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ABSTRACT

Multi-Stop Routing Optimization: A Genetic Algorithm

Approach

by

Abbas Hommadi, Master of Science

Utah State University, 2018

Major Professor: Vicki Allan, Ph.D.
Department: Computer Science

The Traveling Salesman Problem (TSP) is one of the most important and attractive

combinatorial optimization problems. There are many meta-heuristic algorithms that can

solve this problem. In this paper, we use a Genetic Algorithm (GA) to solve it. GA has

different operators selection, crossover, and mutation to address a solution to the prob-

lem. Sequential Constructive Crossover (SCX) and its modification Bidirectional Circular

Constructive Crossover (BCSCX) are very efficient to solve TSP. Here, we propose a mod-

ification to these crossovers. The experimental results show that our proposed adjustment

is superior to SCX and BCSCX as well as to other conventional crossovers (e.g. Order

Crossover (OX), Cycle Crossover (CX), and Partially Mapped Crossover (PMX)) in term

of solution quality and convergence speed. Furthermore, the GA solver (improved by ap-

plying inexpensive local search operators) can produce solutions with much better quality

within reasonable computational time.

The Time-Dependent Traveling Salesman Problem (TDTSP) is an interesting problem

and has an impact on real-life applications such as a delivery system. In this problem,

time among destinations fluctuates during the day due to traffic, weather, accidents, or

other events. Thus, it is important to recommend a tour that can save driver’s time and
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resources. In this research, we propose a Multi-Population Genetic Algorithm (MGA) where

each population has different crossovers. We compare the proposed MGA against Single-

Population Genetic Algorithm (SGA) in terms of tour time solution quality. Our finding is

that MGA outperforms SGA. Our method is tested against real-world traffic data [1] where

there are 200 different instances with different numbers of destinations (i.e. 60 different

instances of 10 destinations, 60 different instances of 20 destinations, 60 different instances

of 30 destinations, and 20 different instances of 50 destinations). For all tested instances,

MGA is statistically superior on average by at least 10% (for instances with size less than

50) and 20% (for instances of size 50) better tour time solution compared to SGA with OX

and SGA with PMX operators, and at least 4% better tour time compared to SGA with

SCX operator.

(74 pages)
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PUBLIC ABSTRACT

Multi-Stop Routing Optimization: A Genetic Algorithm

Approach

Abbas Hommadi

In this research, we investigate and propose new operators to improve Genetic Algo-

rithm’s performance to solve the multi-stop routing problem. In a multi-stop route, a user

starts at point x, visits all destinations exactly once, and then return to the same starting

point. In this thesis, we are interested in two types of this problem. The first type is when

the distance among destinations is fixed. In this case, it is called static traveling salesman

problem. The second type is when the cost among destinations is affected by traffic conges-

tion. Thus, the time among destinations changes during the day. In this case, it is called

time-dependent traveling salesman problem. This research proposes new improvements on

genetic algorithm to solve each of these two optimization problems.

First, the Travelling Salesman Problem (TSP) is one of the most important and at-

tractive combinatorial optimization problems. There are many meta-heuristic algorithms

that can solve this problem. In this paper, we use a Genetic Algorithm (GA) to solve it.

GA uses different operators: selection, crossover, and mutation. Sequential Constructive

Crossover (SCX) and Bidirectional Circular Constructive Crossover (BCSCX) are efficient

to solve TSP. Here, we propose a modification to these crossovers. The experimental results

show that our proposed adjustment is superior to SCX and BCSCX as well as to other

conventional crossovers (e.g. Order Crossover (OX), Cycle Crossover (CX), and Partially

Mapped Crossover (PMX)) in term of solution quality and convergence speed. Further-

more, the GA solver, that is improved by applying inexpensive local search operators, can

produce solutions that have much better quality within reasonable computational time.
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Second, the Time-Dependent Traveling Salesman Problem (TDTSP) is an interesting

problem and has an impact on real-life applications such as a delivery system. In this

problem, time among destinations fluctuates during the day due to traffic, weather, acci-

dents, or other events. Thus, it is important to recommend a tour that can save driver’s

time and resources. In this research, we propose a Multi-Population Genetic Algorithm

(MGA) where each population has different crossovers. We compare the proposed MGA

against Single-Population Genetic Algorithm (SGA) in terms of tour time solution quality.

Our finding is that MGA outperforms SGA. Our method is tested against real-world traffic

data [1] where there are 200 different instances with different numbers of destinations. For

all tested instances, MGA is superior on average by at least 10% (for instances with size

less than 50) and 20% (for instances of size 50) better tour time solution compared to SGA

with OX and SGA with PMX operators, and at least 4% better tour time compared to

SGA with SCX operator.
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CHAPTER 1

INTRODUCTION

According to the urban mobility report from Texas A & M Transportation Institution,

traffic congestion [2] can cause huge losses in money and time for the drivers. Figure 1.1

shows how much Salt Lake City (SLC) is affected by traffic congestion. In this Figure 1.1,

a congestion cost is the value of the travel time delay and the wasted fuel consumption,

where the fuel cost is the state average price per gallon of gasoline and diesel.

Fig. 1.1: Salt Lake City congestion cost per commuter.

Traffic congestion is a serious problem, and the community needs to use a better tech-

nology to reduce the costs while the population of a city increases. Sometimes, drivers
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do not know about the historical and real-time traffic data. Thus, this leads drivers to

drive on suboptimal roads. As a result, they lose money and time. Furthermore, congested

traffic makes drivers impatient, which could make them more likely to cause accidents [3].

Moreover, using suboptimal roads definitely increases the city pollution. Therefore, us-

ing an intelligent method to plan routes is important. In this thesis, we are interested in

two multi-stop routing problems: static traveling salesman problem, and time-dependent

traveling salesman problem.

In the first part of this thesis, we study solving static Traveling Salesman Problem

(TSP) using genetic algorithm. The TSP is one of the most important combinatorial opti-

mization problems. It belongs to the class of NP-complete problems [4] [5]. Many real-world

problems can be modeled as TSP such as, drilling of printed circuit boards, overhauling

gas turbine engines, x-ray crystallography, computer wiring, the order-picking problem in

warehouses, and vehicle routing problem [6]. Therefore, this problem attracts many re-

searchers and many studies attempt a solution. TSP can be described as follows: There are

n cities needed to be visited and a travel cost (e.g. distance, traffic time, money) matrix

that represents the cost of traveling between each city and every other city. The goal is to

find an optimal tour which starts at any city (say Cityorigin) and returns to the same city

by visiting all other cities only once. Our solution focuses on the crossover and adding new

operators to GA, where we developed and improved existing crossovers and applied different

operators in an attempt to provide better solution quality and reasonable computational

time for solving the TSP.

In the second part of this thesis, we consider a real-world optimization problem where

time of the day plays an important role. Particularly, we are interested in the Time-

Dependent Travelling Salesman Problem (TDTSP), an extended version of the static trav-

eling salesman problem. In TDTSP, the cost between any two cities depends on the time

of the day. TDTSP is the essence of many real-world problems such as, delivery systems

where the driver wants to deliver goods starting from the depot, delivers the goods to each

of the delivery places, and then comes back to the depot. In a real urban network, driving
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time among deliveries fluctuates during the day and depends on the traffic of the roads.

