviations of Xj1 , Xj2 , and Y .

3. We �nally show that there exists a constant c > 0 such that

P(Ŝ = ST ) −→ 1 as n −→∞

Weak consistency is shown as a natural subcase of this, which will establish Theorem

3.3.2.

Step 1

We previously de�ned the following in Subsection 3.3.3:

ωj1,j2(k1, k2,m) = (k1 − EXj1)(k2 − EXj2)(m− EY )πj1,j2,Y (k1, k2,m).

Taking any �xed Xj1 and Xj2 , let f : R3 → R be de�ned by

f(k1, k2,m) =
ωj1,j2(k1, k2,m)

σj1σj2σY
.

Clearly R3 is a directed set under the routine product direction. Furthermore, if we use f

to de�ne the net h as in De�nition 3.6.2, then the limit of h is Rj1,j2 . Since by Condition

(C4) Rj1,j2 is �nite for all Xj1 and Xj2 pairs, then this in turn implies that f is a summable

function. We have thus satis�ed the conditions of Corollary 3.6.4, which means that there
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is some countable set Dj1,j2 ⊂ R3 such that

Rj1,j2 =

∫
Dj1,j2

f(k1, k2,m) dk1dk2dm

=

∫
Dj1,j2

ωj1,j2(k1, k2,m)

σj1σj2σY
dk1dk2dm.

Hence, for (j1, j2) ∈ ST ,

Rj1,j2 =

∫
Dj1,j2

ωj1,j2(k1, k2,m)

σj1σj2σY
dk1dk2dm

≥ 1

σ3
max

∫
Dj1,j2

ωj1,j2(k1, k2,m) dk1dk2dm by (C2),

≥ 1

σ3
max

sup
(k1,k2,m)∈Dj1,j2

ωj1,j2(k1, k2,m)

≥ ωmin

σ3
max

by (C3),

> 0.

De�ne Rmin =
ωmin

2σ3
max

. Then Rj1,j2 > Rmin > 0 for all (j1, j2) ∈ ST . This establishes a

positive lower bound on Rj1,j2 for all (j1, j2) ∈ ST , completing Step 1. Corollary 3.3.3 is

also established by this step.

Step 2

We now apply the weak law of large numbers to show that R̂j1,j2 is a (uniformly)

consistent estimator of Rj1,j2 . This will consist of showing that τ̂j1,j2 is a consistent esti-

mator of κ3(Xj1 , Xj2 , Y ), since the denominator of R̂j1,j2 is comprised of the routine (and,

importantly here, consistent) estimators of σj1 , σj2 and σY . As it can be show using the

Mann-Wald Theorem that the quotient of consistent estimators is itself a consistent estima-

tor, our aforementioned work with τ̂j1,j2 will su�ce. This is re�ected in the statement of

Lemma 3.6.1.
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By a slight rearrangement of the numerator in the de�nition of R̂j1,j2 , we can obtain

τ̂j1,j2 =
1

n

n∑
i=1

(Xij1 −Xj1)(Xij2 −Xj2)(Yi − Y ). (3.1)

We now can explicitly expand the product of binomials in (3.1) to obtain

τ̂j1,j2 =
1

n

∑
Xij1Xij2Yi −

1

n

∑
Xj1Xij2Yi −

1

n

∑
Xij1Xj2Yi

− 1

n

∑
Xij1Xij2Y +

1

n

∑
Xj1Xj2Yi

+
1

n

∑
Xj1Xij2Y +

1

n

∑
Xij1Xj2Y −

1

n

∑
Xj1Xj2Y

By repeated applications (summand wise) of the weak law of large numbers to this

above expression for τ̂j1,j2 , we obtain:

1

n

∑
Xij1Xij2Yi

p−→ E(Xj1Xj2Y )

1

n

∑
Xj1Xij2Yi

p−→ E(Xj1)E(Xj2Y )

1

n

∑
Xij Ȳ

p−→ E(Xj)E(Y ),

with all convergence being in probability. Similar conclusions can be reached for like terms.
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Hence we have

τ̂j1,j2 =
1

n

∑
Xij1Xij2Yi −

1

n

∑
Xj1Xij2Yi −

1

n

∑
Xij1Xj2Yi

− 1

n

∑
Xij1Xij2Y +

1

n

∑
Xj1Xj2Yi

+
1

n

∑
Xj1Xij2Y +

1

n

∑
Xij1Xj2Y −

1

n

∑
Xj1Xj2Y

p−→ E(Y Xj1Xj2)− E(Y Xj1)EXj2 − E(Y Xj2)EXj1

− E(Xj1Xj2)EY + 2EY EXj1EXj2

= κ3(Xj1 , Xj2 , Y ).

So indeed τ̂j1,j2 is a consistent estimator of κ3(Xj1 , Xj2 , Y ). Furthermore, this shows, by

Lemma 3.6.1, that R̂j1,j2 is a consistent estimator of Rj1,j2 .

We will now show that such consistency is also uniform. Since R̂j1,j2 is consistent as an

estimator of Rj1,j2 , we know that for any 1 ≤ j1 < j2 ≤ p and any ε > 0,

P(|R̂j1,j2 −Rj1,j2 | > ε)→ 0 as n→∞.

Let

(J1, J2) = argmax1≤j1<j2≤p |R̂j1,j2 −Rj1,j2 |.

Then, since (J1, J2) ∈ {1, 2, . . . , p} × {1, 2, . . . , p}, we know that

P(|R̂J1,J2 −RJ1,J2 | > ε)→ 0 as n→∞
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for any ε > 0. In other words, we have that

P
(

max
1≤j1<j2≤p

|R̂j1,j2 −Rj1,j2 | > ε

)
→ 0 as n→∞

for any ε > 0. This shows that R̂j1,j2 is a uniformly consistent estimator of Rj1,j2 , completing

Step 2. This also establishes Corollary 3.3.4.

Step 3

In Step 1 we de�ned

Rmin =
ωmin

2σ3
max

.

Let c = (2/3)Rmin. Suppose by way of contradiction that this c is insu�cient to be able to

claim Ŝ ⊇ ST . This would mean that there exists some pair (j∗1 , j
∗
2) ∈ ST , yet (j∗1 , j

∗
2) /∈ Ŝ.

It then follows that we must have

R̂j∗1 ,j∗2 ≤ (2/3)Rmin

while at the same time having (as shown in Step 1)

Rj∗1 ,j∗2 > Rmin.

From this we can conclude that

|R̂j∗1 ,j∗2 −Rj∗1 ,j∗2 | > (1/3)Rmin,

which implies that

max
1≤j1<j2≤p

|R̂j1,j2 −Rj1,j2 | > (1/3)Rmin
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as well. However, we know by the uniform consistency of R̂j1,j2 that by letting ε = 1/3Rmin,

we have

P(Ŝ 6⊇ ST ) ≤ P
(

max
1≤j1<j2≤p

|R̂j1,j2 −Rj1,j2 | > (1/3)Rmin

)
→ 0 as n→∞.

This is a contradiction to the assumption of non containment above. So indeed, we have

that

P(Ŝ ⊇ ST )→ 1 as n→∞.

This proves Theorem 3.3.2, and also establishes the forward direction for the statement of

Theorem 3.3.1.

To prove the reverse direction for Theorem 3.3.1, suppose (again by way of contra-

diction) that Ŝ 6⊆ ST . Then there is some (j∗1 , j
∗
2) ∈ Ŝ, yet (j∗1 , j

∗
2) /∈ ST . This means

that

R̂j∗1 ,j∗2 ≥ (2/3)Rmin,

while at the same time (by (C4)) having

Rj∗1 ,j∗2 = 0.

It now follows that

|R̂j∗1 ,j∗2 −Rj∗1 ,j∗2 | > (2/3)Rmin.

Set ε = (2/3)Rmin. By uniform consistency we have

P(ST 6⊇ Ŝ) ≤ P
(

max
1≤j1<j2≤p

|R̂j1,j2 −Rj1,j2 | > (2/3)Rmin

)
→ 0 as n→∞.

From this we know that

P(ST ⊇ Ŝ)→ 1 as n→∞.

We can now conclude that for c = (2/3)Rmin, we have P(ST = Ŝ)→ 1 as n→∞, completing

the proof.



CHAPTER 4

Marginal and Interactive Feature Screening for Ultrahigh Dimensional

Data with Multivariate Response

4.1 Introduction

Variable selection and feature screening methods for high and ultrahigh dimensional

data sets have been an oft explored topic in �elds such as regression modelling, machine

learning, and classi�cation. Early approaches such as lasso [76], SCAD [22], adaptive-lasso

[95], and elastic net [96] focused on penalized regularization regression. These methods were

followed by various implementations of sure independence screening, as pioneered by [24].

[See also e.g. 18, 25, 26, 43, 53, 93]. While the sole or principal focus of these feature screen-

ing methods is the case when the response is univariate, we are interested here in developing

a new approach for feature screening when the feature space is ultrahigh dimensional and

the response is multivariate. The ability to feature screen ultrahigh dimensional feature

spaces when the response is multivariate can allow us to develop more accurate classi�ca-

tion and regression models because we can account for the covariance structure between the

components of the response jointly. The ideal multivariate screening method would possess

the ability to screen for both marginal and interactive e�ects.

Throughout this paper we will let n represent the number of observations, p represent

the number of covariates, and q represent the number of components in the response vector Y.

We will tacitly assume throughout this work that the feature space is ultrahigh dimensional

in the classical sense of [24]. Consider the multivariate regression model below:

h(Y) = XB,

where Y ∈ Rn×q is the observed n × q matrix of responses, X ∈ Rn×p is the covariate or

predictor matrix, B ∈ Rp×q is the parameter coe�cient matrix, and h is a link function.
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The jth row vector of B, Bj , is a vector of length q corresponding to the coe�cient vector

of the jth predictor, where j = 1, ..., p. For screening purposes, we will assume that the true

model is sparse, with few predictors (relative to p) having a causative e�ect on the response.

Our goal with this work is to introduce a feature screening method applicable to situations

where Y is multivariate. Moreover, we will seek to not only establish our method as a viable

option when screening for marginal e�ects in a multivariate response model, but also as the

only existing method for interaction e�ects screening when q > 1.

[73] presents an approach to multivariate response modelling in the setting of classi�-

cation using microarray data. While a tractable method for ultrahigh dimesional feature

screening with respect to classi�cation, the method is not generally applicable to broader

multivariate response problems. Moreover, their techniques cannot be used to screen for

interactions in any regard. [56] considers a feature screening process when the relationship

between q and n is ultrahigh dimensional (but p < n). This situation is distinct (and op-

posite) from our assumptions here and will not be considered. Two well known methods

for feature screening ultrahigh dimensional feature spaces for marginal e�ects when the re-

sponse is multivariate are the SIRS method of [93], and the distance correlation (DC-SIS)

method of [53]. [See also e.g., 14, 55, where SIRS and DC-SIS are put forth as the leading

extant methods in marginal multivariate feature screening]. It is important to note here,

however, that neither SIRS nor DC-SIS allow for the screening of interactive e�ects. We

will present below a new method for feature screening ultrahigh dimensional feature spaces

with multivariate response. Our method will be able to screen for both marginal e�ects and

interactive e�ects. As a matter of comparison, we will compare the empirical results of our

method in the marginal case with the results of SIRS and DC-SIS.