Although there are many studies done on the static traveling salesman problem, rare re-

search has been done on TDTSP. In this research, we study Genetic Algorithm on TDTSP

to develop a solution model for this optimization problem.

Each of the following two chapters is written to be self-contained paper.



CHAPTER 2

EFFICIENT GENETIC ALGORITHM FOR STATIC TSP

2.1 Abstract

The Travelling Salesman Problem (TSP) is one of the most important and attractive

combinatorial optimization problems. There are many meta-heuristic algorithms that can

solve this problem. In this paper, we use a Genetic Algorithm (GA) to solve it. GA uses

different operators selection, crossover, and mutation to address a solution to the prob-

lem. Sequential Constructive Crossover (SCX) and its modification Bidirectional Circular

Constructive Crossover (BCSCX) are very efficient to solve TSP. Here, we propose a mod-

ification to these crossovers. The experimental results show that our proposed adjustment

is superior to SCX and BCSCX as well as to other conventional crossovers (e.g. Order

Crossover (OX), Cycle Crossover (CX), and Partially Mapped Crossover (PMX)) in term

of solution quality and convergence speed. Furthermore, the GA solver, that is improved by

applying inexpensive local search operators, can produce solutions with much better quality

within reasonable computational time.

2.2 Introduction

The Traveling Salesman Problem (TSP) is one of the most important combinatorial

optimization problems. It belongs to the class of NP-complete problems [4] [5]. Many

real-world problems can be modeled as TSP such as drilling of printed circuit boards,

overhauling gas turbine engines, x-ray crystallography, computer wiring, the order-picking

problem in warehouses, and vehicle routing problem [6]. Therefore, this problem attracts

many researchers and many studies attempt a solution.

TSP can be described as follows: There are n cities needed to be visited and a travel

cost (e.g. distance, traffic time, money) matrix that represents the cost of traveling between
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each city and every other city. The goal is to find an optimal tour which starts at any city

(say Cityorigin) and returns to the same city by visiting all other cities only once. In other

words, given n cities with travelling cost matrix D = [di,j ] where di,j is the cost of travelling

from cityi to cityj (i, j ∈ {1, 2, ..., n}), the goal of the TSP is to find an optimal tour

T = (T1, T2, ..., Tn, T1) that visits each city one and only one time and returns to the same

starting city. Thus, the objective function can be represented as is given by 2.1.

f = min
n−1∑
i=1

dTi,Ti+1 + dTn,T1 (2.1)

There are two types of static TSP. The first type is called symmetric TSP (STSP) where

the cost between Cityi to Cityj is the same as the cost between Cityj to Cityi . The second

type is called asymmetric TSP (ATSP) where the cost is different if a path is travelled in

the opposite direction. Thus, in this type dij 6= dji.

To solve this problem, one could try an exact exhaustive algorithm. Such an algorithm

permutes all possible orderings for visiting n cities and picks the one that has minimum cost.

This approach has O(n!) complexity time where n is the number of cities. Although this

method is simple and straightforward to implement, it is impractical and has exponential

time. Therefore, approximate algorithms come in place. Approximate methods try to find a

solution that has a quality close enough to the optimal solution with practical computation

time. Therefore, many Artificial Intelligence (AI) techniques have been proposed to solve

this problem. For example, some AI techniques are Genetic Algorithm (GA) [7], Simulated

Annealing (SA) [8], Ant Colony Optimization (ACO) [9], Particle Swarm Optimization

(PSO) [10], Tabu Search (TS) [11], and Neural Network (NN) [12]. Because of the strength

and effectiveness of GA compared with other methods in solving combinatorial optimization

problems [13], we have chosen to solve TSP using genetic algorithms.

Our solution focuses on the crossover and adding new operators to GA, where we

developed and improved existing crossovers and applied different operators in an attempt

to provide better solution quality and reasonable computational time for solving the TSP.
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2.2.1 A Brief Introduction to Genetic Algorithms

The genetic algorithm is one of the best evolutionary algorithms used to solve the TSP

problem [14]. It was first introduced by John Henry Holland [7]. The genetic algorithm is

motivated by natural selection and genetics to find an approximated solution for a given

problem. It exploits and explores the search space by the evolving process. The process of

simple genetic algorithm shown in Figure 2.1.

Fig. 2.1: Genetic algorithm flow chart.

• Initial Population: This is the first phase where an initial population is generated



7

either randomly (which is recommended for most problems) or the initial population

seeded in a way that the optimal solution is more likely to be found [15].

• Fitness Evaluation: This is a function which used to evaluate the goodness for each

individual (e.g. a possible solution) in the population.

• Termination Condition: There are some common termination conditions that could

be used to stop the evolving process: a solution that satisfies the minimum criteria is

achieved, a given number of generation is reached, computation time is reached, no

progress is observed, or a combination of these conditions [15].

• Selection: This process is used to select individuals from the current generation that

could be used for the next generation.

• Crossover: This process used to mix or mate the selected parent to produce offspring

that could be inserted to the next generation.

• Mutation: This step is used to exploit the search space by making very small changes

of an individual.

2.3 Literature Review

Many studies have been done on solving TSP with GA using different operators. In

this section, an overview and summary of these studies are provided.

The research of Noraini and Geraghty [16] focuses on finding which best selection

method could be used to solve TSP. They compare different and well-known selection strate-

gies: tournament selection, proportional roulette wheel selection, and rank base roulette

wheel selection. This comparison study is based on solution quality and a number of gener-

ations to reach the best solution. Their results show that the tournament selection is more

suitable than the other selection methods for small size (less than 50 cities) tour in terms

of good solutions (i.e. near-optimal solution), and the number of generations to converge.

Additionally, for a large tour size, the rank based roulette wheel is more effective to give

good quality of solution. The reason for this behavior is that tournament selection could
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suffer from premature convergence by being influenced by super individuals in the popu-

lation. On the other hand, rank based roulette wheel selection overcomes the premature

convergence by uniformly scale the ranks of individuals across the population. Thus, rank

based roulette wheel selection does not get influenced by super individuals in the popula-

tion, but this selection is more computationally expensive in contrast to the tournament

selection which is much cheaper.

Paul et al. [17] analyze different population initialization methods for TSP based on

different criteria such as computation time, convergence speed, and error rate. Their study

covered random initialization, nearest neighbor initialization, gene bank, sorted popula-

tion, selective initialization, and ordered distance vector. They made their experiments on

TSPLIB [18] and found out that the nearest neighbor method is better in term of compu-

tation time and convergence speed, but it limits the exploration of search space. Therefore,

it suffers from premature convergence. On the other hand, ordered distance vector outper-

forms the other initialization methods.

Abdoun et al. [19] investigated crossover operators to solve TSP. They considered

six different crossovers: Uniform Crossover Operator, the Cycle Crossover, the Partially-

Mapped Crossover, the Uniform Partially-Mapped Crossover, the Non-Wrapping Ordered

Crossover and the Ordered Crossover (OX). They conclude that OX gives the best solution

in terms of solution quality.

Grefenstette et al. [20] introduced one of the first heuristic crossovers to solve the TSP

which is Greedy Crossover (GX). The core idea of GX is when it selects a place to go on the

tour, it will consider all its four neighbors in the two parents for next place to be visited.