The remainder of this paper will be organized as follows: In Section 4.2 we will present

our new feature screening approach, along with the necessary notation and theoretical prop-

erties associated with this new method. This will be followed by Section 4.3, wherein we

empirically compare our newly proposed method with the existing approaches of SIRS and

DC-SIS, as well as demonstrate the application of our method in the setting of interaction
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screening. Therein we will also present a real data analysis on a genome-wide-association-

study (GWAS) data set for mice. A concluding discussion will be given in Section 4.4.

Section 4.5 will be devoted to proving the theoretical results of Section 4.2.

4.2 Feature Screening and Generalized Correlation

Here we present an overview of a screening procedure built upon the concepts of the

generalized correlation matrix. We �rst explore a novel process of screening for marginal

e�ects of individual covariates on a multivariate response. This is then followed by the

presentation of a yet hereunto unseen method for feature interaction screening when the

response is multivariate.

4.2.1 Marginal Feature Screening Via Generalized Correlation

Let Z1 and Z2 be univariate random variables. The linear (Pearson) correlation between

Z1 and Z2 is given by

% =
Cov(Z1, Z2)√
Var(Z1)Var(Z2)

,

where the standard de�nitions of the variance and covariance are used. This concept of

correlation can be generalized to greater than two variables in the following manner. Let

Z = [Z1, Z2, Z3, . . . , Zr]
T be an r-dimensional random variable with any distribution. Let

Σ be the standard variance-covariance matrix associated with Z. We then can obtain a

correlation matrix for Z as follows:

corr(Z) = [diag (Σ)]−1/2 Σ [diag (Σ)]−1/2 .

See Chapter 7 of [49] for a further discussion on the correlation matrix.

This work with the correlation matrix and generalized correlation can be speci�cally

extended to marginal e�ects in the following manner: For any one of the covariates, Xj ,

consider the correlation matrix of the random variable vector

Vj = [Xj , Y
(1), Y (2), . . . , Y (q)],
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where Y (m) is the mth component of Y. The variance-covariance matrix of Vj can be written

in block matrix form as below:

Σj =


Var(Xj) CT

C Cov(Y)


,

where C is a q-vector whose mth entry is the covariance between Xj and Y
(m), and Cov(Y)

represents the variance-covariance matrix for the components of Y. LetHj be the generalized

correlation for Vj :

Hj = [diag (Σj)]
−1/2 Σj [diag (Σj)]

−1/2 .

This allows us to now construct a population quantity of a utility measure for covariate

ranking. Let ϕj = ‖Hj‖p, with ‖·‖p being any `p norm with 1 ≤ p < ∞. (Of note, ‖·‖∞

cannot be directly employed here as it will always be equal to one in this case). The p

used here is not to be confused with the p used to denote the dimension of the covariate

space. Herein we will examine empirical results under the taxi-cab (i.e. `1) and Frobenius

(i.e. `2) matrix norms. Where necessary, these norms will be denoted by ‖·‖T and ‖·‖F

respectively. It should be noted, however, that any `p-norm (with p <∞) can be employed

here from a theoretical standpoint. This will be re�ected in the proofs (see Section 4.5) of

the underlying theory to follow below. The use of other matrix norms beyond the previously

discussed entrywise `p norms (e.g. induced matrix norms, Schatten norms, `p,q norms, etc.)

is reserved for a later work and extends beyond the scope of what we will examine in this

paper. For further reference on the aforementioned taxi-cab and Frobenius norms, as well

as any other `p and matrix norms, see e.g. [40].

We can create an estimator ϕ̂j of each ϕj as follows:
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• The variance of each Xj is estimated by

V̂ar(Xj) =
1

n− 1

n∑
i=1

(Xij −Xj)
2,

where Xj is the sample mean of Xj .

• Each covariance in V is estimated by

Ĉov(Y (m), Xj) =
1

n− 1

n∑
i=1

(
Xij −Xj

) (
Y

(m)
i − Y (m)

)
,

where Xj is still the sample mean of Xj and Y
(m)

is the sample mean of Y (m).

• The covariance matrix of Y is to be estimated in the usual way, where

Ĉov
(
Y (`), Y (m)

)
=

1

n− 1

n∑
i=1

(
Y

(`)
i − Y (`)

)(
Y

(m)
i − Y (m)

)
.

• This process ultimately results in the ability to create an estimator Σ̂j of the matrix

Σj . We can then in turn create the following matrix:

Ĥj =
[
diag

(
Σ̂j

)]−1/2
Σ̂j

[
diag

(
Σ̂j

)]−1/2
.

The matrix Ĥj is a natural estimator of the matrix Hj presented above.

• Application of the desired matrix norm to Ĥj in order to produce the resulting ϕ̂j is

a matter of routine calculation. Explicitly, we de�ne

ϕ̂j = ‖Ĥj‖p.

Once ϕ̂j is calculated for each j = 1, 2, . . . , p, we then rank all candidate predictors

according to their associated ϕ̂j value, from largest to smallest. Covariates associated with

larger ϕ̂j values are taken as having a larger association with the response Y. Herein, we
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will call this newly proposed method GenCorr, in reference to the integral use of generalized

correlation in the method. When reference to a speci�c norm is necessary, we will indicate

as such. GenCorr-T will refer to instances where the taxi-cab norm is used. GenCorr-F will

refer to instances where the Frobenius norm is used.

4.2.2 Extensions to Interaction Feature Screening

From a purely theoretical vantage, this proposed method can be further extended to

screen for r-way (with r ≥ 2) interactions between predictors as follows:

Let Σj1,j2,...,jr =


∏r
s=1 [Var(Xjs)] KT

K Cov(Y)


,

where K is a q-vector whose mth entry is given by

Km = κr+1

(
Y (m), Xj1 , Xj2 , . . . , Xjr

)
, m = 1, 2, 3, . . . , q.

Here kr+1 represents the (r + 1)-way joint cumulant. For a further discussion on joint

cumulants, see Chapter 3, [62], and [42]. Note that by viewing the covariance of a component

of Y and a given Xj as the two-way joint cumulant, the previously outlined application of

GenCorr to screen for marginal e�ects is really just a subcase of the method presented here

for feature interaction. As such, much of the relevant theory and proofs relating to GenCorr

will be presented in the form of r-way interaction screening. The easily conceivable case

where r = 1 will account for the desired theoretical properties of GenCorr when applied

to marginal e�ect screening. This ensuing presentation of GenCorr solely via the broader

framework of r-way interactions is done to avoid duplicating nearly identical theorems for

marginal screening and interaction screening separately.
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As a matter of notation, de�ne the following set of r-tuples with integer entries

I = {(j1, j2, . . . , jr) | 1 ≤ j1 < j2 < · · · < jr ≤ p} .

The set I contains all combinations of the covariate indices for which we can have an r-way

interaction.

De�ne the following:

Hj1,j2,...,jr =
(

[diag (Σj1,j2,...,jr)]−1/2 Σj1,j2,...,jr [diag (Σj1,j2,...,jr)]−1/2
)
.

We can now create the following interaction utility measure for r-way covariate interaction

ranking:

Let Φj1,j2,...,jr = ‖Hj1,j2,...,jr‖p,

where once again ‖·‖p is any (entry-wise) `p norm with p <∞.

As was the case with the construction of ϕ̂j , it is a simple exercise to construct an

estimator of Φj1,j2,...,jr :

• The variance of each Xj is estimated as before for ϕ̂j .

• The (r + 1)-way joint cumulant is estimated by

κ̂r+1(Y (m), Xj1 , . . . , Xjr ) =
1

n

n∑
i=1

[
r∏

s=1

(
Xijs −Xjs

)](
Y

(m)
i − Y (m)

)
,

where Xjs represents the sample mean of Xjs and Y
(m)

is the sample mean of Y (m).

• The covariance matrix of Y is to be estimated in the usual way, as was done in the

case of ϕ̂j .

• Quite like was done in the marginal e�ects screening case, one can now create an

estimator Ĥj1,j2,...,jr of the matrix Hj1,j2,...,jr . From this, the values of an estimator,
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denote it by Φ̂j1,...,jr , are a straight forward calculation. Explicitly, we de�ne

Φ̂j1,...,jr = ‖Ĥj1,j2,...,jr‖p.

After calculating Φ̂j1,...,jr for each r-tuple in I, we then can rank each interaction as most to

least important based on the associated values of Φ̂j1,...,jr . Larger Φ̂j1,...,jr values are taken

as having larger association with Y. In this way, Φ̂j1,...,jr will act as a screening utility for

feature screening.

In line with the concept of sparsity in ultrahigh dimensional feature screening, we can

assume that only a small number of the interactions between covariates have a truly causative

association with the response. Let SF = I represent what we will call the �full model.� This

model is a model which admits every possible (r-way) interaction between the covariates in

the feature space. Let S ⊆ SF denote an arbitrary model to be taken under examination.

We will also de�ne X(S) to be the set of all covariate interactions whose r-tuple indices are

contained in S. Given a positive constant c > 0, we can de�ne an estimated model:

Ŝ = {(j1, . . . , jr) ∈ I | Φ̂j1,...,jr > c}.

Here Ŝ represents a model selected by GenCorr given a predetermined cuto� c > 0. Multiple

approaches exist for determining this cuto� [see e.g. 43, 48, 91, 93]. We suggest examining

these methods for use with GenCorr, but will not explore the determination of a cuto�

further.

Let D
(
Y | X(S)

)
represent the conditional distribution of Y given X(S). We will say

that a model S is su�cient if

D
(
Y | X(SF )

)
= D

(
Y | X(S)

)
.

The full model SF is clearly su�cient. Ultimately, we are really only interested in �nding

the smallest (in terms of cardinality) su�cient model. The smallest su�cient model is also
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known as the true model. We will denote the true model by ST . We will denote the number

of features in a given model by |S|. (So the number of true or causative features would be

written as |ST |). The principal aim in feature screening is producing an estimated model

which not only contains the true model, but moreover is the smallest such model to contain

all the true features (or, as the case may be, all true interactions).

The most common situation where our approach to interaction screening can be applied

in practice is in the case where r = 2 (i.e. screening for two-way interactions). Computa-

tional limitations currently hedge what feasibly can be done with ultrahigh dimensional

feature spaces when r is greater than two. Owing to these limitations, all simulations per-

taining to interaction screening presented herein (see Section 4.3, Simulation 5) will only

deal with two-way interactions.

4.2.3 Theoretical properties

We �rst establish several conditions to facilitate the technical proofs that will be pre-

sented in Section 4.5.

(C1) Bounds on the standard deviations. We denote the variances of each Xj and the

variance of the components of Y as follows: Var(Xj) = σ2
j and Var(Y (m)) = σ2

(m).

Assume that there exists a positive constant σmin such that for every 1 ≤ j ≤ p and

1 ≤ m ≤ q,

σj , σ(m) ≥ σmin.

This allows us to exclude any covariates that are constant and thus have a standard

deviation of zero.

(C2) Entries of Hj1,...,jr for (j1, . . . , jr) in ST . Assume that for each (j1, . . . , jr) in ST there

exists some positive constant ωj1,...,jr > 0 and some m in {1, 2, . . . , q} such that

∣∣∣∣∣κr+1

(
Y (m), Xj1 , . . . , Xjr

)
σ(m)σj1 · · ·σjr

∣∣∣∣∣ > ωj1,...,jr > 0.
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This condition ensures that for every true or causative interaction, there is at least

one component of Y with which the causative interaction has a non-zero association

as determined by the joint cumulant.