Then, it chooses the nearest neighbor to be visited next. This process continues until the

tour gets completed. Some researchers came up with several versions of this crossover in an

attempt to make improvements. These versions differ mainly in solving the special cases in

this process. The special case here is when all four neighbors are already visited. [20] suggest

picking the next place randomly, while [21–24] consider the second nearest place then the

third and so on. Ismkhan and Zamanifar [25] suggested an improved greedy crossover (IGX).
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In this method, instead of probing all four neighbors of the current place, it only probes

the ones that have not been visited yet by using a doubly linked list as auxiliary storage.

They showed that IGX behaves better in term of solution accuracy and time complexity

for solving TSP.

Ahmed [14] suggested a new crossover especially designed for TSP called Sequential

Constructive Crossover (SCX). The concept of this crossover is to obtain new offspring from

the parents by taking advantage of existing good edges that are present in the structure

of parents. Furthermore, it has the ability to introduce new good edges in the offspring.

The researcher did a comparison study between the suggested one (SCX) and two other

crossovers which are edge recombination crossovers [26] and generalized N-points crossover

[27]. They found SCX gives a better solution for the TSP in terms of solution quality.

SCX has one weakness which is that it always starts at first gene in the first parent when

building new offspring and that leads to influence all the remaining genes while our method

overcomes this weakness by random start when constructing offspring.

Wang et al. [28] propose an improved genetic algorithm to solve TSP. They added a

new operator called the untwist operator that helps to untie the knots in the route and

that will make the convergence speed faster. The following Figure 2.2 shows the untwisting

operator.

Fig. 2.2: The un-twisting operator

They made their experiments with 50, 100, and 150 cites, and they found out that this

untwisting operator helps to speed up convergence and gives a good and reasonable solution

for TSP.
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Abdoun et al. [29] made a comparative study of different mutation operators of genetic

algorithms for solving TSP to analyze which one performs best. Their comparison analysis

based on six different mutations: twors mutation, center inverse mutation, reverse sequence

mutation, throas mutation, thrors mutation, and partial shuffle mutation. Twors mutation

swaps two randomly selected genes. Center inverse mutation splits genes to two sections

and then reverses the order of genes in each section. Reverse sequence mutation selects a

random consecutive subset then reverses the order of genes in the subset. Throas mutation

is the same as reverse sequence mutation but here the subset length is always three. Thrors

mutation takes three inconsecutive genes that are randomly selected then reverses their

order in offspring. Partial shuffle mutation takes subset of genes and then randomly shuffle

this subset. In their experiments, they found that reverse sequence mutation and partially

shuffle mutation gives the best solution for TSP.

2.4 Proposed Method

In this paper, we use several crossovers and introduce some modifications on these

crossovers to solve static TSP. Furthermore, we propose to use a local search for GA that

helps to get better tour quality. This method is shown as Algorithm 1.

The best individuals get transferred from the current generation to the next one without

any modification. This set is termed the elitist individuals. A random initial population

is used to get random feasible solutions of the problem. The stopping criteria is based

on reaching a maximum number of generations. Tournament selection with size 2 is used

in this study to select individuals from the current population to be parents of the next

generation. Because of the ease of implementation and its efficiency, this selection strategy

is commonly used in GA [16] [30]. This approach works by selecting n individuals randomly

and then selecting the best of n. When n is two, this approach is called binary tournament,

and it is commonly used [16]. Although this selection method keeps the level of diversity,

it slows down the convergence of the GA. However, it has several advantages which are

efficient time complexity, low vulnerability to dominant fittest individuals, and no prior
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requirements for sorting or scaling of fitness function [16] [31] [30].

Algorithm 1: Genetic Algorithm

Data: TSP

Result: BestRoute

1 Population ← InitializePopulation(TSP)

2 Evaluate(Population)

3 NumGen ← 1

4 while NumGen ≤ MaxGens do

5 Offspring ← Select(Population,PopulationSize − ElitistIndividualsSize)

6 Crossover(Offspring)

7 Mutate(Offspring)

8 OptimizeOperator(Offspring)

9 Evaluate(Offspring)

10 Population ← ElitistIndividuals + Offspring

11 Update(ElitistIndividuals)

12 NumGen ← NumGen + 1

13 end

14 BestRoute ← GetFittest(Population)

For the mutation step, swap mutation with probability Pm is used. Use of a mutation

operator helps to escape local optima and keeps the diversity of a population. This step

exploits the search space [29]. This mutation works by randomly selecting two cities and

exchanging the position of these cities as shown in Figure 2.3.

Fig. 2.3: Swap mutation.
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2.4.1 Crossover Operators

The crossover operator is one of the basic operators of genetic algorithms. This operator

is applied according to a probability Pcx on the selected chromosomes. It plays an important

role in the performance of the genetic algorithm. The idea behind this operator is to

combine two solutions in the search space to produce offspring that have better features

and could survive next generations. In TSP problem, this operator could serve as a local

search for the problem by building a new improved solution(s) using the knowledge presents

in both parents [32] [33]. Although conventional crossover operators are simple and very

straightforward to implement as shown in Figure 2.4, they cannot be applied to TSP problem

without modifications. The reason is that TSP does not allow for missing and duplicated

cities in a tour. Thus, a more intelligent crossover needs to be applied for TSP. Therefore,

researchers introduced and developed crossovers specially designed for TSP. Any crossover

could be applied to the TSP if it respects the problem constraints and the gene encoding

that is used to represent a solution.

Fig. 2.4: Conventional crossover operators examples.
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In this section, crossovers adapted to TSP will be described and illustrated by detailed

examples. These crossovers are Order Crossover (OX) [34], Cycle Crossover (CX) [33],

Partially Mapped Crossover (PMX) [35], Sequential Constructive Crossover (SCX) [14],

Enhanced Sequential Constructive Crossover (ESCX) [36], and Bidirectional Circular Se-

quential Constructive Crossover (BCSCX) [37].

2.4.1.1 Order Crossover (OX)

According to [34] this crossover works as following:

Step 1: Randomly selects a sub-list of consecutive genes from the first parent.

Step 2: Produce the first offspring by copying the selected sub-gene list from the first parent

into the corresponding positions of the first offspring.

Step 3: Start on the right edge of selected sub-list in parent 2, copy genes from parent 2 to

the right edge of sub-list of offspring 1. Wrap around and skip duplicated genes if

necessary.

Step 4: Produce the second offspring by switching parents roles.

Figure 2.5 demonstrates OX procedure.

Fig. 2.5: Order crossover example.
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2.4.1.2 Cycle Crossover (CX)

According to [33] the cycle crossover is designed to reserve information about gene

position in parents and it works as follows:

Step 1: Find cycles

(a) Begin with first gi in parent 1.

(b) Look at gi the same position in parent 2 (i.e. gene at index i in parent 2). Call

this gene gj .

(c) Search for gj in parent 1.

(d) Add gj to the cycle.

(e) Repeat step b to d until you reach gi of parent 1.

Step 2: Construct the two offspring by selecting cycles alternatively from both parents.

The following example in Figure 2.6 and Figure 2.7 illustrates the process.

2.4.1.3 Partially Mapped Crossover (PMX)

As stated in [35], partially mapped crossover reserves a slice of genes from one parent

and keeps the order from the other one. The following example in Figure 2.8 demonstrates

the procedure of this crossover.