(C3) Φj1,...,jr for (j1, . . . , jr) not in ST . De�ne the following constant.

γ = (q + 1) +
∑

1≤`,m≤q
|ρ`m|2,

where ρ`m is the correlation between Y (`) and Y (m). Note that γ minimally equals

q + 1, meaning that γ is necessarily positive. We will assume that Φj1,...,jr =
√
γ for

any (j1, . . . , jr) 6∈ ST .

When some or all of these aforementioned conditions hold, we can state the following

theorems.

Theorem 4.2.1. (Sure Screening) Given that conditions (C1) and (C2) hold, there exists

a positive constant c > 0 such that if

Ŝ = {(j1, . . . , jr) ∈ I | Φ̂j1,...,jr > c},

then we have

lim
n→∞

P
(
ST ⊆ Ŝ

)
= 1.

Note, however, that we have no guarantee in this case of ST asymptotically containing

the estimated model Ŝ.

Theorem 4.2.2. (Strong Sure Screening) Given that conditions (C1), (C2), and (C3) all

hold, there exists a positive constant c > 0 such that if

Ŝ = {(j1, . . . , jr) ∈ I | Φ̂j1,...,jr > c},
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then we have

lim
n→∞

P
(
ST = Ŝ

)
= 1.

This strong sure screening property given in Theorem 4.2.2 is naturally more di�cult

to obtain than the (weak) sure screening property of Theorem 4.2.1. However, strong sure

screening ensures that we not only obtain (asymptotically) an estimated model that contains

the true model, but furthermore that we obtain an estimated model that asymptotically

equals ST with probability equal to one. Beyond the theorems on sure screening stated

above, we can also obtain the following corollaries.

Corollary 4.2.3. There exists a value Φmin such that

Φj1,...,jr > Φmin >
√
γ > 0

whenever (j1, . . . , jr) ∈ ST .

Corollary 4.2.4. The estimator Φ̂j1,...,jr converges uniformly in probability to Φj1,...,jr . That

is to say, for any ε > 0,

lim
n→∞

P
(

max
(j1,...,jr)∈I

∣∣∣Φ̂j1,...,jr − Φj1,...,jr

∣∣∣ > ε

)
= 0.

These corollaries will come as a natural result of the proofs of Theorems 4.2.1 and 4.2.2

(See Section 4.5).

4.3 Simulations and Empirical Data Analysis

We will �rst evaluate the empirical performance of GenCorr via a collection of �ve

groups of simulations. These simulations are then followed by a real data analysis on data

from a genome-wide association mapping of outbred mice. The �rst four groups of simula-

tions pertain to screening for marginal e�ects. We will compare the performance of GenCorr

with two other methods for marginal e�ects screening when the response is multivariate:

Sure Independence Ranking Screening (SIRS) [93] and Distance Correaltion (DC-SIS) [53].
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Two distinct matrix norms for GenCorr will also be considered. We will denote GenCorr

under the taxicab norm as GenCorr-T; GenCorr under the Frobenius norm will be denoted

by GenCorr-F.

4.3.1 Simulation 1

For this simulation we wish to examine the ability of GenCorr, SIRS, and DC-SIS to

successfully screen for a small set of causative or �true� predictors in a linear model with

normally distributed predictors. This simulation will be split into three parts. Each part

will explore the e�ect of di�erent methods for generating the coe�cients for the causative

predictors.

Simulation 1.A

Here we take a sample size of n = 60 of each of p = 3000 predictors. First we generate

each covariate, Xj as follows:

Xj ∼ N(0, σ = 5), sampled 60 times.

Let Σ be a 6× 6 matrix given by

Σ =
[
0.5|`−m|

]
m,`

.

Next we create the following matrix B:

For k = 1, 2, 3 sample (βk1, βk2, βk3, βk4, βk5, βk6) ∼ MVN(0,Σ),

and let B =


β11 β12 β13 β14 β15 β16

β21 β22 β23 β24 β25 β26

β31 β32 β33 β34 β35 β36

 .



81

We then construct the values of Y with q = 6 as follows:

Y =

Y (1) Y (2) Y (3) Y (4) Y (5) Y (6)

 =

X1 X2 X3

B.

Written more explicitly,

Y (m) = β1mX1 + β2mX2 + β3mX3.

This construction will mean that X1, X2 and X3 are to be considered as causative,

while the remaining Xj will be taken as noise. We ran 400 replications of this simulation.

We �rst report the means of the best, medial, and worst rankings of the three causative

predictors by each method in question. In doing this, we are not concerned with tracking the

individual ranks of X1, X2, and X3, but rather we focus our e�orts on recording the ranks of

the best, medial, and worst ranked true predictors, irrespective of which causative covariate

was which. This allows us to gain overall insight into the minimal model size required (on

average) to positively include, respectively, one, two, or all three of the causative predictors.

The average worst ranking for a method informs us of the average minimum model size that

would be necessary to assure all three of the true predictors are present. Hence, a mean

worst rank of 46 would mean that, on average, we would need a �nal model size of 46 to

guarantee that we have included all three of the true predictors in our model. A perfect

score of best, medial, and worst rankings would be (1,2,3), which corresponds to a minimum

model size of three. By reporting each of the best, medial, and worst rankings, we can

observe not only how large of a model we must on average have, but also how small of a

model we can have and still retain one or more of the causative variables. The mean rank

results for each of the four methods (GenCorr-T, GenCorr-F, SIRS, DC-SIS) are given in

Table 4.1.

Both SIRS and DC-SIS are observably inadequate as a screening method in this setting,
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as neither is able to obtain any semblance of returning a viable result consistently. However,

under the taxicab norm, our GenCorr method performs admirably here, with an average

worst ranking (i.e. average minimum necessary model size) just over 21. When the Frobenius

norm is used, the results are even more impressive, with a minimum required model size

just under ten. In either case, this means that GenCorr has successfully reduced the feature

space to a collection with dimension less than n = 60.

It can be bene�cial to also examine the median of the best, medial, and worst rankings.

(See Table 4.2). From this we see that SIRS is actually able to determine some of the

true features with acceptably high accuracy at least half of the time. However, because

SIRS seems especially vulnerable to error when the sample size is small (relative to p), the

method struggles to produce consistent results on average. (Median worst ranks of 3 for

both applications of GenCorr compared to a median worst rank of 423.50 for SIRS).

Simulation 1.B

We again employ a sample size of n = 60 for each of p = 3000 predictors. First we

generate each covariate, Xj as follows:

Xj ∼ N(3, σ = 1), sampled 60 times.

As before, let Σ be a 6× 6 matrix given by

Σ =
[
0.5|`−m|

]
m,`

.

The rows of the coe�cient matrix B are given as follows:

For k = 1, 2, 3 sample (βk1, βk2, βk3, βk4, βk5, βk6) ∼ MVN(3,Σ).

Thus, as opposed to part A of the simulation, the coe�cients are now generated from the

multivariate normal distribution with means three instead of zero. Tables 4.1 and 4.2 report

the mean and median rankings for Simulation 1.B.
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With the adjustment in the means of the predictors and their coe�cients, we see an

increased accuracy over part A on the part of SIRS (mean worst rank of 57.81 versus a mean

worst rank of 890.155 in part A). Both implementations of GenCorr again yield the smallest

minimum required model sizes on average (35.5425 and 22.65 for the taxicab and Frobenius

norms, respectively). While the performance of DC-SIS improves under the current settings,

it lags well behind GenCorr in terms of both mean and median minimum required model

size.

Simulation 1.C

For this simulation, we set n equal to 120 and let p be 1500. This change in sample size

is done to better avoid the vulnerabilities of SIRS under small (relative to p) sample size.

Here we set q equal to four. As was done in part A, we let Xj ∼ N(0, σ = 5).

Based on Example 1 of DC-SIS (who in turn follow [24]), for m from 1 to 4 (inclusive)

and j = 1, 2, 3 we de�ne

βjm = (−1)U (a+ |Z|), where a =
4 log(n)√

n
, U ∼ Bernoulli(0.4), and Z ∼ N(0, 1).

As before, we let

Y (m) = β1mX1 + β2mX2 + β3mX3.

Tables 4.1 and 4.2 depict the mean and median ranks of the three methods on question

under these settings.

This method for constructing the coe�cients of the causative features bears perfect

scores for GenCorr (under both of the norms used). While both SIRS and DC-SIS improve

upon their results from part A, these two methods lag far behind GenCorr in overall accuracy.

(GenCorr achieves nearly perfect scores under both matrix norms; SIRS and DC-SIS obtain

mean minimum model sizes over 100 times larger than perfect acquisition).
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Table 4.1: Simulation 1 Mean Ranks

Part A

Best Rank Medial Rank Worst Rank

GenCorr-T 1.0000 2.4000 21.3025

GenCorr-F 1.0000 2.0300 9.715

SIRS 185.4550 397.4375 890.1550

DC-SIS 22.8325 296.1950 1236.3275

Part B

Best Rank Medial Rank Worst Rank

GenCorr-T 1.0000 2.1650 35.5425

GenCorr-F 1.0000 2.0925 22.6500

SIRS 1.0000 2.2950 57.8100

DC-SIS 2.4450 32.8375 342.5025

Part C

Best Rank Medial Rank Worst Rank

GenCorr-T 1.0000 2.0000 3.0000

GenCorr-F 1.0000 2.0000 3.0050

SIRS 66.2025 169.6350 327.8850

DC-SIS 10.6100 102.1875 522.7250



85

Table 4.2: Simulation 1 Median Ranks

Part A

Best Rank Medial Rank Worst Rank

GenCorr-T 1.00 2.00 3.00

GenCorr-F 1.00 2.00 3.00

SIRS 1.00 19.50 423.50

DC-SIS 1.00 39.00 1098.00

Part B

Best Rank Medial Rank Worst Rank

GenCorr-T 1.00 2.00 4.00

GenCorr-F 1.00 2.00 3.00

SIRS 1.00 2.00 5.00

DC-SIS 1.00 3.00 52.00

Part C

Best Rank Medial Rank Worst Rank

GenCorr-T 1.00 2.00 3.00

GenCorr-F 1.00 2.00 3.00

SIRS 1.00 2.00 9.00

DC-SIS 1.00 3.00 294.00

4.3.2 Simulation 2

Simulation 2 is constructed quite similarly to Simulation 1, however we now test the

ability of each of GenCorr, SIRS, and DC-SIS to detect an exponential relationship between
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Y and X1, X2 , and X3. We still retain n = 60, p = 3000, and q = 6 from before.

Simulation 2.A

With each Xj being constructed using the approach from Simulation 1.A, now de�ne

Y as follows:

Y (m) = exp

{
β1mX1 + β2mX2 + β3mX3

}
,

with the matrix B being created in the same manner as found in Simulation 1.A. Once again

we run 400 replications of this simulation.

The results for Simulation 2.A are given in Table 4.3.

Table 4.3: Simulation 2 Mean Ranks

Best Rank Medial Rank Worst Rank

GenCorr-T 9.3100 97.2650 545.0075

GenCorr-F 8.7075 77.8800 493.4925

SIRS 194.2475 443.1475 921.8525

DC-SIS 464.4850 1134.8150 2016.2150

We also report in Table 4.4 the median of each of the best, medial, and worst ranks.

Table 4.4: Simulation 2 Median Ranks

Best Rank Medial Rank Worst Rank

GenCorr-T 2.00 36.00 324.50

GenCorr-F 3.00 31.00 239.00

SIRS 1.00 17.00 383.00

DC-SIS 283.50 1025.00 2162.00
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While none of the methods produce breathtaking results, GenCorr (under both the

taxicab and Frobenius norms) is consistently the superior method in terms of producing

the smallest required mean minimum model size (GenCorr achieves mean minimum model

sizes that are about half that achieved by SIRS, and about four times smaller than the

same for DC-SIS). Here we must keep in mind that, at times, feature screening is not so

much concerned with the matter of selecting the true predictors, but rather removing those

predictors which are de�nitively unimportant. In cases such as this, the aim often is not

to directly determine the smallest su�cient model, but rather to screen the set of p-many

predictors into a collection of reduced size. [See, for example, the discussions in 21, 27, on

this topic.]. Penalized regression methods such as those mentioned in Section 4.1 can then

be applied to the reduced set of predictors.

Because SIRS is only focused on ranking the covariates based their empirical cumula-

tive distribution function, any monotonicly increasing transformation (e.g. an exponetional

transformation) of the covariates will produce the same feature screening results as obtained

from the original, untransformed, features (up to choice of random seed). To that end,

it should be noted that the results for SIRS in Simulation 1.A will di�er from the results

for SIRS here, as di�erent random seeds were used to generate the simulation data sets in

Simulation 1 and Simulation 2. This will be the case in Simulations 3 and 4 as well.

4.3.3 Simulation 3

The previous simulations explored the ability of GenCorr to successfully screen for

causative covariates when both the response and the covariates are continuous. We now

turn our attention to the screening of data with discrete predictors and discrete multivariate

response.
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Simulation 3.A

Here we use the same general setup as used in Simulation 1.A. The one change we

implement is with the distribution of the predictors:

Xj ∼ Pois(λ = 2).

Outside of this change, we retain n = 60, p = 3000, q = 6, and perform 400 replications as

before. The coe�cient matrix B is generated in the same fashion as was done in Simulation

1.A. The overall simulation model will thus be given by

Y =

Y (1) Y (2) Y (3) Y (4) Y (5) Y (6)

 =

X1 X2 X3

B.

This will mean that once again, X1, X2 andX3 will be considered causative. The results

for Simulation 3.A are given in Table 4.5 (mean ranks) and Table 4.6 (median ranks).

The results for GenCorr are highly encouraging. On average, the required minimum

model size produced by GenCorr-T is just below 27, a reduction to a model size less than half

of the sample size of 60. GenCorr-F produces even more favorable results, with a minimum

required model size just above 15. Moreover, 96.25% of the replicates of GenCorr-F produce

a required minimum model size less than 60. By comparison, SIRS only obtains a required

minimum model size less than 60 in 29.5% of replicates.

Simulation 3.B

Part B of Simulation 3 uses the same set up that part B of Simulation 1 used, with the

one di�erence being the distribution of the covariates. Like Simulation 3.A, we let

Xj ∼ Pois(λ = 2).
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The causative covariates will again be X1, X2, and X3. The results for Simulation 3.B

are given in Table 4.5 (mean ranks) and Table 4.6 (median ranks).

On average, GenCorr-T requires a minimum model size about ten to eleven features

smaller than that required by SIRS to capture all causative features. GenCorr-F bests all

methods, with a mean minimum model size just greater than 25. Under the settings of part

B, DC-SIS improves drastically over its performance in part A. However, in spite of this

improvement, DC-SIS still lags signi�cantly behind GenCorr and SIRS.

Simulation 3.C

The same overall setup as was used in Simulation 1.C is used here, yet we now take

Xj ∼ Pois(λ = 2).

The values of n = 120, p = 1500, q = 4 and 400 replicates are carried over from Simulation

1.C. We report the results for Simulation 3.C in Table 4.5 (mean ranks) and Table 4.6

(median ranks).

Both versions of GenCorr yield perfect (1, 2, 3) scores in each of the 400 replications.

SIRS and DC-SIS produce signi�cantly less favorable results, especially when viewed in the

light of mean minimum model size. Although the median ranks for these latter methods are

more in line with the GenCorr results, the inconsistencies in the average case are concerning.
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Table 4.5: Simulation 3 Mean Ranks

Part A

Best Rank Medial Rank Worst Rank

GenCorr-T 1.0000 2.2375 26.8025

GenCorr-F 1.0000 2.1850 15.3075

SIRS 186.3225 432.5900 837.1225

DC-SIS 46.3400 412.4975 1440.4675

Part B

Best Rank Medial Rank Worst Rank

GenCorr-T 1.0025 2.2000 35.6125

GenCorr-F 1.0025 2.0850 25.3350

SIRS 1.0050 2.3150 46.4925

DC-SIS 1.0450 8.1075 146.0100

Part C

Best Rank Medial Rank Worst Rank

GenCorr-T 1.0000 2.0000 3.0000

GenCorr-F 1.0000 2.0000 3.0000

SIRS 54.7700 140.9275 260.7725

DC-SIS 5.5000 73.9400 466.0725
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Table 4.6: Simulation 3 Median Ranks

Part A

Best Rank Medial Rank Worst Rank

GenCorr-T 1.0 2.0 3.0

GenCorr-F 1.0 2.0 3.0

SIRS 1.0 18.5 310.5

DC-SIS 3.0 106.5 1280.0

Part B

Best Rank Medial Rank Worst Rank

GenCorr-T 1.0 2.0 4.0

GenCorr-F 1.0 2.0 3.0

SIRS 1.0 2.0 5.0

DC-SIS 1.0 2.0 9.0

Part C

Best Rank Medial Rank Worst Rank

GenCorr-T 1.00 2.00 3.00

GenCorr-F 1.00 2.00 3.00

SIRS 1.00 2.00 6.00

DC-SIS 1.00 6.00 176.50

4.3.4 Simulation 4

We now turn our attention to a model exhibiting an exponential relationship between

the response and the causative covariates.
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Simulation 4.A

As was the theme in each part of Simulation 3, we follow the overall setup of a previous

simulation, yet with each covariate coming from the Poisson distribution with mean two.

Here we emulate the approach used in Simulation 2.A, with the single di�erence being

Xj ∼ Pois(λ = 2).

The values of n = 60, p = 3000, and q = 6 are retained from Simulation 2.A. We perform

400 replications. The average rank results for Simulation 4.A are given in Table 4.7. The

median rank results are given in Table 4.8

Table 4.7: Simulation 4 Mean Ranks

Best Rank Medial Rank Worst Rank

GenCorr-T 1.4350 16.3325 140.0025

GenCorr-F 1.265 11.445 112.070

SIRS 195.7550 431.3475 832.6675

DC-SIS 252.5000 908.6000 1899.4725

Table 4.8: Simulation 4 Median Ranks

Best Rank Medial Rank Worst Rank

GenCorr-T 1.00 2.00 16.00

GenCorr-F 1.00 2.00 14.00

SIRS 1.00 18.50 317.50

DC-SIS 79.00 739.00 2022.50
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As was the case with Simulation 2.A, the mean minimum model sizes obtain by each

method exceed the number of samples n. However, this is once again a case where the

ultimate goal is not to singularly obtain a �nal model, but rather to reduce the feature

set preparatory to performing further feature space reduction methods such as penalized

regression. In both the mean and median rank cases, GenCorr looks far more promising

in this regard than the other two methods. Of note, GenCorr-F �nds at least two of the

causative covariates to be within the top 30 most important covariates in 92.75% of the

replicates (GenCorr-T follows closely at 90.25%). SIRS obtains such results only 53.75% of

the time; DC-SIS obtains such in only 4% of the replicates.

4.3.5 Simulation 5

We now turn our attention to empirically examining the claim of GenCorr to not only

screen for marginal e�ect of individual predictors on a multivariate response, but also the

ability of the extended version of GenCorr to screen for interactive e�ects on a multivariate

response. We will explore results under both the taxi-cab norm and the Frobenius norm.

Simulation 5.A

Here we take a sample of n = 100 of each of p = 1000 predictors. First we generate

each covariate as follows:

Xj ∼ N(0, σ = 2), sampled 100 times.

Let B be the 2× 4 matrix de�ned as follows:

B =

1 −1 −2.5 2

2 1.5 −2 1

 .
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We also de�ne an n× q error matrix

E =

ε1, ε2 ε3 ε4

 , with each εm
i.i.d∼ MVN(0, In).

For q = 4, we then construct the values of Y:

Y =

Y (1) Y (2) Y (3) Y (4)

 =

X1X2 X3X4

B + E,

where Xj1Xj2 represents the product of Xj1 and Xj2 .

This construction will mean that the interaction between X1 and X2, as well as the

interaction between X3 and X4, are to be considered as causative. All other pairwise inter-

actions will act as noise. For the time being, we will omit any causative marginal e�ects

from the model. A model that also includes causative marginal e�ects will be considered in

part C of this simulation. We ran 400 replications of this simulation.

The proportion of replicates for which each individual causative interaction is within

the top �ve interactions is represented by Pj1,j2 . We will denote by Ptop the proportion of

replicates for which one of the true interactions is found to be the most important interaction.

The proportion of replicates for which both causative interactions are determined to be within

the top �ve most important interactions is given under Pa. These proportions are given in

Table 4.9. We then also report the 25%, 50%, 75% and 90% quantiles of the required number

of interactions to contain the true interactions. These results are given in Table 4.10.

The values for both P1,2 and P3,4 are highly encouraging. Moreover, the Ptop value tells

us that in all but one of the replications GenCorr determines one of the true interactions to

be the interaction most strongly associated with the response. (In the one replicate where

neither true interaction was found to be the top interaction, the interaction between X1
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and X2 was nevertheless found to be the second most important interaction). Under the

taxi-cab norm, GenCorr results in both causative interactions being found in the top �ve

most important interaction 93.75% of the time. GenCorr with the Frobenius norm improves

upon this, �nding both causative interactions to be within the top �ve most important

interactions 95.50% of the time. The quantile values for part A in Table 4.10 indicate that

in a signi�cant majority of cases, GenCorr (under either norm) can locate the two true

causative interactions with a high level of accuracy.

Simulation 5.B

In this part of Simulation 5, we again use a sample size of n = 100 and let p = 1000. Like

with part A, we will be examining a model without causative marginal e�ects. However,

unlike in part A, where the model coe�cients were �xed for each replicate, we now will

generate the coe�cients on the true interactions anew for each of 400 replications of the

simulation. Once again, each covariate is sampled from the normal distribution centered at

zero and having standard deviation of two:

Xj ∼ N(0, σ = 2).

Let Σ be a 4× 4 matrix de�ned by

Σ =
[
0.5|`−m|

]
m,`

.

Next we create the coe�cient matrix B:

For k = 1, 2 sample (βk1, βk2, βk3, βk4) ∼ MVN(3,Σ),

and let B =

β11 β12 β13 β14

β21 β22 β23 β24

 .
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The values of Y with q = 4 are the constructed as follows:

Y =

Y (1) Y (2) Y (3) Y (4)

 =

X1X2 X3X4

B.

Written more explicitly, this model is

Y (m) = β1mX1X2 + β2mX3X4.

This construction will mean that the interaction between X1 and X2 and the interaction

between X3 and X4 will be considered as causative. All remaining pairwise interactions will

be seen as noise.