2.4.1.4 Sequential Constructive Crossover (SCX)

The sequential constructive crossover is introduced by Ahmed [14] and the following

steps explain the method:

Step 1: Begin with first gene p in parent 1.

Step 2: Sequentially search for next neighbor gene of p in both parents. If there is no

legitimate gene (i.e. not yet visited) found, then find the next gene in legitimate

genes list (i.e. list of unvisited genes). Let α is the gene obtained from parent 1

and β is the gene obtained from parent 2.
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Fig. 2.6: Cycle crossover example.
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Fig. 2.7: Cycle constructing in CX example.
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Fig. 2.8: Partially mapped crossover example.

Step 3: If Costp,α < Costp,β then choose geneα otherwise choose geneβ as next gene and

append it to the partially constructed offspring.

Step 4: If the offspring complete, then stop, otherwise, set p to the chosen gene and continue

on step 2.

See the following Figure 2.9 for more details.

2.4.1.5 Enhanced Sequential Constructive Crossover (ESCX)

Enhanced sequential constructive crossover is introduced by Hachemi and Alanzi [36]

in an attempt to enhance SCX. The crossover is inspired by A* algorithm. It takes into

its consideration not only the cost from the current gene to next possible gene but also it

considers the minimum cost between the next possible gene and all the remaining unvisited

genes. By this way, it constructs offspring heuristically. Refer to the following example 2.10

for more details.
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Fig. 2.9: Sequentially constructive crossover example.

Fig. 2.10: Enhanced sequential constructive crossover example.
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2.4.1.6 Bidirectional Circular Sequential Constructive Crossover (BCSCX)

Bidirectional circular sequential constructive crossover is introduced by [37] by modi-

fying the SCX. It works just like SCX except for these two modifications:

1. Search for next neighbor that occurs in both directions (left and right) in both parents.

Thus, in this approach, four genes as neighbors will be considered.

2. During searching for the next neighbor gene, if it reaches to the end or to the beginning

of the genes list in any of the parents, it will wrap around.

See Figure 2.11 for further explanations.

Fig. 2.11: Bidirectional circular sequential constructive crossover example.

2.4.1.7 Our Modified Crossover

In the original SCX and BCSCX, constructing offspring always picks the first gene in

the first parent then adds this picked gene to be the first gene in the offspring. This policy

results in chromosomes with an unchanged first gene. As result, this policy guides the
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greedy search that is followed by SCX and BCSCX for constructing the rest of the genes in

the offspring. Thus, to overcome this weakness, we propose picking the first gene to start

with randomly. In other words, we pick a random gene gi in parent 1 and copy it to the

corresponding location into the offspring. Then we construct the remaining genes (starts

from gi+1 to gi−1) by following the same procedure in SCX and BCSCX. We named this

crossover Random Start SCX (RSSCX) and Random Start BCSCX (RSBCSCX).

2.4.2 Local Optimization Operator

In addition to the three basic GA operators (e.g. selection, crossover, and mutation),

sometimes there is a need to add another operator to increase the convergence speed of

GA and enhance the solution quality. In this regard, we use a non-uniform local search

operator [38] to improve our GA solver for TSP. This operator works as follows.

Three different cities (i, j, k) are selected randomly. Then we try all 3! possible com-

binations of i, j, k in the tour to find the best tour. The three cities are exchanged in their

positions without any effect of other positions of unselected cities in the tour. The following

Algorithm 2 describes this operator.

Algorithm 2: Non-Uniform Local Search Operator

Data: Individual: a chromosome to be modified
Result: BestIndividual: a modified chromosome

1 Cityi ,Cityj ,Cityk ← chooseRandomCity(Individual)
2 AllPossibleCombinations ← Permute(Cityi ,Cityj ,Cityk )
3 AllPossibleIndividuals ← Modify(Individual ,AllPossibleCombinations)
4 BestIndividual ← Individual
5 foreach PossibleIndividual ∈ AllPossibleIndividuals do
6 Evaluate(PossibleIndividual)
7 if PossibleIndividual is better than BestIndividual then
8 BestIndividual ← PossibleIndividual
9 end

10 end
11 return BestIndividual
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2.5 Experiments and Results

2.5.1 Experiment Setup

This section will focus on the quality of solutions found in our experiments using our

modified GA crossovers and operators discussed in this study to obtain an optimal tour

for static TSP. The algorithms are coded in Python 3. The performance of GA is tested

on different TSPLib benchmarks [18]. For all experiments, we used random population

initialization. We used tournament selection with tournament size set to 2. Swap mutation

is applied in this experimental study. The objective of this experimental study is to inves-

tigate the performance of GA using different crossovers and furthermore improve the GA

solver by applying the local search optimization operator in terms of solution quality.

One of the challenging things in building a practical GA is choosing appropriate

values for parameters such as population size, crossover probability(Pc), and mutation

probability(Pm). For this experiment, the guidelines of De Jong and Spears [39] has been

followed which recommend starting relatively high Pc and relatively low Pm, and the popu-

lation size is selected approximately 10 times larger than the number of cities in a problem.

The maximum number of generations is chosen as stopping criteria for the GA and it is set

earlier in the program.

2.5.2 Experiment Results

2.5.2.1 Crossovers’ Solution Quality and Performance

2.5.2.1.1 Symmetric TSP To study the effectiveness of our proposed crossover compared

to other crossover operators in GA, we solve each TSPLIB instance using GA with each

one of the crossover operators. These crossovers are order crossover(OX), cycle crossover

(CX), partially mapped crossover(PMX), sequential constructive crossover(SCX), enhanced

SCX(ESCX), bi-directional circular SCX(BCSCX), as well as our proposed ones which are

: random start SCX(RSSCX), random start BCSCX(RSBCSCX). The test is repeated 20
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times for each crossover then we compute the average of best solutions for 20 runs per

TSPLIB instance per crossover. Finally, we take the percentage change of the average best

solutions over the optimal solutions using this Equation 2.2.

PercentChange =
(SolutionV alue−OptimalSolutionV alue)

OptimalSolution
× 100 (2.2)

In Figure 2.12, we show crossovers comparison based on the quality of solutions.

Fig. 2.12: Crossover comparison based on solution quality for symmetric TSP.

As it is shown in this Figure 2.12, the solutions obtained by applying constructive

crossover (SCX, ESCX, BCSCX, RSSCX, and RSBCSCX) are better than the solutions
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obtained from traditional crossover operators (OX, CX, and PMX). The reason for this

behavior is that traditional crossover operators’ process is based on reordering genes in

a chromosome in some way without considering any knowledge about the tour itself to be

built. In comparison, constructive crossover operators use some of the available information

(i.e. distance to the neighbor cities) to construct a better tour. The other observation can

be seen in Figure 2.12 is that the proposed RSSCX and RSBCSCX are superior to their

original operators SCX and BCSCX in terms of the solution quality for all tested TSP

instances. This is an important indication that a random start when building offspring as

used in RSSCX and RSBCSCX makes the crossover achieve better chromosomes and is not

blindly biased to the first city in parent 1 chromosome as in SCX and BCSCX. Moreover,

it seems that SCX and RSBCSCX have about the same solution quality for small instances

(less than 30 cities) except in some cases where SCX is better (e.g. burma14, gr17, and

bays29) but for larger problem (greater than 30 cities) RSBCSCX outperforms RSSCX for

all instances (e.g. dantzig42, gr48, eil51, berlin52, eil76). Each benchmark is named to

indicate city size.