Like in part A, we report Pj1,j2 , Ptop, Pa, q25, q50, q75, and q90. These results are given

in Tables 4.9 (selection proportions) and 4.10 (quantiles).

Even under the additional challenge of handling varying coe�cients on the causative

interactions, GenCorr yet obtains consistently accurate results for both the taxi-cab and the

Frobenius norms. These results strengthen our trust in GenCorr as a feature interaction

screening method when the response is multivariate. It should be noted that although the

Pa values hover just above 0.6, it is easy to con�rm by use of the well known addition rule in

probability that (outside of a single replication), whenever one of the causative interactions

is not found to be within the top �ve most important interactions, the remaining causative

interaction exercises a strong e�ect on the response and is positively identi�ed in the top

�ve most important predictors. Such an event occurs when one of the causative interactions

dominates over the other causative interaction (likely due to random selection of a coe�cient

vector with comparatively small values being assigned to the non-dominant interaction).

Simulation 5.C

For this part of Simulation 5, we will once again use a sample size of n = 100 and let
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p = 1000. As always, we will run 400 replications of this part of the simulation. Once again,

each covariate is sampled from the normal distribution centered at zero and having standard

deviation of two:

Xj ∼ N(0, σ = 2).

Unlike parts A and B, however, we now incorporate marginal e�ects into our model.

This is done as follows.

Let Σ be a 4× 4 matrix de�ned by

Σ =
[
0.5|`−m|

]
m,`

.

Next we create the coe�cient matrix B:

For k = 1, 2, 3, 4, 5, 6 sample (βk1, βk2, βk3, βk4) ∼ MVN(3,Σ),

and let B =



β11 β12 β13 β14

β21 β22 β23 β24

β31 β32 β33 β34

β41 β42 β43 β44

3β51 3β52 3β53 3β54

3β61 3β62 3β63 3β64



.

The values of Y with q = 4 are then constructed as follows:

Y =

Y (1) Y (2) Y (3) Y (4)

 =

X1 X2 X3 X4 X1X2 X3X4

B.
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Component-wise for each component of Y, we have

Y (m) = β1mX1 + β2mX2 + β3mX3 + β4mX4 + 3β5mX1X2 + 3β6mX3X4.

This construction will again allow the interaction between X1 and X2 and the inter-

action between X3 and X4 to be taken as causative. The addition of the marginal e�ects

of X1, X2, X3, and X4 means that GenCorr will now be faced with the heightened chal-

lenge of detecting the truly causative interactions while being confronted with the specious

interactions involving only one of the marginal covariates. Such �mixed� interactions (non-

causative interactions involving one of X1, X2, X3, or X4; e.g. X1X7, X3X9, X2X4) can

sometimes appear to be strongly associated with the response, when in fact the marginal

e�ect of the causative covariate(s) alone is causing such an association. It should be noted

that the marginal e�ects are constructed to be overall rather weak, and, consequently, will

not be strongly detected by a marginal screening method. Once again, we report Pj1,j2 ,

Ptop, and Pa, as well as the 25%, 50%, 75% and 90% quantiles of the minimum number of

interactions required to capture both causative interactions. These results are given in Table

4.9 (selection proportions) and 4.10 (quantiles). Even with the addition of main e�ects, we

see no drop in the overall accuracy of GenCorr in determining the true set of interactions.

These results indicate that GenCorr (under either norm) is yet quite capable of detecting

the causative interactions regardless of the addition of marginal e�ects.
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Table 4.9: Simulation 5 Selection Proportions

Model Method P1,2 P3,4 Ptop Pa

5.A
GenCorr-T 0.9600 0.9775 0.9975 0.9375

GenCorr-F 0.9650 0.9900 0.9975 0.9550

5.B
GenCorr-T 0.8075 0.8025 0.9925 0.6125

GenCorr-F 0.8250 0.8275 0.9925 0.6550

5.C
GenCorr-T 0.8025 0.8300 0.9775 0.6350

GenCorr-F 0.8150 0.8425 0.9825 0.6600

Table 4.10: Simulation 5 Quantiles

Model Method q25 q50 q75 q90

5.A
GenCorr-T 2.0 2.0 2.0 3.0

GenCorr-F 2.0 2.0 2.0 3.0

5.B
GenCorr-T 2.0 3.0 16.0 167.1

GenCorr-F 2.0 2.5 11.0 93.0

5.C
GenCorr-T 2.0 3.0 17.0 137.9

GenCorr-F 2.0 3.0 12.0 90.2

Overall, each part of Simulation 5 demonstrates that GenCorr is an accurate and reliable

method for detecting causative interaction for a multivaraite response. In each case, the

Frobenius norm produces results that slightly exceed in accuracy those produced when

using the taxi-cab norm.
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4.3.6 Conclusion on Simulations

Throughout the various simulations presented above, GenCorr under the Frobenius

matrix norm consistently obtains the best empirical results. The superiority of the Frobenius

norm over the taxi-cab norm is likely due to the former's aforementioned ability to more

strongly emphasize a covariate's high association with the response, while at the same time

de-emphasizing those covariates which have a weak association with the components of

the response. It is our suggestion that the Frobenius norm be favored in any standard

implementations of GenCorr.

4.3.7 Real Data Analysis

We now turn our attention to performing a real data analysis on data from a genome-

wide association mapping of outbred NMRI mice. This data set comes from the work

presented in [89] and is available at http://cgd.jax.org/datasets/phenotype/nmri.shtml. The

response has seven components (q = 7), as outlined in Table 4.11. These components are

observed on each of n = 288 individual mice and represent commonly measured phenotypic

traits of mice. The values for SBP, DBP, and MAP are missing for two mice. We used the

mice package in R (an amusing naming coincidence for sure) under the default settings to

impute these values for the mice for which they are missing. For a general reference on usage

of the mice package, see [80]. It should also be noted that we have omitted the ACR (urinary

albumin-to-creatinine ratio) values for each mouse, as 259 of the 288 observed mice (nearly

90%) have ACR values equal to 0. The associated covariate space for the mice data consists

of p = 44, 428 SNPs to be examined for genetic association with the recorded phenotypic

traits of the observed mice.

http://cgd.jax.org/datasets/phenotype/nmri.shtml
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Table 4.11: Observed Phenotypic Traits in NMRI Mice

Trait Abbreviation Description

SBP Systolic blood pressure

DBP Diastolic blood pressure

MAP Mean arterial pressure

HDL HDL (High-density lipoprotein) cholesterol

CHL Total cholesterol

TRI Triglyceride levels

GLU Glucose levels

Our empirical analysis will be broken down into two stages. In the �rst stage (4.3.7),

we implement an iterative screening method employing GenCorr to �nd main e�ects. We

will also apply GenCorr to screen for pairwise interactive e�ects between all 44, 428 SNPs.

In the second stage (4.3.7) of the analysis, we will outline a post-screening approach using

penalized regression.

First Stage Analysis

In the �rst stage of this analysis we will use GenCorr-F to screen for both marginal and

interactive e�ects. To screen for marginal e�ects, we use the same general iterative approach

of [92], where we replace their use of DC-SIS with GenCorr. This process is done as follows:

• Apply GenCorr to the full mouse data set. Let d = 2[n/ log n] = 102. We select p1 < d

many predictors to act as our set of initial SNPs. As suggested in [92], the value of p1

is a value strictly between 1 and d such that a linear regression model using the top

(as determined by GenCorr) p1-many SNPs has the minimal mean squared prediction

error (MSPE). We determine such a value by iterating over each possible p1 value

(1 < p1 < d), �tting a linear model of Y regressed on the top p1 predictors (ordered
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by marginal utility score from GenCorr), and then recording the associated MSPE for

each p1. With each choice of p1, we randomly select a training set consisting of 216

observations (75% of the observed data) to �t the model. This model is then tested on

a validation set of 72 observations (25% of the observed data). In our case, we found

p1 = 85.

• Denote by X1 the n × p1 matrix formed by examining the observations of only the

top p1-many covariates and denote by Xc
1 the n × (p − p1) matrix formed by the

observations of the remaining (p− p1) covariates not found in the columns of X1. Let

Xnew =
(
In −X1(X ′1X1)†X ′1

)
Xc

1,

where A† indicates the Moore-Penrose pseudo inverse of a square matrix A. This means

that Xnew will contain the residuals from regressing Xc
1 onto X1. Apply GenCorr to

Y and Xnew, with Y still acting as the matrix of responses and Xnew acting as the

matrix of predictor observations. Based on the scores obtained from GenCorr, select

the top (d− p1)-many SNPs, as ordered by this most recent run of GenCorr.

We now have a total of d = 102 SNPs, selected using an iterative application of GenCorr.

This completes the �rst stage of marginal feature selection. Our attention is next focused

on the selection of pairwise interactions. Due to computational limitations, as well as lack

of a theoretical basis, we do not use an iterative approach to select pairwise interactions.

Instead, we will run the interactive version of GenCorr on the full mouse data and then

directly select the top d-many interactions, as ordered by GenCorr. All told we have a set

of 204 features (102 marginal, 102 interactive) from this �rst stage of the analysis. These

204 features will be further examined in stage two of the analysis, as given below.

Second Stage Analysis

In this second analysis stage, we will take the 204 SNPs obtained in stage one and �t

several elastic net [96] and lasso [76] models to the data using the glmnet package in R. For
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further reference on this process see [30]. Three �nal models will be �t: elastic net with

α = 0.4, elastic net with α = 0.8, and lasso (α = 1). Here α is as given in the penalty

function

((1− α)/2) ‖B‖2F + α

2d∑
j=1

‖Bj‖2,

where B is the matrix of coe�cients, ‖·‖F is the Frobenius matrix norm, and ‖Bj‖2 is a

group-lasso penalty on each coe�cient vector Bj (the jth row vector of B) for a single

predictor or a single pairwise interaction.

In each case, we will select the model associate with the λ on the regularization path

that minimizes the mean 10-fold cross validated error. The loss function used here for cross

validation is the mean squared error (MSE). We will use a modi�ed version of the corrected

Akaike information criterion (AICc) to select what we determine to be the best candidate

model (with smaller AICc values being considered better). The AICc has been shown to

provide a more accurate estimation of model order than the standard AIC does �when the

number of �tted parameters is a moderate to large fraction of the sample size� [7]. The

usual multivariate version of the AICc is given as follows [71]:

AICc = −2 ln (L) +
2n(qk + q(q + 1)/2)

n− (k + q + 1)
,

where L is the maximum value of the likelihood function for the model in question. An

equivalent (although unusual) de�nition of AICc can be given as follows:

sAICc = −2 (ln(L)− ln(L0)) +
2n(qk + q(q + 1)/2)

n− (k + q + 1)
,

where L0 denotes the maximum likelihood for the null model. We will call this version

of the AICc the shifted -AICc (abbreviated as sAICc). Note that for any candidate model,

sAICc = AICc + 2 ln(L0). Hence the ordering of candidate models given by the sAICc will

be equivalent to the ordering given by the usual de�nition of AICc, as the former is just a

constant shift of the latter. We use the sAICc for our model selection here, as it is easier to

obtain from the results given in glmnet. The following lemma addresses these thoughts.
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Lemma 4.3.1. De�ne the deviance of a �tted model by

D = 2 (ln(LS)− ln(L)) ,

where LS is the maximum likelihood of the saturated model (the model with a free parameter

for each observation). De�ne the null deviance to be

D0 = 2 (ln(LS)− ln(L0)) .

Given D and D0, but not the log-likelihood of the �tted model directly, we can yet obtain the

sAICc.

Proof. Note that D0 − D = 2 (ln(L)− ln(L0)) . Thus we now can determine the sAICc as

below:

sAICc = −2 (ln(L)− ln(L0)) +
2n(qk + q(q + 1)/2)

n− (k + q + 1)
.

Although the glmnet package in R does not provide us with direct access to the log-

likelihood of any candidate model, the package does allow us to obtain both D and D0

explicitly. By Lemma 4.3.1, we can thus �nd the associated sAICc for any candidate model.

To alleviate the issue of having to compare sAICc values whose lower order (ones, tens,

hundreds) place-values do not make a substantive di�erence in determining model ordering,

we will divide each raw sAICc value by 1000 when reporting �nal results. This scaling of

course does not a�ect the overall ordering of candidate models and makes the results easier

to visually parse.

Results of Real Data Analysis.

We report the �nal outcome of our two stage process below in Table 4.12. We denote

the three di�erent models by their method of second stage analysis. (The �rst stage was

the same for each model and was only performed once). As measures of model �tness, we
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report the mean 10-fold cross validated MSE and the (scaled, see above) sAICc. We also

report for each component of the response the number of features (marginal, interactive,

total) retained by the individual penalized regression approaches.

Table 4.12: Results of Real Data Analysis

Second Stage Features SBP DBP MAP HDL CHL TRI GLU

El. Net (α = 0.4) Marginal: 102 102 102 102 102 102 102

MSE = 5873.393 Interact: 82 82 82 79 79 81 82

sAICc = −1558.766 Total: 184 184 184 181 181 183 184

El. Net (α = 0.8) Marginal: 43 43 43 43 43 43 43

MSE = 5989.832 Interact: 16 16 16 16 16 17 17

sAICc = −1565.601 Total: 59 59 59 59 59 60 60

Lasso Marginal: 29 29 29 29 29 29 29

MSE = 5696.422 Interact: 4 4 4 4 4 4 4

sAICc = −1566.418 Total: 33 33 33 33 33 33 33

Except for the few cases in the two elastic net models where the number of retained

interactions di�ers slightly across the components of the response, the same features were

retained for each of the seven response variables. In the cases where some components

were associated with slightly more non-zero coe�cients than the other components, these

�extra� non-zero coe�cients were the only places where the selected features di�er across

component. When we used only a moderate mixing parameter in elastic net (α = 0.4), few

of the features are dropped from the model (and the only dropped features are interactions).

This gave us around an 11% reduction in total model size. Because the aim of penalized

regularization regression is to obtain a more parsimonious model, the failure to substantively

reduce the model size is undesirable. When we increased the mixing parameter to α = 0.8,



106

we were able to obtain a more favorable reduction in total model size. However, while such

reduction in size was desirable (see for example the lower sAICc for this model compared to

the previous model), it also came at the cost of increased mean cross validated MSE, leading

us to be hesitant about fully embracing this model. The candidate model that we deemed to

be the most advisable overall is that which was obtained by using lasso in the second stage

of the analysis. This model possess the lowest sAICc value, as well as the lowest mean cross

validated MSE. Moreover, this model accomplished by far the largest reduction in model

size out of the the three approaches, yielding a model that is not only superior in terms of

mean cross validated MSE and sAICc, but also salient in its parsimony.

4.4 Discussion

In this paper I proposed a new feature screening approach, called GenCorr, which is

applicable to ultrahigh dimensional data with multivariate response. Our method allows us

to perform both marginal and interactive screening all within the same overall methodolog-

ical framework. We have demonstrated the �nite performance of GenCorr under a series of

empirical simulations. In the marginal case, we compared our results with those of SIRS

[93] and DC-SIS [53]. We also presented a real-data analysis, showing the application of

GenCorr to data originating from a GWAS setting. From a theoretical perspective, we have

shown that GenCorr possess the strong sure screening property, that is, with probability

converging to one asymptotically, GenCorr selects the true model exactly.

In this paper we have avoided directly selecting a cuto� for model selection. Several

approaches have been proposed for selecting such a cuto�: [93] submitted one possible

method for choosing a cuto� for SIRS; [43] developed another approach for choosing a

selection cuto� for their Pearson chi-squared-test-based screening method; [48] present an

iterative approach to producing an implicit selection cuto�. One may explore these cuto�

methods further and adapt them as they see �t. We will not further pursue the topic here,

however.

4.5 Proofs of Theorems 4.2.1 and 4.2.2
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Here we present the proofs of Theorems 4.2.1 and 4.2.2 as presented in Section 4.2. All

proofs here will be presented in the most general form of the context of screening for an

r-way interaction between covariates Xj1 , Xj2 , . . . , Xjr . When r = 1, we have the necessary

results for marginal e�ects screening. Throughout this section, ‖·‖p will refer to any p-norm

with p �nite. For any positive integer k, ‖·‖p can be viewed as a function from Rk to R.

This means that (Rk, ‖·‖p) forms a normed vector space. This leads us to a routine lemma.

4.5.1 Prefacing Lemmas

Lemma 4.5.1. Let k be any positive integer. The p-norm ‖·‖p is a continuous function

from Rk to R.

Proof. Take any ε > 0. Suppose that {aN}∞N=1 is a sequence in Rk with limN→∞ aN = a.

This means that there exists some positive integer N0 such that whenever N > N0, we have

that

‖aN − a‖p < ε.

However, by the reverse triangle inequality, we know that

|‖aN‖p − ‖a‖p| ≤ ‖aN − a‖p

for any positive integer N . Thus there exists some positive integer N0 (the same one as

determined above in fact) such that whenever N > N0, we have

|‖aN‖p − ‖a‖p| < ε.

Thus limN→∞‖aN‖p = ‖a‖p, completing the proof.

At multiple times throughout this section we will employ the continuous mapping the-

orem. For further reference on the continuous mapping theorem, see e.g. [72] and [11]. The

well known weak law of large numbers [15] will also be used several times to establish the
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consistency of various sample estimators. Below, we provide a slightly modi�ed version of

the weak law of large numbers.

Lemma 4.5.2. Given an independent and identically distributed collection {W1,W2, . . . ,Wn}

of n-many samples of a random variable W with EW = µ and Var(W ) = σ2 <∞, de�ne

W̃ =
1

n− 1

n∑
i=1

Wi.

We then have that W̃
P−→ EW as n→∞.

Proof. Because the samples ofW are all identically distributed, we have know that Var(Wi) =

σ2 for all i. Let W = 1
n

∑n
i=1Wi be the usual sample mean. Due to the independence of

W1, W2, . . . ,Wn, we have the following:

Var
(
W
)

= Var

(
1

n
(W1 +W2 + · · ·+Wn)

)
=

1

n2
Var (W1 +W2 + · · ·+Wn)

=
nσ2

n2

=
σ2

n
.

The common mean of each Wi is the same as the expected value of W , namely EW = µ.

By Chebyshev's inequality and for any ε > 0, we have

P
(
|W − µ| ≥ ε

)
≤ σ2

nε2
.

This in turn implies the following:

P
(
|W − µ| < ε

)
= 1− P

(
|W − µ| ≥ ε

)
≥ 1− σ2

nε2
. (4.1)
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Taking the limit as n→∞ in (4.1), we obtain

lim
n→∞

P
(
|W − µ| < ε

)
≥ lim

n→∞

(
1− σ2

nε2

)
= 1− lim

n→∞

σ2

nε2
= 1.

Thus W
P−→ µ. Note that W̃ = n

n−1W . It is easily seen that the numeric sequence { n
n−1}

∞
n=1

converges to one as n approaches in�nity. By a standard application of the continuous

mapping theorem, we know the following:

W̃ =
n

n− 1
W

P−→ 1 · µ = µ.

In conclusion, we have W̃
P−→ µ, which is the desired result.

We remind the reader of the matrix Σj1,...,jr as previously de�ned in Section 4.2. The

entries of Σj1,...,jr are of three main forms:

• The covariance between two components of Y. As given in Section 4.2, this covariance

is estimated by the sample covariance given as follows:

Ĉov
(
Y (`), Y (m)

)
=

1

n− 1

n∑
i=1

(
Y

(`)
i − Y (`)

)(
Y

(m)
i − Y (m)

)
, (4.2)

where Y
(`)

and Y
(m)

are the sample means of Y (`) and Y (m) respectively.

• The product of the variances of each of Xj1 , . . . , Xjr . As given in Section 4.2, each

variance is estimated by the sample variance given below:

V̂ar (Xjs) =
1

n− 1

n∑
i=1

(
Xijs −Xjs

)2
, (4.3)

where Xjs is the standard sample mean of Xjs .

• The (r + 1)-way joint cumulant between a component of Y and the random variables

Xj1 , . . . , Xjr . The (r + 1)-way joint cumulant can be estimated as follows:

κ̂r+1(Y (m), Xj1 , . . . , Xjr ) =
1

n

n∑
i=1

[
r∏

s=1

(
Xijs −Xjs

)](
Y

(m)
i − Y (m)

)
, (4.4)
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where Xjs represents the sample mean of Xjs and Y
(m)

is the sample mean of Y (m).

It is an overall straightforward exercise to verify that each of (4.2), (4.3), and (4.4) are

consistent estimators of their associated population parameters. We present this in the form

of a three-part lemma.

Lemma 4.5.3. With the components of Y being given by Y (m) (m = 1, 2, . . . , q), and each

covariate in question being denoted by Xjs (s = 1, 2, . . . , r), we have the following results:

1. Ĉov
(
Y (`), Y (m)

) P−→ Cov
(
Y (`), Y (m)

)
;

2.
∏r
s=1 V̂ar (Xjs)

P−→
∏r
s=1 Var (Xjs);

3. κ̂r+1(Y (m), Xj1 , . . . , Xjr)
P−→ κr+1(Y (m), Xj1 , . . . , Xjr).

Proof. Statement 1 can be demonstrated as follows: Expanding the right-hand side of (4.2),

we have

Ĉov
(
Y (`), Y (m)

)
=

1

n− 1

n∑
i=1

Y
(`)
i Y

(m)
i − 1

n− 1

n∑
i=1

Y
(`)
i Y

(m)

− 1

n− 1

n∑
i=1

Y
(`)
Y

(m)
i +

1

n− 1

n∑
i=1

Y
(`)
Y

(m)

(4.5)

By applying the weak law of large numbers as presented in Lemma 4.5.2 term-wise to the

right hand side of (4.5), we obtain

1

n− 1

n∑
i=1

Y
(`)
i Y

(m)
i

P−→ E
(
Y (`)Y (m)

)
1

n− 1

n∑
i=1

Y
(`)
i Y

(m) P−→ E
(
Y (`)

)
E
(
Y (m)

)
1

n− 1

n∑
i=1

Y
(`)
Y

(m)
i

P−→ E
(
Y (`)

)
E
(
Y (m)

)
1

n− 1

n∑
i=1

Y
(`)
Y

(m) P−→ E
(
Y (`)

)
E
(
Y (m)

)
.
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By the continuous mapping theorem applied to addition and subtraction of estimators, we

now have

Ĉov
(
Y (`), Y (m)

)
P−→
[
E
(
Y (`)Y (m)

)
− 2E

(
Y (`)

)
E
(
Y (m)

)
+ E

(
Y (`)

)
E
(
Y (m)

)]
= E

(
Y (`)Y (m)

)
− E

(
Y (`)

)
E
(
Y (m)

)
= Cov

(
Y (`), Y (m)

)
.