The performance graphs in Figures 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, and

2.22 show the convergence over generations of GA using different crossovers when it applied

to solve different TSPLIB instances (e.g. burma14, gr17, gr21, gr24, bays29, dantzig42,

gr48, eil51, berlin52, and eil76). As we can see in these figures, the cost (e.g. distance)

gets reduced in subsequent generations and eventually converges at specific generation. For

example, Figure 2.13 shows the convergence of solving burma14 instance. We can see that

RSSCX and RSBCSCX converge to nearly optimal cost after at most 20 generation. On the

other hand CX, OX, and PMX take much longer to converge. That is a valuable indication

that RSSCX and RSBCSCX take reasonable time to come up with near optimal solutions.

In Figures 2.23, 2.24, and 2.25, we plot the solution found by applying RSSCX as

crossover in each TSPLIB instance.
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Fig. 2.13: Performance graph for burma14 instance showing convergence over generations

Fig. 2.14: Performance graph for gr17 instance showing convergence over generations
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Fig. 2.15: Performance graph for gr21 instance showing convergence over generations

Fig. 2.16: Performance graph for gr24 instance showing convergence over generations
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Fig. 2.17: Performance graph for bays29 instance showing convergence over generations

Fig. 2.18: Performance graph for dantzig42 instance showing convergence over generations
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Fig. 2.19: Performance graph for gr48 instance showing convergence over generations

Fig. 2.20: Performance graph for eil51 instance showing convergence over generations
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Fig. 2.21: Performance graph for berlin52 instance showing convergence over generations

Fig. 2.22: Performance graph for eil76 instance showing convergence over generations
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Fig. 2.23: Optimal soultion of bays29 instance when using RSSCX as crossover. The total
distance is 2020.

Fig. 2.24: Optimal soultion of dantzig instance when using RSSCX as crossover. The total
distance is 699.
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Fig. 2.25: Approximate solution of eil51 instance when using RSSCX as crossover. The
total distance is 430.

2.5.2.1.2 Asymmetric TSP Similar to the results of Section 2.5.2.1.1, TSP instances were

run and solved using each of the crossovers multiple times. Figure 2.26 shows solution

quality comparison among crossovers when solving asymmetric TSP.

One observation in Figure 2.26 is that RSSCX and RSBCSCX outperform the other

constructive crossovers (SCX, ESCX, and BCSCX) and the traditional operators (OX, CX,

and PMX). Although RSSCX and RSBCSCX has about the same solution quality for some

tested TSP instances, RSSCX outperforms RSBCSCX for most cases except in ry48p TSP

instance. This outperformance of RSSCX in asymmetric TSP is expected because RSBC-

SCX and its original BCSCX violate the asymmetric behavior when it looks for neighbor in

right direction of the current city, while RSSCX and SCX respects this asymmetric property.

The performance graphs represented in Figures 2.27, 2.28, 2.29, 2.30, 2.31, 2.32, 2.33,

and 2.34 show GA evolution convergence for solving the asymmetric TSP instances. As

we can see in all of theses figures, RSBCSCX converged after 50 generations and even for
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some TSP instances it converged after 30 generations, while other crossovers take longer to

converge. We conclude that RSBCSCX takes less computational time to come up with a

solution that is very close to optimal solution.

Fig. 2.26: Crossover comparison based on solution quality for asymmetric TSP.
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Fig. 2.27: Performance graph for br17 instance showing convergence over generations

Fig. 2.28: Performance graph for ftv33 instance showing convergence over generations
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Fig. 2.29: Performance graph for ftv35 instance showing convergence over generations

Fig. 2.30: Performance graph for ftv38 instance showing convergence over generations
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Fig. 2.31: Performance graph for ftv44 instance showing convergence over generations

Fig. 2.32: Performance graph for ftv47 instance showing convergence over generations
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Fig. 2.33: Performance graph for p43 instance showing convergence over generations

Fig. 2.34: Performance graph for ry48p instance showing convergence over generations



36

2.5.2.2 Computational Time

The following Figures 2.35 and 2.36 show the computational time that GA take to solve

each TSP instance for both symmetric and asymmetric TSP respectively. This experiment

is repeated 20 times for solving each instance with each of the crossovers and then we take

the average time per instance per crossover. To get reliable time comparison among different

crossovers, we set the number of generations and population size to 100.

There are three insights in these Figures 2.35 and 2.36. First, the traditional crossover

operators (OX, CX, and PMX) take much less time for solving TSP compared to con-

structive operators (SCX, ESCX, RSSCXX, BCSCX, and RSBCSCX). That is due to the

simplistic process that these crossovers follow when producing new offspring. Although the

time efficiency is less, its solution quality is worse than constructive crossovers as shown in

Figure 2.12 and Figure 2.26. Second, ESCX gives the worst computational time complex-

ity among all operators. Third and the most important insight is that both our proposed

operators RSSCX and RSBCSCX take about the same time in constructing offspring com-

pared to the original SCX and BCSCX. Although RSSCX and RSBCSCX have same time

complexity compared to the original methods, they yield much better solution quality as it

is shown in Figure 2.12 and Figure 2.26.

2.5.2.3 Local Search Operator

To see the effectiveness of applying a local search operator on GA, we apply a non-

uniform local search operator on symmetric and asymmetric TSP. The probability of ap-

plying this operator is set to 0.5 in our experiments. The Figures 2.37 and 2.38 show the

comparison between using non-uniform local search and no search operator. The results

show that applying a non-uniform local search operator give better solution quality for both

symmetric and asymmetric TSP instances. Furthermore, the time complexity of this oper-

ator is O(1) and is applied to GA within a probability. Thus, this operator is considered

inexpensive and practical to be applied to GA.
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Fig. 2.35: Computational time comparison for symmetric TSP.

Fig. 2.36: Computational time comparison for asymmetric TSP.
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Fig. 2.37: Applying non uniform local search operator vs. no local search operator on GA
for symmetric TSP.

Fig. 2.38: Applying non uniform local search operator vs. no local search operator on GA
for asymmetric TSP.

2.6 Conclusion and Future Work

In this paper, we propose a new modification to SCX and BCSCX crossovers to solve
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both symmetric and asymmetric TSP. This modification requires the process start at ran-

dom city when constructing offspring from parents in the genetic algorithm for solving both

symmetric and asymmetric static TSP. This modification is called RSSCX and RSBCSCX

respectively. Our proposed adjustment is tested against well-known TSP instances [18]. The

experimental results show that our modification is superior to SCX, BCSCX, and other tra-

ditional crossovers in terms of solution quality. In addition, RSSCX and RSBCSCX have

better convergence speed compared to other crossovers when it experimented with TSPLIB

benchmarks. Moreover, computational time experiments show that our proposed crossover

takes about the same time as its original crossovers (SCX and BCSCX) while it produces

better solution quality. Although traditional crossover (OX, CX, and PMX) has better time

complexity, it produces worse solution compared to constructive crossovers. Furthermore,

we improve the GA efficiency by applying non-uniform local search operator. The experi-

mental results indicate that applying this operator has a good impact on solution quality.

Since this operator is inexpensive computationally (i.e. O(1)), then it is recommended as a

practical operator to enhance the solution quality in GA.