Statement 2 is a direct corollary of statement 1. Each multiplicand in the product∏r
s=1 V̂ar (Xjs) can be shown to converge in probability to the associated multiplicand in∏r
s=1 Var (Xjs). This is done by viewing Var (Xjs) as the covariance between Xjs and itself,

then proceeding quite similarly as was done in proving statement 1 of the lemma. This

gives us that V̂ar (Xjs)
P−→ Var (Xjs) for each s = 1, 2, . . . , r. By a simple application of the

continuous mapping theorem, the product of these estimators of the variances converges in

probability to the product
∏r
s=1 Var (Xjs).

Statement 3 can be established using a similar approach to that of statement 1. By

expanding the product in the right hand side of (4.4) we obtain terms with one of the

two following general forms, with the covariates Xj1 , Xj2 , . . . , Xjs being (without loss of

generality) ordered here to simplify the notation:

(−1)r−s
1

n

n∑
i=1

Xij1Xij2 · · ·XijsXj(s+1)
Xj(s+2)

· · ·XjrY
(m)
i (4.6)

or

(−1)r−s−1 1

n

n∑
i=1

Xij1Xij2 · · ·XijsXj(s+1)
Xj(s+2)

· · ·XjrY
(m)

. (4.7)

The terms (4.6) and (4.7) represent the general form of each summand of the right hand

side of (4.4) when expanded out fully. By a standard application of the (more traditional)

weak law of large numbers, we have the following:
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(4.6)
P−→ (−1)r−s E

(
Xj1Xj2 · · ·XjsY

(m)
)
E
(
Xj(s+1)

)
E
(
Xj(s+2)

)
· · ·E (Xjr ) ;

(4.7)
P−→ (−1)r−s−1 E (Xj1Xj2 · · ·Xjs)E

(
Xj(s+1)

)
E
(
Xj(s+2)

)
· · ·E (Xjr )E

(
Y (m)

)
.

Remembering that

κr+1(Y (m), Xj1 , . . . , Xjr) = E

((
Y (m) − EY (m)

) r∏
s=1

(Xjs − EXjs)

)

and combining the above statements on the convergence of (4.6) and (4.7), then applying

the continuous mapping theorem, we �nally obtain

κ̂r+1(Y (m), Xj1 , . . . , Xjr)
P−→ κr+1(Y (m), Xj1 , . . . , Xjr).

This completes the proof of the three statements of the lemma.

Lemma 4.5.4. As an estimator of Φj1,...,jr , Φ̂j1,...,jr is consistent.

Proof. Lemma 4.5.3 establishes that every entry of Σ̂j1,...,jr is a consistent estimator of the

associated entry of Σj1,...,jr . By the continuous mapping theorem, this means that every

entry in the matrix

Ĥj1,...,jr =
[
diag

(
Σ̂j1,...,jr

)]−1/2
Σ̂j1,...,jr

[
diag

(
Σ̂j1,...,jr

)]−1/2

as de�ned previously in Section 4.2 is a consistent estimators of the entries of

Hj1,...,jr = [diag (Σj1,...,jr)]−1/2 Σj1,...,jr [diag (Σj1,...,jr)]−1/2 .

This can be seen by �rst noting that products and sums of consistent estimators are also

consistent estimators themselves and that the diagonal entries of Σj1,...,jr are all positive.

As the functions f(t) = 1/t and g(t) =
√
t are both continuous for positive values of t, the
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continuous mapping theorem indeed ultimately gives the results on the consistency of the

entries of Ĥj1,...,jr as estimators of the respective entries of Hj1,...,jr .

Note that for our speci�c application here, ‖·‖p is a function of (q+ 1)2-many variables.

This comes from the fact that Hj1,...,jr is a (q + 1) × (q + 1) dimensional matrix. As such,

by Lemma 4.5.1 we can apply ‖·‖p to the matrix Ĥj1,...,jr and obtain (again by continuous

mapping theorem) that Φ̂j1,...,jr is a consistent estimator of Φj1,...,jr .

4.5.2 Proofs of Main Results

Before proceeding further, we remind the reader of the de�nition of the following con-

stant:

γ = (q + 1) +
∑

1≤`,m≤q
|ρ`m|2,

where ρ`m is the correlation between Y (`) and Y (m). This constant will be referenced several

times throughout the proofs of Theorems 4.2.1 and 4.2.2.

The proofs of the main results will be presented in four steps.

• Step 1: We will show that there exists a positive constant Φmin such that for any

tuple (j1, . . . , jr) ∈ ST ,

Φj1,...,jr > Φmin >
√
γ > 0.

(Note that this is also Corollary 4.2.3). In Condition (C2), we de�ned the value

ωj1,...,jr > 0 such that for some component, Y (m), of Y, we have

∣∣∣∣∣κr+1

(
Y (m), Xj1 , . . . , Xjr

)
σ(m)σj1 · · ·σjr

∣∣∣∣∣ > ωj1,...,jr > 0,

whenever (j1, . . . , jr) is in ST . As an aside, note that |ST | ≤
(
p
r

)
< ∞, as there can

only be
(
p
r

)
many r-way interactions formed among p-many covariates. De�ne a value

ωmin as follows:

ωmin = min
(j1,...,jr)∈St

{ωj1,...,jr} .
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Because each ωj1,...,jr is positive and because |ST | ≤ ∞, the minimum is a well de�ned

and positive value here. In other words, we have some ωmin > 0 such that ωj1,...,jr >

ωmin for all (j1, . . . , jr) ∈ ST . It therefore can be seen that for any (j1, . . . , jr) ∈ ST

we have the following chain of inequalities:

Φj1,...,jr = ‖Hj1,...,jr‖p

≥
√

(ωj1,...,jr)2 + γ

>
√
ω2

min/2 + γ

>
√
γ.

Let Φmin =
√
ω2

min/2 + γ. Then, for all r-tuples in the true model,

Φj1,...,jr > Φmin >
√
γ > 0.

This completes Step 1, as well as proves Corollary 4.2.3.

• Step 2: In line with the statement of Corollary 4.2.4, we will now show that Φ̂j1,...,jr

is a uniformly consistent estimator of Φj1,...,jr . Lemma 4.5.3 tells us that Φ̂j1,...,jr is a

consistent estimator of Φj1,...,jr . Thus for any (j1, . . . , jr) ∈ I and any ε > 0, we know

lim
n→∞

P
(∣∣∣Φ̂j1,...,jr − Φj1,...,jr

∣∣∣ > ε
)

= 0.

Let (J1, . . . , Jr) be the r-tuple in I that maximizes
∣∣∣Φ̂j1,...,jr − Φj1,...,jr

∣∣∣. By Lemma

4.5.3, we know that

lim
n→∞

P
(∣∣∣Φ̂j1,...,jr − ΦJ1,...,Jr

∣∣∣ > ε
)

= 0.
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Thus, for any ε > 0, we have

lim
n→∞

P
(

max
(j1,...,jr)∈I

∣∣∣Φ̂j1,...,jr − Φj1,...,jr

∣∣∣ > ε

)
= 0.

This establishes that Φ̂j1,...,jr is a uniformly consistent estimator of Φj1,...,jr . This

completes Step 2, as well as the proof of Corollary 4.2.4.

• Step 3: We now show that there is a positive constant c such that

lim
n→∞

P
(
ST ⊆ Ŝ

)
= 1.

Let c = Φmin. By way of contradiction, suppose that this selection of c does not result

in ST ⊆ Ŝ. This means that we can �nd some (j∗1 , . . . , j
∗
r ) ∈ ST , while at the same

time (j∗1 , . . . , j
∗
r ) 6∈ Ŝ. By the de�nition of Ŝ, we then know that

Φ̂j∗1 ,...,j
∗
r
≤ Φmin,

and also

Φj∗1 ,...,j
∗
r
> Φmin.

Thus there is some positive number ζ > 0 such that

∣∣∣Φ̂j∗1 ,...,j
∗
r
− Φj∗1 ,...,j

∗
r

∣∣∣ > ζ > 0

It now follows that

max
(j1,...,jr)∈I

∣∣∣Φ̂j1,...,jr − Φj1,...,jr

∣∣∣ ≥ ∣∣∣Φ̂j∗1 ,...,j
∗
r
− Φj∗1 ,...,j

∗
r

∣∣∣ > ζ.

However, by uniform consistency shown in Step 2,

P
(
ST 6⊆ Ŝ

)
≤ P

(
max

(j1,...,jr)∈I

∣∣∣Φ̂j1,...,jr − Φj1,...,jr

∣∣∣ > ζ

)
→ 0, as n→∞.
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This contradicts are previous supposition of non-containment. Thus we have

lim
n→∞

P
(
ST ⊆ Ŝ

)
= 1,

�nishing the proof to Theorem 4.2.1 and showing the forward direction to Theorem

4.2.2.

• Step 4: We now show the reverse direction for Theorem 4.2.2. Suppose once again

by way of contradiction that Ŝ 6⊆ ST . Then there exists an r-tuple (j∗1 , . . . , j
∗
r ) ∈ Ŝ,

yet (j∗1 , . . . , j
∗
r ) 6∈ ST . It follows that

Φ̂j∗1 ,...,j
∗
r
> Φmin >

√
γ.

However, by Condition (C3), we assumed that Φj∗1 ,...,j
∗
r

=
√
γ. Let ε =

(
Φmin −

√
γ
)
/2.

This value of ε is veri�ably greater than zero. Note that

max
(j1,...,jr)∈I

∣∣∣Φ̂j1,...,jr − Φj1,...,jr

∣∣∣ ≥ ∣∣∣Φ̂j∗1 ,...,j
∗
r
− Φj∗1 ,...,j

∗
r

∣∣∣ > ε.

However, by uniform consistency, we also have

P
(
Ŝ 6⊆ ST

)
≤ P

(
max

(j1,...,jr)∈I

∣∣∣Φ̂j1,...,jr − Φj1,...,jr

∣∣∣ > ε

)
→ 0, as n→∞.

This causes a contradiction with our assumption of non-containment and

max
(j1,...,jr)∈I

∣∣∣Φ̂j1,...,jr − Φj1,...,jr

∣∣∣ > ε.

Therefore, we can in fact conclude that

lim
n→∞

P
(
Ŝ ⊆ ST

)
= 1.
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The combination of Steps 3 and 4 shows that the selection of c = Φmin yields the full

result of Theorem 4.2.2, namely

lim
n→∞

P
(
ST = Ŝ

)
= 1.

This completes the requisite proofs.



CHAPTER 5

Final Comments and Discussion

5.1 Summary

In this work we have introduced three new methods for feature screening ultrahigh

dimensional data. Each of these approaches was motivated by an existing, yet heretofore

unanswered, need in current feature screening literature. In Chapter 2 we examined a

method (TC-SIS) for marginal feature screening when both the covariates and the response

are categorical. Via a series of Monte Carlo simulations, we demonstrated that our method

consistently outperforms current methods by requiring the smallest mean minimum model

size to guarantee acquisition of the true model. We also showed the tractability of TC-SIS

on real world data by applying our method to an ultrahigh dimensional data set pertaining

to polycystic ovary syndrome (PCOS). This chapter closed with a proof of the strong sure

screening property as it relates to TC-SIS.

Chapter 2 was followed by Chapter 3 wherein we developed a new method (JCIS) for

screening ultrahigh dimensional data sets for interactions. JCIS is unique among most all

extant interaction screening methods in that it does not require �rst screening for marginal

e�ects and can thus admit all relevant interactions, regardless of whether any component

of said interactions was found to be important marginally. This ability of JCIS to detect

strong interactive e�ects among predictors with weak marginal e�ects is critical due to

the prevalence of data where individual features exhibit negligible e�ect on the response,

but in tandem e�ect an important di�erence in the response. Once again, we show the

computational viability of JCIS by presenting several simulation examples. In each case,

JCIS drastically outperformed current interaction screening methods for both categorical, as

well as continuous data. Of particular note, we also exhibited a real data analysis on the same

PCOS data from above, with the added di�culty of screening for pairwise interactions. Even
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with the increased weight of examining several billion possible interactions, JCIS proved

computationally capable of handling such a monumental task. Like was the case with TC-

SIS, we concluded by proving that JCIS possesses the strong sure screening property.

Our third and �nal project was presented in Chapter 4. There we once again considered

the task of marginal and interaction screening of ultrahigh dimensional feature spaces, but

now with the added hurdle of the response being multivariate. This expanded allowance

for multivariate response permits us to utilize the more robust analytic insights that can

come from examining all components of the response as an interdependent whole rather

than individual and disparate parts. We called our method GenCorr in reference to its

use of the generalized correlation matrix. Importantly, GenCorr was shown to be the only

existing method for multivariate screening that can be directly applied to interaction screen-

ing, manifesting the unique applicability of our method in the sphere of feature screening.

The e�ectiveness of GenCorr compared to two other multivariate screening methods was

demonstrated over a large collection of empirical simulations. We also presented a real data

analysis on a real data set examining the e�ect of genotype on phenotypic traits in mice.

This chapter was closed by our con�rming formally that GenCorr exhibits the strong sure

screening property for acquisition of the true model.

5.2 Future Work

While the contributions of this work have been no doubt salient, important advances

in ultrahigh dimensional feature screening can still be made. Herein we have only examined

two-way interaction screening. When data sets are large (p > 100, 000) and p is much larger

than the sample size n, computational limitations often inhibit screening for more than two-

way interactions. As computational power improves and with increased focus on optimizing

some of the methods proposed in this work, one could explore further availability for higher

order interaction screening.

In [56], the authors consider the problem of multivariate response, yet with the number

of components to the response being ultrahigh dimensional in relation to the sample size.

Future work could consider feature screening methods in such a context. With an added
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hurdle of also assuming the covariate space was ultrahigh dimensional, a large sector of

unexplored methods could be developed. In line with these thoughts, one new area of

possible exploration could be that of response optimization, where a small set of response

components are chosen for optimal �t with a number of covariate predictors. The use of the

generalized correlation matrix may prove useful in this pursuit.

One other route that has yet to be explored is the application of DC-SIS [53] to inter-

action screening by generalizing the concept of distance correlation to a function admitting

three arguments, much like unto what was done with the JCIS method of Chapter 3. This

could allow for the desirable model free aspects of distance correlation to be applied in the

interaction screening setting.
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APPENDIX A

Using the Center for High Performance Computing

Herein I present the basic steps to obtaining access to the Center for High Performance

Computing (CHPC) at the University of Utah as well as present some samples of SLURM

submissions. This is done to allow readers to gain basic insight into how to work with the

CHPC resources for their own cluster computing needs. Please note: I am only presenting

how I used the CHPC resources in a Windows environment; in many cases, numerous options

are available for performing the steps I present below. Much of what I learned initially in

regards to CHPC access came from Chapter 5 of (Stephen) Willis Barton's master's thesis

[6]. His thesis is still likely the number one resource (outside of the CHPC's own website)

for accessing and using CHPC resources. Speci�cs for how to obtain an account are given on

the CHPC website and will not be fully covered here. Brie�y, if you are a faculty member

at Utah State University, you can register with the CHPC and then request that individuals

under your sponsorship or advisement be given access. Each member of your group will

need to obtain a uNID (a U of U ID number).

Once a uNID has been obtained, you can log onto the CHPC by using a VPN service to

connect to vpnaccess.utah.edu. You will need to enter your uNID, the associated password

for that account, and then a two-factor-authentication key (as the second �password�). I used

DUO-2FA, which provides users with a six digit single use access code each time they connect

with the CHPC services. This will vary widely depending on how you choose to access the

system. Using the FastX utility one can then interface with the CHPC using a Linux based

GUI. [See 6, for the speci�cs of doing such]. WinSCP can be used to transfer �les from a

local machine to the CHPC servers. Utah State University has a partition on the Ember

cluster. Note that they have 18 total nodes. This is for the entire university. Hence, if some

well meaning soul in the Engineering Department (not to call them out, but yes, they are

the usual culprit) decides he or she needs to use nine nodes for a three day job...and submits

https://www.chpc.utah.edu/
https://www.chpc.utah.edu/
https://www.chpc.utah.edu/userservices/accounts.php
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ten such jobs...you get the point: You will be waiting a long time for your batches to run.

In theory you can contact the CHPC and they can censure people for eating up massive

amounts of resources, but then you have to deal with the politics.

A.1 SLURM Submission Examples

Here I present a collection of basic examples for submitting batches to the CHPC

clusters using SLURM. Naturally, this only represents a small part of what you can do with

SLURM. I am not an expert on SLURM by any means.

Below is a simple R script (basicScript.R) that I will be using for the examples:

#### basicScript.R

library(data.table)
library(R.utils) ##Need this library to read arguments from the

command line.

arg = cmdArgs () ###Pulls the command arguments and places them in a
list.

set.seed(arg [[1]]) #Use the first command line argument to set the
seed.

fileName = paste0("~directory/", "ourData_", arg[[2]] ,".csv")
## Use the second command line argument to access the specific data

we want.

dataSet = fread(fileName)

analyzeData <- function(data , k = 10)
{

### Do something in here.
### And then something in here.

}

result = analyzeData(dataSet , k = 50)

## END of basicScript.R

We now will use the SLURM submission system to run this script with the desired

input. In order to do this we need two �les: A .conf �le and a .slurm �le. Here is a simple

.conf �le using our basicScript.R script.

0 Rscript /uufs/chpc.utah.edu/common/home/uXXXXXXX/basicScript.R 234 1
1 Rscript /uufs/chpc.utah.edu/common/home/uXXXXXXX/basicScript.R 1938 2
2 Rscript /uufs/chpc.utah.edu/common/home/uXXXXXXX/basicScript.R 791 3
3 Rscript /uufs/chpc.utah.edu/common/home/uXXXXXXX/basicScript.R 2228 4

Let's call this �le analysis.conf. In this �le we proscribe that we would like to run an

R script and then we list the two command arguments to use for each run of the script.

Starting with 0, we also denote a task number for each run of the basicScript.R script.
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We now will de�ne the .slurm �le associated with our batch run here:
#!/bin/bash
#SBATCH --job -name=TestBatch ##Give the job a name
#SBATCH --time =1 -05:00:00 ## Specify the run time. Here we

have 1 day and 5 hours.
#SBATCH --nodes =1 ## Specify the number of nodes. We are

using a single node.
#SBATCH --ntasks -per -node=4 ## Specify the number of jobs per node.

(Should match .conf file)

#SBATCH -o out.%j ## Create an output file.
#SBATCH -e err.%j ## Create an error file.

##Specify wheh and if to email you.
## You will be emailed when the job starts , fails , or ends.
#SBATCH --mail -type=BEGIN ,FAIL ,END
#SBATCH --mail -user=myEmail@gmail.com

##Specify your account information.
## This is the standard account for USU.
#SBATCH --account=usu -em
#SBATCH --partition=usu -em

##Load R
module load R/3.3.2

##Specify what .conf file to use.
srun --multi -prog analysis.conf

This is really pretty much just a bash script under the hood. Note that # does not denote

a comment, but instead ## will act as a comment. Once we have these �les constructed,

we can now submit the .slurm script to SLURM for processing. This is done using the

command sbatch. For example, if our .slurm is myBatch.slurm:

> sbatch myBatch.slurm

SLURM will then place your job in the queue and give you a job ID number. Use the

SLURM command squeue -l followed by your uNID to output a list of your currently

pending and running jobs. This will also tell you how long your job has been running. (The

-l option gives �long� output).

> squeue -l uXXXXXXX

The SLURM command sacct followed by a speci�c job ID number can be used to check on

speci�c jobs. The SLURM command scancel followed by a job ID number will cancel that

speci�c job. The job needs to be one of your own to cancel it. (Yes, I'll admit, I've tried

canceling some of those pesky nine node, three day, super batches).

Here is one more example, this time of a batch using multiple nodes.

0 Rscript /uufs/chpc.utah.edu/common/home/uXXXXXXX/basicScript.R 234 1
1 Rscript /uufs/chpc.utah.edu/common/home/uXXXXXXX/basicScript.R 1938 2
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2 Rscript /uufs/chpc.utah.edu/common/home/uXXXXXXX/basicScript.R 791 3
3 Rscript /uufs/chpc.utah.edu/common/home/uXXXXXXX/basicScript.R 2228 4
4 Rscript /uufs/chpc.utah.edu/common/home/uXXXXXXX/basicScript.R 111 1
5 Rscript /uufs/chpc.utah.edu/common/home/uXXXXXXX/basicScript.R 876 2
6 Rscript /uufs/chpc.utah.edu/common/home/uXXXXXXX/basicScript.R 135 3
7 Rscript /uufs/chpc.utah.edu/common/home/uXXXXXXX/basicScript.R 753 4

In this .conf �le we list out eight total runs of the R script we wish to run. However, we

will split these runs over two nodes now instead of one. We now will de�ne the .slurm �le

associated with our batch run here:
#!/bin/bash
#SBATCH --job -name=TestBatch ##Give the job a name
#SBATCH --time =2 -15:00:00 ## Specify the run time. Here we

have 2 days and 15 hours.
#SBATCH --nodes =2 ## Specify the number of nodes. We are

using two nodes.
#SBATCH --ntasks -per -node=4 ## Specify the number of jobs per node.

(Should match .conf file)

#SBATCH -o out.%j ## Create an output file.
#SBATCH -e err.%j ## Create an error file.

##Specify wheh and if to email you.
##You will be emailed when the job starts , fails , or ends.
#SBATCH --mail -type=BEGIN ,FAIL ,END
#SBATCH --mail -user=myEmail@gmail.com

##Specify your account information.
##This is the standard account for USU.
#SBATCH --account=usu -em
#SBATCH --partition=usu -em

##Load R
module load R/3.3.2

##Specify what .conf file to use.
srun --multi -prog analysis.conf

This batch is submitted to SLURM the same as before. SLURM will split your script

runs over two nodes now.

One last note: Parallelizing your computations is the whole point here. While the

CHPC nodes are pretty quick and have a decent amount of RAM, they are not a quantum

computer or magic black box that is 100 times faster than your desktop. The salience in

using the CHPC nodes is that you can parallelize your data analyses. This means that if

you need to run a script on a large amount of data, you can partition the data into pieces

and run the script on pieces of the data in parallel. R© R©
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