For future study, one direction could be to apply the basic SCX and BCSCX along

with our proposed modification to find a tour among destinations where the cost among

these places reflects the traffic time in real world. Thus, the time between cities depends

on the location in the tour.



CHAPTER 3

SOLVING TIME-DEPENDENT TSP USING GENETIC ALGORITHM

3.1 Abstract

The Time-Dependent Traveling Salesman Problem (TDTSP) is an interesting problem

and has real impact on real-life applications such as a delivery system. In this problem,

time among destinations fluctuates during the day due to traffic, weather, accidents, or

other events. Thus it is important to recommend a tour that can save driver’s time and

resources. In this research, we propose a Multi-Population Genetic Algorithm (MGA) where

each population has different crossovers. We compare the proposed MGA against Single-

Population Genetic Algorithm (SGA) in terms of tour time solution quality. Our finding is

that MGA outperforms SGA. Our method is tested against real-world traffic data [1] where

there are 200 different instances with different numbers of destinations (i.e. 60 different

instances of 10 destinations, 60 different instances of 20 destinations, 60 different instances

of 30 destinations, and 20 different instances of 50 destinations). For all tested instances,

MGA is superior on average by at least 10% (for instances with size less than 50) and 20%

(for instances of size 50) better tour time solution compared to SGA with OX and SGA with

PMX operators, and at least 4% better tour time compared to SGA with SCX operator.

3.2 Problem Description and Benchmark

3.2.1 Time-Dependent TSP Overview

The static TSP begins with a set of N cities and an N × N cost matrix, where each

entry in the matrix represents the distance to travel from Cityi to Cityj . The goal is to

find the minimum distance of a tour in which a salesman visits each city exactly once and

returns to the starting city. On the other hand, in time-dependent TSP, the cost (i.e. time)
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between each two cities varies and is dependent on the time of the day. The following

Equation 3.1 shows the time duration it takes to leave Cityi at time t and heading to Cityj .

Costi ,j ,t = TravelTime(Cityi ,Cityj , t) (3.1)

Thus, the goal of TDTSP is to minimize the tour time by visiting each city exactly once

and returning to the same starting city at the end as in Equation 3.2.

f = min

n−1∑
i=1

Costi ,i+1 ,t + Costn,1 ,̄t (3.2)

where t is the time of leaving Cityi and is updated by Equation 3.3

ti+1 = ti + Costi ,j ,ti (3.3)

3.2.2 Time-Dependent TSP Benchmark

The benchmark provided by [1] is used in this research. This benchmark is created

from real traffic data collected within 6 years in Lyon city in France. They consider 255

random delivery locations in Lyon city. The travel time step is 6 minutes from 6:00 AM to

12:30 PM. Thus, in total, there are 65 time steps. The travel time function is represented

as a stepwise function as is shown in Figure 3.1.
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Fig. 3.1: Travel time function from 6:00 AM to 12:30 PM
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In this benchmark, a service time (duration) at a delivery location is randomly chosen

from 1 minute to 5 minutes. There are different problem sizes (i.e. 10, 20, 30, and 50). Each

problem size has 60 different instances (except instances of size 50, which has 20 different

instances).

3.3 Literature Review

In 1992, Malandraki and et al. [40] introduced TDTSP and general Time-Dependent

Vehicle Routing Problem (TDVRP). The difference between TDVRP and TDTSP is that

there are N > 1 vehicles that need to be routed in TDVRP whereas there is only one vehicle

in TDTSP. They showed that some characteristics of static TSP do not hold for TDTSP.

These characteristics are (1) an optimal tour cannot intersect itself and (2) the convex hull

property. Thus, the time dependent version is more complex than the static version of

TSP and some static TSP solution models are invalid for TDTSP. Also, they suggested

some heuristics to solve this problem. The heuristics are nearest neighbor heuristic and

cutting plane heuristic algorithm. They consider three different nearest neighbor methods:

NN1, NN2, and NNR. NN1 works by starting at the depot and greedily adds the next

nearest customer. NN2 repeats NN1 method N − 1 times, where each time it considers

Customeri as next second visit and builds the rest of the tour as in NN1. NNR considers

the next nearest customer depending on a predefined probability for first, second, and third

best choices. They compared these heuristics using a randomly generated problem with

different size (i.e. 10 to 25 customers) and found out there is no dominated heuristic among

all tested methods that can solve TDTSP. Our solution will use more general heuristics

(meta-heuristics) to give an approximate solution for TDTSP. Although [40] defined and

described the problem of time dependency in TSP very well and in a clear way, the heuristics

they used are extremely simple and cannot produce a reliable and near optimal solution for

TDTSP.

Testa and et al. [38] studied the effect of different combinations of genetic algorithm

operators on solving TDTSP. In other words, they tried to find out which best GA operator

combinations were able to produce a high solution quality for TDTSP. They considered
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eight operators in addition to adaptive operator probability and population re-initialization

mechanism. The adaptive operator probability is a method to weight each operator by

observing the importance of an operator that contributes to an improved solution. Three

crossovers have been studied: recombination edge crossover, merge crossover, and cycle

crossover. Recombination edge crossover considers the edges of each city in the parents to

produce offspring. Merge crossover keeps the precedence of each city, for example, if Cityi

comes before Cityj in both parents then Cityi should be visited before Cityj in the offspring.

Cycle crossover keeps the positioning of the cities represented in the parents. Two mutation

operators have been used: scramble sublist mutation and uniform order mutation. Scramble

sublist mutation operates by randomly shuffling a consecutive sublist of cities. Uniform

order mutation chooses two cities randomly and swaps them. They used two local search

methods: uniform local search and non-uniform local search operator. Uniform local search

chooses a consecutive sublist then permutes all possible orders of the cities in this sublist

in a way to find out which best permutation can give lowest tour time. Non-uniform local

search operator differs from uniform local search by choosing N random cities rather than

a consecutive sublist of cities. They found that edge recombination crossover and cycle

crossover are important to produce a high quality solution with the presence of one of the

mutations. The worst combination is when no mutation and no local search operator are

present in GA. The re-initialization mechanism plays a significant role (about 85% of all

operator combinations) in solving TDTSP. They built their experiments based on randomly

generated problems of up to 50 cities, while our approach is tested on real traffic data.

Zheng-yu and et al. [41] proposed an improved GA that can solve TDVRP, where the

first optimization goal is to minimize the number of vehicles and the second goal is to min-

imize total schedule time. They concluded that using a mixed initial population with local

search operator can increase the speed of GA and result in high quality solutions. In their

implementation, the mixed initial population consists of 1/4 population which is randomly

generated, 1/4 population using nearest neighbor, 1/4 population using Solomon insertion,

and 1/4 population using IMPART algorithm. They used two point crossover where this
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crossover can produce infeasible solutions (i.e. some cities get repeated), and consequently,

the infeasible solutions need to be fixed. As a result, two point crossover increases the

computational complexity. Our method does not produce any infeasible solutions so there

is no need to fix any solution. Moreover, [41] randomly introduced traffic to static VRP

with four predefined congestion probabilities which could lead to unrealistic data.

Ant Colony Optimization (ACO) [42] could be used as a meta-heuristic to solve TDTSP.

Hitoshi and Ochiai [43] proposed a new method based on Min-Max Ant System (MMAS)

that outperforms the conventional MMAS in term of search rate. Thus, their new method

is faster by 2.6 to 3.4 times than conventional MMAS to produce an approximate solution

for TDTSP. In their research, they suggest a way to convert a static TSP benchmark [18]

by introducing a travel time change function. They considered five benchmarks from 51 to

300 cities where time interval is 5 units for small size benchmark (less than 200 cities) and

300 units for a larger problem size. However, our method uses real traffic data and a much

larger number of benchmarks to validate its effectiveness.

Mavrovouniotis and et al. [44] made a comparison between multi-colony ACO and

single-colony ACO for solving TDTSP. Multi-colony ACO is divided into two types: ho-

mogeneous (i.e. all colonies share same behavior) and heterogeneous (i.e. each colony has

different behavior). They reported that multi-colony ACO is superior to the single-colony

approach. The reason for this behavior is that using the multi-colony approach helps to

escape local stationary optimum when a change in the environment happens. Also, they

concluded that migration process is an important factor to communicate knowledge among

colonies to come up with a better solution for TDTSP. Their proposed model used bench-

marks that have been generated in such a way as to keep same static optimal solution value

when it is converted to a dynamic benchmark. Thus, they immolate a realistic dynamic

environment. Our approach uses another type of meta-heuristic (GA) and is tested on real

urban traffic data.

Other heuristic algorithms such as Tabu search [45], simulating annealing [46] and other

heuristics [47] [48] [49] have been introduced to solve TDTSP and TDVRP. Our solution
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model focuses on GA and its operators to provide an efficient solution for TDTSP.

3.4 Methods

This section provides detailed information about the single-population genetic algo-

rithm and multi-population genetic algorithm that we use to solve TDTSP.

3.4.1 Single-Population Genetic Algorithm

We use Algorithm 1 as single-population genetic algorithm. No local search operator

(i.e. optimization operator) is used in this version of the algorithm. We consider three

versions of this algorithm, each one has different crossover:

• SGA-OX: OX (refer to Section 2.4.1.1 for details) is used as a crossover.

• SGA-PMX: PMX (refer to Section 2.4.1.3 for details) is used as a crossover.

• SGA-SCX: SCX (refer to Section 2.4.1.4 for details) is used as a crossover.

Single-population means there is only one population that evolves using predefined selection,

crossover, and mutation operators. The population finally converges to an approximate

TDTSP solution. The initial population is randomly initialized. Tournament selection (refer

to Section 2.4 for more details) is used to select parents for the next generation. Finally,

swap mutation as shown in Figure 3.2 is used to exploit the search space by modifying

offspring.

Fig. 3.2: Swap mutation operator.
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3.4.2 Multi-Population Genetic Algorithm

Algorithm 3 shows our proposed Multi-population Genetic Algorithm (MGA).

Algorithm 3: Multi Population Genetic Algorithm

Data: TSP

Result: BestRoute

1 for g ← 1 to MaxGens do

2 foreach Population ∈ Populations do

3 if g == 1 then

4 Population ← InitializePopulation(TSP)

5 else

6 ReinitializePopulation(Population −MigratedIndividuals)

7 end

8 Evaluate(Population)

9 repeat

10 Offspring ← Select(Population,PopulationSize − ElitistIndividualsSize)

11 Crossover(Offspring)

12 Mutate(Offspring)

13 Evaluate(Offspring)

14 Population ← PopulationElitistIndividuals + Offspring

15 Update(PopulationElitistIndividuals)

16 until Converged(Population)

17 end

18 Migrate(Populations)

19 end

20 BestRoute ← GetFittest(Populations)

The whole population is randomly initialized the first time. After the migration takes

place, each population re-initializes its individuals so that the migrated individuals are

unchanged. Re-initializing a population after convergence is an important process to give
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a possibility to search in different areas in the search space. It allows a population to

evolve and converge to a near optimal solution. The migration step is done by moving

elitist individuals (e.g. best 10% of a population) from populationi to populationi+1 in

a circular manner. The migration happens after all populations converge. We assume

that a population converges when there is no improvement over the best individual for

three consecutive generations. In our implementation, there are three populations. Each

population has a different crossover operator (i.e. population1 has OX, population2 has

SCX, and population3 has PMX).

The next section provides a performance comparison between SGA and MGA.

3.5 Experiments and Results

3.5.1 Experiment Setup

The objective of this experimental study is to investigate the performance of MGA

compared to SGA when solving TDTSP instances in terms of solution quality on real traffic

data [1].. The algorithms are coded in Python 3. For all experiments, we used random

population initialization. We used tournament selection with tournament size set to 2.

Swap mutation is applied in this experimental study.

For this experiment, the guidelines of De Jong and Spears [39] have been followed,

which recommend starting with a relatively high Pc and relatively low Pm, and population

size is selected approximately 10 times larger than the number of cities in a problem. The

maximum number of generations is chosen as stopping criteria for both SGA and MGA and

it is set earlier in the program.

3.5.2 Experiment Results

Figure 3.3 shows the solution average when solving TDTSP instances using SGA and

MGA. In this figure, we solved each instance of the 200 instances (i.e. 60 instances of size

10, 60 instances of size 20, 60 instances of size 30, and 20 instances of size 50) 20 times using

each algorithm and then the average is taken. There are two interesting observations. First,
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Fig. 3.3: SGA tour time average vs. MGA tour time average for different TDTDP instances.
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it is clear that MGA outperforms all types of SGA. Because of the current best solution

to TDTSP may change over time due to the congestion among cities, the re-initialization

part of the populations’ solutions helps to evolve into new local optimal solution. Moreover,

MGA has the advantages of searching the search space in three different ways (OX, SCX, and

PMX). Second, one can observe that SGA with SCX operator is better than the other SGA

types. This is due to the greedy behavior of SCX, which helps the population to converge

to a local optimum solution faster and better than other crossovers (OX, PMX). Thus,

combining the three crossover operators into one multi-population evolutionary algorithm

is superior to the SGA with each of the crossovers.

Figure 3.4 shows the solution distribution of some instances in different sizes. Again

the tour time solutions obtained by MGA are much better than each of SGAs. This figure

shows the pattern of TDTSP solutions using each method. If we look at the centrality

and the spread of the solutions, it is clear that MGA outperforms other methods. Another

interesting observation is that SGA-SCX produces better results compared to other SGA

as the instance size gets bigger, but it is still beaten by MGA method as is shown in

Figures 3.4(b) 3.4(c) 3.4(d). Thus, in general, MGA outperforms all tested SGA methods

for different problem sizes.

Finally, to measure the difference between SGA and MGA, we calculate the percentage

difference between the average solutions of different instances and for all sizes (i.e. 10, 20,

30, and 50) using the following Equation 3.4.

PercentageDifference =
|MGAsolution − SGAsolution|

(MGAsolution + SGAsolution)÷ 2
× 100 (3.4)

The percentage difference is shown in Figure 3.5. If we compare MGA against SGA-OX

and SGA-PMX, the percentage difference is at least 10% for a problem size less than 50 and

20% when the problem size is 50. Also, if we compare SGA-SCX to MGA, we see that this

crossover performs better than the other SGA methods and the lowest percentage difference

is about 4% when problem size is 50. The difference is more than 5% for a problem size of

less than 50.
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Fig. 3.4: Tour time solutions distribution over 20 runs for some instances.
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Fig. 3.5: Percentage difference between SGA with (OX, SCX, and PMX) and MGA for
solving TDTDP instances.
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We use analysis of variance (ANOVA) [50] to test whether MGA and other SGAs are

statistically significantly different. The significant difference means that we reject that there

is no relationship between tested methods and a difference exists (null hypothesis). Table

3.1 shows the P-value and F-value. P-value is the probability of which we are confident to

reject that there is no difference (i.e reject the null hypothesis). F-value is the ratio between

methods solution mean square over within methods solution mean square. In other words,

F-value measures solutions variability between different methods and solution variability

within methods. As P-value < 0.05 (level of confidence) we conclude that at least one

method is significantly different from other methods.

Table 3.1: One-way ANOVA for MGA, SGA-OX, SGA-SCX, and SGA-PMX.

Problem Size 10 Problem Size 20 Problem Size 30 Problem Size 50

F value 12.449 343.439 1744.372 2462.421

P value 4.155e-08 2.960e-202 0.0 0.0

Now, to know which method(s) is significantly different from other methods, we perform

Tukey’s Honest Significant Difference (HSD) [51]. The HSD is a common post-hoc analysis

to measure the significant difference among methods. The following Table 3.2 shows Tukey’s

HSD between MGA and other SGAs, where a mean difference is the difference between

method 1 and method 2, lower and upper define the confident interval at which the two

methods are different.

Table 3.2 confirms that MGA is significantly different from SGA-OX , SGA-SCX, and

SGA-PMX for different problem size. Refer to [52] for more detailed explanation of ANOVA

and Tukey’s HSD test.
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Table 3.2: Tukey HSD test results between MGA and other SGAs

Method 1 Method 2 Mean Lower Upper Significant

Difference Difference

Size 10 MGA SGA-OX 146.575 46.349 246.801 YES

P = 0.05 MGA SGA-PMX 149.612 49.385 249.838 YES

MGA SGA-SCX 233.412 133.185 333.638 YES

Size 20 MGA SGA-OX 774.395 679.596 869.194 YES

P = 0.05 MGA SGA-PMX 1001.991 907.192 1096.789 YES

MGA SGA-SCX 137.598 42.799 232.396 YES

Size 30 MGA SGA-OX 1936.997 1825.324 2048.669 YES

P = 0.05 MGA SGA-PMX 2596.735 2485.062 2708.407 YES

MGA SGA-SCX 169.862 58.190 281.535 YES

Size 50 MGA SGA-OX 4638.387 4424.652 4852.121 YES

P = 0.07 MGA SGA-PMX 6096.842 5883.107 6310.576 YES

MGA SGA-SCX 213.824 0.090 427.559 YES

3.6 Conclusion and Future Work

In this paper, we compare two different genetic algorithms: single-population and

multi-population genetic algorithms. Our proposed multi-population genetic algorithm has

three populations, each population has a different crossover (i.e. population1 uses OX,

population2 uses SCX, and population3 uses PMX). Migration among elitist individuals

is used to transfer knowledge among populations in a circular manner. The proposed

algorithm is tested against single-population genetic algorithm with each of the crossovers

(i.e. SGA-OX, SGA-PMX, SGA-SCX) using real-world traffic data [1]. Our finding is that

MGA has superior performance compared to SGA in terms of tour time solution quality.

The experiment is done on 200 different instances with different numbers of destinations

(i.e. 60 instances for each problem size (10, 20, and 30), and 20 instances for the problem

of size 50). Among single-population algorithms, only SGA-SCX has a better performance

compared to other SGAs but it still beaten by MGA. The reason for the improvement of

MGA in solving Time-Dependent TSP is the ability of MGA to explore the search space

in three different manners, each manner corresponds to a different population, and that
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ability increases the coverage of the search space of the problem. Also, the MGA uses

the re-initialization process to randomly re-initialize a part of each population in each

iteration to reset the evolved population again. As a result of the re-initialization process,

a population can discover new local optimum that may be caused by a new change to the

environment of TDTSP. In addition, the MGA uses a migration mechanism to transfer

elitist individuals among populations to allow for faster convergence of each population and

to use these migrated solutions in the process of evolving new local optimum next iteration.

For future studies, one possibility could be researching new ways to structure pop-

ulations. Also, it would be interesting to investigate the performance of multi-population

when each population has the same operators and multi-population algorithm uses different

operators (e.g. crossover, mutation, or local search operators).



CHAPTER 4

CONCLUSIONS

The first part of this research deals with solving static TSP using the genetic algo-

rithm. In this research, we propose a new modification to SCX and BCSCX crossovers

to solve both symmetric and asymmetric TSP. This modification requires the process to

start at random city when constructing offspring from parents in the genetic algorithm for

solving both symmetric and asymmetric static TSP. This modification is called RSSCX

and RSBCSCX respectively. Our proposed adjustment is tested against well-known TSP

instances [18]. The experimental results show that our modification is superior to SCX,

BCSCX, and other traditional crossovers in terms of solution quality. In addition, RSSCX

and RSBCSCX have better convergence speed compared to other crossovers when it ex-

perimented with TSPLIB benchmarks. Moreover, computational time experiments show

that our proposed crossover takes about the same time as its original crossovers (SCX and

BCSCX) while it produces better solution quality. Although traditional crossover (OX, CX,

and PMX) has better time complexity, it produces a worse solution compared to construc-

tive crossovers. Furthermore, we improve the GA efficiency by applying non-uniform local

search operator. The experimental results indicate that applying this operator has a good

impact on solution quality. Since this operator is inexpensive computationally (i.e. O(1)),

then it is recommended as a practical operator to enhance the solution quality in GA.

In the second part of this research, we study solving time-dependent TSP using the

genetic algorithm. In this study, we compare two different genetic algorithms: single-

population and multi-population genetic algorithms. Our proposed multi-population genetic

algorithm has three populations, each population has a different crossover (i.e. population1

uses OX, population2 uses SCX, and population3 uses PMX). Migration among elitist indi-

viduals is used to transfer knowledge among populations in a circular manner. The proposed

algorithm is tested against single-population genetic algorithm with each of the crossovers
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(i.e. SGA-OX, SGA-PMX, SGA-SCX) using real-world traffic data [1]. Our finding is that

MGA has superior performance compared to SGA in terms of tour time solution quality.

The experiment is done on 200 different instances with different numbers of destinations

(i.e. 60 instances for each problem size (10, 20, and 30), and 20 instances for the problem

of size 50). Among single-population algorithms, only SGA-SCX has a better performance

compared to other SGAs but it is still beaten by MGA. The reason for the improvement

of MGA in solving Time-Dependent TSP is the ability of MGA to explore the search space

in three different manners (each manner corresponds to a different population) and that

ability increases the coverage of the search space of the problem. Also, the MGA uses the

re-initialization process to randomly re-initialize a part of each population in each itera-

tion to reset the evolved population again. As a result of the re-initialization process, a

population can discover new local optimum that may be caused by a new change to the en-

vironment of TDTSP. In addition, the MGA uses a migration mechanism to transfer elitist

individuals among populations to allow for faster convergence of each population and to

use these migrated solutions in the process of evolving new local optimum next iteration.
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